Science.gov

Sample records for iii electron probe

  1. Electronic communication. Part III.

    PubMed

    Bergren, M D

    1995-02-01

    This is the concluding article of a three-part series on electronic communication for school nurses. The October 1994 column described electronic communication and the hardware and software required. The December 1994 column examined e-mail, bulletin boards, databases, and file transfers. This column will list many health and nursing resources available on-line. Some of the resources are available only through the Internet. Others are accessible by more than one route: dial-in, telnet, gopher, or world wide web. A few of the services, such as MEDLINE, are only accessed with purchased accounts (Glowniak & Bushway, 1994). The electronic resources of interest to school nurses are so numerous it would be impossible to cite all of them in a column of this length. Selected resources for the school health provider will be listed in alphabetical order. PMID:7767047

  2. Electronics Book III.

    ERIC Educational Resources Information Center

    Johnson, Dennis; And Others

    This manual, the third of three curriculum guides for an electronics course, is intended for use in a program combining vocational English as a second language (VESL) with bilingual vocational education. Ten units cover AC fundamentals, circuit protection devices, low voltage circuits, communication systems, graphic illustrations, house wiring,…

  3. Nanocrystalline nanowires: III. Electrons.

    PubMed

    Allen, Philip B

    2007-05-01

    Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction and typically have some rotational symmetry around this direction. Electron eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number) are discussed. The rotational quantum number simplifies discussion of optical properties. For m not equal 0, the +/-m degeneracy allows orbital magnetism. The simplest sensible model which is more complex than a one-dimensional chain is solved. Methods are suggested for incorporating rotational symmetry into preexisting codes with three-dimensional translations.

  4. Titanium pigmentation. An electron probe microanalysis study

    SciTech Connect

    Dupre, A.; Touron, P.; Daste, J.; Lassere, J.; Bonafe, J.L.; Viraben, R.

    1985-05-01

    A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis.

  5. Indirect Calibration In Electron-Probe Microanalysis

    NASA Technical Reports Server (NTRS)

    Terepka, F. M.; Vijaykumar, M.; Tewari, S. N.

    1992-01-01

    Technique for indirect calibration in electron-probe microanalysis reduces number of measurements needed without significantly degrading precision of measurement data. Advantageous when many analyses must be performed; for example, determining varying chemical composition at many positions across specimen of multicomponent alloy. Time spent acquiring data reduced considerably.

  6. Uncertainty in Quantitative Electron Probe Microanalysis

    PubMed Central

    Heinrich, Kurt F. J.

    2002-01-01

    Quantitative electron probe analysis is based on models based on the physics or x-ray generation, empirically adjusted to the analyses of specimens of known composition. Their accuracy can be estimated by applying them to a set of specimens of presumably well-known composition. PMID:27446746

  7. Creating and Probing Graphene Electron Optics with Local Scanning Probes

    NASA Astrophysics Data System (ADS)

    Stroscio, Joseph

    Ballistic propagation and the light-like dispersion of graphene charge carriers make graphene an attractive platform for optics-inspired graphene electronics where gate tunable potentials can control electron refraction and transmission. In analogy to optical wave propagation in lenses, mirrors and metamaterials, gate potentials can be used to create a negative index of refraction for Veselago lensing and Fabry-Pérot interferometers. In circular geometries, gate potentials can induce whispering gallery modes (WGM), similar to optical and acoustic whispering galleries albeit on a much smaller length scale. Klein scattering of Dirac carriers plays a central role in determining the coherent propagation of electron waves in these resonators. In this talk, I examine the probing of electron resonators in graphene confined by linear and circular gate potentials with the scanning tunneling microscope (STM). The tip in the STM tunnel junction serves both as a tunable local gate potential, and as a probe of the graphene states through tunneling spectroscopy. A combination of a back gate potential, Vg, and tip potential, Vb, creates and controls a circular pn junction that confines the WGM graphene states. The resonances are observed in two separate channels in the tunneling spectroscopy experiment: first, by directly tunneling into the state at the bias energy eVb, and, second, by tunneling from the resonance at the Fermi level as the state is gated by the tip potential. The second channel produces a fan-like set of WGM peaks, reminiscent of the fringes seen in planar geometries by transport measurements. The WGM resonances split in a small applied magnetic field, with a large energy splitting approaching the WGM spacing at 0.5 T. These results agree well with recent theory on Klein scattering in graphene electron resonators. This work is done in collaboration with Y. Zhao, J. Wyrick, F.D. Natterer, J. F. Rodriquez-Nieva, C. Lewandoswski, K. Watanabe, T. Taniguchi, N. B

  8. Luminescent chiral lanthanide(III) complexes as potential molecular probes

    PubMed Central

    Muller, Gilles

    2009-01-01

    This perspective gives an introduction into the design of luminescent lanthanide(III)-containing complexes possessing chiral properties and used to probe biological materials. The first part briefly describes general principles, focusing on the optical aspect (i.e. lanthanide luminescence, sensitization processes) of the most emissive trivalent lanthanide ions, europium and terbium, incorporated into molecular luminescent edifices. This is followed by a short discussion on the importance of chirality in the biological and pharmaceutical fields. The second part is devoted to the assessment of the chiroptical spectroscopic tools available (typically circular dichroism and circularly polarized luminescence) and the strategies used to introduce a chiral feature into luminescent lanthanide(III) complexes (chiral structure resulting from a chiral arrangement of the ligand molecules surrounding the luminescent center or presence of chiral centers in the ligand molecules). Finally, the last part illustrates these fundamental principles with recent selected examples of such chiral luminescent lanthanide-based compounds used as potential probes of biomolecular substrates. PMID:19885510

  9. Quantitative WDS analysis using electron probe microanalyzer

    SciTech Connect

    Ul-Hamid, Anwar . E-mail: anwar@kfupm.edu.sa; Tawancy, Hani M.; Mohammed, Abdul-Rashid I.; Al-Jaroudi, Said S.; Abbas, Nureddin M.

    2006-04-15

    In this paper, the procedure for conducting quantitative elemental analysis by ZAF correction method using wavelength dispersive X-ray spectroscopy (WDS) in an electron probe microanalyzer (EPMA) is elaborated. Analysis of a thermal barrier coating (TBC) system formed on a Ni-based single crystal superalloy is presented as an example to illustrate the analysis of samples consisting of a large number of major and minor elements. The analysis was performed by known standards and measured peak-to-background intensity ratios. The procedure for using separate set of acquisition conditions for major and minor element analysis is explained and its importance is stressed.

  10. Atom Probe Tomography of Nanoscale Electronic Materials

    SciTech Connect

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  11. Pioneer Venus orbiter electron temperature probe

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1994-01-01

    This document lists the scientific accomplishments of the Orbiter Electron Temperature Probe (OETP) group. The OETP instrument was fabricated in 1976, integrated into the PVO spacecraft in 1977, and placed in orbit about Venus in December 1978. The instrument operated flawlessly for nearly 14 years until PVO was lost as it entered the Venusian atmosphere in October 1992. The OETP group worked closely with other PVO investigators to examine the Venus ionosphere and its interactions with the solar wind. After the mission was completed we continued to work with the scientist selected for the Venus Data Analysis Program (VDAP), and this is currently leading to additional publications.

  12. High Count Rate Electron Probe Microanalysis

    PubMed Central

    Geller, Joseph D.; Herrington, Charles

    2002-01-01

    Reducing the measurement uncertainty of quantitative analyses made using electron probe microanalyzers (EPMA) requires a careful study of the individual uncertainties from each definable step of the measurement. Those steps include measuring the incident electron beam current and voltage, knowing the angle between the electron beam and the sample (takeoff angle), collecting the emitted x rays from the sample, comparing the emitted x-ray flux to known standards (to determine the k-ratio) and transformation of the k-ratio to concentration using algorithms which includes, as a minimum, the atomic number, absorption, and fluorescence corrections. This paper discusses the collection and counting of the emitted x rays, which are diffracted into the gas flow or sealed proportional x-ray detectors. The representation of the uncertainty in the number of collected x rays collected reduces as the number of counts increase. The uncertainty of the collected signal is fully described by Poisson statistics. Increasing the number of x rays collected involves either counting longer or at a higher counting rate. Counting longer means the analysis time increases and may become excessive to get to the desired uncertainty. Instrument drift also becomes an issue. Counting at higher rates has its limitations, which are a function of the detector physics and the detecting electronics. Since the beginning of EPMA analysis, analog electronics have been used to amplify and discriminate the x-ray induced ionizations within the proportional counter. This paper will discuss the use of digital electronics for this purpose. These electronics are similar to that used for energy dispersive analysis of x rays with either Si(Li) or Ge(Li) detectors except that the shaping time constants are much smaller. PMID:27446749

  13. Electronic flaw simulator for eddy current probe calibration

    NASA Technical Reports Server (NTRS)

    Almasy, L. J.; Cowfer, C. D.

    1970-01-01

    Electronic flaw simulator cycled into the eddy current system eliminates errors in probe calibration. A discrimination level reference established in the probe permits recognition of those flaws in materials with an equivalent volume equal to or greater than the reference.

  14. Direct electronic probing of biological complexes formation

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa

    2014-10-01

    Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.

  15. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy

    SciTech Connect

    Plemmons, DA; Suri, PK; Flannigan, DJ

    2015-05-12

    In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasize how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and

  16. Measurement of electron density using reactance cutoff probe

    NASA Astrophysics Data System (ADS)

    You, K. H.; You, S. J.; Kim, D. W.; Na, B. K.; Seo, B. H.; Kim, J. H.; Seong, D. J.; Chang, H. Y.

    2016-05-01

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure the electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).

  17. Metastable atom probe for measuring electron beam density profiles

    NASA Technical Reports Server (NTRS)

    Lockhart, J. M.; Zorn, J. C.

    1972-01-01

    Metastable atom probe was developed for measuring current density in electron beam as function of two arbitrary coordinates, with spatial resolution better than 0.5 mm. Probe shows effects of space charge, magnetic fields, and other factors which influence electron current density, but operates with such low beam densities that introduced perturbation is very small.

  18. Spin Polarized Electron Probes and Magnetic Nanostructures

    SciTech Connect

    D.L. Mills

    2003-10-15

    OAK B188 This report summarizes progress to date in our theoretical research program, for the period from July 1, 2002 to November 1, 2003. In addition, our research priorities for the coming year are set forth. The reporting period has been a most exciting and significant one. For the past several years, one of our principal thrust areas has been development of the theory of spin dynamics in magnetic nanostructures with emphasis on the use of spin polarized electrons as probes of short wavelength spin dynamics in such entities. Our program stimulated the first experiment which detected large wave vector spin waves in ultrathin films in 1999 through spin polarized electron loss spectroscopy (SPEELS); the publication which announced this discovery was a joint publication between a group in Halle (Germany) with our theory effort. The continued collaboration has led to the design and implementation of the new SPEELS spectrometer and we now have in hand the first detailed measurements of spin wave dispersion in an ultrathin film. A second such spectrometer is now operational in the laboratory of Prof. H. Hopster, at UC Irvine. We are thus entering a most exciting new era in the spectroscopy of spin excitations in magnetic nanostructures. During the reporting period, we have completed very important new analyses which predict key aspects of the spectra which will be uncovered by these new instruments, and the calculations continue to be developed and to expand our understanding. In addition, we have initiated a new series of theoretical studies directed toward spin dynamics of single magnetic adatoms on metal surfaces, with STM based studies of this area n mind. In the near future, these studies will continue, and we will expand our effort into new areas of spin dynamics in magnetic nanostructures.

  19. A single probe for imaging photons, electrons and physical forces.

    PubMed

    Pilet, Nicolas; Lisunova, Yuliya; Lamattina, Fabio; Stevenson, Stephanie E; Pigozzi, Giancarlo; Paruch, Patrycja; Fink, Rainer H; Hug, Hans J; Quitmann, Christoph; Raabe, Joerg

    2016-06-10

    The combination of complementary measurement techniques has become a frequent approach to improve scientific knowledge. Pairing of the high lateral resolution scanning force microscopy (SFM) with the spectroscopic information accessible through scanning transmission soft x-ray microscopy (STXM) permits assessing physical and chemical material properties with high spatial resolution. We present progress from the NanoXAS instrument towards using an SFM probe as an x-ray detector for STXM measurements. Just by the variation of one parameter, the SFM probe can be utilised to detect either sample photo-emitted electrons or transmitted photons. This allows the use of a single probe to detect electrons, photons and physical forces of interest. We also show recent progress and demonstrate the current limitations of using a high aspect ratio coaxial SFM probe to detect photo-emitted electrons with very high lateral resolution. Novel probe designs are proposed to further progress in using an SFM probe as a STXM detector.

  20. A single probe for imaging photons, electrons and physical forces

    NASA Astrophysics Data System (ADS)

    Pilet, Nicolas; Lisunova, Yuliya; Lamattina, Fabio; Stevenson, Stephanie E.; Pigozzi, Giancarlo; Paruch, Patrycja; Fink, Rainer H.; Hug, Hans J.; Quitmann, Christoph; Raabe, Joerg

    2016-06-01

    The combination of complementary measurement techniques has become a frequent approach to improve scientific knowledge. Pairing of the high lateral resolution scanning force microscopy (SFM) with the spectroscopic information accessible through scanning transmission soft x-ray microscopy (STXM) permits assessing physical and chemical material properties with high spatial resolution. We present progress from the NanoXAS instrument towards using an SFM probe as an x-ray detector for STXM measurements. Just by the variation of one parameter, the SFM probe can be utilised to detect either sample photo-emitted electrons or transmitted photons. This allows the use of a single probe to detect electrons, photons and physical forces of interest. We also show recent progress and demonstrate the current limitations of using a high aspect ratio coaxial SFM probe to detect photo-emitted electrons with very high lateral resolution. Novel probe designs are proposed to further progress in using an SFM probe as a STXM detector.

  1. Imaging physical phenomena with local probes: From electrons to photons

    NASA Astrophysics Data System (ADS)

    Bonnell, Dawn A.; Basov, D. N.; Bode, Matthias; Diebold, Ulrike; Kalinin, Sergei V.; Madhavan, Vidya; Novotny, Lukas; Salmeron, Miquel; Schwarz, Udo D.; Weiss, Paul S.

    2012-07-01

    The invention of scanning tunneling and atomic force probes revolutionized our understanding of surfaces by providing real-space information about the geometric and electronic structure of surfaces at atomic spatial resolution. However, the junction of a nanometer-sized probe tip and a surface contains much more information than is intrinsic to conventional tunneling and atomic force measurements. This review summarizes recent advances that push the limits of the probing function at nanometer-scale spatial resolution in the context of important scientific problems. Issues such as molecular interface contact, superconductivity, electron spin, plasmon field focusing, surface diffusion, bond vibration, and phase transformations are highlighted as examples in which local probes elucidate complex function. The major classes of local probes are considered, including those of electromagnetic properties, electron correlations, surface structure and chemistry, optical interactions, and electromechanical coupling.

  2. Probing chromium(III) from chromium(VI) in cells by a fluorescent sensor

    NASA Astrophysics Data System (ADS)

    Hu, Xiangquan; Chai, Jie; Liu, Yanfei; Liu, Bin; Yang, Binsheng

    2016-01-01

    Cellular uptake of Cr(VI), followed by its reduction to Cr(III) with the formation of kinetically inert Cr(III) complexes, is a complex process. To better understand its physiological and pathological functions, efficient methods for the monitoring of Cr(VI) are desired. In this paper a selective fluorescent probe L, rhodamine hydrazide bearing a benzo[b]furan-2-carboxaldehyde group, was demonstrated as a red chemosensor for Cr(III) at about 586 nm. This probe has been used to probe Cr(III) which is reduced from Cr(VI) by reductants such as glutathione (GSH), vitamin C, cysteine (Cys), H2O2 and Dithiothreitol (DTT) by fluorescence spectra. Cr(VI) metabolism in vivo is primarily driven by Vc and GSH. Vc could reduce CrO42 - to Cr(III) in a faster rate than GSH. The indirectly detection limit for Cr(VI) by L + GSH system was determined to be 0.06 μM at pH = 6.2. Moreover, the confocal microscopy image experiments indicated that Cr(VI) can be reduced to Cr(III) inside cells rapidly and the resulted Cr(III) can be captured and imaged timely by L.

  3. Probing chromium(III) from chromium(VI) in cells by a fluorescent sensor.

    PubMed

    Hu, Xiangquan; Chai, Jie; Liu, Yanfei; Liu, Bin; Yang, Binsheng

    2016-01-15

    Cellular uptake of Cr(VI), followed by its reduction to Cr(III) with the formation of kinetically inert Cr(III) complexes, is a complex process. To better understand its physiological and pathological functions, efficient methods for the monitoring of Cr(VI) are desired. In this paper a selective fluorescent probe L, rhodamine hydrazide bearing a benzo[b]furan-2-carboxaldehyde group, was demonstrated as a red chemosensor for Cr(III) at about 586 nm. This probe has been used to probe Cr(III) which is reduced from Cr(VI) by reductants such as glutathione (GSH), vitamin C, cysteine (Cys), H2O2 and Dithiothreitol (DTT) by fluorescence spectra. Cr(VI) metabolism in vivo is primarily driven by Vc and GSH. Vc could reduce CrO4(2-) to Cr(III) in a faster rate than GSH. The indirectly detection limit for Cr(VI) by L+GSH system was determined to be 0.06 μM at pH=6.2. Moreover, the confocal microscopy image experiments indicated that Cr(VI) can be reduced to Cr(III) inside cells rapidly and the resulted Cr(III) can be captured and imaged timely by L.

  4. Collective electronic effects in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Passian, Ali

    The surface plasmon dispersion relations are calculated for a metal coated dielectric probe above a dielectric half space with and without metal coating. Employing prolate spheroidal coordinate system this configuration was modeled as confocal single-sheeted hyperboloids of revolution superimposed on planar domains. The involved media are characterized by frequency dependent, spatially local dielectric functions. Due to subwavelength dimensions of the region of interest, nonretarded electrodynamics is utilized to derive exact analytical expressions describing the resonant surface modes. The dispersion relations are studied as functions of the parameter that defines the hyperboloidal boundaries of the tip and the corresponding coating, and as functions of the involved coating thicknesses. Both parallel and perpendicular polarizations are considered. The results are simulated numerically and limiting cases are discussed with comparison to the Cartesian thin foil case. Using this new type of probe-substrate configuration, the surface plasmon coupling mechanism is investigated experimentally utilizing a scanning probe microscope, and the signal strength acquired by the probe is measured as a function of the distance between the probe and the sample. This is repeated at three different wavelengths of the incident p-polarized photons used to stimulate surface plasmons in the thin metal foil. The results are compared with the theory. Utilizing the prolate spheroidal coordinate system, the related and relevant problem of the Coulomb interaction of a dielectric probe tip with a uniform field existing above a semiinfinite, homogeneous dielectric substrate was studied. This is of interest in atomic force microscopy when the sample surface is electrically charged. The induced polarization surface charge density and the field distribution at the bounding surface of the dielectric medium with the geometry of a single-sheeted hyperboloid of revolution located above the dielectric

  5. Imaging free carriers in electronic material using a scanning probe microscope: Scanning capacitance microscopy

    SciTech Connect

    Erickson, A.; Adderton, D.; Day, T.; Alvis, R.

    1996-12-31

    The development of methods electrical properties, which are suitable to directly yield the desired carrier distributions on a nanometer scale has greatly benefited from the development of scanning probe technology over the last decade. Scanning Probe Microscopes (SPMs) offer inherent two-dimensionality and have been shown to have applications ranging from Magnet force to electro-chemistry. We have used an SPM in contact mode to simultaneously measure topography (and therefore physical structure) and capacitance variations (due to an applied bias) of various electronic materials such as doped silicon, poly silicon, SiC, and III-V materials.

  6. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-01-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1–40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1–40 peptide on the basis of their emission response. PMID:26419607

  7. Pygmy Resonances Probed with Electron Scattering

    SciTech Connect

    Bertulani, Carlos A

    2007-05-01

    Pygmy resonances in light nuclei excited in electron scattering are discussed. These collective modes will be explored in future electron-ion colliders such as ELISe/FAIR (spokesperson: Haik Simon - GSI). Response functions for direct breakup are explored with few-body and hydrodynamical models, including the dependence upon final-state interactions.

  8. Revisiting plasma hysteresis with an electronically compensated Langmuir probe

    SciTech Connect

    Srivastava, P. K.; Singh, S. K.; Awasthi, L. M.; Mattoo, S. K.

    2012-09-15

    The measurement of electron temperature in plasma by Langmuir probes, using ramped bias voltage, is seriously affected by the capacitive current of capacitance of the cable between the probe tip and data acquisition system. In earlier works a dummy cable was used to balance the capacitive currents. Under these conditions, the measured capacitive current was kept less than a few mA. Such probes are suitable for measurements in plasma where measured ion saturation current is of the order of hundreds of mA. This paper reports that controlled balancing of capacitive current can be minimized to less than 20 {mu}A, allowing plasma measurements to be done with ion saturation current of the order of hundreds of {mu}A. The electron temperature measurement made by using probe compensation technique becomes independent of sweep frequency. A correction of {<=}45% is observed in measured electron temperature values when compared with uncompensated probe. This also enhances accuracy in the measurement of fluctuation in electron temperature as {delta}T{sub pk-pk} changes by {approx}30%. The developed technique with swept rate {<=}100 kHz is found accurate enough to measure both the electron temperature and its fluctuating counterpart. This shows its usefulness in measuring accurately the temperature fluctuations because of electron temperature gradient in large volume plasma device plasma with frequency ordering {<=}50 kHz.

  9. Revisiting plasma hysteresis with an electronically compensated Langmuir probe.

    PubMed

    Srivastava, P K; Singh, S K; Awasthi, L M; Mattoo, S K

    2012-09-01

    The measurement of electron temperature in plasma by Langmuir probes, using ramped bias voltage, is seriously affected by the capacitive current of capacitance of the cable between the probe tip and data acquisition system. In earlier works a dummy cable was used to balance the capacitive currents. Under these conditions, the measured capacitive current was kept less than a few mA. Such probes are suitable for measurements in plasma where measured ion saturation current is of the order of hundreds of mA. This paper reports that controlled balancing of capacitive current can be minimized to less than 20 μA, allowing plasma measurements to be done with ion saturation current of the order of hundreds of μA. The electron temperature measurement made by using probe compensation technique becomes independent of sweep frequency. A correction of ≤45% is observed in measured electron temperature values when compared with uncompensated probe. This also enhances accuracy in the measurement of fluctuation in electron temperature as δT(pk-pk) changes by ~30%. The developed technique with swept rate ≤100 kHz is found accurate enough to measure both the electron temperature and its fluctuating counterpart. This shows its usefulness in measuring accurately the temperature fluctuations because of electron temperature gradient in large volume plasma device plasma with frequency ordering ≤50 kHz.

  10. Design study for electronic system for Jupiter Orbit Probe (JOP)

    NASA Technical Reports Server (NTRS)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  11. Stabilization of electron streams in type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.; Goldstein, M. L.; Smith, R. A.

    1974-01-01

    We show that the electron streams that give rise to type III solar radio bursts are stable and will not be decelerated while propagating out of the solar corona. The stabilization mechanism depends on the parametric oscillating two-stream instability. Radiation is produced near the fundamental and second harmonic of the local electron plasma frequency. Estimates of the emission at the second harmonic indicate that the wave spectra created by the oscillating two-stream instability can account for the observed intensities of type III bursts.

  12. Probing the magnetsophere with artificial electron beams

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1981-01-01

    An analysis is conducted of the University of Minnesota Electron Echo experiments, which so far have included five sounding rocket experiments. The concept of the Echo experiment is to inject electron beam pulses from a rocket into the ionosphere at altitudes in the range from 100 to 300 km. The electrons move to the conjugate hemisphere following magnetic field lines and return on neighboring field lines to the neighborhood of the rocket where the pulses may be detected and analyzed. Attention is given to the detection and analysis of echoes, the structure of echoes, and the Echo V experiment. The Echo V experiment showed clearly that detection of remote echo beams by atmospheric fluorescence using low light level TV system is not a viable technique. A future experiment is to use throw-away detectors for direct remote echo detection.

  13. Electron spin resonance (ESR) probe for interventional MRI instrument localization.

    PubMed

    Ehnholm, G J; Vahala, E T; Kinnunen, J; Nieminen, J E; Standertskjöld-Nordenstam, C; Uusitalo, M A

    1999-08-01

    This article presents a miniaturized electron spin resonance (ESR) probe for deducing the position of a surgical instrument on an MR image. The ESR probe constructed was small enough to fit inside a 14-G biopsy needle sheath, and position information of the sheath could be acquired using a simple gradient sequence. The position accuracy was estimated from needle trajectories as inferred from the needle artifact, the actual physical trajectory, and measured coordinates. The probe was able to track the tip of a biopsy needle quickly (10 samples/sec) and precisely with accuracy better than +/-2 mm. J. Magn. Reson. Imaging 1999;10:216-219.

  14. Electronic Biosensors Based on III-Nitride Semiconductors

    NASA Astrophysics Data System (ADS)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-07-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  15. Electronic Biosensors Based on III-Nitride Semiconductors.

    PubMed

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  16. Detecting magnetic ordering with atomic size electron probes

    DOE PAGESBeta

    Idrobo, Juan Carlos; Rusz, Ján; Spiegelberg, Jakob; McGuire, Michael A.; Symons, Christopher T.; Vatsavai, Ranga Raju; Cantoni, Claudia; Lupini, Andrew R.

    2016-05-27

    While magnetism originates at the atomic scale, the existing spectroscopic techniques sensitive to magnetic signals only produce spectra with spatial resolution on a larger scale. However, recently, it has been theoretically argued that atomic size electron probes with customized phase distributions can detect magnetic circular dichroism. Here, we report a direct experimental real-space detection of magnetic circular dichroism in aberration-corrected scanning transmission electron microscopy (STEM). Using an atomic size-aberrated electron probe with a customized phase distribution, we reveal the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The novel experimental setupmore » presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution.« less

  17. Creating and probing electron whispering-gallery modes in graphene

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Wyrick, Jonathan; Natterer, Fabian D.; Rodriguez-Nieva, Joaquin F.; Lewandowski, Cyprian; Watanabe, Kenji; Taniguchi, Takashi; Levitov, Leonid S.; Zhitenev, Nikolai B.; Stroscio, Joseph A.

    2015-05-01

    The design of high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Complementing previous approaches to confine electronic waves by carefully positioned adatoms at clean metallic surfaces, we demonstrate an approach inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene’s gate-tunable light-like carriers, we create whispering-gallery mode (WGM) resonators defined by circular pn junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range. The WGM-type confinement and associated resonances are a new addition to the quantum electron-optics toolbox, paving the way to develop electronic lenses and resonators.

  18. Focused electron beam in pyroelectric electron probe microanalyzer

    SciTech Connect

    Imashuku, Susumu; Imanishi, Akira; Kawai, Jun

    2013-07-15

    We report a method to focus the electron beam generated using a pyroelectric crystal. An electron beam with a spot size of 100 μm was achieved by applying an electrical field to an electroconductive needle tip set on a pyroelectric crystal. When the focused electron beam bombarded a sample, characteristic X-rays of the sample were only detected due to the production of an electric field between the needle tip and the sample.

  19. Transport Properties of III-N Hot Electron Transistors

    NASA Astrophysics Data System (ADS)

    Suntrup, Donald J., III

    Unipolar hot electron transistors (HETs) represent a tantalizing alternative to established bipolar transistor technologies. During device operation electrons are injected over a large emitter barrier into the base where they travel along the device axis with very high velocity. Upon arrival at the collector barrier, high-energy electrons pass over the barrier and contribute to collector current while low-energy electrons are quantum mechanically reflected back into the base. Designing the base with thickness equal to or less than the hot electron mean free path serves to minimize scattering events and thus enable quasi-ballistic operation. Large current gain is achieved by increasing the ratio of transmitted to reflected electrons. Although III-N HETs have undergone substantial development in recent years, there remain ample opportunities to improve key device metrics. In order to engineer improved device performance, a deeper understanding of the operative transport physics is needed. Fortunately, the HET provides fertile ground for studying several prominent electron transport phenomena. In this thesis we present results from several studies that use the III-N HET as both emitter and analyzer of hot electron momentum states. The first provides a measurement of the hot electron mean free path and the momentum relaxation rate in GaN; the second relies on a new technique called electron injection spectroscopy to investigate the effects of barrier height inhomogeneity in the emitter. To supplement our analysis we develop a comprehensive theory of coherent electron transport that allows us to model the transfer characteristics of complex heterojunctions. Such a model provides a theoretical touchstone with which to compare our experimental results. While these studies are of potential interest in their own right, we interpret the results with an eye toward improving next-generation device performance.

  20. Measuring ionospheric electron density using the plasma frequency probe

    SciTech Connect

    Jensen, M.D.; Baker, K.D. )

    1992-02-01

    During the past decade, the plasma frequency probe (PFP) has evolved into an accurate, proven method of measuring electron density in the ionosphere above about 90 km. The instrument uses an electrically short antenna mounted on a sounding rocket that is immersed in the plasma and notes the frequency where the antenna impedance is large and nonreactive. This frequency is closely related to the plasma frequency, which is a direct function of free electron concentration. The probe uses phase-locked loop technology to follow a changing electron density. Several sections of the plasma frequency probe circuitry are unique, especially the voltage-controlled oscillator that uses both an electronically tuned capacitor and inductor to give the wide tuning range needed for electron density measurements. The results from two recent sounding rocket flights (Thunderstorm II and CRIT II) under vastly different plasma conditions demonstrate the capabilities of the PFP and show the importance of in situ electron density measurements of understanding plasma processes. 9 refs.

  1. Design of III-Nitride Hot Electron Transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Geetak

    III-Nitride based devices have made great progress over the past few decades in electronics and photonics applications. As the technology and theoretical understanding of the III-N system matures, the limitations on further development are based on very basic electronic properties of the material, one of which is electron scattering (or ballistic electron effects). This thesis explores the design space of III-N based ballistic electron transistors using novel design, growth and process techniques. The hot electron transistor (HET) is a unipolar vertical device that operates on the principle of injecting electrons over a high-energy barrier (φBE) called the emitter into an n-doped region called base and finally collecting the high energy electrons (hot electrons) over another barrier (φBC) called the collector barrier. The injected electrons traverse the base in a quasi-ballistic manner. Electrons that get scattered in the base contribute to base current. High gain in the HET is thus achieved by enabling ballistic transport of electrons in the base. In addition, low leakage across the collector barrier (I BCleak) and low base resistance (RB) are needed to achieve high performance. Because of device attributes such as vertical structure, ballistic transport and low-resistance n-type base, the HET has the potential of operating at very high frequencies. Electrical measurements of a HET structure can be used to understand high-energy electron physics and extract information like mean free path in semiconductors. The III-Nitride material system is particularly suited for HETs as it offers a wide range of DeltaEcs and polarization charges which can be engineered to obtain barriers which can inject hot-electrons and have low leakage at room temperature. In addition, polarization charges in the III-N system can be engineered to obtain a high-density and high-mobility 2DEG in the base, which can be used to reduce base resistance and allow vertical scaling. With these

  2. Near-Relativistic Solar Electrons and Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    2003-01-01

    Recently it has been found that the inferred injection times of greater than 25 keV electrons are up to 30 minutes later than the start times of the associated type III radio bursts at the Sun. Thus it has been suggested that the electrons that produce type III bursts do not belong to the same population as those observed above 25 keV. This paper examines the characteristics and circumstances of 79 solar electron beam events measured on the ACE spacecraft. Particular attention is paid to the very low frequency emissions of the associated radio bursts and the ambient conditions at the arrival times of the electrons at the spacecraft. It is found that the inferred greater than 25 keV electron injection delays are correlated with the times required for the associated radio bursts to drift to the lowest frequencies. This suggests that the electrons responsible for the radio emission and those observed above 25 keV are part of a single population, and that the electrons both above and below 25 keV are delayed in the interplanetary medium. Further evidence for a single population is the general correspondence between electron and local radio intensities and temporal profiles. It is found that the delays increase with the ambient solar wind density consistent with the propagation times of the electrons being determined by the characteristics of the interplanetary medium. However it is known that particle arrival times at 1 AU are a linear function of inverse particle speed. Conventionally such a relationship is taken to indicate scatter-free propagation when inferred path lengths lie close to 1.2 AU, as they do for the electron events studied here. These conflicting interpretations require further investigation.

  3. Using attosecond pulses to probe ultrafast electronic motions inside atoms

    NASA Astrophysics Data System (ADS)

    Collins, L. A.; Hu, S. X.

    2006-05-01

    With using an efficient and accurate parallel solver for the time-dependent Schr"odinger equation, we have performed full-dimensional numerical simulations of the proposed attosecond pump-probe for exploring the extremely fast motion of an electronic wave packet inside atoms. Pumped by a broadband femtosecond UV pulse, one electron of ground-state Helium can be launched into a superposition of low-lying excited states, thus forming a bound wavepacket oscillating relative to the atomic core. A time-delayed attosecond EUV (probe) pulse then ionizes the atom causing three-body breakup. Measuring either the energy sharing of the ionized electrons or the total ionization probability as a function of the time delay traces out the internal motion of the excited electron. Our simulations have shown that an ultrashort oscillating period of 2 fs can be followed for several cylces. This opens the prospect of a wealth of similar pump-probe experiments to examine ultrafast electronic motions.

  4. Cutoff probe using Fourier analysis for electron density measurement

    NASA Astrophysics Data System (ADS)

    Na, Byung-Keun; You, Kwang-Ho; Kim, Dae-Woong; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung

    2012-01-01

    This paper proposes a new method for cutoff probe using a nanosecond impulse generator and an oscilloscope, instead of a network analyzer. The nanosecond impulse generator supplies a radiating signal of broadband frequency spectrum simultaneously without frequency sweeping, while frequency sweeping method is used by a network analyzer in a previous method. The transmission spectrum (S21) was obtained through a Fourier analysis of the transmitted impulse signal detected by the oscilloscope and was used to measure the electron density. The results showed that the transmission frequency spectrum and the electron density obtained with a new method are very close to those obtained with a previous method using a network analyzer. And also, only 15 ns long signal was necessary for spectrum reconstruction. These results were also compared to the Langmuir probe's measurements with satisfactory results. This method is expected to provide not only fast measurement of absolute electron density, but also function in other diagnostic situations where a network analyzer would be used (a hairpin probe and an impedance probe) by replacing the network analyzer with a nanosecond impulse generator and an oscilloscope.

  5. Cutoff probe using Fourier analysis for electron density measurement

    SciTech Connect

    Na, Byung-Keun; You, Kwang-Ho; Kim, Dae-Woong; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung

    2012-01-15

    This paper proposes a new method for cutoff probe using a nanosecond impulse generator and an oscilloscope, instead of a network analyzer. The nanosecond impulse generator supplies a radiating signal of broadband frequency spectrum simultaneously without frequency sweeping, while frequency sweeping method is used by a network analyzer in a previous method. The transmission spectrum (S21) was obtained through a Fourier analysis of the transmitted impulse signal detected by the oscilloscope and was used to measure the electron density. The results showed that the transmission frequency spectrum and the electron density obtained with a new method are very close to those obtained with a previous method using a network analyzer. And also, only 15 ns long signal was necessary for spectrum reconstruction. These results were also compared to the Langmuir probe's measurements with satisfactory results. This method is expected to provide not only fast measurement of absolute electron density, but also function in other diagnostic situations where a network analyzer would be used (a hairpin probe and an impedance probe) by replacing the network analyzer with a nanosecond impulse generator and an oscilloscope.

  6. Probing ultrafast electronic motions in atoms with the attosecond pump-probe

    NASA Astrophysics Data System (ADS)

    Collins, Lee; Hu, Suxing; Schneider, Barry

    2006-03-01

    Through full-dimensional numerical simulations with using our recently-developed efficient and accurate parallel solver for the time-dependent Schrödinger equation, we have demonstrated that an attosecond pulse can effectively probe the extremely fast motion of an electronic wave packet in atoms. Pumped by a broadband femtosecond UV pulse, one electron of ground-state Helium can be launched into a superposition of low-lying excited states, thus forming a wavepacket that begins to orbit the atomic core. A time-delayed attosecond EUV pulse (probe) then ionizes the atom causing three-body breakup. Measuring either the energy sharing of the ionized electrons or the total ionization probability as a function of the time delay displays the internal motion of the excited electron. Our simulation has shown that an ultrashort Kepler period of 2 fs can be followed for several cylces. This opens the prospect of a wealth of similar pump-probe experiments to examine electronic motion.

  7. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    SciTech Connect

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energy distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.

  8. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    NASA Astrophysics Data System (ADS)

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-01

    In plasma diagnostics with a single Langmuir probe, the electron temperature Te is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain Te by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energy distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature Te obtained from the method is always lower than the effective temperatures Teff derived from EEDFs. The theoretical analysis for this is presented.

  9. Mapping magnetism with atomic resolution using aberrated electron probes

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan; Rusz, Ján; McGuire, Michael A.; Symons, Christopher T.; Vatsavai, Ranga Raju; Lupini, Andrew R.

    2015-03-01

    In this talk, we report a direct experimental real-space mapping of magnetic circular dichroism with atomic resolution in aberration-corrected scanning transmission electron microscopy (STEM). Using an aberrated electron probe with customized phase distribution, we reveal with electron energy-loss (EEL) spectroscopy the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The aberrated probes allow the collection of EEL spectra using the transmitted beam, which results in a magnetic circular dichroic signal with intrinsically larger signal-to-noise ratios than those obtained via nanodiffraction techniques (where most of the transmitted electrons are discarded). The novel experimental setup presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution. This research was supported by DOE SUFD MSED, by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US DOE, and by the Swedish Research Council and Swedish National Infrastructure for Computing (NSC center)

  10. Fluorescence sensing of phosdrin pesticide by the luminescent Eu(III)- and Tb(III)-bis(coumarin-3-carboxylic acid) probes

    NASA Astrophysics Data System (ADS)

    Hussein, Belal H. M.; Khairy, Gasser M.; Kamel, Rasha M.

    2016-04-01

    Luminescence quenching of the Eu(III)- and Tb(III)-bis (coumarin-3-carboxylic acid) (Ln(III)-(CCA)2) probes has been studied in the presence of organophosphorus or organochlorine pesticides; Phosdrin (P1), Malathion (P2), Profenofos (P3), Formothion (P4), Heptachlor (P5), and Endosulfan (P6). The luminescence intensity of lanthanide complex probes Ln(III)-(CCA)2 decreases as the concentration of the Phosdrin pesticide increases, while the other investigated pesticides have no significant influence on the lanthanide fluorescent intensities. It is observed that the quenching of Eu(III) and Tb(III)-coumarin-3-carboxylic acid by Phosdrin proceeds via static quenching processes according to Stern-Volmer plot. The binding constants (K) and the thermodynamic parameters of the interaction of Ln(III)-(CCA)2 with Phosdrin have been determined. A direct method for the determination of the Phosdrin in ethanol has been developed based on the luminescence changes of the Ln(III)-(CCA)2-phosdrin ternary complexes. The detection limits of P1 were 6.28 and 1.07 μM in case of Eu(III) and Tb(III)-complex, respectively. The influence of various interfering species on the detection of P1 has been investigated to assess the analytical applicability of the method. The new method was applied to determine the Phosdrin pesticide in different types of water samples.

  11. Fluorescence sensing of phosdrin pesticide by the luminescent Eu(III)- and Tb(III)-bis(coumarin-3-carboxylic acid) probes.

    PubMed

    Hussein, Belal H M; Khairy, Gasser M; Kamel, Rasha M

    2016-04-01

    Luminescence quenching of the Eu(III)- and Tb(III)-bis (coumarin-3-carboxylic acid) (Ln(III)-(CCA)2) probes has been studied in the presence of organophosphorus or organochlorine pesticides; Phosdrin (P1), Malathion (P2), Profenofos (P3), Formothion (P4), Heptachlor (P5), and Endosulfan (P6). The luminescence intensity of lanthanide complex probes Ln(III)-(CCA)2 decreases as the concentration of the Phosdrin pesticide increases, while the other investigated pesticides have no significant influence on the lanthanide fluorescent intensities. It is observed that the quenching of Eu(III) and Tb(III)-coumarin-3-carboxylic acid by Phosdrin proceeds via static quenching processes according to Stern-Volmer plot. The binding constants (K) and the thermodynamic parameters of the interaction of Ln(III)-(CCA)2 with Phosdrin have been determined. A direct method for the determination of the Phosdrin in ethanol has been developed based on the luminescence changes of the Ln(III)-(CCA)2-phosdrin ternary complexes. The detection limits of P1 were 6.28 and 1.07 μM in case of Eu(III) and Tb(III)-complex, respectively. The influence of various interfering species on the detection of P1 has been investigated to assess the analytical applicability of the method. The new method was applied to determine the Phosdrin pesticide in different types of water samples.

  12. Selective functionalization of mesoporous silica nanoparticles with ibuprofen and Gd(III) chelates: a new probe for potential theranostic applications.

    PubMed

    Carniato, Fabio; Muñoz-Úbeda, Mónica; Tei, Lorenzo; Botta, Mauro

    2015-11-01

    Organo-modified mesoporous silica nanoparticles, loaded with ibuprofen into the pores and functionalized on the external surface with a stable Gd(iii)-DOTA-monoamide chelate, were prepared and explored as potential theranostic probes.

  13. Electron density dependence of impedance probe plasma potential measurements

    NASA Astrophysics Data System (ADS)

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-01

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φp, when the probe radius is much larger than the Debye length, λD. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, Vb. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ωpi ≪ ω ≪ ωpe, where ωpi is the ion plasma frequency and ωpe is the electron plasma frequency. For a given frequency and applied bias, both Re(Zac) and Im(Zac) are available from Γ. When Re(Zac) is plotted versus Vb, a minimum predicted by theory occurs at φp [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Zac) appears at, or very near, a maximum at φp. As ne decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Zac) and their derivatives are useful as accompanying indicators to Re(Zac) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Zac).

  14. Electron temperature and density probe for small aeronomy satellites

    SciTech Connect

    Oyama, K.-I.; Hsu, Y. W.; Jiang, G. S.; Chen, W. H.; Liu, W. T.; Cheng, C. Z.; Fang, H. K.

    2015-08-15

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T{sub e} in low frequency mode and N{sub e} in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f{sub UHR}). The instrument which is named “TeNeP” can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.

  15. Electron temperature and density probe for small aeronomy satellites.

    PubMed

    Oyama, K-I; Hsu, Y W; Jiang, G S; Chen, W H; Cheng, C Z; Fang, H K; Liu, W T

    2015-08-01

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T(e) in low frequency mode and N(e) in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f(UHR)). The instrument which is named "TeNeP" can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode. PMID:26329217

  16. Electron temperature and density probe for small aeronomy satellites.

    PubMed

    Oyama, K-I; Hsu, Y W; Jiang, G S; Chen, W H; Cheng, C Z; Fang, H K; Liu, W T

    2015-08-01

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T(e) in low frequency mode and N(e) in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f(UHR)). The instrument which is named "TeNeP" can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.

  17. Electron studies of acceleration processes in the corona. [solar probe mission planning

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1978-01-01

    The solar probe mission can obtain unique and crucially important measurements of electron acceleration, storage, and propagation processes in the corona and can probe the magnetic field structure of the corona below the spacecraft. The various energetic electron phenomena which will be sampled by the Solar Probe are described and some new techniques to probe coronal structures are suggested.

  18. Electron localization of anions probed by nitrile vibrations

    DOE PAGESBeta

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; Miller, John R.

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrationsmore » respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ν(C≡N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤ kBT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport capability

  19. Electron localization of anions probed by nitrile vibrations

    SciTech Connect

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; Miller, John R.

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrations respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ν(C≡N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤ kBT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport

  20. Electron Localization of Anions Probed by Nitrile Vibrations.

    PubMed

    Mani, Tomoyasu; Grills, David C; Newton, Marshall D; Miller, John R

    2015-09-01

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as "molecular wires". This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics that govern electron transport capabilities in one-dimensional conjugated chains so that we can better define the design principles for conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrations respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semiempirical calibration curve between the changes in the ν(C≡N) infrared (IR) shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR line width in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤kBT, likely controlled by the movement of dihedral angles between monomer units. Implications for the electron transport capability in molecular wires are discussed. PMID:26234163

  1. Electron energy distribution function by using probe method in electron cyclotron resonance multicharged ion source

    SciTech Connect

    Kumakura, Sho Kurisu, Yosuke; Kimura, Daiju; Yano, Keisuke; Imai, Youta; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). High-energy electrons in ECRIS plasma affect electron energy distribution and generate multicharged ion. In this study, we measure electron energy distribution function (EEDF) of low energy region (≦100 eV) in ECRIS plasma at extremely low pressures (10{sup −3}–10{sup −5} Pa) by using cylindrical Langmuir probe. From the result, it is found that the EEDF correlates with the electron density and the temperature from the conventional probe analysis. In addition, we confirm that the tail of EEDF spreads to high energy region as the pressure rises and that there are electrons with high energy in ECR multicharged ion source plasma. The effective temperature estimated from the experimentally obtained EEDF is larger than the electron temperature obtained from the conventional method.

  2. Electron energy distribution function by using probe method in electron cyclotron resonance multicharged ion source.

    PubMed

    Kumakura, Sho; Kurisu, Yosuke; Kimura, Daiju; Yano, Keisuke; Imai, Youta; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-01

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). High-energy electrons in ECRIS plasma affect electron energy distribution and generate multicharged ion. In this study, we measure electron energy distribution function (EEDF) of low energy region (≦100 eV) in ECRIS plasma at extremely low pressures (10(-3)-10(-5) Pa) by using cylindrical Langmuir probe. From the result, it is found that the EEDF correlates with the electron density and the temperature from the conventional probe analysis. In addition, we confirm that the tail of EEDF spreads to high energy region as the pressure rises and that there are electrons with high energy in ECR multicharged ion source plasma. The effective temperature estimated from the experimentally obtained EEDF is larger than the electron temperature obtained from the conventional method.

  3. Oscillating plasma bubbles. III. Internal electron sources and sinks

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2012-08-15

    An internal electron source has been used to neutralize ions injected from an ambient plasma into a spherical grid. The resultant plasma is termed a plasma 'bubble.' When the electron supply from the filament is reduced, the sheath inside the bubble becomes unstable. The plasma potential of the bubble oscillates near but below the ion plasma frequency. Different modes of oscillations have been observed as well as a subharmonic and multiple harmonics. The frequency increases with ion density and decreases with electron density. The peak amplitude occurs for an optimum current and the instability is quenched at large electron densities. The frequency also increases if Langmuir probes inside the bubble draw electrons. Allowing electrons from the ambient plasma to enter, the bubble changes the frequency dependence on grid voltage. It is concluded that the net space charge density in the sheath determines the oscillation frequency. It is suggested that the sheath instability is caused by ion inertia in an oscillating sheath electric field which is created by ion bunching.

  4. Scanning electron microscopy and electron probe X-ray microanalysis (SEM-EPMA) of pink teeth

    SciTech Connect

    Ikeda, N.; Watanabe, G.; Harada, A.; Suzuki, T.

    1988-11-01

    Samples of postmortem pink teeth were investigated by scanning electron microscopy and electron probe X-ray microanalysis. Fracture surfaces of the dentin in pink teeth were noticeably rough and revealed many more smaller dentinal tubules than those of the control white teeth. Electron probe X-ray microanalysis showed that the pink teeth contained iron which seemed to be derived from blood hemoglobin. The present study confirms that under the same circumstance red coloration of teeth may occur more easily in the teeth in which the dentin is less compact and contains more dentinal tubules.

  5. Computational characterization of cutoff probe system for the measurement of electron density

    SciTech Connect

    Na, Byung-Keun; Kim, Dae-Woong; Kwon, Jun-Hyuk; Chang, Hong-Young; Kim, Jung-Hyung; You, Shin-Jae

    2012-05-15

    The wave cutoff probe, a precise measurement method for measuring the electron density, was recently proposed. To characterize the cutoff probe system, in this paper, the microwave simulations of a cutoff probe system were performed at various configurations of the cutoff probe system. The influence of the cutoff probe spectrum stemming from numerous parametric elements such as the probe tip length, probe tip distance, probe tip plane orientation, chamber volume/geometry, and coaxial cable length is presented and discussed. This article is expected to provide qualitative and quantitative insight into cutoff probe systems and its optimization process.

  6. Electron density dependence of impedance probe plasma potential measurements

    SciTech Connect

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})

  7. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    DOEpatents

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  8. Variation in plasmonic (electronic) spectral parameters of Pr (III) and Nd (III) with varied concentration of moderators

    SciTech Connect

    Mishra, Shubha; Limaye, S. N.

    2015-07-31

    It is said that the -4f shells behave as core and are least perturbed by changes around metal ion surrounding. However, there are evidences that-4f shells partially involved in direct moderator interaction. A systematic investigation on the plasmonic (electronic) spectral studies of some Rare Earths[RE(III).Mod] where, RE(III) = Pr(III),Nd(III) and Mod(moderator) = Y(III),La(III),Gd(III) and Lu(III), increased moderator concentration from 0.01 mol dm{sup −3} to 0.025 mol dm{sup −3} keeping the metal ion concentration at 0.01mol dm{sup −3} have been carried out. Variations in oscillator strengths (f), Judd-Ofelt parameters (T{sub λ}),inter-electronic repulsion Racah parameters (δE{sup k}),nephelauxetic ratio (β), radiative parameters (S{sub ED},A{sub T},β{sub R},T{sub R}). The values of oscillator strengths and Judd-Ofelt parameters have been discussed in the light of coordination number of RE(III) metal ions, denticity and basicity of the moderators. The [RE(III).Mod] bonding pattern has been studies in the light of the change in Racah parameters and nephelauxetic ratio.

  9. Cellular compartmentation in ischemic myocardium: indirect analysis by electron probe

    SciTech Connect

    Walsh, L.G.; Tormey, J.M.

    1988-10-01

    Electron probe microanalysis (EPMA) was carried out directly on myocardial cells and on the myofibrils and the mitochondria within them. A third subcellular compartment, which contains sarcoplasmic reticulum (SR), was measured indirectly. The percent of the total cell calcium content that resides within this ''hidden'' compartment was calculated from cell data minus weighted myofibril and mitochondria data. This approach was applied to control, ischemic, and reperfused myocardium, and other elements were also quantified. We found that the calcium content of this third compartment is little changed during global ischemia but is markedly depleted after 5 min reperfusion. We conclude that these changes are ascribable to changes in SR function.

  10. High-performance probes for light and electron microscopy.

    PubMed

    Viswanathan, Sarada; Williams, Megan E; Bloss, Erik B; Stasevich, Timothy J; Speer, Colenso M; Nern, Aljoscha; Pfeiffer, Barret D; Hooks, Bryan M; Li, Wei-Ping; English, Brian P; Tian, Teresa; Henry, Gilbert L; Macklin, John J; Patel, Ronak; Gerfen, Charles R; Zhuang, Xiaowei; Wang, Yalin; Rubin, Gerald M; Looger, Loren L

    2015-06-01

    We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These 'spaghetti monster' fluorescent proteins (smFPs) distributed well in neurons, notably into small dendrites, spines and axons. smFP immunolabeling localized weakly expressed proteins not well resolved with traditional epitope tags. By varying epitope and scaffold, we generated a diverse family of mutually orthogonal antigens. In cultured neurons and mouse and fly brains, smFP probes allowed robust, orthogonal multicolor visualization of proteins, cell populations and neuropil. smFP variants complement existing tracers and greatly increase the number of simultaneous imaging channels, and they performed well in advanced preparations such as array tomography, super-resolution fluorescence imaging and electron microscopy. In living cells, the probes improved single-molecule image tracking and increased yield for RNA-seq. These probes facilitate new experiments in connectomics, transcriptomics and protein localization. PMID:25915120

  11. The electronic spectra of mu-peroxodicobalt(III) complexes

    NASA Technical Reports Server (NTRS)

    Miskowski, Vincent M.

    1987-01-01

    Problems found in the determination of the electronic spectra of mu-peroxodicobalt(III) complexes are considered, and the common formation of different mu-peroxocomplexes upon oxygenation of Co(II)-ligand solutions is discussed. Three classes of spectra have been identified: (1) planar single bridged complexes; (2) nonplanar single-bridged complexes with a dihedral angle near 145 deg; and (3) dibridged mu-OH(-),O2(2-) complexes with a dihedral angle near 60 deg. All of the peroxide ligand-to-metal charge-transfer spectra are found to be consistent with a simple model that assumes a sinusoidal dependence of pi-asterisk O2(2-) energies and sigma-overlaps upon the dihedral angle.

  12. Deriving large electron temperatures and small electron densities with the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, Philippe; Wahlund, Jan-Erik; Holmberg, Mika; Lewis, Geraint; Schippers, Patricia; Rochel Grimald, Sandrine; Gurnett, Donald; Coates, Andrew; Dandouras, Iannis; Waite, Hunter

    2014-05-01

    The Langmuir Probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigate the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), and manage to reproduce the observations with a reasonable precision through empirical and theoretical methods. Conversely, the modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). We finally show that a significant influence of the energetic electrons (larger than the contribution of thermal ions) is also expected in various plasma environments of the Solar System, such as at Jupiter (i.e near Ganymede, Europa, Callisto and Io), or even at Earth (in the plasmasheet, the magnetosheath or in plasma cavities). Large electron temperatures and small electron densities could potentially be derived in these environments, which may be of interest for Langmuir Probes in the Earth magnetosphere or onboard the future JUICE mission at Jupiter.

  13. Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor.

    SciTech Connect

    Ding, Y-H R.; Hixson, Kim K.; Aklujkar, Ma; Lipton, Mary S.; Smith, Richard D.; Lovley, Derek R.; Mester, Tunde

    2008-12-01

    e(III) oxides are the most abundant source of reducible Fe(III) by microorganisms in most soils and sediments, yet few studies on the physiology of Fe(III)-reducing microorganisms during growth on Fe(III) oxide have been conducted because of the technical difficulties in working with cell growth and harvest in the presence of Fe(III) oxides. Geobacter sulfurreducens is a representative of the Geobacter species that predominate in a variety of subsurface environments in which Fe(III) oxide is important. In order to better understand the physiology of Geobacter species during growth on Fe(III) oxide, the proteome of G. sulfurreducens grown on Fe(III) oxide was compared with the proteome of cells grown with soluble Fe(III) citrate. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) revealed 19 proteins that were more abundant during growth on Fe(III) oxide than on soluble Fe(III). These included proteins related to protein synthesis, electron transfer and energy production, oxidative stress, protein folding, outer membrane proteins, nitrogen metabolism and hypothetical proteins. Further analysis of the proteome with the accurate mass and time (AMT) tag method revealed additional proteins associated with growth on Fe(III) oxide. These included the outer-membrane c-type cytochrome, OmcS and OmcG, which genetic studies have suggested are required for Fe(III) oxide reduction. Furthermore, several other cytochromes, as yet unstudied, were detected to be significantly up regulated during growth on Fe(III) oxide and other proteins of unknown function were more abundant during growth on Fe(III) oxide than on soluble Fe(III). PilA, the structural protein for pili, which is required for Fe(III) oxide reduction, and other pilin-associated proteins were also more abundant during growth on Fe(III) oxide. Confirmation of the differential expression of proteins known to be important in Fe(III) oxide reduction was observed, and an additional number of previously

  14. Dopant Profiling of III-V Nanostructures for Electronic Applications

    NASA Astrophysics Data System (ADS)

    Ford, Alexandra Caroline

    2011-12-01

    High electron mobility III-V compound semiconductors such as indium arsenide (InAs) are promising candidates for future active channel materials of electron devices to further enhance device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. However, one of the primary challenges of III-V device fabrication is controllable, post-growth dopant profiling. Here InAs nanowires and ultrathin layers (nanoribbons) on SiO2/Si are investigated as the channel material for high performance field-effect transistors (FETs) and post-growth, patterned doping techniques are demonstrated. First, the synthesis of crystalline InAs nanowires with high yield and tunable diameters by using Ni nanoparticles as the catalyst material on SiO 2/Si substrates is demonstrated. The back-gated InAs nanowire FETs have electron field-effect mobilities of ˜4,000 cm2/Vs and ION/IOFF ˜104. The uniformity of the InAs nanowires is demonstrated by large-scale assembly of parallel arrays of nanowires (˜400 nanowires) on SiO2/Si substrates by a contact printing process. This enables high performance, "printable" transistors with 5--10 mA ON currents. Second, an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on SiO2/Si substrates is demonstrated. As a parallel to silicon-on-insulator (SOI) technology, the abbreviation "XOI" is used to represent this compound semiconductor-on-insulator platform. A high quality InAs/dielectric interface is obtained by the use of a thermally grown interfacial InAsOx layer (˜1 nm thick). Top-gated FETs exhibit a peak transconductance of ˜1.6 mS/microm at V DS=0.5V with ION/I OFF >104 and subthreshold swings of 107--150 mV/decade for a channel length of ˜0.5 microm. Next, temperature-dependent I-V and C-V studies of single InAs nanowire FETs are

  15. Scanning Probe Evaluation of Electronic, Mechanical and Structural Material Properties

    NASA Astrophysics Data System (ADS)

    Virwani, Kumar

    2011-03-01

    We present atomic force microscopy (AFM) studies of a range of properties from three different classes of materials: mixed ionic electronic conductors, low-k dielectrics, and polymer-coated magnetic nanoparticles. (1) Mixed ionic electronic conductors are being investigated as novel diodes to drive phase-change memory elements. Their current-voltage characteristics are measured with direct-current and pulsed-mode conductive AFM (C-AFM). The challenges to reliability of the C-AFM method include the electrical integrity of the probe, the sample and the contacts, and the minimization of path capacitance. The role of C-AFM in the optimization of these electro-active materials will be presented. (2) Low dielectric constant (low-k) materials are used in microprocessors as interlayer insulators, a role directly affected by their mechanical performance. The mechanical properties of nanoporous silicate low-k thin films are investigated in a comparative study of nanomechanics measured by AFM and by traditional nanoindentation. Both methods are still undergoing refinement as reliable analytical tools for determining nanomechanical properties. We will focus on AFM, the faster of the two methods, and its developmental challenges of probe shape, cantilever force constant, machine compliance and calibration standards. (3) Magnetic nanoparticles are being explored for their use in patterned media for magnetic storage. Current methods for visualizing the core-shell structure of polymer-coated magnetic nanoparticles include dye-staining the polymer shell to provide contrast in transmission electron microscopy. AFM-based fast force-volume measurements provide direct visualization of the hard metal oxide core within the soft polymer shell based on structural property differences. In particular, the monitoring of adhesion and deformation between the AFM tip and the nanoparticle, particle-by-particle, provides a reliable qualitative tool to visualize core-shell contrast without the use

  16. Electronic structure calculations of group III nitride clusters

    NASA Astrophysics Data System (ADS)

    Kandalam, Anil Kumar

    2002-04-01

    Group III nitrides have become materials of choice in the manufacturing of devices used in opto-electronic and high-temperature high-power electronic industries. Hence, these materials received wide attention and have become the focus of several theoretical and experimental studies. Though these materials are studied in bulk and thin film forms, research at the cluster level is still lacking. Hence, a first principles calculation, based on the Generalized Gradient Approximation (GGA) to Density Functional Theory (DFT) was initiated to study the structural and electronic properties of AlnN n, GanNn, and InnNn, (n = 1--6) clusters. The calculated results show that the small polyatomic nitride clusters (monomer, triatomic and dimer) have a strong tendency to form N-N multiple bonds leading to the weakening of any existent metal-N or metal-metal bonds. In the absence of the N-N bonds, the metal-nitrogen bond dominates, forming short bond-lengths and large force constants. However, the strength of these heteronuclear bonds decreases in going from Al to Ga and In, whereas the weak metal-metal bond increases its strength from Al to Ga to In in the nitride clusters. Starting from the trimers M3N3, a distinct structural difference between the lowest energy configurations of AlnNn and that of GanNn, and In nNn, clusters has been observed. For AlnNn, clusters, the metal-nitrogen bond is found to dominate the lowest energy configurations. As the cluster size is increased from Al3N3 to Al 6N6, a transition from planar ring structures towards a bulk-like three dimensional configurations is seen. However, in GanN n, and InnNn clusters, no such trend is observed and the lowest energy configurations are dominated either by N2 or (N3)- sub-units. The segregation of N atoms within the stoichiometric clusters indicates the possibility of N2 and N3 based defects in the thin-film deposition process which may affect the quality of the thin-film devices based on Group III nitrides.

  17. NMR probing of quantum electron solids in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Rhone, Trevor David

    2015-03-01

    In the presence of a high magnetic field, a two dimensional electron system (2DES) is expected to manifest Wigner crystal phases. Over thirty years ago, the search for the Wigner solid led to the discovery of the fractional quantum Hall effect (FQHE). Since then, with the advent of GaAs quantum wells with increasingly high mobility, 2DESs in the quantum Hall regime have proved to be a hunting ground for exceedingly rich many-body physics. Incompressible liquid FQHE states were found to occur in the first Landau level at several fractional filling factors v with odd-denominator. The sequence of FQHE states is truncated by the formation of a Wigner crystal of electrons at very low filling factors, the transition being affected by disorder. In the second Landau level, composite fermions, the quasiparticles of the FQHE, can pair to yield a remarkable even-denominator FQHE state, whose properties are at the forefront of investigation. More recently, electron solid phases have been shown to emerge around integer quantum Hall states. In this talk, I will discuss a new tool, resistively detected NMR, which serves as a direct local probe of in-plane charge density modulations in the 2DES. In our recent work [1] we probe the local charge density landscape of Wigner solids in the vicinity of v = 2 and v<1/3 revealing quantum correlations. This unprecedented access to the microscopic behavior of these exotic solid phases opens up new venues in FQH studies. Furthermore, our NMR technique can probe in-plane charge density fluctuations due to disorder, allowing increased access to understanding roles of disorder in quantum Hall systems. In addition, our latest NMR measurements reveal evidence for charge inhomogeneity in the third Landau level which leads to the possibility of studying bubble and stripe phases in this regime. Future directions may find our NMR technique applied to other exotic phases such as quasiparticle solid phases, which have been proposed to emerge near the v

  18. Effects of Spatial Variations in Coronal Temperatures on Type III Bursts. I. Variations in Electron Temperature

    NASA Astrophysics Data System (ADS)

    Li, B.; Cairns, Iver H.; Robinson, P. A.

    2011-03-01

    The electron temperature Te and ion temperature Ti in the corona vary with time and location, due to transient and persistent activity on the Sun. A method is developed for incorporating spatial variations of coronal temperatures into our previous simulation model for coronal type III bursts. The effects on type III bursts are simulated here for monotonic Te variations and/or for spatially localized disturbances in Te . Localized Te disturbances are found to have stronger effects than monotonic variations. In the presence of localized Te disturbances, the dynamic spectra of fp and 2fp emission are modulated at frequencies corresponding to the disturbances, showing intense fine structures that are narrow band and slowly drifting. The fp emission may be observable although still significantly weaker and more patchy than the 2fp emission. Distinct signatures of Te disturbances are found in the dependence on frequency of the 2fp spectral characteristics, e.g., the maximum flux. In the presence of monotonically varying Te , the frequency drift rate for 2fp emission agrees quantitatively with an extended version of the standard prediction, depending on the plasma density profile and a characteristic, non-constant beam speed, which varies with position via dependence on Te , and agrees quantitatively with the simulated beam dynamics. The results thus indicate that nonthermal type III bursts offer a new tool to probe both spatially localized Te structures and monotonic Te variations in the corona. The presence of localized Te disturbances may be responsible for some fine structures in type IIIs, e.g., the flux modulations in type IIIb bursts.

  19. The Influence of Energetic Electrons on the Cassini Langmuir Probe at Saturn : Deriving Large Electron Temperatures and Small Electron Densities

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Wahlund, J.; Holmberg, M.; Lewis, G.; Schippers, P.; Thomsen, M. F.; Rochel Grimald, S.; Gurnett, D. A.; Coates, A. J.; Dandouras, I. S.; Waite, J. H.

    2013-12-01

    The Langmuir probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigated the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), showing that both the DC level and slope of the I-V curve are modified. The influence of energetic electrons may be interpreted in terms of the critical and anticritical temperatures concept that is important for spacecraft charging studies. Estimations of the maximum secondary yield value for the LP surface are obtained without using laboratory measurements. Empirical and theoretical methods were developed to reproduce the influence of the energetic electrons with a reasonable precision. Conversely, this modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). The understanding of this influence may be used for other missions using Langmuir probes, such as the future missions JUICE at Jupiter, BepiColombo at Mercury, or even the probes in the Earth magnetosphere.

  20. A micromachined probe array for interfacing between electronics and neurons

    NASA Astrophysics Data System (ADS)

    Xu, Chenyang

    2001-03-01

    We report a new fabrication technique for realizing a high-density penetrating metal probe array for interfacing the nervous system and electronic devices, such as neural recording and stimulation apparatus. The microelectrode array consists of multiple metal shanks projecting from a silicon supporting bulk. One neural interface site is located at the tip of each shank. The average distance between recording sites is 50 m. Each shank is comprised of two distinct segments for realizing both mechanical strength and tissue penetrating ability. A rear support segment is 6-mm-long, 40- m wide and 30- m thick. A front segment consists of a 250- m-long and 6- m-thick tapered tip, with the width at its widest point being 15 m. Electrical insulation to the microelectrode body is achieved by conformal coating of a thin film of Parylene-C. Exposed metal recording sites are defined by selectively removing Parylene-C from the electrode tips using photolithography and oxygen plasma etching. The electrical properties of the device were characterized, and then its full functionality as an in vivo recording probe was tested in ventral nerve cord ganglia of cockroaches.

  1. Pockels cell voltage probe for noninvasive electron-beam measurements

    SciTech Connect

    Brubaker, Michael A.; Yakymyshyn, Christopher P.

    2000-03-01

    Accurate measurements of beam position and current are critical for the operation of the high-energy electron accelerators used for radiographic applications. Traditional short-pulse (e.g., 70 ns) machines utilize B-dot loops to monitor these parameters with great success. For long-pulse (e.g, 2 {mu}s) accelerators, beam position and current measurements become more challenging and may require new technology. A novel electro-optic voltage probe has been developed for this application and provides the advantages of complete galvanic isolation, excellent low-frequency performance, and no time integration requirement. The design of a prototype sensor is presented along with preliminary accelerator test data. (c) 2000 Optical Society of America.

  2. Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot

    NASA Astrophysics Data System (ADS)

    Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2015-09-01

    Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures.

  3. Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot

    PubMed Central

    Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2015-01-01

    Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582

  4. Sample Preparation for Electron Probe Microanalysis—Pushing the Limits

    PubMed Central

    Geller, Joseph D.; Engle, Paul D.

    2002-01-01

    There are two fundamental considerations in preparing samples for electron probe microanalysis (EPMA). The first one may seem obvious, but we often find it is overlooked. That is, the sample analyzed should be representative of the population from which it comes. The second is a direct result of the assumptions in the calculations used to convert x-ray intensity ratios, between the sample and standard, to concentrations. Samples originate from a wide range of sources. During their journey to being excited under the electron beam for the production of x rays there are many possibilities for sample alteration. Handling can contaminate samples by adding extraneous matter. In preparation, the various abrasives used in sizing the sample by sawing, grinding and polishing can embed themselves. The most accurate composition of a contaminated sample is, at best, not representative of the original sample; it is misleading. Our laboratory performs EPMA analysis on customer submitted samples and prepares over 250 different calibration standards including pure elements, compounds, alloys, glasses and minerals. This large variety of samples does not lend itself to mass production techniques, including automatic polishing. Our manual preparation techniques are designed individually for each sample. The use of automated preparation equipment does not lend itself to this environment, and is not included in this manuscript. The final step in quantitative electron probe microanalysis is the conversion of x-ray intensities ratios, known as the “k-ratios,” to composition (in mass fraction or atomic percent) and/or film thickness. Of the many assumptions made in the ZAF (where these letters stand for atomic number, absorption and fluorescence) corrections the localized geometry between the sample and electron beam, or takeoff angle, must be accurately known. Small angular errors can lead to significant errors in the final results. The sample preparation technique then becomes very

  5. Probe measurements of the electron distribution function in an electron-beam-produced ytterbium plasma

    SciTech Connect

    Bobrova, A. A.; Dubinov, A. E.; Esin, M. I.; Zolotov, S. V.; Maksimov, A. N.; Selemir, V. D.; Sidorov, I. I.; Shubin, A. Yu.

    2011-01-15

    A nonequilibrium anisotropic plasma produced by an electron beam in the residual air with a low content of ytterbium vapor was investigated by the probe method. It is found that a minor (at a level of a few ppm) admixture of ytterbium to low-pressure air substantially modifies the electron energy distribution function (EEDF): the main peak corresponding to thermal electrons broadens, and new peaks appear. It is shown that the observed change in the EEDF is caused by the low ionization energy of ytterbium, due to which one beam electron can ionize several ytterbium atoms. The new peaks in the EEDF correspond to the final energies of a beam electron after each subsequent ionizing collision with ytterbium atoms.

  6. Floating probe for electron temperature and ion density measurement applicable to processing plasmas

    SciTech Connect

    Lee, Min-Hyong; Jang, Sung-Ho; Chung, Chin-Wook

    2007-02-01

    A floating-type probe and its driving circuit using the nonlinear characteristics of the probe sheath was developed and the electron temperature and the plasma density which is found from the ion part of the probe characteristic (ion density) were measured in inductively coupled plasmas. The floating-type probe was compared with a single Langmuir probe and it turned out that the floating-type probe agrees closely with the single probe at various rf powers and pressures. The ion density and electron temperature by the floating-type probe were measured with a film on the probe tip coated in CF{sub 4} plasma. It is found that the ion density and electron temperature by the floating-type probe were almost the same regardless of the coating on the probe tip while a single Langmuir probe does not work. Because the floating-type probe is hardly affected by the deposition on the probe tip, it is expected to be applied to plasma diagnostics for plasma processing such as deposition or etching.

  7. Cobalt(III), a probe of metal binding sites of Escherichia coli alkaline phosphatase.

    PubMed Central

    Anderson, R A; Vallee, B L

    1975-01-01

    To facilitate the study of individual metal binding sites of polymeric metalloproteins, conversion of exchange-labile Co(II) in E. coli alkaline phosphatase (EC 3.1.3.1) to exchange-inert Co(III) was examined. Oxidation of Co(II) alkaline phosphatase with hydrogen peroxide results in a single absorption maximum at 530 nm and loss both of the characteristic electron paramagnetic signal and of enzymatic activity. Zinc neither reactivates this enzyme nor displaces the oxidized cobalt atoms. Metal and amino-acid analyses demonstrate that oxidation alters neither cobalt binding nor amino-acid composition of the enzyme. Al data are consistent with the conclusion that hydrogen peroxide oxidizes Co(II) in alkaline phosphatase to Co(III). Polymeric metalloenzymes can contain different categories of metal atoms serving in catalysis, structure stabilization, and/or control and exerting their effects independently or interdependently. The in situ conversion of exchange-labile Co(II) to exchange-stable (Co(III) offers a method to selectively and differentially "freeze" cobalt atoms at their respective binding sites. The accompanying spectral changes and concomitant retardation in ligand exchange reactions may be used to differentiate between specific metal binding sites that serve different roles in polymeric metalloenzymes. PMID:164026

  8. Electron density measurement of cesium seeded negative ion source by surface wave probe

    SciTech Connect

    Kisaki, M.; Tsumori, K.; Nakano, H.; Ikeda, K.; Osakabe, M.; Nagaoka, K.; Shibuya, M.; Sato, M.; Sekiguchi, H.; Komada, S.; Kondo, T.; Hayashi, H.; Asano, E.; Takeiri, Y.; Kaneko, O.

    2012-02-15

    Electron density measurements of a large-scaled negative ion source were carried out with a surface wave probe. By comparison of the electron densities determined with the surface wave probe and a Langmuir probe, it was confirmed that the surface wave probe is highly available for diagnostic of the electron density in H{sup -} ion sources. In addition, it was found that the ratio of the electron density to the H{sup -} ion density dramatically decreases with increase of a bias voltage and the H{sup -} ions become dominant negative particles at the bias voltage of more than 6 V.

  9. Coordination ligand exchange of a xanthene probe-Ce(III) complex for selective fluorescence sensing of inorganic pyrophosphate.

    PubMed

    Kittiloespaisan, Ekkachai; Takashima, Ippei; Kiatpathomchai, Wansika; Wongkongkatep, Jirarut; Ojida, Akio

    2014-02-28

    A fluorescence sensing system for inorganic pyrophosphate based on ligand exchange of the Ce(III) complex of a xanthene-type probe is developed. This sensing system is successfully applied to the fluorescence detection of polymerase-catalyzed DNA amplification using loop-mediated isothermal amplification.

  10. Heteronuclear Ir(III)-Ln(III) Luminescent Complexes: Small-Molecule Probes for Dual Modal Imaging and Oxygen Sensing.

    PubMed

    Jana, Atanu; Crowston, Bethany J; Shewring, Jonathan R; McKenzie, Luke K; Bryant, Helen E; Botchway, Stanley W; Ward, Andrew D; Amoroso, Angelo J; Baggaley, Elizabeth; Ward, Michael D

    2016-06-01

    Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented. The rigidity imposed by the ligand facilitates high relaxivities for the Gd(III) complexes, while the luminescence from the Ir(III) and Eu(III) centers provide luminescence imaging capabilities. Dinuclear (Ir·Ln) complexes performed best in cellular studies, exhibiting good solubility in aqueous solutions, low toxicity after 4 and 18 h, respectively, and punctate lysosomal staining. We also demonstrate the first example of oxygen sensing in fixed cells using the dyad Ir·Gd, via two-photon phosphorescence lifetime imaging (PLIM). PMID:27219675

  11. Probing Electronic Transport of Individual Nanostructures with Atomic Precision

    NASA Astrophysics Data System (ADS)

    Qin, Shengyong; Li, An-Ping

    Accessing individual nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Local electrical contacts, namely nanoelectrodes, are often fabricated by using top-down lithography and chemical etching techniques. These processes however lack atomic precision and introduce the possibility of contamination. Here, we review recent reports on the application of a field-induced emission process in the fabrication of local contacts onto individual nanowires and nanotubes with atomic spatial precision. In this method, gold nanoislands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable process to ensure both electrically conductive and mechanically reliable contacts. The applicability of the technique has been demonstrated in a wide variety of nanostructures, including silicide atomic wires, carbon nanotubes, and copper nanowires. These local contacts bridge the nanostructures and the transport probes, allowing for the measurements of both electrical transport and scanning tunneling microscopy on the same nanostructures in situ. The direct correlation between electronic and transport properties and atomic structures can be explored on individual nanostructures at the unprecedented atomic level.

  12. Probing electronic transport of individual nanostructures with atomic precision

    SciTech Connect

    Qin, Shengyong; Li, An-Ping

    2012-01-01

    Accessing individual nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Local electrical contacts, namely nanoelectrodes, are often fabricated by using top-down lithography and chemical etching techniques. These processes however lack atomic precision and introduce the possibility of contamination. Here, we review recent reports on the application of a field-induced emission process in the fabrication of local contacts onto individual nanowires and nanotubes with atomic spatial precision. In this method, gold nanoislands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable process to ensure both electrically conductive and mechanically reliable contacts. The applicability of the technique has been demonstrated in a wide variety of nanostructures, including silicide atomic wires, carbon nanotubes, and copper nanowires. These local contacts bridge the nanostructures and the transport probes, allowing for the measurements of both electrical transport and scanning tunneling microscopy on the same nanostructures in situ. The direct correlation between electronic and transport properties and atomic structures can be explored on individual nanostructures at the unprecedented atomic level.

  13. Effect of fast drifting electrons on electron temperature measurement with a triple Langmuir probe

    NASA Astrophysics Data System (ADS)

    Biswas, Subir; Chowdhury, Satyajit; Palivela, Yaswanth; Pal, Rabindranath

    2015-08-01

    Triple Langmuir Probe (TLP) is a widely used diagnostics for instantaneous measurement of electron temperature and density in low temperature laboratory plasmas as well as in edge region of fusion plasma devices. Presence of a moderately energetic flowing electron component, constituting only a small fraction of the bulk electrons, is also a generally observed scenario in plasma devices, where plasmas are produced by electron impact ionization of neutrals. A theoretical analysis of its effect on interpretation of the TLP data for bulk electron temperature measurement is presented here assuming electron velocity distribution is not deviating substantially from a Maxwellian. The study predicts conventional expression from standard TLP theory to give overestimated value of bulk electron temperature. Correction factor is significant and largely depends on population density, temperature, and energy of the fast component. Experimental verification of theoretical results is obtained in the magnetized plasma linear experimental device of Saha Institute of Nuclear Physics where plasma is produced by an electron cyclotron resonance method and known to have a fast flowing electron component.

  14. Effect of fast drifting electrons on electron temperature measurement with a triple Langmuir probe

    SciTech Connect

    Biswas, Subir Chowdhury, Satyajit; Pal, Rabindranath

    2015-08-14

    Triple Langmuir Probe (TLP) is a widely used diagnostics for instantaneous measurement of electron temperature and density in low temperature laboratory plasmas as well as in edge region of fusion plasma devices. Presence of a moderately energetic flowing electron component, constituting only a small fraction of the bulk electrons, is also a generally observed scenario in plasma devices, where plasmas are produced by electron impact ionization of neutrals. A theoretical analysis of its effect on interpretation of the TLP data for bulk electron temperature measurement is presented here assuming electron velocity distribution is not deviating substantially from a Maxwellian. The study predicts conventional expression from standard TLP theory to give overestimated value of bulk electron temperature. Correction factor is significant and largely depends on population density, temperature, and energy of the fast component. Experimental verification of theoretical results is obtained in the magnetized plasma linear experimental device of Saha Institute of Nuclear Physics where plasma is produced by an electron cyclotron resonance method and known to have a fast flowing electron component.

  15. Quantitative Electron Probe Microanalysis: State of the Art

    NASA Technical Reports Server (NTRS)

    Carpernter, P. K.

    2005-01-01

    Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete

  16. Electron temperatures and densities in the Venus ionosphere - Pioneer Venus orbiter electron temperature probe results

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.; Krehbiel, J. P.; Nagy, A. F.; Donahue, T. M.; Mcelroy, M. B.; Pedersen, A.

    1979-01-01

    The Pioneer Venus orbiter electron temperature probe was used to obtain altitude profiles of electron temperature and density in the ionosphere of Venus. Elevated temperatures at times of low solar wind flux might indicate support for a certain model. According to this model, less than 5% of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 km where electron cooling to the neutral atmosphere proceeds rapidly. The patterns of electron temperatures and densities at higher solar wind fluxes are considered, the variability of the ionopause height in the late afternoon is noted, and the role of an induced magnetic barrier in the neighborhood of the ionopause is discussed.

  17. In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry

    SciTech Connect

    Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

    2011-10-31

    composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach

  18. Gd(III) complexes for electron-electron dipolar spectroscopy: Effects of deuteration, pH and zero field splitting

    NASA Astrophysics Data System (ADS)

    Garbuio, Luca; Zimmermann, Kaspar; Häussinger, Daniel; Yulikov, Maxim

    2015-10-01

    Spectral parameters of Gd(III) complexes are intimately linked to the performance of the Gd(III)-nitroxide or Gd(III)-Gd(III) double electron-electron resonance (DEER or PELDOR) techniques, as well as to that of relaxation induced dipolar modulation enhancement (RIDME) spectroscopy with Gd(III) ions. These techniques are of interest for applications in structural biology, since they can selectively detect site-to-site distances in biomolecules or biomolecular complexes in the nanometer range. Here we report relaxation properties, echo detected EPR spectra, as well as the magnitude of the echo reduction effect in Gd(III)-nitroxide DEER for a series of Gadolinium(III) complexes with chelating agents derived from tetraazacyclododecane. We observed that solvent deuteration does not only lengthen the relaxation times of Gd(III) centers but also weakens the DEER echo reduction effect. Both of these phenomena lead to an improved signal-to-noise ratios or, alternatively, longer accessible distance range in pulse EPR measurements. The presented data enrich the knowledge on paramagnetic Gd(III) chelate complexes in frozen solutions, and can help optimize the experimental conditions for most types of the pulse measurements of the electron-electron dipolar interactions.

  19. Electron Tunneling, a Quantum Probe for the Quantum World of Nanotechnology

    ERIC Educational Resources Information Center

    Hipps, K. W.; Scudiero, L.

    2005-01-01

    A quantum-mechanical probe is essential to study the quantum world, which is provided by electron tunneling. A spectroscopic mapping to image the electron-transport pathways on a sub-molecular scale is used.

  20. Opto-Curling Probe for Simultaneous Monitoring of Optical Emission and Electron Density in Reactive Plasmas

    NASA Astrophysics Data System (ADS)

    Pandey, Anil; Nakamura, Keiji; Sugai, Hideo

    2013-05-01

    An advanced robust probe called opto-curling probe (OCP) is presented, which enables the simultaneous monitoring of electron density and optical emission of reactive plasma. The electron density is obtained from the microwave resonance frequency of a small antenna set on the probe surface while the optical emission spectra are observed through an optical fiber tip located at the probe surface. The ratio of the measured optical emission intensity to the electron density readily provides the radical density without relying on actinometry. The usefulness of OCP was experimentally demonstrated in the oxygen plasma cleaning of a carbonized wall with endpoint detection.

  1. Aberrated electron probes for magnetic spectroscopy with atomic resolution: Theory and practical aspects

    DOE PAGESBeta

    Rusz, Ján; Idrobo, Juan Carlos

    2016-03-24

    It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase distribution of a electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. Here we present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

  2. Probing Electronic and Thermoelectric Properties of Single Molecule Junctions

    NASA Astrophysics Data System (ADS)

    Widawsky, Jonathan R.

    In an effort to further understand electronic and thermoelectric phenomenon at the nanometer scale, we have studied the transport properties of single molecule junctions. To carry out these transport measurements, we use the scanning tunneling microscope-break junction (STM-BJ) technique, which involves the repeated formation and breakage of a metal point contact in an environment of the target molecule. Using this technique, we are able to create gaps that can trap the molecules, allowing us to sequentially and reproducibly create a large number of junctions. By applying a small bias across the junction, we can measure its conductance and learn about the transport mechanisms at the nanoscale. The experimental work presented here directly probes the transmission properties of single molecules through the systematic measurement of junction conductance (at low and high bias) and thermopower. We present measurements on a variety of molecular families and study how conductance depends on the character of the linkage (metal-molecule bond) and the nature of the molecular backbone. We start by describing a novel way to construct single molecule junctions by covalently connecting the molecular backbone to the electrodes. This eliminates the use of linking substituents, and as a result, the junction conductance increases substantially. Then, we compare transport across silicon chains (silanes) and saturated carbon chains (alkanes) while keeping the linkers the same and find a stark difference in their electronic transport properties. We extend our studies of molecular junctions by looking at two additional aspects of quantum transport -- molecular thermopower and molecular current-voltage characteristics. Each of these additional parameters gives us further insight into transport properties at the nanoscale. Evaluating the junction thermopower allows us to determine the nature of charge carriers in the system and we demonstrate this by contrasting the measurement of amine

  3. Reproducibility of the cutoff probe for the measurement of electron density

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; You, S. J.; Kwon, J. H.; You, K. H.; Seo, B. H.; Kim, J. H.; Yoon, J.-S.; Oh, W. Y.

    2016-06-01

    Since a plasma processing control based on plasma diagnostics attracted considerable attention in industry, the reproducibility of the diagnostics using in this application has become a great interest. Because the cutoff probe is one of the potential candidates for this application, knowing the reproducibility of the cutoff probe measurement becomes quit important in the cutoff probe application research. To test the reproducibility of the cutoff probe measurement, in this paper, a comparative study among the different cutoff probe measurements was performed. The comparative study revealed remarkable result: the cutoff probe has a great reproducibility for the electron density measurement, i.e., there are little differences among measurements by different probes made by different experimenters. The discussion including the reason for the result was addressed via this paper by using a basic measurement principle of cutoff probe and a comparative experiment with Langmuir probe.

  4. Quantification of metallothioneins in the earthworm by lomefloxacin-europium(iii) fluorescent probe.

    PubMed

    Geng, Meng-Jiao; Liang, Shu-Xuan; Liu, Wei; Jin, Yu

    2014-08-01

    A new fluorimetric method was established for the determination of trace amounts of metallothioneins (MT) in earthworm, using a lomefloxacin-europium(iii) (LMLX-Eu(3+)) complex as a fluorescent probe. In a pH 6.5 Tris-HCl buffer solution, MT can markedly decrease the fluorescence intensity of LMLX-Eu(3+) at λ = 613 nm, and the magnitude of the decrease in this intensity was in direct proportion to the concentration of MT. The linear range was 0.08-20 mg L(-1) with a detection limit of 0.022 mg L(-1), and the recovery was in the range of 91.9-104.4%. The results show that the fluorimetric method is relatively accurate and sensitive to measurements of concentration for MT over a wide range. This method has been successfully applied to the determination of the concentration of MT induced by heavy metal ions (Cd(2+), Pb(2+), Cu(2+), Zn(2+)) in Eisenia andrei. The amount of MT increased significantly in a dose-dependent manner to the heavy-metal exposure, and these proteins can be used as biomarkers to assess the impact of heavy-metal contamination in soils. The method offered high sensitivity as well as accuracy with simple instrumentation and is suitable for direct quantification of total MT in Eisenia andrei.

  5. Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials.

    PubMed

    Tang, Fengzai; Moody, Michael P; Martin, Tomas L; Bagot, Paul A J; Kappers, Menno J; Oliver, Rachel A

    2015-06-01

    Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of implantation damage induced by sample preparation. In the reconstructed InAlN layer Ga implantation was demonstrated for the standard "clean-up" voltage (5 kV), but this was significantly reduced by using a lower voltage (e.g., 1 kV). The characteristics of APT data from the desorption maps to the mass spectra and measured chemical compositions were examined within the GaN buffer layer underlying the InAlN layer in both pulsed laser and pulsed voltage modes. The measured Ga content increased monotonically with increasing laser pulse energy and voltage pulse fraction within the examined ranges. The best results were obtained at very low laser energy, with the Ga content close to the expected stoichiometric value for GaN and the associated desorption map showing a clear crystallographic pole structure. PMID:25926083

  6. Characterisation of wood combustion particles using electron probe microanalysis

    NASA Astrophysics Data System (ADS)

    Osán, János; Alföldy, Bálint; Török, Szabina; Van Grieken, René

    Biomass combustion for energy production has increased in recent years, mostly in domestic households and for the space heating of some public and agricultural buildings. Small wood combustion boilers are not equipped with any flue gas filtering system, and they release most of the small particles generated on combustion to the air. Particulate emissions from a 400 kW wood-fired heating plant were measured during standard winter operation. Cyclone fly ash and bottom ash, as well as ambient aerosol samples, were collected on site. The samples were analysed using conventional single-particle electron probe microanalysis (EPMA) including use of a thin-window detector allowing the determination of low- Z major elements such as C and O. The particles were classified based on the analyses obtained and using hierarchical cluster analysis. The majority of stack-gas particles were found to be in the respirable size range. Using EPMA, the wood combustion particles could be traced in the neighbouring air because of their characteristic potassium content. The cyclone- and bottom-ash particles have lower potassium contents due to alkali release during the combustion process.

  7. Probing Molecular Organization and Electronic Dynamics at Buried Organic Interfaces

    NASA Astrophysics Data System (ADS)

    Roberts, Sean

    2015-03-01

    Organic semiconductors are a promising class of materials due to their ability to meld the charge transport capabilities of semiconductors with many of the processing advantages of plastics. In thin film organic devices, interfacial charge transfer often comprises a crucial step in device operation. As molecular materials, the density of states within organic semiconductors often reflect their intermolecular organization. Truncation of the bulk structure of an organic semiconductor at an interface with another material can lead to substantial changes in the density of states near the interface that can significantly impact rates for interfacial charge and energy transfer. Here, we will present the results of experiments that utilize electronic sum frequency generation (ESFG) to probe buried interfaces in these materials. Within the electric dipole approximation, ESFG is only sensitive to regions of a sample that experience a breakage of symmetry, which occurs naturally at material interfaces. Through modeling of signals measured for thin organic films using a transfer matrix-based formalism, signals from buried interfaces between two materials can be isolated and used to uncover the interfacial density of states.

  8. Improved electron probe microanalysis of trace elements in quartz

    USGS Publications Warehouse

    Donovan, John J.; Lowers, Heather; Rusk, Brian G.

    2011-01-01

    Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of formation. Trace element analyses with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of ~100 ppm with fairly minimal effort for many elements in samples of low to moderate average atomic number such as many common oxides and silicates. However, trace element measurements below 100 ppm in many materials are limited, not only by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities during the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate" intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for Al in quartz at 99% t-test confidence with similar levels for absolute accuracy.

  9. A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion

    NASA Astrophysics Data System (ADS)

    Amjadi, Mohammad; Shokri, Roghayeh; Hallaj, Tooba

    2016-01-01

    In this work, a new turn-off fluorescence probe based on the graphene quantum dots (GQDs) was designed for detection and quantification of Au(III) ion. GQDs were prepared by two simple carbonization methods using glucose (g-GQDs) and citric acid (c-GQDs) as carbon sources. The effect of some metal ions on the fluorescence intensity of the prepared GQDs was studied. It was found that the fluorescence of both GQDs is significantly quenched by Au(III) ions but the sensitivity and analytical performances are different for two prepared GQDs. Using g-GQDs, a new analytical method was developed for the determination of Au(III) in the concentration range of 1.0-80 μM, with a detection limit of 0.5 μM. The developed method was applied to the determination of Au(III) in water and plasma samples with satisfactory results.

  10. Effects of Spatial Variations in Coronal Electron and Ion Temperatures on Type III Bursts. II. Variations in Ion Temperature

    NASA Astrophysics Data System (ADS)

    Li, B.; Cairns, Iver H.; Robinson, P. A.

    2011-03-01

    Quasilinear-based simulations are presented for the effects on coronal type III bursts of spatially varying ion temperature Ti in the corona. The simulations use a newly developed method for integrating spatial variations of coronal temperatures into our previous simulations for constant temperatures. The effects are simulated for monotonic Ti variations and/or for spatially localized enhancements in Ti . Generally, a localized enhancement in Ti has stronger effects on type III bursts than a corresponding monotonic variation in Ti . A localized Ti enhancement causes modulations to the dynamic spectra of fp and 2fp emission at frequencies corresponding to the disturbance: a narrowband slowly drifting intensification for both fp and 2fp emission and a narrowband suppression for 2fp emission. The fp emission may become observable due to the disturbance, although still much weaker than the 2fp emission. Signatures of the Ti enhancement are found in the 2fp spectral characteristics, e.g., the maximum flux and frequency drift rate. Importantly, these signatures are distinct from those of localized disturbances in electron temperature Te . The results indicate that coronal type III bursts provide a new tool to probe and distinguish localized disturbances in Ti or Te in the corona. Additionally, the presence of multiple spatially confined Ti enhancements at different heights may produce some observed fine structures in type III bursts; e.g., stria bursts and associated flux modulations in type IIIb bursts, and flux modulations in type IIIs whose beams traverse coronal shocks.

  11. Direct Vlasov simulations of electron-attracting cylindrical Langmuir probes in flowing plasmas

    SciTech Connect

    Sánchez-Arriaga, G.; Pastor-Moreno, D.

    2014-07-15

    Current collection by positively polarized cylindrical Langmuir probes immersed in flowing plasmas is analyzed using a non-stationary direct Vlasov-Poisson code. A detailed description of plasma density spatial structure as a function of the probe-to-plasma relative velocity U is presented. Within the considered parametric domain, the well-known electron density maximum close to the probe is weakly affected by U. However, in the probe wake side, the electron density minimum becomes deeper as U increases and a rarified plasma region appears. Sheath radius is larger at the wake than at the front side. Electron and ion distribution functions show specific features that are the signature of probe motion. In particular, the ion distribution function at the probe front side exhibits a filament with positive radial velocity. It corresponds to a population of rammed ions that were reflected by the electric field close to the positively biased probe. Numerical simulations reveal that two populations of trapped electrons exist: one orbiting around the probe and the other with trajectories confined at the probe front side. The latter helps to neutralize the reflected ions, thus explaining a paradox in past probe theory.

  12. Direct Vlasov simulations of electron-attracting cylindrical Langmuir probes in flowing plasmas

    NASA Astrophysics Data System (ADS)

    Sánchez-Arriaga, G.; Pastor-Moreno, D.

    2014-07-01

    Current collection by positively polarized cylindrical Langmuir probes immersed in flowing plasmas is analyzed using a non-stationary direct Vlasov-Poisson code. A detailed description of plasma density spatial structure as a function of the probe-to-plasma relative velocity U is presented. Within the considered parametric domain, the well-known electron density maximum close to the probe is weakly affected by U. However, in the probe wake side, the electron density minimum becomes deeper as U increases and a rarified plasma region appears. Sheath radius is larger at the wake than at the front side. Electron and ion distribution functions show specific features that are the signature of probe motion. In particular, the ion distribution function at the probe front side exhibits a filament with positive radial velocity. It corresponds to a population of rammed ions that were reflected by the electric field close to the positively biased probe. Numerical simulations reveal that two populations of trapped electrons exist: one orbiting around the probe and the other with trajectories confined at the probe front side. The latter helps to neutralize the reflected ions, thus explaining a paradox in past probe theory.

  13. Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals.

    PubMed

    Piepenbrock, Annette; Schröder, Christian; Kappler, Andreas

    2014-01-01

    Microbial humic substance (HS) reduction and subsequent abiotic electron transfer from reduced HS to poorly soluble Fe(III) (oxyhydr)oxides, a process named electron shuttling, significantly increases microbial Fe(III) mineral reduction rates. However, the importance of electron shuttling in nature and notably the electron transfer from HS to biogenic Fe(III) (oxyhydr)oxides have thus far not been determined. In this study, we have quantified the rate and extent of electron transfer from reduced and nonreduced Pahokee Peat humic acids (PPHA) and fresh soil organic matter (SOM) extracts to both synthetic and environmentally relevant biogenic Fe(III) (oxyhydr)oxides. We found that biogenic Fe(III) minerals were reduced faster and to an equal or higher degree than their abiogenic counterparts. Differences were attributed to differences in crystallinity and the association of bacterial biomass with biogenic minerals. Compared to purified PPHA, SOM extract transferred fewer electrons per milligram of carbon and electron transfer was observed only to poorly crystalline ferrihydrite but not to more crystalline goethite. This indicates a difference in redox potential distribution of the redox-active functional groups in extracted SOM relative to the purified PPHA. Our results suggest that HS electron shuttling can also contribute to iron redox processes in environments where biogenic Fe(III) minerals are present.

  14. Electron Energy Distribution Function Measurements by Langmuir Probe in ITER like Negative Ion Sources

    SciTech Connect

    Crowley, B.; Homfray, D.; Boilson, D.

    2007-08-10

    Determining d2I/dV2 from a traditional Langmuir probe trace using numerical techniques is inherently noisy and generally yields poor results. We have developed a Langmuir probe system based on a method first used in the 1950's by Boyd and Twiddy. The system measures the 2nd derivative directly. This paper presents results from the driver and extraction regions of the KAMABOKO III ITER like negative ion source.

  15. Double-probe potential measurements near the Spacelab 2 electron beam

    NASA Technical Reports Server (NTRS)

    Steinberg, J. T.; Gurnett, D. A.; Banks, P. M.; Raitt, W. J.

    1988-01-01

    As part of the Spacelab 2 mission the plasma diagnostics package (PDP) was released from the shuttle as a free-flying satellite. The PDP carried a quasi-static electric field instrument which made differential voltage measurements between two floating probes. At various times during the free flight, an electron beam was ejected from the shuttle. Large differential voltages between the double probes were recorded in association with the electron beam. However, analysis indicates that these large signals are probably not caused by ambient electric fields. Instead, they can be explained by considering three effects: shadowing of the probes from streaming electrons by the PDP chassis, crossing of the PDP wake by the probes, and spatial gradients in the fluxes of energetic electrons reaching the probes. Plasma measurements on the PDP show that energetic electrons exist in a region 20 m wide and up to at least 170 m downstream from the electron beam. At 80 or more meters downstream from the beam, the double probe measurements show that the energetic electron flux is opposite to the injection direction, as would be expected for a secondary returning electron beam produced by scattering of the primary electron beam.

  16. Subtle Interactions and Electron Transfer between U(III) , Np(III) , or Pu(III) and Uranyl Mediated by the Oxo Group.

    PubMed

    Arnold, Polly L; Dutkiewicz, Michał S; Zegke, Markus; Walter, Olaf; Apostolidis, Christos; Hollis, Emmalina; Pécharman, Anne-Fréderique; Magnani, Nicola; Griveau, Jean-Christophe; Colineau, Eric; Caciuffo, Roberto; Zhang, Xiaobin; Schreckenbach, Georg; Love, Jason B

    2016-10-01

    A dramatic difference in the ability of the reducing An(III) center in AnCp3 (An=U, Np, Pu; Cp=C5 H5 ) to oxo-bind and reduce the uranyl(VI) dication in the complex [(UO2 )(THF)(H2 L)] (L="Pacman" Schiff-base polypyrrolic macrocycle), is found and explained. These are the first selective functionalizations of the uranyl oxo by another actinide cation. At-first contradictory electronic structural data are explained by combining theory and experiment. Complete one-electron transfer from Cp3 U forms the U(IV) -uranyl(V) compound that behaves as a U(V) -localized single molecule magnet below 4 K. The extent of reduction by the Cp3 Np group upon oxo-coordination is much less, with a Np(III) -uranyl(VI) dative bond assigned. Solution NMR and NIR spectroscopy suggest Np(IV) U(V) but single-crystal X-ray diffraction and SQUID magnetometry suggest a Np(III) -U(VI) assignment. DFT-calculated Hirshfeld charge and spin density analyses suggest half an electron has transferred, and these explain the strongly shifted NMR spectra by spin density contributions at the hydrogen nuclei. The Pu(III) -U(VI) interaction is too weak to be observed in THF solvent, in agreement with calculated predictions. PMID:27628291

  17. Subtle Interactions and Electron Transfer between U(III) , Np(III) , or Pu(III) and Uranyl Mediated by the Oxo Group.

    PubMed

    Arnold, Polly L; Dutkiewicz, Michał S; Zegke, Markus; Walter, Olaf; Apostolidis, Christos; Hollis, Emmalina; Pécharman, Anne-Fréderique; Magnani, Nicola; Griveau, Jean-Christophe; Colineau, Eric; Caciuffo, Roberto; Zhang, Xiaobin; Schreckenbach, Georg; Love, Jason B

    2016-10-01

    A dramatic difference in the ability of the reducing An(III) center in AnCp3 (An=U, Np, Pu; Cp=C5 H5 ) to oxo-bind and reduce the uranyl(VI) dication in the complex [(UO2 )(THF)(H2 L)] (L="Pacman" Schiff-base polypyrrolic macrocycle), is found and explained. These are the first selective functionalizations of the uranyl oxo by another actinide cation. At-first contradictory electronic structural data are explained by combining theory and experiment. Complete one-electron transfer from Cp3 U forms the U(IV) -uranyl(V) compound that behaves as a U(V) -localized single molecule magnet below 4 K. The extent of reduction by the Cp3 Np group upon oxo-coordination is much less, with a Np(III) -uranyl(VI) dative bond assigned. Solution NMR and NIR spectroscopy suggest Np(IV) U(V) but single-crystal X-ray diffraction and SQUID magnetometry suggest a Np(III) -U(VI) assignment. DFT-calculated Hirshfeld charge and spin density analyses suggest half an electron has transferred, and these explain the strongly shifted NMR spectra by spin density contributions at the hydrogen nuclei. The Pu(III) -U(VI) interaction is too weak to be observed in THF solvent, in agreement with calculated predictions.

  18. Probing ultrafast electronic and molecular dynamics with free-electron lasers

    NASA Astrophysics Data System (ADS)

    Fang, L.; Osipov, T.; Murphy, B. F.; Rudenko, A.; Rolles, D.; Petrovic, V. S.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Berrah, N.

    2014-06-01

    Molecular dynamics is an active area of research, focusing on revealing fundamental information on molecular structures and photon-molecule interaction and with broad impacts in chemical and biological sciences. Experimental investigation of molecular dynamics has been advanced by the development of new light sources and techniques, deepening our understanding of natural processes and enabling possible control and modification of chemical and biomolecular processes. Free-electron lasers (FELs) deliver unprecedented intense and short photon pulses in the vacuum ultraviolet and x-ray spectral ranges, opening a new era for the study of electronic and nuclear dynamics in molecules. This review focuses on recent molecular dynamics investigations using FELs. We present recent work concerning dynamics of molecular interaction with FELs using an intrinsic clock within a single x-ray pulse as well as using an external clock in a pump-probe scheme. We review the latest developments on correlated and coincident spectroscopy in FEL-based research and recent results revealing photo-induced interaction dynamics using these techniques. We also describe new instrumentations to conduct x-ray pump-x-ray probe experiments with spectroscopy and imaging detectors.

  19. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.

    PubMed

    Yoo, Byung-Kuk; Kruglik, Sergei G; Lamarre, Isabelle; Martin, Jean-Louis; Negrerie, Michel

    2012-04-01

    To study the ultrafast movement of the heme iron induced by nitric oxide (NO) binding to hemoglobin (Hb) and myoglobin (Mb), we probed the picosecond spectral evolution of absorption band III (∼760 nm) and vibrational modes (iron-histidine stretching, ν(4) and ν(7) in-plane modes) in time-resolved resonance Raman spectra. The time constants of band III intensity kinetics induced by NO rebinding (25 ps for hemoglobin and 40 ps for myoglobin) are larger than in Soret bands and Q-bands. Band III intensity kinetics is retarded with respect to NO rebinding to Hb and to Mb. Similarly, the ν((Fe-His)) stretching intensity kinetics are retarded with respect to the ν(4) and ν(7) heme modes and to Soret absorption. In contrast, band III spectral shift kinetics do not coincide with band III intensity kinetics but follows Soret kinetics. We concluded that, namely, the band III intensity depends on the heme iron out-of-plane position, as theoretically predicted ( Stavrov , S. S. Biopolymers 2004 , 74 , 37 - 40 ).

  20. Methods for measurement of electron emission yield under low energy electron-irradiation by collector method and Kelvin probe method

    SciTech Connect

    Tondu, Thomas; Belhaj, Mohamed; Inguimbert, Virginie

    2010-09-15

    Secondary electron emission yield of gold under electron impact at normal incidence below 50 eV was investigated by the classical collector method and by the Kelvin probe method. The authors show that biasing a collector to ensure secondary electron collection while keeping the target grounded can lead to primary electron beam perturbations. Thus reliable secondary electron emission yield at low primary electron energy cannot be obtained with a biased collector. The authors present two collector-free methods based on current measurement and on electron pulse surface potential buildup (Kelvin probe method). These methods are consistent, but at very low energy, measurements become sensitive to the earth magnetic field (below 10 eV). For gold, the authors can extrapolate total emission yield at 0 eV to 0.5, while a total electron emission yield of 1 is obtained at 40{+-}1 eV.

  1. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    PubMed

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes.

  2. Internal switches modulating electron tunneling currents in respiratory complex III.

    PubMed

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-01

    In different X-ray crystal structures of bc1 complex, some of the key residues of electron tunneling pathways are observed in different conformations; here we examine their relative importance in modulating electron transfer and propose their possible gating function in the Q-cycle. The study includes inter-monomeric electron transfer; here we provide atomistic details of the reaction, and discuss the possible roles of inter-monomeric electronic communication in bc(1) complex. Binding of natural ligands or inhibitors leads to local conformational changes which propagate through protein and control the conformation of key residues involved in the electron tunneling pathways. Aromatic-aromatic interactions are highly utilized in the communication network since the key residues are aromatic in nature. The calculations show that there is a substantial change of the electron transfer rates between different redox pairs depending on the different conformations acquired by the key residues of the complex.

  3. Azo-Based Iridium(III) Complexes as Multicolor Phosphorescent Probes to Detect Hypoxia in 3D Multicellular Tumor Spheroids

    PubMed Central

    Sun, Lingli; Li, Guanying; Chen, Xiang; Chen, Yu; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2015-01-01

    Hypoxia is an important characteristic of malignant solid tumors and is considered as a possible causative factor for serious resistance to chemo- and radiotherapy. The exploration of novel fluorescent probes capable of detecting hypoxia in solid tumors will aid tumor diagnosis and treatment. In this study, we reported the design and synthesis of a series of “off-on” phosphorescence probes for hypoxia detection in adherent and three-dimensional multicellular spheroid models. All of the iridium(III) complexes incorporate an azo group as an azo-reductase reactive moiety to detect hypoxia. Reduction of non-phosphorescent probes Ir1-Ir8 by reductases under hypoxic conditions resulted in the generation of highly phosphorescent corresponding amines for detection of hypoxic regions. Moreover, these probes can penetrate into 3D multicellular spheroids over 100 μm and image the hypoxic regions. Most importantly, these probes display a high selectivity for the detection of hypoxia in 2D cells and 3D multicellular spheroids. PMID:26423609

  4. Probing Mars Crustal Magnetic Field and Ionosphere with the MGS Electron Reflectometer

    NASA Technical Reports Server (NTRS)

    Mitchell, D. L.; Lin, R. P.; Reme, H.; Cloutier, P. A.; Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.

    2002-01-01

    MGS Electron Reflectometer data are used to probe the shape and variability of Mars ionosphere and to identify weak crustal magnetic fields within the Hellas basin. Additional information is contained in the original extended abstract.

  5. Interaction between tryptophan-Sm(III) complex and DNA with the use of a acridine orange dye fluorophor probe.

    PubMed

    Xiong, Xiao Li; Zhao, Na; Wang, Xing Ming

    2016-02-01

    The interaction of the Trp-Sm(III) complex with herring sperm DNA (hs-DNA) was investigated with the use of acridine orange (AO) dye as a spectral probe for UV-vis spectrophotometry and fluorescence spectroscopy. The results showed that the both the Trp-Sm(III) complex and the AO molecule could intercalate into the double helix of the DNA. The Sm(III)-(Trp)3 complex was stabilized by intercalation into the DNA with binding constants: K(Ө)25°C  = 7.14 × 10(5)  L·mol(-1) and K(Ө) 37°C  = 5.28 × 10(4)  L·mol(-1), and it could displace the AO dye from the AO-DNA complex in a competitive reaction. Computation of the thermodynamic functions demonstrates that Δr Hm (Ө) is the primary driving power of the interaction between the Sm(III)(Trp)3 complex and the DNA. The results from Scatchard and viscometry methods suggested that the interaction mode between the Sm(III)(Trp)3 complex and the hs-DNA is groove binding and weak intercalation binding.

  6. Iridium(III) Luminescent Probe for Detection of the Malarial Protein Biomarker Histidine Rich Protein-II.

    PubMed

    Davis, Keersten M; Bitting, Anna L; Markwalter, Christine F; Bauer, Westley S; Wright, David W

    2015-07-07

    This work outlines the synthesis of a non-emissive, cyclometalated Ir(III) complex, Ir(ppy)2(H2O)2(+) (Ir1), which elicits a rapid, long-lived phosphorescent signal when coordinated to a histidine-containing protein immobilized on the surface of a magnetic particle. Synthesis of Ir1, in high yields,is complete O/N and involves splitting of the parent cyclometalated Ir(III) chloro-bridged dimer into two equivalents of the solvated complex. To confirm specificity, several amino acids were probed for coordination activity when added to the synthesized probe, and only histidine elicited a signal response. Using BNT-II, a branched peptide mimic of the malarial biomarker Histidine Rich Protein II (pfHRP-II), the iridium probe was validated as a tool for HRP-II detection. Quenching effects were noted in the BNT-II/Ir1 titration when compared to L-Histidine/Ir1, but these were attributed to steric hindrance and triplet state quenching. Biolayer interferometry was used to determine real-time kinetics of interaction of Ir1 with BNT-II. Once the system was optimized, the limit of detection of rcHRP-II using the probe was found to be 12.8 nM in solution. When this protein was immobilized on the surface of a 50 µm magnetic agarose particle, the limit of detection was 14.5 nM. The robust signal response of this inorganic probe, as well as its flexibility of use in solution or immobilized on a surface, can lend itself toward a variety of applications, from diagnostic use to imaging.

  7. Probing Electron Dynamics with the Laplacian of the Momentum Density

    SciTech Connect

    Sukumar, N.; MacDougall, Preston J.; Levit, M. Creon

    2012-09-24

    This chapter in the above-titled monograph presents topological analysis of the Laplacian of the electron momentum density in organic molecules. It relates topological features in this distribution to chemical and physical properties, particularly aromaticity and electron transport.

  8. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor.

    PubMed

    Jones, Morris E; Fennessey, Christine M; DiChristina, Thomas J; Taillefert, Martial

    2010-04-01

    Recent voltammetric analyses indicate that Shewanella putrefaciens strain 200 produces soluble organic-Fe(III) complexes during anaerobic respiration of sparingly soluble Fe(III) oxides. Results of the present study expand the range of Shewanella species capable of producing soluble organic-Fe(III) complexes to include Shewanella oneidensis MR-1. Soluble organic-Fe(III) was produced by S. oneidensis cultures incubated anaerobically with Fe(III) oxides, or with Fe(III) oxides and the alternate electron acceptor fumarate, but not in the presence of O(2), nitrate or trimethylamine-N-oxide. Chemical mutagenesis procedures were combined with a novel MicroElectrode Screening Array (MESA) to identify four (designated Sol) mutants with impaired ability to produce soluble organic-Fe(III) during anaerobic respiration of Fe(III) oxides. Two of the Sol mutants were deficient in anaerobic growth on both soluble Fe(III)-citrate and Fe(III) oxide, yet retained the ability to grow on a suite of seven alternate electron acceptors. The rates of soluble organic-Fe(III) production were proportional to the rates of iron reduction by the S. oneidensis wild-type and Sol mutant strains, and all four Sol mutants retained wild-type siderophore production capability. Results of this study indicate that the production of soluble organic-Fe(III) may be an important intermediate step in the anaerobic respiration of both soluble and sparingly soluble forms of Fe(III) by S. oneidensis.

  9. "Do Type III-associated escaping electron beams cool the corona?"

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, P.; Wang, L.; Vilmer, N.; Kerdraon, A.

    2012-12-01

    A recent study of decimetric Type III radio burst emission from data from the Nancay Radio Heliograph will be presented. It examined sizes, locations, and fluxes of close to 10'000 decimetric Type III bursts. The flux study suggests that electron beams related to Type III emission could be responsible for carrying energy away from the corona in a proportion similar to EUV nanoflares. This tentative conclusion was reached from comparing Type III dN/dS distributions to the dN/dS of EUV/SXR nano-/micro-flares. The biggest uncertainty is the radiative efficiency, i.e. the ratio of radiated energy in decimetric Type III bursts and the energy of the electrons in the beams associated with them. We will constrain this value through other, new observations: we have already computed the amount of Type III radiated energy from NRH observations, and we will now compare them with the amount of energy in the corresponding beam electron detected in-situ by the Wind spacecraft. Given our sample of close to 10'000 decimetric Type IIIs, we expect a decent amount of in-situ beam energy estimates from magnetically connected events. Moreover, we will compare with X-ray-derived energies from corresponding RHESSI (micro)flares, when such an association exists.

  10. Do Type III-associated Escaping Electron Beams Cool The Corona?

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Wang, L.; Christe, S. D.; Vilmer, N.; Kerdraon, A.; Lin, R. P.

    2012-05-01

    A recent study of decimetric Type III radio burst emission from data from the Nancay Radio Heliograph (NRH) will be presented. It examined sizes, locations, and fluxes of close to 10'000 decimetric Type III bursts. The flux study suggests that electron beams related to Type III emission could be responsible for carrying energy away from the corona in a proportion similar to that of EUV nanoflare heating. This tentative conclusion was reached from comparing Type III dN/dS distributions to the dN/dS of EUV/SXR nano-/micro-flares. The biggest uncertainty is the radiative efficiency, i.e. the ratio of radiated energy in decimetric Type III bursts and the energy of the electrons in the beams associated with them. We will constrain this value through other, new observations: we have already computed the amount of Type III radiated energy from NRH observations, and we will now compare them with the amount of energy in the corresponding beam electron detected in-situ by the Wind spacecraft. Given our sample of close to 10'000 decimetric Type IIIs, we expect a decent amount of in-situ beam energy estimates from magnetically connected events. Moreover, we will compare with X-ray-derived energies from corresponding RHESSI (micro)flares, when such an association exists.

  11. Steric and Electronic Influence on Proton-Coupled Electron-Transfer Reactivity of a Mononuclear Mn(III)-Hydroxo Complex.

    PubMed

    Rice, Derek B; Wijeratne, Gayan B; Burr, Andrew D; Parham, Joshua D; Day, Victor W; Jackson, Timothy A

    2016-08-15

    A mononuclear hydroxomanganese(III) complex was synthesized utilizing the N5 amide-containing ligand 2-[bis(pyridin-2-ylmethyl)]amino-N-2-methyl-quinolin-8-yl-acetamidate (dpaq(2Me) ). This complex is similar to previously reported [Mn(III)(OH)(dpaq(H))](+) [Inorg. Chem. 2014, 53, 7622-7634] but contains a methyl group adjacent to the hydroxo moiety. This α-methylquinoline group in [Mn(III)(OH)(dpaq(2Me))](+) gives rise to a 0.1 Å elongation in the Mn-N(quinoline) distance relative to [Mn(III)(OH)(dpaq(H))](+). Similar bond elongation is observed in the corresponding Mn(II) complex. In MeCN, [Mn(III)(OH)(dpaq(2Me))](+) reacts rapidly with 2,2',6,6'-tetramethylpiperidine-1-ol (TEMPOH) at -35 °C by a concerted proton-electron transfer (CPET) mechanism (second-order rate constant k2 of 3.9(3) M(-1) s(-1)). Using enthalpies and entropies of activation from variable-temperature studies of TEMPOH oxidation by [Mn(III)(OH)(dpaq(2Me))](+) (ΔH(‡) = 5.7(3) kcal(-1) M(-1); ΔS(‡) = -41(1) cal M(-1) K(-1)), it was determined that [Mn(III)(OH)(dpaq(2Me))](+) oxidizes TEMPOH ∼240 times faster than [Mn(III)(OH)(dpaq(H))](+). The [Mn(III)(OH)(dpaq(2Me))](+) complex is also capable of oxidizing the stronger O-H and C-H bonds of 2,4,6-tri-tert-butylphenol and xanthene, respectively. However, for these reactions [Mn(III)(OH)(dpaq(2Me))](+) displays, at best, modest rate enhancement relative to [Mn(III)(OH)(dpaq(H))](+). A combination of density function theory (DFT) and cyclic voltammetry studies establish an increase in the Mn(III)/Mn(II) reduction potential of [Mn(III)(OH)(dpaq(2Me))](+) relative to [Mn(III)(OH)(dpaq(H))](+), which gives rise to a larger driving force for CPET for the former complex. Thus, more favorable thermodynamics for [Mn(III)(OH)(dpaq(2Me))](+) can account for the dramatic increase in rate with TEMPOH. For the more sterically encumbered substrates, DFT computations suggest that this effect is mitigated by unfavorable steric interactions between the

  12. Steric and Electronic Influence on Proton-Coupled Electron-Transfer Reactivity of a Mononuclear Mn(III)-Hydroxo Complex.

    PubMed

    Rice, Derek B; Wijeratne, Gayan B; Burr, Andrew D; Parham, Joshua D; Day, Victor W; Jackson, Timothy A

    2016-08-15

    A mononuclear hydroxomanganese(III) complex was synthesized utilizing the N5 amide-containing ligand 2-[bis(pyridin-2-ylmethyl)]amino-N-2-methyl-quinolin-8-yl-acetamidate (dpaq(2Me) ). This complex is similar to previously reported [Mn(III)(OH)(dpaq(H))](+) [Inorg. Chem. 2014, 53, 7622-7634] but contains a methyl group adjacent to the hydroxo moiety. This α-methylquinoline group in [Mn(III)(OH)(dpaq(2Me))](+) gives rise to a 0.1 Å elongation in the Mn-N(quinoline) distance relative to [Mn(III)(OH)(dpaq(H))](+). Similar bond elongation is observed in the corresponding Mn(II) complex. In MeCN, [Mn(III)(OH)(dpaq(2Me))](+) reacts rapidly with 2,2',6,6'-tetramethylpiperidine-1-ol (TEMPOH) at -35 °C by a concerted proton-electron transfer (CPET) mechanism (second-order rate constant k2 of 3.9(3) M(-1) s(-1)). Using enthalpies and entropies of activation from variable-temperature studies of TEMPOH oxidation by [Mn(III)(OH)(dpaq(2Me))](+) (ΔH(‡) = 5.7(3) kcal(-1) M(-1); ΔS(‡) = -41(1) cal M(-1) K(-1)), it was determined that [Mn(III)(OH)(dpaq(2Me))](+) oxidizes TEMPOH ∼240 times faster than [Mn(III)(OH)(dpaq(H))](+). The [Mn(III)(OH)(dpaq(2Me))](+) complex is also capable of oxidizing the stronger O-H and C-H bonds of 2,4,6-tri-tert-butylphenol and xanthene, respectively. However, for these reactions [Mn(III)(OH)(dpaq(2Me))](+) displays, at best, modest rate enhancement relative to [Mn(III)(OH)(dpaq(H))](+). A combination of density function theory (DFT) and cyclic voltammetry studies establish an increase in the Mn(III)/Mn(II) reduction potential of [Mn(III)(OH)(dpaq(2Me))](+) relative to [Mn(III)(OH)(dpaq(H))](+), which gives rise to a larger driving force for CPET for the former complex. Thus, more favorable thermodynamics for [Mn(III)(OH)(dpaq(2Me))](+) can account for the dramatic increase in rate with TEMPOH. For the more sterically encumbered substrates, DFT computations suggest that this effect is mitigated by unfavorable steric interactions between the

  13. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W.

    2016-01-01

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.

  14. Using rf impedance probe measurements to determine plasma potential and the electron energy distribution

    SciTech Connect

    Walker, D. N.; Fernsler, R. F.; Blackwell, D. D.; Amatucci, W. E.

    2010-11-15

    Earlier work has demonstrated the usefulness of a network analyzer in plasma diagnostics using spherical probes in the thin sheath limit. The rf signal applied to the probe by the network analyzer is small in magnitude compared to probe bias voltages, and the instrument returns both real and imaginary parts of the complex plasma impedance as a function of frequency for given bias voltages. This information can be used to determine sheath resistance, sheath density profiles, and a technique for measuring electron temperature. The present work outlines a method for finding plasma potential and the electron energy distribution within a limited energy range. The results are compared to those using conventional Langmuir probe techniques. The rf method has general application to diverse areas of plasma investigations when the plasma is uniform and probe dimensions are much less than the size of the plasma. These applications include laboratory and space environments.

  15. Throughput maximization of particle radius measurements through balancing size versus current of the electron probe.

    PubMed

    Van den Broek, W; Van Aert, S; Goos, P; Van Dyck, D

    2011-06-01

    In this paper we investigate which probe size maximizes the throughput when measuring the radius of nanoparticles in high angle annular dark field scanning transmission electron microscopy (HAADF STEM). The size and the corresponding current of the electron probe determine the precision of the estimate of a particle's radius. Maximizing throughput means that a maximum number of particles should be imaged within a given time frame, so that a prespecified precision is attained. We show that Bayesian statistical experimental design is a very useful approach to determine the optimal probe size using a certain amount of prior knowledge about the sample. The dependence of the optimal probe size on the detector geometry and the diameter, variability and atomic number of the particles is investigated. An expression for the optimal probe size in the absence of any kind of prior knowledge about the specimen is derived as well.

  16. Electron impact excitation of Astrophysically Important C III Ion

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; KEENAN, FRANCIS P.

    2015-08-01

    Emission lines of many Be-like ions, including C~III, have been observed in the solar and stellar plasmas and are useful for density and temperature diagnostics. C~III is also important for studies of fusion plasmas. For modelling and diagnostics, atomic data for energy levels, radiative rates (A-values) and excitation rates (equivalently effective collision strengths) are required. Therefore, we have adopted the GRASP code to calculate energy levels, A-values (for E1, E2, M1 and M2 transitions) and lifetimes among 166 levels of the n <= 5 configurations. Energy levels are assessed to be accurate to better than 1% for most levels, and A-values to better than 20% for most transitions. For A-values and lifetimes there are no large discrepancies between theory and measurement. For collision strengths DARC is adopted, resonances are resolved in a fine energy mesh and are averaged over a Maxwellian velocity distribution to determine effective collision strengths up to a temperature of 800,000 K. Unfortunately, a comparison with the similar R-matrix calculations of Fernandez-Menchero et al [A&A 566 (2014) A104] shows differences up to over an order of magnitude for about 20% transitions (among the lowest 78 levels) over the complete temperature range of the results. In most cases their results are larger, up to a factor of 20, and the differences are similar and comparable to those already noted for other Be-like ions, namely Al~X, Cl~XIV, K~XVI, Ti~XIX and Ge~XXIX - see Aggarwal & Keenan [MNRAS 447 (2015) 3849]. Based on several comparisons and considering the wide range of partial waves included (up to 40.5) and the energy range adopted for collision strengths (up to 21 Ryd), our results are estimated to be accurate to better than 20% for a majority of transitions, allowed and forbidden. Detailed comparisons for all parameters for C~III and possible reasons for discrepancies will be presented during the conference and will also be soon available in MNRAS.

  17. Role of defects in III-nitride based electronics

    SciTech Connect

    HAN,JUNG; MYERS JR.,SAMUEL M.; FOLLSTAEDT,DAVID M.; WRIGHT,ALAN F.; CRAWFORD,MARY H.; LEE,STEPHEN R.; SEAGER,CARLETON H.; SHUL,RANDY J.; BACA,ALBERT G.

    2000-01-01

    The LDRD entitled ``Role of Defects in III-Nitride Based Devices'' is aimed to place Sandia National Laboratory at the forefront of the field of GaN materials and devices by establishing a scientific foundation in areas such as material growth, defect characterization/modeling, and processing (metalization and etching) chemistry. In this SAND report the authors summarize their studies such as (1) the MOCVD growth and doping of GaN and AlGaN, (2) the characterization and modeling of hydrogen in GaN, including its bonding, diffusion, and activation behaviors, (3) the calculation of energetic of various defects including planar stacking faults, threading dislocations, and point defects in GaN, and (4) dry etching (plasma etching) of GaN (n- and p-types) and AlGaN. The result of the first AlGaN/GaN heterojunction bipolar transistor is also presented.

  18. Evidence of secondary electron emission during PIII pulses as measured by calorimetric probe

    NASA Astrophysics Data System (ADS)

    Haase, Fabian; Manova, Darina; Mändl, Stephan; Kersten, Holger

    2016-09-01

    Secondary electrons are an ubiquitous nuisance during plasma immersion ion implantation (PIII) necessitating excessive current supplies and shielding for X-rays generated by them. However, additional effects - especially at low pulse voltages - can include interactions with the plasma and transient increases in the plasma density. Here, it is shown that the transient thermal flux associated with secondary electrons emitted from the pulsed substrate can be directly measured using a passive calorimetric probe mounted near the chamber wall away from the pulsed substrate holder. A small increase of a directed energy flux from the substrate towards the probe is consistently observed on top of the isotropic flux from the plasma surrounding the probe, scaling with pulse frequency, pulse voltage, pulse length - as well as depending on gas and substrate material. A strong correlation between voltage and substrate-probe distance is observed, which should allow further investigation of low energy electrons with the plasma itself.

  19. Probing Actinide Electronic Structure through Pu Cluster Calculations

    DOE PAGESBeta

    Ryzhkov, Mickhail V.; Mirmelstein, Alexei; Yu, Sung-Woo; Chung, Brandon W.; Tobin, James G.

    2013-02-26

    The calculations for the electronic structure of clusters of plutonium have been performed, within the framework of the relativistic discrete-variational method. Moreover, these theoretical results and those calculated earlier for related systems have been compared to spectroscopic data produced in the experimental investigations of bulk systems, including photoelectron spectroscopy. Observation of the changes in the Pu electronic structure as a function of size provides powerful insight for aspects of bulk Pu electronic structure.

  20. Scanning electron microscopy and electron probe microanalysis studies of human pineal concretions.

    PubMed

    Kodaka, T; Mori, R; Debari, K; Yamada, M

    1994-10-01

    The calcareous concretions of human pineal bodies were investigated with scanning electron microscopy and electron probe microanalysis. The initial concretions measuring 5-7 microns in diameter may have started at the calcified pinealocytes. They grew appositionally forming concentric laminations, and then the simple calcospherulites over 20 microns occasionally aggregated with each other. Some of them became numerous spherulite-aggregated concretions. Others individually grew with scallop-shaped concentric laminations at intervals of 0.05-1 microns and became lobated calcospherulites up to 0.5 mm. The concretions over 0.5 mm were formed by their attachments. The major elements were Ca and P, while traces of S, Mg, and Na were detected. In the calcification and crystallization values, the center of the concretions over 50 microns was significantly higher than the periphery, while there were no differences among the centers and also among the peripheries. The Ca and P amounts in the center were 30.8% and 14.2% by weight and the Ca/P molar ratio was 1.68; thereby the sand-grain-shaped crystals may be nearly hydroxyapatite, as reported previously. PMID:7699308

  1. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals.

    PubMed

    White, Gaye F; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice C; Marshall, Matthew J; Fredrickson, James K; Zachara, John M; Butt, Julea N; Richardson, David J; Clarke, Thomas A

    2013-04-16

    The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 10(3) times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 10(3) times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration.

  2. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    NASA Astrophysics Data System (ADS)

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice C.; Marshall, Matthew J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2013-04-01

    The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 103 times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 103 times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration.

  3. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase.

    PubMed

    Wei, Yifeng; Li, Bin; Prakash, Divya; Ferry, James G; Elliott, Sean J; Stubbe, JoAnne

    2015-12-01

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRs reflects the diversity of electron carriers used in anaerobic metabolism.

  4. Probing the conformation of the fibronectin III1-2 domain by fluorescence resonance energy transfer.

    PubMed

    Karuri, Nancy W; Lin, Zong; Rye, Hays S; Schwarzbauer, Jean E

    2009-02-01

    Fibronectin (FN) matrix is crucial for cell and tissue functions during embryonic development, wound healing, and oncogenesis. Assembly of FN matrix fibrils requires FN domains that mediate interactions with integrin receptors and with other FN molecules. In addition, regulation of FN matrix assembly depends on the first two FN type III modules, III(1) and III(2), which harbor FN-binding sites. We propose that interactions between these two modules sequester FN-binding sites in soluble FN and that these sites become exposed by FN conformational changes during assembly. To test the idea that III(1-2) has a compact conformation, we constructed CIIIY, a conformational sensor of III(1-2) based on fluorescent resonance energy transfer between cyan and yellow fluorescent proteins conjugated at its N and C termini. We demonstrate energy transfer in CIIIY and show that fluorescent resonance energy transfer was eliminated by proteolysis and by treatment with mild denaturants that disrupted intramolecular interactions between the two modules. We also show that mutations of key charged residues resulted in conformational changes that exposed binding sites for the N-terminal 70-kDa FN fragment. Collectively, these results support a conformation-dependent mechanism for the regulation of FN matrix assembly by III(1-2).

  5. Direct evidence of type III electron streams propagating in coronal streamers

    SciTech Connect

    Kundu, M.R.; Gergely, T.E.; Turner, P.J.; Howard, R.A.

    1983-06-15

    Using two-dimensional solar images at 73.8 MHz, obtained with the Clark Lake Multifrequency Radioheliograph, we present direct evidence that type III electron streams propagate in dense coronal streamers. This evidence is substantiated by the excellent coincidence that we find in position angle between the densest parts of streamers observed with the Solwind coronagraph on the P78-1 satellite and the maximum brightness of type III burst sources.

  6. Stratification in the electron beams exciting type III solar radio bursts

    SciTech Connect

    Eremin, A.B.; Zaitsev, V.V.

    1982-07-01

    The opportunities for stratifying the fast-electron beams that generate type III solar radio bursts are discussed. Stratification can result from the growth of electromagnetic instability in a direction normal to the beam velocity, and it will cause the plasma-wave energy density to develop an oscillating space distribution. Analysis of the problem furnishes an explanation of the direct measurements of plasma waves in type III burst sources.

  7. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    NASA Astrophysics Data System (ADS)

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, Sanghyeon; Choi, Won Jun

    2016-02-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates.

  8. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    PubMed Central

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  9. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications.

    PubMed

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-02-11

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called "Si photonics"). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates.

  10. Energetic electrons, Type III radio bursts, and impulsive solar flare X-rays

    NASA Technical Reports Server (NTRS)

    Kane, S. R.

    1981-01-01

    Observations of impulsive hard X-ray and type III radio bursts made during the maximum of the last solar activity cycle are analyzed. Spectral measurements of 10-68 keV X-rays were made with the University of California (Berkeley) experiment aboard the OGO 5 satellite. About 20% of impulsive hard X-ray bursts are correlated with type III radio bursts, whereas only about 3% of the reported type III radio bursts are correlated with impulsive X-ray bursts. The location of the associated H gamma flare on the solar disk has little effect on the X-ray-type III burst correlation. The magnitude of the X-ray-type III burst correlation increases systematically with an increase in the intensity and starting frequency of the radio burst, the peak energy and hardness of the X-ray burst, and the peak nonthermal emission measure and spectral hardness of the electron spectrum not less than 20 keV inside the X-ray source. Observations are consistent with the electron populations responsible for both the X-ray and type III emissions accelerated in a single acceleration process; they also suggest a flare model where the primary instability causing electron acceleration during the impulsive phase occurs in the corona.

  11. Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

    SciTech Connect

    Mercado, Luis

    2012-05-01

    This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z0 boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q2 = 0.62 GeV2. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (GsE,M ) to the nucleon electromagnetic form factors. A value of APV = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in GsE + 0.517GsM = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q2 = 0.009 GeV2. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the 208Pb nucleus. The Z0 boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.

  12. Trigger probe for determining the orientation of the power distribution of an electron beam

    DOEpatents

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2007-07-17

    The present invention relates to a probe for determining the orientation of electron beams being profiled. To accurately time the location of an electron beam, the probe is designed to accept electrons from only a narrowly defined area. The signal produced from the probe is then used as a timing or triggering fiducial for an operably coupled data acquisition system. Such an arrangement eliminates changes in slit geometry, an additional signal feedthrough in the wall of a welding chamber and a second timing or triggering channel on a data acquisition system. As a result, the present invention improves the accuracy of the resulting data by minimizing the adverse effects of current slit triggering methods so as to accurately reconstruct electron or ion beams.

  13. Electron Shuttles Enhance Anaerobic Ammonium Oxidation Coupled to Iron(III) Reduction.

    PubMed

    Zhou, Guo-Wei; Yang, Xiao-Ru; Li, Hu; Marshall, Christopher W; Zheng, Bang-Xiao; Yan, Yu; Su, Jian-Qiang; Zhu, Yong-Guan

    2016-09-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction, termed Feammox, is a newly discovered nitrogen cycling process. However, little is known about the roles of electron shuttles in the Feammox reactions. In this study, two forms of Fe(III) (oxyhydr)oxide ferrihydrite (ex situ ferrihydrite and in situ ferrihydrite) were used in dissimilatory Fe(III) reduction (DIR) enrichments from paddy soil. Evidence for Feammox in DIR enrichments was demonstrated using the (15)N-isotope tracing technique. The extent and rate of both the (30)N2-(29)N2 and Fe(II) formation were enhanced when amended with electron shuttles (either 9,10-anthraquinone-2,6-disulfonate (AQDS) or biochar) and further simulated when these two shuttling compounds were combined. Although the Feammox-associated Fe(III) reduction accounted for only a minor proportion of total Fe(II) formation compared to DIR, it was estimated that the potentially Feammox-mediated N loss (0.13-0.48 mg N L(-1) day(-1)) was increased by 17-340% in the enrichments by the addition of electron shuttles. The addition of electron shuttles led to an increase in the abundance of unclassified Pelobacteraceae, Desulfovibrio, and denitrifiers but a decrease in Geobacter. Overall, we demonstrated a stimulatory effect of electron shuttles on Feammox that led to higher N loss, suggesting that electron shuttles might play a crucial role in Feammox-mediated N loss from soils. PMID:27494694

  14. Electron Shuttles Enhance Anaerobic Ammonium Oxidation Coupled to Iron(III) Reduction.

    PubMed

    Zhou, Guo-Wei; Yang, Xiao-Ru; Li, Hu; Marshall, Christopher W; Zheng, Bang-Xiao; Yan, Yu; Su, Jian-Qiang; Zhu, Yong-Guan

    2016-09-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction, termed Feammox, is a newly discovered nitrogen cycling process. However, little is known about the roles of electron shuttles in the Feammox reactions. In this study, two forms of Fe(III) (oxyhydr)oxide ferrihydrite (ex situ ferrihydrite and in situ ferrihydrite) were used in dissimilatory Fe(III) reduction (DIR) enrichments from paddy soil. Evidence for Feammox in DIR enrichments was demonstrated using the (15)N-isotope tracing technique. The extent and rate of both the (30)N2-(29)N2 and Fe(II) formation were enhanced when amended with electron shuttles (either 9,10-anthraquinone-2,6-disulfonate (AQDS) or biochar) and further simulated when these two shuttling compounds were combined. Although the Feammox-associated Fe(III) reduction accounted for only a minor proportion of total Fe(II) formation compared to DIR, it was estimated that the potentially Feammox-mediated N loss (0.13-0.48 mg N L(-1) day(-1)) was increased by 17-340% in the enrichments by the addition of electron shuttles. The addition of electron shuttles led to an increase in the abundance of unclassified Pelobacteraceae, Desulfovibrio, and denitrifiers but a decrease in Geobacter. Overall, we demonstrated a stimulatory effect of electron shuttles on Feammox that led to higher N loss, suggesting that electron shuttles might play a crucial role in Feammox-mediated N loss from soils.

  15. On the speed and acceleration of electron beams triggering interplanetary type III radio bursts

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Kontar, E. P.; Soucek, J.; Santolik, O.; Maksimovic, M.; Kruparova, O.

    2015-08-01

    Aims: Type III radio bursts are intense radio emissions triggered by beams of energetic electrons often associated with solar flares. These exciter beams propagate outwards from the Sun along an open magnetic field line in the corona and in the interplanetary (IP) medium. Methods: We performed a statistical survey of 29 simple and isolated IP type III bursts observed by STEREO/Waves instruments between January 2013 and September 2014. We investigated their time-frequency profiles in order to derive the speed and acceleration of exciter electron beams. Results: We show these beams noticeably decelerate in the IP medium. Obtained speeds range from ~0.02c up to ~0.35c depending on initial assumptions. It corresponds to electron energies between tens of eV and hundreds of keV, and in order to explain the characteristic energies or speeds of type III electrons (~0.1c) observed simultaneously with Langmuir waves at 1 au, the emission of type III bursts near the peak should be predominately at double plasma frequency. Derived properties of electron beams can be used as input parameters for computer simulations of interactions between the beam and the plasma in the IP medium. Appendix A is available in electronic form at http://www.aanda.org

  16. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    DOE PAGESBeta

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-09-15

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  17. Absorption spectroscopic probe to investigate the interaction between Nd(III) and calf-thymus DNA

    NASA Astrophysics Data System (ADS)

    Devi, Ch. Victory; Singh, N. Rajmuhon

    2011-03-01

    The interaction between Nd(III) and Calf Thymus DNA (CT-DNA) in physiological buffer (pH 7.4) has been studied using absorption spectroscopy involving 4f-4f transition spectra in different aquated organic solvents. Complexation with CT-DNA is indicated by the changes in absorption intensity following the subsequent changes in the oscillator strengths of different 4f-4f bands and Judd-Ofelt intensity ( Tλ) parameters. The other spectral parameters namely Slator-Condon ( Fk's), nephelauxetic effect ( β), bonding ( b1/2) and percent covalency ( δ) parameters are computed to correlate with the binding of Nd(III) with DNA. The absorption spectra of Nd(III) exhibited hyperchromism and red shift in the presence of DNA. The binding constant, Kb has been determined by absorption measurement. The relative viscosity of DNA decreased with the addition of Nd(III). Thermodynamic parameters have been calculated according to relevant absorption data and Van't Hoff equation. The characterisation of bonding mode has been studied in detail. The results suggested that the major interaction mode between Nd(III) and DNA was external electrostatic binding.

  18. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    SciTech Connect

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strong as those obtained by nanodiffraction methods.

  19. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    DOE PAGESBeta

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less

  20. Double Electron-Electron Resonance Probes Ca2+-induced Conformational Changes and Dimerization of Recoverin†

    PubMed Central

    Myers, William K.; Xu, Xianzhong; Li, Congmin; Lagerstedt, Jens O.; Budamagunta, Madhu S.; Voss, John C.; Britt, R. David; Ames, James B.

    2013-01-01

    Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, is expressed in retinal photoreceptor cells and serves as a calcium sensor in vision. Ca2+-induced conformational changes in recoverin cause extrusion of its covalently attached myristate (termed Ca2+-myristoyl switch) that promote translocation of recoverin to disk membranes during phototransduction in retinal rod cells. Here we report double electron-electron resonance (DEER) experiments on recoverin that probe Ca2+-induced changes in distance as measured by the dipolar coupling between spin labels strategically positioned at engineered cysteine residues on the protein surface. The DEER distance between nitroxide spin-labels attached at C39 and N120C is 2.5 ±0.1 nm for Ca2+-free recoverin and 3.7 ±0.1 nm for Ca2+-bound recoverin. An additional DEER distance (5 - 6 nm) observed for Ca2+-bound recoverin may represent an intermolecular distance between C39 and N120. 15N NMR relaxation analysis and CW-EPR experiments both confirm that Ca2+-bound recoverin forms a dimer at protein concentrations above 100 μM, whereas Ca2+-free recoverin is monomeric. We propose that Ca2+-induced dimerization of recoverin at the disk membrane surface may play a role in regulating Ca2+-dependent phosphorylation of dimeric rhodopsin. The DEER approach will be useful for elucidating dimeric structures of NCS proteins in general for which Ca2+-induced dimerization is functionally important but not well understood. PMID:23906368

  1. Micro Electron MicroProbe and Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bearman, Gregory; Douglas, Susanne; Bronikowski, Michael; Urgiles, Eduardo; Kowalczyk, Robert; Bryson, Charles

    2009-01-01

    A proposed, low-power, backpack-sized instrument, denoted the micro electron microprobe and sample analyzer (MEMSA), would serve as a means of rapidly performing high-resolution microscopy and energy-dispersive x-ray spectroscopy (EDX) of soil, dust, and rock particles in the field. The MEMSA would be similar to an environmental scanning electron microscope (ESEM) but would be much smaller and designed specifically for field use in studying effects of geological alteration at the micrometer scale. Like an ESEM, the MEMSA could be used to examine uncoated, electrically nonconductive specimens. In addition to the difference in size, other significant differences between the MEMSA and an ESEM lie in the mode of scanning and the nature of the electron source.

  2. Probing the Macromolecular Organization of Cells by Electron Tomography

    PubMed Central

    Hoenger, Andreas; McIntosh, J. Richard

    2010-01-01

    Summary A major goal in cell biology is to understand the functional organization of macromolecular complexes in vivo. Electron microscopy is helping cell biologists to achieve this goal, thanks to its ability to resolve structural details in the nanometer range. While issues related to specimen preparation, imaging, and image interpretation make this approach to cell architecture difficult, recent improvements in methods, equipment, and software have facilitated the study of both important macromolecular complexes and comparatively large volumes from cellular specimens. Here, we describe recent progress in electron microscopy of cells and the ways in which the relevant methodologies are helping to elucidate cell architecture. PMID:19185480

  3. RIS probed dynamical effects in two-electron barium atom

    SciTech Connect

    Camus, Pierre; Cohen, Samuel

    1995-04-01

    We present for Ba Nsnl planetary states an energy level analysis in order to yield values for the Ba{sup +} Ns core polarizabilities. The parametrized effective dipole and quadrupole values extracted from our data for N=7-10 are compared to calculated ones using a static model. Dipole polarizabilities show very close similarities with static values and at the opposite quadrupole polarizabilities exhibit larger discrepancies. These give evidence of non-adiabatic effects between the two asymmetrically excited electrons which are attributed to the increasing strength of dynamical effects on the Ns electron caused by the motion of the outer nl one.

  4. Probing battery chemistry with liquid cell electron energy loss spectroscopy.

    PubMed

    Unocic, Raymond R; Baggetto, Loïc; Veith, Gabriel M; Aguiar, Jeffery A; Unocic, Kinga A; Sacci, Robert L; Dudney, Nancy J; More, Karren L

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. This is significant as the use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. We discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  5. Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Aguiar, Jeffery A.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. The use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. Furthermore, we discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  6. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-09-15

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  7. Probing battery chemistry with liquid cell electron energy loss spectroscopy.

    PubMed

    Unocic, Raymond R; Baggetto, Loïc; Veith, Gabriel M; Aguiar, Jeffery A; Unocic, Kinga A; Sacci, Robert L; Dudney, Nancy J; More, Karren L

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. This is significant as the use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. We discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies. PMID:26404766

  8. Probing the Natural World, Level III, Student Guide: Winds and Weather. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one of the units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The chapters contain basic information about weather, its measurement and predictions, activities related to the subject, and optional excursions. A section of introductory notes to the student discusses how to use…

  9. Probing the Natural World, Level III, Teacher's Edition: Environmental Science. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit and its activities focuses on environmental pollution and hazards. Optional excursions are suggested for students who wish to study an area in greater depth. An introduction describes the problem…

  10. Probing the Natural World, Level III, Student Guide: Environmental Science. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's edition of one of the Intermediate Science Curriculum Study (ISCS) units for level III students (grade 9). The chapters contain basic information about environmental pollution and hazards, activities related to the subject, and optional excursions. A section on introductory notes to the student discusses how to use the book…

  11. Eu(III)-Sensitized Luminescence Probe for Determination of Tolnaftate in Pharmaceuticals and Biological Fluids.

    PubMed

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2016-01-01

    A highly selective, sensitive, accurate, and reproducible luminescence procedure for determination of antifungal drug tolnaftate was developed. The introduced method was based on the formation of Europa Universalis III (Eu(III))-tolnaftate complex using sodium sulfite as a deoxygenated agent in the presence of acetate buffer (pH = 6) and micellar solution of anionic surfactant sodium dodecyl sulfate. The optimum conditions (effect of pH, buffer, surfactant, Eu(III), and sodium sulfite concentrations) for the luminescence signal were investigated and optimized. The luminescence signals were recorded at λex = 270 nm and λem = 460 nm. The method has a good linear response (0.2-130 μg/mL(-1)) between the luminescence intensity and the concentrations of the drug (r = 0.999), with a LOD 0.07 μg/mL(-1) and LOQ 0.2 μg/mL(-1). The luminescence signals of Eu (III)-tolnaftate-sodium dodecyl sulfate were found to be 200-fold more sensitive without the presence of micelle solution. The interferences of some additives, metals, amino acids, sugars, and other related pharmacological action drugs were examined and no interference was recorded. The proposed method was used for quick and simple determination of tolnaftate in its pharmaceuticals and biological fluids. PMID:26964843

  12. Probing the Natural World, Level III, Student Guide: In Orbit. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on the properties of sunlight, the use of spectrums and spectroscopes, the heat and energy of the sun, the measurement of astronomical distances, and the size of the sun. Activities are student-centered and…

  13. Probing the Natural World, Level III, Teacher's Edition: In Orbit. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on the properties of sunlight, the use of spectrums and spectroscopes, the heat and energy of the sun, the measurement of astronomical distances, and the size of the sun. Optimal…

  14. Probing the Natural World, Level III, Teacher's Edition: Well-Being. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on hazards to the body from drug use. Activities are given that relate to the topic. Optional excursions are suggested for students who wish to study an area in greater depth. An…

  15. A Planar Probe for Ion Flux and Electron Temperature in the Electrode of a GEC Cell

    NASA Astrophysics Data System (ADS)

    Goodyear, A.; Lubeigt, W.; Verdonck, P. B.; Barroy, P. R. J.; Braithwaite, N. St. J.

    2000-10-01

    A radio frequency (rf) self-biased planar probe technique(J P Booth, N St J Braithwaite, A Goodyear, and P Barroy, Rev. Sci. Instrum., in press (July 2000)) for the measurement of positive ion flux and electron energy distribution functions has been implemented into the Gaseous Electronics Conference (GEC) standard reference cell. Results are presented across a wide range of power-pressure parameter space. Insertion of electrostatic probes into plasmas can lead to perturbation of the plasma and this is particularly problematic in the GEC cell where the inter-electrode distance is small. Planar probes are inherently large, requiring a guard ring (at least as large as typical sheath thicknesses) to ensure that the sheath in front of the probe is truly planar. Once this criterion is satisfied, analysis of current-voltage (IV) characteristics obtained in this planar geometry is relatively straight forward. A planar probe has been engineered into the surface of the showerhead electrode of the GEC cell, aimed at minimal perturbation to the GEC standard, in terms of both physical presence and electrical influence. The probe is self-biased by a burst of rf voltage. It is then allowed to return to its original floating condition under the arrival of charged particles from the plasma. An IV characteristic is recorded during this time, giving positive ion flux and the high energy tail (a few eV and above) of the electron energy distribution function.

  16. Scanning electron microscopy to probe working nanowire gas sensors

    NASA Astrophysics Data System (ADS)

    Liu, Yangmingyue

    This study is dedicated to the implementing of Electron-Beam-Induced Current (EBIC) microscopy to study the behavior of metal oxide semiconducting (MOS) nanowire (NW) gas sensor in situ under exposure to different environment. First, we reported the development of a single nanowire gas sensor compatible with an environmental cell. The major component of the device we use in this study is a single SnO2 nanowire attached to an electron transparent SiN membrane (50-100 nm thick), which was used for mounting nanowire working electrodes and surface imaging of NW. First the NW's conductivity is investigated in different temperatures. Higher temperature is proved to cause higher conductivity of NW. We also found that often the Schottky barrier is formed at the nanowire's contacts with Au and Au/Cr electrodes. Then NW's responses to gas and electron beam (from SEM) are analyzed quantitatively by current measurement. Electron-Beam-Induced Current technique was introduced for the first time to characterize the conductivity behavior of the nanowire during the gas sensing process. Resistive contrast was observed in the EBIC image.

  17. Probing plasma turbulence by modulating the electron temperature gradient

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Holland, C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Doyle, E. J.; Hillesheim, J.; Peebles, W. A.; Zeng, L.; White, A. E.; Austin, M. E.; Yan, Z.

    2010-05-15

    The local value of a/L{sub Te}, a turbulence drive term, was modulated with electron cyclotron heating in L-mode discharges on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and the density and electron temperature fluctuations in low, intermediate, and high-k regimes were measured and compared with nonlinear gyrokinetic turbulence simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)]. The local drive term at rhoapprox0.6 was reduced by up to 50%, which produced comparable reductions in electron temperature fluctuations at low-k. At intermediate k, k{sub t}hetaapprox4 cm{sup -1} and k{sub t}hetarho{sub s}approx0.8, a very interesting and unexpected result was observed where density fluctuations increased by up to 10% when the local drive term was decreased by 50%. Initial comparisons of simulations from GYRO with the thermal diffusivity from power balance analysis and measured turbulence response are reported. Simulations for the case with the lowest drive term are challenging as they are near the marginal value of a/L{sub Te} for trapped electron mode activity.

  18. Investigating geomagnetic activity dependent sources of 100s of keV electrons in Earth's inner radiation belt using Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; O'Brien, T. P., III; Fennell, J. F.; Claudepierre, S. G.; Blake, J. B.; Baker, D. N.; Henderson, M. G.; Reeves, G. D.

    2015-12-01

    By providing an unprecedented level of reliability in particle flux observations at low L-shells, NASA's Van Allen Probes mission has yielded a series of discoveries and unanswered questions concerning the inner electron radiation belt. Two such discoveries are: 1) a sharp cutoff in the energy distribution of electrons at ~900 keV, such that fluxes of electrons with energies greater than ~900 keV are below the detectability threshold of the Van Allen Probes' MagEIS instruments and consistent with upper flux limits of multi-MeV electrons calculated using the Van Allen Probes' REPT instruments, and 2) that impulsive injections of up to several hundred keV electrons may act as an activity-dependent source of electrons in the slot and inner radiation belt. In this presentation, we discuss results from phase space density (PSD) analysis of inner zone electrons. Such analysis, which examines PSD as a function of the three adiabatic invariants, effectively removes adiabatic variations in the particle observations allowing one to better identify source and loss processes ongoing in the system. We demonstrate that impulsive injections do indeed act as a source of inner radiation belt electrons and, when combined with losses in the slot region, can result in peaked radial distributions of electron PSD in the inner zone. We briefly discuss the nature of these low-L injections, which penetrate inside the plasmasphere and display strong energy and species dependencies. By examining such injections throughout the Van Allen Probes era, we also i) determine the occurrence rate of injections as a function of electron energy (and first adiabatic invariant), geomagnetic activity level, and L-shell; ii) estimate the contribution of such injections to the inner belt population; and iii) investigate how such injections disrupt coherent banded flux structures in the inner zone known as "zebra stripes".

  19. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    The complexity of molecules found in space varies widely. On one end of the scale of molecular complexity is the hydrogen molecule H2 . Its formation from H atoms is if not understood than at least thoroughly investigated[1]. On the other side of said spectrum the precursors to biopolymers can be found, such as amino acids[2,3], sugars[4], lipids, cofactors[5], etc, and the kerogen-like organic polymer material in carbonaceous meteorites called "black stuff" [6]. These have also received broad attention in the last decades. Sitting in the middle between these two extremes are simple molecules that are observed by radio astronomy throughout the Universe. These are molecules like methane (CH4 ), methanol (CH3 OH), formaldehyde (CH2 O), hydrogen cyanide (HCN), and many many others. So far more than 40 such species have been identified.[7] They are often used in laboratory experiments to create larger complex molecules on the surface of simulated interstellar dust grains.[2,8] The mechanisms of formation of these observed starting materials for prebiotic chemistry is however not always clear. Also the exact mechanisms of formation of larger molecules in photochemical experiments are largely unclear. This is mostly due to the very complex chemistry going on which involves many different radicals and ions. The creation of radicals and ions can be studied in detail in laboratory simulations. They can be created in a setup mimicking interstellar grain chemistry using slow electrons. There is no free electron radiation in space. What can be found though is a lot of radiation of different sorts. There is electromagnetic radiation (UV light, X-Rays, rays, etc.) and there is particulate radiation as well in the form of high energy ions. This radiation can provide energy that drives chemical reactions in the ice mantles of interstellar dust grains. And while the multitude of different kinds of radiation might be a little confusing, they all have one thing in common: Upon

  20. Probing Ultrafast Nuclear Dynamics in Halomethanes by Time-Resolved Electron and Ion Imaging

    NASA Astrophysics Data System (ADS)

    Ziaee, F.; Rudenko, A.; Rolles, D.; Savelyev, E.; Bomme, C.; Boll, R.; Manschwetus, B.; Erk, B.; Trippel, S.; Wiese, J.; Kuepper, J.; Amini, K.; Lee, J.; Brouard, M.; Brausse, F.; Rouzee, A.; Olshin, P.; Mereshchenko, A.; Lahl, J.; Johnsson, P.; Simon, M.; Marchenko, T.; Holland, D.; Underwood, J.

    2016-05-01

    Femtosecond pump-probe experiments provide opportunities to investigate photochemical reaction dynamics and the resulting changes in molecular structure in detail. Here, we present a study of the UV-induced photodissociation of gas-phase halomethane molecules (CH3 I, CH2 IBr, ...) in a pump-probe arrangement using two complementary probe schemes, either using a femtosecond near-infrared laser or the FLASH free-electron laser. We measured electrons and ions produced during the interaction using a double-sided velocity map imaging spectrometer equipped with a CCD camera for electron detection and with the Pixel Imaging Mass Spectrometry (PImMS) camera for ions, which can record the arrival time for up to four ions per pixel. This project is supported by the DOE, Office of Science, BES, Division of Chemical, Geological, and Biological Sciences.

  1. Electron collection theory for a D-region subsonic blunt electrostatic probe

    NASA Technical Reports Server (NTRS)

    Wai-Kwong Lai, T.

    1974-01-01

    Blunt probe theory for subsonic flow in a weakly ionized and collisional gas is reviewed, and an electron collection theory for the relatively unexplored case, Deybye length approximately 1, which occurs in the lower ionosphere (D-region), is developed. It is found that the dimensionless Debye length is no longer an electric field screening parameter, and the space charge field effect can be negelected. For ion collection, Hoult-Sonin theory is recognized as a correct description of the thin, ion density-perturbed layer adjacent the blunt probe surface. The large volume with electron density perturbed by a positively biased probe renders the usual thin boundary layer analysis inapplicable. Theories relating free stream conditions to the electron collection rate for both stationary and moving blunt probes are obtained. A model based on experimental nonlinear electron drift velocity data is proposed. For a subsonically moving probe, it is found that the perturbed region can be divided into four regions with distinct collection mechanisms.

  2. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  3. Geometric and Electronic Structure of a Peroxomanganese(III) Complex Supported by a Scorpionate Ligand

    PubMed Central

    Colmer, Hannah E.; Geiger, Robert A.; Leto, Domenick F.; Wijeratne, Gayan B.; Day, Victor W.; Jackson, Timothy A.

    2014-01-01

    A monomeric MnII complex has been prepared with the facially-coordinating TpPh2 ligand, (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate). The X-ray crystal structure shows three coordinating solvent molecules resulting in a six-coordinate complex with Mn-ligand bond lengths that are consistent with a high-spin MnII ion. Treatment of this MnII complex with excess KO2 at room temperature resulted in the formation of a MnIII-O2 complex that is stable for several days at ambient conditions, allowing for the determination of the X-ray crystal structure of this intermediate. The electronic structure of this peroxomanganese(III) adduct was examined by using electronic absorption, electron paramagnetic resonance (EPR), low-temperature magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies. Density functional theory (DFT), time-dependent (TD)-DFT, and multireference ab initio CASSCF/NEVPT2 calculations were used to assign the electronic transitions and further investigate the electronic structure of the peroxomanganese(III) species. The lowest ligand-field transition in the electronic absorption spectrum of the MnIII-O2 complex exhibits a blue shift in energy compared to other previously characterized peroxomanganese(III) complexes that results from a large axial bond elongation, reducing the metal-ligand covalency and stabilizing the σ-antibonding Mn dz2 MO that is the donor MO for this transition. PMID:25312785

  4. Probing Transient Electron Dynamics Using Ultrafast X Rays

    NASA Astrophysics Data System (ADS)

    Bucksbaum, Philip

    2016-05-01

    Linear x-ray absorption in atoms or molecules creates highly excited multi-electron quantum systems, which relax rapidly by fluorescence or Auger emission. These relaxation rates are usually less than a few femtoseconds in duration, and so they can reveal transient elecronic states in molecules as they undergo photo-induced transformations. I will show recent results from femtosecond x-ray experiments that display this phenomenon. There are efforts underway to push the temporal resolving power of ultrafast x-ray pulses into the attosecond regime, using stronger fields to initiate nonlinear absorption processes such as transient stimulated electronic Raman scattering. I will discuss current progress and future prospects for research in this area. This research is supported through Stanford PULSE Institute, SLAC National Accelerator Lab by the U.S. Department of Energy, Office of Basic Energy Sciences, Atomic, Molecular, and Optical Science Program.

  5. A new Langmuir probe concept for rapid sampling of space plasma electron density

    NASA Astrophysics Data System (ADS)

    Jacobsen, K. S.; Pedersen, A.; Moen, J. I.; Bekkeng, T. A.

    2010-08-01

    In this paper we describe a new Langmuir probe concept that was invented for the in situ investigation of HF radar backscatter irregularities, with the capability to measure absolute electron density at a resolution sufficient to resolve the finest conceivable structure in an ionospheric plasma. The instrument consists of two or more fixed-bias cylindrical Langmuir probes whose radius is small compared to the Debye length. With this configuration, it is possible to acquire absolute electron density measurements independent of electron temperature and rocket/satellite potential. The system was flown on the ICI-2 sounding rocket to investigate the plasma irregularities which cause HF backscatter. It had a sampling rate of more than 5 kHz and successfully measured structures down to the scale of one electron gyro radius. The system can easily be adapted for any ionospheric rocket or satellite, and provides high-quality measurements of electron density at any desired resolution.

  6. Physics. Creating and probing electron whispering-gallery modes in graphene.

    PubMed

    Zhao, Yue; Wyrick, Jonathan; Natterer, Fabian D; Rodriguez-Nieva, Joaquin F; Lewandowski, Cyprian; Watanabe, Kenji; Taniguchi, Takashi; Levitov, Leonid S; Zhitenev, Nikolai B; Stroscio, Joseph A

    2015-05-01

    The design of high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Complementing previous approaches to confine electronic waves by carefully positioned adatoms at clean metallic surfaces, we demonstrate an approach inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene's gate-tunable light-like carriers, we create whispering-gallery mode (WGM) resonators defined by circular pn junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range. The WGM-type confinement and associated resonances are a new addition to the quantum electron-optics toolbox, paving the way to develop electronic lenses and resonators.

  7. Probing Spin Accumulation induced Magnetocapacitance in a Single Electron Transistor

    PubMed Central

    Lee, Teik-Hui; Chen, Chii-Dong

    2015-01-01

    The interplay between spin and charge in solids is currently among the most discussed topics in condensed matter physics. Such interplay gives rise to magneto-electric coupling, which in the case of solids was named magneto-electric effect, as predicted by Curie on the basis of symmetry considerations. This effect enables the manipulation of magnetization using electrical field or, conversely, the manipulation of electrical polarization by magnetic field. The latter is known as the magnetocapacitance effect. Here, we show that non-equilibrium spin accumulation can induce tunnel magnetocapacitance through the formation of a tiny charge dipole. This dipole can effectively give rise to an additional serial capacitance, which represents an extra charging energy that the tunneling electrons would encounter. In the sequential tunneling regime, this extra energy can be understood as the energy required for a single spin to flip. A ferromagnetic single-electron-transistor with tunable magnetic configuration is utilized to demonstrate the proposed mechanism. It is found that the extra threshold energy is experienced only by electrons entering the islands, bringing about asymmetry in the measured Coulomb diamond. This asymmetry is an unambiguous evidence of spin accumulation induced tunnel magnetocapacitance, and the measured magnetocapacitance value is as high as 40%. PMID:26348794

  8. Electron Exciter Speeds Associated with Interplanetary Type III Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; MacDowall, R. J.

    2015-10-01

    This article provides a comprehensive quantitative investigation of the kinematics of the electron exciters associated with interplanetary type III solar radio bursts. Detailed multispacecraft analyses of the radio and plasma wave data from the widely separated Wind and STEREO spacecraft are provided for five interplanetary type III bursts that illustrate different aspects of the problems involved in establishing the electron exciter speeds. The exciter kinematics are determined from the observed frequency drift and in-situ radiation characteristics for each type III burst. The analysis assumes propagation of the electron exciters along a Parker spiral, with origin at the associated solar active region, and curvature determined by the measured solar wind speed. The analyses take fully into account the appropriate light-propagation-time corrections from the radio source to the observing spacecraft as the exciters propagate along the Parker spiral path. For the five in-situ type III bursts analyzed in detail here, we found that their initial exciter speeds, near the Sun, ranged from 0.2c to 0.38c, where c is the speed of light. This is significantly higher than the exciter speeds derived from other recent analyses. The results presented here further suggest that the type III electron exciters normally decelerate as they propagate through the interplanetary medium. We argue based on the observations by the widely separated spacecraft that the initial part of the type III radiation usually occurs at the fundamental of the plasma frequency. Finally, we compare the results for the exciter speeds to all previous determinations and provide quantitative arguments to explain the differences.

  9. Detection of DNA damage by thiazole orange fluorescence probe assisted with exonuclease III.

    PubMed

    Lu, Qian; Zhou, Zhenxian; Mei, Yuan; Wei, Wei; Liu, Songqin

    2013-11-15

    This work reports a fluorescent dye insertion approach for detection of DNA damage. The capture DNA with overhanging 3'-terminus was immobilized on silicon surface to hybridize with target DNA. The intercalation of cyanine dye of thiazole orange (TO) to the double helix structure of DNA (dsDNA) allowed intense enhancement of fluorescence signal. The DNA damage with chemicals led to poor intercalation of TO into double helix structure, resulting in the decrease of the fluorescence signal. This signal decrease could be further enhanced by exonuclease III (Exo III). With this approach, the target DNA could be detected down to 47 fM. Seven chemicals were chosen as models to monitor DNA damage. The results suggested that the present strategy could be developed to detect DNA damage, to classify the damaging mechanism with chemicals and to estimate the toxic effect of chemicals.

  10. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    SciTech Connect

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice; Marshall, Matthew J.; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David; Clarke, Thomas A.

    2013-04-16

    The mineral respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes brought together inside a transmembrane porin to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system that contains methyl viologen as an internalised electron carrier has been used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally-located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, direct electron transfer from the interior through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The observed rates of conduction through the protein complex were 2 to 3 orders of magnitude higher than that observed in whole cells, demonstrating that direct electron exchange between MtrCAB and Fe(III) oxides is efficient enough to support in-vivo, anaerobic, solid phase iron respiration.

  11. The influence of the secondary electrons induced by energetic electrons impacting the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Holmberg, M. K. G.; Wahlund, J.-E.; Lewis, G. R.; Grimald, S. Rochel; Thomsen, M. F.; Gurnett, D. A.; Coates, A. J.; Crary, F. J.; Dandouras, I.

    2013-11-01

    The Cassini Langmuir Probe (LP) onboard the Radio and Plasma Wave Science experiment has provided much information about the Saturnian cold plasma environment since the Saturn Orbit Insertion in 2004. A recent analysis revealed that the LP is also sensitive to the energetic electrons (250-450 eV) for negative potentials. These electrons impact the surface of the probe and generate a current of secondary electrons, inducing an energetic contribution to the DC level of the current-voltage (I-V) curve measured by the LP. In this paper, we further investigated this influence of the energetic electrons and (1) showed how the secondary electrons impact not only the DC level but also the slope of the (I-V) curve with unexpected positive values of the slope, (2) explained how the slope of the (I-V) curve can be used to identify where the influence of the energetic electrons is strong, (3) showed that this influence may be interpreted in terms of the critical and anticritical temperatures concept detailed by Lai and Tautz (2008), thus providing the first observational evidence for the existence of the anticritical temperature, (4) derived estimations of the maximum secondary yield value for the LP surface without using laboratory measurements, and (5) showed how to model the energetic contributions to the DC level and slope of the (I-V) curve via several methods (empirically and theoretically). This work will allow, for the whole Cassini mission, to clean the measurements influenced by such electrons. Furthermore, the understanding of this influence may be used for other missions using Langmuir probes, such as the future missions Jupiter Icy Moons Explorer at Jupiter, BepiColombo at Mercury, Rosetta at the comet Churyumov-Gerasimenko, and even the probes onboard spacecrafts in the Earth magnetosphere.

  12. Time-resolved probes based on guanine/thymine-rich DNA-sensitized luminescence of terbium(III).

    PubMed

    Zhang, Min; Le, Huynh-Nhu; Jiang, Xiao-Qin; Yin, Bin-Cheng; Ye, Bang-Ce

    2013-12-01

    In this study, we have developed a novel strategy to highly sensitize the luminescence of terbium(III) (Tb(3+)) using a designed guanine/thymine-rich DNA (5'-[G3T]5-3') as an antenna ligand, in which [G3T]5 improved the luminescence of Tb(3+) by 3 orders of magnitude due to energy transfer from nucleic acids to Tb(3+) (i.e., antenna effect). Furthermore, label-free probes for the luminescent detection of biothiols, Ag(+), and sequence-specific DNA in an inexpensive, simple, and mix-and-read format are presented based on the [G3T]5-sensitized luminescence of Tb(3+) (GTSLT). The long luminescence lifetime of the probes readily enables time-resolved luminescence (TRL) experiments. Hg(2+) can efficiently quench the luminescence of Tb(3+) sensitized by [G3T]5 (Tb(3+)/[G3T]5); however, biothiols are readily applicable to selectively grab Hg(2+) for restoration of the luminescence of Tb(3+)/[G3T]5 initially quenched by Hg(2+), which can be used for "turn on" detection of biothiols. With the use of cytosine (C)-rich oligonucleotide c[G3T]5 complementary to [G3T]5, the formed [G3T]5/c[G3T]5 duplex cannot sensitize the luminescence of Tb(3+). However, in the presence of Ag(+), Ag(+) can combine the C base of c[G3T]5 to form C-Ag(+)-C complexes, leading to the split of the [G3T]5/c[G3T]5 duplex and then release of [G3T]5. The released [G3T]5 acts as an antenna ligand for sensitizing the luminescence of Tb(3+). Therefore, the Tb(3+)/[G3T]5/c[G3T]5 probe can be applied to detect Ag(+) in a "turn on" format. Moreover, recognition of target DNA via hybridization to a molecular beacon (MB)-like probe (MB-[G3T]5) can unfold the MB-[G3T]5 to release the [G3T]5 for sensitizing the luminescence of Tb(3+), producing a detectable signal directly proportional to the amount of target DNA of interest. This allows the development of a fascinating label-free MB probe for DNA sensing based on the luminescence of Tb(3+). Results and methods reported here suggest that a guanine/thymine-rich DNA

  13. Time-resolved probes based on guanine/thymine-rich DNA-sensitized luminescence of terbium(III).

    PubMed

    Zhang, Min; Le, Huynh-Nhu; Jiang, Xiao-Qin; Yin, Bin-Cheng; Ye, Bang-Ce

    2013-12-01

    In this study, we have developed a novel strategy to highly sensitize the luminescence of terbium(III) (Tb(3+)) using a designed guanine/thymine-rich DNA (5'-[G3T]5-3') as an antenna ligand, in which [G3T]5 improved the luminescence of Tb(3+) by 3 orders of magnitude due to energy transfer from nucleic acids to Tb(3+) (i.e., antenna effect). Furthermore, label-free probes for the luminescent detection of biothiols, Ag(+), and sequence-specific DNA in an inexpensive, simple, and mix-and-read format are presented based on the [G3T]5-sensitized luminescence of Tb(3+) (GTSLT). The long luminescence lifetime of the probes readily enables time-resolved luminescence (TRL) experiments. Hg(2+) can efficiently quench the luminescence of Tb(3+) sensitized by [G3T]5 (Tb(3+)/[G3T]5); however, biothiols are readily applicable to selectively grab Hg(2+) for restoration of the luminescence of Tb(3+)/[G3T]5 initially quenched by Hg(2+), which can be used for "turn on" detection of biothiols. With the use of cytosine (C)-rich oligonucleotide c[G3T]5 complementary to [G3T]5, the formed [G3T]5/c[G3T]5 duplex cannot sensitize the luminescence of Tb(3+). However, in the presence of Ag(+), Ag(+) can combine the C base of c[G3T]5 to form C-Ag(+)-C complexes, leading to the split of the [G3T]5/c[G3T]5 duplex and then release of [G3T]5. The released [G3T]5 acts as an antenna ligand for sensitizing the luminescence of Tb(3+). Therefore, the Tb(3+)/[G3T]5/c[G3T]5 probe can be applied to detect Ag(+) in a "turn on" format. Moreover, recognition of target DNA via hybridization to a molecular beacon (MB)-like probe (MB-[G3T]5) can unfold the MB-[G3T]5 to release the [G3T]5 for sensitizing the luminescence of Tb(3+), producing a detectable signal directly proportional to the amount of target DNA of interest. This allows the development of a fascinating label-free MB probe for DNA sensing based on the luminescence of Tb(3+). Results and methods reported here suggest that a guanine/thymine-rich DNA

  14. Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate.

    PubMed

    Kieft, T L; Fredrickson, J K; Onstott, T C; Gorby, Y A; Kostandarithes, H M; Bailey, T J; Kennedy, D W; Li, S W; Plymale, A E; Spadoni, C M; Gray, M S

    1999-03-01

    A thermophilic bacterium that can use O2, NO3-, Fe(III), and S0 as terminal electron acceptors for growth was isolated from groundwater sampled at a 3.2-km depth in a South African gold mine. This organism, designated SA-01, clustered most closely with members of the genus Thermus, as determined by 16S rRNA gene (rDNA) sequence analysis. The 16S rDNA sequence of SA-01 was >98% similar to that of Thermus strain NMX2 A.1, which was previously isolated by other investigators from a thermal spring in New Mexico. Strain NMX2 A.1 was also able to reduce Fe(III) and other electron acceptors. Neither SA-01 nor NMX2 A.1 grew fermentatively, i.e., addition of an external electron acceptor was required for anaerobic growth. Thermus strain SA-01 reduced soluble Fe(III) complexed with citrate or nitrilotriacetic acid (NTA); however, it could reduce only relatively small quantities (0.5 mM) of hydrous ferric oxide except when the humic acid analog 2,6-anthraquinone disulfonate was added as an electron shuttle, in which case 10 mM Fe(III) was reduced. Fe(III)-NTA was reduced quantitatively to Fe(II); reduction of Fe(III)-NTA was coupled to the oxidation of lactate and supported growth through three consecutive transfers. Suspensions of Thermus strain SA-01 cells also reduced Mn(IV), Co(III)-EDTA, Cr(VI), and U(VI). Mn(IV)-oxide was reduced in the presence of either lactate or H2. Both strains were also able to mineralize NTA to CO2 and to couple its oxidation to Fe(III) reduction and growth. The optimum temperature for growth and Fe(III) reduction by Thermus strains SA-01 and NMX2 A.1 is approximately 65 degrees C; their optimum pH is 6.5 to 7.0. This is the first report of a Thermus sp. being able to couple the oxidation of organic compounds to the reduction of Fe, Mn, or S.

  15. Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a Thermus Isolate

    PubMed Central

    Kieft, T. L.; Fredrickson, J. K.; Onstott, T. C.; Gorby, Y. A.; Kostandarithes, H. M.; Bailey, T. J.; Kennedy, D. W.; Li, S. W.; Plymale, A. E.; Spadoni, C. M.; Gray, M. S.

    1999-01-01

    A thermophilic bacterium that can use O2, NO3−, Fe(III), and S0 as terminal electron acceptors for growth was isolated from groundwater sampled at a 3.2-km depth in a South African gold mine. This organism, designated SA-01, clustered most closely with members of the genus Thermus, as determined by 16S rRNA gene (rDNA) sequence analysis. The 16S rDNA sequence of SA-01 was >98% similar to that of Thermus strain NMX2 A.1, which was previously isolated by other investigators from a thermal spring in New Mexico. Strain NMX2 A.1 was also able to reduce Fe(III) and other electron acceptors. Neither SA-01 nor NMX2 A.1 grew fermentatively, i.e., addition of an external electron acceptor was required for anaerobic growth. Thermus strain SA-01 reduced soluble Fe(III) complexed with citrate or nitrilotriacetic acid (NTA); however, it could reduce only relatively small quantities (0.5 mM) of hydrous ferric oxide except when the humic acid analog 2,6-anthraquinone disulfonate was added as an electron shuttle, in which case 10 mM Fe(III) was reduced. Fe(III)-NTA was reduced quantitatively to Fe(II); reduction of Fe(III)-NTA was coupled to the oxidation of lactate and supported growth through three consecutive transfers. Suspensions of Thermus strain SA-01 cells also reduced Mn(IV), Co(III)-EDTA, Cr(VI), and U(VI). Mn(IV)-oxide was reduced in the presence of either lactate or H2. Both strains were also able to mineralize NTA to CO2 and to couple its oxidation to Fe(III) reduction and growth. The optimum temperature for growth and Fe(III) reduction by Thermus strains SA-01 and NMX2 A.1 is approximately 65°C; their optimum pH is 6.5 to 7.0. This is the first report of a Thermus sp. being able to couple the oxidation of organic compounds to the reduction of Fe, Mn, or S. PMID:10049886

  16. Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a Thermus Isolate

    SciTech Connect

    Kieft, T. L.; Fredrickson, J. K.; Onstott, T. C.; Gorby, Y. A.; Kostandarithes, H. M.; Bailey, T. J.; Kennedy, D. W.; Li, S. W.; Plymale, A. E.; Spadoni, C. M.; Gray, M. S.

    1995-10-25

    A thermophilic bacterium that could use O{sub 2}, NO{sub 3}{sup -}, Fe(III), or S{sup o} as terminal electron acceptors for growth was isolated from groundwater sampled at 3.2 km depth in a South African gold mine. This organism, designated SA-01, clustered most closely with members of the genus Thermus, as determined by 16S rDNA gene sequence analysis. The 16S rDNA sequence of SA-01 was >98% similar to that of Thermus strain NMX2 A.1, which was previously isolated by other investigators from a thermal spring in New Mexico. Strain NMX2 A.1 was also able to reduce Fe(III) and other electron acceptors, whereas Thermus aquaticus (ATCC 25104) and Thermus filiformis (ATCC 43280) did not reduce NO{sub 3}{sup -} or Fe(III). Neither SA-01 nor NMX2 A.1 grew fermentatively, i.e., addition of an external electron acceptor was required for anaerobic growth. Thermus SA-01 reduced soluble Fe(III) complexed with citrate or nitrilotriacetic acid (NTA); however, it could only reduce relatively small quantities (0.5 mM) of hydrous ferric oxide (HFO) except when the humic acid analog 2,6-anthraquinone disulfonate (AQDS) was added as an electron shuttle, in which case 10 mM Fe(III) was reduced. Fe(III)-NTA was reduced quantitatively to Fe(II), was coupled to the oxidation of lactate, and could support growth through three consecutive transfers. Suspensions of Thermus SA-01 cells also reduced Mn(IV), Co(III)-EDTA, Cr(VI), and AQDS. Mn(IV)-oxide was reduced in the presence of either lactate or H{sub 2}. Both strains were also able to mineralize NTA to CO{sub 2} and to couple its oxidation to Fe(III) reduction and growth. The optimum temperature for growth and Fe(III) reduction by Thermus SA-01 and NMX2 A.1 is approximately 65 C; optimum pH is 6.5 to 7.0. This is the first report of a Thermus sp. being able to couple the oxidation of organic compounds to the reduction of Fe, Mn or S.

  17. Josephson junction oscillators as probes of electronic nanostructures

    NASA Astrophysics Data System (ADS)

    Adourian, A. S.; Yang, Scott; Westervelt, R. M.; Campman, K. L.; Gossard, A. C.

    1998-11-01

    We have fabricated high-quality planar Nb/AlOx/Nb Josephson junctions on-chip adjacent to quantum dots in a near surface two-dimensional electron gas in a GaAs/AlGaAs heterostructure. When used as a voltage-tunable oscillator coupled capacitively to a quantum dot, the Josephson junction can produce a localized time-dependent potential of 200 μV across the dot at frequencies in excess of 300 GHz. The fabrication process involves five separate patterning and processing steps to define the multilayer integrated device.

  18. Attosecond electron emission probes of ultrafast nanolocalized fields

    NASA Astrophysics Data System (ADS)

    Kling, Matthias

    2011-05-01

    Ongoing experimental and theoretical work on the temporal and spatial characterization of nanolocalized plasmonic fields will be presented. Because of their broad spectral bandwidth, plasmons in metal nanoparticles undergo ultrafast dynamics with timescales as short as a few hundred attoseconds. So far, the spatiotemporal dynamics of optical fields localized on the nanoscale has been hidden from direct access in the real space and time domain. Our ultimate goal is to characterize the nanoplasmonic fields not only on a nanometer spatial scale but also on ~100 attosecond temporal scale. Information about the nanoplasmonic fields, which are excited by few-cycle laser pulses with stable electric field waveform, can be obtained by the measurement of photoemitted electrons. We will present recent results on the large acceleration of recollision electrons in nanolocalized fields near dielectric nanoparticles following the excitation by 5-fs near-infrared laser pulses with controlled electric field waveforms. This work has been carried out in collaboration with Th. Fennel (University of Rostock), E. Ruehl (FU Berlin), and M.I. Stockman (GSU Atlanta). We acknowledge support by the DFG via Emmy-Noether program and SPP1391.

  19. Narrowband Gyrosynchrotron Bursts: Probing Electron Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Nita, Gelu M.; Kontar, Eduard P.; Gary, Dale E.

    2016-07-01

    Recently, in a few case studies we demonstrated that gyrosynchrotron microwave emission can be detected directly from the acceleration region when the trapped electron component is insignificant. For the statistical study reported here, we have identified events with steep (narrowband) microwave spectra that do not show a significant trapped component and, at the same time, show evidence of source uniformity, which simplifies the data analysis greatly. Initially, we identified a subset of more than 20 radio bursts with such narrow spectra, having low- and high-frequency spectral indices larger than three in absolute value. A steep low-frequency spectrum implies that the emission is nonthermal (for optically thick thermal emission, the spectral index cannot be steeper than two), and the source is reasonably dense and uniform. A steep high-frequency spectrum implies that no significant electron trapping occurs, otherwise a progressive spectral flattening would be observed. Roughly half of these radio bursts have RHESSI data, which allow for detailed, joint diagnostics of the source parameters and evolution. Based on an analysis of radio-to-X-ray spatial relationships, timing, and spectral fits, we conclude that the microwave emission in these narrowband bursts originates directly from the acceleration regions, which have a relatively strong magnetic field, high density, and low temperature. In contrast, the thermal X-ray emission comes from a distinct loop with a smaller magnetic field, lower density, but higher temperature. Therefore, these flares likely occurred due to interaction between two (or more) magnetic loops.

  20. A simple and sensitive resonance Rayleigh scattering method for determination of As(III) using aptamer-modified nanogold as a probe.

    PubMed

    Tang, Meiling; Wen, Guiqing; Liang, Aihui; Jiang, Zhiliang

    2014-09-01

    A simple and selective aptamer (ssDNA)-modified nanogold probe (AussDNA) was prepared for the determination of trace As(III) in HEPES buffer solution (pH 8.2) containing 0.05 mol/L NaCl. The method coupled the aptamer reaction of AussDNA-As(III) and the resonance Rayleigh scattering (RRS) of nanogold aggregations at 278 nm. When the As(III) concentration increased, the RRS intensity at 278 nm increased to form more nanogold aggregation and a stable As(III)-ssDNA complex. Under selected conditions, the increased RRS intensity (ΔI) was linear to the concentration of As(III) in the range 3.8-230.4 ng/mL, with a detection limit of 1.9 ng/mL. This RRS method was applied to detect As(III) in water samples, with simplicity, sensitivity and selectivity.

  1. Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Baker, D. N.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Larsen, B. A.; Skoug, R. M.; Funsten, H. O.; Friedel, R. H. W.; Reeves, G. D.; Spence, H. E.; Mitchell, D. G.; Lanzerotti, L. J.

    2016-04-01

    Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lower energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. The results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. The ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.

  2. A Miniature Electron Probe for In Situ Elemental Microanalysis

    NASA Astrophysics Data System (ADS)

    Lim, Lucy F.; Southard, Adrian E.; Getty, Stephanie; Hess, Larry A.; Hagopian, John G.; Kotecki, Carl A.

    2016-10-01

    The Mini-EPMA will provide advanced, fine-scale in situ determination of the elemental composition of planetary, asteroidal, and cometary material. Composition provides key evidence about the processes by which rocks, soils, and ices were formed and altered (for example, accretion, differentiation, and hydrothermal alteration) thus recording past stages in solar system evolution. The high spatial resolution achievable with a focused electron beam will permit sub-millimeter scale compositional mapping in a flight instrument. Our goal is to produce spot sizes under 100 microns using microscale field emitters in an array, with focusing achieved by a compact electrostatic lens stack. The instrument prototype discussed here would be a valuable payload element for a future landed lunar, asteroid or comet mission.

  3. Electron transfer studies of redox probes in bovine milk.

    PubMed

    Shrikrishnan, S; Lakshminarayanan, V

    2012-03-15

    In this work, we show that milk can act as an electrolytic medium to study electrochemical processes in the absence of any supporting electrolyte. The electron transfer properties of three different redox systems in bovine homogenized whole milk, skimmed milk, and reconstituted milk powder have been studied by cyclic voltammetry and impedance spectroscopy using a three-electrode system with a gold disk working electrode, a platinum sheet counter electrode, and a standard calomel reference electrode. It has been shown that the milk incredibly sustains the redox reactions in the absence of any supporting electrolyte and the electrochemical responses are comparable to those obtained when the same reactions were carried out in standard solvent preparations containing supporting electrolytes. The study clearly demonstrates the potential of developing new innovative techniques based on the intricate concepts of electrochemistry to study various aspects of milk that may help in the development of analytical sensors for the diary industry.

  4. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Sundqvist, Chantal

    2016-07-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  5. Fe(III)-resorcylate as a spectrophotometric probe for phospholipid-cation interactions.

    PubMed

    Dippe, Martin; Dressler, Lars; Ulbrich-Hofmann, Renate

    2014-01-15

    A simple spectrophotometric microplate assay that allows quantification of the interaction between phospholipids and metal ions or other small cationic compounds has been developed. The assay is based on the competition of the phospholipids for the Fe(3+) ion in the purple-colored Fe(III)-γ-resorcylate complex and for other cations. To compare the binding affinities of several cation-phospholipid interactions, K0.5 values were derived from binding curves constructed by determination of the absorbance of the Fe(III)-γ-resorcylate at 490 nm as a function of the cation concentration. The assay was used to analyze the binding of lanthanide ions, calcium ions, and amines (hydrochlorides of ethanolamine, spermidine, and hexyltrimethylammonium chloride) to small unilamellar vesicles (SUVs) and mixed micelles containing anionic lipids such as phosphatidic acid and phosphatidyl-p-nitrophenol. The method was evaluated by fluorescence measurements with Eu(3+) ions as tracer. Lanthanide ions such as La(3+) and Ce(3+) ions showed K0.5 values smaller by one to two orders of magnitude compared with Ca(2+) ions. In the presence of increasing amounts of detergents such as Triton X-100, the method also reflected transitions from SUVs to micelles. The binding capacity for metal ions was higher for phospholipid-containing micelles than for the corresponding SUVs.

  6. Probing the Earth's magnetosphere with an electron gun

    NASA Astrophysics Data System (ADS)

    Delzanno, Gian Luca; Camporeale, Enrico; Hogan, Erik; Moulton, J. David; Borovsky, Joseph; MacDonald, Elizabeth; Thomsen, Michelle

    2013-10-01

    The ability to unambiguously connect different parts of magnetosphere and ionosphere through magnetic field line tracing is critical to the understanding of the coupling between these two systems. A possible way to achieve this goal could use a magnetospheric spacecraft to emit an energetic electron beam along the local magnetic field and detect the emission optically at the magnetic foot-point in the ionosphere. In this idea it is critical to keep the spacecraft charging under control by emitting a contactor plasma before firing the beam. We present an overview of our effort to tackle this complex problem. We will focus on: (1) the further development of the Particle-In-Cell (PIC) code CPIC used for this study. CPIC couples the standard PIC algorithm with the generation and adaptation of the computational grid; (2) the widely-used static modeling of the contactor plasma and its inadequacy in some parameter regimes; (3) the PIC modeling of the contactor plasma injected across a static magnetic field and the possible development of instabilities at the edges of the contactor cloud, complemented by a simplified linear stability analysis to highlight the physics of these instabilities.

  7. Diagnosis of early human myocardial ischemic damage with electron probe microanalysis

    SciTech Connect

    Singh, S.; Abraham, J.L.; Raasch, F.; Wolf, P.; Bloor, C.M.

    1983-03-01

    We determined the Na/K x-ray intensity ratio in frozen sections of myocardial tissues obtained at autopsy from patients who died from various causes, using electron probe analysis. We have been able to distinguish between the ischemically injured and normal cells. The method is simple, fast, and dependable even when the duration of ischemia is only 30 minutes.

  8. The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens.

    PubMed

    Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels

    2012-06-01

    Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as a function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as a function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens.

  9. Bioavailability of Fe(III) in Loess Sediments: An Important Source of Electron Acceptors

    SciTech Connect

    Bishop, Michael E.; Jaisi, Deb P.; Dong, Hailiang; Kukkadapu, Ravi K.; Ji, Junfeng

    2010-08-01

    A quantitative study was conducted to understand if Fe (III) in loess sediments is available for microbial respiration by using a common metal reducing bacterium, Shewanella putrefaciens, CN32. The loess samples were collected from three different sites: St. Louis (Peoria), Missouri, USA; Huanxia (HX) and Yanchang (YCH), Shanxi Province of China. Wet chemical analyses indicated that the total Fe concentration for the three samples was 1.69%, 2.76%, and 3.29%, respectively, of which 0.48%, 0.67%, and 1.27% was Fe(III). All unreduced loess sediments contained iron oxides and phyllosilicates (smectite, illite, chlorite, vermiculite), in addition to common minerals such as quartz, feldspar, plagioclase, calcite, and dolomite. Bioreduction experiments were performed at a loess concentration of 20 mg/mL using lactate as the sole electron donor, Fe(III) in loess as the sole electron acceptor in the presence and absence of anthraquinone-2, 6-disulfonate (AQDS) as an electron shuttle. Experiments were performed in non-growth (bicarbonate buffer) and growth (M1) media with a cell concentration of ~2.8 x 107 and 2.1 x 107 cells/mL, respectively. The unreduced and bioreduced solids were analyzed by X-ray diffraction (XRD), Mössbauer spectroscopy, diffuse reflection spectroscopy (DRS), and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods. Despite many similarities among the three loess samples, the extent and rate of Fe (III) reduction varied significantly. For example, in presence of AQDS the extent of reduction in the non-growth experiment was 25% in HX, 34% in Peoria, and 38% in YCH. The extent of reduction in the growth experiment was 72% in HX, 94% in Peoria, and 56% in YCH. The extent of bioreduction was lower in absence of AQDS. Overall, AQDS and the M1 growth medium significantly enhanced the rate and extent of bioreduction. Fe(III) in iron oxides and Fe(III)-containing phyllosilicates was bioreduced. Biogenic illite, siderite, and

  10. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  11. Electronic Structure of Germanium Nanocrystal Films Probed with Synchrotron Radiation

    SciTech Connect

    Bostedt, C

    2002-05-01

    The fundamental structure--property relationship of semiconductor quantum dots has been investigated. For deposited germanium nanocrystals strong quantum confinement effects have been determined with synchrotron radiation based x-ray absorption and photoemission techniques. The nanocrystals are condensed out of the gas phase with a narrow size distribution and subsequently deposited in situ onto various substrates. The particles are crystalline in the cubic phase with a structurally disordered surface shell and the resulting film morphology depends strongly on the substrate material and condition. The disordered surface region has an impact on the overall electronic structure of the particles. In a size-dependent study, the conduction and valence band edge of germanium nanocrystals have been measured for the first time and compared to the bulk crystal. The band edges move to higher energies as the particle size is decreased, consistent with quantum confinement theory. To obtain a more accurate analysis of confinement effects in the empty states, a novel analysis method utilizing an effective particle size for the x-ray absorption experiment, which allows a deconvolution of absorption edge broadening effects, has been introduced. Comparison of the present study to earlier studies on silicon reveals that germanium exhibits stronger quantum confinement effects than silicon. Below a critical particle size of 2.3 {+-} 0.7 nm, the band gap of germanium becomes larger than that of silicon--even if it is the opposite for bulk materials. This result agrees phenomenologically with effective mass and tight binding theories but contradicts the findings of recent pseudopotential calculations. The discrepancy between theory and experiments is attributed to the differences in the theoretical models and experimental systems. The experimentally observed structural disorder of the particle surface has to be included in the theoretical models.

  12. Electron electric dipole moment as a sensitive probe of PeV scale physics

    NASA Astrophysics Data System (ADS)

    Ibrahim, Tarek; Itani, Ahmad; Nath, Pran

    2014-09-01

    We give a quantitative analysis of the electric dipole moments as a probe of high scale physics. We focus on the electric dipole moment of the electron since the limit on it is the most stringent. Further, theoretical computations of it are free of QCD uncertainties. The analysis presented here first explores the probe of high scales via electron electric dipole moment (EDM) within minimal supersymmetric standard model where the contributions to the EDM arise from the chargino and the neutralino exchanges in loops. Here it is shown that the electron EDM can probe mass scales from tens of TeV into the PeV range. The analysis is then extended to include a vectorlike generation which can mix with the three ordinary generations. Here new CP phases arise and it is shown that the electron EDM now has not only a supersymmetric (SUSY) contribution from the exchange of charginos and neutralinos but also a nonsupersymmetric contribution from the exchange of W and Z bosons. It is further shown that the interference of the supersymmetric and the nonsupersymmetric contribution leads to the remarkable phenomenon where the electron EDM as a function of the slepton mass first falls and become vanishingly small and then rises again as the slepton mass increases. This phenomenon arises as a consequence of cancellation between the SUSY and the non-SUSY contribution at low scales while at high scales the SUSY contribution dies out and the EDM is controlled by the non-SUSY contribution alone. The high mass scales that can be probed by the EDM are far in excess of what accelerators will be able to probe. The sensitivity of the EDM to CP phases both in the SUSY and the non-SUSY sectors are also discussed.

  13. A Fresh Twist on The Electron Microscope: Probing Broken Symmetries at a New Level

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan Carlos

    The introduction of aberration-correction in scanning transmission electron microscopy (STEM) has allowed the realization of Richard Feynman's long sought dream, atom-by-atom structural and elemental identification of materials by simply looking ``at the thing.'' Until now, the goal of aberration-correction in STEM has been to produce the smallest possible electron probes, which essentially corresponds to a near constant phase across the probe. Phases increase the size of electron probes and result in images and spectra with a lower spatial resolution. In this talk, calculations will be presented showing that aberrations in lenses are intrinsic generators of angular momentum, and that phases introduced in atomic-size electron probes can actually be beneficial when studying the symmetry of materials. In particular, examples of mapping magnetic ordering of materials with atomic size electron probes will be shown. Magnetic dichroism is one of the new frontiers where aberration-correction STEM can have a significant impact, and reveal information that is physically out of reach in X-ray and neutron synchrotrons. Current and future limitations in the experiments and requirements to reveal the magnetic moment (orbital and spin), charge ordering, crystal field splitting, spin-orbit-coupling, optical dichroism, and other physical phenomena associated with broken symmetries will be discussed. This research was supported by the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Collaborators: J. Rusz, J. Spiegelberg, M.A. McGuire, C.T. Symons, R.R. Vatsavai, C. Cantoni and A.R. Lupini.

  14. Probing the Quark Sea and Gluons: the Electron-Ion Collider Projects

    SciTech Connect

    Rolf Ent

    2012-04-01

    EIC is the generic name for the nuclear science-driven Electron-Ion Collider presently considered in the US. Such an EIC would be the world’s first polarized electron-proton collider, and the world’s first e-A collider. Very little remains known about the dynamical basis of the structure of hadrons and nuclei in terms of the fundamental quarks and gluons of Quantum Chromodynamics (QCD). A large community effort to sharpen a compelling nuclear science case for an EIC occurred during a ten-week program taking place at the Institute for Nuclear Theory (INT) in Seattle from September 13 to November 19, 2010. The critical capabilities of a stage-I EIC are a range in center-of-mass energies from 20 to 70 GeV and variable, full polarization of electrons and light ions (the latter both longitudinal and transverse), ion species up to A=200 or so, multiple interaction regions, and a high luminosity of about 10{sup 34} electron-nucleons per cm{sup 2} and per second. The physics program of such a stage-I EIC encompass inclusive measurements (ep/A{yields}e'+X), which require detection of the scattered lepon and/or the full scattered hadronic debris with high precision, semi-inclusive processes (ep/A{yields}e'+h+X), which require detection in coincidence with the scattered lepton of at least one (current or target region) hadron; and exclusive processes (ep/A{yields}e'+N'/A'+{gamma}/m), which require detection of all particles in the reaction. The main science themes of an EIC are to i) map the spin and spatial structure of quarks and gluons in nucleons, ii) discover the collective effects of gluons in atomic nuclei, and (iii) understand the emergence of hadronic matter from color charge. In addition, there are opportunities at an EIC for fundamental symmetry and nucleon structure measurements using the electroweak probe. To truly make headway to image the sea quarks and gluons in nucleons and nuclei, the EIC needs high luminosity over a range of energies as more exclusive

  15. Energetic electrons, type III radio bursts, and impulsive solar flare X-rays

    SciTech Connect

    Kane, S.R.

    1981-08-01

    Observations of impulsive hard X-ray and type III radio bursts made during the maximum of the last solar activity cycle have been analyzed for a statistical study of the relationship between these two solar flare phenomena. Spectral measurements of 10--68 keV X-rays, which covered 7068 hr of observation time and the range 10/sup -8/ to 10/sup -5/ ergs cm/sup -2/ s/sup -1/ of flux of X-rays > or approx. =20 keV, were made with the University of California (Berkeley) experiment aboard the OGO 5 satellite. The radio data consisted of copies of the original spectral records as well as tabulated data. The principle findings are: (1) about 20% of impulsive hard X-ray bursts are correlated with type III radio bursts; conversely, only approx.3% of the reported type III radio bursts are correlated with impulsive X-rays bursts; (2) the location of the associated H..cap alpha.. flare on the solar disk has little or no effect on the X-ray--type III burst correlation; (3) the magnitude of the X-ray--type III burst correlation increases systematically with the increase in the following quantities: intensity and starting frequency of the type III burst, peak energy flux and spectral hardness of the X-ray burst, and the peak nonthermal emission measure and spectral hardness of the ''instantaneous'' electron spectrum > or approx. =20 keV inside the x-ray source; (4) the observations are consistent with the electron populations responsible for both the X-ray and type III emissions being accelerated in a single acceleration process; (5) the observations suggest a flare model where the primary instability responsible for electron acceleration during the impulsive phase occurs in the corona. The exact location of this instability varies from one flare to another as well as during the impulsive phase of a single flare and determines the hardness of the accelerated electron spectrum and the characteristics of associated X-ray, EUV, optical, and radio emissions.

  16. Open Probe: a device for ultra fast electron ionization mass spectrometry analysis.

    PubMed

    Poliak, Marina; Gordin, Alexander; Amirav, Aviv

    2010-07-01

    Open Probe is based on a vaporization oven mounted on a transfer line of a gas chromatograph mass spectrometer (GC/MS) which is connected to the MS ion source via a short flow restriction capillary. The probe oven is open to room air while having helium purge flow protection to eliminate or significantly reduce air leakage into the oven and MS ion source. Sample analysis can be as simple as touch (the sample), push (the sample holder) into the open probe oven, and have the results. Experiments were performed with a GC/MS with supersonic molecular beams and with a standard Agilent 5975 MSD. Powders and tablets analysis were performed by touching the sample with the bottom side of a melting point vial and inserting it into the open probe oven with total analysis cycle time of <30 s. Similarly, trace trinitrotoluene (TNT) on human fingerprints was analyzed. Additional sample holder types included swabs, spoons, and vials. The open probe is a leak-proof MS probe which is characterized by fast analysis cycle time, and it uses a low cost mass spectrometer of GC/MS with the benefits of electron ionization of library search and uniform, quantitative response without ion suppression effects. PMID:20509627

  17. Diode calibration of a Langmuir probe system for measurement of electron energy distribution functions in a plasma

    SciTech Connect

    DeJoseph, C.A. Jr.; Demidov, V.I.

    2005-08-15

    It is shown that a simple circuit consisting of a semiconductor diode, a resistor, and a dc voltage source can model a narrow-energy group of electrons in a plasma for the purpose of calibration of a Langmuir probe. The calibration is appropriate when the probe is used for measurement of the electron energy distribution function (EEDF). This simple circuit allows real-time determination of sensitivity, energy resolution, and signal-to-noise ratio for probe measurements of the EEDF.

  18. Intramolecular photoinduced electron transfer of fluorescent probes based on 1,8-naphthalimide and aniline derivatives

    NASA Astrophysics Data System (ADS)

    Burmistrova, Natalia A.; Mushtakova, Svetlana P.; Zilberg, Rufina A.; Vakulin, Ivan V.; Duerkop, Axel

    2015-03-01

    The effect of conformation and electronic structure of fluorescent probes based on 1,8-naphthalimide and aniline derivatives (4-methoxyaniline and N,N-dimethyl-p-phenylenediamine) on the intramolecular photoinduced electron transfer (PET) was investigated by density functional theory calculations (B3LYP/6-31G (d, p)). We established restricted rotation around spacer bonds of the model compounds and their protonated and oxidized forms do not block the convergence of the nitrogen atoms involved in the electron transfer at a distance of ~3Å, which is adequately for PET. Computed values of protonation free energy for the gas-phase (ΔG298 r) show that the investigated fluorescent probes are predominantly protonated on the nitrogen atoms of the donor moiety. Electron population and localization of the frontier orbitals (LUMO, HOMO, HOMO-1) on the donor and acceptor moieties are transformed under protonation and one-electron oxidation of fluorescent probes. The results show that appearance or disappearance of the PET can be predicted by the energy difference between the frontier orbitals and the nature of their location of donor and acceptor moieties, which is in agreement with the PET theory and observed experimental data.

  19. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    SciTech Connect

    Lovley, Derek R.

    2015-03-09

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) to insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated

  20. Sensitivity of self-powered detector probes to electron and gamma-ray fields

    NASA Astrophysics Data System (ADS)

    Lone, M. A.; Wong, P. Y.; Ajmani, K.

    1994-10-01

    A self-powered detector (SPD) is a simple, passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPDs are used in nuclear reactors to monitor neutron and gamma fields. Responses of SPDs to electrons and γ-rays of various energies were investigated with Monte Carlo simulations. Transmission filters were studied for the design of threshold SPD probes used for on-line monitoring of the energy spectrum of high-power industrial electron accelerator beams. Filters were also investigated for the enhancement of γ-ray sensitivity of an SPD placed in a mixed electron and γ-ray field.

  1. Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, Irina; Kurth, William; Spasojevic, Maria; Shprits, Yuri

    2016-07-01

    We present the Neural-network-based Upper-hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made onboard NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, f_{uhr}, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the EMFISIS instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.

  2. Advances in Ultrafast Control and Probing of Correlated-Electron Materials

    SciTech Connect

    Wall, Simon; Rini, Matteo; Dhesi, Sarnjeet S.; Schoenlein, Robert W.; Cavalleri, Andrea

    2011-02-24

    Here in this paper, we present recent results on ultrafast control and probing of strongly correlated-electron materials. We focus on magnetoresistive manganites, applying excitation and probing wavelengths that cover the mid-IR to the soft X-rays. In analogy with near-equilibrium filling and bandwidth control of phase transitions, our approach uses both visible and mid-IR pulses to stimulate the dynamics by exciting either charges across electronic bandgaps or specific vibrational resonances. Lastly, x-rays are used to unambiguously measure the microscopic electronic, orbital, and structural dynamics. Our experiments dissect and separate the nonequilibrium physics of these compounds, revealing the complex interplay and evolution of spin, lattice, charge, and orbital degrees of freedoms in the time domain.

  3. Automated Determination of Electron Density from Electric Field Measurements on the Van Allen Probes Spacecraft

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, Irina; Spasojevic, Maria; Shprits, Yuri; Kurth, William

    2016-04-01

    We present the Neural-network-based Upper-hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurement made onboard NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detection. We describe the design and implementation of the algorithm and perform initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the EMFISIS instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.

  4. Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, I. S.; Spasojevic, M.; Shprits, Y. Y.; Kurth, W. S.

    2016-05-01

    We present the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.

  5. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Hachtel, J. A.; Marvinney, C.; Mouti, A.; Mayo, D.; Mu, R.; Pennycook, S. J.; Lupini, A. R.; Chisholm, M. F.; Haglund, R. F.; Pantelides, S. T.

    2016-04-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.

  6. A numerical method for determining highly precise electron energy distribution functions from Langmuir probe characteristics

    SciTech Connect

    Bang, Jin-Young; Chung, Chin-Wook

    2010-12-15

    Electron energy distribution functions (EEDFs) were determined from probe characteristics using a numerical ac superimposed method with a distortion correction of high derivative terms by varying amplitude of a sinusoidal perturbation voltage superimposed onto the dc sweep voltage, depending on the related electron energy. Low amplitude perturbation applied around the plasma potential represented the low energy peak of the EEDF exactly, and high amplitude perturbation applied around the floating potential was effective to suppress noise or distortion of the probe characteristic, which is fatal to the tail electron distribution. When a small random noise was imposed over the stabilized prove characteristic, the numerical differentiation method was not suitable to determine the EEDF, while the numerical ac superimposed method was able to obtain a highly precise EEDF.

  7. 5-Femtosecond Laser-Electron Synchronization for Pump-Probe Crystallography and Diffraction

    NASA Astrophysics Data System (ADS)

    Walbran, Matthew; Gliserin, Alexander; Jung, Kwangyun; Kim, Jungwon; Baum, Peter

    2015-10-01

    For improving the temporal resolution in ultrafast pump-probe electron or x-ray diffraction, we report a laser-electron synchronization concept via direct microwave extraction from the laser frequency comb combined with phase detection by fiber-loop interferometry, in situ drift correction via electron-energy analysis, and laser-electron streaking for final timing metrology. We achieve a laser-electron jitter below 5 fs (rms) integrated between 8 min and Nyquist period (400 ns). Slower drifts are also below 5 fs (rms) after active compensation. This result helps advance femtosecond crystallography with electrons or x rays to the regime of fundamental atomic-scale dynamics and light-matter interaction.

  8. Probing dissociative electron attachment through heavy-Rydberg ion-pair production in Rydberg atom collisions

    NASA Astrophysics Data System (ADS)

    Buathong, S.; Kelley, M.; Dunning, F. B.

    2016-10-01

    Electron transfer in collisions between low-n, n = 12, Rydberg atoms and targets that attach low-energy electrons can lead to the formation of heavy-Rydberg ion-pair states comprising a weakly-bound positive-negative ion pair that orbit each other at large separations. Measurements of the velocity and angular distribution of ion-pair states produced in collisions with 1,1,1-C2Cl3F3, CBrCl3, BrCN, and Fe(CO)5 are used to show that electron transfer reactions furnish a new technique with which to examine the lifetime and decay energetics of the excited intermediates formed during dissociative electron capture. The results are analyzed with the aid of Monte Carlo simulations based on the free electron model of Rydberg atom collisions. The data further highlight the capabilities of Rydberg atoms as a microscale laboratory in which to probe the dynamics of electron attachment reactions.

  9. Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S. Y.; Rankin, R.; Yuan, C.-J.; Lui, A. T. Y.; Spence, H. E.; Blake, J. B.; Baker, D. N.; Reeves, G. D.

    2016-06-01

    On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ˜1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or "dropout echoes", constitute a new phenomenon referred to as a "drifting electron dropout" with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ˜1300 to 0100 LT. We conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. The dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.

  10. Pentachlorophenol decomposition by electron beam process enhanced in the presence of Fe(III)-EDTA.

    PubMed

    Kwon, Bum Gun; Kim, Eunjung; Lee, Jai H

    2009-03-01

    This study focuses on the enhanced decomposition of pentachlorophenol (PCP) in an electron beam (E-beam) process. To attain this objective, we investigated a synergistic effect of ferric-ethylenediamineacetate (Fe(III)-EDTA) and H(2)O(2) as additives to produce additional hydroxyl radical (*OH) at low dose. In this process, aqueous electron and hydrogen atom rapidly react with O(2) molecules, thereby forming hydroperoxyl/superoxide anion radical (HO2*/O(2)(-)), which reduces the Fe(III)-EDTA into Fe(II)-EDTA. Further *OH is produced by a well-known Fenton-like reaction of Fe(II)-EDTA with H(2)O(2) formed newly in E-beam. The complete decomposition of the initial PCP at 0.1mM was enhanced even at very low dose (<10 kGy) with 20 microM Fe(III)-EDTA and H(2)O(2) less than 1mM. This observation was supported by the increased amount of Cl(-) produced by the decomposition of PCP. Thus, in the presence of Fe(III)-EDTA during E-beam irradiation, the HO2*/O(2)(-)-driven Fenton-like reaction produces much more ()OH, which is significant for the complete degradation of PCP. PMID:19117591

  11. Determining electron temperature for small spherical probes from network analyzer measurements of complex impedance

    SciTech Connect

    Walker, D. N.; Fernsler, R. F.; Blackwell, D. D.; Amatucci, W. E.

    2008-12-15

    In earlier work, using a network analyzer, it was shown that collisionless resistance (CR) exists in the sheath of a spherical probe when driven by a small rf signal. The CR is inversely proportional to the plasma density gradient at the location where the applied angular frequency equals the plasma frequency {omega}{sub pe}. Recently, efforts have concentrated on a study of the low-to-intermediate frequency response of the probe to the rf signal. At sufficiently low frequencies, the CR is beyond cutoff, i.e., below the plasma frequency at the surface of the probe. Since the electron density at the probe surface decreases as a function of applied (negative) bias, the CR will extend to lower frequencies as the magnitude of negative bias increases. Therefore to eliminate both CR and ion current contributions, the frequencies presently being considered are much greater than the ion plasma frequency, {omega}{sub pi}, but less than the plasma frequency, {omega}{sub pe}(r{sub 0}), where r{sub 0} is the probe radius. It is shown that, in this frequency regime, the complex impedance measurements made with a network analyzer can be used to determine electron temperature. An overview of the theory is presented along with comparisons to data sets made using three stainless steel spherical probes of different sizes in different experimental environments and different plasma parameter regimes. The temperature measurements made by this method are compared to those made by conventional Langmuir probe sweeps; the method shown here requires no curve fitting as is the usual procedure with Langmuir probes when a Maxwell-Boltzmann electron distribution is assumed. The new method requires, however, a solution of the Poisson equation to determine the approximate sheath dimensions and integrals to determine approximate plasma and sheath inductances. The solution relies on the calculation of impedance for a spherical probe immersed in a collisionless plasma and is based on a simple

  12. Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; Lyons, Richard; Disbrow, Ashley; Seo, Hee-Jong; Ross, Ashley; Hirata, Christopher; Padmanabhan, Nikhil; O'Connell, Ross; Huff, Eric; Schlegel, David; Slosar, Anže; Weinberg, David; Strauss, Michael; Ross, Nicholas P.; Schneider, Donald P.; Bahcall, Neta; Brinkmann, J.; Palanque-Delabrouille, Nathalie; Yèche, Christophe

    2015-05-01

    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h-3 Gpc3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~ 25% over a bin width of δl ~ 10-15 on scales corresponding to matter-radiation equality and larger (0l ~ 2-3). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of fNL = -113+154-154 (1σ error). We next assume that the bias of quasar and galaxy distributions can be obtained independently from quasar/galaxy-CMB lensing cross-correlation measurements (such as those in Sherwin et al. (2013)). This can be facilitated by spectroscopic observations of the sources, enabling the redshift distribution to be completely determined, and allowing precise estimates of the bias

  13. Measurement of electron density transients in pulsed RF discharges using a frequency boxcar hairpin probe

    NASA Astrophysics Data System (ADS)

    Peterson, David; Coumou, David; Shannon, Steven

    2015-11-01

    Time resolved electron density measurements in pulsed RF discharges are shown using a hairpin resonance probe using low cost electronics, on par with normal Langmuir probe boxcar mode operation. Time resolution of 10 microseconds has been demonstrated. A signal generator produces the applied microwave frequency; the reflected waveform is passed through a directional coupler and filtered to remove the RF component. The signal is heterodyned with a frequency mixer and rectified to produce a DC signal read by an oscilloscope. At certain points during the pulse, the plasma density is such that the applied frequency is the same as the resonance frequency of the probe/plasma system, creating reflected signal dips. The applied microwave frequency is shifted in small increments in a frequency boxcar routine to determine the density as a function of time. A dc sheath correction is applied for the grounded probe, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in both inductively and capacitively coupled systems, the latter driven by multiple frequencies where a subset of these frequencies are pulsed. Measurements are compared to previous published results, time resolved OES, and in-line measurement of plasma impedance. This work is supported by the NSF DOE partnership on plasma science, the NSF GOALI program, and MKS Instruments.

  14. A statistical study of the subauroral electron temperature enhancement using dynamics Explorer 2 Langmuir probe observations

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Brace, L. H.

    1986-01-01

    A statistical study of the subauroral electron temperature enhancement was undertaken using Langmuir probe observations during 488 traversals of the midlatitude plasmapause region by the DE-2 satellite. The subauroral electron temperature enhancement on the nightside is a quasi-permanent feature at all altitudes between 350 and 1000 km with an occurrence frequency that depends on altitude. The occurrence frequency of the subauroral electron temperature peak has a strong altitude dependence on the dayside. The position of the subauroral Te peak decreases with increasing magnetic activity in a manner similar to that of the equatorial plasmapause and other midlatitude plasmapause signatures.

  15. Electron Transfer-Based Single Molecule Fluorescence as a Probe for Nano-Environment Dynamics

    PubMed Central

    Chen, Ruiyun; Wu, Ruixiang; Zhang, Guofeng; Gao, Yan; Xiao, Liantuan; Jia, Suotang

    2014-01-01

    Electron transfer (ET) is one of the most important elementary processes that takes place in fundamental aspects of biology, chemistry, and physics. In this review, we discuss recent research on single molecule probes based on ET. We review some applications, including the dynamics of glass-forming systems, surface binding events, interfacial ET on semiconductors, and the external field-induced dynamics of polymers. All these examples show that the ET-induced changes of fluorescence trajectory and lifetime of single molecules can be used to sensitively probe the surrounding nano-environments. PMID:24496314

  16. Effect of the medium and the formation of nanostructures on deexcitation of electronic excitation of Eu(III) and Tb(III) chelates

    NASA Astrophysics Data System (ADS)

    Sveshnikova, E. B.; Dudar, S. S.; Shablya, A. V.; Ermolaev, V. L.

    2006-10-01

    The intensity I lum and lifetime τlum of the luminescence of complexes of Eu(III) and Tb(III) ions with β-diketones and o-phenanthroline in water-ethanol solutions of these ligands have been analyzed as functions of the concentrations of ligand, luminescing lanthanide ions, and added ions causing columinescence and of the solvent deuteration. It is shown that the formation of nanostructures from Ln complexes and their coarsening leads to an increase in τlum of Eu(III) and Tb(III) and that this increase is due to the suppression of both photochemical deexcitation of these ions and transfer of their electronic excitation energy to OH vibrations of water molecules. The disappearance of the dependence of I lum of Eu(III) on deuteration of water-ethanol solutions of n-methoxybenzoyltrifluoracetone + o-phenanthroline caused by adding Gd(III) ions is explained by the shift of the equilibrium of formation of complexes of Ln chelates to neutral hydrophoblic forms corresponding to the formation of nanostructures of these chelates in the solution. The differences in effect of La(III) and Gd(III) ions on I lum and τlum of Eu(III) and Tb(III) complexes are explained. It is shown that the widely discussed effect of columinescence not only results from the energy migration in mixed structures of Eu or Tb complexes and Gd complexes but is also due to a large extent to the decrease in τlum of Eu(III) or Tb(III) caused by their incorporation into nanostructures.

  17. Developing a "highway code" to steer the structural and electronic properties of Fe(III)/Dy(III) coordination clusters.

    PubMed

    Chen, Sihuai; Mereacre, Valeriu; Prodius, Denis; Kostakis, George E; Powell, Annie K

    2015-04-01

    In the recently established field of 3d/4f coordination cluster (CC) chemistry several burning questions still need to be addressed. It is clear that combining 3d and 4f metal ions within a coordination cluster core has the potential to lead to electronic structures that will be very difficult to describe but can also be extremely interesting. Furthermore, understanding why certain core topologies seem to be favored is difficult to predict. Here we show that the secondary coordination sphere provided by the ligands influences the favored product, as demonstrated for the compound [Fe4Dy2(μ3-OH)2(n-bdea)4(C6H5CO2)8]·MeCN (1), which has a 2Fe:2Dy:2Fe core and was made using [Fe(III)3O(C6H5)CO2)(L)3](+) as starting material plus Dy(NO3)3 and N-n-butyl-diethanolamine (n-bdeaH2), compared with the compound made using a methyl meta-substituent (R) on the phenyl ring of the benzoate, [Fe(III)3O(C6H4Me)CO2)(L)3](+) as starting material, which resulted in the "square-in-square" compound [Fe4Dy4(μ3-OH)4(n-bdea)4(O2CC6H4CH3)12]·MeCN (2) when using ambient conditions. Changing reaction conditions from ambient to solvothermal leads to "double-propeller" compounds [Fe4Dy4(μ4-O)3(n-bdea)3(C6H5CO2)12]·13MeCN (3) and [Fe4Dy4(μ4-O)3(n-bdea)3(O2CC6H4CH3)12]·MeCN (4) forming with this core, resulting irrespective of the substitution on the iron benzoate starting material. Furthermore, compounds 1 and 2 can be transformed into compounds 3 and 4, respectively, using a solvothermal method. Thus, compounds 3 and 4 appear to be the thermodynamically most stable species. The factors steering the reactions toward these products are discussed. The electronic structures have been investigated using magnetic and Mössbauer studies. All compounds are cooperatively coupled 3d/4f systems, with compound 1 showing single-molecule magnet behavior.

  18. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.; SWEAP Investigation Team

    2010-12-01

    The NASA Solar Probe Plus mission will be humanity’s first direct visit to the atmosphere of our Sun. The spacecraft will close to within nine solar radii (about four million miles) of the solar surface in order to observe the heating of the corona and the acceleration of the solar wind first hand. A key requirement for Solar Probe Plus is the ability to make continuous, accurate, and fast measurements of the electrons and ionized helium (alpha-particles) and hydrogen (protons) that constitute the bulk of the solar wind. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation is a two-instrument suite that provides these observations. The purpose of this talk is to describe the science motivation for SWEAP, the instrument designs, and the expected data products. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SWEAP measurements enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, high-energy particle acceleration, and the interaction between solar wind and the dust environment of the inner heliosphere. SPC is a Faraday Cup (FC) that looks at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). SPAN-A and -B are rotated 90 degrees relative to one another so their broad FOV combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution at 0.5-16 Hz and flow angles and fluxes at 128 Hz. Continuous buffering provides triggered burst observations during shocks, reconnection events, and other transient structures with no changes to the instrument operating mode.

  19. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    SciTech Connect

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun; Shin, Ki Soon; Kang, Shin Jung

    2013-08-09

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  20. Relativistic Electrons in the Inner Zone and Slot - Quiet Time Observations by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Looper, M. D.; Mazur, J. E.; O'Brien, T. P.; Clemmons, J. H.; Baker, D. N.; Reeves, G. D.; Spence, H.; Funsten, H. O.

    2013-12-01

    The energy spectra of relativistic electrons in the inner zone and slot region are old questions dating from the early days of space research. There are two major reasons for this situation: the paucity of scientific missions traversing the inner zone and slot region at low inclination, and the technical difficulty of making relativistic electron measurements in the presence of the very energetic protons and intense fluxes of electrons with energies up to a few hundred keV that are found in the inner zone. The Van Allen Probes mission offers a new opportunity to address this problem. This mission to date has taken place during a time period of only modest geomagnetic activity with no unusual increases of the energetic electron population deep inside the magnetosphere such as the shock injection of 24 March 1991 or the Halloween storm of 2003. We began by examining observations made during some of the quieter times since launch, in late January and early February 2013. The data show that the inner zone electron fluxes indeed drop to very low intensities by several hundred keV. A major focus of this preliminary study has been a careful examination of sources of background and its removal in the electron spectrometers using several of the Van Allen probe instruments. Upper limits on the relativistic electron intensities as a function of L will be presented.

  1. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    PubMed

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-01

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully. PMID:26572843

  2. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    PubMed

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-01

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully.

  3. Tryptophan probes reveal residue-specific phospholipid interactions of apolipoprotein C-III.

    PubMed

    Pfefferkorn, Candace M; Walker, Robert L; He, Yi; Gruschus, James M; Lee, Jennifer C

    2015-11-01

    Apolipoproteins are essential human proteins for lipid metabolism. Together with phospholipids, they constitute lipoproteins, nm to μm sized particles responsible for transporting cholesterol and triglycerides throughout the body. To investigate specific protein-lipid interactions, we produced and characterized three single-Trp containing apolipoprotein C-III (ApoCIII) variants (W42 (W54F/W65F), W54 (W42F/W65F), W65 (W42F/W54F)). Upon binding to phospholipid vesicles, wild-type ApoCIII adopts an α-helical conformation (50% helicity) as determined by circular dichroism spectroscopy with an approximate apparent partition constant of 3×10(4) M(-1). Steady-state and time-resolved fluorescence measurements reveal distinct residue-specific behaviors with W54 experiencing the most hydrophobic environment followed by W42 and W65. Interestingly, time-resolved anisotropy measurements show a converse trend for relative Trp mobility with position 54 being the least immobile. To determine the relative insertion depths of W42, W54, and W65 in the bilayer, fluorescence quenching experiments were performed using three different brominated lipids. W65 had a clear preference for residing near the headgroup while W54 and W42 sample the range of depths ~8-11 Å from the bilayer center. On average, W54 is slightly more embedded than W42. Based on Trp spectral differences between ApoCIII binding to phospholipid vesicles and sodium dodecyl sulfate micelles, we suggest that ApoCIII adopts an alternate helical conformation on the bilayer which could have functional implications.

  4. Effects of Electronic-State-Dependent Solute Polarizability: Application to Solute-Pump/Solvent-Probe Spectra.

    PubMed

    Sun, Xiang; Ladanyi, Branka M; Stratt, Richard M

    2015-07-23

    Experimental studies of solvation dynamics in liquids invariably ask how changing a solute from its electronic ground state to an electronically excited state affects a solution's dynamics. With traditional time-dependent-fluorescence experiments, that means looking for the dynamical consequences of the concomitant change in solute-solvent potential energy. But if one follows the shift in the dynamics through its effects on the macroscopic polarizability, as recent solute-pump/solvent-probe spectra do, there is another effect of the electronic excitation that should be considered: the jump in the solute's own polarizability. We examine the spectroscopic consequences of this solute polarizability change in the classic example of the solvation dye coumarin 153 dissolved in acetonitrile. After demonstrating that standard quantum chemical methods can be used to construct accurate multisite models for the polarizabilities of ground- and excited-state solvation dyes, we show via simulation that this polarizability change acts as a contrast agent, significantly enhancing the observable differences in optical-Kerr spectra between ground- and excited-state solutions. A comparison of our results with experimental solute-pump/solvent-probe spectra supports our interpretation and modeling of this spectroscopy. We predict, in particular, that solute-pump/solvent-probe spectra should be sensitive to changes in both the solvent dynamics near the solute and the electronic-state-dependence of the solute's own rotational dynamics. PMID:25299940

  5. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramasesha, Krupa; Leone, Stephen R.; Neumark, Daniel M.

    2016-05-01

    Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions.

  6. Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures.

    PubMed

    Chen, Xiaolong; Wu, Zefei; Xu, Shuigang; Wang, Lin; Huang, Rui; Han, Yu; Ye, Weiguang; Xiong, Wei; Han, Tianyi; Long, Gen; Wang, Yang; He, Yuheng; Cai, Yuan; Sheng, Ping; Wang, Ning

    2015-01-01

    The metal-insulator transition is one of the remarkable electrical properties of atomically thin molybdenum disulphide. Although the theory of electron-electron interactions has been used in modelling the metal-insulator transition in molybdenum disulphide, the underlying mechanism and detailed transition process still remain largely unexplored. Here we demonstrate that the vertical metal-insulator-semiconductor heterostructures built from atomically thin molybdenum disulphide are ideal capacitor structures for probing the electron states. The vertical configuration offers the added advantage of eliminating the influence of large impedance at the band tails and allows the observation of fully excited electron states near the surface of molybdenum disulphide over a wide excitation frequency and temperature range. By combining capacitance and transport measurements, we have observed a percolation-type metal-insulator transition, driven by density inhomogeneities of electron states, in monolayer and multilayer molybdenum disulphide. In addition, the valence band of thin molybdenum disulphide layers and their intrinsic properties are accessed.

  7. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy.

    PubMed

    Ramasesha, Krupa; Leone, Stephen R; Neumark, Daniel M

    2016-05-27

    Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions. PMID:26980312

  8. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents.

    PubMed

    Lo, Kenneth Kam-Wing

    2015-12-15

    Although the interactions of transition metal complexes with biological molecules have been extensively studied, the use of luminescent transition metal complexes as intracellular sensors and bioimaging reagents has not been a focus of research until recently. The main advantages of luminescent transition metal complexes are their high photostability, long-lived phosphorescence that allows time-resolved detection, and large Stokes shifts that can minimize the possible self-quenching effect. Also, by the use of transition metal complexes, the degree of cellular uptake can be readily determined using inductively coupled plasma mass spectrometry. For more than a decade, we have been interested in the development of luminescent transition metal complexes as covalent labels and noncovalent probes for biological molecules. We argue that many transition metal polypyridine complexes display triplet charge transfer ((3)CT) emission that is highly sensitive to the local environment of the complexes. Hence, the biological labeling and binding interactions can be readily reflected by changes in the photophysical properties of the complexes. In this laboratory, we have modified luminescent tricarbonylrhenium(I) and bis-cyclometalated iridium(III) polypyridine complexes of general formula [Re(bpy-R(1))(CO)3(py-R(2))](+) and [Ir(ppy-R(3))2(bpy-R(4))](+), respectively, with reactive functional groups and used them to label the amine and sulfhydryl groups of biomolecules such as oligonucleotides, amino acids, peptides, and proteins. Additionally, using a range of biological substrates such as biotin, estradiol, and indole, we have designed luminescent rhenium(I) and iridium(III) polypyridine complexes as noncovalent probes for biological receptors. The interesting results generated from these studies have prompted us to investigate the possible applications of luminescent transition metal complexes in intracellular systems. Thus, in the past few years, we have developed an interest

  9. Fabrication of high-aspect-ratio carbon nanocone probes by electron beam induced deposition patterning

    NASA Astrophysics Data System (ADS)

    Chen, I.-Chen; Chen, Li-Han; Orme, Christine; Quist, Arjan; Lal, Ratnesh; Jin, Sungho

    2006-09-01

    A high-aspect-ratio cone-shaped carbon nanotube (CNT), which we refer to as a carbon nanocone (CNC), was fabricated for scanning probe microscopy (SPM) by a novel and reliable patterning technique and dc plasma chemical vapour deposition. Carbon dots from electron beam induced deposition (EBID) were utilized as convenient chemical-etch masks to create catalyst patterns for the growth of a single CNC probe on a tipless cantilever and an array of CNC probes on a silicon substrate. This resist-free EBID process is an efficient way of preparing a patterned catalyst and resultant nanoprobe on the specific edge location of the cantilever. The CNC probe produces high-resolution images of specimens in air as well as in liquid. No degradation in imaging performance was observed after a period of continuous scanning. The CNC bed-of-nails array imaged in contact mode by a commercial Si3N4 probe demonstrates the mechanical toughness/sturdiness of the CNC tip. This also indicates the possibility of using the CNC bed-of-nails as a convenient means for the characterization of SPM tips.

  10. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    NASA Astrophysics Data System (ADS)

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Patil, D. S.; Mittal, K. C.

    2013-07-01

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10-4-10-3 mbar and 400-1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 1010 cm-3 to 3.8 × 1011 cm-3 and 4-14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  11. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  12. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Kewlani, H; Mishra, L; Patil, D S; Mittal, K C

    2013-07-01

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10(-4)-10(-3) mbar and 400-1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10(10) cm(-3) to 3.8 × 10(11) cm(-3) and 4-14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  13. Matched dipole probe for precise electron density measurements in magnetized and non-magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-09-01

    We present a plasma diagnostics method based on impedance measurements of a short matched dipole placed in the plasma. This allows measuring the local electron density in the range from 1012-1015 m-3 with a magnetic field of at least 0-50 mT. The magnetic field strength is not directly influencing the data analysis and requires only that the dipole probe is oriented perpendicularly to the magnetic field. As a result, the magnetic field can be non-homogeneous or even non-defined within the probe length without any effect on the final tolerance of the measurements. The method can be applied to plasmas of relatively small dimensions (< 10 cm) and doesn't require any special boundary conditions. The high sensitivity of the impedance measurements is achieved by using a miniature matching system installed close to the probe tip, which also allows to suppress sheath resonance effects. We experimentally show here that the tolerance of the electron density measurements reaches values lower than 1%, both with and without the magnetic field. The method is successfully validated by both analytical modeling and experimental comparison with Langmuir probes. The validation experiments are conducted in a low pressure (1 mTorr) Ar discharge sustained in a 10 cm size plasma chamber with and without a transversal magnetic field of about 20 mT. This work was supported by a Marie Curie International Incoming Fellowships within FP7 (NEPTUNE PIIF-GA-2012-326054).

  14. [Anaerobic reduction of humus/Fe (III) and electron transport mechanism of Fontibacter sp. SgZ-2].

    PubMed

    Ma, Chen; Yang, Gui-qin; Lu, Qin; Zhou, Shun-gui

    2014-09-01

    Humus and Fe(III) respiration are important extracellular respiration metabolism. Electron transport pathway is the key issue of extracellular respiration. To understand the electron transport properties and the environmental behavior of a novel Fe(III)- reducing bacterium, Fontibacter sp. SgZ-2, capacities of anaerobic humus/Fe(III) reduction and electron transport mechanisms with four electron acceptors were investigated in this study. The results of anaerobic batch experiments indicated that strain SgZ-2 had the ability to reduce humus analog [ 9,10-anthraquinone-2,6-disulfonic acid (AQDS) and 9,10-anthraquinone-2-sulfonic acid (AQS)], humic acids (HA), soluble Fe(III) (Fe-EDTA and Fe-citrate) and Fe(III) oxides [hydrous ferric oxide (HFO)]. Fermentative sugars (glucose and sucrose) were the most effective electron donors in the humus/Fe(III) reduction by strain SgZ-2. Additionally, differences of electron carrier participating in the process of electron transport with different electron acceptors (i. e. , oxygen, AQS, Fe-EDTA and HFO) were investigated using respiratory inhibitors. The results suggested that similar respiratory chain components were involved in the reducing process of oxygen and Fe-EDTA, including dehydrogenase, quinones and cytochromes b-c. In comparison, only dehydrogenase was found to participate in the reduction of AQS and HFO. In conclusion, different electron transport pathways may be employed by strain SgZ-2 between insoluble and soluble electron acceptors or among soluble electron acceptors. Preliminary models of electron transport pathway with four electron acceptors were proposed for strain SgZ-2, and the study of electron transport mechanism was explored to the genus Fontibacter. All the results from this study are expected to help understand the electron transport properties and the environmental behavior of the genus Fontibacter.

  15. Electronic Modulation of the SOMO-HOMO Energy Gap in Iron(III) Complexes towards Unimolecular Current Rectification.

    PubMed

    Wickramasinghe, Lanka D; Mazumder, Shivnath; Kpogo, Kenneth K; Staples, Richard J; Schlegel, H Bernhard; Verani, Cláudio N

    2016-07-25

    Amphiphilic five-coordinate iron(III) complexes with {N2 O2 Cl} and {N2 O3 } coordination spheres are studied to elucidate the roles of electronic structure on the mechanisms for current rectification. The presence of an apical chlorido or phenolato ligand plays a crucial role, and the [Fe(III) {N2 O2 Cl}] species supports an asymmetric mechanism while its [Fe(III) {N2 O3 }] counterpart seems to allow for unimolecular mechanism. The effects of electron-donating and electron-withdrawing substituents in the ligand frameworks are also considered.

  16. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    SciTech Connect

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  17. Diagnostics principle of microwave cut-off probe for measuring absolute electron density

    SciTech Connect

    Jun, Hyun-Su

    2014-08-15

    A generalized diagnostics principle of microwave cut-off probe is presented with a full analytical solution. In previous studies on the microwave cut-off measurement of weakly ionized plasmas, the cut-off frequency ω{sub c} of a given electron density is assumed to be equal to the plasma frequency ω{sub p} and is predicted using electromagnetic simulation or electric circuit model analysis. However, for specific plasma conditions such as highly collisional plasma and a very narrow probe tip gap, it has been found that ω{sub c} and ω{sub p} are not equal. To resolve this problem, a generalized diagnostics principle is proposed by analytically solving the microwave cut-off condition Re[ε{sub r,eff}(ω = ω{sub c})] = 0. In addition, characteristics of the microwave cut-off condition are theoretically tested for correct measurement of the absolute electron density.

  18. Measurement of electron density with the phase-resolved cut-off probe method

    SciTech Connect

    Kwon, J. H.; Kim, D. W.; Na, B. K.; You, S. J.; Kim, J. H.; Shin, Y. H.

    2011-07-15

    The phase resolved cut-off probe method, a precise measurement method for the electron density, was recently proposed [J. H. Kwon et al., Appl. Phys. Lett. 96, 081502 (2010)]. This paper presents the measurements of electron density using the method under various experimental conditions (different pressures, powers, chamber volumes, and discharge sources). The result shows that the method is not only in good agreement with the previous method using wave transmittance under various experimental conditions but it is also able to find the cut-off point clearly even under difficult conditions such as high pressure ({approx} 1 Torr), high discharge power, and small plasma volume. The details of the experimental setup, the operating mechanism of the probe method, and the data processing procedure (algorithm) are also addressed. Furthermore, the reliability of the measurement method is investigated by using an electromagnetic field simulation with cold plasma model (CST-Drude model, Computer Simulation Technology).

  19. A selective fluorescence probe for mercury ion based on the fluorescence quenching of terbium(III)-doped cadmium sulfide composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Fu, Jie; Wang, Lun; Chen, Hongqi; Bo, Ling; Zhou, Cailing; Chen, Jingguo

    2010-10-01

    A fluorescent probe for mercury(II) ions, based on the quenching of fluorescence of terbium(III) ions doped in CdS nanoparticles, has been developed. The terbium(III)-doped cadmium sulfide composite nanoparticles were successfully synthesized through a straightforward one-pot process, with the biomolecule glutathione (GSH) as a capping ligand. In addition, the terbium(III) ions were observed an enhancement of emission intensity, owing to fluorescence energy transfer from the excited CdS particles to the emitting terbium(III). Because of a specific interaction, the fluorescence intensity of terbium(III)-doped CdS particles is obviously reduced in the presence of mercury(II) ions. The fluorescence quenching phenomenon of terbium(III) can be attributed to the fact that the energy transfer system was destroyed by combining with mercury(II). Under the optimal conditions, the fluorescent intensity of terbium(III) ions at 491 nm decreased linearly with the concentration of mercury(II) ions ranging from 4.5 nmol L -1 to 550 nmol L -1. The limit of detection for mercury(II) was 0.1 nmol L -1. This method is simple, practical, relatively free of interference from coexisting substances and can be successfully applied to the determination of mercury(II) ions in real water samples. In addition, the probable mechanism of reaction between terbium(III)-doped CdS composite nanoparticles and mercury(II) was also discussed.

  20. Electron paramagnetic resonance characteristics of some non-heme low-spin iron(III) complexes

    NASA Astrophysics Data System (ADS)

    Duelund, Lars; Toftlund, Hans

    2000-02-01

    We have recorded the powder EPR-spectra of some near octahedral iron(III) complexes with tridentate ligands donors and analysed their spectra with simple ligand field analysis and for some cases with the angular overlap model (AOM). We have determined the electron praramagnetic resonance (EPR) characteristic of bis 1,4,7-triazacyclonane iron(III)chloride at 4 K and found that it was similar to the characteristics of the so-called 'highly anisotropic low spin' complexes. We have recorded the powder spectra of bis (2,6-bis(benzimidazoly-2-yl)pyridine) iron(III) perchlorate and made an AOM-analyses of the structural similar complex bis-(2,6 (N-carbamoyl)-pyridine) iron(III). With a combination of ligand field analyses and AOM, we could determine the π-donor properties of these ligands. The same approach have been used to determine the π-donor properties of the hydroperoxo ligand. Finally we have recorded the powder EPR-spectrum of [Fe(CN) 6] 3- doped in K 3[Co(CN) 6] and [Co(NH 3) 6][Co(CN) 6] at 4 and 100 K and in water at 4 K. The spectra are interpreted as the effect of a dynamic Jahn-Teller distortion.

  1. Anomaly of the rotational nonergodicity parameter of glass formers probed by high field electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Bercu, V.; Martinelli, M.; Massa, C. A.; Pardi, L. A.; Rössler, E. A.; Leporini, D.

    2008-08-01

    Exploiting the high angular resolution of high field electron paramagnetic resonance measured at 95, 190, and 285 GHz we determine the rotational nonergodicity parameter of different probe molecules in the glass former o-terphenyl and polybutadiene in a model-independent way. Our results clearly show a characteristic change in the temperature of the nonergodicity parameter proving a rather sharp dynamic crossover in both systems, in contrast to previous results from other techniques.

  2. Accuracy Evaluation of Electron-Probe Microanalysis as Applied to Semiconductors and Silicates

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Armstrong, John

    2003-01-01

    An evaluation of precision and accuracy will be presented for representative semiconductor and silicate compositions. The accuracy of electron-probe analysis depends on high precision measurements and instrumental calibration, as well as correction algorithms and fundamental parameter data sets. A critical assessment of correction algorithms and mass absorption coefficient data sets can be made using the alpha factor technique. Alpha factor analysis can be used to identify systematic errors in data sets and also of microprobe standards used for calibration.

  3. Current collection by a spherical high voltage probe: Electron trapping and collective processes

    NASA Technical Reports Server (NTRS)

    Palmadesso, Peter J.

    1990-01-01

    The author summarizes the results of theoretical studies of the interaction of an uninsulated, spherical, high voltage (10's of KV positive) probe with the ionospheric environment. The focus of this effort was the phenomenon of electron trapping and its implications for breakdown processes (collisional regime) and the current-voltage relationship governing current collection (collisionless regime) in space-based pulsed power systems with high voltage components exposed to space, e.g., the SPEAR I experiment.

  4. Polarized pump--probe spectroscopy of electronic excitation transport in photosynthetic antennas

    SciTech Connect

    Struve, W.S. )

    1990-08-01

    Polarized pump--probe spectroscopy was performed with 1.5--2 psec resolution on the bacteriochlorophyll a protein antenna complex from the green sulfur bacterium Prosthecochloris aestuarii and on native and enriched photosystem I particles from spinach. The resulting photobleaching profiles reflect the details of singlet electronic-excitation transport in these photosynthetic antennas, in which the pigments are complexed by proteins into clusters of five or more chromophores.

  5. Heparin-glutathione III: study with fluorescent probes as indicators of membrane status of bull sperm.

    PubMed

    Reyes, R; Martinez, J C; Delgado, N M; Merchant-Larios, H

    2002-01-01

    Sperm obtained from bull epididymes were used to validate in vitro the effect of heparin and reduced glutathione on sperm membrane status, with the use of sodium dodecyl sulfate (SDS) and Triton X-100 in the presence of propidium iodide (IP) and diacetate fluorescein (FDA). The metabolic activities of treated sperm were qualitatively monitored using an alamar Blue Redox fluorescence indicator. Heparin did not damage the sperm plasma membrane, whereas GSH and SDS at 26 h of incubation dissolved the plasma membrane and the acrosome. On the other hand, at time zero, Triton X-100 showed 75% of sperm stained with IP, indicating plasma membrane damage. Results validated by electron microscopy of thin sections of treated sperm showed complete lack of the membrane, acrosome, and postacrosomal membrane system with 0.01% Triton X-100. Extracellular 15 mM GSH completely disappeared the plasma membrane over the sperm nucleus, leaving the postacrosomal membrane system and nucleus without apparent damage. The metabolic activity was supported over 52 h of incubation in any of the incubation systems tested, including Triton X-100, which showed a spermaticide effect. The authors propose that membrane damage does not mean they are dead, no matter the vital stain employed, and also that FDA-IP staining can be used as a fluorescent marker of sperm plasmatic membrane permeabilization and nuclear swelling.

  6. Extracellular Electron Transfer to Fe(III) Oxides by the Hyperthermophilic Archaeon Geoglobus ahangari via a Direct Contact Mechanism

    PubMed Central

    Manzella, Michael P.; Reguera, Gemma

    2013-01-01

    The microbial reduction of Fe(III) plays an important role in the geochemistry of hydrothermal systems, yet it is poorly understood at the mechanistic level. Here we show that the obligate Fe(III)-reducing archaeon Geoglobus ahangari uses a direct-contact mechanism for the reduction of Fe(III) oxides to magnetite at 85°C. Alleviating the need to directly contact the mineral with the addition of a chelator or the electron shuttle anthraquinone-2,6-disulfonate (AQDS) stimulated Fe(III) reduction. In contrast, entrapment of the oxides within alginate beads to prevent cell contact with the electron acceptor prevented Fe(III) reduction and cell growth unless AQDS was provided. Furthermore, filtered culture supernatant fluids had no effect on Fe(III) reduction, ruling out the secretion of an endogenous mediator too large to permeate the alginate beads. Consistent with a direct contact mechanism, electron micrographs showed cells in intimate association with the Fe(III) mineral particles, which once dissolved revealed abundant curled appendages. The cells also produced several heme-containing proteins. Some of them were detected among proteins sheared from the cell's outer surface and were required for the reduction of insoluble Fe(III) oxides but not for the reduction of the soluble electron acceptor Fe(III) citrate. The results thus support a mechanism in which the cells directly attach and transfer electrons to the Fe(III) oxides using redox-active proteins exposed on the cell surface. This strategy confers on G. ahangari a competitive advantage for accessing and reducing Fe(III) oxides under the extreme physical and chemical conditions of hot ecosystems. PMID:23728807

  7. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    SciTech Connect

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; Reeves, G. D.; Friedel, R. H. W.; Henderson, M. G.; Larsen, B. A.

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).

  8. Electron Affinity Calculations for Atoms: Sensitive Probe of Many-Body Effects

    NASA Astrophysics Data System (ADS)

    Felfli, Z.; Msezane, A. Z.

    2016-05-01

    Electron-electron correlations and core-polarization interactions are crucial for the existence and stability of most negative ions. Therefore, they can be used as a sensitive probe of many-body effects in the calculation of the electron affinities (EAs) of atoms. The importance of relativistic effects in the calculation of the EAs of atoms has recently been assessed to be insignificant up to Z of 85. Here we use the complex angular momentum (CAM) methodology wherein is embedded fully the electron-electron correlations, to investigate core-polarization interactions in low-energy electron elastic scattering from the atoms In, Sn, Eu, Au and At through the calculation of their EAs. For the core-polarization interaction we use the rational function approximation of the Thomas-Fermi potential, which can be analytically continued into the complex plane. The EAs are extracted from the large resonance peaks in the CAM calculated low-energy electron-atom scattering total cross sections and compared with those from measurements and sophisticated theoretical methods. It is concluded that when the electron-electron correlations and core polarization interactions (both major many-body effects) are accounted for adequately the importance of relativity on the calculation of the EAs of atoms can be assessed. Even for the high Z (85) At atom relativistic effects are estimated to contribute a maximum of 3.6% to its EA calculation.

  9. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    DOE PAGESBeta

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; et al

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energymore » channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).« less

  10. Probing electronic state at atomic scale on the surface of SrVO3 film

    NASA Astrophysics Data System (ADS)

    Okada, Yoshinori; Shimizu, Ryota; Shiraki, Susumu; Hitosugi, Taro

    2014-03-01

    Probing electronic structure of atomically well controlled surface of Perovskite-type 3d transition-metal oxides have been attracting much interest because of their intriguing emergent physical properties by heterostructure engineering. In this study, we have especially focused on SrVO3, where importance of correlation effects has been considered. We successfully obtained atomically flat surfaces of SrVO3, which gave us the great opportunity to visualize correlated electronic state at atomic scale by means of spectroscopic imaging scanning tunneling spectroscopy. Based on the experimental data, we discuss spectroscopic signature of many body effects on the surface of SrVO3 system.

  11. Nonequilibrium Pump–Probe Photoexcitation as a Tool for Analyzing Unoccupied Equilibrium States of Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Yamaji, Youhei; Imada, Masatoshi

    2016-09-01

    Relaxation of electrons in a Hubbard ring coupled to a dissipative bosonic bath is studied to simulate the pump-probe photoemission measurement. From this insight, we propose an experimental method of eliciting the unoccupied part of single-particle spectra at the equilibrium of doped Mott insulators. We reveal first that the effective temperatures of distribution functions and electronic spectra are different during the relaxation, which makes the frequently employed thermalization picture inappropriate. Contrary to the conventional analysis, we show that the unoccupied spectra at equilibrium can be detected as the states that relax faster.

  12. Probing flexible conformations in molecular junctions by inelastic electron tunneling spectroscopy

    SciTech Connect

    Deng, Mingsen; Ye, Gui; Jiang, Jun; Cai, Shaohong; Sun, Guangyu

    2015-01-15

    The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS). Based on a model molecule of Bis-(4-mercaptophenyl)-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precise control of molecular devices.

  13. Nonequilibrium Pump-Probe Photoexcitation as a Tool for Analyzing Unoccupied Equilibrium States of Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Yamaji, Youhei; Imada, Masatoshi

    2016-09-01

    Relaxation of electrons in a Hubbard ring coupled to a dissipative bosonic bath is studied to simulate the pump-probe photoemission measurement. From this insight, we propose an experimental method of eliciting the unoccupied part of single-particle spectra at the equilibrium of doped Mott insulators. We reveal first that the effective temperatures of distribution functions and electronic spectra are different during the relaxation, which makes the frequently employed thermalization picture inappropriate. Contrary to the conventional analysis, we show that the unoccupied spectra at equilibrium can be detected as the states that relax faster.

  14. Long range electronic transport in microbial nanowires bridging an electrode and scanned probe

    NASA Astrophysics Data System (ADS)

    Veazey, Joshua; Lampa-Pastirk, Sanela; Walsh, Kathy; Sun, Jiebing; Zhang, Pengpeng; Reguera, Gemma; Tessmer, Stuart

    2011-03-01

    The filament-like appendages known as pili, expressed by the bacterium Geobacter sulfurreducens, are believed to act as electrically conductive nanowires. Previously, we used scanning tunneling microscopy to study the local density of states at different positions along the wire. However, the long range electron transfer believed to occur in this protein has not been directly observed. Here we discuss a system for verifying long range transport using a scanning probe technique. Transport at distances of more than a few nanometers would require a novel biological electron transfer process. The authors gratefully acknowledge support from the National Science Foundation (MCB-1021948) and the Michigan State University Foundation (Strategic Partnership Grant).

  15. Low energy electron induced reactions in fluorinated acetamide - probing negative ions and neutral stable counterparts*

    NASA Astrophysics Data System (ADS)

    Kopyra, Janina; König-Lehmann, Constanze; Illenberger, Eugen; Warneke, Jonas; Swiderek, Petra

    2016-06-01

    Electron impact to trifluoroacetamide (CF3CONH2, TFAA) in the energy range 0-12 eV leads to a variety of negative fragment ions which are formed via dissociative electron attachment (DEA). The underlying reactions range from single bond cleavages to remarkably complex reactions that lead to loss of the neutral units HF, H2O and HNCO as deduced from their directly observed ionic counterparts (M - H2O)-, (M - HF)- and (M - HNCO)-. Also formed are the pseudo-halogen ions CN- and OCN-. All these reactions proceed dominantly via a resonance located near 1 eV, i.e., electrons at subexcitation energies trigger reactions involving multiple bond cleavages. The electron induced generation of the neutral molecules HF, H2O and HNCO in condensed TFAA films is probed by temperature controlled thermal desorption spectrometry (TDS) which can be viewed as a complementary techniques to gas-phase experiments in DEA to directly probe the neutral counterparts. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  16. Strong-field ionization inducing multi-electron-hole coherence probed by attosecond pulses

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu

    2016-05-01

    Recent advances in attosecond spectroscopy has enabled resolving electron-hole dynamics in real time. The correlated electron-hole dynamics and the resulted coherence are directly related to how fast the ionization is completed. How the laser-induced electron-hole coherence evolves and whether it can be utilized to probe the core dynamics are among the key questions in attosecond physics or even attosecond chemistry. In this work, we propose a new scenario to apply IR-pump-XUV-probe schemes to resolving strong field ionization induced and attosecond pulse driven electron-hole dynamics and coherence in real time. The coherent driving of both the infrared laser and the attosecond pulse correlates the dynamics of the core-hole and the valence-hole which leads to the otherwise forbidden absorption and emission of XUV photon. An analytical model is developed based on the strong-field approximation by taking into account of the essential multielectron configurations. The emission spectra from the core-valence transition and the core-hole recombination are found modulating strongly as functions of the time delay between the two pulses, which provides a unique insight into the instantaneous ionization and the interplay of the multi-electron-hole coherence.

  17. Probing electron-phonon excitations in molecular junctions by quantum interference.

    PubMed

    Bessis, C; Della Rocca, M L; Barraud, C; Martin, P; Lacroix, J C; Markussen, T; Lafarge, P

    2016-02-11

    Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction's conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green's functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices.

  18. Experimental investigation on the floating potential of cylindrical Langmuir probes in non-Maxwellian electron distributions

    SciTech Connect

    Chung, Chin Wook

    2005-12-15

    [Chen and Arnush Phys. Plasmas 8, 5051 (2001)] theoretically showed that the floating potential is not constant but a function of electron density and the potential difference between the floating potential and the plasma potential differs significantly from the plane probe approximation. The electron energy distribution functions (EEDFs) in an inductively coupled plasma are measured to investigate the effect of the EEDF on the floating potential at argon pressures of 2 and 10 mTorr with respect to rf power. It is found that the measured EEDFs at 2 mTorr were bi-Maxwellian EEDFs with a high-energy tail and the potential differences were governed by the high electron temperatures. In the case of 10 mTorr, the measured EEDFs were nearly Maxwellian EEDFs at 10 mTorr and the potential difference agrees qualitatively with the theory of Chen and Arnush assuming that the electron energy distribution is a Maxwellian EEDF.

  19. Electronic and optical properties of the group-III nitrides, their heterostructures and alloys

    SciTech Connect

    Lambrecht, W.R.L.; Kim, K.; Rashkeev, S.N.; Segall, B.

    1996-11-01

    Various aspects of the electronic structure of the group III nitrides are discussed. The relation between band structures and optical response in the vacuum ultraviolet is analyzed for zincblende and wurtzite GaN and for wurtzite AlN and compared with available experimental data obtained from reflectivity and spectroscopic ellipsometry. The spin-orbit and crystal field splittings of the valence band edges and their relations to exciton fine structure are discussed including substrate induced biaxial strain effects. The band-offsets between the III-nitrides and some relevant semiconductor substrates obtained within the dielectric midgap energy model are presented and strain effects which may alter these values are discussed. The importance of lattice mismatch in bandgap bowing is exemplified by comparing Al{sub x}Ga{sub 1{minus}x}N and In{sub x}Ga{sub 1{minus}x}N.

  20. Electron impact excitation of the Ne II and Ne III fine structure levels

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Loch, S. D.; Pindzola, M. S.; Cumbee, R.; Stancil, P. C.; Ballance, C. P.; McLaughlin, B. M.

    2016-05-01

    Electron impact excitation cross sections and rate coefficients of the low lying levels of the Ne II and Ne III ions are of great interest in cool molecular environments including young stellar objects, photodissociation regions, active galactic nuclei, and X-ray dominated regions. We have carried out details computations for cross sections and rate coefficients using the Dirac R-matrix codes (DARC), the Breit-Pauli R-matrix codes (BP) and the Intermediate Coupling Frame Transformation (ICFT) codes, for both Ne II and Ne III. We also compare our results with previous calculations. We are primarily interested in rate coefficients in the temperature range below 1000 K, and the focus is on obtaining the most accurate rate coefficients for those temperatures. We present both a recommended set of effective collision strengths and an indication of the uncertainties on these values. Work at Auburn University and UGA partly supported by NASA Grant NNX15AE47G.

  1. Probing the role of a conserved salt bridge in the intramolecular electron transfer kinetics of human sulfite oxidase.

    PubMed

    Johnson-Winters, Kayunta; Davis, Amanda C; Arnold, Anna R; Berry, Robert E; Tollin, Gordon; Enemark, John H

    2013-08-01

    Sulfite oxidase (SO) is a vital metabolic enzyme that catalyzes the oxidation of toxic sulfite to sulfate. The proposed mechanism of this molybdenum cofactor dependent enzyme involves two one-electron intramolecular electron transfer (IET) steps from the molybdenum center to the iron of the b 5-type heme and two one-electron intermolecular electron transfer steps from the heme to cytochrome c. This work focuses on how the electrostatic interaction between two conserved amino acid residues, R472 and D342, in human SO (hSO) affects catalysis. The hSO variants R472M, R472Q, R472K, R472D, and D342K were created to probe the effect of the position of the salt bridge charges, along with the interaction between these two residues. With the exception of R472K, these variants all showed a significant decrease in their IET rate constants, k et, relative to wild-type hSO, indicating that the salt bridge between residues 472 and 342 is important for rapid IET. Surprisingly, however, except for R472K and R472D, all of the variants show k cat values higher than their corresponding k et values. The turnover number for R472D is about the same as k et, which suggests that the change in this variant is rate-limiting in catalysis. Direct spectroelectrochemical determination of the Fe(III/II) reduction potentials of the heme and calculation of the Mo(VI/V) potentials revealed that all of the variants affected the redox potentials of both metal centers, probably due to changes in their environments. Thus, the position of the positive charge of R472 and that of the negative charge of D342 are both important in hSO, and changing either the position or the nature of these charges perturbs IET and catalysis.

  2. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-15

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (10{sup 12}–10{sup 15 }m{sup −3}), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ∼ 170 G) and unmagnetized (B = 0) low density (7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3}) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3} show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 10{sup 13 }m{sup −3}. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  3. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-01

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (1012-1015 m-3), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ˜ 170 G) and unmagnetized (B = 0) low density (7 × 1012 m-3-7 × 1013 m-3) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 1012 m-3-7 × 1013 m-3 show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 1013 m-3. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  4. Characterization of microbially Fe(III)-reduced nontronite: Environmental cell-transmission electron microscopy study

    USGS Publications Warehouse

    Kim, J.-W.; Furukawa, Y.; Daulton, T.L.; Lavoie, D.; Newell, S.W.

    2003-01-01

    Microstructural changes induced by the microbial reduction of Fe(III) in nontronite by Shewanella oneidensis were studied using environmental cell (EC)-transmission electron microscopy (TEM), conventional TEM, and X-ray powder diffraction (XRD). Direct observations of clays by EC-TEM in their hydrated state allowed for the first time an accurate and unambiguous TEM measurement of basal layer spacings and the contraction of layer spacing caused by microbial effects, most likely those of Fe(III) reduction. Non-reduced and Fe(III)-reduced nontronite, observed by EC-TEM, exhibited fringes with mean d001 spacings of 1.50 nm (standard deviation, ?? = 0.08 nm) and 1.26 nm (?? = 0.10 nm), respectively. In comparison, the same samples embedded with Nanoplast resin, sectioned by microtome, and observed using conventional TEM, displayed layer spacings of 1.0-1.1 nm (non-reduced) and 1.0 nm (reduced). The results from Nanoplast-embedded samples are typical of conventional TEM studies, which have measured nearly identical layer spacings regardless of Fe oxidation state. Following Fe(III) reduction, both EC- and conventional TEM showed an increase in the order of nontronite selected area electron diffraction patterns while the images exhibited fewer wavy fringes and fewer layer terminations. An increase in stacking order in reduced nontronite was also suggested by XRD measurements. In particular, the ratio of the valley to peak intensity (v/p) of the 1.7 nm basal 001 peak of ethylene glycolated nontronite was measured at 0.65 (non-reduced) and 0.85 (microbially reduced).

  5. Electron densities for 10 planetary nebulae derived from the semiforbidden C III lambda 1907/1909 ratio. II

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Boggess, A.; Mccracken, C. W.; Hobbs, R. W.

    1981-01-01

    Electron densities for IC 351, IC 2165, J900, IC 3568, NGC 6644, NGC 6891, IC 4997, NGC 7009, Hu 1-2, and IC 5217 are derived from high-dispersion semiforbidden C III spectrograms. For seven of these nebulae, the derived electron density is larger than the values derived from either surface brightness measurements or forbidden line ratios. Only one object, Hu 1-2, shows pronounced splitting of the semiforbidden C III emission lines due to a large expansion velocity.

  6. Selective sensing of submicromolar iron(III) with 3,3‧,5,5‧-tetramethylbenzidine as a chromogenic probe

    NASA Astrophysics Data System (ADS)

    Zhang, Lufeng; Du, Jianxiu

    2016-04-01

    The development of highly selective and sensitive method for iron(III) detection is of great importance both from human health as well as environmental point of view. We herein reported a simple, selective and sensitive colorimetric method for the detection of Fe(III) at submicromolar level with 3,3,‧5,5‧-tetramethylbenzidine (TMB) as a chromogenic probe. It was observed that Fe(III) could directly oxidize TMB to form a blue solution without adding any extra oxidants. The reaction has a stoichiometric ratio of 1:1 (Fe(III)/TMB) as determined by a molar ratio method. The resultant color change can be perceived by the naked eye or monitored the absorbance change at 652 nm. The method allowed the measurement of Fe(III) in the range 1.0 × 10- 7-1.5 × 10- 4 mol L- 1 with a detection limit of 5.5 × 10- 8 mol L- 1. The relative standard deviation was 0.9% for eleven replicate measurements of 2.5 × 10- 5 mol L- 1 Fe(III) solution. The chemistry showed high selectivity for Fe(III) in contrast to other common cation ions. The practically of the method was evaluated by the determination of Fe in milk samples; good consistency was obtained between the results of this method and atomic absorption spectrophotometry as indicated by statistical analysis.

  7. Low-energy electron attachment to SF6. III. From thermal detachment to the electron affinity of SF6.

    PubMed

    Viggiano, Albert A; Miller, Thomas M; Friedman, Jeffrey F; Troe, Jürgen

    2007-12-28

    The thermal attachment of electrons to SF(6) is measured in a flowing-afterglow Langmuir-probe apparatus monitoring electron concentrations versus axial position in the flow tube. Temperatures between 300 and 670 K and pressures of the bath gas He in the range of 0.3-9 Torr are employed. Monitoring the concentrations of SF(6)(-) and SF(5)(-), the latter of which does not detach electrons under the applied conditions, an onset of thermal detachment and dissociation of SF(6) at temperatures above about 530 K is observed. Analysis of the mechanism allows one to deduce thermal detachment rate coefficients. Thermal dissociation rate coefficients for the reaction SF(6)(-)-->SF(5)(-)+F can only be estimated by unimolecular rate theory based on the results from Part I and II of this series. Under the applied conditions they are found to be smaller than detachment rate coefficients. Combining thermal attachment and detachment rates in a third-law analysis, employing calculated vibrational frequencies of SF(6) and SF(6)(-), leads to the electron affinity (EA) of SF(6)(-). The new value of EA=1.20(+/-0.05) eV is significantly higher than previous recommendations which were based on less direct methods.

  8. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe.

    PubMed

    Zhang, C J; Hua, J F; Xu, X L; Li, F; Pai, C-H; Wan, Y; Wu, Y P; Gu, Y Q; Mori, W B; Joshi, C; Lu, W

    2016-07-11

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.

  9. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    DOE PAGESBeta

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; Li, F.; Pai, C. -H.; Wan, Y.; Wu, Y. P.; Gu, Y. Q.; Mori, W. B.; Joshi, C.; et al

    2016-07-11

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of themore » wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. As a result, the capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.« less

  10. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    PubMed Central

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; Li, F.; Pai, C.-H.; Wan, Y.; Wu, Y. P.; Gu, Y. Q.; Mori, W. B.; Joshi, C.; Lu, W.

    2016-01-01

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method. PMID:27403561

  11. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; Li, F.; Pai, C.-H.; Wan, Y.; Wu, Y. P.; Gu, Y. Q.; Mori, W. B.; Joshi, C.; Lu, W.

    2016-07-01

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.

  12. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe.

    PubMed

    Zhang, C J; Hua, J F; Xu, X L; Li, F; Pai, C-H; Wan, Y; Wu, Y P; Gu, Y Q; Mori, W B; Joshi, C; Lu, W

    2016-01-01

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method. PMID:27403561

  13. Rapid Electron Transfer within the III-IV Supercomplex in Corynebacterium glutamicum

    PubMed Central

    Graf, Simone; Fedotovskaya, Olga; Kao, Wei-Chun; Hunte, Carola; Ädelroth, Pia; Bott, Michael; von Ballmoos, Christoph; Brzezinski, Peter

    2016-01-01

    Complex III in C. glutamicum has an unusual di-heme cyt. c1 and it co-purifies with complex IV in a supercomplex. Here, we investigated the kinetics of electron transfer within this supercomplex and in the cyt. aa3 alone (cyt. bc1 was removed genetically). In the reaction of the reduced cyt. aa3 with O2, we identified the same sequence of events as with other A-type oxidases. However, even though this reaction is associated with proton uptake, no pH dependence was observed in the kinetics. For the cyt. bc1-cyt. aa3 supercomplex, we observed that electrons from the c-hemes were transferred to CuA with time constants 0.1–1 ms. The b-hemes were oxidized with a time constant of 6.5 ms, indicating that this electron transfer is rate-limiting for the overall quinol oxidation/O2 reduction activity (~210 e−/s). Furthermore, electron transfer from externally added cyt. c to cyt. aa3 was significantly faster upon removal of cyt. bc1 from the supercomplex, suggesting that one of the c-hemes occupies a position near CuA. In conclusion, isolation of the III-IV-supercomplex allowed us to investigate the kinetics of electron transfer from the b-hemes, via the di-heme cyt. c1 and heme a to the heme a3-CuB catalytic site of cyt. aa3. PMID:27682138

  14. Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.

    2014-01-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

  15. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas.

    PubMed

    Kaindl, R A; Carnahan, M A; Hägele, D; Lövenich, R; Chemla, D S

    2003-06-12

    Many-body systems in nature exhibit complexity and self-organization arising from seemingly simple laws. For example, the long-range Coulomb interaction between electrical charges has a simple form, yet is responsible for a plethora of bound states in matter, ranging from the hydrogen atom to complex biochemical structures. Semiconductors form an ideal laboratory for studying many-body interactions of electronic quasiparticles among themselves and with lattice vibrations and light. Oppositely charged electron and hole quasiparticles can coexist in an ionized but correlated plasma, or form bound hydrogen-like pairs called excitons. The pathways between such states, however, remain elusive in near-visible optical experiments that detect a subset of excitons with vanishing centre-of-mass momenta. In contrast, transitions between internal exciton levels, which occur in the far-infrared at terahertz (1012 s(-1)) frequencies, are independent of this restriction, suggesting their use as a probe of electron-hole pair dynamics. Here we employ an ultrafast terahertz probe to investigate directly the dynamical interplay of optically-generated excitons and unbound electron-hole pairs in GaAs quantum wells. Our observations reveal an unexpected quasi-instantaneous excitonic enhancement, the formation of insulating excitons on a 100-ps timescale, and the conditions under which excitonic populations prevail.

  16. Electronic Raman Scattering as an Ultra-Sensitive Probe of Strain Effects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Angelo; Fluegel, Brian; Beaton, Dan

    Semiconductor strain engineering has become a critical feature of high-performance electronics due to the significant device performance enhancements it enables. These improvements that emerge from strain induced modifications to the electronic band structure necessitate new ultra-sensitive tools for probing strain in semiconductors. Using electronic Raman scattering, we recently showed that it is possible to measure minute amounts of strain in thin semiconductor epilayers. We applied this strain measurement technique to two different semiconductor alloy systems, using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Comparing our strain sensitivity and signal strength in AlxGa1-xAs with those obtained using the industry-standard technique of phonon Raman scattering we found a sensitivity improvement of ×200, and a signal enhancement of 4 ×103 thus obviating key constraints in semiconductor strain metrology. The sensitivity of this approach rivals that of contemporary techniques and opens up a new realm for optically probing strain effects on electronic band structure. We acknowledge the financial support of the DOE Office of Science, BES under DE-AC36-80GO28308.

  17. Elemental analysis of asbestos fibers by means of electron probe techniques

    PubMed Central

    Rubin, Ivan B.; Maggiore, Carl J.

    1974-01-01

    The identification and characterization of microparticles has become an important field of study in recent years due to their presence in the environment and association with pathogenesis. Asbestos fibers have been intensively studied for these reasons. Since conventional microscopy has not provided unique identification of these materials, electron probe microanalysis, which yields chemical data, has been utilized in conjunction with other techniques to provide the necessary answers. The options now available to undertake electron probe analysis are discussed with relation to their utilization for microparticle analyses. Two types of electron sources are available, thermionic and field emission. The x-ray spectroscopy requires the use of either wavelength-dispersive focussing crystal spectrometers or an energy-dispersive Si(Li) x-ray detector. Data are presented to demonstrate the feasibility of asbestos identification by using modified raw data obtained with a scanning electron microscope and energy-dispersive x-ray spectrometer. Further, the extension of the technique to other microparticle identification problems is discussed. ImagesFIGURE 1.FIGURE 5. PMID:4470958

  18. Electron beam induced current in InSb-InAs nanowire type-III heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Shik, A.; Pitanti, A.; Tredicucci, A.; Ercolani, D.; Sorba, L.; Beltram, F.; Ruda, H. E.

    2012-08-01

    InSb-InAs nanowire heterostructure diodes investigated by electron beam induced current (EBIC) demonstrate an unusual spatial profile where the sign of the EBIC signal changes in the vicinity of the heterointerface. A qualitative explanation confirmed by theoretical calculations is based on the specific band diagram of the structure representing a type-III heterojunction with an accumulation layer in InAs. The sign of the EBIC signal depends on the specific parameters of this layer. In the course of measurements, the diffusion length of holes in InAs and its temperature dependence are also determined.

  19. Electron spin echo study of doxyl spin probes in micellar systems of ammonium perfluorooctanoate

    SciTech Connect

    Romanelli, M.; Ristori, S.; Martini, G. ); Kang, Y.S.; Kevan, L. )

    1994-02-24

    The two-phase and three-pulse electron spin echo techniques were applied to investigate the behavior of doxyl stearic acid spin probes in micellar aqueous solutions of ammonium perfluorooctanoate. Three doxyl stearic acids with the nitroxide group in different positions on the alkyl chain were used as spin probes, and deuteriated water was used to study the deuterium modulation of the echo signals. The experimental patterns were interpreted by best-fit spectra calculated by taking into account both the echo decay and the nuclear modulation. The analysis determines the number of deuterium nuclei in the surroundings of the NO groups and the time constant for the electron spin reorientation causing spectral diffusion and echo decay. From these data we conclude that water molecules belonging to the NO solvation sphere were maintained in the micelles and that the long-chain nitroxide probes were tilted in the micelle core in order to occupy regions with relatively easy water accessibility which was slightly higher for 12-DXSA than for 5- and 16-DXSA. The modulation of the hyperfine couplings of the methyl protons due to their rotational motion was the main mechanism contributing to the echo decay. 44 refs., 4 figs., 2 tabs.

  20. TOPICAL REVIEW: Electron spin resonance and related phenomena of low-dimensional electronic systems in III V compounds

    NASA Astrophysics Data System (ADS)

    Meisels, Ronald

    2005-01-01

    In this work, dc and high-frequency transport phenomena directed primarily at spin properties in two-dimensional electronic systems (2DES) and the quantum Hall effect (QHE) are reviewed. The spin properties are probed by electron spin resonance (ESR). The experimental methods used are presented and the theoretical background based on k sdot p theory is given. The effects of further reducing the dimensionality are discussed in the context of experiments on zero-dimensional systems, 'quantum dots'. To place this work in perspective, the ESR of 'bulk', three-dimensional systems and of strained bulk materials is also treated. Experimental results are presented to clarify the origin of the interaction between the 2DES and the electromagnetic radiation responsible for ESR. These results are compared with theoretical work on the electric dipole and magnetic dipole oscillator strength. The magnetic dipole interaction is found to dominate. The 2DES is subject to electron-electron interaction effects. While no influence on the resonance energy, in accordance with 'Kohn's theorem', is found, indications of many-body effects on the temperature dependence of the spin polarization of the ESR are observed. This is in accordance with other experimental and theoretical works which also found (or predicted) the formation of states with reduced spin polarization. While the influence of the interactions between electrons on the ESR frequency is absent, the hyperfine interaction between electrons and nuclei causes a shift (called the Overhauser shift) of the position of the ESR when the nuclei are spin polarized. Experimental results indicate that the appearance of this shift coincides with magnetic field regions where the plateaus of the quantum Hall effect are present.

  1. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

    SciTech Connect

    Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C. J.; Turunen, E.; Tsuchiya, F.

    2015-04-21

    Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.

  2. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

    DOE PAGESBeta

    Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; et al

    2015-04-21

    Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometermore » and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.« less

  3. ICPP: Scale size of of magnetic turbulence as probed with 30 MeV runaway electrons

    NASA Astrophysics Data System (ADS)

    Jaspers, Roger

    2000-10-01

    This paper reviews results concerning generation, confinement and transport of runaway electrons in the energy range 20-30 MeV in the TEXTOR tokamak. For future fusion reactors, it is of major importance to know the processes of runaway generation and runaway loss after disruptions, because of the potential damage to first wall components. Second, since the runaway electrons are effectively collisionless, their confinement is determined by the magnetic field turbulence. In this way the runaway transport provides a unique opportunity to probe turbulence in the core of a thermonuclear plasma. Runaway electrons above 20 MeV emit synchrotron radiation in the (near) infrared, which can easily be detected by thermographic cameras. This technique is developed and exploited at the TEXTOR-94 tokamak and has resulted in some spectacular results. These include: the experimental evidence of the secondary (`knock-on') runaway generation; the discovery of the runaway snake; the observation of disruption generated runaways; the probing of magnetic turbulence in the core of the plasma in Ohmic and additionally heated plasmas. The paper reviews these results with special emphasis on the subject of probing magnetic turbulence in the core of the plasma. Measurements in the TEXTOR-94 tokamak show that after switching on Neutral Beam Injection, the runaway population decays. The decay only starts with a significant delay, which decreases with increasing NBI heating power. This delay provides direct evidence of the energy dependence of runaway confinement, which is expected if magnetic modes govern the loss of runaway electrons. These observations allow to estimate the mode width δ of the magnetic perturbations:δ smaller than 0.5 cm in Ohmic discharges, increasing to δ=3D 4.4 cm for 0.6 MW NBI power.

  4. PROBING THE LARGE-SCALE TOPOLOGY OF THE HELIOSPHERIC MAGNETIC FIELD USING JOVIAN ELECTRONS

    SciTech Connect

    Owens, M. J.; Horbury, T. S.; Arge, C. N.

    2010-05-10

    Jupiter's magnetosphere acts as a point source of near-relativistic electrons within the heliosphere. In this study, three solar cycles of Jovian electron data in near-Earth space are examined. Jovian electron intensity is found to peak for an ideal Parker spiral connection, but with considerable spread about this point. Assuming the peak in Jovian electron counts indicates the best magnetic connection to Jupiter, we find a clear trend for fast and slow solar wind to be over- and under-wound with respect to the ideal Parker spiral, respectively. This is shown to be well explained in terms of solar wind stream interactions. Thus, modulation of Jovian electrons by corotating interaction regions (CIRs) may primarily be the result of changing magnetic connection, rather than CIRs acting as barriers to cross-field diffusion. By using Jovian electrons to remote sensing magnetic connectivity with Jupiter's magnetosphere, we suggest that they provide a means to validate solar wind models between 1 and 5 AU, even when suitable in situ solar wind observations are not available. Furthermore, using Jovian electron observations as probes of heliospheric magnetic topology could provide insight into heliospheric magnetic field braiding and turbulence, as well as any systematic under-winding of the heliospheric magnetic field relative to the Parker spiral from footpoint motion of the magnetic field.

  5. Probing the spinor nature of electronic states in nanosize non-collinear magnets

    NASA Astrophysics Data System (ADS)

    Fischer, Jeison A.; Sandratskii, Leonid M.; Phark, Soo-Hyon; Ouazi, Safia; Pasa, André A.; Sander, Dirk; Parkin, Stuart S. P.

    2016-10-01

    Non-collinear magnetization textures provide a route to novel device concepts in spintronics. These applications require laterally confined non-collinear magnets (NCM). A crucial aspect for potential applications is how the spatial proximity between the NCM and vacuum or another material impacts the magnetization texture on the nanoscale. We focus on a prototypical exchange-driven NCM given by the helical spin order of bilayer Fe on Cu(111). Spin-polarized scanning tunnelling spectroscopy and density functional theory reveal a nanosize- and proximity-driven modification of the electronic and magnetic structure of the NCM in interfacial contact with a ferromagnet or with vacuum. An intriguing non-collinearity between the local magnetization in the sample and the electronic magnetization probed above its surface results. It is a direct consequence of the spinor nature of electronic states in NCM. Our findings provide a possible route for advanced control of nanoscale spin textures by confinement.

  6. Probing the spinor nature of electronic states in nanosize non-collinear magnets

    PubMed Central

    Fischer, Jeison A.; Sandratskii, Leonid M.; Phark, Soo-Hyon; Ouazi, Safia; Pasa, André A.; Sander, Dirk; Parkin, Stuart S. P.

    2016-01-01

    Non-collinear magnetization textures provide a route to novel device concepts in spintronics. These applications require laterally confined non-collinear magnets (NCM). A crucial aspect for potential applications is how the spatial proximity between the NCM and vacuum or another material impacts the magnetization texture on the nanoscale. We focus on a prototypical exchange-driven NCM given by the helical spin order of bilayer Fe on Cu(111). Spin-polarized scanning tunnelling spectroscopy and density functional theory reveal a nanosize- and proximity-driven modification of the electronic and magnetic structure of the NCM in interfacial contact with a ferromagnet or with vacuum. An intriguing non-collinearity between the local magnetization in the sample and the electronic magnetization probed above its surface results. It is a direct consequence of the spinor nature of electronic states in NCM. Our findings provide a possible route for advanced control of nanoscale spin textures by confinement. PMID:27721384

  7. Fiber optic probe of free electron evanescent fields in the optical frequency range

    SciTech Connect

    So, Jin-Kyu MacDonald, Kevin F.; Zheludev, Nikolay I.

    2014-05-19

    We introduce an optical fiber platform which can be used to interrogate proximity interactions between free-electron evanescent fields and photonic nanostructures at optical frequencies in a manner similar to that in which optical evanescent fields are sampled using nanoscale aperture probes in scanning near-field microscopy. Conically profiled optical fiber tips functionalized with nano-gratings are employed to couple electron evanescent fields to light via the Smith-Purcell effect. We demonstrate the interrogation of medium energy (30–50 keV) electron fields with a lateral resolution of a few micrometers via the generation and detection of visible/UV radiation in the 700–300 nm (free-space) wavelength range.

  8. Probing of electronic structures of La@C82 superatoms upon clustering realized using glycine nanocavities

    NASA Astrophysics Data System (ADS)

    Taninaka, Atsushi; Ochiai, Takahiro; Kanazawa, Ken; Takeuchi, Osamu; Shigekawa, Hidemi

    2015-12-01

    We have succeeded in the first direct probe of the change in the electronic structures of La@C82 superatoms upon clustering by scanning tunneling microscopy/spectroscopy (STM/STS). An array of ∼1.3-nm-diameter glycine nanocavities self-assembled on a Cu(111) surface was used as a template. Isolated La@C82 superatoms were stably observed on terraces without diffusion to step edges, which enabled us to observe the change in the electronic structures associated with single, dimer, and clustered La@C82. A cluster with four La@C82 superatoms showed electronic structures similar to those obtained for thin films in previous works.

  9. Optical Probing of Ultrafast Electronic Decay in Bi and Sb with Slow Phonons

    NASA Astrophysics Data System (ADS)

    Li, J. J.; Chen, J.; Reis, D. A.; Fahy, S.; Merlin, R.

    2013-01-01

    Illumination with laser sources leads to the creation of excited electronic states of particular symmetries, which can drive isosymmetric vibrations. Here, we use a combination of ultrafast stimulated and cw spontaneous Raman scattering to determine the lifetime of A1g and Eg electronic coherences in Bi and Sb. Our results both shed new light on the mechanisms of coherent phonon generation and represent a novel way to probe extremely fast electron decoherence rates. The Eg state, resulting from an unequal distribution of carriers in three equivalent band regions, is extremely short lived. Consistent with theory, the lifetime of its associated driving force reaches values as small as 2 (6) fs for Bi (Sb) at 300 K.

  10. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    DOE PAGESBeta

    Fluegel., Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-05-28

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We also applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Thus, comparing our strain sensitivity and signal strength inmore » AlxGa 1-x As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology.« less

  11. Design and measurement considerations of hairpin resonator probes for determining electron number density in collisional plasmas

    NASA Astrophysics Data System (ADS)

    Sands, Brian L.; Siefert, Nicholas S.; Ganguly, Biswa N.

    2007-11-01

    The hairpin resonator probe has been developed in recent years into a sophisticated diagnostic technique capable of measuring spatially resolved electron number densities in sub-Torr discharges. In this paper, we extend the use of this technique to discharges at pressures greater than 1 Torr. In this regime, the effects of electron-neutral collisions become significant and a suitable correction is applied in conjunction with the sheath correction. We also describe elements of hairpin design and coupling that need to be more carefully controlled in order to maximize the range of electron densities that can be detected at higher pressures. Finally, we discuss limitations to the transmission-line model used routinely to interpret hairpin data as they apply to measurements in a nonuniform plasma.

  12. Low magnification differential phase contrast imaging of electric fields in crystals with fine electron probes.

    PubMed

    Taplin, D J; Shibata, N; Weyland, M; Findlay, S D

    2016-10-01

    To correlate atomistic structure with longer range electric field distribution within materials, it is necessary to use atomically fine electron probes and specimens in on-axis orientation. However, electric field mapping via low magnification differential phase contrast imaging under these conditions raises challenges: electron scattering tends to reduce the beam deflection due to the electric field strength from what simple models predict, and other effects, most notably crystal mistilt, can lead to asymmetric intensity redistribution in the diffraction pattern which is difficult to distinguish from that produced by long range electric fields. Using electron scattering simulations, we explore the effects of such factors on the reliable interpretation and measurement of electric field distributions. In addition to these limitations of principle, some limitations of practice when seeking to perform such measurements using segmented detector systems are also discussed.

  13. Probe-based measurement of lateral single-electron transfer between individual molecules

    PubMed Central

    Steurer, Wolfram; Fatayer, Shadi; Gross, Leo; Meyer, Gerhard

    2015-01-01

    The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques. PMID:26387533

  14. Atom-column distinction by Kikuchi pattern observed by an aberration-corrected convergent electron probe.

    PubMed

    Saitoh, Koh; Tatara, Yoshihide; Tanaka, Nobuo

    2010-01-01

    Kikuchi patterns of an MgO crystal at the [110] incidence have been taken by a sub-angstrom electron beam focused on the single atom-column. A significant change in intensity has been observed in the 111 band; that is, the contrast in the central and side bands is reversed depending on the illuminated atom-column. The contrast reversal in the 111 band has been reproduced by multislice simulation using the frozen-phonon approach. The beam-position dependence of the 111 band intensity can be interpreted by electron channelling and the reciprocity theorem. The anomalous Kikuchi pattern can be a probe for identifying the illuminated atom-column, which is useful for column-by-column electron energy-loss spectroscopy and X-ray emission spectroscopy.

  15. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    PubMed Central

    Fluegel, Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-01-01

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10−4. Comparing our strain sensitivity and signal strength in AlxGa1−xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology. PMID:26017853

  16. The speeds of electrons that excite solar radio bursts of type III

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Goldman, M. V.; Steinberg, J. L.; Hoang, S.

    1987-01-01

    Evidence is presented that solar type III radio bursts at kilometric wavelengths are excited by electrons with average speeds of 0.14 c; i.e., in good agreement with in situ measurements by Lin et al. (1981; 1986), but considerably lower than the generally accepted values of 0.3 to 0.5 c. A set of 28 bursts for which electrons and/or plasma waves were observed at ISEE-3 is examined, and it is found that the initial parts of all bursts were due to plasma radiation at the fundamental, and that the fastest electrons that produce radio emission range from 0.25 c down to 0.07 c (average 0.14 c). The slower electrons, those that produce fundamental radiation at approximately the time of burst peak, have an average speed of 0.06 c and a range from about 0.10 c down to 0.03 c.There is no evidence in the data for a systematic increase or decrease of exciting electron speed with distance from the sun.

  17. A novel probe head for high-field, high-frequency electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Annino, G.; Cassettari, M.; Longo, I.; Martinelli, M.; Van Bentum, P. J. M.; Van der Horst, E.

    1999-03-01

    A probe head especially useful for electron paramagnetic resonance (EPR) spectrometers working at high field—high frequency is presented. The probe head is based on the whispering gallery mode dielectric resonators that proved very effective in the ultrahigh frequency range. The excitation network uses a properly shaped dielectric waveguide sharing its external field pattern with the field of the resonators. Very simple resonators made with polyethylene in both single and doubly stacked disk configurations are used. The experimental characterization by a submillimeter network analyzer shows for the resonances studied in a wide range of frequencies up to ≈400 GHz high loaded merit factor QL values and good coupling factors. Resonators also maintain their general characteristics when large quantities of low loss samples for EPR measurements are properly inserted. Preliminary EPR spectra of diphenylpicrylhyldrazyl at 7 and 10 T obtained with the novel apparatus are finally presented.

  18. The Alternative complex III: properties and possible mechanisms for electron transfer and energy conservation.

    PubMed

    Refojo, Patrícia N; Teixeira, Miguel; Pereira, Manuela M

    2012-10-01

    Alternative complexes III (ACIII) are recently identified membrane-bound enzymes that replace functionally the cytochrome bc(1/)b(6)f complexes. In general, ACIII are composed of four transmembrane proteins and three peripheral subunits that contain iron-sulfur centers and C-type hemes. ACIII are built by a combination of modules present in different enzyme families, namely the complex iron-sulfur molybdenum containing enzymes. In this article a historical perspective on the investigation of ACIII is presented, followed by an overview of the present knowledge on these enzymes. Electron transfer pathways within the protein are discussed taking into account possible different locations (cytoplasmatic or periplasmatic) of the iron-sulfur containing protein and their contribution to energy conservation. In this way several hypotheses for energy conservation modes are raised including linear and bifurcating electron transfer pathways. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).

  19. Runaway electron damage to the Tore Supra Phase III outboard pump limiter

    SciTech Connect

    Nygren, R.; Lutz, T.; Walsh, D.; Martin, G.; Chatelier, M.; Loarer, T.; Guilhem, D.

    1996-08-01

    Operation of the Phase III outboard pump limiter (OPL) in Tore Supra in 1994 was terminated prematurely when runaway electrons during the current decay following a disruption pierced leading edge tube on the electron side and caused a water leak. The location, about 20 mm outside the last closed flux surface during normal operation, and the infrared (IR) images of the limiter indicate that the runaways moved in large outward steps, i.e. tens of millimeters, in one toroidal revolution. For plasma (runaway) currents in the range of 155 to 250 kA, the drift orbits open to the outside. Basic trajectory computations suggest that such motion is possible under the conditions present for this experiment. Activation measurements made on sections of the tube to indicate the area of local damage are presented here. An understanding of this event may provide important guidance regarding the potential damage from runaways in future tokamaks.

  20. Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond

    PubMed Central

    Hall, L. T.; Kehayias, P.; Simpson, D. A.; Jarmola, A.; Stacey, A.; Budker, D.; Hollenberg, L. C. L.

    2016-01-01

    Electron spin resonance (ESR) describes a suite of techniques for characterizing electronic systems with applications in physics, chemistry, and biology. However, the requirement for large electron spin ensembles in conventional ESR techniques limits their spatial resolution. Here we present a method for measuring ESR spectra of nanoscale electronic environments by measuring the longitudinal relaxation time of a single-spin probe as it is systematically tuned into resonance with the target electronic system. As a proof of concept, we extracted the spectral distribution for the P1 electronic spin bath in diamond by using an ensemble of nitrogen-vacancy centres, and demonstrated excellent agreement with theoretical expectations. As the response of each nitrogen-vacancy spin in this experiment is dominated by a single P1 spin at a mean distance of 2.7 nm, the application of this technique to the single nitrogen-vacancy case will enable nanoscale ESR spectroscopy of atomic and molecular spin systems. PMID:26728001

  1. Microstructural characterization of an Al-li-mg-cu alloy by correlative electron tomography and atom probe tomography.

    PubMed

    Xiong, Xiangyuan; Weyland, Matthew

    2014-08-01

    Correlative electron tomography and atom probe tomography have been carried out successfully on the same region of a commercial 8090 aluminum alloy (Al-Li-Mg-Cu). The combination of the two techniques allows accurate geometric reconstruction of the atom probe tomography data verified by crystallographic information retrieved from the reconstruction. Quantitative analysis of the precipitate phase compositions and volume fractions of each phase have been obtained from the atom probe tomography and electron tomography at various scales, showing strong agreement between both techniques.

  2. Spectroscopic and Theoretical Study of Spin-Dependent Electron Transfer in an Iron(III) Superoxo Complex.

    PubMed

    Stout, Heather D; Kleespies, Scott T; Chiang, Chien-Wei; Lee, Way-Zen; Que, Lawrence; Münck, Eckard; Bominaar, Emile L

    2016-06-01

    It was shown previously (J. Am. Chem. Soc. 2014, 136, 10846) that bubbling of O2 into a solution of Fe(II)(BDPP) (H2BDPP = 2,6-bis[[(S)-2-(diphenylhydroxymethyl)-1-pyrrolidinyl]methyl]pyridine) in tetrahydrofuran at -80 °C generates a high-spin (SFe = (5)/2) iron(III) superoxo adduct, 1. Mössbauer studies revealed that 1 is an exchange-coupled system, [Formula: see text], where SR = (1)/2 is the spin of the superoxo radical, of which the spectra were not well enough resolved to determine whether the coupling was ferromagnetic (S = 3 ground state) or antiferromagnetic (S = 2). The glass-forming 2-methyltetrahydrofuran solvent yields highly resolved Mössbauer spectra from which the following data have been extracted: (i) the ground state of 1 has S = 3 (J < 0); (ii) |J| > 15 cm(-1); (iii) the zero-field-splitting parameters are D = -1.1 cm(-1) and E/D = 0.02; (iv) the major component of the electric-field-gradient tensor is tilted ≈7° relative to the easy axis of magnetization determined by the MS = ±3 and ±2 doublets. The excited-state MS = ±2 doublet yields a narrow parallel-mode electron paramagnetic resonance signal at g = 8.03, which was used to probe the magnetic hyperfine splitting of (17)O-enriched O2. A theoretical model that considers spin-dependent electron transfer for the cases where the doubly occupied π* orbital of the superoxo ligand is either "in" or "out" of the plane defined by the bent Fe-OO moiety correctly predicts that 1 has an S = 3 ground state, in contrast to the density functional theory calculations for 1, which give a ground state with both the wrong spin and orbital configuration. This failure has been traced to a basis set superposition error in the interactions between the superoxo moiety and the adjacent five-membered rings of the BDPP ligand and signals a fundamental problem in the quantum chemistry of O2 activation. PMID:27159412

  3. Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor.

    PubMed

    Kashefi, Kazem; Shelobolina, Evgenya S; Elliott, W Crawford; Lovley, Derek R

    2008-01-01

    Recent studies have suggested that the structural Fe(III) within phyllosilicate minerals, including smectite and illite, is an important electron acceptor for Fe(III)-reducing microorganisms in sedimentary environments at moderate temperatures. The reduction of structural Fe(III) by thermophiles, however, has not previously been described. A wide range of thermophilic and hyperthermophilic Archaea and Bacteria from marine and freshwater environments that are known to reduce poorly crystalline Fe(III) oxides were tested for their ability to reduce structural (octahedrally coordinated) Fe(III) in smectite (SWa-1) as the sole electron acceptor. Two out of the 10 organisms tested, Geoglobus ahangari and Geothermobacterium ferrireducens, were not able to conserve energy to support growth by reduction of Fe(III) in SWa-1 despite the fact that both organisms were originally isolated with solid-phase Fe(III) as the electron acceptor. The other organisms tested were able to grow on SWa-1 and reduced 6.3 to 15.1% of the Fe(III). This is 20 to 50% less than the reported amounts of Fe(III) reduced in the same smectite (SWa-1) by mesophilic Fe(III) reducers. Two organisms, Geothermobacter ehrlichii and archaeal strain 140, produced copious amounts of an exopolysaccharide material, which may have played an active role in the dissolution of the structural iron in SWa-1 smectite. The reduction of structural Fe(III) in SWa-1 by archaeal strain 140 was studied in detail. Microbial Fe(III) reduction was accompanied by an increase in interlayer and octahedral charges and some incorporation of potassium and magnesium into the smectite structure. However, these changes in the major element chemistry of SWa-1 smectite did not result in the formation of an illite-like structure, as reported for a mesophilic Fe(III) reducer. These results suggest that thermophilic Fe(III)-reducing organisms differ in their ability to reduce and solubilize structural Fe(III) in SWa-1 smectite and that SWa-1

  4. Non-invasive probe diagnostic method for electron temperature and ion current density in atmospheric pressure plasma jet source

    SciTech Connect

    Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang; Moon, Jun-Hyeon; Chung, Chin-Wook; Kim, Yunjung; Cho, Guangsup

    2015-08-15

    The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. From the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.

  5. [Electrone probe microanalysis of rubidium retention in myocell of rat heart during acute ischemia].

    PubMed

    Pogorelov, A G; Pogorelova, V N; Pogorelova, M A

    2012-01-01

    In the given investigation contents of potassium and its physiological analog, rubidium, are determined in cardiomyocyte. Applying Electron Probe Microanalysis (EPMA), cytoplasmic concentrations of elements (K, Rb) are measured. The data obtained exhibit that for initial acute ischemia phase the active transport is involved in the uptake of rubidium which competes with potassium entry in cardiac myocell. Then, deep deenergization leads to the intracellular potassium depletion and rubidium retention. This suggests that Rb+ is physiologically not complete analog for K+. Results of combined perfusion with and without rubidium allow us to hypothesize the appearance of cascade of ionic transports to compensate acute ischemic disturbances following the oxygen and substrate deficiency. PMID:23136775

  6. Improvements in Electron-Probe Microanalysis: Applications to Terrestrial, Extraterrestrial, and Space-Grown Materials

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Armstrong, John

    2004-01-01

    Improvement in the accuracy of electron-probe microanalysis (EPMA) has been accomplished by critical assessment of standards, correction algorithms, and mass absorption coefficient data sets. Experimental measurement of relative x-ray intensities at multiple accelerating potential highlights errors in the absorption coefficient. The factor method has been applied to the evaluation of systematic errors in the analysis of semiconductor and silicate minds. Accurate EPMA of Martian soil stimulant is necessary in studies that build on Martian rover data in anticipation of missions to Mars.

  7. Matter under extreme conditions probed by a seeded free-electron-laser

    SciTech Connect

    Bencivenga, F.; Principi, E.; Cucini, R.; Danailov, M. B.; Demidovich, A.; D’Amico, F.; Di Fonzo, S.; Gessini, A.; Kurdi, N.; Mahne, N.; Raimondi, L.; Zangrando, M.; Masciovecchio, C.; Giangrisostomi, E.; Battistoni, A.; Svetina, C.; Di Cicco, A.; Gunnella, R.; Hatada, K.; Filipponi, A.; and others

    2015-08-17

    FERMI is the first user dedicated seeded free-electron-laser (FEL) working in the extreme ultraviolet (XUV) and soft x-ray range. The EIS-TIMEX experimental end-station was availabe to external users since from the beginning of the user operation of the facility, in Dicember 2012. EIS-TIMEX has been conceived to exploit the unique properties of the FERMI source to study matter under extreme and metastable thermodynamic conditions. We hereby report on its basic parameters and applications, which includes very low jitter (i.e., high time resolution) pump-probe measurements.

  8. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    PubMed

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  9. On modified finite difference method to obtain the electron energy distribution functions in Langmuir probes

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Ju; Choi, Hyeok; Kim, Jae-Hyun; Lee, Se-Hun; Yoo, Tae-Ho; Chung, Chin-Wook

    2016-06-01

    A modified central difference method (MCDM) is proposed to obtain the electron energy distribution functions (EEDFs) in single Langmuir probes. Numerical calculation of the EEDF with MCDM is simple and has less noise. This method provides the second derivatives at a given point as the weighted average of second order central difference derivatives calculated at different voltage intervals, weighting each by the square of the interval. In this paper, the EEDFs obtained from MCDM are compared to those calculated via the averaged central difference method. It is found that MCDM effectively suppresses the noises in the EEDF, while the same number of points are used to calculate of the second derivative.

  10. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  11. Variation of Langmuir wave polarization with electron beam speed in type III radio bursts

    SciTech Connect

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2013-06-13

    Observations by the twin STEREO spacecraft of in-situ electric field waveforms and radio signatures associated with type III radio bursts have demonstrated that the polarization of electron beam-driven waves near the local plasma frequency depends strongly on the speed of the driving electron beam. We expand upon a previous study by including all radio bursts with in-situ waveforms observed by STEREO in 2011. The expanded data set contains five times more radio bursts (35 up from 7) and three times as many Langmuir waves (663 up from 168). While this expanded study supports the results of the original study, that faster (slower) beam electrons drive waves with strong (weak) electric fields perpendicular to the local magnetic field, the larger data set emphasizes that the observation of strong perpendicular electric fields at high electron beam speeds is probabilistic rather than definite. This property supports the interpretation of wave polarization dependence on beam speed as Langmuir/z-mode waves shifted to small wave number through interaction with turbulent solar wind density fluctuations.

  12. Energetic electrons and plasma waves associated with a solar type III radio burst

    SciTech Connect

    Lin, R.P.; Potter, D.W.; Gurnett, D.A.; Scarf, F.L.

    1981-12-01

    We present detailed in situ observations from the ISEE 3 spacecraft of energetic electrons, plasma waves, and radio emission for the type III solar radio burst of 1979 February 17. The reduced one-dimensional distribution function f (v) of the electrons is constructed as a function of time. Since the faster electrons arrive before the slower ones, a bump on tail distribution is formed which is unstable on the growth of Langmuir waves. The plasma wave growth computed from f (v) agrees well with the observed onset of the Langmuir waves, and there is qualitative agreement between variations in the plasma wave levels and in the development of regions of positive slope in f (v). The evolution of f (v), however, predicts far higher plasma wave levels than those observed. The maximum levels observed are about equal to the threshold for nonlinear wave processes, such as oscillating two-stream instability and soliton collapse. Also, the lack of obvious plateauing of the distribution suggests that the observed waves have been removed from resonance with the beam electrons. Finally, the plasma waves are observed to be highly impulsive in nature.

  13. Theoretical and experimental study of the microwave cut-off probe for electron density measurements in low-temperature plasmas

    SciTech Connect

    Li Bin; Li Hong; Wang Huihui; Xie Jinlin; Liu Wandong

    2011-10-01

    The microwave cut-off probe for the electron density measurement in low-temperature plasmas is described in this article. It is based on the wave cutoff in an unmagnetized plasma. The measurement principle is analyzed theoretically using a model of plasma slab. Because of the high-pass characteristic of plasma, the waves above the cut-off frequency can penetrate the plasma slab, whereas the lower frequency waves are reflected from the cut-off layer. Therefore, an obvious critical point can be observed in the wave transmission spectrum. The abscissa of the critical point indicates the cut-off frequency, which is directly related to the maximum electron density between transmitting/receiving antennas of the cut-off probe. The measured electron densities are in agreement with the data obtained by the Langmuir probe. Experimental results show that the microwave cut-off probe can be used to diagnose the plasmas with a wide range of parameters.

  14. Physics, fabrication and characterization of III-V multi-gate FETs for low power electronics

    NASA Astrophysics Data System (ADS)

    Thathachary, Arun V.

    With transistor technology close to its limits for power constrained scaling and the simultaneous emergence of mobile devices as the dominant driver for new scaling, a pathway to significant reduction in transistor operating voltage to 0.5V or lower is urgently sought. This however implies a fundamental paradigm shift away from mature Silicon technology. III-V compound semiconductors hold great promise in this regard due to their vastly superior electron transport properties making them prime candidates to replace Silicon in the n-channel transistor. Among the plethora of binary and ternary compounds available in the III-V space, InxGa1-xAs alloys have attracted significant interest due to their excellent electron mobility, ideally placed bandgap and mature growth technology. Simultaneously, electrostatic control mandates multigate transistor designs such as the FinFET at extremely scaled nodes. This dissertation describes the experimental realization of III-V FinFETs incorporating InXGa1-XAs heterostructure channels for high performance, low power logic applications. The chapters that follow present experimental demonstrations, simulations and analysis on the following aspects (a) motivation and key figures of merit driving material selection and design; (b) dielectric integration schemes for high-k metal-gate stack (HKMG) realization on InXGa 1-XAs, including surface clean and passivation techniques developed for high quality interfaces; (c) novel techniques for transport (mobility) characterization in nanoscale multi-gate FET architectures with experimental demonstration on In0.7Ga0.3As nanowires; (d) Indium composition and quantum confined channel design for InXGa 1-XAs FinFETs and (e) InAs heterostructure designs for high performance FinFETs. Each chapter also contains detailed benchmarking of results against state of the art demonstrations in Silicon and III-V material systems. The dissertation concludes by assessing the feasibility of InXGa 1-XAs Fin

  15. A sensitive charge scanning probe based on silicon single electron transistor

    NASA Astrophysics Data System (ADS)

    Lina, Su; Xinxing, Li; Hua, Qin; Xiaofeng, Gu

    2016-04-01

    Single electron transistors (SETs) are known to be extremely sensitive electrometers owing to their high charge sensitivity. In this work, we report the design, fabrication, and characterization of a silicon-on-insulator-based SET scanning probe. The fabricated SET is located about 10 μm away from the probe tip. The SET with a quantum dot of about 70 nm in diameter exhibits an obvious Coulomb blockade effect measured at 4.1 K. The Coulomb blockade energy is about 18 meV, and the charge sensitivity is in the order of 10-5-10-3 e/Hz1/2. This SET scanning probe can be used to map charge distribution and sense dynamic charge fluctuation in nanodevices or circuits under test, realizing high sensitivity and high spatial resolution charge detection. Project supported by the Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201152), the National Natural Science Foundation of China (No. 11403084), the Fundamental Research Funds for Central Universities (Nos. JUSRP51510, JUDCF12032), and the Graduate Student Innovation Program for Universities of Jiangsu Province (No. CXLX12_0724).

  16. Graphene as a quencher of electronic excited states of photochemical probes.

    PubMed

    de Miguel, Maykel; Alvaro, Mercedes; García, Hermenegildo

    2012-02-01

    Graphene sheets quench the singlet and triplet excited states of a series of six photochemical probes including pyrene, acridine orange, tris(2,2́-bipyridyl)ruthenium(II) dichloride, methylene blue, meso-tetrakis(phenylsulphonate)porphyrin, and 5,10,15,20-tetraphenyl-21H,28H-porphine zinc. It was found that Stern-Volmer fluorescence quenching can fit to one or two different quenching regimes depending on the probe. In addition, the quenching can be either static or dynamic depending on the fluorophore. The occurrence of several quenching regimes has been interpreted considering that quenching arises from the crowding of the fluorophore on both graphene faces, or site isolation on the graphene sheets. Laser flash photolysis has shown that the triplet lifetime of the probes generally decreases due to graphene quenching and that no new transients appear except in the case of methylene blue, where a new absorption spectrum characterized by a continuous absorption band is observed and attributed to graphene radical ion. This spectroscopic evidence suggests that the most general quenching mechanism is energy transfer from the singlet or triplet excited state of the dye to graphene. This raises the issue of determining the energy of the electronic excited states of graphene.

  17. Relativistic electron microbursts and variations in trapped MeV electron fluxes during the 8-9 October 2012 storm: SAMPEX and Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Kurita, Satoshi; Miyoshi, Yoshizumi; Blake, J. Bernard; Reeves, Geoffery D.; Kletzing, Craig A.

    2016-04-01

    It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8-9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that acceleration by chorus is much more efficient than losses by microbursts during the storm. It is also revealed that the strong chorus wave activity without relativistic electron microbursts does not lead to significant flux variations of relativistic electrons. Thus, effective acceleration of relativistic electrons is caused by chorus that can cause relativistic electron microbursts.

  18. Probing the electronic states and impurity effects in black phosphorus vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Wang, Lin; Wu, Yingying; Gao, Heng; Wu, Yabei; Qin, Guanhua; Wu, Zefei; Han, Yu; Xu, Shuigang; Han, Tianyi; Ye, Weiguang; Lin, Jiangxiazi; Long, Gen; He, Yuheng; Cai, Yuan; Ren, Wei; Wang, Ning

    2016-03-01

    Atomically thin black phosphorus (BP) is a promising two-dimensional material for fabricating electronic and optoelectronic nano-devices with high mobility and tunable bandgap structures. However, the charge-carrier mobility in few-layer phosphorene (monolayer BP) is mainly limited by the presence of impurity and disorders. In this study, we demonstrate that vertical BP heterostructure devices offer great advantages in probing the electron states of monolayer and few-layer phosphorene at temperatures down to 2 K through capacitance spectroscopy. Electronic states in the conduction and valence bands of phosphorene are accessible over a wide range of temperature and frequency. Exponential band tails have been determined to be related to disorders. Unusual phenomena such as the large temperature-dependence of the electron state population in few-layer phosphorene have been observed and systematically studied. By combining the first-principles calculation, we identified that the thermal excitation of charge trap states and oxidation-induced defect states were the main reasons for this large temperature dependence of the electron state population and degradation of the on-off ratio in phosphorene field-effect transistors.

  19. Probing interfacial electron dynamics with time-resolved X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Neppl, Stefan

    2015-05-01

    Time-resolved core-level spectroscopy techniques using laser pulses to initiate and short X-ray pulses to probe photo-induced processes have the potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics at complex interfaces. We describe the implementation of femto- and picosecond time-resolved photoelectron spectroscopy at the Linac Coherent Light Source (LCLS) and at the Advanced Light Source (ALS) in order to follow light-driven electron dynamics at dye-semiconductor interfaces on femto- to nanosecond timescales, and from the perspective of individual atomic sites. A distinct transient binding-energy shift of the Ru3d photoemission lines originating from the metal centers of N3 dye-molecules adsorbed on nanoporous ZnO is observed 500 fs after resonant HOMO-LUMO excitation with a visible laser pulse. This dynamical chemical shift is accompanied by a characteristic surface photo-voltage response of the semiconductor substrate. The two phenomena and their correlation will be discussed in the context of electronic bottlenecks for efficient interfacial charge-transfer and possible charge recombination and relaxation pathways leading to the neutralization of the transiently oxidized dye following ultrafast electron injection. First steps towards in operando time-resolved X-ray absorption spectroscopy techniques to monitor interfacial chemical dynamics will be presented.

  20. Variation of energetic electron flux in Earth's radiation belts based on Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Tang, Rongxin; Zhong, Zhihong; Yu, Deyin

    2016-04-01

    The Earth's radiation belts have been an important research topic of solar-terrestrial physics from 1958. In 2012, Van Allen Probes (VAP) were launched into near-equatorial orbit and provide very good in-situ observations of energetic particles in inner magnetosphere. Since magnetospheric substorm can cause the severe disturbance of the Earth's megnetospheric environment, here we focus on the characteristics of energetic electron fluxes in the radiation belts during substorm time and non-storm time. Energetic electron data observed by the Magnetic Electron Ion Spectrometer (MagEIS) and Energetic Particle Composition and Thermal Plasma Suite (ECT) of VAP during 2012 to 2014 are carefully analyzed. We select portions of energetic electron data from substorm onset phase, growth phase, recovery phase, and quiet time, and make a comparisons with theoretical computations. We find that the electron differential fluxes present E-1 shape at lower energies (<1MeV), and have a sharp transition with steeper slopes at high energies for large L-shells, which are in coincidence with Mauk's model [Mauk et al., 2010].

  1. Binding of iron(III) to the single tyrosine residue of amyloid β-peptide probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Miura, Takashi; Suzuki, Kiyoko; Takeuchi, Hideo

    2001-10-01

    The Fe(III) ion binds to amyloid β-peptide (Aβ) and induces significant aggregation of the peptide. In addition to the Aβ aggregation, the redox activity of the Fe(III) ion bound to Aβ is considered to play a role in the pathogenesis of Alzheimer's disease. In order to understand the role of Fe(III) in Aβ aggregation and neurotoxicity, we have examined the Fe(III)-binding mode of human Aβ by Raman spectroscopy. The Raman spectra of Fe(III)-Aβ complexes excited at 514.5 nm are dominated by resonance Raman bands of metal-bound tyrosinate, evidencing that the Fe(III) ion primarily binds to Aβ via the phenolic oxygen of Tyr10. In addition, carboxylate groups of glutamate/aspartate side chains are also bound to Fe(III). On the other hand, histidine residues in the N-terminal hydrophilic region of Aβ do not bind to Fe(III). These results are in sharp contrast to the Zn(II)- or Cu(II)-induced aggregation of Aβ, in which histidine residues act as the primary metal binding sites. The Fe(III)-Tyr10 binding may play an important role in Aβ aggregation and in decreasing the reduction potential of the bound Fe(III) ion.

  2. Role of "electron shuttles" in the bioreduction of Fe(III) oxides in humid forest tropical soils.

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T.; Sposito, G.

    2004-12-01

    Dissimilatory iron-reducing bacteria (DIRB) can reduce Fe(III) oxides either by direct contact between the organisms and the oxide surface or by indirect mechanisms not involving contact. These latter mechanisms can include (i) "electron shuttling" or (ii) soluble Fe(III) complexation with subsequent reduction. In the presence of humic substances, indirect Fe(III) reduction occurs, particularly by mechanism (i). Important electron-accepting groups in humic substances include quinone moieties, complexed Fe(III) and conjugated aromatic moieties. A model compound frequently used to study mechanism (i) is anthraquinone-2,6-disulfonate (AQDS), which is believed to function as an "electron shuttle" in a manner similar to humic substances. We are currently investigating Fe(III) reduction in humid tropical forest soils as affected by "electron shuttles," using AQDS and humic substances in our experiments. The soil samples were collected at the bottom of a toposequence in the Luquillo Experimental Forest, Puerto Rico. Development of anaerobic conditions in these soils occurs due to high precipitation and runoff water inputs. Fourteen-day anoxic incubations of soil suspensions amended with AQDS showed enhanced production of both soluble and particulate forms of Fe(II) as compared to non-amended soil suspensions. Our data indicated clearly that DIRB in the soil could utilize added "electron shuttles" effectively to reduce Fe(III). To examine factors controlling Fe(III) reduction by humic acid (HA), three IHSS HA samples (soil, peat and Leonardite) were both abiotically reduced by H2 treatment and microbially reduced by incubation with a filtrate from a soil suspension, then titrated with three different oxidants (iodine, cyanoferrate, and ferric citrate) to provide chemical and biological estimates of electron-accepting capacity at pH 5 and 7. The results will be discussed in terms of the three oxidants used, the properties of the HA samples, pH, and the effects of chemical

  3. Postvaccinal sarcomas in the cat: epidemiology and electron probe microanalytical identification of aluminum

    SciTech Connect

    Hendrick, M.J.; Goldschmidt, M.H.; Shofer, F.S.; Wang, Y.Y.; Somlyo, A.P. )

    1992-10-01

    An increase in fibrosarcomas in a biopsy population of cats in the Pennsylvania area appears to be related to the increased vaccination of cats following enactment of a mandatory rabies vaccination law. The majority of fibrosarcomas arose in sites routinely used by veterinarians for vaccination, and 42 of 198 tumors were surrounded by lymphocytes and macrophages containing foreign material identical to that previously described in postvaccinal inflammatory injection site reactions. Some of the vaccines used have aluminum-based adjuvants, and macrophages surrounding three tumors contained aluminum oxide identified by electron probe microanalysis and imaged by energy-filtered electron microscopy. Persistence of inflammatory and immunological reactions associated with aluminum may predispose the cat to a derangement of its fibrous connective tissue repair response, leading to neoplasia.

  4. Diagnostics of Fast Electrons within Castor Tokamak by Means of a Modified Cherenkov-Type Probe

    SciTech Connect

    Zebrowski, J.; Jakubowski, L.; Sadowski, M. J.; Malinowski, K.; Jakubowski, M.; Weinzettl, V.; Stockel, J.; Peterka, M.

    2008-03-19

    The paper reports on experimental studies performed within the CASTOR tokamak, which was operated at IPP in Prague, Czech Republic, during the last experimental campaign carried out in autumn 2006. The main aim was to implement a new diagnostic technique for measurements of energetic (>80 keV) electrons within the tokamak edge plasma region. The technique was based on the use of a Cherenkov-type probe similar to the first prototype detector, which was tested during the previous experiments with the CASTOR device. In particular, the distributions of fast electrons in a standard scenario at different values of plasma current I{sub p}, and toroidal magnetic field B{sub T} are determined.

  5. Probing the electronic properties and structural evolution of anionic gold clusters in the gas phase

    NASA Astrophysics Data System (ADS)

    Wang, Lei-Ming; Wang, Lai-Sheng

    2012-06-01

    Gold nanoparticles have been discovered to exhibit remarkable catalytic properties in contrast to the chemical inertness of bulk gold. A prerequisite to elucidate the molecular mechanisms of the catalytic effect of nanogold is a detailed understanding of the structural and electronic properties of gold clusters as a function of size. In this review, we describe joint experimental studies (mainly photoelectron spectroscopy) and theoretical calculations to probe the structural properties of anionic gold clusters. Electronic properties and structural evolutions of all known Aun- clusters as experimentally confirmed to date are summarized, covering the size ranges of n = 3-35 and 55-64. Recent experimental efforts in resolving the isomeric issues of small gold clusters using Ar-tagging, O2-titration and isoelectronic substitution are also discussed.

  6. Curling probe measurement of electron density in pulse-modulated plasma

    SciTech Connect

    Pandey, Anil; Nakamura, Keiji; Sugai, Hideo; Sakakibara, Wataru; Matsuoka, Hiroyuki

    2014-01-13

    The electron density n{sub e} of stationary plasma can be easily obtained on the basis of the resonance frequency f of a curling probe (CP) measured by a network analyzer (NWA). However, in pulsed plasma with discharge period T, the n{sub e} and f values periodically change with time. This study extends the conventional CP technique to a time-resolved measurement of the pulse-modulated electron density. The condition necessary for the measurement is revealed to be synchronization of NWA with the pulse modulation, which is expressed as (n − 1)T/T{sub SWP} = integer (1, 2, …) for a number n of data point and sweep time T{sub SWP}.

  7. Electron Emission as a Probe of Plastic Deformation in Single Crystal Metals

    SciTech Connect

    J. Thomas Dickinson

    2007-09-28

    Work under this grant focused on the use of photoelectron emission as a probe of deformation processes in metals, principally single crystal and polycrystalline aluminum. Dislocations intersecting the surface produce patches of low work function metal which emit electrons when illuminated with the appropriate ultraviolet radiation. We have shown that changes in the photoemission signals during deformation can be used to identify the onset of strain localization. In some systems, the photoelectron kinetic energy distribution reflects the distribution of surface orientations, which depends on the competition between grain rotation and slip. Photoemission electron microscope images of shape memory alloys and thin films show marked changes in intensity and surface topography as the materal passes through its transition temperature. Photoelectron emission provides important information on the temporal progress of deformation processes that complements the spatial information provided by other techniques.

  8. Improved calculations for the C III 1907,1909 and Si III 1883,1892 electron density sensitive emission-line ratios, and a comparison with IUE observations

    NASA Technical Reports Server (NTRS)

    Keenan, F. P.; Feibelman, W. A.; Berrington, K. A.

    1992-01-01

    Atomic data are used in conjunction with the statistical equilibrium code of Dufton (1977) to calculate relative C III and Si III level populations, and hence emission-line strengths for a range of electron temperatures and densities. It is assumed that photoexcitation and deexcitaton rates are negligible in comparison with the corresponding collisional rates, that ionization to and recombination from other ionic levels are slow compared with bound-bound rates, and that all transitions are optically thin. The observed values of R1 and R2 for several planetary nebulae and a symbiotic star, measured from high-resolution spectra obtained with the IUE satellite, lead to electron densities that are compatible, and are also in good agreement with those deduced from line ratios in other species.

  9. III-V compound semiconductors for mass-produced nano-electronics: theoretical studies on mobility degradation by dislocation

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Jeon, Sanghun

    2016-02-01

    As silicon-based electronics approach the limit of scaling for increasing the performance and chip density, III-V compound semiconductors have started to attract significant attention owing to their high carrier mobility. However, the mobility benefits of III-V compounds are too easily accepted, ignoring a harmful effect of unavoidable threading dislocations that could fundamentally limit the applicability of these materials in nanometer-scale electronics. In this paper, we present a theoretical model that describes the degradation of carrier mobility by charged dislocations in quantum-confined III-V semiconductor metal oxide field effect transistors (MOSFETs). Based on the results, we conclude that in order for III-V compound MOSFETs to outperform silicon MOSFETs, Fermi level pinning in the channel should be eliminated for yielding carriers with high injection velocity.

  10. Probing the Folded State of Fibronectin Type III Domains in Stretched Fibrils by Measuring Buried Cysteine Accessibility*

    PubMed Central

    Lemmon, Christopher A.; Ohashi, Tomoo; Erickson, Harold P.

    2011-01-01

    Fibronectin (FN) is an extracellular matrix protein that is assembled into fibrils by cells during tissue morphogenesis and wound healing. FN matrix fibrils are highly elastic, but the mechanism of elasticity has been debated: it may be achieved by mechanical unfolding of FN-III domains or by a conformational change of the molecule without domain unfolding. Here, we investigate the folded state of FN-III domains in FN fibrils by measuring the accessibility of buried cysteines. Four of the 15 FN-III domains (III-2, -3, -9, and -11) appear to unfold in both stretched fibrils and in solution, suggesting that these domains spontaneously open and close even in the absence of tension. Two FN-III domains (III-6 and -12) appear to unfold only in fibrils and not in solution. These results suggest that domain unfolding can at best contribute partially to the 4-fold extensibility of fibronectin fibrils. PMID:21652701

  11. Arsenic-induced bone marrow toxicity: ultrastructural and electron-probe analysis.

    PubMed

    Feussner, J R; Shelburne, J D; Bredehoeft, S; Cohen, H J

    1979-05-01

    A patient with severe arsenic poisoning that resulted in marked peripheral blood and bone marrow abnormalities, including megaloblastic erythropoiesis experienced many of the previously reported hematologic complications of arsenic poisoning: leukopenia, granulocytopenia, absolute eosinophilia, and profound anemia. In this study we report an ultrastructural and electron-probe analysis of the bone marrow. Although megaloblastic anemia associated with arsenic poisoning has been described rarely, the presence of arsenic in the local bone marrow milieu has not been demonstrated previously. The ultrastructural features of arsenic-induced bone marrow toxicity are similar to those described in other dyserythropoietic states and include marked nuclear aberrations involving shape, chromatin distribution, and nuclear envelope. Using the technique of energy-dispersive x-ray analysis (electron probe) we demonstrated arsenic in bone marrow spicules; this supports the contention that arsenic can cause megaloblastic anemia. We suggest that this technique may be a useful tool in further studies that attempt to explore the mechanism of arsenic-induced hematologic toxicity. Finally, we suggest that arsenic has a direct toxic effect on DNA synthesis that results in marked disturbances of nuclear division. We recommend that the most appropriate screening procedure to evaluate possible arsenic poisoning is tissue arsenic measurements (hair and nails) rather than 24-hr urinary measurements.

  12. Scanning probe microscopy investigation of self-organized perylenetetracarboxdiimide nanostructures at surfaces: structural and electronic properties.

    PubMed

    Palermo, Vincenzo; Liscio, Andrea; Gentilini, Desirée; Nolde, Fabian; Müllen, Klaus; Samorì, Paolo

    2007-01-01

    A scanning probe microscopy investigation of the self-organization and local electronic properties of spin-coated ultrathin films of N-alkyl substituted perylenetetracarboxdiimide (PDI) is described. By carefully balancing the interplay between molecule-molecule and molecule-substrate interactions, PDI is able to form highly ordered supramolecular architectures on flat surfaces from solution. On an electrically insulating yet highly polar surface (mica) PDI forms strongly anisotropic architectures with needlelike structures with lengths of up to a few micrometers. On a conductive yet apolar surface (highly oriented pyrolytic graphite), the competition between the strong molecule-substrate interactions and the intermolecular forces leads to the generation of more disordered structures. The local electronic properties of these architectures are studied by Kelvin probe force microscopy by estimating their surface potential (SP). Quantitative measurements of the SP are obtained by analyzing the experimentally estimated SP data with a computational model, which discriminates between the intrinsic SP and the effect of long-range tip-surface interactions. The SP of PDI aggregates depends on the structural order at the supramolecular level. Narrow needles of constant width reveal identical SPs independent of length. Wider needles with a polydisperse width distribution exhibit a greater SP.

  13. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.

    PubMed

    Delor, Milan; Sazanovich, Igor V; Towrie, Michael; Weinstein, Julia A

    2015-04-21

    The Born-Oppenheimer approximation refers to the assumption that the nuclear and electronic wave functions describing a molecular system evolve and can be determined independently. It is now well-known that this approximation often breaks down and that nuclear-electronic (vibronic) coupling contributes greatly to the ultrafast photophysics and photochemistry observed in many systems ranging from simple molecules to biological organisms. In order to probe vibronic coupling in a time-dependent manner, one must use spectroscopic tools capable of correlating the motions of electrons and nuclei on an ultrafast time scale. Recent developments in nonlinear multidimensional electronic and vibrational spectroscopies allow monitoring both electronic and structural factors with unprecedented time and spatial resolution. In this Account, we present recent studies from our group that make use of different variants of frequency-domain transient two-dimensional infrared (T-2DIR) spectroscopy, a pulse sequence combining electronic and vibrational excitations in the form of a UV-visible pump, a narrowband (12 cm(-1)) IR pump, and a broadband (400 cm(-1)) IR probe. In the first example, T-2DIR is used to directly compare vibrational dynamics in the ground and relaxed electronic excited states of Re(Cl)(CO)3(4,4'-diethylester-2,2'-bipyridine) and Ru(4,4'-diethylester-2,2'-bipyridine)2(NCS)2, prototypical charge transfer complexes used in photocatalytic CO2 reduction and electron injection in dye-sensitized solar cells. The experiments show that intramolecular vibrational redistribution (IVR) and vibrational energy transfer (VET) are up to an order of magnitude faster in the triplet charge transfer excited state than in the ground state. These results show the influence of electronic arrangement on vibrational coupling patterns, with direct implications for vibronic coupling mechanisms in charge transfer excited states. In the second example, we show unambiguously that electronic and

  14. Obstruction of photoinduced electron transfer from excited porphyrin to graphene oxide: a fluorescence turn-on sensing platform for iron (III) ions.

    PubMed

    Liu, Zhong De; Zhao, Heng Xin; Huang, Cheng Zhi

    2012-01-01

    A comparative research of the assembly of different porphyrin molecules on graphene oxide (GO) and reduced graphene oxide (RGO) was carried out, respectively. Despite the cationic porphyrin molecules can be assembled onto the surfaces of graphene sheets, including GO and RGO, to form complexes through electrostatic and π-π stacking interactions, the more obvious fluorescence quenching and the larger red-shift of the Soret band of porphyrin molecule in RGO-bound states were observed than those in GO-bound states, due to the difference of molecular flattening in degree. Further, more interesting finding was that the complexes formed between cationic porphyrin and GO, rather than RGO sheets, can facilitate the incorporation of iron (III) ions into the porphyrin moieties, due to the presence of the oxygen-contained groups at the basal plane of GO sheets served as auxiliary coordination units, which can high-efficiently obstruct the electron transfer from excited porphyrin to GO sheets and result in the occurrence of fluorescence restoration. Thus, a fluorescence sensing platform has been developed for iron (III) ions detection in this contribution by using the porphyrin/GO nanohybrids as an optical probe, and our present one exhibited rapid and sensitive responses and high selectivity toward iron (III) ions.

  15. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  16. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    SciTech Connect

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E.; Keenan, F. P.

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  17. Electron g factor anisotropy in asymmetric III-V semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Toloza Sandoval, M. A.; Silva, E. A. de Andrada e.; Ferreira da Silva, A.; La Rocca, G. C.

    2016-11-01

    The electron effective g factor tensor in asymmetric III-V semiconductor quantum wells (AQWs) and its tuning with the structure parameters and composition are investigated with envelope-function theory and the 8× 8 {k}\\cdot {p} Kane model. The spin-dependent terms in the electron effective Hamiltonian in the presence of an external magnetic field are treated as a perturbation and the g factors {g}\\perp * and {g}\\parallel * , for the magnetic field in the QW plane and along the growth direction, are obtained analytically as a function of the well width L. The effects of the structure inversion asymmetry (SIA) on the electron g factor are analyzed. For the g-factor main anisotropy {{Δ }}g={g}\\perp * -{g}\\parallel * in AQWs, a sign change is predicted in the narrow well limit due to SIA, which can explain recent measurements and be useful in spintronic applications. Specific results for narrow-gap {{AlSb}}/{{InAs}}/{{GaSb}} and {{{Al}}}x{{{Ga}}}1-x{{As}}/{{GaAs}}/{{{Al}}}y{{{Ga}}}1-y{{As}} AQWs are presented and discussed with the available experimental data; in particular InAs QWs are shown to not only present much larger g factors but also a larger g-factor anisotropy, and with the opposite sign with respect to GaAs QWs.

  18. Measurement of Total Calcium in Neurons by Electron Probe X-ray Microanalysis

    PubMed Central

    Pivovarova, Natalia B.; Andrews, S. Brian

    2013-01-01

    In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis

  19. Chloroboron (III) subnaphthalocyanine as an electron donor in bulk heterojunction photovoltaic cells.

    PubMed

    Chen, Guo; Sasabe, Hisahiro; Sano, Takeshi; Wang, Xiao-Feng; Hong, Ziruo; Kido, Junji; Yang, Yang

    2013-12-01

    In this work, chloroboron (III) subnaphthalocyanine (SubNc) was used as an electron donor, combined with a [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) or fullerene C70 acceptor in bulk heterojunction photovoltaic cells. In spite of the limited solubility of SubNc in organic solvents, the solution processed device exhibited an efficiency of 4.0% under 1 sun, AM1.5G solar irradiation at room temperature, and 5.0% at 80 ° C due to the temperature-dependence of the carrier mobilities. SubNc:C70 bulk heterojunctions were also fabricated via thermal co-evaporation, demonstrating an efficiency of 4.4%. This result shows that SubNc is a promising material for photovoltaic applications via various processing techniques, such as vacuum deposition and wet coating.

  20. Probe measurements of penning electron spectra in the afterglow of nonlocal helium microplasma

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Belskiy, Denis; Gutsev, Sergey; Kosykh, Nikolay; Kryukov, Anton

    2012-10-01

    Method PLES [Blagoev A.B., Kolokolov, N.B., Kudryavtsev. Physica Scripta, 1994, v.50, p.371] is based on identification of atoms and molecules of impurities M by selective registration of groups of fast electrons e(f) created in Penning ionization: He(m) + M -> He +M+ + e(f). The electron energy spectrum e(f) contains discrete peaks corresponding to the difference between the energy 19.8 eV of metastable helium atoms He(m) and the ionization energies Ei of impurities M. Since the ionization potential Ei of each type of atom or molecule is a well-known, it is possible to identify the atoms or molecules M of the unknown impurity by their ionization potential Ei. Probe registration of the energy spectra of penning electrons is carried out in the nonlocal afterglow plasma of pulsed microdischarge in helium and its mixtures with argon, krypton and air. In helium, the non-local plasma condition corresponds to p xL < 5 Torr x cm, where p is the gas pressure and L is the plasma volume size. It is demonstrated that the obtained maxima appear at the characteristic energies corresponding exactly to the expected maxima for penning electrons of the known gas impurities used.

  1. A New Q-Band EPR Probe for Quantitative Studies of Even Electron Metalloproteins

    NASA Astrophysics Data System (ADS)

    Petasis, D. T.; Hendrich, M. P.

    1999-02-01

    Existing Q-band (35 GHz) EPR spectrometers employ cylindrical cavities for more intense microwave magnetic fields B1, but are so constructed that only one orientation between the external field B and B1is allowed, namely the B ⊥ B1orientation, thus limiting the use of the spectrometer to measurements on Kramers spin systems (odd electron systems). We have designed and built a Q-band microwave probe to detect EPR signals in even electron systems, which operates in the range 2 K ≤ T ≤ 300 K for studies of metalloprotein samples. The cylindrical microwave cavity operates in the TE011mode with cylindrical wall coupling to the waveguide, thus allowing all orientations of the external magnetic field B relative to the microwave field B1. Such orientations allow observation of EPR transitions in non-Kramers ions (even electron) which are either forbidden or significantly weaker for B ⊥ B1. Rotation of the external magnetic field also permits easy differentiation between spin systems from even and odd electron oxidation states. The cavity consists of a metallic helix and thin metallic end walls mounted on epoxy supports, which allows efficient penetration of the modulation field. The first quantitative EPR measurements from a metalloprotein (Hemerythrin) at 35 GHz with B1‖ B are presented.

  2. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors

    NASA Astrophysics Data System (ADS)

    Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-01

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  3. THE ELECTRON ION COLLIDER. A HIGH LUMINOSITY PROBE OF THE PARTONIC SUBSTRUCTURE OF NUCLEONS AND NUCLEI.

    SciTech Connect

    EDITED BY M.S. DAVIS

    2002-02-01

    By the end of this decade, the advancement of current and planned research into the fundamental structure of matter will require a new facility, the Electron Ion Collider (EIC). The EIC will collide high-energy beams of polarized electrons from polarized protons and neutrons, and unpolarized beams of electrons off atomic nuclei with unprecedented intensity. Research at the EIC will lead to a detailed understanding of the structure of the proton, neutron, and atomic nuclei as described by Quantum Chromo-Dynamics (QCD), the accepted theory of the strong interaction. The EIC will establish quantitative answers to important questions by delivering dramatically increased precision over existing and planned experiments and by providing completely new experimental capabilities. Indeed, the EIC will probe QCD in a manner not possible previously. This document presents the scientific case for the design, construction and operation of the EIC. While realization of the EIC requires a significant advance in the development of efficient means of producing powerful beams of energetic electrons, an important consideration for choosing the site of the EIC is the planned upgrade to the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The upgrade planned for RHIC will fully meet the requirements for the ion beam for the EIC, providing a distinct advantage in terms of cost, schedule and the final operation.

  4. Automated Determination of Electron Density from Electric Field Measurements on the Van Allen Probes Spacecraft

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, I. S.; Spasojevic, M.; Shprits, Y.

    2015-12-01

    In this study we present an algorithm for automatic inference of the electron number density from plasma wave measurement made onboard NASA's Van Allen Probes mission. It accomplishes this by using feedforward neural networks to automatically infer the upper hybrid resonance frequency, 𝑓𝑢h𝑟, from plasma wave measurement, which is then used to determine the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detection (Kurth et al. [JGR, 2014]). We describe the design and implementation of the algorithm, as well as the resulting electron number density distribution. Resulting densities are compared with the densities obtained by Kurth et al. [JGR, 2014] and also to the empirical plasmasphere and trough density model of Sheeley et al. [JGR, 2001]. The analysis of the conditions, under which densities obtained by the proposed method differ significantly from the model of Sheeley et al. [JGR, 2001], is presented. Finally, we discuss the dependence of the electron number density on magnetic activity (Kp) and magnetic local time.

  5. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    DOE PAGESBeta

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in themore » SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.« less

  6. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    SciTech Connect

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in the SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.

  7. Magnetically insulated baffled probe for real-time monitoring of equilibrium and fluctuating values of space potentials, electron and ion temperatures, and densities.

    PubMed

    Demidov, V I; Koepke, M E; Raitses, Y

    2010-10-01

    By restricting the electron-collection area of a cold Langmuir probe compared to the ion-collection area, the probe floating potential can become equal to the space potential, and thus conveniently monitored, rather than to a value shifted from the space potential by an electron-temperature-dependent offset, i.e., the case with an equal-collection-area probe. This design goal is achieved by combining an ambient magnetic field in the plasma with baffles, or shields, on the probe, resulting in species-selective magnetic insulation of the probe collection area. This permits the elimination of electron current to the probe by further adjustment of magnetic insulation which results in an ion-temperature-dependent offset when the probe is electrically floating. Subtracting the floating potential of two magnetically insulated baffled probes, each with a different degree of magnetic insulation, enables the electron or ion temperature to be measured in real time.

  8. Magnetically insulated baffled probe for real-time monitoring of equilibrium and fluctuating values of space potentials, electron and ion temperatures, and densities

    SciTech Connect

    Demidov, V. I.; Koepke, M. E.; Raitses, Y.

    2010-10-15

    By restricting the electron-collection area of a cold Langmuir probe compared to the ion-collection area, the probe floating potential can become equal to the space potential, and thus conveniently monitored, rather than to a value shifted from the space potential by an electron-temperature-dependent offset, i.e., the case with an equal-collection-area probe. This design goal is achieved by combining an ambient magnetic field in the plasma with baffles, or shields, on the probe, resulting in species-selective magnetic insulation of the probe collection area. This permits the elimination of electron current to the probe by further adjustment of magnetic insulation which results in an ion-temperature-dependent offset when the probe is electrically floating. Subtracting the floating potential of two magnetically insulated baffled probes, each with a different degree of magnetic insulation, enables the electron or ion temperature to be measured in real time.

  9. Chromosomal localization of genes by scanning electron microscopy using in situ hybridization with biotinylated probes: Y chromosome repetitive sequences.

    PubMed

    Ferguson, D J; Burns, J; Harrison, D; Jonasson, J A; McGee, J O

    1986-05-01

    The feasibility of using scanning electron microscopy (SEM) to identify the position of specific DNA sequences was examined using a Y chromosome 'specific' probe (pHY2.1). Tests were carried out on chromosome spreads hybridized in situ with biotinylated pHY2.1. Chromosomal sites of hybridization of the probe were localized by an indirect immunohistochemical procedure which resulted in a gold product which could be amplified by silver precipitation. In the SEM, the specific location of the probe was easily identified due to the enhanced signal produced by the gold-silver complex. The probe was localized both on the long arm of the Y chromosome and within interphase nuclei. It was found that SEM was more sensitive than light microscopy since the probe could be identified without silver amplification. With refinements to the technique, SEM could provide a useful method for high resolution localizing of unique DNA sequences (i.e. single copy genes). PMID:3528066

  10. Comment on the paper ‘The impact of Langmuir probe geometries on electron current collection and the integral relation for obtaining electron energy distribution functions’

    NASA Astrophysics Data System (ADS)

    Tsankov, Tsanko V.; Czarnetzki, Uwe

    2016-08-01

    A paper by El Saghir and Shannon (2012 Plasma Sources Sci. Technol. 21 025003) raises the question about the validity of the widely-used Druyvesteyn formula for obtaining the electron energy distribution function by cylindrical probes. They conclude that there are deviations between the Druyvesteyn formula for cylindrical and for spherical probes. In this comment this conclusion is questioned and the correct expressions are derived. It is shown that no such difference exists when all three velocity components are correctly accounted for. Furthermore, the disturbance to the plasma introduced by the probe is estimated.

  11. Intrinsic acidity of aluminum, chromium (III) and iron (III) μ 3-hydroxo functional groups from ab initio electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Rustad, James R.; Dixon, David A.; Felmy, Andrew R.

    2000-05-01

    Density functional calculations are performed on M 3(OH) 7(H 2O) 62+ and M 3O(OH) 6(H 2O) 6+ clusters for MAl, Cr(III), and Fe(III), allowing determination of the relative acidities of the μ 3-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, Fe 3OH and Al 3OH groups have nearly the same intrinsic acidity, while Cr 3OH groups are significantly more acidic. The gas-phase acidity of the Fe 3OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. [ J. R. Rustad et al. (1996)Geochim. Cosmochim. Acta 60, 1563]. Acidities of aquo functional groups were also computed for Al and Cr. The AlOH 2 site is more acidic than the Al 3OH site, whereas the Cr 3OH site is more acidic than the CrOH 2 site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.

  12. Investigating the growth, structural and electrical properties of III-V semiconductor nanopillars for the next-generation electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Lin, Andrew

    Extensive research efforts have been devoted to the study and development of III-V compound semiconductor nanowires (NWs) and nanopillars (NPs) because of their unique physical properties and ability to form high quality, highly lattice-mismatched axial and radial heterostructures. These advantages lead to precise nano-bandgap engineering to achieve new device functionalities. One unique and powerful approach to realize these NPs is by catalyst-free, selective-area epitaxy (SAE) via metal-organic chemical vapor deposition, in which the NP location and diameter can be precisely controlled lithographically. Early demonstrations of electronic and optoelectronic devices based on these NPs, however, are often inferior compared to their planar counterparts due to a few factors: (1) interface/surface states, (2) inaccurate doping calibration, and (3) increased carrier scattering and trapping from stacking fault formation in the NPs. In this study, the detailed growth mechanisms of different III-As, III-Sb and III-P NPs and their heterostructures are investigated. These NPs are then fabricated into single-NP field-effect transistors (FETs) to probe their electrical properties. It is shown that these devices are highly diameter-dependent, mainly because of the effects of surface states. By growing a high band-gap shell around the NP cores to passivate the surface, the device performance can be significantly improved. Further fabrication and characterization of vertical surround-gate FETs using a high-mobility InAs/InP NP channel is also discussed. Aside from the radial NP heterostructures, different approaches to achieve purely axial heterostructures in InAs/In(As)P materials are also presented with excellent interface quality. Both single barrier and double barrier structures are realized and fabricated into devices that show carrier transport characteristics over a barrier and even resonant tunneling behavior. Antimonide-based NPs are also studied for their immense

  13. Impedance probe with phase and gain detection for absolute electron density measurements

    NASA Astrophysics Data System (ADS)

    Steigies, C. T.; Pfaff, R. F.

    2003-04-01

    A new impedance probe to accurately measure plasma density using a variety of phase detection schemes has been designed for use on a sounding rocket. The instrument uses a Direct Digital Synthesis (DDS) chip to generate a frequency sweep of 256 discrete frequencies between 100 kHz and 5 MHz of a duration of 1 ms each, which generally covers the expected range of plasma frequencies. The voltage and current transmitted by a short dipole antenna, as well as the voltage received by a second receiving dipole antenna spaced 1 m away, are sampled in snippets with a 14-bit A/D converter at 8 MHz and telemetered to the ground. This mode of the instrument uses most of the 8 Mbits telemetry which is available for the impedance probe. A second, low-telemetry mode measures phase and gain between transmitted voltage and transmitted current, as well as between transmitted voltage and received voltage. For this measurement, two different circuits are provided. A phase/gain meter IC determines phase and gain between two signals. In addition, a second DDS synthesizes a frequency a few kHz below the sweep frequency. This signal is mixed with the transmitted voltage and current, as well as the received voltage. The mixed signals are sampled at a lower rate and sent to the ground. Comparing the signals with the mixed signal of the transmitted voltage allows the determination of phase and gain of both the transmitted current and the received voltage. As this is carried out as a function of frequency, the parallel resonance at the upper hybrid frequency will be discerned, from which the plasma density may be easily calculated. The instrument will be flown on a NASA sounding rocket from Poker Flat, Alaska in February, 2003. Data showing the performance of the instrument will be presented. The absolute electron density measurements made by this instrument will be used to cross calibrate with simultaneous Langmuir probe measurements.

  14. Oxygen isotope effects as probes of electron transfer mechanisms and structures of activated O2.

    PubMed

    Roth, Justine P

    2009-03-17

    Competitively determined oxygen ((18)O) isotope effects can be powerful probes of chemical and biological transformations involving molecular oxygen as well as superoxide and hydrogen peroxide. They play a complementary role to crystallography and spectroscopy in the study of activated oxygen intermediates by forging a link between electronic/vibrational structure and the bonding that occurs within ground and transition states along the reaction coordinate. Such analyses can be used to assess the plausibility of intermediates and their catalytic relevance in oxidative processes. This Account describes efforts to advance oxygen kinetic isotope effects ((18)O KIEs) and equilibrium isotope effects ((18)O EIEs) as mechanistic probes of reactive, oxygen-derived species. We focus primarily on transition metal mediated oxidations, outlining both advances over the past five years and current limitations of this approach. Computational methods are now being developed to probe transition states and the accompanying kinetic isotope effects. In particular, we describe the importance of using a full-frequency model to accurately predict the magnitudes as well as the temperature dependence of the isotope effects. Earlier studies have used a "cut-off model," which employs only a few isotopic vibrational modes, and such models tend to overestimate (18)O EIEs. Researchers in mechanistic biological inorganic chemistry would like to differentiate "inner-sphere" from "outer-sphere" reactivity of O(2), a designation that describes the extent of the bonding interaction between metal and oxygen in the transition state. Though this problem remains unsolved, we expect that this isotopic approach will help differentiate these processes. For example, comparisons of (18)O KIEs to (18)O EIEs provide benchmarks that allow us to calibrate computationally derived reaction coordinates. Once the physical origins of heavy atom isotope effects are better understood, researchers will be able to apply

  15. Recent Results in Parity-Violating Electron Scattering at Jefferson Lab: PREX and HAPPEX-III

    NASA Astrophysics Data System (ADS)

    Paschke, Kent

    2011-04-01

    The parity-violating asymmetry APV in electron scattering from the 208Pb nucleus is cleanly sensitive to the neutron radius Rn. A precision measurement of Rn would have important implications for the understanding of nuclear structure, and be a powerful constaint on the symmetry energy Sν(n) of neutron-rich nuclear matter, including neutron stars. The PREX collaboration has completed a first run, measuring Rn to a precision of ~ 2 . 5 %. The measurement of APV in electron-proton scattering is sensitive to vector form-factors associated with an intrinsic strange quark content of the nucleon. While at one time such contributions were considered to be potentially large, a world-wide program of parity-violation measurements has constrained these form-factors to be smaller than a few percent of the electric and magnetic form-factors of the proton at low momentum-transfer. HAPPEX-III has recently completed a measurement to improve the precision of this constaint at Q2 ~ 0 . 6GeV2 , a region in which previous experiments had indicated the possibility of intriguingly large strange contributions. Results from each experiment, and prospects for more precise Rn measurements, will be discussed. On behalf of the HAPPEX Collaboration and PREX Collaboration.

  16. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    SciTech Connect

    Fluegel., Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-05-28

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We also applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Thus, comparing our strain sensitivity and signal strength in AlxGa 1-x As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology.

  17. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  18. Probing the Structure of Ionic Liquid Surfaces by Rotationally and Electronically Inelastic Scattering of no

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, M. P.; Zutz, A.; Nesbitt, D. J.

    2012-06-01

    Room temperature ionic liquids (RTIL’s) are a highly diverse class of materials with many potential technological applications. They are candidates for use in advanced electrolytes, green solvents, and supported liquid membranes for CO_2 sequestration. We present studies where inelastic scattering of high or low velocity nitric oxide provides insight into the microscopic structure of these complex surfaces. As an open shell diatomic, jet-cooled NO [^2π1/2(J = 0.5)] features both molecular and electronic collision dynamics as seen by probing scattered rotational and spin-orbit distributions respectively. These studies show substantial variation in degree of rotational and electronic excitation as ionic liquid identity is varied. Also, surface heating is found to have a strong effect on scattered spin-orbit branching, possibly due to the dependence of surface structure on temperature. This is discussed in terms of a picture where the electronic degree of freedom may serve as a sensitive measure of the cationic versus anionic nature of the top few layers of this material.

  19. Highly sensitive gold nanoparticles-based optical sensing of DNA hybridization using bis(8-hydroxyquinoline-5-solphonate)cerium(III) chloride as a novel fluorescence probe.

    PubMed

    Shamsipur, Mojtaba; Memari, Zahra; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush

    2016-01-25

    A simple and sensitive method for the detection of DNA hybridization in a homogeneous format was developed, using bis(8-hydroxyquinoline-5-solphonate)cerium(III) chloride (Ce(QS)2Cl) as a novel fluorescent probe. The method is based on fluorescence quenching by gold nanoparticles used as both nanoscafolds for the immobilization of the probe DNA sequence, which is related to Alicyclobacillus acidophilus strain TA-67 16S ribosomal RNA, and nanoquenchers of the Ce(QS)2Cl probe. The probe DNA-functionalized GNPs were synthesized by derivatizing the colloidal gold nanoparticles solution with 3-thiolated 16-base oligonucleotides. Addition of sequence-specific target DNAs (16 bases) into the mixture containing probe DNA-functionalized GNPs and fluorescent probe lead to the quenching of Ce(QS)2Cl fluorescence at 360 nm (λex=270 nm), due to DNA hybridization, the resulting quenched intensity being proportional to the concentration of target DNA. Under optimal conditions of pH 7.4 and Ce(QS)2Cl concentration of 1.0 × 10(-7) M, the linear dynamic range found to be 1.0 × 10(-10)-3.0 × 10(-8) M DNA, with a limit of detection of 7.0 × 10(-11) M. The interaction mechanism for the binding of Ce(QS)2Cl to DNA was studied in detail, and results proved that the interaction mode between Ce(QS)2Cl and DNA is groove binding, with a binding constant of 1.0 × 10(5) M(-1).

  20. Using Betatron Emissions from Laser Wakefield Accelerated Electrons to Probe Ultra-fast Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Kotick, Jordan; Schumaker, Will; Condamine, Florian; Albert, Felicie; Barbrel, Benjamin; Galtier, Eric; Granados, Eduardo; Ravasio, Alessandra; Glenzer, Siegfried

    2015-11-01

    Laser wakefield acceleration (LWFA) has been shown to produce short X-ray pulses from betatron oscillations of electrons within the plasma wake. These betatron X-rays pulses have a broad, synchrotron-like energy spectrum and a duration on the order of the driving laser pulse, thereby enabling probing of ultrafast interactions. Using the 1 J, 40fs short-pulse laser at the Matter in Extreme Conditions experimental station at LCLS, we have implemented LWFA to generate and subsequently characterized betatron X-rays. Notch filtering and single photon counting techniques were used to measure the betatron X-ray spectrum while the spatial profile was measured using X-ray CCDs and image plates. We used an ellipsoidal mirror to focus the soft betatron X-rays for pump-probe studies on various targets in conjunction with LCLS X-ray and optical laser pulses. This experimental platform provides the conditions necessary to do a detailed study of warm-dense matter dynamics on the ultrafast time-scale.

  1. Electronic dynamics in helium nanodroplets studied via femtosecond XUV pump / UV probe photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, Michael; Bacellar, Camila; Leone, Stephen; Neumark, Daniel; Gessner, Oliver

    2014-05-01

    Superfluid helium nanodroplets consisting of ~ 2 × 106 atoms are examined using femtosecond time-resolved photoelectron imaging. The droplets are excited by a 23.6(2) eV extreme ultraviolet (XUV) pulse in resonance with an electronically excited band associated largely with the 1s3p Rydberg level of free He atoms. Relaxation dynamics are monitored by ionizing transient states with a 3.2 eV probe pulse and measuring the time-dependent photoelectron kinetic energy distributions using velocity map imaging (VMI). A broad, intense signal associated with the initially excited 1s3p band (Ekin ~ 2.5 eV) appears within the experimental time resolution and decays within 190(70) fs. Concomitantly, a second photoelectron feature with kinetic energies ranging from 0 to 0.5 eV appears on a time scale of ~ 200 fs. The new feature is identified as originating from the 1s2p droplet Rydberg band, indicating the direct observation of a previously suggested interband relaxation within the droplet. This feature also decays within ~ 200 fs, likely due to intraband relaxation within the 1s2p/1s2s manifold to states which are too deeply bound to be ionized by the 3.2 eV probe pulse.

  2. Proton-Electron Double-Resonance Imaging of pH using phosphonated trityl probe

    PubMed Central

    Takahashi, Wataru; Bobko, Andrey A.; Dhimitruka, Ilirian; Hirata, Hiroshi; Zweier, Jay L.; Samouilov, Alexandre

    2014-01-01

    Variable Radio Frequency Proton-Electron Double-Resonance Imaging (VRF PEDRI) enables extracting a functional map from a limited number of images acquired at pre-selected EPR frequencies using specifically designed paramagnetic probes with high quality spatial resolution and short acquisition times. In this work we explored potential of VRF PEDRI for pH mapping of aqueous samples using recently synthesized pH-sensitive phosphonated trityl radical, pTR. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of pTR probe allows for a pH map extraction. Long relaxation times of pTR allow for pH mapping at EPR irradiation power as low as 1.25 W during 130 s acquisition time with spatial resolution of about 1 mm. This is particularly important for in vivo applications enabling one to avoid sample overheating by reducing RF power deposition. PMID:25530673

  3. Transverse-electron-momentum distribution in pump-probe sequential double ionization

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Ivanov, I. A.

    2014-09-01

    We study the transverse-electron-momentum distribution (TEMD) of the wave packets launched in a pump-probe sequential double ionization from the valence shell of a noble gas atom. Our calculations, based on an accurate numerical solution of the time-dependent Schrödinger equation (TDSE), reproduce a characteristic cusp of the TEMD which is attributed to the Coulomb singularity. The evolution of the TEMD with the time delay between the pump and probe pulses is shown to be similar to the prediction of the standard tunneling formula (TF), as was observed experimentally for argon by Fechner et al. [Phys. Rev. Lett. 112, 213001 (2014), 10.1103/PhysRevLett.112.213001]. However, TDSE calculations show a clear deviation from the TF and predict a much more complicated structure which cannot be reproduced by the target orbital momentum profile filtered by the tunneling Gaussian. The accuracy of the TF can be improved if the target momentum profile is calculated with the Coulomb waves instead of the plane waves.

  4. Electronically monitored labial dabbing and stylet 'probing' behaviors of brown marmorated stink bug, Halyomorpha halys, in simulated environments.

    PubMed

    Wiman, Nik G; Walton, Vaughn M; Shearer, Peter W; Rondon, Silvia I

    2014-01-01

    Brown marmorated stink bug, Halyomorpha halys (Stål), (Hemiptera: Pentatomidae) is an invasive polyphagous agricultural and urban nuisance pest of Asian origin that is becoming widespread in North America and Europe. Despite the economic importance of pentatomid pests worldwide, their feeding behavior is poorly understood. Electronically monitored insect feeding (EMIF) technology is a useful tool in studies of feeding behavior of Hemiptera. Here we examined H. halys feeding behavior using an EMIF system designed for high throughput studies in environmental chambers. Our objectives were to quantify feeding activity by monitoring proboscis contacts with green beans, including labial dabbing and stylet penetration of the beans, which we collectively define as 'probes'. We examined frequency and duration of 'probes' in field-collected H. halys over 48 hours and we determined how environmental conditions could affect diel and seasonal periodicity of 'probing' activity. We found differences in 'probing' activity between months when the assays were conducted. These differences in activity may have reflected different environmental conditions, and they also coincide with what is known about the phenology of H. halys. While a substantial number of 'probes' occurred during scotophase, including some of the longest mean 'probe' durations, activity was either lower or similar to 'probing' activity levels during photophase on average. We found that temperature had a significant impact on H. halys 'probing' behavior and may influence periodicity of activity. Our data suggest that the minimal temperature at which 'probing' of H. halys occurs is between 3.5 and 6.1 °C (95% CI), and that 'probing' does not occur at temperatures above 26.5 to 29.6 °C (95% CI). We estimated that the optimal temperature for 'probing' is between 16 and 17 °C. PMID:25474148

  5. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    SciTech Connect

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin E-mail: chilf@suda.edu.cn Chi, Li-Feng E-mail: chilf@suda.edu.cn Wang, Sui-Dong E-mail: chilf@suda.edu.cn

    2015-03-23

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  6. Probing gluon number fluctuation effects in future electron-hadron colliders

    NASA Astrophysics Data System (ADS)

    Amaral, J. T.; Gonçalves, V. P.; Kugeratski, M. S.

    2014-10-01

    The description of the QCD dynamics in the kinematical range which will be probed in the future electron-hadron colliders is still an open question. Although phenomenological studies indicate that the gluon number fluctuations, which are related to discreteness in the QCD evolution, are negligible at HERA, the magnitude of these effects for the next generation of colliders still should be estimated. In this paper we investigate inclusive and diffractive ep observables considering a model for the physical scattering amplitude which describes the HERA data. Moreover, we estimate, for the first time, the contribution of the fluctuation effects for the nuclear structure functions. Our results indicate that the study of these observables in the future colliders can be useful to constrain the presence of gluon number fluctuations.

  7. [Electron probe microanalysis of potassium, sodium, and chlorine levels in the cardiomyocyte cytoplasm during acute ischemia].

    PubMed

    Pogorelov, A G; Pogorelova, V N; Pogorelova, M A

    2010-01-01

    Electron probe microanalysis was applied to determine cytoplasmic elemental (K, Na, Cl) concentrations in cardiac cells of the rat (Wistar). Potassium, sodium and chlorine contents were measured in papillary muscle myocytes of the rat heart perfused by the Langendorff's procedure. Ischemic depletion was created by perfusion with deeply deoxygenated Tirode's solution in the absence of glucose. It was found that the initial phase of acute ischemia is characterized by the potassium deficiency and the accumulation of sodium and chlorine in cardiac myocytes. It should be noted that changes in the total charge of the main intracellular cations (K+, Na+) do not compensate for the increased chlorine concentration. This result can be accounted for by the appearance of ionic (K+ and Cl-) transport coupled with the removal of lactate anions produced in cardiomyocytes during anaerobic glycolysis. PMID:21033355

  8. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors.

    PubMed

    Baumann, O; Walz, B; Somlyo, A V; Somlyo, A P

    1991-02-01

    Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental composition of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 +/- 1.1 mmol/kg (dry weight) (mean +/- SEM). During a 3-sec nonsaturating light stimulus, approximately 50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was approximately 0.7. Our results show unambiguously that the ER is the source of Ca2+ release during cell stimulation and suggest that Mg2+ can nearly balance the charge movement of Ca2+. PMID:1992466

  9. Remote plasmon-induced heat transfer probed by the electronic transport of a gold nanowire

    NASA Astrophysics Data System (ADS)

    Mennemanteuil, M.-M.; Buret, M.; Cazier, N.; Colas-Des-Francs, G.; Bouhelier, A.; Besbes, M.; Ben-Abdallah, P.

    2016-07-01

    We show in this paper that the heat generated by the optical excitation of resonant plasmonic antennas and diffusing along a simple glass/air interface disturbs the electron transport of a nearby conductive element. By probing the temperature-dependent resistance of a gold nanowire Rnw(T ) , we quantitatively analyze the impact of a resonant absorption of the laser by the antennas. We find that the temperature rise at the nanowire induced by the laser absorption of a distant nanoparticle may exceed that of a direct illumination of the nanowire itself. We also find that a global calibration of the temperature-dependent resistance underestimates the heat generated locally by the laser. The local temperatures deduced from resistance variations are verified by numerical simulations with a very satisfactory agreement.

  10. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors

    SciTech Connect

    Baumann, O.; Walz, B. ); Somlyo, A.V.; Somlyo, A.P. )

    1991-02-01

    Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental compositon of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 {plus minus} 1.1 mmol/kg (dry weight). During a 3-sec nonsaturating light stimulus, {approximately}50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was {approximately}0.7. Our results show unambiguously that the ER is the source of Ca{sup 2+} release during cell stimulation and suggest the Mg{sup 2+} can nearly balance the charge movement of Ca{sup 2+}.

  11. Electron spin resonance probed competing states in NiMnInSi Heusler alloy

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.; Lin, J. G.; Titov, I. S.; Granovsky, A. B.

    2016-06-01

    Shape memory Heusler alloy Ni50Mn35In12Si3 is investigated with electron spin resonance (ESR) technique in a temperature range of 200-300 K. ESR is a dynamic probe allowing us to separate the responses from various magnetic phases, thus to study the complex phase transitions. The sample shows three transition temperatures: TcA (271 K), TM (247 K) and TcM (212 K), where TcA is the Curie temperature of austenitic phase, TM and TcM are the temperatures of magnetostructural martensitic transition and the Curie temperature of martensitic phase, respectively. Furthermore, ESR data reveals the coexistence of two magnetic modes in whole temperature range of 200-300 K. Particularly in martensitic phase, two magnetic modes are attributed to two different kinds of lattice deformation, the slip and twinning deformations.

  12. Calibration approach to electron probe microanalysis: A study with PWA-1480, a nickel base superalloy

    NASA Technical Reports Server (NTRS)

    Terepka, F. M.; Vijayakumar, M.; Tewari, S. N.

    1989-01-01

    The utility of an indirect calibration approach in electron probe microanalysis is explored. The methodology developed is based on establishing a functional relationship between the uncorrected k-ratios and the corresponding concentrations obtained using one of the ZAF correction schemes, for all the desired elements in the concentration range of interest. In cases where a very large number of analyses are desired, such a technique significantly reduces the total time required for the microprobe analysis without any significant loss of precision in the data. A typical application of the method in the concentration mapping of the transverse cross-section of a dendrite in directionally solidified PWA-1480, a nickel-based superalloy, is described.

  13. Analysis of Iron Meteorites Using Computed Tomography and Electron-probe Microanalysis

    NASA Technical Reports Server (NTRS)

    Carpenter, P. K.; Gillies, D. C.

    2005-01-01

    Computed tomography (CT) imaging and electron-probe microanalysis (EPMA) have been used to study samples of the Mundrabilla and Colomera iron meteorites in order to perform structural, textural, and mineralogical analysis. Both gamma-ray (Co-60 source, essentially monochromatic 1.25MeV avg.) and x-ray (420 KeV, continuous) sources have been used, with effective resolution of approximately 1 mm and 0.25 mm, respectively. The gamma-ray source provides approx. 15 cm penetration through steel and is used for larger samples, whereas the x-ray source provides superior resolution at reduced penetration but exhibits beam hardening artifacts. Here we present a combined approach where CT and EPMA imaging and microanalysis aid in the identification of structural and compositional features in iron meteorites.

  14. Inner zone electron radial diffusion coefficients - An update with Van Allen Probes MagEIS data

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul; Fennell, Joseph; Guild, Timothy; Mazur, Joseph; Claudepierre, Seth; Clemmons, James; Turner, Drew; Blake, Bernard; Roeder, James

    2016-07-01

    Using MagEIS data from NASA's recent Van Allen Probes mission, we estimate the quiet-time radial diffusion coefficients for electrons in the inner radiation belt and slot, for energies up to ~700 keV. We provide observational evidence that energy diffusion is negligible. The main dynamic processes, then, are radial diffusion and elastic pitch angle scattering. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate over pitch angle to obtain a field line content whose dynamics consist of radial diffusion and loss to the atmosphere. We estimate the loss timescale from periods of exponential decay in the time series. We then estimate the radial diffusion coefficient from the temporal and radial variation of the field line content. We show that our diffusion coefficients agree well with previously determined values. Our coefficients are consistent with diffusion by electrostatic impulses, whereas outer zone radial diffusion is thought to be dominated by electromagnetic fluctuations.

  15. Enhancing photoinduced electron transfer efficiency of fluorescent pH-probes with halogenated phenols.

    PubMed

    Aigner, Daniel; Freunberger, Stefan A; Wilkening, Martin; Saf, Robert; Borisov, Sergey M; Klimant, Ingo

    2014-09-16

    Photoinduced electron transfer (PET), which causes pH-dependent quenching of fluorescent dyes, is more effectively introduced by phenolic groups than by amino groups which have been much more commonly used so far. That is demonstrated by fluorescence measurements involving several classes of fluorophores. Electrochemical measurements show that PET in several amino-modified dyes is thermodynamically favorable, even though it was not experimentally found, underlining the importance of kinetic aspects to the process. Consequently, the attachment of phenolic groups allows for fast and simple preparation of a wide selection of fluorescent pH-probes with tailor-made spectral properties, sensitive ranges, and individual advantages, so that a large number of applications can be realized. Fluorophores carrying phenolic groups may also be used for sensing analytes other than pH or molecular switching and signaling.

  16. Attosecond Electron Spectroscopy Using a Novel Interferometric Pump-Probe Technique

    SciTech Connect

    Mauritsson, J.; Remetter, T.; Swoboda, M.; Kluender, K.; L'Huillier, A.; Schafer, K. J.; Ghafur, O.; Kelkensberg, F.; Siu, W.; Johnsson, P.; Vrakking, M. J. J.; Znakovskaya, I.; Uphues, T.; Zherebtsov, S.; Kling, M. F.; Lepine, F.; Benedetti, E.; Ferrari, F.; Sansone, G.; Nisoli, M.

    2010-07-30

    We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multipath interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the AP duration.

  17. LAT1 targeted delivery of methionine based imaging probe derived from M(III) metal ions for early diagnosis of proliferating tumours using molecular imaging modalities.

    PubMed

    Hazari, Puja Panwar; Prakash, Surbhi; Meena, Virendra K; Jaswal, Ambika; Khurana, Harleen; Mishra, Surabhi Kirti; Bhonsle, Hemanth Kumar; Singh, Lokendra; Mishra, Anil K

    2015-01-01

    We investigated the potential of DTPA-bis(Methionine), a target specific amino acid based probe for detection of L-type amino acid transporters (LAT1) known to over express in proliferating tumours using multimodality imaging. The ligand, DTPA-bis(Met) was readily converted to lanthanide complexes and was found capable of targeting cancer cells using multimodality imaging. DTPA-bis(Met) complexes were synthesized and characterized by mass spectroscopy. MR longitudinal relaxivity, r₁ = 4.067 ± 0.31 mM⁻¹s⁻¹ and transverse relaxivity, r₂ = 8.61 ± 0.07 mM⁻¹s⁻¹ of Gd(III)-DTPA-bis(Met) were observed at pH 7.4 at 7 T. Bright, localized fluorescence of Eu(III)-DTPA-bis(Met) was observed with standard microscopy and displacement studies indicated ligand functionality. K(D) value determined for Eu(III)-DTPA-bis(Met) on U-87 MG cells was found to be 17.3 pM and showed appreciable fluorescence within the cells. Radio HPLC showed a radiochemical purity more than 95% (specific activity = 400-500 MBq/μmol, labelling efficiency 78 %) for ⁶⁸Ga(III)-DTPA-bis(Met). Pre-treatment of xenografted U-87 MG athymic mice with ⁶⁸Ga(III)-DTPA-bis(Met) following unlabelled L-methionine administration reduced tumour uptake by 10-folds in Micro PET. These data support the specific binding of ⁶⁸Ga(III)-DTPA-bis(Met) to the LAT1 transporter. To summarize, this agent possesses high stability in biological environment and exhibits effective interaction with its LAT1 transporters giving high accumulation in tumour area, excellent tumour/non-tumour ratio and low non-specific retention in vivo. PMID:25329672

  18. LAT1 targeted delivery of methionine based imaging probe derived from M(III) metal ions for early diagnosis of proliferating tumours using molecular imaging modalities.

    PubMed

    Hazari, Puja Panwar; Prakash, Surbhi; Meena, Virendra K; Jaswal, Ambika; Khurana, Harleen; Mishra, Surabhi Kirti; Bhonsle, Hemanth Kumar; Singh, Lokendra; Mishra, Anil K

    2015-01-01

    We investigated the potential of DTPA-bis(Methionine), a target specific amino acid based probe for detection of L-type amino acid transporters (LAT1) known to over express in proliferating tumours using multimodality imaging. The ligand, DTPA-bis(Met) was readily converted to lanthanide complexes and was found capable of targeting cancer cells using multimodality imaging. DTPA-bis(Met) complexes were synthesized and characterized by mass spectroscopy. MR longitudinal relaxivity, r₁ = 4.067 ± 0.31 mM⁻¹s⁻¹ and transverse relaxivity, r₂ = 8.61 ± 0.07 mM⁻¹s⁻¹ of Gd(III)-DTPA-bis(Met) were observed at pH 7.4 at 7 T. Bright, localized fluorescence of Eu(III)-DTPA-bis(Met) was observed with standard microscopy and displacement studies indicated ligand functionality. K(D) value determined for Eu(III)-DTPA-bis(Met) on U-87 MG cells was found to be 17.3 pM and showed appreciable fluorescence within the cells. Radio HPLC showed a radiochemical purity more than 95% (specific activity = 400-500 MBq/μmol, labelling efficiency 78 %) for ⁶⁸Ga(III)-DTPA-bis(Met). Pre-treatment of xenografted U-87 MG athymic mice with ⁶⁸Ga(III)-DTPA-bis(Met) following unlabelled L-methionine administration reduced tumour uptake by 10-folds in Micro PET. These data support the specific binding of ⁶⁸Ga(III)-DTPA-bis(Met) to the LAT1 transporter. To summarize, this agent possesses high stability in biological environment and exhibits effective interaction with its LAT1 transporters giving high accumulation in tumour area, excellent tumour/non-tumour ratio and low non-specific retention in vivo.

  19. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III.

    PubMed

    Göries, D; Dicke, B; Roedig, P; Stübe, N; Meyer, J; Galler, A; Gawelda, W; Britz, A; Geßler, P; Sotoudi Namin, H; Beckmann, A; Schlie, M; Warmer, M; Naumova, M; Bressler, C; Rübhausen, M; Weckert, E; Meents, A

    2016-05-01

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy)3. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM). PMID:27250401

  20. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III.

    PubMed

    Göries, D; Dicke, B; Roedig, P; Stübe, N; Meyer, J; Galler, A; Gawelda, W; Britz, A; Geßler, P; Sotoudi Namin, H; Beckmann, A; Schlie, M; Warmer, M; Naumova, M; Bressler, C; Rübhausen, M; Weckert, E; Meents, A

    2016-05-01

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy)3. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).

  1. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques

    NASA Astrophysics Data System (ADS)

    Eriksson, A. I.; André, M.; Klecker, B.; Laakso, H.; Lindqvist, P.-A.; Mozer, F.; Paschmann, G.; Pedersen, A.; Quinn, J.; Torbert, R.; Torkar, K.; Vaith, H.

    2006-03-01

    The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW) and an electron drift instrument (EDI). We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV) below the spacecraft potential (in volts). We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.

  2. Predicting stored grain insect population densities using an electronic probe trap.

    PubMed

    Flinn, P W; Opit, G P; Throne, J E

    2009-08-01

    Manual sampling of insects in stored grain is a laborious and time-consuming process. Automation of grain sampling should help to increase the adoption of stored grain integrated pest management. A new commercial electronic grain probe trap (OPI Insector) has recently been marketed. We field tested OPI Insector electronic grain probes in two bins, each containing 32.6 tonnes of wheat, Triticum aestivum L., over a 2-yr period. We developed new statistical models to convert Insector catch into insects per kilogram. We compared grain sample estimates of insect density (insects per kilogram of wheat) taken near each Insector to the model-predicted insect density by using Insector counts. An existing expert system, Stored Grain Advisor Pro, was modified to automatically read the Insector database and use the appropriate model to estimate Cryptolestes ferrugineus (Stephens), Rhyzopertha dominica (F.), and Tribolium castaneum (Herbst) density from trap catch counts. Management decisions using Insector trap-catch estimates for insect density were similar to those made using grain sample estimates of insect density for most sampling dates. However, because of the similarity in size of R. dominica and T. castaneum, the software was unable to differentiate counts between these two species. In the central and southern portions of the United States, where both species frequently occur, it may be necessary to determine the proportion of each species present in the grain by manual inspection of trap catch. The combination of SGA Pro with the OPI Insector system should prove to be a useful tool for automatic monitoring of insect pests in stored grain.

  3. Probing Warm Dense Matter electronic structure using X-ray absorption Near Edge Spectroscopy (XANES)

    NASA Astrophysics Data System (ADS)

    Benuzzi Mounaix, Alessandra

    2011-06-01

    The behavior and physical properties of warm dense matter, fundamental for various branches of physics including planetology and Inertial Confinement Fusion, are non trivial to simulate either theoretically, numerically or experimentally. Despite important progress obtained in the last decade on macroscopic characterization (e.g. equations of state), microscopic studies are today necessary to investigate finely the WDM structure changes, the phase transitions and to test physical hypothesis and approximations commonly used in calculations. In this work, highly compressed aluminum has been investigated with the aim of bringing information on the evolution of its electronic structure by using K-edge shift and XANES. The experiment was performed at LULI laboratory where we used one long pulse (500 ps, IL ~ 8 1013 W/cm2) to create a uniform shock and a second ps beam (IL ~ 1017 W/cm2) to generate an ultra-short broadband X-ray source near the Al K-edge. The spectra were registered by using two conical KAP Bragg crystals. The main target was designed to probe the Aluminum in reshocked conditions allowing us to probe and to test theories in an extreme regime up to now unexplored (ρ ~ 3 ρ0 and T ~ 8 eV). The hydrodynamical Al conditions were measured by using VISARs interferometers and self-emission diagnostics. By increasing the delay between the two beams, we have been able to observe the modification of absorption spectra for unloading Al conditions (ρ >= 0.5 g/cc), and to put in evidence the relocalization of the 3p valence electrons occurring in the metal-non metal transition. All data have been compared to ab initio and dense plasma calculations.

  4. Probing the Conformation of the Fibronectin III1–2 Domain by Fluorescence Resonance Energy Transfer*S⃞

    PubMed Central

    Karuri, Nancy W.; Lin, Zong; Rye, Hays S.; Schwarzbauer, Jean E.

    2009-01-01

    Fibronectin (FN) matrix is crucial for cell and tissue functions during embryonic development, wound healing, and oncogenesis. Assembly of FN matrix fibrils requires FN domains that mediate interactions with integrin receptors and with other FN molecules. In addition, regulation of FN matrix assembly depends on the first two FN type III modules, III1 and III2, which harbor FN-binding sites. We propose that interactions between these two modules sequester FN-binding sites in soluble FN and that these sites become exposed by FN conformational changes during assembly. To test the idea that III1–2 has a compact conformation, we constructed CIIIY, a conformational sensor of III1–2 based on fluorescent resonance energy transfer between cyan and yellow fluorescent proteins conjugated at its N and C termini. We demonstrate energy transfer in CIIIY and show that fluorescent resonance energy transfer was eliminated by proteolysis and by treatment with mild denaturants that disrupted intramolecular interactions between the two modules. We also show that mutations of key charged residues resulted in conformational changes that exposed binding sites for the N-terminal 70-kDa FN fragment. Collectively, these results support a conformation-dependent mechanism for the regulation of FN matrix assembly by III1–2. PMID:19064996

  5. Probing the magnetic and magnetothermal properties of M(II)-Ln(III) complexes (where M(II) = Ni or Zn; Ln(III) = La or Pr or Gd).

    PubMed

    Ahmed, Naushad; Das, Chinmoy; Vaidya, Shefali; Srivastava, Anant Kumar; Langley, Stuart K; Murray, Keith S; Shanmugam, Maheswaran

    2014-12-14

    We establish the coordination potential of the Schiff base ligand (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate (H2L)) via the isolation of various M(II)-Ln(III) complexes (where M(II) = Ni or Zn and Ln(III) = La or Pr or Gd). Single crystals of these five complexes were isolated and their solid state structures were determined by single crystal X-ray diffraction. Structural determination revealed molecular formulae of [NiGd(HL)2(NO3)3] (1), [NiPr(HL)2(NO3)3] (2) and [Ni2La(HL)4(NO3)](NO3)2 (3), [Zn2Gd(HL)4(NO3)](NO3)2 (4), and [Zn2Pr(HL)4(NO3)](NO3)2 (5). Complexes and were found to be neutral heterometallic dinuclear compounds, whereas 3-5 were found to be linear heterometallic trinuclear cationic complexes. Direct current (dc) magnetic susceptibility and magnetization measurements conclusively revealed that complexes 1 and 4 possess a spin ground state of S = 9/2 and 7/2 respectively. Empirically calculated ΔχMT derived from the variable temperature susceptibility data for all complexes undoubtedly indicates that the Ni(II) ion is coupled ferromagnetically with the Gd(III) ion, and antiferromagnetically with the Pr(III) ion in 1 and 2 respectively. The extent of the exchange interaction for was estimated by fitting the magnetic susceptibility data using the parameters (g = 2.028, S = 9/2, J = 1.31 cm(-1) and zJ = +0.007), supporting the phenomenon observed in an empirical approach. Similarly using a HDVV Hamiltonian, the magnetic data of 3 and 4 were fitted, yielding parameters g = 2.177, D = 3.133 cm(-1), J = -0.978 cm(-1), (for 3) and g = 1.985, D = 0.508 cm(-1) (for 4). The maximum change in magnetic entropy (-ΔSm) estimated from the isothermal magnetization data for was found to be 5.7 J kg(-1) K(-1) (ΔB = 7 Tesla) at 7.0 K, which is larger than the -ΔSm value extracted from 4 of 3.5 J kg(-1) K(-1) (ΔB = 7 Tesla) at 15.8 K, revealing the importance of the exchange interaction in increasing the overall ground state of a molecule for

  6. Probing the magnetic and magnetothermal properties of M(II)-Ln(III) complexes (where M(II) = Ni or Zn; Ln(III) = La or Pr or Gd).

    PubMed

    Ahmed, Naushad; Das, Chinmoy; Vaidya, Shefali; Srivastava, Anant Kumar; Langley, Stuart K; Murray, Keith S; Shanmugam, Maheswaran

    2014-12-14

    We establish the coordination potential of the Schiff base ligand (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate (H2L)) via the isolation of various M(II)-Ln(III) complexes (where M(II) = Ni or Zn and Ln(III) = La or Pr or Gd). Single crystals of these five complexes were isolated and their solid state structures were determined by single crystal X-ray diffraction. Structural determination revealed molecular formulae of [NiGd(HL)2(NO3)3] (1), [NiPr(HL)2(NO3)3] (2) and [Ni2La(HL)4(NO3)](NO3)2 (3), [Zn2Gd(HL)4(NO3)](NO3)2 (4), and [Zn2Pr(HL)4(NO3)](NO3)2 (5). Complexes and were found to be neutral heterometallic dinuclear compounds, whereas 3-5 were found to be linear heterometallic trinuclear cationic complexes. Direct current (dc) magnetic susceptibility and magnetization measurements conclusively revealed that complexes 1 and 4 possess a spin ground state of S = 9/2 and 7/2 respectively. Empirically calculated ΔχMT derived from the variable temperature susceptibility data for all complexes undoubtedly indicates that the Ni(II) ion is coupled ferromagnetically with the Gd(III) ion, and antiferromagnetically with the Pr(III) ion in 1 and 2 respectively. The extent of the exchange interaction for was estimated by fitting the magnetic susceptibility data using the parameters (g = 2.028, S = 9/2, J = 1.31 cm(-1) and zJ = +0.007), supporting the phenomenon observed in an empirical approach. Similarly using a HDVV Hamiltonian, the magnetic data of 3 and 4 were fitted, yielding parameters g = 2.177, D = 3.133 cm(-1), J = -0.978 cm(-1), (for 3) and g = 1.985, D = 0.508 cm(-1) (for 4). The maximum change in magnetic entropy (-ΔSm) estimated from the isothermal magnetization data for was found to be 5.7 J kg(-1) K(-1) (ΔB = 7 Tesla) at 7.0 K, which is larger than the -ΔSm value extracted from 4 of 3.5 J kg(-1) K(-1) (ΔB = 7 Tesla) at 15.8 K, revealing the importance of the exchange interaction in increasing the overall ground state of a molecule for

  7. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    SciTech Connect

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-05-09

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy

  8. Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.

    SciTech Connect

    Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Morales, Eugenia T.; Leonard, Francois Leonard; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong

    2009-09-01

    The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.

  9. Encapsulation of Ln(III) Ions/Dyes within a Microporous Anionic MOF by Post-synthetic Ionic Exchange Serving as a Ln(III) Ion Probe and Two-Color Luminescent Sensors.

    PubMed

    Zhao, Shu-Na; Song, Xue-Zhi; Zhu, Min; Meng, Xing; Wu, Lan-Lan; Feng, Jing; Song, Shu-Yan; Zhang, Hong-Jie

    2015-06-26

    A new anionic framework {[Me2NH2]0.125[In0.125(H2L)0.25]⋅xDMF}n (1) with one-dimensional (1D) channels along the c axis of about 13.06×13.06 Å(2), was solvothermally synthesized and well characterized. Post-synthetic cation exchange of 1 with Eu(3+), Tb(3+), Dy(3+), Sm(3+) afforded lanthanide(III)-loaded materials, Ln(3+)@1, with different luminescent behavior, indicating that compound 1 could be used as a potential luminescent probe toward different lanthanide(III) ions. Additionally, compound 1 exhibits selective adsorption ability toward cationic dyes. Moreover, the RhB@1 realized the probing of different organic solvent molecules by tuning the energy transfer efficiency between two different emissions, especially for sensing DMF. This work highlights the practical application of luminescent guest@MOFs as sensors, and it paves the way toward other one/multi-color luminescent host-guest systems by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels.

  10. Gold chloride clusters with Au(III) and Au(I) probed by FT-ICR mass spectrometry and MP2 theory.

    PubMed

    Lemke, Kono H

    2014-05-01

    Microsolvated clusters of gold chloride are probed by electrospray ionization mass spectrometry (ESI-MS) and scalar relativistic electronic structure calculations. Electrospray ionization of aqueous AuCl3 leads to mononuclear clusters of types [AuCl2](+)(H2O)n (n = 0-4), [AuOHCl](+)(H2O)n (n = 0-1) and [AuCl2](+)(HCl)2(H2O)n (n = 0-4). In addition, strong ion signals due to dinuclear [Au2Cl5-xOHx](+)(H2O)n (x = 0-1) are present in ESI mass spectra of aqueous AuCl3, with the abundance of individual dinuclear species controlled by the concentration-dependent variation of the precursor complexes [AuCl2-xOHx](+)(H2O)n and AuCl3. Equilibrium structures, energies and thermodynamic properties of mono- and dinuclear gold clusters have been predicted using MP2 and CCSD(T) theory, and these data have been applied to examine the influence of microsolvation on cluster stability. Specifically, results from CCSD(T) calculations indicate that non-covalently bound ion-neutral complexes Au(+)(Cl2)(H2O)n, with formal Au(I), are the dominant forms of mononuclear gold with n = 0-2, while higher hydrates (n > 2) are covalently bound [AuCl2](+)(H2O)n complexes in which gold exists as Au(III). MP2 calculations show that the lowest energy structure of dinuclear gold is an ion-molecule cluster [Au2Cl(Cl2)2](+) consisting of a single-bridged digold-chloronium ion bound end-on to two dichlorine ligands, with two higher energy isomers, single-bridged [Au2Cl3(Cl2)](+) and double-bridged [Au2Cl5](+) clusters. Finally, AuAu interactions in the singly-bridged clusters [Au2Cl(Cl2)2](+)(H2O)n and [Au2Cl3(Cl2)](+)(H2O)n are examined employing a wide range of computational tools, including natural bond order (NBO) analysis and localized orbital locator (LOL) profiles. PMID:24643288

  11. The amide III vibrational circular dichroism band as a probe to detect conformational preferences of alanine dipeptide in water.

    PubMed

    Mirtič, Andreja; Merzel, Franci; Grdadolnik, Jože

    2014-07-01

    The conformational preferences of blocked alanine dipeptide (ADP), Ac-Ala-NHMe, in aqueous solution were studied using vibrational circular dichroism (VCD) together with density functional theory (DFT) calculations. DFT calculations of three most representative conformations of ADP surrounded by six explicit water molecules immersed in a dielectric continuum have proven high sensitivity of amide III VCD band shape that is characteristic for each conformation of the peptide backbone. The polyproline II (PII ) and αR conformation of ADP are associated with a positive VCD band while β conformation has a negative VCD band in amide III region. Knowing this spectral characteristic of each conformation allows us to assign the experimental amide III VCD spectrum of ADP. Moreover, the amide III region of the VCD spectrum was used to determine the relative populations of conformations of ADP in water. Based on the interpretation of the amide III region of VCD spectrum we have shown that dominant conformation of ADP in water is PII which is stabilized by hydrogen bonded water molecules between CO and NH groups on the peptide backbone.

  12. Using the Multipole Resonance Probe to Stabilize the Electron Density During a Reactive Sputter Process

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter

    2015-09-01

    Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.

  13. Tryptophan as a probe of photosystem I electron transfer reactions: a UV resonance Raman study.

    PubMed

    Chen, Jun; Bender, Shana L; Keough, James M; Barry, Bridgette A

    2009-08-20

    Photosystem I (PSI) is one of the two membrane-associated reaction centers involved in oxygenic photosynthesis. In photosynthesis, solar energy is converted to chemical energy in the form of a transmembrane charge separation. PSI oxidizes cytochrome c(6) or plastocyanin and reduces ferredoxin. In cyanobacterial PSI, there are 10 tryptophan residues with indole side chains located less than 10 A from the electron transfer cofactors. In this study, we apply pump-probe difference UV resonance Raman (UVRR) spectroscopy to acquire the spectrum of aromatic amino acids in cyanobacterial PSI. This UVRR technique allows the use of the tryptophan vibrational spectrum as a reporter for structural changes, which are linked to PSI electron transfer reactions. Our results show that photo-oxidation of the chlorophyll a/a' heterodimer, P(700), causes shifts in the vibrational frequencies of two or more tryptophan residues. Similar perturbations of tryptophan are observed when P(700) is chemically oxidized. The observed spectral frequencies suggest that the perturbed tryptophan side chains are only weakly or not hydrogen bonded and are located in an environment in which there is steric repulsion. The direction of the spectral shifts is consistent with an oxidation-induced increase in dielectric constant or a change in hydrogen bonding. To explain our results, the perturbation of tryptophan residues must be linked to a PSI conformational change, which is, in turn, driven by P(700) oxidation.

  14. Nanozeolite-LTL with Gd(III) deposited in the large and Eu(III) in the small cavities as a magnetic resonance optical imaging probe.

    PubMed

    Mayer, Florian; Zhang, Wuyuan; Brichart, Thomas; Tillement, Olivier; Bonnet, Célia S; Tóth, Éva; Peters, Joop A; Djanashvili, Kristina

    2014-03-17

    The immense structural diversity of more than 200 known zeolites is the basis for the wide variety of applications of these fascinating materials ranging from catalysis and molecular filtration to agricultural uses. Despite this versatility, the potential of zeolites in medical imaging has not yet been much exploited. In this work a novel strategy is presented to selectively deposit different ions into distinct framework locations of zeolite-LTL (Linde type L) and it is demonstrated that the carefully ion-exchanged Gd/Eu-containing nanocrystals acquire exceptional magnetic properties in combination with enhanced luminescence. This smart exploitation of the framework structure yields the highest relaxivity density (13.7 s(-1)  L g(-1) at 60 MHz and 25 °C) reported so far for alumosilicates, rendering these materials promising candidates for the design of dual magnetic resonance/optical imaging probes, as demonstrated in preliminary phantom studies.

  15. Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R.; Schaefer, Rembrandt T.

    2012-01-01

    A multi-channel electrometer voltmeter that employs self-nulling lock-in detection electronics in conjunction with a mechanical resonator with noncontact voltage sensing electrodes has been developed for space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM). The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Use of an AC-coupled lock-in amplifier with closed-loop sense-signal nulling via generation of an active guard-driving feedback voltage provides the resolution, accuracy, linearity and stability needed for long-term space-based measurement of the IESDM. This implementation relies on adjusting the feedback voltage to drive the sense current received from the resonator s variable-capacitance-probe voltage transducer to approximately zero, as limited by the signal-to-noise performance of the loop electronics. The magnitude of the sense current is proportional to the difference between the input voltage being measured and the feedback voltage, which matches the input voltage when the sense current is zero. High signal-to-noise-ratio (SNR) is achieved by synchronous detection of the sense signal using the correlated reference signal derived from the oscillator circuit that drives the mechanical resonator. The magnitude of the feedback voltage, while the loop is in a settled state with essentially zero sense current, is an accurate estimate of the input voltage being measured. This technique has many beneficial attributes including immunity to drift, high linearity, high SNR from synchronous detection of a single-frequency carrier selected to avoid potentially noisy 1/f low-frequency spectrum of the signal-chain electronics, and high accuracy provided through the benefits of a driven shield encasing the capacitance- probe transducer and guarded input triaxial lead-in. Measurements obtained from a

  16. Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Europium(III) DO3A as a Bimodal Imaging Probe.

    PubMed

    Carron, Sophie; Bloemen, Maarten; Vander Elst, Luce; Laurent, Sophie; Verbiest, Thierry; Parac-Vogt, Tatjana N

    2016-03-18

    A new prototype consisting of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles decorated with europium(III) ions encapsulated in a DO3A organic scaffold was designed as a platform for further development of bimodal contrast agents for MRI and optical imaging. The USPIO nanoparticles act as negative MRI contrast agents, whereas the europium(III) ion is a luminophore that is suitable for use in optical imaging detection. The functionalized USPIO nanoparticles were characterized by TEM, DLS, XRD, FTIR, and TXRF analysis, and a full investigation of the relaxometric and optical properties was conducted. The typical luminescence emission of europium(III) was observed and the main red emission wavelength was found at 614 nm. The relaxometric study of these ultrasmall nanoparticles showed r2 values of 114.8 mM(-1) Fes(-1) at 60 MHz, which is nearly double the r2 relaxivity of Sinerem(®).

  17. Structural, energetic, and electronic properties of La(III)-dimethyl sulfoxide clusters.

    PubMed

    Bodo, Enrico; Chiricotto, Mara; Spezia, Riccardo

    2014-12-11

    By using accurate density functional theory calculations, we have studied the cluster complexes of a La(3+) ion interacting with a small number of dimethyl sulfoxide (DMSO) molecules of growing size (from 1 to 12). Extended structural, energetic, and electronic structure analyses have been performed to provide a complete picture of the physical properties that are the basis of the interaction of La(III) with DMSO. Recent experimental data in the solid and liquid phase have suggested a coordination number of 8 DMSO molecules with a square antiprism geometry arranged similarly in the liquid and crystalline phases. By using a cluster approach on the La(3+)(DMSO)n gas phase isolated structures, we have found that the 8-fold geometry, albeit less regular than in the crystal, is probably the most stable cluster. Furthermore, we provide new evidence of a 9-fold complexation geometric arrangement that is competitive (at least energetically) with the 8-fold one and that might suggest the existence of transient structures with higher coordination numbers in the liquid phase.

  18. Pump-probe reflectivity study of ultrafast dynamics of strongly correlated 5f electrons inUO2

    SciTech Connect

    Au, Yongqiang Q; Taylor, Antoinette J; Durakiewicz, Tomasz; Rodriguez, George

    2010-01-01

    5f electrons in the Mott insulator UO{sub 2} produce intriguing electronic states and dynamics, such as strong correlation and f-f excitations. We have performed femtosecond pump-probe reflectivity measurements on a single crystal UO{sub 2} at temperatures 5-300 K to study the ultrafast dynamics of photoexcited 5f electrons. The laser pulses at 400 nm pump 5 f electrons across the Mott gap, while those at 800 nm probe the pump-induced change of reflectivity. We find temperature-dependent excitation and relaxation processes and long-lived acoustic phonons, and extract picosecond risetimes and microsecond relaxation times at low temperatures. The observed slow relaxation is ascribed to the decay of Hubbard excitons formed by U{sup 3+}-U{sup 5+} pairs.

  19. Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes

    PubMed Central

    Kurth, W S; De Pascuale, S; Faden, J B; Kletzing, C A; Hospodarsky, G B; Thaller, S; Wygant, J R

    2015-01-01

    The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Field Instrument Suite and Integrated Science suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher-frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing a process and tools for identifying and digitizing the upper hybrid resonance frequency in order to infer the electron density as an essential parameter for interpreting not only the plasma wave data from the mission but also as input to various magnetospheric models. Good progress has been made in developing algorithms to identify fuh and create a data set of electron densities. However, it is often difficult to interpret the plasma wave spectra during active times to identify fuh and accurately determine ne. In some cases, there is no clear signature of the upper hybrid band, and the low-frequency cutoff of the continuum radiation is used. We describe the expected accuracy of ne and issues in the interpretation of the electrostatic wave spectrum. PMID:26167442

  20. Investigation of electronically excited indole relaxation dynamics via photoionization and fragmentation pump-probe spectroscopy.

    PubMed

    Godfrey, T J; Yu, Hui; Ullrich, Susanne

    2014-07-28

    The studies herein investigate the involvement of the low-lying (1)La and (1)Lb states with (1)ππ(*) character and the (1)πσ(*) state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement of the (1)πσ(*) state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the (1)Bb state decays to the (1)La state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the (1)La state with an ultrafast decay constant (<100 femtoseconds (fs)) to the lower-lying (1)Lb state, which is found to possess a relatively long lifetime of 23 ± 5 picoseconds (ps) before regressing to the ground state. These studies also manifest an additional component with a relaxation time of 405 ± 76 fs, which is correlated with activity along the (1)πσ(*) state. TR-KER and TR-IY experiments, both specifically probing (1)πσ(*) dynamics, exhibit similar decay constants, further validating these observations.

  1. Investigation of electronically excited indole relaxation dynamics via photoionization and fragmentation pump-probe spectroscopy

    SciTech Connect

    Godfrey, T. J.; Yu, Hui; Ullrich, Susanne

    2014-07-28

    The studies herein investigate the involvement of the low-lying {sup 1}L{sub a} and {sup 1}L{sub b} states with {sup 1}ππ{sup *} character and the {sup 1}πσ{sup *} state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement of the {sup 1}πσ{sup *} state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the {sup 1}B{sub b} state decays to the {sup 1}L{sub a} state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the {sup 1}L{sub a} state with an ultrafast decay constant (<100 femtoseconds (fs)) to the lower-lying {sup 1}L{sub b} state, which is found to possess a relatively long lifetime of 23 ± 5 picoseconds (ps) before regressing to the ground state. These studies also manifest an additional component with a relaxation time of 405 ± 76 fs, which is correlated with activity along the {sup 1}πσ{sup *} state. TR-KER and TR-IY experiments, both specifically probing {sup 1}πσ{sup *} dynamics, exhibit similar decay constants, further validating these observations.

  2. Effect of Electron Temperature Fluctuations on the Anomalous Particle Flux inferred by Electrostatic Triple Probes

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2010-11-01

    Plasma anomalous transport severely reduces the economical attractiveness of any possible fusion energy reactor based on magnetically confined thermonuclear plasma. Understanding the major mechanisms of this transport, mainly due to the anomalous particles losses, is vital to ameliorate the potential of such reactor, and plasma edge is a key area for this research. We reported here data of a 4-pin triple probe at TCABR tokamak [R=0.615m, a=0.18m, BT=1.15T, Ip<=120kA, ne(bar)<=4x10^19m-3, Te(0)<=600eV, Ti(0)<=400eV, 100ms, circular limiter]. Plasma density (ne), potential (Vp), electron temperature (Te), and respectively fluctuations, all were simultaneously measured or inferred with high spatial(˜3mm) and temporal (1μs) resolution. Corrections in the fluctuation driven particle flux(γ) via the poloidal electrical field (Eθ) and ne are used: real geometry of the tips; Vp (instead of floating potential) between the two tips for inferring Eθ; a correction on ne due to the finite electrical sheath formed at the probe ion collecting area via an analytical formula based on the Hutchinson model for collisionless plasma. The role of Te fluctuations in γ is analyzed and the results are correlated with the dynamic of the global plasma parameters on discharges under auxiliary heating via RF injection (4MHz, 30kW, Alfvén Wave scheme) in which confinement improvement has been observed.

  3. Cathodoluminescence, laser ablasion inductively coupled plasma mass spectrometry, electron probe microanalysis and electron paramagnetic resonance analyses of natural sphalerite

    USGS Publications Warehouse

    Karakus, M.; Hagni, R.D.; Koenig, A.; Ciftc, E.

    2008-01-01

    Natural sphalerite associated with copper, silver, lead-zinc, tin and tungsten deposits from various world-famous mineral deposits have been studied by cathodoluminescence (CL), laser ablasion inductively coupled plasma mass spectrometry (LA-ICP-MS), electron probe microanalysis (EPMA) and electron paramagnetic resonance (EPR) to determine the relationship between trace element type and content and the CL properties of sphalerite. In general, sphalerite produces a spectrum of CL colour under electron bombardment that includes deep blue, turquoise, lime green, yellow-orange, orange-red and dull dark red depending on the type and concentration of trace quantities of activator ions. Sphalerite from most deposits shows a bright yellow-orange CL colour with ??max centred at 585 nm due to Mn2+ ion, and the intensity of CL is strongly dependent primarily on Fe2+ concentration. The blue emission band with ??max centred at 470-490 nm correlates with Ga and Ag at the Tsumeb, Horn Silver, Balmat and Kankoy mines. Colloform sphalerite from older well-known European lead-zinc deposits and late Cretaceous Kuroko-type VMS deposits of Turkey shows intense yellowish CL colour and their CL spectra are characterised by extremely broad emission bands ranging from 450 to 750 nm. These samples are characterised by low Mn (<10 ppm) and Ag (<1 ppm), and they are enriched in Tl (1-30 ppm) and Pb (80-1500 ppm). Strong green CL is produced by sphalerite from the Balmat-Edwards district. Amber, lime-green and red-orange sphalerite produced weak orange-red CL at room temperatures, with several emission bands centred at 490, 580, 630, 680, 745, with ??max at 630 nm being the strongest. These emission bands are well correlated with trace quantities of Sn, In, Cu and Mn activators. Sphalerite from the famous Ogdensburg and Franklin mines exhibited brilliant deep blue and orange CL colours and the blue CL may be related to Se. Cathodoluminescence behaviour of sphalerite serves to characterise ore

  4. Terbium(III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(II) and a paper-based visual sensor.

    PubMed

    Qi, Yan-Xia; Zhang, Min; Zhu, Anwei; Shi, Guoyue

    2015-08-21

    In this work, a novel ratiometric fluorescent probe was developed for rapid, highly accurate, sensitive and selective detection of mercury(II) (Hg(2+)) based on terbium(III)/gold nanocluster conjugates (Tb(3+)/BSA-AuNCs), in which bovine serum albumin capped gold nanoclusters (BSA-AuNCs) acted as the signal indicator and terbium(III) (Tb(3+)) was used as the build-in reference. Our proposed ratiometric fluorescent probe exhibited unique specificity toward Hg(2+) against other common environmentally and biologically important metal ions, and had high accuracy and sensitivity with a low detection limit of 1 nM. In addition, our proposed probe was effectively employed to detect Hg(2+) in the biological samples from the artificial Hg(2+)-infected rats. More significantly, an appealing paper-based visual sensor for Hg(2+) was designed by using filter paper embedded with Tb(3+)/BSA-AuNC conjugates, and we have further demonstrated its feasibility for facile fluorescent sensing of Hg(2+) in a visual format, in which only a handheld UV lamp is used. In the presence of Hg(2+), the paper-based visual sensor, illuminated by a handheld UV lamp, would undergo a distinct fluorescence color change from red to green, which can be readily observed with naked eyes even in trace Hg(2+) concentrations. The Tb(3+)/BSA-AuNC-derived paper-based visual sensor is cost-effective, portable, disposable and easy-to-use. This work unveiled a facile approach for accurate, sensitive and selective measuring of Hg(2+) with self-calibration.

  5. Recent progress of probing correlated electron states by point contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Cheng; Greene, Laura H.

    2016-09-01

    We review recent progress in point contact spectroscopy (PCS) to extract spectroscopic information out of correlated electron materials, with the emphasis on non-superconducting states. PCS has been used to detect bosonic excitations in normal metals, where signatures (e.g. phonons) are usually less than 1% of the measured conductance. In the superconducting state, point contact Andreev reflection (PCAR) has been widely used to study properties of the superconducting gap in various superconductors. It has been well-recognized that the corresponding conductance can be accurately fitted by the Blonder–Tinkham–Klapwijk (BTK) theory in which the AR occurring near the point contact junction is modeled by three parameters; the superconducting gap, the quasiparticle scattering rate, and a dimensionless parameter, Z, describing the strength of the potential barrier at the junction. AR can be as large as 100% of the background conductance, and only arises in the case of superconductors. In the last decade, there have been more and more experimental results suggesting that the point contact conductance could reveal new features associated with the unusual single electron dynamics in non-superconducting states, shedding a new light on exploring the nature of the competing phases in correlated materials. To correctly interpret these new features, it is crucial to re-examine the modeling of the point contact junctions, the formalism used to describe the single electron dynamics particularly in point contact spectroscopy, and the physical quantity that should be computed to understand the conductance. We will summarize the theories for point contact spectroscopy developed from different approaches and highlight these conceptual differences distinguishing point contact spectroscopy from tunneling-based probes. Moreover, we will show how the Schwinger–Kadanoff–Baym–Keldysh (SKBK) formalism together with the appropriate modeling of the nano-scale point contacts randomly

  6. Recent progress of probing correlated electron states by point contact spectroscopy.

    PubMed

    Lee, Wei-Cheng; Greene, Laura H

    2016-09-01

    We review recent progress in point contact spectroscopy (PCS) to extract spectroscopic information out of correlated electron materials, with the emphasis on non-superconducting states. PCS has been used to detect bosonic excitations in normal metals, where signatures (e.g. phonons) are usually less than 1% of the measured conductance. In the superconducting state, point contact Andreev reflection (PCAR) has been widely used to study properties of the superconducting gap in various superconductors. It has been well-recognized that the corresponding conductance can be accurately fitted by the Blonder-Tinkham-Klapwijk (BTK) theory in which the AR occurring near the point contact junction is modeled by three parameters; the superconducting gap, the quasiparticle scattering rate, and a dimensionless parameter, Z, describing the strength of the potential barrier at the junction. AR can be as large as 100% of the background conductance, and only arises in the case of superconductors. In the last decade, there have been more and more experimental results suggesting that the point contact conductance could reveal new features associated with the unusual single electron dynamics in non-superconducting states, shedding a new light on exploring the nature of the competing phases in correlated materials. To correctly interpret these new features, it is crucial to re-examine the modeling of the point contact junctions, the formalism used to describe the single electron dynamics particularly in point contact spectroscopy, and the physical quantity that should be computed to understand the conductance. We will summarize the theories for point contact spectroscopy developed from different approaches and highlight these conceptual differences distinguishing point contact spectroscopy from tunneling-based probes. Moreover, we will show how the Schwinger-Kadanoff-Baym-Keldysh (SKBK) formalism together with the appropriate modeling of the nano-scale point contacts randomly distributed

  7. Recent progress of probing correlated electron states by point contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Cheng; Greene, Laura H.

    2016-09-01

    We review recent progress in point contact spectroscopy (PCS) to extract spectroscopic information out of correlated electron materials, with the emphasis on non-superconducting states. PCS has been used to detect bosonic excitations in normal metals, where signatures (e.g. phonons) are usually less than 1% of the measured conductance. In the superconducting state, point contact Andreev reflection (PCAR) has been widely used to study properties of the superconducting gap in various superconductors. It has been well-recognized that the corresponding conductance can be accurately fitted by the Blonder-Tinkham-Klapwijk (BTK) theory in which the AR occurring near the point contact junction is modeled by three parameters; the superconducting gap, the quasiparticle scattering rate, and a dimensionless parameter, Z, describing the strength of the potential barrier at the junction. AR can be as large as 100% of the background conductance, and only arises in the case of superconductors. In the last decade, there have been more and more experimental results suggesting that the point contact conductance could reveal new features associated with the unusual single electron dynamics in non-superconducting states, shedding a new light on exploring the nature of the competing phases in correlated materials. To correctly interpret these new features, it is crucial to re-examine the modeling of the point contact junctions, the formalism used to describe the single electron dynamics particularly in point contact spectroscopy, and the physical quantity that should be computed to understand the conductance. We will summarize the theories for point contact spectroscopy developed from different approaches and highlight these conceptual differences distinguishing point contact spectroscopy from tunneling-based probes. Moreover, we will show how the Schwinger-Kadanoff-Baym-Keldysh (SKBK) formalism together with the appropriate modeling of the nano-scale point contacts randomly distributed

  8. Probing the Natural World, Level III, Teacher's Edition: Why You're You. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The chapters include basic information about heredity, activities, and optional "excursions." The answers to all activities are included. An introduction describes the work of Gregor Mendel and his…

  9. k-space drift due to the density variation as a cause of electromagnetic emission generation of type III solar radio bursts by a non-gyrotropic electron beam

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David; Schmitz, Holger

    2013-04-01

    It is widely accepted that there is a correlation between super-thermal electron beams and type III solar radio bursts. Whilst the correlation is an established fact, the actual mechanism that generates the type III burst emission is not yet fully determined. The main source of the uncertainty is current inability to send in-situ probes at distances 0.15 - 1.5Rsun from the solar surface (photosphere). The most widely accepted mechanism, that historically appeared first is the plasma emission. In plasma emission mechanism quasilinear theory, kinetic Fokker-Planck type equation for describing the dynamics of an electron beam is used, in conjunction with the spectral energy density evolutionary equations for Langmuir and ion-sound waves. Further, non-linear wave-wave interactions between Langmuir, ion-acoustic and EM waves produce emission at electron plasma frequency, ?pe or the second harmonic, 2?pe. A variant of the plasma emission mechanism is the stochastic growth theory, where density irregularities produce a random growth, in such a way that Langmuir waves are generated stochastically and quasilinear interactions within the Langmuir clumps cause the beam to fluctuate about marginal stability. The latter models have been used for producing the solar type III burst observable parameters. Other possible mechanisms include: linear mode conversion, antenna radiation and non-gyrotropic electron beam emission [1]. Recent works [2,3] elucidated further the non-gyrotropic electron beam emission, first proposed in Ref.[1]. In particular, the effect of electron beam pitch angle and density gradient on solar type III radio bursts was studied [2] and the role of electron cyclotron maser (ECM) emission with a possible mode coupling to the z-mode was explored [3]. In this contribution and paper [4], using large-scale Particle-In-Cell simulations, we explore the non-gyrotropic electron beam emission mechanism by studying the effects of electron beam kinetics and k-space drift

  10. Ratiometric Molecular Probes Based on Dual Emission of a Blue Fluorescent Coumarin and a Red Phosphorescent Cationic Iridium(III) Complex for Intracellular Oxygen Sensing.

    PubMed

    Yoshihara, Toshitada; Murayama, Saori; Tobita, Seiji

    2015-06-09

    Ratiometric molecular probes RP1 and RP2 consisting of a blue fluorescent coumarin and a red phosphorescent cationic iridium complex connected by a tetra- or octaproline linker, respectively, were designed and synthesized for sensing oxygen levels in living cells. These probes exhibited dual emission with good spectral separation in acetonitrile. The photorelaxation processes, including intramolecular energy transfer, were revealed by emission quantum yield and lifetime measurements. The ratios (R(I) = (I(p)/I(f))) between the phosphorescence (I(p)) and fluorescence (I(f)) intensities showed excellent oxygen responses; the ratio of R(I) under degassed and aerated conditions ( R(I)(0) was 20.3 and 19.6 for RP1 and RP2. The introduction of the cationic Ir (III) complex improved the cellular uptake efficiency compared to that of a neutral analogue with a tetraproline linker. The emission spectra of the ratiometric probes internalized into living HeLa or MCF-7 cells could be obtained using a conventional microplate reader. The complex RP2 with an octaproline linker provided ratios comparable to the ratiometric measurements obtained using a microplate reader: the ratio of the R(I)) value of RP2 under hypoxia (2.5% O2) to that under normoxia (21% O2) was 1.5 and 1.7 for HeLa and MCF-7 cells, respectively. Thus, the intracellular oxygen levels of MCF-7 cells could be imaged by ratiometric emission measurements using the complex RP2.

  11. Analytical Electron Diffraction from Iii-V and II-Vi Semiconductors

    NASA Astrophysics Data System (ADS)

    Spellward, Paul

    Available from UMI in association with The British Library. This thesis describes the development and evaluation of a number of new TEM-based techniques for the measurement of composition in ternary III-V and II-VI semiconductors. New methods of polarity determination in binary and ternary compounds are also presented. The theory of high energy electron diffraction is outlined, with particular emphasis on zone axis diffraction from well-defined strings. An account of TEM microstructural studies of Cd_{rm x}Hg _{rm 1-x}Te and CdTe epitaxial layers, which provided the impetus for developing the diffraction-based analytical techniques, is given. The wide range of TEM-based compositional determination techniques is described. The use of HOLZ deficiency lines to infer composition from a lattice parameter measurement is evaluated. In the case of Cd_{ rm x}Hg_{rm 1-x}Te, it is found to be inferior to other techniques developed. Studies of dynamical aspects of HOLZ diffraction can yield information about the dispersion surface from which a measure of composition may be obtained. This technique is evaluated for Al_{rm x}Ga_{rm 1-x} As, in which it is found to be of some use, and for Cd_{rm x}Hg _{rm 1-x}Te, in which the large Debye-Waller factor associated with mercury in discovered to render the method of little value. A number of critical voltages may be measured in medium voltage TEMs. The (111) zone axis critical voltage of Cd_{rm x}Hg _{rm 1-x}Te is found to vary significantly with x and forms the basis of an accurate technique for composition measurement in that ternary compound. Other critical voltage phenomena are investigated. In Al _{rm x}Ga_ {rm 1-x}As and other light ternaries, a non-systematic critical voltage is found to vary with x, providing a good indicator of composition. Critical voltage measurements may be made by conventional CBED or by various other techniques, which may also simultaneously yield information on the spatial variation of composition. The

  12. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    DOE PAGESBeta

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; et al

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front.more » Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.« less

  13. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    SciTech Connect

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; Li, Xinlin; Malaspina, David; Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew L.; Reeves, Geoffrey D.; Funsten, Herbert O.; Spence, Harlan E.; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

  14. Mtr Extracellular Electron Transfer Pathways in Fe(III)-reducing or Fe(II)-oxidizing Bacteria: A Genomic Perspective

    SciTech Connect

    Shi, Liang; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.

    2012-12-01

    Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), the Mtr (i.e., metal-reducing) pathway exists in all characterized strains of metal-reducing Shewanella. The protein components identified to date for the Mtr pathway of MR-1 include four multi-heme c-type cytochromes (c-Cyts), CymA, MtrA, MtrC and OmcA, and a porin-like, outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner-membrane to the Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes revealed homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The widespread distribution of Mtr pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria emphasizes the importance of this type of extracellular electron transfer pathway in microbial redox transformation of Fe. Their distribution in these two different functional groups of bacteria also emphasizes the bi-directional nature of electron transfer reactions carried out by the Mtr pathways. The characteristics of the Mtr pathways may be shared by other pathways used by microorganisms for exchanging electrons with their extracellular environments.

  15. Research of a highly selective fluorescent chemosensor for aluminum(III) ions based on photoinduced electron transfer

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Sun, Changyan; Chen, Chao; Cui, Xiaoning; Li, Wenjun

    2015-01-01

    A highly selective fluorescent chemosensor for aluminum(III) ions, N,N‧-bis(2-hydroxy-1-naphthaldehyde)-l,2-phenylenediamine (H2L) was synthesized and characterized. When aluminum(III) ions are added to H2L solution in DMF, the solution exhibits two remarkably enhanced emissions at 517 and 540 nm, which could not be observed with other metal ions. The results of 1H NMR titration, MALDI-TOF-MS and DFT studies indicate that H2L and aluminum(III) ions form a 1:1 complex. The association constant Ka was determined to be 2.67 × 106 and the limit of detection (LOD) was calculated to be 10-6 M. The sensing mechanism can be explained by the photoinduced electron transfer (PET).

  16. Electron-probe microanalysis of light elements in coal and other kerogen

    USGS Publications Warehouse

    Bustin, R.M.; Mastalerz, Maria; Raudsepp, M.

    1996-01-01

    Recent advances in electron microprobe technology including development of layered synthetic microstructures, more stable electronics and better matrix-correction programs facilitated routine microanalysis of the light elements in coal. Utilizing an appropriately equipped electron microprobe with suitable standards, it is now possible to analyze directly the light elements (C, O and N, if abundant) in coal macerals and other kerogen. The analytical results are both accurate compared to ASTM methods and highly precise, and provide an opportunity to access the variation in coal chemistry at the micrometre scale. Our experiments show that analyses using a 10 kV accelerating voltage and 10 nA beam current yield the most reliable data and result in minimum sample damage and contamination. High sample counts were obtained for C, O and N using a bi-elemental nickel-carbon pseudo-crystal (2d = 9.5 nm) as an analyzing crystal. Vitrinite isolated from anthracite rank coal proves the best carbon standard and is more desirable than graphite which has higher porosity, whereas lower rank vitrinite is too heterogeneous to use routinely as a standard. Other standards utilized were magnesite for oxygen and BN for nitrogen. No significant carbon, oxygen or nitrogen X-ray peak shifts or peak-shape changes occur between standards and the kerogen analyzed. Counting rates for carbon and oxygen were found to be constant over a range of beam sizes and currents for counting times up to 160 s. Probe-determined carbon and oxygen contents agree closely with those reported from ASTM analyses. Nitrogen analyses compare poorly to ASTM values which probably is in response to overlap between the nitrogen Ka peak with the carbon K-adsorption edge and the overall low nitrogen content of most of our samples. Our results show that the electron microprobe technique provides accurate compositional data for both minor and major elements in coal without the necessity and inherent problems associated with

  17. Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Veazey, Joshua P.; Reguera, Gemma; Tessmer, Stuart H.

    2011-12-01

    The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as “pilus nanowires” to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.

  18. Advances in Langmuir probe diagnostics of the plasma potential and electron-energy distribution function in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Popov, Tsv K.; Dimitrova, M.; Ivanova, P.; Kovačič, J.; Gyergyek, T.; Dejarnac, R.; Stöckel, J.; Pedrosa, M. A.; López-Bruna, D.; Hidalgo, C.

    2016-06-01

    Advanced Langmuir probe techniques for evaluating the plasma potential and electron-energy distribution function (EEDF) in magnetized plasma are reviewed. It is shown that when the magnetic field applied is very weak and the electrons reach the probe without collisions in the probe sheath the second-derivative Druyvesteyn formula can be used for EEDF evaluation. At low values of the magnetic field, an extended second-derivative Druyvesteyn formula yields reliable results, while at higher values of the magnetic field, the first-derivative probe technique is applicable for precise evaluation of the plasma potential and the EEDF. There is an interval of intermediate values of the magnetic field when both techniques—the extended second-derivative and the first-derivative one—can be used. Experimental results from probe measurements in different ranges of magnetic field are reviewed and discussed: low-pressure argon gas discharges in the presence of a magnetic field in the range from 0.01 to 0.08 T, probe measurements in circular hydrogen plasmas for high-temperature fusion (magnetic fields from 0.45 T to 1.3 T) in small ISTTOK and CASTOR tokamaks, D-shape COMPASS tokamak plasmas, as well as in the TJ-II stellarator. In the vicinity of the last closed flux surface (LCFS) in tokamaks and in the TJ-II stellarator, the EEDF obtained is found to be bi-Maxwellian, while close to the tokamak chamber wall it is Maxwellian. The mechanism of the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is discussed. Comparison of the results from probe measurements with those obtained from calculations using the ASTRA and EIRENE codes shows that the main reason for the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is the ionization of the neutral atoms.

  19. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    DOEpatents

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  20. Probing short-range nucleon-nucleon interactions with an electron-ion collider

    NASA Astrophysics Data System (ADS)

    Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju

    2016-04-01

    We derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of "pointlike" and "geometric" Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J /ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN˜12 GeV2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such "knockout" exclusive reactions in light and heavy nuclei.

  1. Microstructural development in PWA-1480 electron beam welds: An atom probe field ion microscopy study

    SciTech Connect

    David, S.A.; Miller, M.K.; Babu, S.S.

    1995-12-31

    The microstructure development in PWA-1480 superalloy electron beam weld (Ni-11.0 at. % Al-11.5% Cr-1.9% Ti-5.1% Co-4.0% Ta-1.3% W) was characterized. Optical microscopy revealed a branched dendritic structure in the weld metal. Transmission electron microscopy of these welds, in the as-welded condition, showed fine cuboidal (0.05--0.5 {mu}m) L1{sub 2}-ordered {gamma}{prime} precipitates within the y grains. The average volume percentage of {gamma}{prime} precipitates was found to be {approx}5%. Atom probe analyses revealed that the composition of {gamma} matrix was Ni-4.6 at. % Al-25.5% Cr-0.4% Ti-9.4% Co-0.8% Ta-2.9% W and that of {gamma}{prime} precipitates was Ni-17.3 at. % Al-2.6% Cr-2.4% Ti-3.0% Co-7.4% Ta-1.3% W. These compositions were compared with the previous APFIM analyses of commercial PWA-1480 single crystals that had received conventional heat treatments. Small differences were found in the chromium and aluminum levels and these may be due to the nonequilibrium nature of phase transformations that occur during weld cooling. No solute segregation was detected at the {gamma}-{gamma}{prime}interface. The APFIM results were also compared with the thermodynamic calculations of alloying element partitioning between {gamma} and {gamma}{prime} using the ThermoCalc{trademark} software.

  2. Local electrical properties of n-AlInAs/i-GaInAs electron channel structures characterized by the probe-electron-beam-induced current technique.

    PubMed

    Watanabe, Kentaro; Nokuo, Takeshi; Chen, Jun; Sekiguchi, Takashi

    2014-04-01

    We developed a probe-electron-beam-induced current (probe-EBIC) technique to investigate the electrical properties of n-Al(0.48)In(0.52)As/i-Ga(0.30)In(0.70)As electron channel structures for a high-electron-mobility transistor, grown on a lattice-matched InP substrate and lattice-mismatched GaAs (001) and Si (001) substrates. EBIC imaging of planar surfaces at low magnifications revealed misfit dislocations originating from the AlInAs-graded buffer layer. The cross-sections of GaInAs channel structures on an InP substrate were studied by high-magnification EBIC imaging as well as cathodoluminescence (CL) spectroscopy. EBIC imaging showed that the structure is nearly defect-free and the carrier depletion zone extends from the channel toward the i-AlInAs buffer layer.

  3. Spectroscopic and probe measurements of the electron temperature in the plasma of a pulse-periodic microwave discharge in argon

    NASA Astrophysics Data System (ADS)

    Andreev, V. V.; Vasileska, I.; Korneeva, M. A.

    2016-07-01

    A pulse-periodic 2.45-GHz electron-cyclotron resonance plasma source on the basis of a permanent- magnet mirror trap has been constructed and tested. Variations in the discharge parameters and the electron temperature of argon plasma have been investigated in the argon pressure range of 1 × 10-4 to 4 × 10-3 Torr at a net pulsed input microwave power of up to 600 W. The plasma electron temperature in the above ranges of gas pressures and input powers has been measured by a Langmuir probe and determined using optical emission spectroscopy (OES) from the intensity ratios of spectral lines. The OES results agree qualitatively and quantitatively with the data obtained using the double probe.

  4. Electron probe micro-analysis for subsurface demineralization and remineralization of dental enamel

    SciTech Connect

    Chu, J.S.; Fox, J.L.; Higuchi, W.I.; Nash, W.P.

    1989-01-01

    A quantitative study of fluoride distribution profile changes in dental enamel was conducted by means of electron probe micro-analysis (EPMA). Fluoride-deposited hydroxyapatite powders were chosen as fluoride standards, and analytical conditions were optimized. The lower limit of detection for fluoride was estimated to be 270 ppm, with an accelerating voltage of 5 kV, a specimen current of 40 nA, and a counting time of 40 seconds. Fluoride profiles in fluoride-treated dental enamel, which exhibited intact surface layers and subsurface demineralization, were determined. The results were also compared with those of an acid-abrasion method, and reasonable consistency was found between these two methods, although the acid-abrasion procedure yielded a slightly lower fluoride content in the initial layers, followed by a higher content of fluoride in the deeper layers. The precision of fluoride profile data obtained from EPMA permits further studies to be conducted on the kinetics of subsurface demineralization and intact surface layer formation (white spot formation) which is observed during the acid challenge of dental enamel.

  5. Nanometre-scale probing of spin waves using single-electron spins

    PubMed Central

    van der Sar, Toeno; Casola, Francesco; Walsworth, Ronald; Yacoby, Amir

    2015-01-01

    Pushing the frontiers of condensed-matter magnetism requires the development of tools that provide real-space, few-nanometre-scale probing of correlated-electron magnetic excitations under ambient conditions. Here we present a practical approach to meet this challenge, using magnetometry based on single nitrogen-vacancy centres in diamond. We focus on spin-wave excitations in a ferromagnetic microdisc, and demonstrate local, quantitative and phase-sensitive detection of the spin-wave magnetic field at ∼50 nm from the disc. We map the magnetic-field dependence of spin-wave excitations by detecting the associated local reduction in the disc's longitudinal magnetization. In addition, we characterize the spin–noise spectrum by nitrogen-vacancy spin relaxometry, finding excellent agreement with a general analytical description of the stray fields produced by spin–spin correlations in a 2D magnetic system. These complementary measurement modalities pave the way towards imaging the local excitations of systems such as ferromagnets and antiferromagnets, skyrmions, atomically assembled quantum magnets, and spin ice. PMID:26249673

  6. Quantification of ionic transport within thermally-activated batteries using electron probe micro-analysis

    NASA Astrophysics Data System (ADS)

    Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; Grant, Richard P.; Allen, Ashley N.; Wesolowski, Daniel E.; Roberts, Christine C.

    2016-07-01

    The transient transport of electrolytes in thermally-activated batteries is studied using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure of the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10-1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.

  7. Probing an Electron Scattering Resonance using Rydberg Molecules within a Dense and Ultracold Gas.

    PubMed

    Schlagmüller, Michael; Liebisch, Tara Cubel; Nguyen, Huan; Lochead, Graham; Engel, Felix; Böttcher, Fabian; Westphal, Karl M; Kleinbach, Kathrin S; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H

    2016-02-01

    We present spectroscopy of a single Rydberg atom excited within a Bose-Einstein condensate. We not only observe the density shift as discovered by Amaldi and Segrè in 1934, but a line shape that changes with the principal quantum number n. The line broadening depends precisely on the interaction potential energy curves of the Rydberg electron with the neutral atom perturbers. In particular, we show the relevance of the triplet p-wave shape resonance in the e^{-}-Rb(5S) scattering, which significantly modifies the interaction potential. With a peak density of 5.5×10^{14}  cm^{-3}, and therefore an interparticle spacing of 1300 a_{0} within a Bose-Einstein condensate, the potential energy curves can be probed at these Rydberg ion-neutral atom separations. We present a simple microscopic model for the spectroscopic line shape by treating the atoms overlapped with the Rydberg orbit as zero-velocity, uncorrelated, pointlike particles, with binding energies associated with their ion-neutral separation, and good agreement is found. PMID:26894707

  8. Probing Majorana bound states via counting statistics of a single electron transistor

    NASA Astrophysics Data System (ADS)

    Li, Zeng-Zhao; Lam, Chi-Hang; You, J. Q.

    2015-06-01

    We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs.

  9. Development of an opto-electronic fiber device with multiple nano-probes

    NASA Astrophysics Data System (ADS)

    Mehta, N.; Cocking, A.; Zhang, C.; Ma, D.; Xu, Y.; Liu, Z.

    2016-11-01

    We present the fabrication and characterization of an opto-electronic fiber device which can allow for both electromechanical functionality and optical waveguiding capability. The air holes of a photonic crystal fiber are selectively sealed and then pumped with molten metal under pressure. The metal filled holes act as electrodes to which individual carbon nanotubes (CNT) are attached precisely by a laser-welding technique or a focused ion beam assisted pick-and-bond technique. The optical modal profile and the group velocity dispersion of the fabricated device are studied both numerically and experimentally. We also present preliminary experimental proof showing the feasibility of electric actuation of a pair of nanotubes by applying up to 40 V potential difference between the filled electrodes. Furthermore, numerical simulations are carried out which agree with the experimentally observed displacement of the CNT upon electric actuation. The unique aspect of our device is that it provides optical waveguiding and electromechanical nano-probing capability in a single package. Such combined functionality can potentially enable simultaneous electrical and optical manipulation and interrogation at the nanoscale.

  10. Electron probe X-ray microanalysis of boar and inobuta testes after the Fukushima accident.

    PubMed

    Yamashiro, Hideaki; Abe, Yasuyuki; Hayashi, Gohei; Urushihara, Yusuke; Kuwahara, Yoshikazu; Suzuki, Masatoshi; Kobayashi, Jin; Kino, Yasuyuki; Fukuda, Tomokazu; Tong, Bin; Takino, Sachio; Sugano, Yukou; Sugimura, Satoshi; Yamada, Takahisa; Isogai, Emiko; Fukumoto, Manabu

    2015-12-01

    We aimed to investigate the effect of chronic radiation exposure associated with the Fukushima Daiichi Nuclear Power Plant (FNPP) accident on the testes of boar and inobuta (a hybrid of Sus scrofa and Sus scrofa domestica). This study examined the contamination levels of radioactive caesium (Cs), especially (134)Cs and (137)Cs, in the testis of both boar and inobuta during 2012, after the Fukushima accident. Morphological analysis and electron-probe X-ray microanalysis (EPMA) were also undertaken on the testes. The (134)Cs and (137)Cs levels were 6430 ± 23 and 6820 ± 32 Bq/kg in the boar testes, and 755 ± 13 and 747 ± 17 Bq/kg in the inobuta testes, respectively. The internal and external exposure of total (134)Cs and (137)Cs in the boar testes were 47.1 mGy and 176.2 mGy, respectively, whereas in the inobuta testes, these levels were 6.09 mGy and 59.8 mGy, respectively. Defective spermatogenesis was not detected by the histochemical analysis of radiation-exposed testes for either animal. In neither animal were Cs molecules detected, using EPMA. In conclusion, we showed that adverse radiation-induced effects were not detected in the examined boar and inobuta testes following the chronic radiation exposure associated with the FNPP accident. PMID:26825300

  11. Electron probe X-ray microanalysis of boar and inobuta testes after the Fukushima accident

    PubMed Central

    Yamashiro, Hideaki; Abe, Yasuyuki; Hayashi, Gohei; Urushihara, Yusuke; Kuwahara, Yoshikazu; Suzuki, Masatoshi; Kobayashi, Jin; Kino, Yasuyuki; Fukuda, Tomokazu; Tong, Bin; Takino, Sachio; Sugano, Yukou; Sugimura, Satoshi; Yamada, Takahisa; Isogai, Emiko; Fukumoto, Manabu

    2015-01-01

    We aimed to investigate the effect of chronic radiation exposure associated with the Fukushima Daiichi Nuclear Power Plant (FNPP) accident on the testes of boar and inobuta (a hybrid of Sus scrofa and Sus scrofa domestica). This study examined the contamination levels of radioactive caesium (Cs), especially 134Cs and 137Cs, in the testis of both boar and inobuta during 2012, after the Fukushima accident. Morphological analysis and electron-probe X-ray microanalysis (EPMA) were also undertaken on the testes. The 134Cs and 137Cs levels were 6430 ± 23 and 6820 ± 32 Bq/kg in the boar testes, and 755 ± 13 and 747 ± 17 Bq/kg in the inobuta testes, respectively. The internal and external exposure of total 134Cs and 137Cs in the boar testes were 47.1 mGy and 176.2 mGy, respectively, whereas in the inobuta testes, these levels were 6.09 mGy and 59.8 mGy, respectively. Defective spermatogenesis was not detected by the histochemical analysis of radiation-exposed testes for either animal. In neither animal were Cs molecules detected, using EPMA. In conclusion, we showed that adverse radiation-induced effects were not detected in the examined boar and inobuta testes following the chronic radiation exposure associated with the FNPP accident. PMID:26825300

  12. Probing Energy Levels of Large Array Quantum Dot Superlattice by Electronic Transport Measurement

    NASA Astrophysics Data System (ADS)

    Bisri, S. Z.; Degoli, E.; Spallanzani, N.; Krishnan, G.; Kooi, B.; Ghica, C.; Yarema, M.; Protesescu, L.; Heiss, W.; Kovalenko, M.; Pulci, O.; Ossicini, S.; Iwasa, Y.; Loi, M. A.

    2015-03-01

    Colloidal quantum dot superlattice (CQDS) emerges as new type of hybrid solids allowing easy fabrication of devices that exploits the quantum confinement properties of individual QD. This materials displays peculiar characters, making investigation of their transport properties nontrivial. Besides the bandgap variations, 0D nature of QD lead to the formation of discrete energy subbands. These subbands are crucial for multiple exciton generation (for efficient solar cell), thermoelectric material and multistate transistor. Full understanding of the CQDS energy level structure is vital to use them in complex devices. Here we show a powerful method to determine the CQDS electronic energy levels from their intrinsic charge transport characteristics. Via the use of ambipolar transistors with CQDS as active materials and gated using highly capacitive ionic liquid gating, Fermi energy can be largely tuned. It can access energy levels beyond QD's HOMO & LUMO. Ability to probe not only the bandgap, but also the discrete energy level from large assembly of QD at room temperature suggests the formation of energy minibands in this system.

  13. Using Supra-Arcade Downflows as Probes of Electron Acceleration During Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina L.

    2011-01-01

    Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. I will discuss measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves.

  14. Probing an Electron Scattering Resonance using Rydberg Molecules within a Dense and Ultracold Gas.

    PubMed

    Schlagmüller, Michael; Liebisch, Tara Cubel; Nguyen, Huan; Lochead, Graham; Engel, Felix; Böttcher, Fabian; Westphal, Karl M; Kleinbach, Kathrin S; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H

    2016-02-01

    We present spectroscopy of a single Rydberg atom excited within a Bose-Einstein condensate. We not only observe the density shift as discovered by Amaldi and Segrè in 1934, but a line shape that changes with the principal quantum number n. The line broadening depends precisely on the interaction potential energy curves of the Rydberg electron with the neutral atom perturbers. In particular, we show the relevance of the triplet p-wave shape resonance in the e^{-}-Rb(5S) scattering, which significantly modifies the interaction potential. With a peak density of 5.5×10^{14}  cm^{-3}, and therefore an interparticle spacing of 1300 a_{0} within a Bose-Einstein condensate, the potential energy curves can be probed at these Rydberg ion-neutral atom separations. We present a simple microscopic model for the spectroscopic line shape by treating the atoms overlapped with the Rydberg orbit as zero-velocity, uncorrelated, pointlike particles, with binding energies associated with their ion-neutral separation, and good agreement is found.

  15. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms.

    PubMed

    Christensen, Thomas; Yan, Wei; Raza, Søren; Jauho, Antti-Pekka; Mortensen, N Asger; Wubs, Martijn

    2014-02-25

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss spectroscopy, and light scattering. These constitute two near-field and one far-field measurements, with zero-, one-, and two-dimensional excitation sources, respectively. We search for the clearest signatures of hydrodynamic pressure waves in nanospheres. We employ a linearized hydrodynamic model, and Mie-Lorenz theory is applied for each case. Nonlocal response shows its mark in all three configurations, but for the two near-field measurements, we predict especially pronounced nonlocal effects that are not exhibited in far-field measurements. Associated with every multipole order is not only a single blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii. For selected metals, we predict hydrodynamic multipolar plasmons to be measurable on single nanospheres.

  16. Probing in Space and Time the Nuclear Motion Driven by Nonequilibrium Electronic Dynamics in Ultrafast Pumped N2.

    PubMed

    Ajay, J; Šmydke, J; Remacle, F; Levine, R D

    2016-05-19

    An ultrafast electronic excitation of N2 in the vacuum ultraviolet creates a nonstationary coherent linear superposition of interacting valence and Rydberg states resulting in a net oscillating dipole moment. There is therefore a linear response to an electrical field that can be queried by varying the time delay between the pump and a second optical probe pulse. Both the pump and probe pulses are included in our computation as part of the Hamiltonian, and the time-dependent wave function for both electronic and nuclear dynamics is computed using a grid representation for the internuclear coordinate. Even on an ultrafast time scale there are several processes that can be discerned beyond the expected coherence oscillations. In particular, the coupling between the excited valence and Rydberg states of the same symmetry is very evident and can be directly probed by varying the delay between pulse and probe. For quite a number of vibrations the nuclear motion does not dephase the electronic disequilibrium. However, the nuclear motion does modulate the dipolar response by taking the wave packet in and out of the Franck-Condon region and by its strong influence on the coupling of the Rydberg and valence states. A distinct isotope effect arises from the dependence of the interstate coupling on the nuclear mass.

  17. Discretization of Electronic States in Large InAsP/InP Multilevel Quantum Dots Probed by Scanning Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fain, B.; Robert-Philip, I.; Beveratos, A.; David, C.; Wang, Z. Z.; Sagnes, I.; Girard, J. C.

    2012-03-01

    The topography and the electronic structure of InAsP/InP quantum dots are probed by cross-sectional scanning tunneling microscopy and spectroscopy. The study of the local density of states in such large quantum dots confirms the discrete nature of the electronic levels whose wave functions are measured by differential conductivity mapping. Because of their large dimensions, the energy separation between the discrete electronic levels is low, allowing for quantization in both the lateral and growth directions as well as the observation of the harmonicity of the dot lateral potential.

  18. Discretization of electronic states in large InAsP/InP multilevel quantum dots probed by scanning tunneling spectroscopy.

    PubMed

    Fain, B; Robert-Philip, I; Beveratos, A; David, C; Wang, Z Z; Sagnes, I; Girard, J C

    2012-03-23

    The topography and the electronic structure of InAsP/InP quantum dots are probed by cross-sectional scanning tunneling microscopy and spectroscopy. The study of the local density of states in such large quantum dots confirms the discrete nature of the electronic levels whose wave functions are measured by differential conductivity mapping. Because of their large dimensions, the energy separation between the discrete electronic levels is low, allowing for quantization in both the lateral and growth directions as well as the observation of the harmonicity of the dot lateral potential.

  19. High-Resolution and Specific Detection of Bacteria on Complex Surfaces Using Nanoparticle Probes and Electron Microscopy

    PubMed Central

    Ye, Jun; Nielsen, Shaun; Joseph, Stephen; Thomas, Torsten

    2015-01-01

    The study of the interaction of bacteria with surfaces requires the detection of specific bacterial groups with high spatial resolution. Here, we describe a method to rapidly and efficiently add nanogold particles to oligonucleotide probes, which target bacterial ribosomal RNA. These nanogold-labeled probes are then used in an in situ hybridization procedure that ensures both cellular integrity and high specificity. Electron microscopy subsequently enables the visualization of specific cells with high local precision on complex surface structures. This method will contribute to an increased understanding of how bacteria interact with surface structures on a sub-micron scale. PMID:26018431

  20. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions.

    PubMed

    Ophus, Colin; Ciston, Jim; Nelson, Chris T

    2016-03-01

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method.

  1. High-resolution and specific detection of bacteria on complex surfaces using nanoparticle probes and electron microscopy.

    PubMed

    Ye, Jun; Nielsen, Shaun; Joseph, Stephen; Thomas, Torsten

    2015-01-01

    The study of the interaction of bacteria with surfaces requires the detection of specific bacterial groups with high spatial resolution. Here, we describe a method to rapidly and efficiently add nanogold particles to oligonucleotide probes, which target bacterial ribosomal RNA. These nanogold-labeled probes are then used in an in situ hybridization procedure that ensures both cellular integrity and high specificity. Electron microscopy subsequently enables the visualization of specific cells with high local precision on complex surface structures. This method will contribute to an increased understanding of how bacteria interact with surface structures on a sub-micron scale.

  2. The Global Positioning System constellation as a space weather monitor: Comparison of electron measurements with Van Allen Probes data

    NASA Astrophysics Data System (ADS)

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.; Blake, J. Bernard; Baker, Daniel N.

    2016-02-01

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, we use a combination of four distributions that together capture a wide range of observed spectral shapes. Our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a "gold standard," we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies ≲4 MeV. We present data from 17 CXD-equipped GPS satellites covering the 2015 "St. Patrick's Day" geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.

  3. The Global Positioning System constellation as a space weather monitor. Comparison of electron measurements with Van Allen Probes data

    DOE PAGESBeta

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.; Blake, J. Bernard; Baker, Daniel N.

    2016-02-06

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, wemore » use a combination of four distributions that together capture a wide range of observed spectral shapes. Moreover, our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a “gold standard,” here we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies inline image4 MeV. Our team present data from 17 CXD-equipped GPS satellites covering the 2015 “St. Patrick's Day” geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.« less

  4. The citric acid-Mn III,IVO 2(birnessite) reaction. Electron transfer, complex formation, and autocatalytic feedback

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Stone, Alan T.

    2006-09-01

    Citrate released by plants, bacteria, and fungi into soils is subject to abiotic oxidation by MnO 2(birnessite), yielding 3-ketoglutarate, acetoacetate, and Mn II. Citrate loss and generation of products as a function of time all yield S-shaped curves, indicating autocatalysis. Increasing the citrate concentration decreases the induction period. The maximum rate ( rmax) along the reaction coordinate follows a Langmuir-Hinshelwood dependence on citrate concentration. Increases in pH decrease rmax and increase the induction time. Adding Mn II, Zn II, orthophosphate, or pyrophosphate at the onset of reaction decreases rmax. Mn II addition eliminates the induction period, while orthophosphate and pyrophosphate addition increase the induction period. These findings indicate that two parallel processes are responsible. The first, relatively slow process involves the oxidation of free citrate by surface-bound Mn III,IV, yielding Mn II and citrate oxidation products. The second process, which is subject to strong positive feedback, involves electron transfer from Mn II-citrate complexes to surface-bound Mn III,IV, generating Mn III-citrate and Mn II. Subsequent intramolecular electron transfer converts Mn III-citrate into Mn II and citrate oxidation products.

  5. Observational Search for >10 MeV Electrons in the Inner Magnetosphere Using the Van Allen Probes Relativistic Proton Spectrometer

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Looper, M. D.; O'Brien, T. P., III; Blake, J. B.

    2015-12-01

    Any detection of ultra-relativistic electrons (>10 MeV) trapped in the inner magnetosphere is potentially a sensitive indicator of a unique particle acceleration process or of a unique particle source. The 24 March 1991 shock injection of >15 MeV electrons is a classic example of the former, while the latter includes measurements in low Earth orbit of >100 MeV electrons and positrons from cosmic ray interactions with the atmosphere. In this paper we use new instrumentation on the Van Allen Probes to survey the inner magnetosphere for signatures of ultra-relativistic electrons. The Relativistic Proton Spectrometer, designed primarily for spectroscopy of 60 to 2000 MeV protons in the inner belt, nonetheless is capable of detecting minimum-ionizing electrons in a silicon detector stack. More critical to this survey is the instrument's Cherenkov radiator subsystem whose response to incident electrons ranges from a threshold near 10 MeV and reaches light saturation above 50 MeV. Together with the silicon detector system we are able to explore an energy range that has not been routinely studied in the context of the Earth's magnetosphere. We will report on quiet-time and storm-time signatures in regions of the inner magnetosphere that heretofore have not been explored with an orbit like that of Van Allen Probes. We will also quantitatively compare our electron energy spectra, or flux limits, with other measurements from Van Allen Probes and prior glimpses of high-energy electrons from low Earth orbit.

  6. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens.

    PubMed

    Aklujkar, M; Coppi, M V; Leang, C; Kim, B C; Chavan, M A; Perpetua, L A; Giloteaux, L; Liu, A; Holmes, D E

    2013-03-01

    Whole-genome microarray analysis of Geobacter sulfurreducens grown on insoluble Fe(III) oxide or Mn(IV) oxide versus soluble Fe(III) citrate revealed significantly different expression patterns. The most upregulated genes, omcS and omcT, encode cell-surface c-type cytochromes, OmcS being required for Fe(III) and Mn(IV) oxide reduction. Other electron transport genes upregulated on both metal oxides included genes encoding putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc4 and Cbc5, periplasmic c-type cytochromes Dhc2 and PccF, outer membrane c-type cytochromes OmcC, OmcG and OmcV, multicopper oxidase OmpB, the structural components of electrically conductive pili, PilA-N and PilA-C, and enzymes that detoxify reactive oxygen/nitrogen species. Genes upregulated on Fe(III) oxide encode putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc3 and Cbc6, periplasmic c-type cytochromes, including PccG and PccJ, and outer membrane c-type cytochromes, including OmcA, OmcE, OmcH, OmcL, OmcN, OmcO and OmcP. Electron transport genes upregulated on Mn(IV) oxide encode periplasmic c-type cytochromes PccR, PgcA, PpcA and PpcD, outer membrane c-type cytochromes OmaB/OmaC, OmcB and OmcZ, multicopper oxidase OmpC and menaquinone-reducing enzymes. Genetic studies indicated that MacA, OmcB, OmcF, OmcG, OmcH, OmcI, OmcJ, OmcM, OmcV and PccH, the putative Cbc5 complex subunit CbcC and the putative Cbc3 complex subunit CbcV are important for reduction of Fe(III) oxide but not essential for Mn(IV) oxide reduction. Gene expression patterns for Geobacter uraniireducens were similar. These results demonstrate that the physiology of Fe(III)-reducing bacteria differs significantly during growth on different insoluble and soluble electron acceptors and emphasize the importance of c-type cytochromes for extracellular electron transfer in G. sulfurreducens. PMID:23306674

  7. In vivo proton-electron double-resonance imaging of extracellular tumor pH using an advanced nitroxide probe.

    PubMed

    Samouilov, Alexandre; Efimova, Olga V; Bobko, Andrey A; Sun, Ziqi; Petryakov, Sergey; Eubank, Timothy D; Trofimov, Dmitrii G; Kirilyuk, Igor A; Grigor'ev, Igor A; Takahashi, Wataru; Zweier, Jay L; Khramtsov, Valery V

    2014-01-21

    A variable radio frequency proton-electron double-resonance imaging (VRF PEDRI) approach for pH mapping of aqueous samples has been recently developed (Efimova et al. J. Magn. Reson. 2011, 209, 227-232). A pH map is extracted from two PEDRI acquisitions performed at electron paramagnetic resonance (EPR) frequencies of protonated and unprotonated forms of a pH-sensitive probe. To translate VRF PEDRI to an in vivo setting, an advanced pH probe was synthesized. Probe deuteration resulted in a narrow spectral line of 1.2 G compared to a nondeuterated analogue line width of 2.1 G allowing for an increase of Overhauser enhancements and reduction in rf power deposition. Binding of the probe to the cell-impermeable tripeptide, glutathione (GSH), allows for targeting to extracellular tissue space for monitoring extracellular tumor acidosis, a prognostic factor in tumor pathophysiology. The probe demonstrated pH sensitivity in the 5.8-7.8 range, optimum for measurement of acidic extracellular tumor pH (pH(e)). In vivo VRF PEDRI was performed on Met-1 tumor-bearing mice. Compared to normal mammary glands with a neutral mean pH(e) (7.1 ± 0.1), we observed broader pH distribution with acidic mean pH(e) (6.8 ± 0.1) in tumor tissue. In summary, VRF PEDRI in combination with a newly developed pH probe provides an analytical approach for spatially resolved noninvasive pHe monitoring, in vivo.

  8. In vivo proton-electron double-resonance imaging of extracellular tumor pH using an advanced nitroxide probe.

    PubMed

    Samouilov, Alexandre; Efimova, Olga V; Bobko, Andrey A; Sun, Ziqi; Petryakov, Sergey; Eubank, Timothy D; Trofimov, Dmitrii G; Kirilyuk, Igor A; Grigor'ev, Igor A; Takahashi, Wataru; Zweier, Jay L; Khramtsov, Valery V

    2014-01-21

    A variable radio frequency proton-electron double-resonance imaging (VRF PEDRI) approach for pH mapping of aqueous samples has been recently developed (Efimova et al. J. Magn. Reson. 2011, 209, 227-232). A pH map is extracted from two PEDRI acquisitions performed at electron paramagnetic resonance (EPR) frequencies of protonated and unprotonated forms of a pH-sensitive probe. To translate VRF PEDRI to an in vivo setting, an advanced pH probe was synthesized. Probe deuteration resulted in a narrow spectral line of 1.2 G compared to a nondeuterated analogue line width of 2.1 G allowing for an increase of Overhauser enhancements and reduction in rf power deposition. Binding of the probe to the cell-impermeable tripeptide, glutathione (GSH), allows for targeting to extracellular tissue space for monitoring extracellular tumor acidosis, a prognostic factor in tumor pathophysiology. The probe demonstrated pH sensitivity in the 5.8-7.8 range, optimum for measurement of acidic extracellular tumor pH (pH(e)). In vivo VRF PEDRI was performed on Met-1 tumor-bearing mice. Compared to normal mammary glands with a neutral mean pH(e) (7.1 ± 0.1), we observed broader pH distribution with acidic mean pH(e) (6.8 ± 0.1) in tumor tissue. In summary, VRF PEDRI in combination with a newly developed pH probe provides an analytical approach for spatially resolved noninvasive pHe monitoring, in vivo. PMID:24372284

  9. Cyclometalated Iridium(III) Complexes as Two-Photon Phosphorescent Probes for Specific Mitochondrial Dynamics Tracking in Living Cells.

    PubMed

    Jin, Chengzhi; Liu, Jiangping; Chen, Yu; Zeng, Leli; Guan, Ruilin; Ouyang, Cheng; Ji, Liangnian; Chao, Hui

    2015-08-17

    Five cyclometalated iridium(III) complexes with 2-phenylimidazo[4,5-f][1,10]phenanthroline derivatives (IrL1-IrL5) were synthesized and developed to image and track mitochondria in living cells under two-photon (750 nm) excitation, with two-photon absorption cross-sections of 48.8-65.5 GM at 750 nm. Confocal microscopy and inductive coupled plasma-mass spectrometry (ICP-MS) demonstrated that these complexes selectively accumulate in mitochondria within 5 min, without needing additional reagents for membrane permeabilization, or replacement of the culture medium. In addition, photobleaching experiments and luminescence measurements confirmed the photostability of these complexes under continuous laser irradiation and physiological pH resistance. Moreover, results using 3D multicellular spheroids demonstrate the proficiency of these two-photon luminescent complexes in deep penetration imaging. Two-photon excitation using such novel complexes of iridium(III) for exclusive visualization of mitochondria in living cells may substantially enhance practical applications of bioimaging and tracking.

  10. Probing the atmosphere of the bulge G5III star OGLE-2002-BUL-069 by analysis of microlensed Hα line

    NASA Astrophysics Data System (ADS)

    Cassan, A.; Beaulieu, J. P.; Brillant, S.; Coutures, C.; Dominik, M.; Donatowicz, J.; Jørgensen, U. G.; Kubas, D.; Albrow, M. D.; Caldwell, J. A. R.; Fouqué, P.; Greenhill, J.; Hill, K.; Horne, K.; Kane, S.; Martin, R.; Menzies, J.; Pollard, K. R.; Sahu, K. C.; Vinter, C.; Wambsganss, J.; Watson, R.; Williams, A.; Fendt, C.; Hauschildt, P.; Heinmueller, J.; Marquette, J. B.; Thurl, C.

    2004-05-01

    We discuss high-resolution, time-resolved spectra of the caustic exit of the binary microlensing event OGLE 2002-BLG-069 obtained with UVES on the VLT. The source star is a G5III giant in the Galactic Bulge. During such events, the source star is highly magnified, and a strong differential magnification around the caustic resolves its surface. Using an appropriate model stellar atmosphere generated by the PHOENIX v2.6 code we obtain a model light curve for the caustic exit and compare it with a dense set of photometric observations obtained by the PLANET microlensing follow up network. We further compare predicted variations in the Hα equivalent width with those measured from our spectra. While the model and observations agree in the gross features, there are discrepancies suggesting shortcomings in the model, particularly for the Hα line core, where we have detected amplified emission from the stellar chromosphere after the source star's trailing limb exited the caustic. This achievement became possible by the provision of the very efficient OGLE-III Early Warning System, a network of small telescopes capable of nearly-continuous round-the-clock photometric monitoring, on-line data reduction, daily near-real-time modelling in order to predict caustic crossing parameters, and a fast and efficient response of a 8 m class telescope to a ``Target-of-Opportunity'' observation request. Based on observations made at ESO, 69.D-0261(A), 269.D-5042(A), 169.C-0510(A).

  11. Application of (13)C and (15)N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions.

    PubMed

    Cho, Kun-Ching; Lee, Do Gyun; Fuller, Mark E; Hatzinger, Paul B; Condee, Charles W; Chu, Kung-Hui

    2015-10-30

    This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using (13)C and (15)N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with (13)C3- or ring-(15)N3-, nitro-(15)N3-, or fully-labeled (15)N6-RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the (13)C-DNA fractions. A total of twenty seven sequences were derived from different (15)N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled (13)C or (15)N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that (13)C- and (15)N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions. PMID:25935409

  12. Evidence for weakly bound electrons in non-irradiated alkane crystals: The electrons as a probe of structural differences in crystals

    SciTech Connect

    Pietrow, M. Misiak, L. E.; Gagoś, M.; Kornarzyński, K.; Szurkowski, J.; Grzegorczyk, M.; Rochowski, P.

    2015-02-14

    It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents evidence for the presence of these electrons in non-irradiated samples of docosane. This can be due to the triboelectrification process. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. Electrons from the former ones are bound more weakly than electrons from the latter ones. The origin of Vis absorption for the samples is explained. These spectra can be used as a probe indicating differences in the solid structures of hydrocarbons.

  13. Evidence for weakly bound electrons in non-irradiated alkane crystals: The electrons as a probe of structural differences in crystals.

    PubMed

    Pietrow, M; Gagoś, M; Misiak, L E; Kornarzyński, K; Szurkowski, J; Rochowski, P; Grzegorczyk, M

    2015-02-14

    It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents evidence for the presence of these electrons in non-irradiated samples of docosane. This can be due to the triboelectrification process. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. Electrons from the former ones are bound more weakly than electrons from the latter ones. The origin of Vis absorption for the samples is explained. These spectra can be used as a probe indicating differences in the solid structures of hydrocarbons.

  14. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    SciTech Connect

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad; Sun Yawen; Zaanen, Jan

    2011-10-15

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces. As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.

  15. Van Allen Probes, THEMIS, GOES, and cluster observations of EMIC waves, ULF pulsations, and an electron flux dropout

    DOE PAGESBeta

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; MacDowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.; et al

    2016-03-04

    We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervalsmore » of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13–14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst <–100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.« less

  16. Simultaneous evaluation of one-electron reducing systems and radical reactions in cells by nitroxyl biradical as probe.

    PubMed

    Araki, Yoko; Koshiishi, Ichiro

    2016-07-01

    In the present study, a novel probe for the simultaneous evaluation of one-electron reducing systems (electron transport chain) and one-electron oxidizing systems (free radical reactions) in cells by electron chemical detection was developed. Six-membered cyclic nitroxyl radicals (2,2,6,6-tetramethylpiperidine-1-oxyl; TEMPO series) are sensitive to one-electron redox systems, generating the hydroxylamine form [TEMPO(H)] via one-electron reduction, and the secondary amine form [TEMPO(N)] via one-electron oxidation in the presence of thiols. In contrast, the sensitivities of five-membered cyclic nitroxyl radicals (2,2,5,5-tetramethylpyrrolidine-1-oxyl; PROXYL series) to the one-electron redox systems are comparatively low. The electron chemical detector can detect 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), TEMPO(H) and PROXYL but not TEMPO(N). Therefore, nitroxyl biradical, TEMPO-PROXYL, as a probe for the evaluation of one-electron redox systems was employed. TEMPO-PROXYL was synthesized by the conjunction of 4-amino-TEMPO with 3-carboxyl-PROXYL via the conventional dicyclohexyl carbodiimide reaction. TEMPO-PROXYL, TEMPO(H)-PROXYL and TEMPO(N)-PROXYL were simultaneously quantified by HPLC with Coularray detection. Calibration curves for the quantification of TEMPO-PROXYL, TEMPO(H)-PROXYL and TEMPO(N)-PROXYL were linear in the range from 80 nm to 80 μm, and the lowest quantification limit of each molecule was estimated to be <80 nm. The relative standard deviations at 0.8 and 80 μm were within 10% (n = 5). Copyright © 2015 John Wiley & Sons, Ltd. PMID:26613564

  17. A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its application in living cells

    NASA Astrophysics Data System (ADS)

    Wang, Jianxi; Zhou, Cheng; Zhang, Jianjian; Zhu, Xinyue; Liu, Xiaoyan; Wang, Qin; Zhang, Haixia

    2016-09-01

    A new biothiol-selective fluorescent probe 1 based on photoinduced electron transfer (PET) mechanism was designed and synthesized. The UV-Vis absorption and fluorescent emission properties of probe 1 towards various analytes were studied in detail. The probe exhibited a large stokes shift (~ 200 nm) after reacted with biothiols and could selectively detect cysteine (Cys) in dimethyl sulfoxide (DMSO)/H2O solution (9:1, v/v, 10 mM phosphate buffer saline, pH 3.5) over glutathione (GSH), homocysteine (Hcy) and other analytes with a detection limit of 0.117 μM. In addition, probe 1 responded well to GSH, Hcy and Cys in the same above solution with pH 5.5 and got the detection limits of 0.151 μM, 0.128 μM and 0.037 μM, respectively. Probe 1 was of very low cytotoxicity and successfully applied for imaging of thiols in living cells.

  18. Cold shock hemolysis in human erythrocytes studied by spin probe method and freeze-fracture electron microscopy.

    PubMed Central

    Takahashi, T; Noji, S; Erbe, E F; Steere, R L; Kon, H

    1986-01-01

    When human erythrocytes are osmotically stressed or chemically treated, they hemolyze on cooling below 10 degrees C (called cold shock). We have studied the effects of osmotic stress and cooling on the state of membrane by the spin-probe method and freeze-fracture electron microscopy. At room temperature, the membrane fluidity detected by 12-doxyl stearate spin probe showed a steady decrease with osmolality in hypertonic NaCl solutions up to 900 mOsm/kg, above which it remained unchanged. In hypertonic sucrose solutions, the electron paramagnetic resonance spectra showed an additional pair of absorptions, indicating development of regions, in the membrane, further immobilized than in NaCl solutions. Mobility of a cholesterol analogue probe, androstane, did not show change by hypertonicity, but the spectral intensity dropped at 1,200 mOsm/kg, probably due to formation of loose aggregates in the cholesterol phase. On cooling the osmotically stressed cells in NaCl solution, the isotropic rotational correlation time vs. inverse temperature plot of 12-doxyl stearate probe exhibited a step-wise discontinuity at approximately 10 degrees C, suggestive of a drastic transition in the state of the membrane. At about the same temperature, the freeze-fracture pattern of osmotically stressed cells revealed the development of large wrinkles and aggregation of membrane particles, in contrast to the case of the cells in isotonicity. Significance of these findings in understanding cold shock hemolysis is discussed. Images FIGURE 3 PMID:3006813

  19. Elemental analysis of occupational and environmental lung diseases by electron probe microanalyzer with wavelength dispersive spectrometer.

    PubMed

    Takada, Toshinori; Moriyama, Hiroshi; Suzuki, Eiichi

    2014-01-01

    Occupational and environmental lung diseases are a group of pulmonary disorders caused by inhalation of harmful particles, mists, vapors or gases. Mineralogical analysis is not generally required in the diagnosis of most cases of these diseases. Apart from minerals that are encountered rarely or only in specific occupations, small quantities of mineral dusts are present in the healthy lung. As such when mineralogical analysis is required, quantitative or semi-quantitative methods must be employed. An electron probe microanalyzer with wavelength dispersive spectrometer (EPMA-WDS) enables analysis of human lung tissue for deposits of elements by both qualitative and semi-quantitative methods. Since 1993, we have analyzed 162 cases of suspected occupational and environmental lung diseases using an EPMA-WDS. Our institute has been accepting online requests for elemental analysis of lung tissue samples by EPMA-WDS since January 2011. Hard metal lung disease is an occupational interstitial lung disease that primarily affects workers exposed to the dust of tungsten carbide. The characteristic pathological findings of the disease are giant cell interstitial pneumonia (GIP) with centrilobular fibrosis, surrounded by mild alveolitis with giant cells within the alveolar space. EPMA-WDS analysis of biopsied lung tissue from patients with GIP has demonstrated that tungsten and/or cobalt is distributed in the giant cells and centrilobular fibrosing lesion in GIP. Pneumoconiosis, caused by amorphous silica, and acute interstitial pneumonia, associated with the giant tsunami, were also elementally analyzed by EPMA-WDS. The results suggest that commonly found elements, such as silicon, aluminum, and iron, may cause occupational and environmental lung diseases.

  20. Calcium and magnesium transport by in situ mitochondria: electron probe analysis of vascular smooth muscle

    SciTech Connect

    Broderick, R.; Somlyo, A.P.

    1987-10-01

    The extent, time course, and reversibility of mitochondrial Ca/sup 2 +/ uptake secondary to cellular Ca/sup 2 +/ influx stimulated by massive Na+ efflux were evaluated by electron probe microanalysis of rabbit portal vein smooth muscle. Strips of portal vein were Na+ loaded for 3 hours at 37/sup 0/C in a K+-free 1 mM ouabain solution, after which rapid Na+ efflux was induced by washing with a Na+-free K+-Li+ solution (1 mM ouabain). Li+ washing Na+-loaded portal vein produced a large transient contraction accompanied by an increase (over 100-fold) in mitochondrial Ca/sup 2 +/ and also significant (p less than 0.05) increases in phosphorus and Mg/sup 2 +/. The Ca/sup 2 +/ loading of the mitochondria was reversed during prolonged Li+ wash, and by 2 hours, mitochondrial Ca/sup 2 +/, Mg/sup 2 +/, and phosphorus had returned to control levels. The maximal contractile response to stimulation remained normal, demonstrating that pathologic Ca/sup 2 +/ loading of mitochondria is reversible in situ and compatible with normal maximal force developed by the smooth muscle. Mitochondrial Ca/sup 2 +/ and phosphorus uptake were reduced but still significant when the Li+ wash contained 0.2 mM Ca/sup 2 +/ or when ouabain was omitted. The fact that mitochondrial Ca/sup 2 +/ loading accompanied submaximal contractions during 0.2 mM Ca/sup 2 +/-Li wash suggests supranormal affinity of mitochondria for Ca/sup 2 +/ and may be due, in part, to reverse operation of the mitochondrial Na+-Ca/sup 2 +/ exchanger. Mitochondrial Ca/sup 2 +/, Mg/sup 2 +/, and phosphorus uptake were eliminated when the Li+ wash was performed at 2/sup 0/C or when the wash contained no Ca/sup 2 +/.

  1. In vitro study on dental erosion provoked by various beverages using electron probe microanalysis.

    PubMed

    Willershausen, B; Schulz-Dobrick, B

    2004-09-29

    Tooth erosion is often based on chemical processes, among others the use of soft drinks or diverse beverages. The aim of this in vitro study was to analyse the erosive potential of different acidic beverages. Over a time span of 6 hours, dental slices (n=6 slices per tooth) from fully retained wisdom teeth were incubated with different beverages (coca cola, ice tea with lemon, apple juice and white wine). The controls were incubated with a 0.9% sodium chloride solution under the same conditions (37 degrees C, humidified atmosphere of 5% CO2 and 95% air). The quantitative elementary analysis for calcium, phosphorus, oxygen and other trace elements in the dental slices in various depths ranging from 5 to 50 microm was carried out using an electron probe micro-analyser (Jeol JXA 8900RL). A beverage-induced loss of minerals, particularly of the 2 main components calcium and phosphorus, especially in the uppermost layers of the enamel down to a depth of 30 microm could be observed. In the depth of 10 microm, the following total mineral loss could be determined: white wine (16%), coca cola (14.5%), apple juice (6.5%) and ice tea with lemon (6.5%). A direct correlation between the loss of minerals and the pH value of the beverages was not observed, because of the buffering effect of the drinks. The conversion of the weight percentages from the chemical analysis of Ca and P to their atomic percentages showed that during erosion the 2 main components were not dissolved in significantly different percentages. In this study the erosive potential of the tested soft drinks and other beverages could be demonstrated. However, it must be considered that numerous modifying factors influence the enamel surface, so an extrapolation from the in vitro study to an in vivo situation can only be applied with caution.

  2. Probing the Role of Two Critical Residues in Inulin Fructotransferase (DFA III-Producing) Thermostability from Arthrobacter sp. 161MFSha2.1.

    PubMed

    Yu, Shuhuai; Wang, Xiao; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2016-08-10

    Inulin fructotransferase (IFTase) is an important enzyme that produces di-d-fructofuranose 1,2':2,3' dianhydride (DAF III), which is beneficial for human health. Present investigations mainly focus on screening and characterizing IFTase, including catalytic efficiency and thermostability, which are two important factors for enzymatic industrial applications. However, few reports aimed to improve these two characteristics based on the structure of IFTase. In this work, a structural model of IFTase (DFA III-producing) from Arthrobacter sp. 161MFSha2.1 was constructed through homology modeling. Analysis of this model reveals that two residues, Ser-309 and Ser-333, may play key roles in the structural stability. Therefore, the functions of the two residues were probed by site-directed mutagenesis combined with the Nano-DSC method and assays for residual activity. In contrast to other mutations, single mutation of serine 309 (or serine 333) to threonine did not decrease the enzymatic stability, whereas double mutation (serine 309 and serine 333 to threonine) can enhance thermostability (by approximately 5 °C). The probable mechanisms for this enhancement were investigated.

  3. Self-aggregated dinuclear lanthanide(III) complexes as potential bimodal probes for magnetic resonance and optical imaging.

    PubMed

    Regueiro-Figueroa, Martín; Nonat, Aline; Rolla, Gabriele A; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Charbonnière, Loïc J; Botta, Mauro; Platas-Iglesias, Carlos

    2013-08-26

    Homodinuclear lanthanide complexes (Ln = La, Eu, Gd, Tb, Yb and Lu) derived from a bis-macrocyclic ligand featuring two 2,2',2''-(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid chelating sites linked by a 2,6-bis(pyrazol-1-yl)pyridine spacer (H2L(3)) were prepared and characterized. Luminescence lifetime measurements recorded on solutions of the Eu(III) and Tb(III) complexes indicate the presence of one inner-sphere water molecule coordinated to each metal ion in these complexes. The overall luminescence quantum yields were determined (ϕ H2O = 0.01 for [Eu2(L(3))] and 0.50 for [Tb2(L(3))] in 0.01 M TRIS/HCl, pH 7.4; TRIS = tris(hydroxymethyl)aminomethane), pointing to an effective sensitization of the metal ion by the bispyrazolylpyridyl unit of the ligand, especially with Tb. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd2(L(3))] are characteristic of slowly tumbling systems, showing a low-field plateau and a broad maximum around 30 MHz. This suggests the occurrence of aggregation of the complexes giving rise to slowly rotating species. A similar behavior is observed for the analogous Gd(III) complex containing a 4,4'-dimethyl-2,2'-bipyridyl spacer ([Gd2(L(1))]). The relaxivity of [Gd2(L(3))] recorded at 0.5 T and 298 K (pH 6.9) amounts to 13.7 mM(-1)  s(-1). The formation of aggregates has been confirmed by dynamic light scattering (DLS) experiments, which provided mean particle sizes of 114 and 38 nm for [Gd2(L(1))] and [Gd2(L(3))], respectively. TEM images of [Gd2(L(3))] indicate the formation of nearly spherical nanosized aggregates with a mean diameter of about 41 nm, together with some nonspherical particles with larger size.

  4. Cells on biomaterials--some aspects of elemental analysis by means of electron probes.

    PubMed

    Tylko, G

    2016-02-01

    Electron probe X-ray microanalysis enables concomitant observation of specimens and analysis of their elemental composition. The method is attractive for engineers developing tissue-compatible biomaterials. Either changes in element composition of cells or biomaterial can be defined according to well-established preparation and quantification procedures. However, the qualitative and quantitative elemental analysis appears more complicated when cells or thin tissue sections are deposited on biomaterials. X-ray spectra generated at the cell/tissue-biomaterial interface are modelled using a Monte Carlo simulation of a cell deposited on borosilicate glass. Enhanced electron backscattering from borosilicate glass was noted until the thickness of the biological layer deposited on the substrate reached 1.25 μm. It resulted in significant increase in X-ray intensities typical for the elements present in the cellular part. In this case, the mean atomic number value of the biomaterial determines the strength of this effect. When elements are present in the cells only, the positive linear relationship appears between X-ray intensities and cell thickness. Then, spatial dimensions of X-ray emission for the particular elements are exclusively in the range of the biological part and the intensities of X-rays become constant. When the elements are present in both the cell and the biomaterial, X-ray intensities are registered for the biological part and the substrate simultaneously leading to a negative linear relationship of X-ray intensities in the function of cell thickness. In the case of the analysis of an element typical for the biomaterial, strong decrease in X-ray emission is observed in the function of cell thickness as the effect of X-ray absorption and the limited excitation range to biological part rather than to the substrate. Correction procedures for calculations of element concentrations in thin films and coatings deposited on substrates are well established in

  5. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

    NASA Astrophysics Data System (ADS)

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; de Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.

  6. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering.

    PubMed

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.

  7. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

    PubMed Central

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813

  8. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering.

    PubMed

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813

  9. Primacy and recency effects in rhesus monkeys (Macaca mulatta) using a serial probe recognition task. III. A developmental analysis.

    PubMed

    Matzke, S M; Castro, C A

    1998-04-01

    In children, the recency effect emerges prior to the primacy effect. To determine whether this dissociation is also seen in nonhuman primates, we evaluated the development of the primacy and recency effect in 3 young adult (35 months) and 4 adolescent (21 months) male rhesus monkeys (Macaca mulatta) using a six-item serial probe recognition (SPR) task. As predicted, the young adult monkeys displayed both effects, while the adolescent monkeys only displayed the recency effect. Not until after 26 months of training on the SPR task did the adolescent monkeys exhibit both the primacy and recency effect. Interference and strategy differences are discussed in terms of the results along with an interpretation of Rudy's (1992) configural association theory of cognitive development. Additional possible explanations for this developmental dissociation include the delayed maturation of the neocortical, hippocampal, and/or cholinergic systems, the latter two having been shown to be important in the expression of the primacy but not the recency effect.

  10. The development of fluorescence turn-on probe for Al(III) sensing and live cell nucleus-nucleoli staining

    NASA Astrophysics Data System (ADS)

    Saini, Anoop Kumar; Sharma, Vinay; Mathur, Pradeep; Shaikh, Mobin M.

    2016-10-01

    The morphology of nucleus and nucleolus is powerful indicator of physiological and pathological conditions. The specific staining of nucleolus recently gained much attention due to the limited and expensive availability of the only existing stain “SYTO RNA-Select”. Here, a new multifunctional salen type ligand (L1) and its Al3+ complex (1) are designed and synthesized. L1 acts as a chemosensor for Al3+ whereas 1 demonstrates specific staining of nucleus as well as nucleoli. The binding of 1 with nucleic acid is probed by DNase and RNase digestion in stained cells. 1 shows an excellent photostability, which is a limitation for existing nucleus stains during long term observations. 1 is assumed to be a potential candidate as an alternative to expensive commercial dyes for nucleus and nucleoli staining.

  11. The development of fluorescence turn-on probe for Al(III) sensing and live cell nucleus-nucleoli staining

    PubMed Central

    Saini, Anoop Kumar; Sharma, Vinay; Mathur, Pradeep; Shaikh, Mobin M.

    2016-01-01

    The morphology of nucleus and nucleolus is powerful indicator of physiological and pathological conditions. The specific staining of nucleolus recently gained much attention due to the limited and expensive availability of the only existing stain “SYTO RNA-Select”. Here, a new multifunctional salen type ligand (L1) and its Al3+ complex (1) are designed and synthesized. L1 acts as a chemosensor for Al3+ whereas 1 demonstrates specific staining of nucleus as well as nucleoli. The binding of 1 with nucleic acid is probed by DNase and RNase digestion in stained cells. 1 shows an excellent photostability, which is a limitation for existing nucleus stains during long term observations. 1 is assumed to be a potential candidate as an alternative to expensive commercial dyes for nucleus and nucleoli staining. PMID:27721431

  12. Effect of EMIC Waves on Relativistic and Ultra-Relativistic Electron Populations: Ground-based and Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Usanova, Maria; Drozdov, Alexander; Orlova, Ksenia; Mann, Ian; Shprits, Yuri; Robertson, Matthew; Turner, Drew; Milling, David; Kale, Andy; Baker, Dan; Reeves, Geoff; Spence, Harlan; Kletzing, Craig; Wygant, John

    2014-05-01

    We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch-angle scattering of relativistic and ultra-relativistic electrons during the recovery phase of a moderate geomagnetic storm on October 11, 2012. The EMIC wave activity was observed in-situ on the Van Allen Probes and conjugately on the ground across the CARISMA array throughout an extended 18-hour interval. However, neither enhanced precipitation of >0.7 MeV electrons, nor reductions in Van Allen Probe 90o pitch-angle ultra-relativistic electron flux were observed. Computed radiation belt electron pitch-angle diffusion rates demonstrate that rapid pitch-angle diffusion is confined to low pitch angles and cannot reach 90o. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultra-relativistic (~2-8 MeV) electron loss, but which is confined to pitch angles below around 45 degrees and not affecting the core distribution.

  13. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.

    PubMed

    Brandt, Nathaniel C; Keller, Emily L; Frontiera, Renee R

    2016-08-18

    Hot electrons generated through plasmonic excitations in metal nanostructures show great promise for efficiently driving chemical reactions with light. However, the lifetime, yield, and mechanism of action of plasmon-generated hot electrons involved in a given photocatalytic process are not well understood. Here, we develop ultrafast surface-enhanced Raman scattering (SERS) as a direct probe of plasmon-molecule interactions in the plasmon-catalyzed dimerization of 4-nitrobenzenethiol to p,p'-dimercaptoazobenzene. Ultrafast SERS probing of these molecular reporters in plasmonic hot spots reveals transient Fano resonances, which we attribute to near-field coupling of Stokes-shifted photons to hot electron-driven metal photoluminescence. Surprisingly, we find that hot spots that yield more photoluminescence are much more likely to drive the reaction, which indirectly proves that plasmon-generated hot electrons induce the photochemistry. These ultrafast SERS results provide insight into the relative reactivity of different plasmonic hot spot environments and quantify the ultrafast lifetime of hot electrons involved in plasmon-driven chemistry. PMID:27488515

  14. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.

    PubMed

    Brandt, Nathaniel C; Keller, Emily L; Frontiera, Renee R

    2016-08-18

    Hot electrons generated through plasmonic excitations in metal nanostructures show great promise for efficiently driving chemical reactions with light. However, the lifetime, yield, and mechanism of action of plasmon-generated hot electrons involved in a given photocatalytic process are not well understood. Here, we develop ultrafast surface-enhanced Raman scattering (SERS) as a direct probe of plasmon-molecule interactions in the plasmon-catalyzed dimerization of 4-nitrobenzenethiol to p,p'-dimercaptoazobenzene. Ultrafast SERS probing of these molecular reporters in plasmonic hot spots reveals transient Fano resonances, which we attribute to near-field coupling of Stokes-shifted photons to hot electron-driven metal photoluminescence. Surprisingly, we find that hot spots that yield more photoluminescence are much more likely to drive the reaction, which indirectly proves that plasmon-generated hot electrons induce the photochemistry. These ultrafast SERS results provide insight into the relative reactivity of different plasmonic hot spot environments and quantify the ultrafast lifetime of hot electrons involved in plasmon-driven chemistry.

  15. Model dialkyl peroxides of the fenton mechanistic probe 2-methyl-1-phenyl-2-propyl hydroperoxide (MPPH): kinetic probes for dissociative electron transfer.

    PubMed

    Magri, David C; Workentin, Mark S

    2003-10-01

    Two dialkyl peroxides, devised as kinetic probes for the heterogeneous electron transfer (ET), are studied using heterogeneous and homogeneous electrochemical techniques. The peroxides react by concerted dissociative ET reduction of the O-O bond. Under heterogeneous conditions, the only products isolated are the corresponding alcohols from a two-electron reduction as has been observed with other dialkyl peroxides studied to date. However, under homogeneous conditions, a generated alkoxyl radical undergoes a rapid beta-scission fragmentation in competition with the second ET resulting in formation of acetone and a benzyl radical. With knowledge of the rate constant for fragmentation and accounting for the diffuse double layer at the electrode interface, the heterogeneous ET rate constant to the alkoxyl radicals is estimated to be 1500 cm s(-1). The heterogeneous and homogeneous ET kinetics of the O-O bond cleavage have also been measured and examined as a function of the driving force for ET, deltaG(ET), using dissociative electron transfer theory. From both sets of kinetics, besides the evaluation of thermochemical parameters, it is demonstrated that the heterogeneous and homogeneous reduction of the O-O bond appears to be non-adiabatic.

  16. Electron probe X-ray microanalysis of cultured myogenic C2C12 cells with scanning and scanning transmission electron microscopy.

    PubMed

    Tylko, G; Karasiński, J; Wróblewski, R; Roomans, G M; Kilarski, W M

    2000-01-01

    Heterogeneity of the elemental content of myogenic C2C12 cultured cells was studied by electron probe X-ray microanalysis (EPXMA) with scanning (SEM EPXMA) and scanning transmission electron microscopy (STEM EPXMA). The best plastic substrate for growing cells was Thermanox. For STEM EPXMA, a Formvar film coated with carbon was found to be suitable substrate. The cells examined by scanning transmission electron microscopy showed great heterogeneity in their elemental content in comparison with the cells examined in the scanning electron microscope despite of an almost identical preparation procedure for EPXMA. Nevertheless the K/Na ratios obtained from both methods of EPXMA were very close (4.1 and 4.3). We conclude that the observed discrepancy in the elemental content obtained by the two methods may be due to differences in instrumentation and this must be taken into account when planning a comparative study.

  17. Rapid electron density decay observed by surface-wave probe in afterglow of pulsed fluorocarbon-based plasma

    NASA Astrophysics Data System (ADS)

    Ohya, Yoshinobu; Iwata, Manabu; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru; Sugai, Hideo

    2016-08-01

    To elucidate the pulsed fluorocarbon plasma behavior, a surface-wave probe with high time resolution was used to measure the electron density n e in the afterglow of plasma. In a dual-frequency capacitively coupled plasma of fluorocarbon chemistry, e.g., an O2-based C4F6 and Ar mixture, n e vanished rapidly in a short time (∼5 µs), whilst the dc current flowing onto the top electrode biased at ‑300 V decreased very slowly (decay time ∼70 µs). This observation is clear evidence of ion–ion plasma formation by electron attachment in the afterglow. We point out that the electron attachment rates for fluorocarbon radicals significantly affect the electrons and ion–ion plasma behaviors observed at the afterglow phase.

  18. Long-term VERB Code Simulations of Ultra-relativistic Electrons and Comparison with Van Allen Probes Measurements

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Orlova, K.; Kellerman, A. C.; Subbotin, D.; Baker, D. N.; Spence, H. E.; Reeves, G. D.

    2015-12-01

    In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with the Van Allen Probes observations. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We include scattering by hiss and chorus based on a recently developed statistical models of VLF/ELF waves obtained from EMFISIS instrument. We consider the energetic (>100 KeV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements are well reproduced by the simulation during a period of the various geomagnetic activity. However, for ultra-relativistic energies, the VERB code simulation significantly overestimates electron phase space density. Since the additional loss is required only at very high energies we conclude that EMIC waves is the most likely additional source of scattering that could explain observed decay rates.

  19. Long-term VERB code simulations of ultra-relativistic electrons and comparison with Van Allen Probes measurements

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Shprits, Yuri; Kellerman, Adam; Usanova, Maria; Aseev, Nikita; Baker, Daniel; Spence, Harlan; Reeves, Geoff

    2016-04-01

    In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with the Van Allen Probes observations. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We include scattering by hiss and chorus based on a recently developed statistical models of VLF/ELF waves obtained from EMFISIS instrument. We consider the energetic (>100 KeV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements are well reproduced by the simulation during a period of the various geomagnetic activity. However, for ultra-relativistic energies, the VERB code simulation significantly overestimates electron phase space density. Since the additional loss is required only at very high energies we conclude that EMIC waves is the most likely additional source of scattering that could explain observed decay rates.

  20. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2013-12-15

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.