Science.gov

Sample records for iii excitation functions

  1. On the theory of the type III burst exciter

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.

    1976-01-01

    In situ satellite observations of type III burst exciters at 1 AU show that the beam does not evolve into a plateau in velocity space, contrary to the prediction of quasilinear theory. The observations can be explained by a theory that includes mode coupling effects due to excitation of the parametric oscillating two-stream instability and its saturation by anomalous resistivity. The time evolution of the beam velocity distribution is included in the analysis.

  2. Ligand enabling visible wavelength excitation of europium(III) for fluoroimmunoassays in aqueous micellar solutions.

    PubMed

    Valta, Timo; Puputti, Eeva-Maija; Hyppänen, Iko; Kankare, Jouko; Takalo, Harri; Soukka, Tero

    2012-09-18

    Fluorescent reporters based on lanthanide ions, such as europium chelates, enable highly sensitive detection in immunoassays and other ligand binding assays. Unfortunately they normally require UV-excitation produced by a xenon flash or nitrogen laser light source. In order to use modern solid state excitation sources such as light emitting diodes (LEDs), these reporters need to be excited at wavelengths longer than 365 nm, where high-powered ultraviolet LEDs are available. A novel ligand, 9-ethyl-3,6-bis(5',5',5',4',4'-pentafluoro-1',3'-dioxopentyl)carbazole (bdc), was synthesized to efficiently excite europium(III) at wavelengths up to 450 nm in micellar solutions, and its performance was compared to a commercially available DELFIA enhancement solution. The detection limit of Eu(III) with the bdc-ligand using 365 nm excitation was determined to be 63 fM, which is 3 times lower than with the DELFIA solution. The bdc-ligand enabled sensitive detection of europium(III) ions in solution using 365 nm excitation and displayed similar sensitivity and functionality as commercially available DELFIA enhancement solution. Therefore, this novel enhancement solution might be a feasible alternative in producing time-resolved fluorescence under LED-excitation.

  3. TYPE III EXCITABILITY, SLOPE SENSITIVITY AND COINCIDENCE DETECTION

    PubMed Central

    Meng, Xiangying; Huguet, Gemma; Rinzel, John

    2013-01-01

    Some neurons in the nervous system do not show repetitive firing for steady currents. For time-varying inputs, they fire once if the input rise is fast enough. This property of phasic firing is known as Type III excitability. Type III excitability has been observed in neurons in the auditory brainstem (MSO), which show strong phase-locking and accurate coincidence detection. In this paper, we consider a Hodgkin-Huxley type model (RM03) that is widely-used for phasic MSO neurons and we compare it with a modification of it, showing tonic behavior. We provide insight into the temporal processing of these neuron models by means of developing and analyzing two reduced models that reproduce qualitatively the properties of the exemplar ones. The geometric and mathematical analysis of the reduced models allows us to detect and quantify relevant features for the temporal computation such as nearness to threshold and a temporal integration window. Our results underscore the importance of Type III excitability for precise coincidence detection. PMID:23667306

  4. Effective Collision Strengths for Electron Impact Excitation of Inelastic Transitions in S III

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1997-01-01

    We have calculated electron collisional excitation strengths for all electric dipole forbidden, semi-forbidden, and allowed transitions among the lowest 17 LS states 3s(exp 2)3p(exp 2) P-3, D-1, S-1, 3s3p(exp 3)S-5(exp 0), D-3(exp 0), P-3(exp 0), P-1(exp 0), S-3(exp 0), D-1(exp 0), 3S(exp 2)3p3d D-1(exp 0), F-3(exp 0), P-3(exp 0), D-3(exp 0), F-3(exp 0), P-1(exp 0), and 3S(exp 2)3p4S P-3(exp 0), P-l(exp 0) of S III using the R-matrix method. These S m states are represented by fairly extensive configuration-interaction wave functions that yield excited state energies in close agreement with recent laboratory measurements. Rydberg series of resonances converging to the excited state thresholds are explicitly included in the scattering calculation. The effective collision strengths are determined assuming Maxwellian distribution of electron energies. These are listed over a wide temperature range ([0.5-10] x 10(exp 4) K) and compared, where possible, with other available calculations. Subject headings: atomic data - atomic processes

  5. Mechanisms of Sb(III) Photooxidation by the Excitation of Organic Fe(III) Complexes.

    PubMed

    Kong, Linghao; He, Mengchang

    2016-07-05

    Organic Fe(III) complexes are widely distributed in the aqueous environment, which can efficiently generate free radicals under light illumination, playing a significant role in heavy metal speciation. However, the potential importance of the photooxidation of Sb(III) by organic Fe(III) complexes remains unclear. Therefore, the photooxidation mechanisms of Sb(III) were comprehensively investigated in Fe(III)-oxalate, Fe(III)-citrate and Fe(III)-fulvic acid (FA) solutions by kinetic measurements and modeling. Rapid photooxidation of Sb(III) was observed in an Fe(III)-oxalate solution over the pH range of 3 to 7. The addition of tert-butyl alcohol (TBA) as an ·OH scavenger quenched the Sb(III) oxidation, suggesting that ·OH is an important oxidant for Sb(III). However, the incomplete quenching of Sb(III) oxidation indicated the existence of other oxidants, presumably an Fe(IV) species in irradiated Fe(III)-oxalate solution. In acidic solutions, ·OH may be formed by the reaction of Fe(II)(C2O4) with H2O2, but a hypothetical Fe(IV) species may be generated by the reaction of Fe(II)(C2O4)2(2-) with H2O2 at higher pH. Kinetic modeling provides a quantitative explanation of the results. Evidence for the existence of ·OH and hypothetical Fe(IV) was also observed in an irradiated Fe(III)-citrate and Fe(III)-FA system. This study demonstrated an important pathway of Sb(III) oxidation in surface waters.

  6. Excited heavy baryons and their symmetries III: Phenomenology

    NASA Astrophysics Data System (ADS)

    Baccouche, Z. Aziza; Chow, Chi-Keung; Cohen, Thomas D.; Gelman, Boris A.

    2001-12-01

    Phenomenological applications of an effective theory of low-lying excited states of charm and bottom isoscalar baryons are discussed at leading and next-to-leading order in the combined heavy-quark and large- Nc expansion. The combined expansion is formulated in terms of the counting parameter λ˜1/ mQ,1/ Nc; the combined expansion is in powers of λ1/2. We work up to next-to-leading order. We obtain model-independent predictions for the excitation energies, the semileptonic form factors and electromagnetic decay rates. At leading order in the combined expansion these observables are given in terms of one phenomenological constant which can be determined from the excitation energy of the first excited state of Λc baryon. At next-to-leading order an additional phenomenological constant is required. The spin-averaged mass of the doublet of the first orbitally excited state of Λb is predicted to be approximately 5920 MeV. It is shown that in the combined limit at leading and next-to-leading order there is only one independent form factor describing Λ b→Λ cℓ ν¯; similarly, Λ b→Λ c∗ℓ ν¯ and Λ b→Λ c1ℓ ν¯ decays are described by a single independent form factor. These form factors are calculated at leading and next-to-leading order in the combined expansion. The value of the Λ b→Λ cℓ ν¯ form factor at zero recoil is predicted to be 0.998 at leading order which is very close to HQET value of unity. The electromagnetic decay rates of the first excited states of Λc and Λb are determined at leading and next-to-leading order. The ratio of radiative decay rates Γ(Λ c∗→Λ cγ)/Γ(Λ b1→Λ bγ) is predicted to be approximately 0.2, greatly different from the heavy-quark effective theory value of unity.

  7. Optical Properties of Iridium(III) Cyclometalates: Excited State Interaction with Small Molecules and Dynamics of Light-Harvesting Materials

    NASA Astrophysics Data System (ADS)

    Schwartz, Kyle Robert

    The research presented in this thesis concerns the use and understanding of luminescent Ir(III) cyclometalates. Areas of research involve the design, synthesis, and characterization of novel luminescent Ir(III) cyclometalates, including photophysical investigation of their phosphorescent excited states using steady-state and time resolved absorption/luminescence spectroscopies. This broad research description may be further separated into two subareas: study of excited state interaction with small molecules and excited-state dynamics of metal-organic light harvesting dyads. Interaction of Ir(III) cyclometalates with the small molecule carbon dioxide (CO2) is the subject of Chapter One. Most optical detection schemes previously developed for CO2 use indirect detection methods, which rely upon measuring changes in pH brought about by hydrolysis of CO 2 on of CO2 were accomplished through development of a system where hydrazine, a simple amino ligand, when coupled into the coordination sphere of an Ir(III) cyclometalate reacts with CO2. The result of this reaction provides a shift in the luminescence wavelength, a previously unobserved optical response for CO2 detection. Chapter Two investigates phosphorescent excited states and their ability to function as triplet sensitizers for the generation of singlet oxygen ( 1O2) and luminescent probes for molecular oxygen (O 2) concentration. Interaction of phosphorescent excited states with O2 results in energy transfer from the luminescent probe to O 2, quenching the phosphorescent excited state. Energy transfer also generates the reactive oxygen species (ROS) 1O2. We have used this duality to develop an analytical methodology to follow the serendipitously discovered photoreactivity of 1O2 with common organic solvent dimethyl sulfoxide (DMSO) using the luminescence profile of Ir(III) and Ru(II) phosphors. In Chapter Three a detailed study involving the design, synthesis, and characterization of the electrochemical and

  8. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  9. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    EPA Science Inventory

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles
    Principal Author:
    Robert C. Leif, Newport Instruments
    Secondary Authors:
    Margie C. Becker, Phoenix Flow Systems
    Al Bromm, Virginia Commonw...

  10. Functional orthopedic magnetic appliance (FOMA) III--modus operandi.

    PubMed

    Vardimon, A D; Graber, T M; Voss, L R; Muller, T P

    1990-02-01

    An intraoral intermaxillary appliance has been developed for the treatment of Class III malocclusions that exhibit midface sagittal deficiency with or without mandibular excess. The functional orthopedic magnetic appliance (FOMA) III consists of upper and lower acrylic plates with a permanent magnet incorporated into each plate. The upper magnet is linked to a retraction screw. The upper magnet is retracted periodically (e.g., monthly) to stimulate maxillary advancement and mandibular retardation. The attractive mode neodymium magnets used in this study produced a horizontal force of 98 gm and a vertical force of 371 gm. Six female Macaca fascicularis monkeys were treated with FOMA IIIs. An additional three animals were treated with sham appliances. After 4 months of treatment, the following results were found: the growth pattern of the cranial base (saddle angle) was not altered; midfacial protraction did occur along a recumbent hyperbolic curve with a horizontal maxillary displacement and an anterosuperior premaxillary rotation; the cumulative protraction of the maxillary complex was initiated at the pterygomaxillary fissure with an additional contribution provided by other circummaxillary sutures (zygomaticomaxillary s., transverse s., premaxillary s.); and inhibition of mandibular length was minimal, but a tendency toward a vertical condylar growth pattern was observed. The interaction between sutural and condylar growth sites appeared biphasic, characterized by an immediate and rapid excitation of the circummaxillary sutures followed by a delayed and slow suppression of the condylar cartilage. Long-term animal and clinical FOMA III studies are recommended.

  11. Highly excited strings I: Generating function

    NASA Astrophysics Data System (ADS)

    Skliros, Dimitri P.; Copeland, Edmund J.; Saffin, Paul M.

    2017-03-01

    This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES). In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators) in general toroidal compactifications E =R D - 1 , 1 ×T Dcr - D (with generic constant Kähler and complex structure target space moduli, background Kaluza-Klein (KK) gauge fields and torsion). We adopt a novel approach that does not rely on a ;reverse engineering; method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string) duality in string theory.

  12. Femtochemistry of Norrish type-I reactions: III. Highly excited ketones--theoretical.

    PubMed

    Diau, Eric W G; Kötting, Carsten; Sølling, Theis I; Zewail, Ahmed H

    2002-01-18

    Time-dependant density functional theory (TDDFT) and ab initio methods (CASSCF and CASMP2) are applied here for the investigation of the excited-state potential energy surfaces of ketones studied experimentally in the accompanying paper, number IV in the series. The aim is to provide a general and detailed physical picture of the Norrish type-I reaction from S0 and S1 potentials (papers I and II) and from higher-energy potentials (papers III and IV). Particular focus here is on reactions following excitation to the 3s, 3p, and 3d Rydberg state and to the (nz-->pi*) and (pi-->pi*) valence states. It is shown that the active orbitals in the CASSCF calculations can be chosen so that accurate results are obtained with a small active space. Dynamic corrections of the state-specific CASSCF energies at the multireference MP2 level do not improve the results for the Rydberg states but are significant for the valence states. The geometries of the Rydberg states are similar to the ground state; the S1 and other valence states are not. A common property of the valence states is the elongated CO bond and the pyramidalization of the carbonyl carbon atom. As a consequence, these valence states cross all Rydberg states along the CO stretching coordinate and provide an efficient pathway down to the 3s Rydberg states (S2) through a series of conical intersections (CIs). The nonadiabatic coupling vector of the CI between the (pi-->pi*) and the 3s Rydberg states guides energy channeling into the asymmetric CC-stretching mode. The energy demand for the CC bond breakage (Norrish type-I) on the S2 surface is lower than that of the CI leading to the S1 state. This CC bond breakage leads to a linear excited state acetyl radical (3s Rydberg). Crossing a small barrier the 3s acyl radical can access a CI leading either to a second CC bond breakage or to a hot ground-state acetyl radical. The barriers for the Norrish type-I reaction on the various excited-state surfaces can be rationalized

  13. TRANSITION PROBABILITIES AND COLLISION STRENGTHS FOR ELECTRON-IMPACT EXCITATION OF Cl III

    SciTech Connect

    Sossah, A. M.; Tayal, S. S.

    2012-10-15

    We report transition probabilities and effective collision strengths for electron-impact excitation of the astrophysically important Cl III ion. The collision strengths are calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method with term-dependent non-orthogonal orbitals is employed for an accurate description of the target wave functions. The 68 fine-structure levels belonging to the 32 LS states of 3s {sup 2}3p{sup 3}, 3s3p{sup 4}, 3s {sup 2}3p {sup 2}3d, 3s {sup 2}3p {sup 2}4s, and 3s {sup 2}3p {sup 2}4p configurations are included in the close-coupling expansion. The effective collision strengths are obtained by averaging the electron collision strengths over a Maxwellian distribution of velocities, and those are tabulated for all 2278 possible fine-structure transitions at electron temperatures in the range from 5000 to 1,000,000 K. Our results are compared with previous theoretical results and available experimental data. Overall, we reached a good agreement with the 23 state calculation of Ramsbottom et al., but some discrepancies are seen for some transitions.

  14. Ultrafast excited-state dynamics in vitamin B12 and related cob(III)alamins.

    PubMed

    Shiang, Joseph J; Cole, Allwyn G; Sension, Roseanne J; Hang, Kun; Weng, Yuxiang; Trommel, Jenna S; Marzilli, Luigi G; Lian, Tianquan

    2006-01-25

    Femtosecond transient IR and visible absorption spectroscopies have been employed to investigate the excited-state photophysics of vitamin B12 (cyanocobalamin, CNCbl) and the related cob(III)alamins, azidocobalamin (N3Cbl), and aquocobalamin (H2OCbl). Excitation of CNCbl, H2OCbl, or N3Cbl results in rapid formation of a short-lived excited state followed by ground-state recovery on time scales ranging from a few picoseconds to a few tens of picoseconds. The lifetime of the intermediate state is influenced by the sigma-donating ability of the axial ligand, decreasing in the order CNCbl > N3Cbl > H2OCbl, and by the polarity of the solvent, decreasing with increasing solvent polarity. The peak of the excited-state visible absorption spectrum is shifted to ca. 490 nm, and the shape of the spectrum is characteristic of weak axial ligands, similar to those observed for cob(II)alamin, base-off cobalamins, or cobinamides. Transient IR spectra of the upper CN and N3 ligands are red-shifted 20-30 cm(-1) from the ground-state frequencies, consistent with a weakened Co-upper ligand bond. These results suggest that the transient intermediate state can be attributed to a corrin ring pi to Co 3d(z2) ligand to metal charge transfer (LMCT) state. In this state bonds between the cobalt and the axial ligands are weakened and lengthened with respect to the corresponding ground states.

  15. 32 CFR 2003.3 - Functions (Article III).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Functions (Article III). 2003.3 Section 2003.3 National Defense Other Regulations Relating to National Defense INFORMATION SECURITY OVERSIGHT OFFICE...) BYLAWS, RULES, AND APPEAL PROCEDURES Bylaws § 2003.3 Functions (Article III). In carrying out its...

  16. 32 CFR 2003.3 - Functions (Article III).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Functions (Article III). 2003.3 Section 2003.3 National Defense Other Regulations Relating to National Defense INFORMATION SECURITY OVERSIGHT OFFICE...) BYLAWS, RULES, AND APPEAL PROCEDURES Bylaws § 2003.3 Functions (Article III). In carrying out its...

  17. Excitations and benchmark ensemble density functional theory for two electrons

    SciTech Connect

    Pribram-Jones, Aurora; Burke, Kieron; Yang, Zeng-hui; Ullrich, Carsten A.; Trail, John R.; Needs, Richard J.

    2014-05-14

    A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that are proven include the signs of the correlation energy components and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.

  18. Antisites in III-V semiconductors: Density functional theory calculations

    SciTech Connect

    Chroneos, A.; Tahini, H. A.; Schwingenschlögl, U.; Grimes, R. W.

    2014-07-14

    Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III{sub V}{sup q}) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V{sub III}{sup q}) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III{sub V}{sup q} defects dominate under III-rich conditions and V{sub III}{sup q} under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies.

  19. Exceptional Oxygen Sensing Properties of New Blue Light-Excitable Highly Luminescent Europium(III) and Gadolinium(III) Complexes

    PubMed Central

    Borisov, Sergey M.; Fischer, Roland; Saf, Robert; Klimant, Ingo

    2016-01-01

    New europium(III) and gadolinium(III) complexes bearing 8-hydroxyphenalenone antenna combine efficient absorption in the blue part of the spectrum and strong emission in polymers at room temperature. The Eu(III) complexes show characteristic red luminescence whereas the Gd(III) dyes are strongly phosphorescent. The luminescence quantum yields are about 20% for the Eu(III) complexes and 50% for the Gd(III) dyes. In contrast to most state-of-the-art Eu(III) complexes the new dyes are quenched very efficiently by molecular oxygen. The luminescence decay times of the Gd(III) complexes exceed 1 ms which ensures exceptional sensitivity even in polymers of moderate oxygen permeability. These sensors are particularly suitable for trace oxygen sensing and may be good substitutes for Pd(II) porphyrins. The photophysical and sensing properties can be tuned by varying the nature of the fourth ligand. The narrow-band emission of the Eu(III) allows efficient elimination of the background light and autofluorescence and is also very attractive for use e.g. in multi-analyte sensors. The highly photostable indicators incorporated in nanoparticles are promising for imaging applications. Due to the straightforward preparation and low cost of starting materials the new dyes represent a promising alternative to the state-of-the-art oxygen indicators particularly for such applications as e.g. food packaging. PMID:27158252

  20. Comment on elimination of polarization dependence from optical excitation functions

    SciTech Connect

    Maseberg, Jack W.

    2008-05-15

    The measurement of optical excitation functions excited by electron impact is typically accomplished by recording atomic fluorescence emitted into a small solid angle perpendicular to the incident electron beam. This measured intensity is not proportional to the emission cross section because the fluorescence exhibits an angular distribution and polarization that varies with the energy of the exciting electrons. Typically, a polarizer is set at the ''magic angle'' (54.7 degree sign ) with respect to the electron beam axis to remove this polarization dependence. The literature for the derivation of the magic angle value assumes the polarizing element is perfect. An expression for the angle that accounts for the use of a partial polarizer is presented.

  1. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    SciTech Connect

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E.; Keenan, F. P.

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  2. Reactions of the excited state of polypyridyl chromium(III) ion

    SciTech Connect

    Steffan, C.

    1990-09-21

    There has been much recent interest in the photochemistry and photophysics of transition metal polypyridine complexes due to the possibility of their use in solar energy conversion systems. The excited state of these compounds are known to undergo useful electron transfer and energy transfer reactions. This work attempts to elucidate the mechanism of the quenching of *CrL{sub 3}{sup 3+} (where L = 2,2{prime}-bipyridine, 4,4{prime}-dimethyl-2,2{prime}-bipyridine, 1,10-phenanthroline, 5-chloro-1,10-phenanthroline, 5-methyl-1,10-phenanthroline) by oxalate ions in neutral pH. Evidence suggests an ion-pairing pre-equilibrium followed by rate limiting electron transfer to produce CrL{sub 3}{sup 2+} and CO{sub 2}{sup {minus}} can then react with ground state chromium(III) species to produce another mole of the reduced product or it can produce a secondary transient as in the case of phenanthroline and substituted phenanthroline complexes. The secondary transient reacts to produce CrL{sub 3}{sup 2+} in a subsequent reaction. 85 refs., 24 figs., 7 tabs.

  3. Electron-impact Excitation Collision Strengths and Theoretical Line Intensities for Transitions in S III

    NASA Astrophysics Data System (ADS)

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E.; Keenan, F. P.

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log Te (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s 23p 2, 3s3p 3, 3s 23p3d, 3s 23p4s, 3s 23p4p, and 3s 23p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  4. Dependence of the lifetime upon the excitation energy and intramolecular energy transfer rates: the 5D0Eu(III) emission case.

    PubMed

    Ferreira, Rute A S; Nolasco, Mariela; Roma, Ana C; Longo, Ricardo L; Malta, Oscar L; Carlos, Luis D

    2012-09-17

    In many Eu(III)-based materials, the presence of an intermediate energy level, such as ligand-to-metal charge transfer (LMCT) states or defects, that mediates the energy transfer mechanisms can strongly affect the lifetime of the (5)D(0) state, mainly at near-resonance (large transfer rates). We present results for the dependence of the (5)D(0) lifetime on the excitation wavelength for a wide class of Eu(III)-based compounds: ionic salts, polyoxometalates (POMs), core/shell inorganic nanoparticles (NPs) and nanotubes, coordination polymers, β-diketonate complexes, organic-inorganic hybrids, macro-mesocellular foams, functionalized mesoporous silica, and layered double hydroxides (LDHs). This yet unexplained behavior is successfully modelled by a coupled set of rate equations with seven states, in which the wavelength dependence is simulated by varying the intramolecular energy transfer rates. In addition, the simulations of the rate equations for four- and three-level systems show a strong dependence of the emission lifetime upon the excitation wavelength if near-resonant non-radiative energy transfer processes are present, indicating that the proposed scheme can be generalized to other trivalent lanthanide ions, as observed for Tb(III)/Ce(III). Finally, the proper use of lifetime definition in the presence of energy transfer is emphasized.

  5. Structure-function analyses of plant type III polyketide synthases.

    PubMed

    Weng, Jing-Ke; Noel, Joseph P

    2012-01-01

    Plant type III polyketide synthases (PKSs) form a superfamily of biosynthetic enzymes involved in the production of a plethora of polyketide-derived natural products important for ecological adaptations and the fitness of land plants. Moreover, tremendous interest in bioengineering of type III PKSs to produce high-value compounds is increasing. Compared to type I and type II PKSs, which form either large modular protein complexes or dissociable molecular assemblies, type III PKSs exist as smaller homodimeric proteins, technically more amenable for detailed quantitative biochemical and phylogenetic analyses. In this chapter, we summarize a collection of approaches, including bioinformatics, genetics, protein crystallography, in vitro biochemistry, and mutagenesis, together affording a comprehensive interrogation of the structure-function-evolutionary relationships in the plant type III PKS family.

  6. Delta function excitation of waves in the earth's ionosphere

    NASA Technical Reports Server (NTRS)

    Vidmar, R. J.; Crawford, F. W.; Harker, K. J.

    1983-01-01

    Excitation of the earth's ionosphere by delta function current sheets is considered, and the temporal and spatial evolution of wave packets is analyzed for a two-component collisional F2 layer. Approximations of an inverse Fourier-Laplace transform via saddle point methods provide plots of typical wave packets. These illustrate cold plasma wave theory and may be used as a diagnostic tool since it is possible to relate specific features, e.g., the frequency of a modulation envelope, to plasma parameters such as the electron cyclotron frequency. It is also possible to deduce the propagation path length and orientation of a remote radio beacon.

  7. Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging

    NASA Astrophysics Data System (ADS)

    Jesse, S.; Vasudevan, R. K.; Collins, L.; Strelcov, E.; Okatan, M. B.; Belianinov, A.; Baddorf, A. P.; Proksch, R.; Kalinin, S. V.

    2014-04-01

    Field confinement at the junction between a biased scanning probe microscope's tip and solid surface enables local probing of various bias-induced transformations, such as polarization switching, ionic motion, and electrochemical reactions. The nanoscale size of the biased region, smaller or comparable to that of features such as grain boundaries and dislocations, potentially allows for the study of kinetics and thermodynamics at the level of a single defect. In contrast to classical statistically averaged approaches, this approach allows one to link structure to functionality and deterministically decipher associated mesoscopic and atomistic mechanisms. Furthermore, responses measured as a function of frequency and bias can serve as a fingerprint of local material functionality, allowing for local recognition imaging of inorganic and biological systems. This article reviews current progress in multidimensional scanning probe microscopy techniques based on band excitation time and voltage spectroscopies, including discussions on data acquisition, dimensionality reduction, and visualization, along with future challenges and opportunities for the field.

  8. Density functional computations for inner-shell excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Ching-Han; Chong, Delano P.

    1996-11-01

    The 1 s → π ∗ inner-shell excitation spectra of seven molecules have been studied using density functional theory along with the unrestricted generalized transition state (uGTS) approach. The exchange-correlation potential is based on a combined functional of Becke's exchange (B88) and Perdew's correlation (P86). A scaling procedure based on Clementi and Raimondi's rules for atomic screening is applied to the cc-pVTZ basis set of atoms where a partial core-hole is created in the uGTS calculations. The average absolute deviation between our predicted 1 s → π ∗ excitations eneergies and experimental values is only 0.16 eV. Singlet-triplet splittings of C 1 s → π ∗ transitions of CO, C 2H 2, C 2H 4, and C 6H 6 also agree with experimental observations. The average absolute deviation of our predicted core-electron binding energies and term values is 0.23 and 0.29 eV, respectively.

  9. Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise

    PubMed Central

    Sidhu, Simranjit K.; Weavil, Joshua C.; Mangum, Tyler S.; Jessop, Jacob E.; Richardson, Russell S.; Morgan, David E.; Amann, Markus

    2017-01-01

    Objective To investigate the influence of group III/IV muscle afferents on the development of central fatigue and corticospinal excitability during exercise. Methods Fourteen males performed cycling-exercise both under control-conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from leg muscle afferents. Transcranial magnetic- and cervicomedullary stimulation was used to monitor cortical versus spinal excitability. Results While fentanyl-blockade during non-fatiguing cycling had no effect on motor-evoked potentials (MEPs), cervicomedullary-evoked motor potentials (CMEPs) were 13 ± 3% higher (P < 0.05), resulting in a decrease in MEP/CMEP (P < 0.05). Although the pre- to post-exercise reduction in resting twitch was greater in FENT vs. CTRL (−53 ± 3% vs. −39 ± 3%; P < 0.01), the reduction in voluntary muscle activation was smaller (−2 ± 2% vs. −10 ± 2%; P < 0.05). Compared to the start of fatiguing exercise, MEPs and CMEPs were unchanged at exhaustion in CTRL. In contrast, MEPs and MEP/CMEP increased 13 ± 3% and 25 ± 6% in FENT (P < 0.05). Conclusion During non-fatiguing exercise, group III/IV muscle afferents disfacilitate, or inhibit, spinal motoneurons and facilitate motor cortical cells. In contrast, during exhaustive exercise, group III/IV muscle afferents disfacilitate/inhibit the motor cortex and promote central fatigue. Significance Group III/IV muscle afferents influence corticospinal excitability and central fatigue during whole-body exercise in humans. PMID:27866119

  10. Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging

    SciTech Connect

    Jesse, Stephen; Vasudevan, Dr. Rama; Collins, Liam; Strelcov, Evgheni; Okatan, Mahmut B; Belianinov, Alex; Baddorf, Arthur P; Proksch, Roger; Kalinin, Sergei V

    2014-01-01

    Field confinement at the junction between a biased scanning probe microscope s (SPM) tip and solid surface enables local probing of various bias-induced transformations such as polarization switching, ionic motion, or electrochemical reactions to name a few. The nanoscale size of the biased region is smaller or comparable to features like grain boundaries and dislocations, potentially allows for the study of kinetics and thermodynamics at the level of a single defect. In contrast to classical statistically averaged approaches, this allows one to link structure to functionality and deterministically decipher associated mesoscopic and atomistic mechanisms. Furthermore, this type of information can serve as a fingerprint of local material functionality, allowing for local recognition imaging. Here, current progress in multidimensional SPM techniques based on band-excitation time and voltage spectroscopies is illustrated, including discussions on data acquisition, dimensionality reduction, and visualization along with future challenges and opportunities for the field.

  11. ESCRT-III on endosomes: new functions, new activation pathway.

    PubMed

    Woodman, Philip

    2016-01-15

    The multivesicular body (MVB) pathway sorts ubiquitinated membrane cargo to intraluminal vesicles (ILVs) within the endosome, en route to the lysosomal lumen. The pathway involves the sequential action of conserved protein complexes [endosomal sorting complexes required for transport (ESCRTs)], culminating in the activation by ESCRT-II of ESCRT-III, a membrane-sculpting complex. Although this linear pathway of ESCRT activation is widely accepted, a study by Luzio and colleagues in a recent issue of the Biochemical Journal suggests that there is greater complexity in ESCRT-III activation, at least for some MVB cargoes. They show that ubiquitin-dependent sorting of major histocompatibility complex (MHC) class I to the MVB requires the central ESCRT-III complex but does not involve either ESCRT-II or functional links between ESCRT-II and ESCRT-III. Instead, they propose that MHC class I utilizes histidine-domain protein tyrosine phosphatase (HD-PTP), a non-canonical ESCRT interactor, to promote ESCRT-III activation.

  12. Magnetic antenna excitation of whistler modes. III. Group and phase velocities of wave packets

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2015-07-01

    The properties of whistler modes excited by single and multiple magnetic loop antennas have been investigated in a large laboratory plasma. A single loop excites a wavepacket, but an array of loops across the ambient magnetic field B0 excites approximate plane whistler modes. The single loop data are measured. The array patterns are obtained by linear superposition of experimental data shifted in space and time, which is valid in a uniform plasma and magnetic field for small amplitude waves. Phasing the array changes the angle of wave propagation. The antennas are excited by an rf tone burst whose propagating envelope and oscillations yield group and phase velocities. A single loop antenna with dipole moment across B0 excites wave packets whose topology resembles m = 1 helicon modes, but without radial boundaries. The phase surfaces are conical with propagation characteristics of Gendrin modes. The cones form near the antenna with comparable parallel and perpendicular phase velocities. A physical model for the wave excitation is given. When a wave burst is applied to a phased antenna array, the wave front propagates both along the array and into the plasma forming a "whistler wing" at the front. These laboratory observations may be relevant for excitation and detection of whistler modes in space plasmas.

  13. Coupled cluster Green function: Model involving single and double excitations

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Shelton, William A.

    2016-04-14

    In this paper we report on the parallel implementation of the coupled-cluster (CC) Green function formulation (GF-CC) employing single and double excitations in the cluster operator (GF-CCSD). The detailed description of the underlying algorithm is provided, including the structure of ionization-potential- and electron-affinity-type intermediate tensors which enable to formulate GF-CC approach in a computationally feasible form. Several examples including calculations of ionization-potentials and electron a*ffinities for benchmark systems, which are juxtaposed against the experimental values, provide an illustration of the accuracies attainable in the GFCCSD simulations. We also discuss the structure of the CCSD self energies and discuss approximation that are geared to reduce the computational cost while maintaining the pole structure of the full GF-CCSD approach.

  14. [Ventricular pump function under ectopic excitation of the frog heart].

    PubMed

    Kibler, N A; Belogolova, A S; Vaĭkshnoraĭte, M A; Azarov, Ia E; Shmakov, D N

    2008-02-01

    The ventricular pump function under ectopic excitation of the heart was studied in decapitated and pithed adult frogs Rana temporaria (n = 21) at 18-19 degrees C. The intraventricular pressure was recorded with a catheter via ventricular wall. During pacing of the ventricular base and apex, the systolic pressure decreased (6.1 +/- 4.5 mm Hg and 8.9 +/- 5.0 mm Hg, respectively) as compared to the supraventricular rhythm (8.9 +/- 5.0 mm Hg, p < 0.05). The end-diastolic pressure decreased insignificantly both under basal and apical pacing. The systolic rate of pressure rise during dP/dtmax decreased under ventricular pacing, especially during pacing of the ventricular apex, as compared to the supraventricular rhythm (14.4 +/- 6/9 mm Hg/s and 22.1 +/- 11.2 mm Hg/s, respectively, p < 0.003). The isovolumetric relaxation (dP/dtmin) slowed during apical pacing as compared to the supraventricular rhythm (-25.1 +/- 13.6 and -35.6 +/- 18.3 mm Hg/s, respectively, p < 0.03). Ectopic excitation of the ventricular base and apex resulted in increase of the QRS duration (93 +/- 33 ms and 81 +/- 30 ms, respectively) as compared to the supraventricular rhythm (63 +/- 13 ms, p < 0.05). Thus, pacing of different ventricular areas ventricular myocardium with the ventricular pump function being reduced more obviously during the apical pacing compared to the pacing of ventricular base.

  15. Functional Assessment of Corticospinal System Excitability in Karate Athletes

    PubMed Central

    Moscatelli, Fiorenzo; Messina, Giovanni; Valenzano, Anna; Monda, Vincenzo; Viggiano, Andrea; Messina, Antonietta; Petito, Annamaria; Triggiani, Antonio Ivano; Ciliberti, Michela Anna Pia; Monda, Marcellino; Capranica, Laura; Cibelli, Giuseppe

    2016-01-01

    Objectives To investigate the involvement of the primary motor cortex (M1) in the coordination performance of karate athletes through transcranial magnetic stimulation (TMS). Methods Thirteen right-handed male karate athletes (25.0±5.0 years) and 13 matched non-athlete controls (26.7±6.2 years) were enrolled. A single-pulse TMS was applied using a figure-eight coil stimulator. Resting motor threshold (rMT) was determined. Surface electromyography was recorded from the first dorsal interosseous muscle. Motor evoked potential (MEP) latencies and amplitudes at rMT, 110%, and 120% of rMT were considered. Functional assessment of the coordination performance was assessed by in-phase (IP) and anti-phase (AP) homolateral hand and foot coordination tasks performed at 80, 120, and 180 bpm. Results Compared to controls, athletes showed lower rMT (p<0.01), shorter MEP latency (p<0.01) and higher MEP amplitude (p<0.01), with a significant correlation (r = 0.50, p<0.01) between rMT and MEP latency. Coordination decreased with increasing velocity, and better IP performances emerged compared to AP ones (p<0.001). In general, a high correlation between rMT and coordination tasks was found for both IP and AP conditions. Conclusion With respect to controls, karate athletes present a higher corticospinal excitability indicating the presence of an activity-dependent alteration in the balance and interactions between inhibitory and facilitatory circuits determining the final output from the M1. Furthermore, the high correlation between corticospinal excitability and coordination performance could support sport-specific neurophysiological arrangements. PMID:27218465

  16. Deactivation pathways of the electronic excitation of ions of lanthanide complexes in polymers with functional groups

    NASA Astrophysics Data System (ADS)

    Sveshnikova, E. B.; Ermolaev, V. L.; Shablya, A. V.; Goĭkhman, M. Ya.; Yakimanskiĭ, A. V.; Podeshvo, I. V.; Kudryavtsev, V. V.

    2007-05-01

    Complexes Eu(TTA)3phen and Eu(MBTA)3phen, as well as complexes Tb(MBTA)3phen and Tb(TTA)3phen, which do not luminesce in solutions, are shown to luminesce in polymer films (TTA is thenoyltrifluoroacetone, MBTA is n-methoxybenzoyltrifluoroacetone, and phen is o-phenanthroline). Luminescence of complexes of Eu and Tb in films of a polymer, poly(methylene-bis-anthranilamide) 1,6-hexamethylenedicarboxylic acid (PAA-5), having a high concentration of functional anthranilate groups, is studied. From the behavior of the luminescence intensity (I lum), the luminescence decay time, and the luminescence spectra of complexes of these lanthanides in polymer films, the following regular features were revealed. (i) During the film preparation at 90°C, Ln complexes are attached to PAA-5 via anthranilate groups. (ii) Irradiation of these films in the range of the absorption band of ligands (TTA or MBTA) leads to deactivation of the electronic excitation of ions according to the diketone detachment mechanism and to further binding of complexes to polymers. In this case, I lum(Eu(III)) decreases because the introduction of anthranilate groups of the polymer into the first coordination sphere of Eu(III) complexes enhances the nonradiative deactivation of these ions, whereas I lum(Tb(III)) increases since the introduction of these groups suppresses the nonradiative deactivation of Tb complexes through triplet states of ligands (TTA and MBTA). (iii) Upon storage of films in the dark (20°C), complexes detach themselves from the polymer and return to their initial structure. In PAA-5 films into which Eu and Tb complexes were simultaneously introduced, the color of the emission from the irradiation spot changes from red to green.

  17. Some light-ion excitation-function measurements on titanium, yttrium, and europium, and associated results

    SciTech Connect

    West, H.I. Jr.; Lanier, R.G.; Mustafa, M.G.; Nuckolls, R.M.; Nagle, R.J.; O`Brien, H.; Frehaut, J.; Adam, A.; Philis, C.

    1993-11-01

    This report discusses: Fabrication of Plastic-Matrix-Encapsulated Accelerator Targets and Their Use in Measuring Nuclear Excitation Functions; Correcting Excitation Function Data in the Low Energy Region for Finite Thickness of the Target Foils, Including Effects of Straggling; Excitation Functions for the Nuclear Reactions on Titanium Leading to the Production {sup 48}V, {sup 44}Sc and {sup 47}Sc by Proton, Deuteron and Triton Irradiations at 0--35 MeV; Some Excitation Functions of Proton and Deuteron Induced Reactions on {sup 89}Y; Measurements of the Excitation Functions of the Isobaric Chain {sup 87}Y, {sup 87}Y{sup m}, {sup 87}Y{sup g} and {sup 87}Sr{sup m}; Levels in {sup 87}Y Observed in the Decay of {sup 87}Zr; and Nuclear Reaction Excitation Functions from the Irradiation of {sup 151,153}Eu with Protons And deuterons up to 35 MeV.

  18. Nonadiabatic quantum molecular dynamics with hopping. III. Photoinduced excitation and relaxation of organic molecules

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Handt, J.; Schmidt, R.

    2014-07-01

    Photoinduced excitation and relaxation of organic molecules (C2H4 and CH2NH2+) are investigated by means of nonadiabatic quantum molecular dynamics with hopping (NA-QMD-H), developed recently [Fischer, Handt, and Schmidt, paper I of this series, Phys. Rev. A 90, 012525 (2014), 10.1103/PhysRevA.90.012525]. This method is first applied to molecules assumed to be initially ad hoc excited to an electronic surface. Special attention is drawn to elaborate the role of electron-nuclear correlations, i.e., of quantum effects in the nuclear dynamics. It is found that they are essential for a realistic description of the long-time behavior of the electronic relaxation process, but only of minor importance to portray the short-time scenario of the nuclear dynamics. Migration of a hydrogen atom, however, is identified as a quantum effect in the nuclear motion. Results obtained with explicit inclusion of an fs-laser field are presented as well. It is shown that the laser-induced excitation process generally leads to qualitatively different gross features of the relaxation dynamics, as compared to the field-free case. Nevertheless, the nuclear wave packet contains all subtleties of the cis-trans isomerization mechanism as observed without a laser field.

  19. Diverse functions and reactions of class III peroxidases.

    PubMed

    Shigeto, Jun; Tsutsumi, Yuji

    2016-03-01

    Higher plants contain plant-specific peroxidases (class III peroxidase; Prxs) that exist as large multigene families. Reverse genetic studies to characterize the function of each Prx have revealed that Prxs are involved in lignification, cell elongation, stress defense and seed germination. However, the underlying mechanisms associated with plant phenotypes following genetic engineering of Prx genes are not fully understood. This is because Prxs can function as catalytic enzymes that oxidize phenolic compounds while consuming hydrogen peroxide and/or as generators of reactive oxygen species. Moreover, biochemical efforts to characterize Prxs responsible for lignin polymerization have revealed specialized activities of Prxs. In conclusion, not only spatiotemporal regulation of gene expression and protein distribution, but also differentiated oxidation properties of each Prx define the function of this class of peroxidases.

  20. Equations describing coherent and partially coherent multilevel molecular excitation induced by pulsed Raman transitions: III

    SciTech Connect

    Shore, B.W.; Sacks, R.; Karr, T.

    1987-02-18

    This memo discusses the equations of motion used to describe multilevel molecular excitation induced by Raman transitions. These equations are based upon the time-dependent Schroedinger equation expressed in a basis of molecular energy states. A partition of these states is made into two sets, those that are far from resonance (and hence unpopulated) and those that are close to resonance, either by one-photon transition or two-photon (Raman) processes. By adiabatic elimination an effective Schroedinger equation is obtained for the resonance states alone. The effective Hamiltonian is expressible in terms of a polarizibility operator.

  1. Is There a Linear Building Transfer Function for Small Excitation?

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Heaton, T. H.

    2003-12-01

    In the absence of actual building accelerometer data, the linear response of a structure to strong ground motion is estimated by the convolution of the dynamic response of the structure with an input ground motion. The input motion is usually provided by a local `reference' station record. In this study, we look at whether actual recorded ground motion at two instrumented buildings with well studied dynamic properties can be satisfactorily modeled using a local ground station. All stations record continuous 24-bit data streams on the CISN network, so analysis of a variety of weak earthquake motions, as well as ambient noise, is possible. Our buildings are the 9-story reinforced concrete Millikan Library (CISN Station MIK) and the 3-story braced steel frame Broad Center (CBC), both on the Caltech Campus. Motions recorded on their upper floors are compared with motions from ground stations located in the basement of a lightweight wood-frame house (GSA), and in a subsurface vault (CRP). All stations are within 200m of each other. Recent work using the new continuous datastream indicates that the natural frequencies of these structures can vary by up to 5% during normal ambient conditions, due to such factors as changing building usage, diurnal temperature variation, and wind/rainfall events. These shifts can be sudden, and models of building motions are sensitive to these previously un-documented changes. Further, during stronger motions, such as forced vibration testing, and minor earthquake shaking, natural frequencies are shown to drop by up to 10% (2003 M5.4 Big Bear Earthquake, Δ = 119km), with near-instantaneous recovery once the excitation is over. Moderate earthquakes can temporarily reduce frequencies by up to 30% with no apparent structural damage (1971 M6.6 San Fernando Earthquake, Δ = 31km). Post-event permanent reductions of about 10% have been observed. The ability to monitor these evolving dynamic characteristics makes a re-evaluation of the

  2. Validation of local hybrid functionals for TDDFT calculations of electronic excitation energies

    NASA Astrophysics Data System (ADS)

    Maier, Toni M.; Bahmann, Hilke; Arbuznikov, Alexei V.; Kaupp, Martin

    2016-02-01

    The first systematic evaluation of local hybrid functionals for the calculation of electronic excitation energies within linear-response time-dependent density functional theory (TDDFT) is reported. Using our recent efficient semi-numerical TDDFT implementation [T. M. Maier et al., J. Chem. Theory Comput. 11, 4226 (2015)], four simple, thermochemically optimized one-parameter local hybrid functionals based on local spin-density exchange are evaluated against a database of singlet and triplet valence excitations of organic molecules, and against a mixed database including also Rydberg, intramolecular charge-transfer (CT) and core excitations. The four local hybrids exhibit comparable performance to standard global or range-separated hybrid functionals for common singlet valence excitations, but several local hybrids outperform all other functionals tested for the triplet excitations of the first test set, as well as for relative energies of excited states. Evaluation for the combined second test set shows that local hybrids can also provide excellent Rydberg and core excitations, in the latter case rivaling specialized functionals optimized specifically for such excitations. This good performance of local hybrids for different excitation types could be traced to relatively large exact-exchange (EXX) admixtures in a spatial region intermediate between valence and asymptotics, as well as close to the nucleus, and lower EXX admixtures in the valence region. In contrast, the tested local hybrids cannot compete with the best range-separated hybrids for intra- and intermolecular CT excitation energies. Possible directions for improvement in the latter category are discussed. As the used efficient TDDFT implementation requires essentially the same computational effort for global and local hybrids, applications of local hybrid functionals to excited-state problems appear promising in a wide range of fields. Influences of current-density dependence of local kinetic

  3. Luminescent Gold(III) Thiolates: Supramolecular Interactions Trigger and Control Switchable Photoemissions from Bimolecular Excited States

    PubMed Central

    Currie, Lucy; Rocchigiani, Luca; Bertrand, Benoît; Lancaster, Simon J.; Hughes, David L.; Duckworth, Helen; Jones, Saul T. E.

    2016-01-01

    Abstract A new family of cyclometallated gold(III) thiolato complexes based on pyrazine‐centred pincer ligands has been prepared, (C^Npz^C)AuSR, where C^Npz^C=2,6‐bis(4‐ButC6H4)pyrazine dianion and R=Ph (1), C6H4 tBu‐4 (2), 2‐pyridyl (3), 1‐naphthyl (1‐Np, 4), 2‐Np (5), quinolinyl (Quin, 6), 4‐methylcoumarinyl (Coum, 7) and 1‐adamantyl (8). The complexes were isolated as yellow to red solids in high yields using mild synthetic conditions. The single‐crystal X‐ray structures revealed that the colour of the deep‐red solids is associated with the formation of a particular type of short (3.2–3.3 Å) intermolecular pyrazine⋅⋅⋅pyrazine π‐interactions. In some cases, yellow and red crystal polymorphs were formed; only the latter were emissive at room temperature. Combined NMR and UV/Vis techniques showed that the supramolecular π‐stacking interactions persist in solution and give rise to intense deep‐red photoluminescence. Monomeric molecules show vibronically structured green emissions at low temperature, assigned to ligand‐based 3IL(C^N^C) triplet emissions. By contrast, the unstructured red emissions correlate mainly with a 3LLCT(SR→{(C^Npz^C)2}) charge transfer transition from the thiolate ligand to the π⋅⋅⋅π dimerized pyrazine. Unusually, the π‐interactions can be influenced by sample treatment in solution, such that the emissions can switch reversibly from red to green. To our knowledge this is the first report of aggregation‐enhanced emission in gold(III) chemistry. PMID:27859790

  4. The Structure and Function of Type III Secretion Systems

    PubMed Central

    Notti, Ryan Q.; Stebbins, C. Erec

    2015-01-01

    ARTICLE SUMMARY Type III secretion systems (T3SS) afford gram-negative bacteria a most intimate means of altering the biology of their eukaryotic hosts — the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe “injectisomes,” which form a conduit across the three plasma membranes, peptidoglycan layer and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the post-translational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS. PMID:26999392

  5. Excited-state intermolecular proton transfer of firefly luciferin III. Proton transfer to a mild base.

    PubMed

    Presiado, Itay; Erez, Yuval; Huppert, Dan

    2010-12-30

    Steady-state and time-resolved techniques were employed to study the excited-state proton transfer (ESPT) from d-luciferin, the natural substrate of the firefly luciferase, to the mild acetate base in aqueous solutions. We found that in 1 M aqueous solutions of acetate or higher, a proton transfer (PT) process to the acetate takes place within 30 ps in both H(2)O and D(2)O solutions. The time-resolved emission signal is composed of three components. We found that the short-time component decay time is 300 and 600 fs in H(2)O and D(2)O, respectively. This component is attributed either to a PT process via the shortest water bridged complex available, ROH··H(2)O··Ac(-), or to PT taking place within a contact ion pair. The second time component of 2000 and 3000 fs for H(2)O and D(2)O, respectively, is attributed to ROH* acetate complex, whose proton wire is longer by one water molecule. The decay rate of the third, long-time component is proportional to the acetate concentration. We attribute it to the diffusion-assisted reaction as well as to PT process to the solvent.

  6. Addressing the electronic properties of III-V nanowires by photoluminescence excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    De Luca, M.

    2017-02-01

    Semiconductor nanowires (NWs) have been attracting an increasing interest in the scientific community. This is due to their peculiar filamentary shape and nanoscale diameter, which renders them versatile and cost-effective components of novel technological devices and also makes them an ideal platform for the investigation of a variety of fascinating physical effects. Absorption spectroscopy is a powerful and non-destructive technique able to provide information on the physical properties of the NWs. However, standard absorption spectroscopy is hard to perform in NWs, because of their small volume and the presence of opaque substrates. Here, we demonstrate that absorption can be successfully replaced by photoluminescence excitation (PLE). First, the use of polarization-resolved PLE to address the complex and highly-debated electronic band structure of wurtzite GaAs and InP NWs is shown. Then, PLE is used as a statistically-relevant method to localize the presence of separate wurtzite and zincblende NWs in the same InP sample. Finally, a variety of resonant exotic effects in the density of states of In x Ga1-x As/GaAs core/shell NWs are highlighted by high-resolution PLE. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics’ series 50th anniversary celebrations in 2017. Marta De Luca was selected by the Editorial Board of J. Phys. D as a Leader.

  7. Enabling the Triplet of Tetraphenylethene to Sensitize the Excited State of Europium(III) for Protein Detection and Time‐Resolved Luminescence Imaging

    PubMed Central

    Zhu, Zece; Song, Bo; Yuan, Jingli

    2016-01-01

    A tetraphenylethene (TPE) group that exhibits aggregation‐induced emission is incorporated into the ligand of a Eu(III) complex (TPEEu) to sensitize the excited state of Eu(III). In steady‐state measurements, TPEEu exhibits weak luminescence when dissolved in aqueous solutions even at a high concentration level, but emits strong fluorescence of TPE and phosphorescence of Eu(III) upon binding with bovine serum albumin. With a delay time of 0.05 ms and a gate time of 1.0 ms in time‐resolved measurements, only phosphorescent emission of Eu(III) is observed with a high on/off ratio. Moreover, this probe is successfully used in time‐resolved luminescence imaging to eliminate the background signal from biological autofluorescence without a washing process. This work provides a general strategy in designing Ln(III) complexes for detecting a broad range of biological molecules. PMID:27981006

  8. Assembly, structure, function and regulation of type III secretion systems.

    PubMed

    Deng, Wanyin; Marshall, Natalie C; Rowland, Jennifer L; McCoy, James M; Worrall, Liam J; Santos, Andrew S; Strynadka, Natalie C J; Finlay, B Brett

    2017-04-10

    Type III secretion systems (T3SSs) are protein transport nanomachines that are found in Gram-negative bacterial pathogens and symbionts. Resembling molecular syringes, T3SSs form channels that cross the bacterial envelope and the host cell membrane, which enable bacteria to inject numerous effector proteins into the host cell cytoplasm and establish trans-kingdom interactions with diverse hosts. Recent advances in cryo-electron microscopy and integrative imaging have provided unprecedented views of the architecture and structure of T3SSs. Furthermore, genetic and molecular analyses have elucidated the functions of many effectors and key regulators of T3SS assembly and secretion hierarchy, which is the sequential order by which the protein substrates are secreted. As essential virulence factors, T3SSs are attractive targets for vaccines and therapeutics. This Review summarizes our current knowledge of the structure and function of this important protein secretion machinery. A greater understanding of T3SSs should aid mechanism-based drug design and facilitate their manipulation for biotechnological applications.

  9. 77 FR 76426 - Payout Requirements for Type III Supporting Organizations That Are Not Functionally Integrated

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... organizations that are not functionally integrated. The withdrawal affects Type III supporting organizations... ``Type III Supporting Organizations''). Those regulations reflect changes to the law made by the Pension... Revenue Service 26 CFR Part 1 [REG 155929-06] RIN 1545-BL44 Payout Requirements for Type III...

  10. Dielectric function for a model of laser-excited GaAs

    SciTech Connect

    Benedict, Lorin X.

    2001-02-15

    We consider a model for the ultrashort pulsed-laser excitation of GaAs in which electrons are excited from the top of the valence band to the bottom of the conduction band. The linear optical response of this excited system in the visible and near-UV is calculated by solving a statically screened Bethe-Salpeter equation. Single-particle electron energies and wave functions are taken from ab initio electronic structure calculations. The screened electron-hole interaction W is calculated with a model dielectric function which includes the excited carriers. Though band-gap renormalization is neglected, dramatic changes are observed in the shape of {epsilon}{sub 2}({omega}) due to Pauli blocking and the enhanced screening of W. We estimate the error incurred in the static screening approximation by performing static screening calculations with the assumption that the excited carriers respond too slowly to screen W.

  11. Functional Activation of the Flagellar Type III Secretion Export Apparatus

    PubMed Central

    Phillips, Andrew M.; Calvo, Rebecca A.; Kearns, Daniel B.

    2015-01-01

    Flagella are assembled sequentially from the inside-out with morphogenetic checkpoints that enforce the temporal order of subunit addition. Here we show that flagellar basal bodies fail to proceed to hook assembly at high frequency in the absence of the monotopic protein SwrB of Bacillus subtilis. Genetic suppressor analysis indicates that SwrB activates the flagellar type III secretion export apparatus by the membrane protein FliP. Furthermore, mutants defective in the flagellar C-ring phenocopy the absence of SwrB for reduced hook frequency and C-ring defects may be bypassed either by SwrB overexpression or by a gain-of-function allele in the polymerization domain of FliG. We conclude that SwrB enhances the probability that the flagellar basal body adopts a conformation proficient for secretion to ensure that rod and hook subunits are not secreted in the absence of a suitable platform on which to polymerize. PMID:26244495

  12. Core and valence excitations in resonant X-ray spectroscopy using restricted excitation window time-dependent density functional theory

    PubMed Central

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-01-01

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen, and sulfur K and \\documentclass[12pt]{minimal}\\begin{document}$\\textrm {L}_{2,3}$\\end{document}L2,3 edges. Comparison of the simulated XANES signals with experiment shows that the restricted window time-dependent density functional theory is more accurate and computationally less expensive than the static exchange method. Simulated RIXS and 1D SXRS signals give some insights into the correlation of different excitations in the molecule. PMID:23181305

  13. Natural orbitals from single and double excitation configuration interaction wave functions: their use in second-order configuration interaction and wave functions incorporating limited triple and quadruple excitations

    NASA Astrophysics Data System (ADS)

    Grev, Roger S.; Schaefer, Henry F., III

    1992-05-01

    As an alternative to orbitals obtained from a molecular complete-active-space self-consistent-field (CASSCF) wave function, we have investigated the use of natural orbitals (NOs) obtained from configuration interaction (CI) wave functions including all single and double excitations (CISD) for use in multireference CI (MRCI) studies. The specific MRCI methods investigated are (1) second-order CI (SOCI), which includes all single and double excitations with respect to a full CI in the valence space and (2) a wave function that includes all single and double excitations out of a valence space CISD reference function. The latter wave function can also be described as a single-double-triple-quadruple excitation CI in which only two electrons are allowed to simultaneously reside outside of the valence space, ``which we call CISD[TQ].'' Comparison is made with CASSCF-SOCI and full CI results for NH2 (2B1), CH3 (2A`2), and SiH2 (1B1) at equilibrium bond distances (Re) 1.5 and 2.0Re, and with full CI results for the dissociation energy of N2. The dissociation energies of N2 and C2 are also obtained using large atomic natural orbital basis sets and the results compared to CASSCF-SOCI and internally contracted MRCI results. In all, the MRCI results with CISD NOs are very similar to the CASSCF-MRCI results, and at geometries where the reference wave function is dominant, the relatively compact CISD[TQ] method yields results that are very close to SOCI. In addition to their ease of generation, the CISD NOs offer the added advantage of allowing for truncation of the CI configuration list on an orbital basis by simply deleting high-lying virtual orbitals. The errors introduced by this truncation are almost quantitatively obtained at the CISD level of theory.

  14. Modeling the Excited States of Biological Chromophores within Many-Body Green's Function Theory.

    PubMed

    Ma, Yuchen; Rohlfing, Michael; Molteni, Carla

    2010-01-12

    First-principle many-body Green's function theory (MBGFT) has been successfully used to describe electronic excitations in many materials, from bulk crystals to nanoparticles. Here we assess its performance for the calculations of the excited states of biological chromophores. MBGFT is based on a set of Green's function equations, whose key ingredients are the electron's self-energy Σ, which is obtained by Hedin's GW approach, and the electron-hole interaction, which is described by the Bethe-Salpeter equation (BSE). The GW approach and the BSE predict orbital energies and excitation energies with high accuracy, respectively. We have calculated the low-lying excited states of a series of model biological chromophores, related to the photoactive yellow protein (PYP), rhodopsin, and the green fluorescent protein (GFP), obtaining a very good agreement with the available experimental and accurate theoretical data; the order of the excited states is also correctly predicted. MBGFT bridges the gap between time-dependent density functional theory and high-level quantum chemistry methods, combining the efficiency of the former with the accuracy of the latter: this makes MBGFT a promising method for studying excitations in complex biological systems.

  15. Modeling the doubly excited state with time-dependent Hartree-Fock and density functional theories

    NASA Astrophysics Data System (ADS)

    Isborn, Christine M.; Li, Xiaosong

    2008-11-01

    Multielectron excited states have become a hot topic in many cutting-edge research fields, such as the photophysics of polyenes and in the possibility of multiexciton generation in quantum dots for the purpose of increasing solar cell efficiency. However, obtaining multielectron excited states has been a major obstacle as it is often done with multiconfigurational methods, which involve formidable computational cost for large systems. Although they are computationally much cheaper than multiconfigurational wave function based methods, linear response adiabatic time-dependent Hartree-Fock (TDHF) and density functional theory (TDDFT) are generally considered incapable of obtaining multielectron excited states. We have developed a real-time TDHF and adiabatic TDDFT approach that is beyond the perturbative regime. We show that TDHF/TDDFT is able to simultaneously excite two electrons from the ground state to the doubly excited state and that the real-time TDHF/TDDFT implicitly includes double excitation within a superposition state. We also present a multireference linear response theory to show that the real-time electron density response corresponds to a superposition of perturbative linear responses of the S0 and S2 states. As a result, the energy of the two-electron doubly excited state can be obtained with several different approaches. This is done within the adiabatic approximation of TDDFT, a realm in which the doubly excited state has been deemed missing. We report results on simple two-electron systems, including the energies and dipole moments for the two-electron excited states of H2 and HeH+. These results are compared to those obtained with the full configuration interaction method.

  16. Assessing Accuracy of Exchange-Correlation Functionals for the Description of Atomic Excited States

    NASA Astrophysics Data System (ADS)

    Makowski, Marcin; Hanas, Martyna

    2016-09-01

    The performance of exchange-correlation functionals for the description of atomic excitations is investigated. A benchmark set of excited states is constructed and experimental data is compared to Time-Dependent Density Functional Theory (TDDFT) calculations. The benchmark results show that for the selected group of functionals good accuracy may be achieved and the quality of predictions provided is competitive to computationally more demanding coupled-cluster approaches. Apart from testing the standard TDDFT approaches, also the role of self-interaction error plaguing DFT calculations and the adiabatic approximation to the exchange-correlation kernels is given some insight.

  17. Relativistic Energy Density Functionals: Exotic modes of excitation

    SciTech Connect

    Vretenar, D.; Paar, N.; Marketin, T.

    2008-11-11

    The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of {beta}-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.

  18. On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies.

    PubMed

    Jacquemin, Denis; Perpète, Eric A; Ciofini, Ilaria; Adamo, Carlo; Valero, Rosendo; Zhao, Yan; Truhlar, Donald G

    2010-07-13

    We assessed the accuracy of the four members of the M06 family of functionals (M06-L, M06, M06-2X, and M06-HF) for the prediction of electronic excitation energies of main-group compounds by time-dependent density functional theory. This is accomplished by comparing the predictions both to high-level theoretical benchmark calculations and some experimental data for gas-phase excitation energies of small molecules and to experimental data for midsize and large chromogens in liquid-phase solutions. The latter comparisons are carried out using implicit solvation models to include the electrostatic effects of solvation. We find that M06-L is one of the most accurate local functionals for evaluating electronic excitation energies, that M06-2X outperforms BHHLYP, and that M06-HF outperforms HF, although in each case, the compared functionals have the same or a similar amount of Hartree-Fock exchange. For the majority of investigated excited states, M06 emerges as the most accurate functional among the four tested, and it provides an accuracy similar to the best of the other global hybrids such as B3LYP, B98, and PBE0. For 190 valence excited states, 20 Rydberg states, and 16 charge transfer states, we try to provide an overall assessment by comparing the quality of the predictions to those of time-dependent Hartree-Fock theory and nine other density functionals. For the valence excited states, M06 yields a mean absolute deviation (MAD) of 0.23 eV, whereas B3LYP, B98, and PBE0 have MADs in the range 0.19-0.22 eV. Of the functionals tested, M05-2X, M06-2X, and BMK are found to perform best for Rydberg states, and M06-HF performs best for charge transfer states, but no single functional performs satisfactorily for all three kinds of excitation. The performance of functionals with no Hartree-Fock exchange is of great practical interest because of their high computational efficiency, and we find that M06-L predicts more accurate excitation energies than other such functionals.

  19. Gravimetric excitation function of polar motion from the GRACE RL05 solution

    NASA Astrophysics Data System (ADS)

    Nastula, Y.

    2014-12-01

    Impact of land hydrosphere on polar motion excitation is still not as well known as the impact of the angular momentum of the atmosphere and ocean. Satellite mission Gravity Recovery and Climate Experiment (GRACE) from 2002 provides additional information about mass distribution of the land hydrosphere. However, despite the use of similar computational procedures, the differences between GRACE data series made available by the various centers of computations are still considerable. In the paper we compare three series of gravimetric excitation functions of polar motion determined from Rl05 GRACE solution from the Center for Space Research (CSR), the Jet Propulsion Laboratory (JPL) and the GeoForschungsZentrum (GFZ). These data are used to determine the gravimetric polar motion excitation function. Gravimetric signal is compared also with the geodetic residuals computed by subtracting atmospheric and oceanic signals from geodetic excitation functions of polar motion. Gravimetric excitation functions obtained on the basis of JPL data differ significantly from the geodetic residuals while and the series obtained from CSR and GFZ are more compatible.

  20. Thick-target transmission method for excitation functions of interaction cross sections

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Ebata, S.; Imai, S.

    2016-09-01

    We propose a method, called as thick-target transmission (T3) method, to obtain an excitation function of interaction cross sections. In an ordinal experiment to measure the excitation function of interaction cross sections by the transmission method, we need to change the beam energy for each cross section. In the T3 method, the excitation function is derived from the beam attenuations measured at the targets of different thicknesses without changing the beam energy. The advantage of the T3 method is the simplicity and availability for radioactive beams. To confirm the availability, we perform a simulation for the 12C + 27Al system with the PHITS code instead of actual experiments. Our results have large uncertainties but well reproduce the tendency of the experimental data.

  1. N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching.

    PubMed

    Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran

    2016-02-01

    An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6)  M) and limit of quantitation (2.9 × 10(-5)  M) were obtained under optimal conditions.

  2. 78 FR 9802 - Payout Requirements for Type III Supporting Organizations That Are Not Functionally Integrated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... requirements to qualify as a Type III supporting organization that is operated in connection with one or more... Internal Revenue Service 26 CFR Part 1 RIN 1545-BG31; 1545-BL38 Payout Requirements for Type III Supporting Organizations That Are Not Functionally Integrated; Correction AGENCY: Internal Revenue Service (IRS),...

  3. Management of pseudo Class III malocclusion--synergistic approach with fixed and functional appliance.

    PubMed

    Kumar, Amit; Tandon, Pradeep; Singh, Gyan P

    2013-01-01

    Class III malocclusion has been divided into two subtypes: skeletal and pseudo-Class III. A pseudo Class III malocclusion should be treated as early as possible to reduce the functional shift of the mandible and increase maxillary arch length. A case of pseudo-Class III malocclusion was presented here. A 11-year-old boy came with an anterior cross bite, the treatment was done with Fixed appliance (Roth prescription) and Reverse Twin block therapy. This case demonstrated that an anterior cross bite was corrected after 10 months of treatment.

  4. Quantal density-functional theory of excited states: The state arbitrariness of the model noninteracting system

    SciTech Connect

    Slamet, Marlina; Singh, Ranbir; Sahni, Viraht; Massa, Lou

    2003-10-01

    The quantal density-functional theory (Q-DFT) of nondegenerate excited-states maps the pure state of the Schroedinger equation to one of noninteracting fermions such that the equivalent excited state density, energy, and ionization potential are obtained. The state of the model S system is arbitrary in that it may be in a ground or excited state. The potential energy of the model fermions differs as a function of this state. The contribution of correlations due to the Pauli exclusion principle and Coulomb repulsion to the potential and total energy of these fermions is independent of the state of the S system. The differences are solely a consequence of correlation-kinetic effects. Irrespective of the state of the S system, the highest occupied eigenvalue of the model fermions is the negative of the ionization potential. In this paper we demonstrate the state arbitrariness of the model system by application of Q-DFT to the first excited singlet state of the exactly solvable Hookean atom. We construct two model S systems: one in a singlet ground state (1s{sup 2}), and the other in a singlet first excited state (1s2s). In each case, the density and energy determined are equivalent to those of the excited state of the atom, with the highest occupied eigenvalues being the negative of the ionization potential. From these results we determine the corresponding Kohn-Sham density-functional theory (KS-DFT) 'exchange-correlation' potential energy for the two S systems. Further, based on the results of the model calculations, suggestions for the KS-DFT of excited states are made.

  5. Investigation of Multiconfigurational Short-Range Density Functional Theory for Electronic Excitations in Organic Molecules.

    PubMed

    Hubert, Mickaël; Hedegård, Erik D; Jensen, Hans Jørgen Aa

    2016-05-10

    Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become inadequate when the molecule has near-degeneracies and/or low-lying double-excited states. To address these issues we have recently proposed multiconfiguration short-range density-functional theory-MC-srDFT-as a new tool in the toolbox. While initial applications for systems with multireference character and double excitations have been promising, it is nevertheless important that the accuracy of MC-srDFT is at least comparable to the best KS-DFT methods also for organic molecules that are typically of single-reference character. In this paper we therefore systematically investigate the performance of MC-srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2, NEVPT2, and the coupled cluster based CC2 and CC3.

  6. Excitation functions of {sup 6,7}Li+{sup 7}Li reactions at low energies

    SciTech Connect

    Prepolec, L.; Soic, N.; Blagus, S.; Miljanic, D.; Siketic, Z.; Skukan, N.; Uroic, M.; Milin, M.

    2009-08-26

    Differential cross sections of {sup 6,7}Li+{sup 7}Li nuclear reactions have been measured at forward angles (10 deg. and 20 deg.), using particle identification detector telescopes, over the energy range 2.75-10.00 MeV. Excitation functions have been obtained for low-lying residual-nucleus states. The well pronounced peak in the excitation function of {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(3.37 MeV,2{sup +}) at beam energy about 8 MeV, first observed by Wyborny and Carlson in 1971 at 0 deg., has been observed at 10 deg., but is less evident at 20 deg. The cross section obtained for the {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(g.s,0{sup +}) reaction is about ten times smaller. The well pronounced peak in the excitation function of {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(3.37 MeV,2{sup +}) reaction could correspond to excited states in {sup 14}C, at excitation energies around 30 MeV.

  7. Employment of sawtooth-shaped-function excitation signal and oversampling for improving resistance measurement accuracy

    NASA Astrophysics Data System (ADS)

    Lin, Ling; Li, Shujuan; Yan, Wenjuan; Li, Gang

    2016-10-01

    In order to achieve higher measurement accuracy of routine resistance without increasing the complexity and cost of the system circuit of existing methods, this paper presents a novel method that exploits a shaped-function excitation signal and oversampling technology. The excitation signal source for resistance measurement is modulated by the sawtooth-shaped-function signal, and oversampling technology is employed to increase the resolution and the accuracy of the measurement system. Compared with the traditional method of using constant amplitude excitation signal, this method can effectively enhance the measuring accuracy by almost one order of magnitude and reduce the root mean square error by 3.75 times under the same measurement conditions. The results of experiments show that the novel method can attain the aim of significantly improve the measurement accuracy of resistance on the premise of not increasing the system cost and complexity of the circuit, which is significantly valuable for applying in electronic instruments.

  8. Analysis of Real Ship Rolling Dynamics under Wave Excitement Force Composed of Sums of Cosine Functions

    SciTech Connect

    Zhang, Y. S.; Cai, F.; Xu, W. M.

    2011-09-28

    The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.

  9. Excitation functions for actinides produced in the interactions of sup 31 P with sup 248 Cm

    SciTech Connect

    Leyba, J.D.; Henderson, R.A.; Hall, H.L.; Czerwinski, K.R.; Kadkhodayan, B.A.; Kreek, S.A.; Brady, E.K.; Gregorich, K.E.; Lee, D.M.; Nurmia, M.J.; Hoffman, D.C. Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California )

    1991-11-01

    Excitation functions have been measured for the production of various isotopes of Bk, Cf, Es, and Fm from the interactions of 174- and 239-MeV {sup 31}P projectiles with {sup 248}Cm. The isotopic distributions were symmetric and displayed full widths at half maximum of 2.5, 2.5, and 2.25 mass units for Bk, Cf, and Fm, respectively. The maxima of the isotopic distributions occur for those reaction channels which involve the exchange of the fewest number of nucleons between the target and projectile for which the calculated excitation energy is a positive quantity. The maxima of the excitation functions occur at those projectile energies which are consistent with the calculated reaction barriers based upon a binary reaction mechanism. The effects of the odd proton in the {sup 31}P projectile on the final isotopic distributions are discussed.

  10. Luminescent lanthanide-binding peptides: sensitising the excited states of Eu(III) and Tb(III) with a 1,8-naphthalimide-based antenna.

    PubMed

    Bonnet, Célia S; Devocelle, Marc; Gunnlaugsson, Thorfinnur

    2012-01-07

    The investigation into the luminescence properties of a lanthanide-binding peptide, derived from the Ca-binding loop of the parvalbumin, and modified by incorporating a 1,8-naphthalimide (Naph) chromophore at the N-terminus is described. Here, the Naph is used as a sensitising antenna, which can be excited at lower energy than classical aromatic amino acids, such as tryptophan (the dodecapeptide of which was also synthesised and studied herein). The syntheses of the Naph antenna, its solid phase incorporation into the dodecapeptide, and the NMR investigation into the formation of the corresponding lanthanide complexes in solution is presented. We also show that this Naph antenna can be successfully employed to sensitize the excited states of both europium and terbium ions, the results of which was used to determined the stability constants of their formation complexes, and we demonstrated that our peptide 'loop' can selectively bind these lanthanide ions over Ca(II).

  11. Ethyne-bridged (porphinato)zinc(II)-(porphinato)iron(III) complexes: phenomenological dependence of excited-state dynamics upon (porphinato)iron electronic structure.

    PubMed

    Duncan, Timothy V; Wu, Sophia P; Therien, Michael J

    2006-08-16

    We report the synthesis, spectroscopy, potentiometric properties, and excited-state dynamical studies of 5-[(10,20-di-((4-ethyl ester)methylene-oxy)phenyl)porphinato]zinc(II)-[5'-[(10',20'- di-((4-ethyl ester)methylene-oxy)phenyl)porphinato]iron(III)-chloride]ethyne (PZn-PFe-Cl), along with a series of related supermolecules ([PZn-PFe-(L)1,2]+ species) that possess a range of metal axial ligation environments (L = pyridine, 4-cyanopyridine, 2,4,6-trimethylpyridine (collidine), and 2,6-dimethylpyridine (2,6-lutidine)). Relevant monomeric [(porphinato)iron-(ligand)1,2]+ ([PFe(L)1,2]+) benchmarks have also been synthesized and fully characterized. Ultrafast pump-probe transient absorption spectroscopic experiments that interrogate the initially prepared electronically excited states of [PFe(L)1,2]+ species bearing nonhindered axial ligands demonstrated subpicosecond-to-picosecond relaxation dynamics to the ground electronic state. Comparative pump-probe transient absorption experiments that interrogate the initially prepared excited states of PZn-PFe-Cl, [PZn-PFe-(py)2]+, [PZn-PFe-(4-CN-py)2]+, [PZn-PFe-(collidine)]+, and [PZn-PFe-(2,6-lutidine)]+ demonstrate that the spectra of all these species are dominated by a broad, intense NIR S1 --> Sn transient absorption manifold. While PZn-PFe-Cl, [PZn-PFe-(py)2]+, and [PZn-PFe-(4-CN-py)2]+ evince subpicosecond and picosecond time-scale relaxation of their respective initially prepared electronically excited states to the ground state, the excited-state dynamics observed for [PZn-PFe-(2,6-lutidine)]+ and [PZn-PFe-(collidine)]+ show fast relaxation to a [PZn+-PFe(II)] charge-separated state having a lifetime of nearly 1 ns. Potentiometric data indicate that while DeltaGCS for [PZn-PFe-(L)1,2]+ species is strongly influenced by the PFe+ ligation state [ligand (DeltaGCS): 4-cyanopyridine (-0.79 eV) < pyridine (-1.04 eV) < collidine (-1.35 eV) < chloride (-1.40 eV); solvent = CH2Cl2], the pump-probe transient absorption

  12. Lanthanide Enhanced Luminescence (LEL) with One and Two Photon Excitation of Quantum Dyes(copyright) Lanthanide(III)-Macrocycles

    DTIC Science & Technology

    2004-01-01

    Quagliano, and L. M. Vallarino, The Addition of a Second Lanthanide Ion to Increase the Luminescence of Europium(IIl) Macrocyclic Complexes ...Increasing the Luminescence of Lanthanide (III) Macrocyclic Complexes , 2002, and United States Patent Application 20020132992, September 19, 2002. 3. J...R. Quagliano, R. C. Leif, L. M. Vallarino, and S. A. Williams, Methods to Increase the Luminescence of Lanthanide (III) Macrocyclic Complexes , Optical

  13. Exciter switch

    NASA Technical Reports Server (NTRS)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  14. Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

    NASA Astrophysics Data System (ADS)

    Higashi, Yoichi; Nagai, Yuki; Yoshida, Tomohiro; Kato, Masaru; Yanase, Youichi

    2015-11-01

    We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.

  15. Direct measurement of excited-state intervalence transfer in [(tpy)Ru(III)(tppz(*-))Ru(II)(tpy)](4+) by time-resolved near-infrared spectroscopy.

    PubMed

    Dattelbaum, Dana M; Hartshorn, Chris M; Meyer, Thomas J

    2002-05-08

    Extension of time-resolved infrared (TRIR) measurements into the near-infrared region has allowed the first direct measurement of a mixed-valence band in the metal-to-ligand charge transfer (MLCT) excited state of a symmetrical ligand-bridged complex. Visible laser flash excitation of [(tpy)Ru(tppz)Ru(tpy)]4+ (tppz is 2,3,5,6-tetrakis(2-pyridyl)pyrazine; tpy is 2,2':6',6' '-terpyridine) produces the mixed-valence, MLCT excited state [(tpy)RuIII(tppz*-)RuII(tpy)]4+* with the excited electron localized on the bridging tppz ligand. A mixed-valence band appears at numax = 6300 cm-1 with a bandwidth-at-half- maximum, Deltanu1/2 = 1070 cm-1. In the analogous ground-state complex, [(tpy)Ru(tppz)Ru(tpy)]5+, a mixed-valence band appears at numax = 6550 cm-1 with Deltanu1/2 = 970 cm-1 which allows a comparison to be made of electronic coupling across tppz0 and tppz*- as bridging ligands.

  16. Intrinsic acidity of aluminum, chromium (III) and iron (III) μ 3-hydroxo functional groups from ab initio electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Rustad, James R.; Dixon, David A.; Felmy, Andrew R.

    2000-05-01

    Density functional calculations are performed on M 3(OH) 7(H 2O) 62+ and M 3O(OH) 6(H 2O) 6+ clusters for MAl, Cr(III), and Fe(III), allowing determination of the relative acidities of the μ 3-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, Fe 3OH and Al 3OH groups have nearly the same intrinsic acidity, while Cr 3OH groups are significantly more acidic. The gas-phase acidity of the Fe 3OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. [ J. R. Rustad et al. (1996)Geochim. Cosmochim. Acta 60, 1563]. Acidities of aquo functional groups were also computed for Al and Cr. The AlOH 2 site is more acidic than the Al 3OH site, whereas the Cr 3OH site is more acidic than the CrOH 2 site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.

  17. Localized operator partitioning method for electronic excitation energies in the time-dependent density functional formalism.

    PubMed

    Nagesh, Jayashree; Frisch, Michael J; Brumer, Paul; Izmaylov, Artur F

    2016-12-28

    We extend the localized operator partitioning method (LOPM) [J. Nagesh, A. F. Izmaylov, and P. Brumer, J. Chem. Phys. 142, 084114 (2015)] to the time-dependent density functional theory framework to partition molecular electronic energies of excited states in a rigorous manner. A molecular fragment is defined as a collection of atoms using Becke's atomic partitioning. A numerically efficient scheme for evaluating the fragment excitation energy is derived employing a resolution of the identity to preserve standard one- and two-electron integrals in the final expressions. The utility of this partitioning approach is demonstrated by examining several excited states of two bichromophoric compounds: 9-((1- naphthyl)- methyl)- anthracene and 4-((2- naphthyl)- methyl)- benzaldehyde. The LOPM is found to provide nontrivial insights into the nature of electronic energy localization that is not accessible using a simple density difference analysis.

  18. Vertical Singlet Excitations on Adenine Dimer: A Time Dependent Density Functional Study

    NASA Astrophysics Data System (ADS)

    Crespo-Hernández, Carlos E.; Marai, Christopher N. J.

    2007-12-01

    The condense phase, excited state dynamics of the adenylyl(3'→5')adenine (ApA) dinucleotide has been previously studied using transient absorption spectroscopy with femtosecond time resolution (Crespo-Hernández et al. Chem. Rev. 104, 1977-2019 (2004)). An ultrafast and a long-lived component were observed with time constants of <1 ps and 60±16 ps, respectively. Comparison of the time constants measured for the dinucleotide with that for the adenine nucleotide suggested that the fast component observed in ApA could be assigned to monomer dynamics. The long-lived component observed in ApA was assigned to an excimer state that originates from a fraction of base stacked conformations present at the time of excitation. In this contribution, supermolecule calculations using the time dependent implementation of density functional theory is used to provide more insights on the origin of the initial Franck-Condon excitations. Monomer-like, localized excitations are observed for conformations having negligible base stacking interactions, whereas delocalized excitations are predicted for conformations with significant vertical base-base overlap.

  19. Plasmon excitations in sodium atomic planes: a time-dependent density functional theory study.

    PubMed

    Wang, Bao-Ji; Xu, Yuehua; Ke, San-Huang

    2012-08-07

    The collective electronic excitation in planar sodium clusters is studied by time-dependent density functional theory calculations. The formation and development of the resonances in photoabsorption spectra are investigated in terms of the shape and size of the two-dimensional (2D) systems. The nature of these resonances is revealed by the frequency-resolved induced charge densities present on a real-space grid. For long double chains, the excitation is similar to that in long single atomic chains, showing longitudinal modes, end and central transverse modes. However, for 2D planes consisting of (n × n) atoms with n being up to 16, new 2D characteristic modes emerge regardless of the symmetries considered. For in-plane excitations, besides the equivalent end mode, mixed modes with contrary polarity occur. The relation between the frequency of the primary modes and the system size is similar to the case of a 2D electron gas but with a correction due to the realistic atomic structure. For excitations perpendicular to the plane there are corner, side center, bulk center, and circuit modes. Our calculation reveals the importance of dimensionality for plasmon excitation and how it evolves from 1D to 2D.

  20. Measurement of fusion excitation functions in the system {sup 78}Kr + {sup 100}Mo

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Earlier measurements of fusion reactions involving {sup 78}Kr and {sup 100}Mo projectiles and Ni-targets showed surprisingly large fusion yields at low energies which could not be explained by coupled-channels calculations. The main difference to similar measurements involving the neighboring {sup 86}Kr and {sup 92}Mo isotopes was the different slope of the excitation functions at sub-barrier energies. An analysis of a variety of experiments showed a correlation between the nuclear structure and the slope of the excitation functions, with the {open_quotes}soft{close_quotes} transitional nuclei ({sup 78}Kr, {sup 100}Mo) exhibiting shallower slopes than the {open_quotes}stiff{close_quotes} nuclei ({sup 86}Kr, {sup 92}Mo) measured at the same energies with respect to the barrier. In this experiment we studied the fusion excitation function involving two transitional nuclei {sup 78}Kr + {sup 100}Mo. The measurements were performed with {sup 78}Kr beams from the ECR source at energies between 285-370 MeV. Separation of the evaporation nucleus from the elastically scattered particles was achieved by measuring time-of-flight and magnetic rigidity in the gas-filled spectrograph. The data were completely analyzed. A comparison of the cross sections with measurements for the system {sup 86}Kr + {sup 92}Mo populating the same compound nucleus {sup 178}Pt. It shows good agreement at the highest energies, but quite different falloffs of the excitation functions toward lower energies. Coupled-channels calculations, including multi-phonon excitation for the two systems, are being performed.

  1. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study.

    PubMed

    Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin

    2013-11-01

    Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening.

  2. Impact of Reaction Cross Section on the Unified Description of Fusion Excitation Function

    NASA Astrophysics Data System (ADS)

    Basrak, Z.; Eudes, P.; de la Mota, V.; Sébille, F.; Royer, G.

    A systematics of over 300 complete and incomplete fusion cross section data points covering energies beyond the barrier for fusion is presented. Owing to a usual reduction of the fusion cross sections by the total reaction cross sections and an original scaling of energy, a fusion excitation function common to all the data points is established. A universal description of the fusion exci- tation function relying on basic nuclear concepts is proposed and its dependence on the reaction cross section used for the cross section normalization is discussed. The pioneering empirical model proposed by Bass in 1974 to describe the complete fusion cross sections is rather successful for the incomplete fusion too and provides cross section predictions in satisfactory agreement with the observed universality of the fusion excitation function. The sophisticated microscopic transport DYWAN model not only reproduces the data but also predicts that fusion reaction mechanism disappears due to weakened nuclear stopping power around the Fermi energy.

  3. Deliberate synthetic control over the excited-state properties of cyclometalated iridium(III) complexes with materials applications

    NASA Astrophysics Data System (ADS)

    Lowry, Michael Scott

    Luminescence color tuning is an area of great interest to materials research due to the expanding role of emissive complexes in a variety of optoelectronic and photocatalytic applications. This thesis contains an examination of structure-property relationships with luminescent iridium(III) complexes in order to synthetically control their photophysical and electrochemical properties and to optimize their performance in diverse fields, such as organic light-emitting diodes (OLEDs), photochemical water splitting, and chiroptical materials. A combinatorial approach was developed to accelerate the discovery of useful luminophores, and over 300 heteroleptic iridium(III) complexes have been prepared and characterized for their photophysical properties. Considerable attention has been placed on interpreting the effect of structural modifications at the ligand periphery and will be discussed in the context of tailoring the luminescent behavior of novel materials. An area that has seen tremendous growth throughout the tenure of this work is the field of OLED devices. Single-layer electroluminescent device constructed with an iridium(III) complexes were observed for the first time, and the color of these devices was tuned from yellow (lambdamax = 560 nm) to blue-green (lambdamax = 500 nm) by strategically modifying the iridium(III) luminophore. A computational method for predicting the emission energy of novel materials was also developed and will be discussed. A second field into which this work has endeavored is the area of photoinduced hydrogen production, specifically the design and optimization of iridium(III) photocatalysts for reducing protons to molecular hydrogen. Seven iridium(III) complexes were examined as photosensitizers, and a material expressing a nearly 100-fold increase in its ability to catalyze hydrogen production over Ru(bpy) 32+ is reported. A final extension of this work examined the chiroptical properties of enantiomerically pure iridium(III

  4. Synthesis of oxindole from acetanilide via Ir(iii)-catalyzed C-H carbenoid functionalization.

    PubMed

    Patel, Pitambar; Borah, Gongutri

    2016-12-22

    Herein we disclose the first report on the synthesis of oxindole derivatives from acetanilide via Ir(iii)-catalyzed intermolecular C-H functionalization with diazotized Meldrum's acid. A broad range of substituted anilides were found to react smoothly under the Ir(iii)-catalytic system to afford the corresponding N-protected oxindoles. The N-protecting groups, such as Ac, Bz or Piv, can be easily removed to furnish the oxindole. Various synthetic applications of the synthesized oxindole were also demonstrated.

  5. Latent Class Analysis of Differential Item Functioning on the Peabody Picture Vocabulary Test-III

    ERIC Educational Resources Information Center

    Webb, Mi-young Lee; Cohen, Allan S.; Schwanenflugel, Paula J.

    2008-01-01

    This study investigated the use of latent class analysis for the detection of differences in item functioning on the Peabody Picture Vocabulary Test-Third Edition (PPVT-III). A two-class solution for a latent class model appeared to be defined in part by ability because Class 1 was lower in ability than Class 2 on both the PPVT-III and the…

  6. Synthesis, one- and two-photon photophysical and excited-state properties, and sensing application of a new phosphorescent dinuclear cationic iridium(III) complex.

    PubMed

    Xu, Wen-Juan; Liu, Shu-Juan; Zhao, Xin; Zhao, Ning; Liu, Zhi-Qiang; Xu, Hang; Liang, Hua; Zhao, Qiang; Yu, Xiao-Qiang; Huang, Wei

    2013-01-07

    A new phosphorescent dinuclear cationic iridium(III) complex (Ir1) with a donor-acceptor-π-bridge-acceptor-donor (D-A-π-A-D)-conjugated oligomer (L1) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited-state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular-orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)(2)(bpy)](+)PF(6)(-) (Ir0). Compared with Ir0, complex Ir1 shows a more-intense optical-absorption capability, especially in the visible-light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 10(4) , which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange-red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two-photon-absorption properties of complexes Ir0, Ir1, and L1. The free ligand (L1) has a relatively small two-photon absorption cross-section (δ(max) =195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1, it exhibits a higher two-photon-absorption cross-section than ligand L1 in the near-infrared region and an intense two-photon-excited phosphorescent emission. The maximum two-photon-absorption cross-section of Ir1 is 481 GM, which is also significantly larger than that of Ir0. In addition, because the strong B-F interaction between the dimesitylboryl groups and F(-) ions interrupts the extended π-conjugation, complex Ir1 can be used as an excellent one- and two-photon-excited "ON-OFF" phosphorescent probe for F(-) ions.

  7. Measurement of excitation functions in alpha induced reactions on natCu

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad; Kim, Kwangsoo; Kim, Guinyun; Zaman, Muhammad; Nadeem, Muhammad

    2015-09-01

    The excitation functions of 66,67,68Ga, 62,63,65Zn, 61,64Cu, and 58,60Co radionuclides in the natCu(α, x) reaction were measured in the energy range from 15 to 42 MeV by using a stacked-foil activation method at the MC-50 cyclotron of the Korean Institute of Radiological and Medical Sciences. The measured results were compared with the literature data as well as the theoretical values obtained from the TENDL-2013 and TENDL-2014 libraries based on the TALYS-1.6 code. The integral yields for thick targets of the produced radionuclides were also determined from the measured excitation functions and the stopping power of natural copper.

  8. Measurement of the 208Pb(52Cr, n)259Sg Excitation Function

    SciTech Connect

    Folden III, C.M.; Dragojevic, I.; Dullmann, Ch.E.; Eichler, R.; Garcia, M.A.; Gates, J.M.; Nelson, S.L.; Sudowe, R.; Gregorich, K.E.; Hoffman, D.C.; Nitsche, H.

    2010-03-19

    The excitation function for the 208Pb(52Cr, n)259Sg reaction has been measured using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The maximum cross section of pb is observed at a center-of-target laboratory-frame energy of 253.0 MeV. In total, 25 decay chains originating from 259Sg were observed and the measured decay properties are in good agreement with previous reports. In addition, a partial excitation function for the 208Pb(52Cr, 2n)258Sg reaction was obtained, and an improved 258Sg half-life of ms was calculated by combining all available experimental data.

  9. The transfer function method for gear system dynamics applied to conventional and minimum excitation gearing designs

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1982-01-01

    A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.

  10. An Amine‐Functionalized Iron(III) Metal–Organic Framework as Efficient Visible‐Light Photocatalyst for Cr(VI) Reduction

    PubMed Central

    Shi, Li; Wang, Tao; Zhang, Huabin; Chang, Kun; Meng, Xianguang; Liu, Huimin

    2015-01-01

    The photocatalytic reduction of Cr(VI) is investigated over iron(III)‐based metal–organic frameworks (MOFs) structured as MIL‐88B. It is found that MIL‐88B (Fe) MOFs, containing Fe3‐μ3‐oxo clusters, can be used as photocatalyst for the reduction of Cr(VI) under visible light irradiation, which is due to the direct excitation of Fe3‐μ3‐oxo clusters. The amine‐functionalized MIL‐88B (Fe) MOFs (denoted as NH2–MIL‐88B (Fe)) shows much higher efficiency for the photocatalytic Cr(VI) reduction under visible‐light irradiation compared with MIL‐88B (Fe). It is revealed that in addition to the direct excitation of Fe3‐μ3‐oxo clusters, the amine functionality in NH2–MIL‐88B (Fe) can also be excited and then transferred an electron to Fe3‐μ3‐oxo clusters, which is responsible for the enhanced photocatalytic activity for Cr(VI) reduction. The enhanced photocatalytic activity for Cr(VI) reduction is also achieved for other two amine‐functionalized iron(III)‐based MOFs (NH2–MIL‐53 (Fe) and NH2–MIL‐101 (Fe)). PMID:27980927

  11. Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy.

    PubMed

    Secret, Emilie; Maynadier, Marie; Gallud, Audrey; Chaix, Arnaud; Bouffard, Elise; Gary-Bobo, Magali; Marcotte, Nathalie; Mongin, Olivier; El Cheikh, Khaled; Hugues, Vincent; Auffan, Mélanie; Frochot, Céline; Morère, Alain; Maillard, Philippe; Blanchard-Desce, Mireille; Sailor, Michael J; Garcia, Marcel; Durand, Jean-Olivier; Cunin, Frédérique

    2014-12-03

    Porous silicon nanoparticles (pSiNPs) act as a sensitizer for the 2-photon excitation of a pendant porphyrin using NIR laser light, for imaging and photodynamic therapy. Mannose-functionalized pSiNPs can be vectorized to MCF-7 human breast cancer cells through a mannose receptor-mediated endocytosis mechanism to provide a 3-fold enhancement of the 2-photon PDT effect.

  12. On the calculation of Δ for electronic excitations in time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Myneni, Hemanadhan; Casida, Mark E.

    2017-04-01

    Excited states are often treated within the context of time-dependent (TD) density-functional theory (DFT), making it important to be able to assign the excited spin-state symmetry. While there is universal agreement on how Δ , the difference between for ground and excited states, should be calculated in a wave-function-like formalism such as the Tamm-Dancoff approximation (TDA), confusion persists as to how to determine the spin-state symmetry of excited states in TD-DFT. We try to clarify the origins of this confusion by examining various possibilities for the parameters (σ1 ,σ2) in the formula

  13. Excited-State N2 Dissociation Pathway on Fe-Functionalized Au.

    PubMed

    Martirez, John Mark P; Carter, Emily A

    2017-03-20

    Localized surface plasmon resonances (LSPRs) offer the possibility of light-activated chemical catalysis on surfaces of strongly plasmonic metal nanoparticles. This technology relies on lower-barrier bond formation and/or dissociation routes made available through energy transfer following the eventual decay of LSPRs. The coupling between these decay processes and a chemical trajectory (nuclear motion, charge-transfer, intersystem crossing, etc.) dictates the availability of these alternative (possibly lower barrier) excited-state channels. The Haber-Bosch method of NH3 synthesis from N2 and H2 is notoriously energy intensive. This is due to the difficulty of N2 dissociation despite the overall reaction being thermodynamically favorable at ambient temperatures and pressures. LSPRs may provide means to improve the kinetics of N2 dissociation via induced resonance electronic excitation. In this work, we calculate, via embedded n-electron valence second-order perturbation theory within the density functional embedding theory, the excited-state potential energy surfaces for dissociation of N2 on an Fe-doped Au(111) surface. This metal alloy may take advantage simultaneously of the strong LSPR of Au and the catalytic activity of Fe toward N2 dissociation. We find the ground-state dissociation activation energy to be 4.74 eV/N2, with Fe as the active site on the surface. Consecutive resonance energy transfers (RETs) may be accessed due to the availability of many electronically excited states with intermediate energies arising from the metal surface that may couple to states induced by the Fe-dopant and the adsorbate molecule, and crossing between excited states may effectively lower the dissociation barrier to 1.33 eV. Our work illustrates that large energetic barriers, prohibitive toward chemical reaction, may be overcome through multiple RETs facilitating an otherwise difficult chemical process.

  14. Cat hindlimb motoneurons during locomotion. III. Functional segregation in sartorius.

    PubMed

    Hoffer, J A; Loeb, G E; Sugano, N; Marks, W B; O'Donovan, M J; Pratt, C A

    1987-02-01

    Cat sartorius has two distinct anatomical portions, anterior (SA-a) and medial (SA-m). SA-a acts to extend the knee and also to flex the hip. SA-m acts to flex both the knee and the hip. The objective of this study was to investigate how a "single motoneuron pool" is used to control at least three separate functions mediated by the two anatomical portions of one muscle. Discharge patterns of single motoneurons projecting to the sartorius muscle were recorded using floating microelectrodes implanted in the L5 ventral root of cats. The electromyographic activity generated by the anterior and medial portions of sartorius was recorded with chronically implanted electrodes. The muscle portion innervated by each motoneuron was determined by spike-triggered averaging of the EMGs during walking on a motorized treadmill. During normal locomotion, SA-a exhibited two bursts of EMG activity per step cycle, one during the stance phase and one during the late swing phase. In contrast, every recorded motoneuron projecting to SA-a discharged a single burst of action potentials per step cycle. Some SA-a motoneurons discharged only during the stance phase, whereas other motoneurons discharged only during the late swing phase. In all cases, the instantaneous frequencygram of the motoneuron was well fit by the rectified smoothed EMG envelope generated by SA-a during the appropriate phase of the step cycle. During normal locomotion, SA-m exhibited a single burst of EMG activity per step cycle, during the swing phase. The temporal characteristics of the EMG bursts recorded from SA-m differed from the swing-phase EMG bursts generated by SA-a.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Measurement of the fusion excitation function for 19O + 12C at near barrier energies

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Steinbach, T. K.; Vadas, J.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Tripathi, V.; Kuvin, S. A.; Wiedenhover, I.

    2015-10-01

    Fusion of neutron-rich light nuclei in the outer crust of an accreting neutron star has been proposed as responsible for triggering X-ray super-bursts. The underlying hypothesis in this proposition is that the fusion of neutron-rich nuclei is enhanced as compared to stable nuclei. To investigate this hypothesis, an experiment has been performed to measure the fusion excitation function for 18O and 19O nuclei incident on a 12C target. A beam of 19O was produced by the 18O(d,p) reaction at Florida State University and separated using the RESOLUT mass spectrometer. The resulting 19O beam bombarded a 100 μg/cm2 12C target at an intensity of 2-4 × 103 p/s. Evaporation residues resulting from the de-excitation of the fusion product were distinguished by measuring their energy and time-of-flight. Using silicon detectors, micro-channel plate detectors, and an ionization chamber, evaporation residues were detected in the angular range θlab <= 23° with high efficiency. Initial experimental results including measurement of the fusion cross-section to approximately the 100 mb level will be presented. The measured excitation function will be compared to theoretical predictions. Supported by the US DOE under Grand No. DEFG02-88ER-40404.

  16. A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks

    NASA Astrophysics Data System (ADS)

    Messé, Arnaud; Hütt, Marc-Thorsten; König, Peter; Hilgetag, Claus C.

    2015-01-01

    The relationship between the structural connectivity (SC) and functional connectivity (FC) of neural systems is a central focus in brain network science. It is an open question, however, how strongly the SC-FC relationship depends on specific topological features of brain networks or the models used for describing excitable dynamics. Using a basic model of discrete excitable units that follow a susceptible - excited - refractory dynamic cycle (SER model), we here analyze how functional connectivity is shaped by the topological features of a neural network, in particular its modularity. We compared the results obtained by the SER model with corresponding simulations by another well established dynamic mechanism, the Fitzhugh-Nagumo model, in order to explore general features of the SC-FC relationship. We showed that apparent discrepancies between the results produced by the two models can be resolved by adjusting the time window of integration of co-activations from which the FC is derived, providing a clearer distinction between co-activations and sequential activations. Thus, network modularity appears as an important factor shaping the FC-SC relationship across different dynamic models.

  17. Excitation energy-transfer in functionalized nanoparticles: Going beyond the Förster approach

    NASA Astrophysics Data System (ADS)

    Gil, G.; Corni, S.; Delgado, A.; Bertoni, A.; Goldoni, G.

    2016-02-01

    We develop a novel approach to treat excitation energy transfer in hybrid nanosystems composed by an organic molecule attached to a semiconductor nanoparticle. Our approach extends the customary Förster theory by considering interaction between transition multipole moments of the nanoparticle at all orders and a point-like transition dipole moment representing the molecule. Optical excitations of the nanoparticle are described through an envelope-function configuration interaction method for a single electron-hole pair. We applied the method to the prototypical case of a core/shell CdSe/ZnS semiconductor quantum dot which shows a complete suppression of the energy transfer for specific transitions which could not be captured by Förster theory.

  18. Excited states of boron isoelectronic series from explicitly correlated wave functions.

    PubMed

    Gálvez, F J; Buendía, E; Sarsa, A

    2005-04-15

    The ground state and some low-lying excited states arising from the 1s2 2s2p2 configuration of the boron isoelectronic series are studied starting from explicitly correlated multideterminant wave functions. One- and two-body densities in position space have been calculated and different expectation values such as , , , , , and , where r, r12, and R stand for the electron-nucleus, interelectronic, and two electron center of mass coordinates, respectively, have been obtained. The energetic ordering of the excited states and the fulfillment of the Hund's rules is analyzed systematically along the isoelectronic series in terms of the electron-electron and electron-nucleus potential energies. The effects of electronic correlations have been systematically studied by comparing the correlated results with the corresponding noncorrelated ones. All the calculations have been done by using the variational Monte Carlo method.

  19. Fusion excitation function measurement for 6Li+64Ni at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Moin Shaikh, Md.; Roy, Subinit; Rajbanshi, S.; Pradhan, M. K.; Mukherjee, A.; Basu, P.; Pal, S.; Nanal, V.; Pillay, R. G.; Shrivastav, A.

    2015-01-01

    Total fusion excitation function has been measured for the reaction of weakly bound 6Li projectile on medium mass 64Ni target at energies near the Coulomb barrier of the system. Online characteristic γ-ray detection method has been used to identify and determine the cross sections of the residues. No suppression of total fusion cross section (σTF) is observed at above barrier energies. But enhancement of measured cross section with respect to the one-dimensional barrier penetration model (1-DBPM) calculation is observed at below barrier energies. The enhancement can not be explained by coupled channels calculation with dominant projectile and target excitations as well as one-neutron stripping reaction.

  20. Measurement of fusion excitation function for 7Li+64Ni near the barrier

    NASA Astrophysics Data System (ADS)

    Moin Shaikh, Md.; Roy, Subinit; Rajbanshi, S.; Mukherjee, A.; Pradhan, M. K.; Basu, P.; Pal, S.; Nanal, V.; Shrivastava, A.; Saha, S.; Pillay, R. G.

    2016-05-01

    Total fusion (TF) excitation function has been measured for the system 7Li + 64Ni at the energies near the Coulomb barrier of the system. The evaporation residue (ER) cross sections have been estimated through the online detection of characteristic γ-rays of the ERs. The summed ER cross sections yielding the experimental TF cross section have been compared with the theoretical one dimensional barrier penetration model (1DBPM) prediction. The measured and the model cross sections are very close to each other at above barrier energies. However, an enhancement of the experimental TF cross section with respect to the 1DBPM prediction is observed at below barrier energies. Coupled channels (CC) calculation with inelastic excitations alone could not explain the enhancement. The origin of the enhancement is identified as due to the enhanced population of the αxn channels.

  1. Charge-Transfer Excited States in Aqueous DNA: Insights from Many-Body Green's Function Theory

    NASA Astrophysics Data System (ADS)

    Yin, Huabing; Ma, Yuchen; Mu, Jinglin; Liu, Chengbu; Rohlfing, Michael

    2014-06-01

    Charge-transfer (CT) excited states play an important role in the excited-state dynamics of DNA in aqueous solution. However, there is still much controversy on their energies. By ab initio many-body Green's function theory, together with classical molecular dynamics simulations, we confirm the existence of CT states at the lower energy side of the optical absorption maximum in aqueous DNA as observed in experiments. We find that the hydration shell can exert strong effects (˜1 eV) on both the electronic structure and CT states of DNA molecules through dipole electric fields. In this case, the solvent cannot be simply regarded as a macroscopic screening medium as usual. The influence of base stacking and base pairing on the CT states is also discussed.

  2. Calibration of excitation function measurement based on corona cage test results.

    PubMed

    Lan, Lei; Chen, Xiaoyue; Wen, Xishan; Li, Wei; Xiao, Guozhou

    2016-11-01

    Corona cage approaches are crucial for research on the corona characteristics of conductors. Calibration is an indispensable task for determining excitation functions, which are used to predict corona performance of long transmission lines through extrapolation from measurements of short lines in corona cages. In this paper, the amplification factor G is calculated through a frequently adopted method, propagation analysis of high-frequency corona current along a short line. Another convenient calibration method, based on distributed parameter equivalent circuits, is established. The results for G obtained through propagation analysis and equivalent circuits are compared. To verify the rationality of calculation parameters in propagation analysis and equivalent circuits, a calibration experiment based on the excitation caused by a simulated monopulse current was performed. The results of the proposed calibration method and the calibration experiment are in good agreement.

  3. Excitability of spinal neural function during motor imagery in Parkinson's disease.

    PubMed

    Suzuki, Toshiaki; Bunno, Yoshibumi; Onigata, Chieko; Tani, Makiko; Uragami, Sayuri; Yoshida, Sohei

    2014-01-01

    the median nerve at the wrist in subjects during two motor imagery conditions: holding and not holding the sensor of a pinch meter between the thumb and index finger. Our aim was to determine whether mental simulation without the muscle contraction associated with motion can increase the excitability of spinal neural function in patients with Parkinson's disease (PD). F-waves of the left thenar muscles were examined in 10 patients with PD under resting, holding and motor imagery conditions. For the holding condition, the subjects held the sensor of the pinch meter between their thumb and index finger. For the motor imagery conditions, the subjects were asked to imagine a 50% maximal voluntary isometric contraction holding and not holding the sensor of the pinch meter between their thumb and index finger (motor imagery "with"/"without sensor"). Persistence during motor imagery under the "with sensor" condition increased significantly compared with persistence during resting (n=10, z=2.2509, p=0.0244, Wilcoxon test). The F/M amplitude ratio during motor imagery under the "with sensor" condition increased significantly compared with that during resting (n=10, z=2.1915, p=0.0284, Wilcoxon test). Excitability of spinal neural function during motor imagery in Parkinson's disease Motor imagery under the "with the sensor" condition increased excitability of the spinal neural output to the thenar muscles. Because excitability of the spinal neural output to the thenar muscles during motor imagery "with the sensor" was significantly higher than that during resting, we suggest that movement preparation for a motor imagery task is important in patients with PD.

  4. A relativistic time-dependent density functional study of the excited states of the mercury dimer

    SciTech Connect

    Kullie, Ossama E-mail: ossama.kullie@unistra.fr

    2014-01-14

    In previous works on Zn{sub 2} and Cd{sub 2} dimers we found that the long-range corrected CAMB3LYP gives better results than other density functional approximations for the excited states, especially in the asymptotic region. In this paper, we use it to present a time-dependent density functional (TDDFT) study for the ground-state as well as the excited states corresponding to the (6s{sup 2} + 6s6p), (6s{sup 2} + 6s7s), and (6s{sup 2} + 6s7p) atomic asymptotes for the mercury dimer Hg{sub 2}. We analyze its spectrum obtained from all-electron calculations performed with the relativistic Dirac-Coulomb and relativistic spinfree Hamiltonian as implemented in DIRAC-PACKAGE. A comparison with the literature is given as far as available. Our result is excellent for the most of the lower excited states and very encouraging for the higher excited states, it shows generally good agreements with experimental results and outperforms other theoretical results. This enables us to give a detailed analysis of the spectrum of the Hg{sub 2} including a comparative analysis with the lighter dimers of the group 12, Cd{sub 2}, and Zn{sub 2}, especially for the relativistic effects, the spin-orbit interaction, and the performance of CAMB3LYP and is enlightened for similar systems. The result shows, as expected, that spinfree Hamiltonian is less efficient than Dirac-Coulomb Hamiltonian for systems containing heavy elements such as Hg{sub 2}.

  5. Fully first-principles sX-LDA calculations of excited states and optical properties of III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Hyon Rhim, Sung; Kim, Miyoung; Freeman, A. J.

    2004-03-01

    III-V semiconductors are important for their extensive applications as optical devices such as laser diodes and infrared sensors. Optical properties, [ɛ_2(ω), n, k, R, and α], of III-V semiconductors (InAs, InSb, GaSb, and AlSb), are investigated using our highly precise full-potential linearized augmented plane wave(E.Wimmer,H.Krakauer, M.Weinert, A.J.Freeman, PRB,24), 864 (1981)(FLAPW) method with the screened-exchange local density approximation( R.Asahi,W.Mannstadt, A.J.Freeman,PRB,59), 7486 (1999)(sX-LDA) solved self-consistently and with spin-orbit coupling included. The imaginary part of the dielectric constant, ɛ_2(ω) is calculated using the longitudinal expression with full e^iqotr matrix elements, due to the nonlocality of the potential in the sX-LDA method(R.Del Sole, R.Girlanda, PRB 48), 11789 (1993). The structure of the ɛ_2(ω)'s are analyzed with band structures and consideration of interband transitions. The result shows good agreement of the peak positions in ɛ_2(ω) with experiment( D.E.Aspnes,A.A.Studna, PRB 27), 985 (1983) .

  6. Excited-state nuclear forces on adiabatic potential-energy surfaces by time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Haruyama, Jun; Suzuki, Takahiro; Hu, Chunping; Watanabe, Kazuyuki

    2012-01-01

    We present a simple and computationally efficient method to calculate excited-state nuclear forces on adiabatic potential-energy surfaces (APES) from linear-response time-dependent density-functional theory within a real-space framework. The Casida ansatz, which has been validated for computing first-order nonadiabatic couplings in previous studies, was applied to the calculation of the excited-state forces. Our method is validated by the consistency of results in the lower excited states, which reproduce well those obtained by the numerical derivative of each APES. We emphasize the usefulness of this technique by demonstrating the excited-state molecular-dynamics simulation.

  7. Semiclassical and quantum mechanical analysis of the excitation function for the 130Te(p,n)130I reaction

    NASA Astrophysics Data System (ADS)

    Musthafa, M. M.; Singh, B. P.; Sankaracharyulu, M. G. V.; Bhardwaj, H. D.; Prasad, R.

    1995-12-01

    We report excitation function for the reaction 130Te(p,n)130I in the energy range ~=4-18 MeV. The measurements were done employing stacked foil activation technique and enriched isotope. To the best of our knowledge this excitation function has been reported for the first time. The theoretical analysis of the excitation function has been done employing both the semiclassical as well as quantum mechanical descriptions of the preequilibrium emission. In general, theoretical calculations agree well with the experimental data.

  8. Enantioselective excited-state quenching of racemic Tb (III) and Eu (III) Tris (pyridine-2,6-dicarboxylate) by vitamin B 12 derivatives

    NASA Astrophysics Data System (ADS)

    Meskers, Stefan C. J.; Dekkers, Harry P. J. M.

    1999-08-01

    Enantioselectivity in the dynamic quenching of the luminescence of the Δ and Λ enantiomers of racemic Tb(III)(pyridine-2,6-dicarboxylate=DPA) 33- and Eu(DPA) 33- by a series of corrinoids is demonstrated by time resolved luminescence and circular-polarization-of-luminescence (CPL) spectroscopy. Studied are cyanocobalamin (vitamin B 12), aquacobalamin (B 12a) and its conjugated base hydroxocobalamin (HOCbl), dicyanocobinamide ((CN) 2Cbi) and the heptamethyl ester of dicyanocobyrinic acid ((CN) 2Cby(OMe) 7). For this set of quenchers (Q), the diastereomeric quenching rate constants ( kqΔ and kqΛ) are reported together with the degree of enantioselectivity Eq=( kqΔ- kqΛ)/( kqΔ+ kqΛ). In the systems with Tb, values of the average rate constant kqavg(=( kqΔ+ kqΛ)/2) are 1.0, 2.9 and 0.53 10 8 M -1 s -1 for CNCbl, (CN) 2Cbi, (CN) 2Cby(OMe) 7 with Eq=-0.24, -0.20, +0.01 (standard error of Eq is 0.01). The quenching by B 12a is strongly dependent on pH and ionic strength ( I); when I=12 mM we find kqavg=5.3, Eq=-0.23 at pH 6.7 and kqavg=1.3, Eq=-0.27 at pH 8.9. Corresponding rates for Eu are 0.41, 27, 3.4 10 7 M -1 s -1 and for B 12a, 7.3 and 1.2 10 7 M -1 s -1, corresponding values for Eq -0.27, -0.29, +0.02, -0.21 and -0.29. The quenching reaction is modeled as a pre-equilibrium involving the formation of an encounter complex (association constant K) followed by the actual electronic energy transfer step (rate ket). By relating the quenching data with molecular structure it is argued that the binding in the encounter complex involves two hydrogen bonds between the uncoordinated carboxylate oxygen atom of two DPA ligands of Ln(DPA) 33- and two amide groups of the corrinoid, presumably involving the a and g, the a and b, or the b and g side chains. For some corrinoid/Ln(DPA) 33- complexes the association constants and enantioselectivities in the ground state are known (Spectrochimica Acta 55A (1999) 1837-1855), which allows for an estimate of the average rate of

  9. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems.

    PubMed

    Herbert, John M; Zhang, Xing; Morrison, Adrian F; Liu, Jie

    2016-05-17

    Single-excitation methods, namely, configuration interaction singles and time-dependent density functional theory (TDDFT), along with semiempirical versions thereof, represent the most computationally affordable electronic structure methods for describing electronically excited states, scaling as [Formula: see text] absent further approximations. This relatively low cost, combined with a treatment of electron correlation, has made TDDFT the most widely used excited-state quantum chemistry method over the past 20+ years. Nevertheless, certain inherent problems (beyond just the accuracy of this or that exchange-correlation functional) limit the utility of traditional TDDFT. For one, it affords potential energy surfaces whose topology is incorrect in the vicinity of any conical intersection (CI) that involves the ground state. Since CIs are the conduits for transitions between electronic states, the TDDFT description of photochemistry (internal conversion and intersystem crossing) is therefore suspect. Second, the [Formula: see text] cost can become prohibitive in large systems, especially those that involve multiple electronically coupled chromophores, for example, the antennae structures of light-harvesting complexes or the conjugated polymers used in organic photovoltaics. In such cases, the smallest realistic mimics might already be quite large from the standpoint of ab initio quantum chemistry. This Account describes several new computational methods that address these problems. Topology around a CI can be rigorously corrected using a "spin-flip" version of TDDFT, which involves an α → β spin-flipping transition in addition to occupied → virtual excitation of one electron. Within this formalism, singlet states are generated via excitation from a high-spin triplet reference state, doublets from a quartet, etc. This provides a more balanced treatment of electron correlation between ground and excited states. Spin contamination is problematic away from the

  10. Evidence for a Nonendosomal Function of the Saccharomyces cerevisiae ESCRT-III-Like Protein Chm7.

    PubMed

    Bauer, Iva; Brune, Thomas; Preiss, Richard; Kölling, Ralf

    2015-12-01

    Endosomal sorting complex required for transport (ESCRT) proteins are involved in a number of cellular processes, such as endosomal protein sorting, HIV budding, cytokinesis, plasma membrane repair, and resealing of the nuclear envelope during mitosis. Here we explored the function of a noncanonical member of the ESCRT-III protein family, the Saccharomyces cerevisiae ortholog of human CHMP7. Very little is known about this protein. In silico analysis predicted that Chm7 (yeast ORF YJL049w) is a fusion of an ESCRT-II and ESCRT-III-like domain, which would suggest a role in endosomal protein sorting. However, our data argue against a role of Chm7 in endosomal protein sorting. The turnover of the endocytic cargo protein Ste6 and the vacuolar protein sorting of carboxypeptidase S (CPS) were not affected by CHM7 deletion, and Chm7 also responded very differently to a loss in Vps4 function compared to a canonical ESCRT-III protein. Our data indicate that the Chm7 function could be connected to the endoplasmic reticulum (ER). In line with a function at the ER, we observed a strong negative genetic interaction between the deletion of a gene function (APQ12) implicated in nuclear pore complex assembly and messenger RNA (mRNA) export and the CHM7 deletion. The patterns of genetic interactions between the APQ12 deletion and deletions of ESCRT-III genes, two-hybrid interactions, and the specific localization of mCherry fusion proteins are consistent with the notion that Chm7 performs a novel function at the ER as part of an alternative ESCRT-III complex.

  11. Scaling up the predator functional response in heterogeneous environment: when Holling type III can emerge?

    PubMed

    Cordoleani, Flora; Nerini, David; Morozov, Andrey; Gauduchon, Mathias; Poggiale, Jean-Christophe

    2013-11-07

    Accurate parametrization of functional terms in model equations is of great importance for reproducing the dynamics of real food webs. Constructing models over large spatial and temporal scales using mathematical expressions obtained based on microcosm experiments can be erroneous. Here, using a generic spatial predator-prey model, we show that scaling up the microscale functional response of a predator can result in qualitative alterations of functional response on macroscales. In particular, a global functional response of sigmoid type (Holling type III) can emerge as a result of non-linear averaging of non-sigmoid local responses (Holling type I or II). We demonstrate that alteration between the local and the global response in the model is a result of the interplay between density-dependent dispersal of the predator across the habitat and heterogeneity of the environment. Using the method of aggregation of variables, we analytically derive the mathematical formulation of the global functional response as a function of the total amount of prey in the system, and reveal the key parameters which control the emergence of a Holling type III global response. We argue that this mechanism by which a global Holling type III emerges from a local Holling type II response has not been reported in the literature yet: in particular, Holling type III can emerge in the case of a fixed gradient of resource distribution across the habitat, which would be impossible in priorly suggested mechanisms. As a case study, we consider the interaction between phytoplankton and zooplankton grazers in the water column; and we show that the emergence of a Holling type III global response can allow for the efficient top-down regulation of primary producers and stabilization of planktonic ecosystems under eutrophic conditions.

  12. Sex Differences in WISC-III Profiles of Children with High-Functioning Pervasive Developmental Disorders

    ERIC Educational Resources Information Center

    Koyama, Tomonori; Kamio, Yoko; Inada, Naoko; Kurita, Hiroshi

    2009-01-01

    Using the Japanese version of the Wechsler Intelligence Scale for Children-Third Edition (WISC-III), 26 girls with high-functioning (IQ greater than or equal to 70) pervasive developmental disorders (HFPDD) (mean age, 8.2 years) were compared with 116 boys with HFPDD (mean age, 9.0 years). Compared with the boys, the girls scored significantly…

  13. Finding Limit Cycles in self-excited oscillators with infinite-series damping functions

    NASA Astrophysics Data System (ADS)

    Das, Debapriya; Banerjee, Dhruba; Bhattacharjee, Jayanta K.

    2015-03-01

    In this paper we present a simple method for finding the location of limit cycles of self excited oscillators whose damping functions can be represented by some infinite convergent series. We have used standard results of first-order perturbation theory to arrive at amplitude equations. The approach has been kept pedagogic by first working out the cases of finite polynomials using elementary algebra. Then the method has been extended to various infinite polynomials, where the fixed points of the corresponding amplitude equations cannot be found out. Hopf bifurcations for systems with nonlinear powers in velocities have also been discussed.

  14. Excitation Functions and Yields for RE-186G Production by Proton Cyclotron

    NASA Astrophysics Data System (ADS)

    Persico, E.; Bonardi, M. L.; Groppi, F.; Zona, C.; Canella, L.; Manenti, S.; Marchetti, M.; Abbas, K.; Holzwarth, U.; Simonelli, F.

    2008-06-01

    Excitation functions and yields for the 181-186Re radionuclides were measured by the activation method on natural tungsten foils for the proton energies up to 17 MeV. A new data sets have been given for the investigated radionuclides. These results are compared both with the experimental literature values and the ones calculated by EMPIRE II code (version 2.19). In particular, the attention is focused on Re-186g due to its remarkable applications in Nuclear Medicine for metabolic radiotherapy of tumours.

  15. Excitation Function for the 74Se(18O,p3n) Reaction

    SciTech Connect

    Gates, Jacklyn; Dragojevic, Irena; Dvorak, Jan; Ellison, Paul; Gregorich, Kenneth; Stavsetra, Liv; Nitsche, Heino

    2009-02-02

    The 74Se(18O,p3n)88gNb excitation function was measured and a maximum cross section of 495+-5 mb was observed at and 18O energy of 74.0 MeV. Experimental cross sections were compared to theoretical calculations using the computer code ALICE-91 and the values were found to be in good agreement. The half life of 88gNb was determined to be around 14.56+-0.11 min.

  16. Phylogeny, topology, structure and functions of membrane-bound class III peroxidases in vascular plants.

    PubMed

    Lüthje, Sabine; Meisrimler, Claudia-Nicole; Hopff, David; Möller, Benjamin

    2011-07-01

    Peroxidases are key player in the detoxification of reactive oxygen species during cellular metabolism and oxidative stress. Membrane-bound isoenzymes have been described for peroxidase superfamilies in plants and animals. Recent studies demonstrated a location of peroxidases of the secretory pathway (class III peroxidases) at the tonoplast and the plasma membrane. Proteomic approaches using highly enriched plasma membrane preparations suggest organisation of these peroxidases in microdomains, a developmentally regulation and an induction of isoenzymes by oxidative stress. Phylogenetic relations, topology, putative structures, and physiological function of membrane-bound class III peroxidases will be discussed.

  17. A search for parameters of universal sub-barrier fusion excitation function

    NASA Astrophysics Data System (ADS)

    Qu, W. W.; Zhang, G. L.; Wolski, R.

    2016-11-01

    Many fusion experimental data have been analyzed in terms of a simple universal function which could be used for predictions of fusion cross section below the barrier for arbitrary systems. Sub-barrier fusions based on the concept of Q -fusion value dependence were studied. It is attempted to parameterize the energy-reduced fusion excitation functions around the Coulomb barriers by an analytical phenomenological function. It was found that the speed of driving nuclei towards fusion is faster with the increase of mass asymmetry of colliding systems and those systems with a large difference of the ratio of neutrons to protons. However, a general trend with respect to total mass has not been observed. An exposition of more qualitative conclusions is hindered by apparent inconsistencies of measured fusion cross sections.

  18. A density functional theory study of arsenic immobilization by the Al(III)-modified zeolite clinoptilolite.

    PubMed

    Awuah, Joel B; Dzade, Nelson Y; Tia, Richard; Adei, Evans; Kwakye-Awuah, Bright; Richard A Catlow, C; de Leeuw, Nora H

    2016-04-28

    We present density functional theory calculations of the adsorption of arsenic acid (AsO(OH)3) and arsenous acid (As(OH)3) on the Al(III)-modified natural zeolite clinoptilolite under anhydrous and hydrated conditions. From our calculated adsorption energies, we show that adsorption of both arsenic species is favorable (associative and exothermic) under anhydrous conditions. When the zeolite is hydrated, adsorption is less favourable, with the water molecules causing dissociation of the arsenic complexes, although exothermic adsorption is still observed for some sites. The strength of interaction of the arsenic complexes is shown to depend sensitively on the Si/Al ratio in the Al(III)-modified clinoptilolite, which decreases as the Si/Al ratio increases. The calculated large adsorption energies indicate the potential of Al(iii)-modified clinoptilolite for arsenic immobilization.

  19. Development and Validation of the Korean Rome III Questionnaire for Diagnosis of Functional Gastrointestinal Disorders

    PubMed Central

    Song, Kyung Ho; Min, Byung-Hoon; Youn, Young Hoon; Choi, Kee Don; Keum, Bo Ra; Huh, Kyu Chan

    2013-01-01

    Background/Aims A self-report questionnaire is frequently used to measure symptoms reliably and to distinguish patients with functional gastrointestinal disorders (FGIDs) from those with other conditions. We produced and validated a cross-cultural adaptation of the Rome III questionnaire for diagnosis of FGIDs in Korea. Methods The Korean version of the Rome III (Rome III-K) questionnaire was developed through structural translational processes. Subsequently, reliability was measured by a test-retest procedure. Convergent validity was evaluated by comparing self-reported questionnaire data with the subsequent completion of the questionnaire by the physician based on an interview and with the clinical diagnosis. Concurrent validation using the validated Korean version of the Short Form-36 Health Survey (SF-36) was adopted to demonstrate discriminant validity. Results A total of 306 subjects were studied. Test-retest reliability was good, with a median Cronbach's α value of 0.83 (range, 0.71-0.97). The degree of agreement between patient-administered and physician-administered questionnaires to diagnose FGIDs was excellent; the κ index was 0.949 for irritable bowel syndrome, 0.883 for functional dyspepsia and 0.927 for functional heartburn. The physician's clinical diagnosis of functional dyspepsia showed the most marked discrepancy with that based on the self-administered questionnaire. Almost all SF-36 domains were impaired in participants diagnosed with one of these FGIDs according to the Rome III-K. Conclusions We developed the Rome III-K questionnaire though structural translational processes, and it revealed good test-retest reliability and satisfactory construct validity. These results suggest that this instrument will be useful for clinical and research assessments in the Korean population. PMID:24199012

  20. Expression and functional properties of the Streptococcus intermedius surface protein antigen I/II.

    PubMed

    Petersen, F C; Pasco, S; Ogier, J; Klein, J P; Assev, S; Scheie, A A

    2001-07-01

    Streptococcus intermedius is associated with deep-seated purulent infections. In this study, we investigated expression and functional activities of antigen I/II in S. intermedius. The S. intermedius antigen I/II appeared to be cell surface associated, with a molecular mass of approximately 160 kDa. Northern blotting indicated that the S. intermedius NCTC 11324 antigen I/II gene was transcribed as a monocistronic message. Maximum expression was seen during the early exponential phase. Insertional inactivation of the antigen I/II gene resulted in reduced hydrophobicity during early exponential phase, whereas no effect was detected during mid- and late exponential phases. Binding to human fibronectin and laminin was reduced in the isogenic mutant, whereas binding to human collagen types I and IV and to rat collagen type I was not significant for either the wild type or the mutant. Compared to the wild type, the capacity of the isogenic mutant to induce interleukin 8 (IL-8) release by THP-1 monocytic cells was significantly reduced. The results indicate that the S. intermedius antigen I/II is involved in adhesion to human receptors and in IL-8 induction.

  1. Influence of surgical orthodontic treatment on masticatory function in skeletal Class III patients.

    PubMed

    Kubota, T; Yagi, T; Tomonari, H; Ikemori, T; Miyawaki, S

    2015-10-01

    Skeletal Class III patients exhibit malocclusion characterised by Angle Class III and anterior crossbite, and their occlusion shows total or partially lateral crossbite of the posterior teeth. Most patients exhibit lower bite force and muscle activity than non-affected subjects. While orthognathic surgery may help improve masticatory function in these patients, its effects have not been fully elucidated. The aims of the study were to evaluate jaw movement and the electromyographic (EMG) activity of masticatory muscles before and after orthognathic treatment in skeletal Class III patients in comparison with control subjects with normal occlusion. Jaw movement variables and EMG data were recorded in 14 female patients with skeletal Class III malocclusion and 15 female controls with good occlusion. Significant changes in jaw movement, from a chopping to a grinding pattern, were observed after orthognathic treatment (closing angle P < 0.01; cycle width P < 0.01), rendering jaw movement in the patient group similar to that of the control group. However, the grinding pattern in the patient group was not as broad as that of controls. The activity indexes, indicating the relative contributions of the masseter and temporalis muscles (where a negative value corresponds to relatively more temporalis activity and vice versa) changed from negative to positive after treatment (P < 0.05), becoming similar to those of control subjects. Our findings suggest that orthognathic treatment in skeletal Class III patients improves the masticatory chewing pattern and muscle activity. However, the chewing pattern remains incomplete compared with controls.

  2. Synthesis and functionalization of monodisperse near-ultraviolet and visible excitable multifunctional Eu3+, Bi3+:REVO4 nanophosphors for bioimaging and biosensing applications

    NASA Astrophysics Data System (ADS)

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail V.; Ashraf, Sumaira; Hartmann, Raimo; Núñez, Nuria O.; Ocaña, Manuel; Parak, Wolfgang J.

    2016-06-01

    Near-ultraviolet and visible excitable Eu- and Bi-doped NPs based on rare earth vanadates (REVO4, RE = Y, Gd) have been synthesized by a facile route from appropriate RE precursors, europium and bismuth nitrate, and sodium orthovanadate, by homogeneous precipitation in an ethylene glycol/water mixture at 120 °C. The NPs can be functionalized either by a one-pot synthesis with polyacrylic acid (PAA) or by a Layer-by-Layer approach with poly(allylamine hydrochloride) (PAH) and PAA. In the first case, the particle size can also be tuned by adjusting the amount of PAA. The Eu- Bi-doped REVO4 based nanophosphors show the typical red luminescence of Eu(iii), which can be excited through an energy transfer process from the vanadate anions, resulting in a much higher luminescence intensity in comparison to the direct excitation of the europium cations. The incorporation of Bi into the REVO4 structure shifts the original absorption band of the vanadate anions towards longer wavelengths, giving rise to nanophosphors with an excitation maximum at 342 nm, which can also be excited in the visible range. The suitability of such nanophosphors for bioimaging and biosensing applications, as well as their colloidal stability in different buffer media of biological interest, their cytotoxicity, their degradability at low pH, and their uptake by HeLa cells have been evaluated. Their suitability for bioimaging and biosensing applications is also demonstrated.Near-ultraviolet and visible excitable Eu- and Bi-doped NPs based on rare earth vanadates (REVO4, RE = Y, Gd) have been synthesized by a facile route from appropriate RE precursors, europium and bismuth nitrate, and sodium orthovanadate, by homogeneous precipitation in an ethylene glycol/water mixture at 120 °C. The NPs can be functionalized either by a one-pot synthesis with polyacrylic acid (PAA) or by a Layer-by-Layer approach with poly(allylamine hydrochloride) (PAH) and PAA. In the first case, the particle size can also be

  3. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity.

    PubMed

    Macho, Alberto P

    2016-04-01

    Most bacterial plant pathogens employ a type-III secretion system to inject type-III effector (T3E) proteins directly inside plant cells. These T3Es manipulate host cellular processes in order to create a permissive niche for bacterial proliferation, allowing development of the disease. An important role of T3Es in plant pathogenic bacteria is the suppression of plant immune responses. However, in recent years, research has uncovered T3E functions different from direct immune suppression, including the modulation of plant hormone signaling, metabolism or organelle function. This insight article discusses T3E functions other than suppression of immunity, which may contribute to the modulation of plant cells in order to promote bacterial survival, nutrient release, and bacterial replication and dissemination.

  4. Excitation functions of the {sup 20}Ne+{sup 20}Ne system

    SciTech Connect

    Barrow, S.P.; Zurmuehle, R.; Murgatroyd, J.T.; Wimer, N.G.; Miao, Y.; Pohl, K.R.; Wuosmaa, A.H.; Betts, R.R.; Freer, M.; Glagola, B.

    1995-04-01

    A differentially pumped windowless {sup 20}Ne gas target and a {sup 20}Ne beam produced with the ATLAS accelerator at Argonne National Laboratory were used to measure angle-averaged excitation functions for binary decay of {sup 20}Ne+{sup 20}Ne into low-lying states of {sup 20}Ne+{sup 20}Ne and {sup 24}Mg+{sup 16}O, in the region of excitation energy in {sup 40}Ca from 51.4 to 58.2 MeV ({sup 20}Ne beam energies from 61.8 to 75.4 MeV). The {sup 20}Ne+{sup 20}Ne mass partition displays little correlated structure and there exists no evidence of intermediate width resonances in these channels with branching ratios comparable to those seen in the {sup 24}Mg+{sup 24}Mg system. Angular distributions for the elastic channel are consistent with those obtained using optical-model calculations. The exictation functions for the low-lying channels in {sup 24}Mg+{sup 16}O do contain some structures, with widths varying from 400 to 800 keV in the c.m. system.

  5. Comparison between Theoretical Calculation and Experimental Results of Excitation Functions for Production of Relevant Biomedical Radionuclides

    SciTech Connect

    Menapace, E.; Birattari, C.; Bonardi, M.L.; Groppi, F.; Morzenti, S.; Zona, C.

    2005-05-24

    The radionuclide production for biomedical applications has been brought up in the years, as a special nuclear application, at INFN LASA Laboratory, particularly in co-operation with the JRC-Ispra of EC. Mainly scientific aspects concerning radiation detection and the relevant instruments, the measurements of excitation functions of the involved nuclear reactions, the requested radiochemistry studies and further applications have been investigated. On the side of the nuclear data evaluations, based on nuclear model calculations and critically selected experimental data, the appropriate competence has been developed at ENEA Division for Advanced Physics Technologies. A series of high specific activity accelerator-produced radionuclides in no-carrier-added (NCA) form, for uses in metabolic radiotherapy and for PET radiodiagnostics, are investigated. In this work, last revised measurements and model calculations are reviewed for excitation functions of natZn(d,X)64Cu, 66Ga reactions, referring to irradiation experiments at K=38 variable energy Cyclotron of JRC-Ispra. Concerning the reaction data for producing 186gRe and 211At/211gPo (including significant emission spectra) and 210At, most recent and critically selected experimental results are considered and discussed in comparison with model calculations paying special care to pre-equilibrium effects estimate and to the appropriate overall parameterization. Model calculations are presented for 226Ra(p,2n)225Ac reaction, according to the working program of the ongoing IAEA CRP on the matter.

  6. Isomeric yield ratios and excitation functions in α-induced reactions on 107,109Ag

    NASA Astrophysics Data System (ADS)

    Guin, R.; Saha, S. K.; Prakash, Satya; Uhl, M.

    1992-07-01

    Isomeric yield ratios for the reactions 107Ag(α,3n)108In, 107Ag(α,α3n)104Ag, 109Ag(α,2n)111In, and 109Ag(α,3n)110In are determined in the energy range of 20-63 MeV α particles. Excitation functions for the above reactions as well as for the 107Ag(α,2n)109In, 107Ag(α,α2n)105Ag, 109Ag(α,4n)109In, 109Ag(α,5n)108In, and 109Ag(α,α4n)105Ag reactions are also presented. Experimental excitation functions are compared with statistical model calculations taking into account precompound particle emission. Isomeric yield ratios are found to depend strongly on the root mean square orbital angular momentum in the entrance channel. A semiempirical method for the prediction of isomeric yield ratios failed to reproduce experimental data even for compoundlike reactions. Isomeric yield ratios were also calculated in the frame of a statistical model under consideration of angular momentum effects in the preequilibrium and the equilibrium stage. Overall agreement between the theory and the experiment for isomeric yield ratios was found to be satisfactory especially at low bombarding energy when compound nucleus reaction channel is dominant. The discrepancy observed at higher bombarding energies needs to be theoretically investigated in greater detail.

  7. Benchmarking DFT and TD-DFT Functionals for the Ground and Excited States of Hydrogen-Rich Peptide Radicals.

    PubMed

    Riffet, Vanessa; Jacquemin, Denis; Cauët, Emilie; Frison, Gilles

    2014-08-12

    We assess the pros and cons of a large panel of DFT exchange-correlation functionals for the prediction of the electronic structure of hydrogen-rich peptide radicals formed after electron attachment on a protonated peptide. Indeed, despite its importance in the understanding of the chemical changes associated with the reduction step, the question of the attachment site of an electron and, more generally, of the reduced species formed in the gas phase through electron-induced dissociation (ExD) processes in mass spectrometry is still a matter of debate. For hydrogen-rich peptide radicals in which several positive groups and low-lying π* orbitals can capture the incoming electron in ExD, inclusion of full Hartree-Fock exchange at long-range interelectronic distance is a prerequisite for an accurate description of the electronic states, thereby excluding several popular exchange-correlation functionals, e.g., B3LYP, M06-2X, or CAM-B3LYP. However, we show that this condition is not sufficient by comparing the results obtained with asymptotically correct range-separated hybrids (M11, LC-BLYP, LC-BPW91, ωB97, ωB97X, and ωB97X-D) and with reference CASSCF-MRCI and EOM-CCSD calculations. The attenuation parameter ω significantly tunes the spin density distribution and the excited states vertical energies. The investigated model structures, ranging from methylammonium to hexapeptide, allow us to obtain a description of the nature and energy of the electronic states, depending on (i) the presence of hydrogen bond(s) around the cationic site(s), (ii) the presence of π* molecular orbitals (MOs), and (iii) the selected DFT approach. It turns out that, in the present framework, LC-BLYP and ωB97 yields the most accurate results.

  8. Functional relatedness in the Inv/Mxi-Spa type III secretion system family.

    PubMed

    Klein, Jessica A; Dave, Biren M; Raphenya, Amogelang R; McArthur, Andrew G; Knodler, Leigh A

    2017-03-01

    Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi-Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane-integral pore, and the hydrophilic 'tip complex' translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food-borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi-Spa family. We used invasion-deficient S. Typhimurium mutants as surrogates for expression of translocator orthologs identified from an extensive phylogenetic analysis, and type III effector translocation and host cell invasion as a readout for complementation efficiency, and identified several Inv/Mxi-Spa orthologs that can functionally substitute for the S. Typhimurium chaperone and translocator proteins. Functional complementation correlates with amino acid sequence identity between orthologs, but varies considerably between the four proteins. This is the first in-depth survey of the functional interchangeability of Inv/Mxi-Spa T3SS proteins acting directly at the host-pathogen interface.

  9. Excitability of spinal neural function during motor imagery in Parkinson’s disease

    PubMed Central

    Suzuki, Toshiaki; Bunno, Yoshibumi; Onigata, Chieko; Tani, Makiko; Uragami, Sayuri; Yoshida, Sohei

    2014-01-01

    Summary We analyzed thenar muscle F-waves after stimulating the median nerve at the wrist in subjects during two motor imagery conditions: holding and not holding the sensor of a pinch meter between the thumb and index finger. Our aim was to determine whether mental simulation without the muscle contraction associated with motion can increase the excitability of spinal neural function in patients with Parkinson’s disease (PD). F-waves of the left thenar muscles were examined in 10 patients with PD under resting, holding and motor imagery conditions. For the holding condition, the subjects held the sensor of the pinch meter between their thumb and index finger. For the motor imagery conditions, the subjects were asked to imagine a 50% maximal voluntary isometric contraction holding and not holding the sensor of the pinch meter between their thumb and index finger (motor imagery “with”/“without sensor”). Persistence during motor imagery under the “with sensor” condition increased significantly compared with persistence during resting (n=10, z=2.2509, p=0.0244, Wilcoxon test). The F/M amplitude ratio during motor imagery under the “with sensor” condition increased significantly compared with that during resting (n=10, z=2.1915, p=0.0284, Wilcoxon test). Motor imagery under the “with the sensor” condition increased excitability of the spinal neural output to the thenar muscles. Because excitability of the spinal neural output to the thenar muscles during motor imagery “with the sensor” was significantly higher than that during resting, we suggest that movement preparation for a motor imagery task is important in patients with PD. PMID:25764256

  10. Bäcklund transformation of Painlevé III(D 8) τ function

    NASA Astrophysics Data System (ADS)

    Bershtein, M. A.; Shchechkin, A. I.

    2017-03-01

    We study the explicit formula (suggested by Gamayun, Iorgov and Lisovyy) for the Painlevé III(D 8) τ function in terms of Virasoro conformal blocks with a central charge of 1. The Painlevé equation has two types of bilinear forms, which we call Toda-like and Okamoto-like. We obtain these equations from the representation theory using an embedding of the direct sum of two Virasoro algebras in a certain superalgebra. These two types of bilinear forms correspond to the Neveu–Schwarz sector and the Ramond sector of this algebra. We also obtain the τ functions of the algebraic solutions of the Painlevé III(D 8) from the special representations of the Virasoro algebra of the highest weight (n  +  1/4)2.

  11. Single-particle spectroscopy of I-III-VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation

    NASA Astrophysics Data System (ADS)

    Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz; Biju, Vasudevanpillai; Kameyama, Tatsuya; Kishi, Marino; Torimoto, Tsukasa; Vacha, Martin

    2016-07-01

    Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due to temporal activation and deactivation of one such state. Filling of a trap state with a lower-energy laser enables optical modulation of photoluminescence intermittency (blinking) and leads to an almost two-fold increase in brightness.Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due

  12. Spin contamination-free N-electron wave functions in the excitation-based configuration interaction treatment.

    PubMed

    Alcoba, Diego R; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Oña, Ofelia B; Capuzzi, Pablo

    2016-07-07

    This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator Sˆ(2), avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and 〈Sˆ(2)〉 expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs.

  13. Functional variation of the antigen I/II surface protein in Streptococcus mutans and Streptococcus intermedius.

    PubMed

    Petersen, F C; Assev, S; van der Mei, H C; Busscher, H J; Scheie, A A

    2002-01-01

    Although Streptococcus intermedius and Streptococcus mutans are regarded as members of the commensal microflora of the body, S. intermedius is often associated with deep-seated purulent infections, whereas S. mutans is frequently associated with dental caries. In this study, we investigated the roles of the S. mutans and S. intermedius antigen I/II proteins in adhesion and modulation of cell surface characteristics. By using isogenic mutants, we show that the antigen I/II in S. mutans, but not in S. intermedius, was involved in adhesion to a salivary film under flowing conditions, as well as in binding to rat collagen type I. Binding to human fibronectin was a common function associated with the S. mutans and S. intermedius antigen I/II. Adhesion of S. mutans or S. intermedius to human collagen types I or IV was negligible. Hydrophobicity, as measured by water contact angles, and zeta potentials were unaltered in the S. intermedius mutant. The S. mutans isogenic mutants, on the other hand, exhibited more positive zeta potentials at physiological pH values than did the wild type. The results indicate common and species-specific roles for the antigen I/II in mediating the attachment of S. mutans and S. intermedius to host components and in determining cell surface properties.

  14. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    PubMed

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  15. The use of coherence functions to determine dynamic excitation sources on launch vehicle payloads

    NASA Technical Reports Server (NTRS)

    Barrett, S.; Halvorson, R. M.

    1979-01-01

    The problem of determining the relative contribution of simultaneous acoustic and mechanical inputs to the response of structures under combined dynamic loads was studied. An analytical technique developed by Bendat for calculating ordinary, partial, and multiple coherence functions, using an iterative nonmatrix approach was applied to data obtained from laboratory tests on a complex structural assembly. Testing was performed in an acoustically 'live' room. Up to three random inputs, having similar spectral content and varying degrees of mutual coherence, and a single output were used. Stationary and nonstationary inputs were used. It was concluded that the technique provided an effective method of identifying sources of dynamic excitation and evaluating their relative contributions to the measured output at structural resonances, for stationary random inputs. An attempt to apply the technique to nonstationary inputs did not yield consistent results.

  16. Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation.

    PubMed

    Scaffidi, Jonathan P; Gregas, Molly K; Lauly, Benoit; Zhang, Yan; Vo-Dinh, Tuan

    2011-06-28

    We report development of a nanoparticle-based, X-ray-activated anticancer "nanodrug" composed of yttrium oxide (Y(2)O(3)) nanoscintillators, a fragment of the HIV-1 TAT peptide, and psoralen. In this formulation, X-ray radiation is absorbed by the Y(2)O(3) nanoscintillators, which then emit UVA light. Absorption of UVA photons by nanoparticle-tethered psoralen has the potential to cross-link adenine and thymine residues in DNA. UVA-induced cross-linking by free psoralen upon activation with UVA light has previously been shown to cause apoptosis in vitro and an immunogenic response in vivo. Studies using the PC-3 human prostate cancer cell line demonstrate that X-ray excitation of these psoralen-functionalized Y(2)O(3) nanoscintillators yields concentration-dependent reductions in cell number when compared to control cultures containing psoralen-free Y(2)O(3) nanoscintillators.

  17. Identification and functional prediction of mitochondrial complex III and IV mutations associated with glioblastoma

    PubMed Central

    Lloyd, Rhiannon E.; Keatley, Kathleen; Littlewood, D. Timothy J.; Meunier, Brigitte; Holt, William V.; An, Qian; Higgins, Samantha C.; Polyzoidis, Stavros; Stephenson, Katie F.; Ashkan, Keyoumars; Fillmore, Helen L.; Pilkington, Geoffrey J.; McGeehan, John E.

    2015-01-01

    Background Glioblastoma (GBM) is the most common primary brain tumor in adults, with a dismal prognosis. Treatment is hampered by GBM's unique biology, including differential cell response to therapy. Although several mitochondrial abnormalities have been identified, how mitochondrial DNA (mtDNA) mutations contribute to GBM biology and therapeutic response remains poorly described. We sought to determine the spectrum of functional complex III and IV mtDNA mutations in GBM. Methods The complete mitochondrial genomes of 10 GBM cell lines were obtained using next-generation sequencing and combined with another set obtained from 32 GBM tissues. Three-dimensional structural mapping and analysis of all the nonsynonymous mutations identified in complex III and IV proteins was then performed to investigate functional importance. Results Over 200 mutations were identified in the mtDNAs, including a significant proportion with very low mutational loads. Twenty-five were nonsynonymous mutations in complex III and IV, 9 of which were predicted to be functional and affect mitochondrial respiratory chain activity. Most of the functional candidates were GBM specific and not found in the general population, and 2 were present in the germ-line. Patient-specific maps reveal that 43% of tumors carry at least one functional candidate. Conclusions We reveal that the spectrum of GBM-associated mtDNA mutations is wider than previously thought, as well as novel structural-functional links between specific mtDNA mutations, abnormal mitochondria, and the biology of GBM. These results could provide tangible new prognostic indicators as well as targets with which to guide the development of patient-specific mitochondrially mediated chemotherapeutic approaches. PMID:25731774

  18. The joint WAIS-III and WMS-III factor structure: development and cross-validation of a six-factor model of cognitive functioning.

    PubMed

    Tulsky, David S; Price, Larry R

    2003-06-01

    During the standardization of the Wechsler Adult Intelligence Scale (3rd ed.; WAIS-III) and the Wechsler Memory Scale (3rd ed.; WMS-III) the participants in the normative study completed both scales. This "co-norming" methodology set the stage for full integration of the 2 tests and the development of an expanded structure of cognitive functioning. Until now, however, the WAIS-III and WMS-III had not been examined together in a factor analytic study. This article presents a series of confirmatory factor analyses to determine the joint WAIS-III and WMS-III factor structure. Using a structural equation modeling approach, a 6-factor model that included verbal, perceptual, processing speed, working memory, auditory memory, and visual memory constructs provided the best model fit to the data. Allowing select subtests to load simultaneously on 2 factors improved model fit and indicated that some subtests are multifaceted. The results were then replicated in a large cross-validation sample (N = 858).

  19. A simple and rapid method for direct determination of Al(III) based on the enhanced resonance Rayleigh scattering of hemin-functionalized graphene-Al(III) system

    NASA Astrophysics Data System (ADS)

    Ling, Yu; Chen, Ling Xiao; Dong, Jiang Xue; Li, Nian Bing; Luo, Hong Qun

    2016-03-01

    A novel method for direct determination of Al(III) by using hemin-functionalized graphene (H-GO) has been established based on the enhancement of resonance Rayleigh scattering (RRS) intensity. The characteristics of RRS spectra, the optimum reaction conditions, and the reaction mechanism have been investigated. In this experiment, the Al(III) would exist in sol-gel Al(OH)3 species under the condition of pH 5.9 in aqueous solutions. When H-GO existed in the solution, the sol-gel Al(OH)3 would react with H-GO and result in enhancement of RRS intensity, owing to the enhanced hydrophobicity of H-GO surface. Therefore, a simple and rapid sensor for Al(III) was developed. The increased intensity of RRS is directly proportional to the concentration of Al(III) in the range of 10 nM-6 μM, along with a detection limit of 0.87 nM. Moreover, the sensor has been applied to determination of Al(III) concentration in real water and aspirin tablet samples with satisfactory results. Therefore, the proposed method is promising as an effective means for selective and sensitive determination of Al(III).

  20. Density functional theory studies of actinide(III) motexafins (An-Motex2+, An = Ac, Cm, Lr). Structure, stability, and comparison with lanthanide(III) motexafins.

    PubMed

    Cao, Xiaoyan; Li, Quansong; Moritz, Anna; Xie, Zhizhong; Dolg, Michael; Chen, Xuebo; Fang, Weihai

    2006-04-17

    Newly developed relativistic energy-consistent 5f-in-core actinide pseudopotentials and corresponding (7s6p5d1f)/[5s4p3d1f] basis sets in the segmented contraction scheme, combined with density functional theory methods, have been used to study the molecular structure and chemical properties of selected actinide(III) motexafins (An-Motex2+, An = Ac, Cm, Lr). Structure and stability are discussed, and a comparison to the lanthanide(III) motexafins (Ln-Motex2+, Ln = La, Gd, Lu) is made. The actinide element is found to reside above the mean N5 motexafin plane, and the larger the cation, the greater the observed out-of-plane displacement. It is concluded that the actinium(III), curium(III), and lawrencium(III) cations are tightly bound to the macrocyclic skeleton, yielding stable structures. However, the calculated metal-ligand gas-phase binding energy for An-Motex2+ is about 1-2 eV lower than that of Ln-Motex2+, implying a lower stability of An-Motex2+ compared to Ln-Motex2+. Results including solvent effects imply that Ac-Motex2+ is the most stable complex in aqueous solution and should be the best candidate for experimentalists to get stable actinide(III) motexafin complexes.

  1. Structural characterization, tissue distribution, and functional expression of murine aminoacylase III.

    PubMed

    Pushkin, Alexander; Carpenito, Gerardo; Abuladze, Natalia; Newman, Debra; Tsuprun, Vladimir; Ryazantsev, Sergey; Motemoturu, Srilakshmi; Sassani, Pakan; Solovieva, Nadezhda; Dukkipati, Ramnath; Kurtz, Ira

    2004-04-01

    Many xenobiotics are detoxified through the mercapturate metabolic pathway. The final product of the pathway, mercapturic acids (N-acetylcysteine S-conjugates), are secreted predominantly by renal proximal tubules. Mercapturic acids may undergo a transformation mediated by aminoacylases and cysteine S-conjugate beta-lyases that leads to nephrotoxic reactive thiol formation. The deacetylation of cysteine S-conjugates of N-acyl aromatic amino acids is thought to be mediated by an aminoacylase whose molecular identity has not been determined. In the present study, we cloned aminoacylase III, which likely mediates this process in vivo, and characterized its function and structure. The enzyme consists of 318 amino acids and has a molecular mass (determined by SDS-PAGE) of approximately 35 kDa. Under nondenaturing conditions, the molecular mass of the enzyme is approximately 140 kDa as determined by size-exclusion chromatography, which suggests that it is a tetramer. In agreement with this hypothesis, transmission electron microscopy and image analysis of aminoacylase III showed that the monomers of the enzyme are arranged with a fourfold rotational symmetry. Northern analysis demonstrated an approximately 1.4-kb transcript that was expressed predominantly in kidney and showed less expression in liver, heart, small intestine, brain, lung, testis, and stomach. In kidney, aminoacylase III was immunolocalized predominantly to the apical domain of S1 proximal tubules and the cytoplasm of S2 and S3 proximal tubules. The data suggest that in kidney proximal tubules, aminoacylase III plays an important role in deacetylating mercapturic acids. The predominant cytoplasmic localization of aminoacylase III may explain the greater sensitivity of the proximal straight tubule to the nephrotoxicity of mercapturic acids.

  2. A cyclometallated fluorenyl Ir(iii) complex as a potential sensitiser for two-photon excited photodynamic therapy (2PE-PDT).

    PubMed

    Boreham, Elizabeth M; Jones, Lucy; Swinburne, Adam N; Blanchard-Desce, Mireille; Hugues, Vincent; Terryn, Christine; Miomandre, Fabien; Lemercier, Gilles; Natrajan, Louise S

    2015-09-28

    A new Ir(iii) cyclometallated complex bearing a fluorenyl 5-substituted-1,10-phenanthroline ligand ([Ir(ppy)2()][PF6], ppy = 2-phenylpyridine) is presented which exhibits enhanced triplet oxygen sensing properties. The efficacy of this complex to act as a photosensitiser for altering the morphology of C6 Glioma cells that represent malignant nervous tumours has been evaluated. The increased heavy metal effect and related spin-orbit coupling parameters on the photophysical properties of this complex are evidenced by comparison with Ru(ii) analogues. The complex [Ir(ppy)2()][PF6] is shown to exhibit relatively high two-photon absorption efficiencies for the lowest energy MLCT electronic transitions with two-photon absorption cross sections that range from 50 to 80 Goeppert-Mayer units between 750 to 800 nm. Quantum yields for the complex were measured up to 23% and the Stern-Volmer quenching constant, KSV was determined to be 40 bar(-1) in acetonitrile solution, confirming the high efficiency of the complex as a triplet oxygen sensitiser. Preliminary in vitro experiments with C6 Glioma cells treated with [Ir(ppy)2()][PF6], show that the complex is an efficient sensitizer for triplet oxygen, producing cytotoxic singlet oxygen ((1)O2) by two-photon excitation at 740 nm resulting in photodynamic effects that lead to localised cell damage and death.

  3. Development of an optical imaging platform for functional imaging of small animals using wide-field excitation

    PubMed Central

    Venugopal, Vivek; Chen, Jin; Intes, Xavier

    2010-01-01

    The design and characterization of a time-resolved functional imager using a wide-field excitation scheme for small animal imaging is described. The optimal operation parameters are established based on phantom studies. The performance of the platform for functional imaging and the simultaneous 3D reconstruction of absorption and scattering coefficients is investigated in vitro. PMID:21258454

  4. The optical luminosity function of gamma-ray bursts deduced from ROTSE-III observations

    SciTech Connect

    Cui, X. H.; Wu, X. F.; Wei, J. J.; Yuan, F.; Zheng, W. K.; Liang, E. W.; Akerlof, C. W.; McKay, T. A.; Ashley, M. C. B.; Flewelling, H. A.; Göǧüş, E.; Güver, T.; Kızıloǧlu, Ü.; Pandey, S. B.; Rykoff, E. S.; Rujopakarn, W.; Schaefer, B. E.; Wheeler, J. C.; Yost, S. A. E-mail: xfwu@pmo.ac.cn E-mail: fang.yuan@anu.edu.au E-mail: lew@gxu.edu.cn

    2014-11-10

    We present the optical luminosity function (LF) of gamma-ray bursts (GRBs) estimated from a uniform sample of 58 GRBs from observations with the Robotic Optical Transient Search Experiment III (ROTSE-III). Our GRB sample is divided into two sub-samples: detected afterglows (18 GRBs) and those with upper limits (40 GRBs). We derive R-band fluxes for these two sub-samples 100 s after the onset of the burst. The optical LFs at 100 s are fitted by assuming that the co-moving GRB rate traces the star formation rate. While fitting the optical LFs using Monte Carlo simulations, we take into account the detection function of ROTSE-III. We find that the cumulative distribution of optical emission at 100 s is well described by an exponential rise and power-law decay, a broken power law,and Schechter LFs. A single power-law (SPL) LF, on the other hand, is ruled out with high confidence.

  5. NEAR-IR TWO PHOTON MICROSCOPY IMAGING OF SILICA NANOPARTICLES FUNCTIONALIZED WITH ISOLATED SENSITIZED Yb(III) CENTERS

    SciTech Connect

    Lapadula, Giuseppe; Bourdolle, Adrien; Allouche, Florian; Conley, Matthew P.; Maron, Laurent; Lukens, Wayne W.; Guyot, Yannick; Andraud, Chantal; Brasselet, Sophie; Copé; ret, Christophe; Maury, Olivier; Andersen, Richard A.

    2013-01-12

    Bright nano objects emitting in the near infrared with a maximal cross section of 41.4 x 103 GM (Goppert Mayer), were prepared by implanting ca. 180 4,4 diethylaminostyryl 2,2 bipyridine (DEAS) Yb(III) complexes on the surface of 12 nm silica nanoparticles. The surface complexes ([DEAS Ln SiO2], Ln =Y,Yb) were characterized using IR, solid state NMR, UV Vis, EXAFS spectroscopies in combination with the preparation and characterization of similar molecular analogues by analytical techniques (IR, solution NMR, UV Vis, X ray crystallography) as well as DFT calculations. Starting from the partial dehydroxylation of the silica at 700 C on high vacuum having 0.8 OH.nm 2, the grafting of Ln(N(SiMe3)2)3 generate ≤SiO Ln(N(SiMe3)2)2, which upon thermal step and coordination of the DEAS chromophore yields (≤SiO)3Ln(DEAS). Surface and molecular analogues display similar properties, in terms of DEAS binding constants absorption maxima and luminescence properties (intense emission band assigned to a ligand centered CT fluorescence and life time) in the solid state, consistent with the molecular nature of the surface species. The densely functionalized nanoparticles can be dispersed via ultra-sonication in small ca. 15-20 nm aggregates (1 to 6 elementary particles) that were detected using two photon microscopy imaging at 720 nm excitation, making them promising nano objects for bio imaging.

  6. Application of new WAIS-III/WMS-III discrepancy scores for evaluating memory functioning: relationship between intellectual and memory ability.

    PubMed

    Lange, Rael T; Chelune, Gordon J

    2006-05-01

    Analysis of the discrepancy between memory and intellectual ability has received some support as a means for evaluating memory impairment. Recently, comprehensive base rate tables for General Ability Index (GAI) minus memory discrepancy scores (i.e., GAI-memory) were developed using the WAIS-III/WMS-III standardization sample (Lange, Chelune, & Tulsky, in press). The purpose of this study was to evaluate the clinical utility of GAI-memory discrepancy scores to identify memory impairment in 34 patients with Alzheimer's type dementia (DAT) versus a sample of 34 demographically matched healthy participants. On average, patients with DAT obtained significantly lower scores on all WAIS-III and WMS-III indexes and had larger GAI-memory discrepancy scores. Clinical outcome analyses revealed that GAI-memory scores were useful at identifying memory impairment in patients with DAT versus matched healthy participants. However, GAI-memory discrepancy scores failed to provide unique interpretive information beyond that which is gained from the memory indexes alone. Implications and future research directions are discussed.

  7. Regulation of postsynaptic function by the dementia-related ESCRT-III subunit CHMP2B.

    PubMed

    Chassefeyre, Romain; Martínez-Hernández, José; Bertaso, Federica; Bouquier, Nathalie; Blot, Béatrice; Laporte, Marine; Fraboulet, Sandrine; Couté, Yohann; Devoy, Anny; Isaacs, Adrian M; Pernet-Gallay, Karin; Sadoul, Rémy; Fagni, Laurent; Goldberg, Yves

    2015-02-18

    The charged multivesicular body proteins (Chmp1-7) are an evolutionarily conserved family of cytosolic proteins that transiently assembles into helical polymers that change the curvature of cellular membrane domains. Mutations in human CHMP2B cause frontotemporal dementia, suggesting that this protein may normally control some neuron-specific process. Here, we examined the function, localization, and interactions of neuronal Chmp2b. The protein was highly expressed in mouse brain and could be readily detected in neuronal dendrites and spines. Depletion of endogenous Chmp2b reduced dendritic branching of cultured hippocampal neurons, decreased excitatory synapse density in vitro and in vivo, and abolished activity-induced spine enlargement and synaptic potentiation. To understand the synaptic effects of Chmp2b, we determined its ultrastructural distribution by quantitative immuno-electron microscopy and its biochemical interactions by coimmunoprecipitation and mass spectrometry. In the hippocampus in situ, a subset of neuronal Chmp2b was shown to concentrate beneath the perisynaptic membrane of dendritic spines. In synaptoneurosome lysates, Chmp2b was stably bound to a large complex containing other members of the Chmp family, as well as postsynaptic scaffolds. The supramolecular Chmp assembly detected here corresponds to a stable form of the endosomal sorting complex required for transport-III (ESCRT-III), a ubiquitous cytoplasmic protein complex known to play a central role in remodeling of lipid membranes. We conclude that Chmp2b-containing ESCRT-III complexes are also present at dendritic spines, where they regulate synaptic plasticity. We propose that synaptic ESCRT-III filaments may function as a novel element of the submembrane cytoskeleton of spines.

  8. Understanding lanthanoid(III) hydration structure and kinetics by insights from energies and wave functions.

    PubMed

    Zhang, Jun; Heinz, Norah; Dolg, Michael

    2014-07-21

    The hydration of all trivalent lanthanoid (Ln) ions is studied theoretically from two aspects: energy and wave function. With the help of the incremental scheme, for the first time the lanthanoid(III) aqua complexes are computed at the CCSD(T) level using large basis sets. These computations prove that SCS-MP2 is nearly as accurate as CCSD, thus enabling us to give the most accurate first principle hydration Gibbs free energies and reliable preferred coordination numbers (CNs) of lanthanoid(III) aqua complexes: 9, 8, and both, for light, heavy, and intermediate lanthanoids, respectively. Then a series of wave function analyses were performed to explore the deeper reasons for the preference of specific CNs. An unexpected observation is that as Ln goes from samarium to lutetium, the capping Ln-O bonds in nona-aqua lanthanoid complexes become weaker while they get shorter. Therefore, as the capping Ln-O bonds are getting easier to disrupt, heavier lanthanoids will prefer a low CN, i.e., 8. On the basis of this and previous work of other groups, a model for the water exchange kinetics of lanthanoid(III) ions is proposed. This model suggests that the capping Ln-O bonds of moderate strength, which occur for intermediate lanthanoids, are advantageous for the formation of a bicapped trigonal prism intermediate during water exchange. This explains some NMR experiments and, more importantly, an observation which puzzled investigators for a long time, i.e., that the exchange rate reaches a maximum for the middle region but is low at the beginning and end of the lanthanoid series. This nontrivial behavior of capping Ln-O bonds is interpreted and is believed to determine the hydration behavior of lanthanoid(III) ions.

  9. Obtaining Hartree-Fock and density functional theory doubly excited states with Car-Parrinello density matrix search

    NASA Astrophysics Data System (ADS)

    Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong

    2009-11-01

    The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.

  10. Decoherence in Optically Excited Semiconductors: a perspective from non-equilibrium Green functions

    NASA Astrophysics Data System (ADS)

    Virk, Kuljit Singh

    Decoherence is central to our understanding of the transition from the quantum to the classical world. It is also a way of probing the dynamics of interacting many-body systems. Photoexcited semiconductors are such systems in which the transient dynamics can be studied in considerable detail experimentally. Recent advances in spectroscopy of semiconductors provide powerful tools to explore many-body physics in new regimes. An appropriate theoretical framework is necessary to describe new physical effects now accessible for observation. We present a possible approach in this thesis, and discuss results of its application to an experimentally relevant scenario. The major portion of this thesis is devoted to a formalism for the multi-dimensional Fourier spectroscopy of semiconductors. A perturbative treatment of the electromagnetic field is used to derive a closed set of differential equations for the multi-particle correlation functions, which take into account the many-body effects up to third order in the field. A diagrammatic method is developed, in which we retain all features of the double-sided Feynman diagrams for bookkeeping the excitation scenario, and complement them by allowing for the description of interactions. We apply the formalism to study decoherence between the states of optically excited excitons embedded in an electron gas, and compare it with the decoherence between these states and the ground state. We derive a dynamical equation for the two-time correlation functions of excitons, and compare it with the corresponding equation for the interband polarization. It is argued, and verified by numerical calculation, that the decay of Raman coherence depends sensitively on how differently the superimposed exciton states interact with the electron gas, and that it can be much slower than the decay of interband polarization. We also present a new numerical approach based on the length gauge for modeling the time-dependent laser-semiconductor interaction

  11. Response functions and spectrum of collective excitations of fractional-quantum-Hall-effect systems

    NASA Astrophysics Data System (ADS)

    Lopez, Ana; Fradkin, Eduardo

    1993-03-01

    We calculate the electromagnetic response functions of a fractional-quantum-Hall-effect (FQHE) system within the framework of the fermion Chern-Simons theory for the FQHE, which we developed before. Our results are valid in a semiclassical expansion around the average-field approximation (AFA). We reexamine the AFA and the role of fluctuations. We argue that, order-by-order in the semiclassical expansion, the response functions obey the correct symmetry properties required by Galilean and gauge invariance and by the incompressibility of the fluid. In particular, we find that the low-momentum limit of the semiclassical approximation to the response functions is exact and that it saturates the f-sum rule. We obtain the spectrum of collective excitations of FQHE systems in the low-momentum limit. We find a rich spectrum of modes which includes a host of quasiparticle-quasihole bound states and, in general, two collective modes coalescing at the cyclotron frequency. The Hall conductance is obtained from the current-density correlation function, and it has the correct value already at the semiclassical level. We applied these results to the problem of the screening of external charges and fluxes by the electron fluid, and obtained asymptotic expressions of the charge and current-density profiles, for different types of interactions. Finally, we reconsider the anyon superfluid within our scheme and derive the spectrum of collective modes for interacting hard-core bosons and semions. In addition to the gapless phase mode, we find a set of gapped collective modes.

  12. Examining the relationship between WAIS-III premorbid intellectual functioning and WMS-III memory ability to evaluate memory impairment.

    PubMed

    Lange, Rael T; Chelune, Gordon J

    2007-01-01

    The purpose of this study was to extend previous research by Lange and Chelune (2006) by evaluating the clinical utility of GAI-memory discrepancy scores to detect memory impairment using estimated premorbid GAI scores (i.e., GAI-E) rather than obtained GAI scores. Participants were 34 patients with Alzheimer's-type dementia and a sub-sample of 34 demographically matched participants from the WAIS-III/WMS-III standardization sample. GAI-memory discrepancy scores were more effective at differentiating Alzheimer's patients versus healthy controls when using estimated premorbid GAI scores than obtained GAI scores. However, GAI(E)-memory discrepancy scores failed to provide unique interpretive information beyond that which is gained from interpretation of the memory index scores alone. This was most likely due to the prevalence of obvious memory impairment in this patient population. Future research directions are discussed.

  13. Microheterogeneity of antithrombin III: effect of single amino acid substitutions and relationship with functional abnormalities.

    PubMed

    De Stefano, V; Leone, G; Mastrangelo, S; Lane, D A; Girolami, A; de Moerloose, P; Sas, G; Abildgaard, U; Blajchman, M; Rodeghiero, F

    1994-02-01

    Microheterogeneity of antithrombin III (AT-III) was investigated by crossed immunoelectrofocusing (CIEF) on eleven molecular variants. A normal pattern was found in five variants while two different abnormal CIEF patterns were found in the other four and two variants, respectively. Point mutations causing a major pI change (exceeding 4.0) of the amino acid substituted lead to alterations in the overall microheterogeneity. The variants thus substituted share a first type of abnormal CIEF pattern with alterations throughout the pH range, regardless of the location of the mutation (reactive site and adjacent regions or heparin binding region). Minor amino acid pI changes in these regions do not alter the AT-III overall microheterogeneity, whatever the resulting functional defect. However, if the mutation is placed in the region around positions 404 or 429, then even minor changes of the amino acid pI seem able to alter the overall charge, leading to a second type of abnormal CIEF pattern with the main alteration at pH 4.8-4.6. Neuraminidase treatment leads to disappearance of microheterogeneity except for the variants with the Arg393 to Cys substitution. Addition of thrombin induces CIEF modifications specifically related to the functional defect. A normal formation of thrombin-antithrombin complexes induces a shift towards the more acid pH range, whereas in the variants substituted at the reactive site the CIEF pattern is substantially unaffected by thrombin; variants substituted at positions 382-384 show a maximal thrombin-induced increase of the isoforms at pI 4.8-4.6. Therefore mutant antithrombins with different functional abnormalities but sharing a common CIEF pattern were well distinguished.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III

    PubMed Central

    Aspinwall, Richard; Rothwell, Dominic G.; Roldan-Arjona, Teresa; Anselmino, Catherine; Ward, Christopher J.; Cheadle, Jeremy P.; Sampson, Julian R.; Lindahl, Tomas; Harris, Peter C.; Hickson, Ian D.

    1997-01-01

    Repair of oxidative damage to DNA bases is essential to prevent mutations and cell death. Endonuclease III is the major DNA glycosylase activity in Escherichia coli that catalyzes the excision of pyrimidines damaged by ring opening or ring saturation, and it also possesses an associated lyase activity that incises the DNA backbone adjacent to apurinic/apyrimidinic sites. During analysis of the area adjacent to the human tuberous sclerosis gene (TSC2) in chromosome region 16p13.3, we identified a gene, OCTS3, that encodes a 1-kb transcript. Analysis of OCTS3 cDNA clones revealed an open reading frame encoding a predicted protein of 34.3 kDa that shares extensive sequence similarity with E. coli endonuclease III and a related enzyme from Schizosaccharomyces pombe, including a conserved active site region and an iron/sulfur domain. The product of the OCTS3 gene was therefore designated hNTH1 (human endonuclease III homolog 1). The hNTH1 protein was overexpressed in E. coli and purified to apparent homogeneity. The recombinant protein had spectral properties indicative of the presence of an iron/sulfur cluster, and exhibited DNA glycosylase activity on double-stranded polydeoxyribonucleotides containing urea and thymine glycol residues, as well as an apurinic/apyrimidinic lyase activity. Our data indicate that hNTH1 is a structural and functional homolog of E. coli endonuclease III, and that this class of enzymes, for repair of oxidatively damaged pyrimidines in DNA, is highly conserved in evolution from microorganisms to human cells. PMID:8990169

  15. Stone tool function at the paleolithic sites of Starosele and Buran Kaya III, Crimea: behavioral implications.

    PubMed

    Hardy, B L; Kay, M; Marks, A E; Monigal, K

    2001-09-11

    Stone tools are often the most abundant type of cultural remains at Paleolithic sites, yet their function is often poorly understood. Investigations of stone tool function, including microscopic use-wear and residue analyses, were performed on a sample of artifacts from the Paleolithic sites of Starosele (40,000-80,000 years BP) and Buran Kaya III (32,000-37,000 years BP). The Middle Paleolithic levels at Starosele exhibit a typical variant of the local Micoquian Industry. The artifacts from Buran Kaya III most closely resemble an Early Streletskayan Industry associated with the early Upper Paleolithic. The results of the functional analyses suggest that hominids at both sites were exploiting woody and starchy plant material as well as birds and mammals. Both sites show evidence of hafting of a wide variety of tools and the possible use of projectile or thrusting spears. These analyses were performed by using two different techniques conducted by independent researchers. Combined residue and use-wear analyses suggest that both the Upper Paleolithic and Middle Paleolithic hominids at these sites were broad-based foragers capable of exploiting a wide range of resources.

  16. Rhodium(III)-catalyzed indazole synthesis by C-H bond functionalization and cyclative capture.

    PubMed

    Lian, Yajing; Bergman, Robert G; Lavis, Luke D; Ellman, Jonathan A

    2013-05-15

    An efficient, one-step, and highly functional group-compatible synthesis of substituted N-aryl-2H-indazoles is reported via the rhodium(III)-catalyzed C-H bond addition of azobenzenes to aldehydes. The regioselective coupling of unsymmetrical azobenzenes was further demonstrated and led to the development of a new removable aryl group that allows for the preparation of indazoles without N-substitution. The 2-aryl-2H-indazole products also represent a new class of readily prepared fluorophores for which initial spectroscopic characterization has been performed.

  17. An accurate density functional theory calculation for electronic excitation energies: the least-squares support vector machine.

    PubMed

    Gao, Ting; Sun, Shi-Ling; Shi, Li-Li; Li, Hui; Li, Hong-Zhi; Su, Zhong-Min; Lu, Ying-Hua

    2009-05-14

    Support vector machines (SVMs), as a novel type of learning machine, has been very successful in pattern recognition and function estimation problems. In this paper we introduce least-squares (LS) SVMs to improve the calculation accuracy of density functional theory. As a demonstration, this combined quantum mechanical calculation with LS-SVM correction approach has been applied to evaluate the electronic excitation energies of 160 organic molecules. The newly introduced LS-SVM approach reduces the root-mean-square deviation of the calculated electronic excitation energies of 160 organic molecules from 0.32 to 0.11 eV for the B3LYP/6-31G(d) calculation. Thus, the LS-SVM correction on top of B3LYP/6-31G(d) is a better method to correct electronic excitation energies and can be used as the approximation of experimental results which are impossible to obtain experimentally.

  18. Bi-exponential decay of Eu(III) complexed by Suwannee River humic substances: spectroscopic evidence of two different excited species.

    PubMed

    Reiller, Pascal E; Brevet, Julien

    2010-02-01

    The bi-exponential luminescence decay of europium (III) complexed by Suwannee River fulvic acid (SRFA) and humic acid (SRHA), is studied in time-resolved luminescence spectroscopy using two different gratings at varying delay after the laser pulse, increasing accumulation time in order to obtain comparable signals. The two hypotheses found in the literature to interpret this bi-exponential decay are (i) a back transfer from the metal to the triplet state of the organic ligand and (ii) the radiative decay of two different excited species. It is shown that evolutions of the (5)D(0)-->(7)F(0) and (5)D(0)-->(7)F(2) luminescent transitions are occurring between 10 and 300 micros delay. First, the (5)D(0)-->(7)F(0) transition is decreasing relative to the (5)D(0)-->(7)F(1) showing a slightly greater symmetry of the 'slow' component, and is also slightly red shifted. Second, a slight modification of the (5)D(0)-->(7)F(2) transition is also evidencing a slightly different ligand field splitting. No significant modification of the (5)D(0)-->(7)F(1) magnetic dipole, which is less susceptible to symmetry changes, is noted in line with expectations. The (5)D(0)-->(7)F(0) transitions are adjusted with either one or two components. The use of a simple component fit seems to be well adapted for representing an average comportment of these heterogeneous compounds, and a two-component fit constrained by the bi-exponential decay parameters and accumulation times yields in the proposition of the spectra for the fast and slow components.

  19. Sub-barrier fusion excitation function data and energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh

    2016-07-01

    This paper analyzed the role of intrinsic degrees of freedom of colliding nuclei in the enhancement of sub-barrier fusion cross-section data of various heavy ion fusion reactions. The influences of inelastic surface vibrations of colliding pairs are found to be dominant and their couplings result in the significantly larger fusion enhancement over the predictions of the one dimensional barrier penetration model at sub-barrier energies. The theoretical calculations are performed by using energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with the one dimensional Wong formula. The effects of dominant intrinsic channels are entertained within framework of the coupled channel calculations obtained by using the code CCFULL. It is quite interesting to note that the energy dependence in Woods-Saxon potential simulates the effects of inelastic surface vibrational states of reactants wherein significantly larger value of diffuseness parameter ranging from a = 0.85 fm to a = 0.95 fm is required to address the observed fusion excitation function data of the various heavy ion fusion reactions.

  20. Functional imaging of living Paramecium by means of confocal and two-photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Diaspro, Alberto; Fronte, Paola; Raimondo, Marco; Fato, Marco; DeLeo, Gianluca; Beltrame, Francesco; Cannone, Fabio; Chirico, Giberto; Ramoino, Paola

    2002-05-01

    Confocal and Two-photon excitation laser scanning microscopy allow gathering three-dimensional and temporal information from biological systems exploiting fluorescence labeling and autofluorescence properties. In this work we study biological events linked to functionality in Paramecium primaurelia. The internalization of material in ciliated one-celled organisms (protozoa) occurs via different mechanisms, even if most of nutrients, particulate or not, is taken up by food vacuoles formed at the bottom of the oral cavity. The endocytosis of small-sized molecules occurs at the parasomal sacs, located next the ciliar basal bodies. Vital fluorescent dyes (BSA-FITC, WGA-FITC, dextran-Texas Red, cholesteryl-Bodipy) and autofluorescence were used to study formation, movement, and fusion of vesicles during endocytosis and phagocytosis of Paramecium primaurelia. By immobilizing living cells pulsed with food vacuole and endosome markers at successive times after chasing in unlabeled medium, the intracellular movement and fusion of food vacuoles and of endosomes were visualized. A temporal analysis of fluorescence images and the false-color technique were used. Starting from time series or 3D data sets composite images were generated by associating with each originally acquired image a different color corresponding to each sampling point in time and along the z-axis. Second Harmonic Generation Imaging attempts are also outlined.

  1. Measuring excitation functions needed to interpret cosmogenic nuclide production in lunar rocks

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K.; Beverding, A.; Englert, P. A. J.; Caffee, M. W.; Vincent, J.; Castaneda, C.; Reedy, R. C.

    1997-01-01

    Radionuclides produced in lunar rocks by cosmic ray interactions are measured using Accelerator Mass Spectrometry or gamma-ray spectroscopy. From these measurements, estimates of the solar proton flux over time periods characterized by the half-life of the isotope under study can be made, if all the cross sections for all the reactions of all cosmic ray particles with all elements found in lunar rocks are known. Proton production cross sections are very important because (approximately) 98% of solar cosmic rays and (approximately) 87% of galactic cosmic rays are protons in the lunar environment. Many of the needed cross sections have never been measured. Targets of C, Al, Si, SiO2, mg, K, Ca, Fe and Ni have been irradiated using three accelerators to cover a proton energy range of 25-500 MeV. Excitation functions for Be-7, Be-10, Na-22, and Al-26 production from Mg and Al will be reported, and the consequences of using these new cross section values to estimate solar proton fluxes discussed.

  2. THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: THE QUASAR LUMINOSITY FUNCTION FROM DATA RELEASE NINE

    SciTech Connect

    Ross, Nicholas P.; White, Martin; Bailey, Stephen; McGreer, Ian D.; Richards, Gordon T.; Myers, Adam D.; Palanque-Delabrouille, Nathalie; Yeche, Christophe; Strauss, Michael A.; Anderson, Scott F.; Shen, Yue; Swanson, Molly E. C.; Brandt, W. N.; Aubourg, Eric; Bovy, Jo; DeGraf, Colin; Di Matteo, Tiziana; and others

    2013-08-10

    We present a new measurement of the optical quasar luminosity function (QLF), using data from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III: BOSS). From the SDSS-III Data Release Nine, a uniform sample of 22,301 i {approx}< 21.8 quasars are selected over an area of 2236 deg{sup 2}, with confirmed spectroscopic redshifts between 2.2 < z < 3.5, filling in a key part of the luminosity-redshift plane for optical quasar studies. The completeness of the survey is derived through simulated quasar photometry, and this completeness estimate is checked using a sample of quasars selected by their photometric variability within the BOSS footprint. We investigate the level of systematics associated with our quasar sample using the simulations, in the process generating color-redshift relations and a new quasar K-correction. We probe the faint end of the QLF to M{sub i} (z = 2.2) Almost-Equal-To -24.5 and see a clear break in the QLF at all redshifts up to z = 3.5. A log-linear relation (in log {Phi}* - M*) for a luminosity evolution and density evolution model is found to adequately describe our data within the range 2.2 < z < 3.5; across this interval the break luminosity increases by a factor of {approx}2.6 while {Phi}* declines by a factor of {approx}8. At z {approx}< 2.2 our data are reasonably well fit by a pure luminosity evolution model, and only a weak signature of ''AGN downsizing'' is seen, in line with recent studies of the hard X-ray luminosity function. We compare our measured QLF to a number of theoretical models and find that models making a variety of assumptions about quasar triggering and halo occupation can fit our data over a wide range of redshifts and luminosities.

  3. Gravitational fragmentation in turbulent primordial gas and the initial mass function of Population III stars

    SciTech Connect

    Clark, Paul C.; Glover, Simon C.O.; Klessen, Ralf S.; Bromm, Volker; /Texas U., Astron. Dept.

    2010-08-25

    We report results from numerical simulations of star formation in the early universe that focus on the dynamical behavior of metal-free gas under different initial and environmental conditions. In particular we investigate the role of turbulence, which is thought to ubiquitously accompany the collapse of high-redshift halos. We distinguish between two main cases: the birth of Population III.1 stars - those which form in the pristine halos unaffected by prior star formation - and the formation of Population III.2 stars - those forming in halos where the gas is still metal free but has an increased ionization fraction. This latter case can arise either from exposure to the intense UV radiation of stellar sources in neighboring halos, or from the high virial temperatures associated with the formation of massive halos, that is, those with masses greater than {approx} 10{sup 8} M{sub {circle_dot}}. We find that turbulent primordial gas is highly susceptible to fragmentation in both cases, even for turbulence in the subsonic regime, i.e. for rms velocity dispersions as low as 20 % of the sound speed. Contrary to our original expectations, fragmentation is more vigorous and more widespread in pristine halos compared to pre-ionized ones. We therefore predict Pop III.1 stars to be on average of somewhat lower mass, and form in larger groups, than Pop III.2 stars. We find that fragment masses cover over two orders of magnitude, indicating that the resulting Population III initial mass function was significantly extended in mass as well. Our results suggest that the details of the fragmentation process depend on the local properties of the turbulent velocity field and hence we expect considerable variations in the resulting stellar mass spectrum in different halos. In particular, the lowest-mass objects in our sample should have survived to the present day and could potentially provide a unique record of the physical conditions of stellar birth in the primordial universe

  4. A Preliminary Transcranial Magnetic Stimulation Study of Cortical Inhibition and Excitability in High-Functioning Autism and Asperger Disorder

    ERIC Educational Resources Information Center

    Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.

    2010-01-01

    Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…

  5. Channels Active in the Excitability of Nerves and Skeletal Muscles across the Neuromuscular Junction: Basic Function and Pathophysiology

    ERIC Educational Resources Information Center

    Goodman, Barbara E.

    2008-01-01

    Ion channels are essential for the basic physiological function of excitable cells such as nerve, skeletal, cardiac, and smooth muscle cells. Mutations in genes that encode ion channels have been identified to cause various diseases and disorders known as channelopathies. An understanding of how individual ion channels are involved in the…

  6. Photoluminescence changes of III-Nitride lateral polarity structures after chemical functionalization

    NASA Astrophysics Data System (ADS)

    Berg, Nora G.; Franke, Alexander; Kirste, Ronny; Collazo, Ramon; Ivanisevic, Albena

    2016-12-01

    The photoluminescence changes of a III-Nitride semiconductor with various surface topographies were studied after chemical functionalization. Al x Ga1-x N with a composition of 70% aluminum was used and the surfaces were functionalized with a fluorophore dye-terminated peptide using a linker molecule. The stability of the wafers in water was studied using inductively coupled plasma mass spectrometry prior to modifying the material. The leaching data demonstrated that the AlGaN material in highly stable in biological conditions over 7 d. The attachment of the dye to the wafer was investigated using x-ray photoelectron spectroscopy and photoluminescence spectroscopy (PL). The PL spectrum showed a clear signature of the dye with a pronounced emission peak at approximately 260 nm, indicating a successful attachment to the surface.

  7. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function.

    PubMed

    Naro, Antonino; Bramanti, Alessia; Leo, Antonino; Manuli, Alfredo; Sciarrone, Francesca; Russo, Margherita; Bramanti, Placido; Calabrò, Rocco Salvatore

    2017-01-07

    The cerebellum regulates several motor functions through two main mechanisms, the cerebellum-brain inhibition (CBI) and the motor surround inhibition (MSI). Although the exact cerebellar structures and functions involved in such processes are partially known, Purkinje cells (PC) and their surrounding interneuronal networks may play a pivotal role concerning CBI and MSI. Cerebellar transcranial alternating current stimulation (tACS) has been proven to shape specific cerebellar components in a feasible, safe, effective, and non-invasive manner. The aim of our study was to characterize the cerebellar structures and functions subtending CBI and MSI using a tACS approach. Fifteen healthy individuals underwent a cerebellar tACS protocol at 10, 50, and 300 Hz, or a sham-tACS over the right cerebellar hemisphere. We measured the tACS aftereffects on motor-evoked potential (MEP) amplitude, CBI induced by tACS (tiCBI) at different frequencies, MSI, and hand motor task performance. None of the participants had any side effect related to tACS. After 50-Hz tACS, we observed a clear tiCBI-50Hz weakening (about +30%, p < 0.001) paralleled by a MEP amplitude increase (about +30%, p = 0.001) and a reduction of the time required to complete some motor task (about -20%, p = 0.01), lasting up to 30 min. The 300-Hz tACS induced a selective, specific tiCBI-300Hz and tiCBI-50Hz modulation in surrounding muscles (about -15%, p = 0.01) and MSI potentiation (about +40%, p < 0.001). The 10-Hz tACS and the sham-tACS were ineffective (p > 0.6). Our preliminary data suggest that PC may represent the last mediator of tiCBI and that the surrounding interneuronal network may have an important role in updating MSI, tiCBI, and M1 excitability during tonic muscle contraction, by acting onto the PC. The knowledge of these neurophysiological issues offers new cues to design innovative, non-invasive neuromodulation protocols to shape cerebellar-cerebral functions.

  8. Aromatic Lateral Substituents Influence the Excitation Energies of Hexaaza Lanthanide Macrocyclic Complexes: A Wave Function Theory and Density Functional Study.

    PubMed

    Rabanal-León, Walter A; Murillo-López, Juliana A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2015-09-24

    The high interest in lanthanide chemistry, and particularly in their luminescence, has been encouraged by the need of understanding the lanthanide chemical coordination and how the design of new luminescent materials can be affected by this. This work is focused on the understanding of the electronic structure, bonding nature, and optical properties of a set of lanthanide hexaaza macrocyclic complexes, which can lead to potential optical applications. Here we found that the DFT ground state of the open-shell complexes are mainly characterized by the manifold of low lying f states, having small HOMO-LUMO energy gaps. The results obtained from the wave function theory calculations (SO-RASSI) put on evidence the multiconfigurational character of their ground state and it is observed that the large spin-orbit coupling and the weak crystal field produce a strong mix of the ground and the excited states. The electron localization function (ELF) and the energy decomposition analysis (EDA) support the idea of a dative interaction between the macrocyclic ligand and the lanthanide center for all the studied systems; noting that, this interaction has a covalent character, where the d-orbital participation is evidenced from NBO analysis, leaving the f shell completely noninteracting in the chemical bonding. From the optical part we observed in all cases the characteristic intraligand (IL) (π-π*) and ligand to metal charge-transfer (LMCT) bands that are present in the ultraviolet and visible regions, and for the open-shell complexes we found the inherent f-f electronic transitions on the visible and near-infrared region.

  9. Yeast as a Heterologous Model System to Uncover Type III Effector Function

    PubMed Central

    Popa, Crina; Coll, Núria S.; Valls, Marc; Sessa, Guido

    2016-01-01

    Type III effectors (T3E) are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. “Favourite” targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK) signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure–function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations of S

  10. Excited state property of hardly photodissociable heme-CO adduct studied by time-dependent density functional theory.

    PubMed

    Ohta, Takehiro; Pal, Biswajit; Kitagawa, Teizo

    2005-11-10

    While most of CO-bound hemes are easily photodissociated with a quantum yield of nearly unity, we occasionally encounter a CO-heme which appears hardly photodissociable under the ordinary measurement conditions of resonance Raman spectra using CW laser excitation and a spinning cell. This study aims to understand such hemes theoretically, that is, the excited-state properties of the five-coordinate heme-CO adduct (5cH) as well as the 6c heme-CO adduct (6cH) with a weak axial ligand. Using a hybrid density functional theory, we scrutinized the properties of the ground and excited spin states of the computational models of a 5cH and a water-ligated 6cH (6cH-H(2)O) and compared these properties with those of a photodissociable imidazole-ligated 6cH (6cH-Im). Jahn-Teller softening for the Fe-C-O bending potential in the a(1)-e excited state was suggested. The excited-state properties of 6cH-Im and 5cH were further studied with time-dependent DFT theory. The reaction products of 6cH-Im and 5cH were assumed to be quintet and triplet states, respectively. According to the time-dependent DFT calculations, the Q excited state of 6cH-Im, which is initially a pure pi-pi state, crosses the Fe-CO dissociative state (2A') without large elongation of the Fe-CO bond. In contrast, the Q state of the 5cH does not cross the Fe-CO dissociative state but results in the formation of the excited spin state with a bent Fe-C-O. Consequently, photoisomerization from linear to bent Fe-C-O in the 5cH is a likely mechanism for apparent nonphotodissociation.

  11. Analytical approach for the excited-state Hessian in time-dependent density functional theory: Formalism, implementation, and performance

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Liang, WanZhen

    2011-11-01

    The paper presents the formalism, implementation, and performance of the analytical approach for the excited-state Hessian in the time-dependent density functional theory (TDDFT) that extends our previous work [J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011)] on the analytical Hessian in TDDFT within Tamm-Dancoff approximation (TDA) to full TDDFT. In contrast to TDA-TDDFT, an appreciable advantage of full TDDFT is that it maintains the oscillator strength sum rule, and therefore yields more precise results for the oscillator strength and other related physical quantities. For the excited-state harmonic vibrational frequency calculation, however, full TDDFT does not seem to be advantageous since the numerical tests demonstrate that the accuracy of TDDFT with and without TDA are comparable to each other. As a common practice, the computed harmonic vibrational frequencies are scaled by a suitable scale factor to yield good agreement with the experimental fundamental frequencies. Here we apply both the optimized ground-state and excited-state scale factors to scale the calculated excited-state harmonic frequencies and find that the scaling decreases the root-mean-square errors. The optimized scale factors derived from the excited-state calculations are slightly smaller than those from the ground-state calculations.

  12. Analytical approach for the excited-state Hessian in time-dependent density functional theory: formalism, implementation, and performance.

    PubMed

    Liu, Jie; Liang, WanZhen

    2011-11-14

    The paper presents the formalism, implementation, and performance of the analytical approach for the excited-state Hessian in the time-dependent density functional theory (TDDFT) that extends our previous work [J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011)] on the analytical Hessian in TDDFT within Tamm-Dancoff approximation (TDA) to full TDDFT. In contrast to TDA-TDDFT, an appreciable advantage of full TDDFT is that it maintains the oscillator strength sum rule, and therefore yields more precise results for the oscillator strength and other related physical quantities. For the excited-state harmonic vibrational frequency calculation, however, full TDDFT does not seem to be advantageous since the numerical tests demonstrate that the accuracy of TDDFT with and without TDA are comparable to each other. As a common practice, the computed harmonic vibrational frequencies are scaled by a suitable scale factor to yield good agreement with the experimental fundamental frequencies. Here we apply both the optimized ground-state and excited-state scale factors to scale the calculated excited-state harmonic frequencies and find that the scaling decreases the root-mean-square errors. The optimized scale factors derived from the excited-state calculations are slightly smaller than those from the ground-state calculations.

  13. exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Gulans, Andris; Kontur, Stefan; Meisenbichler, Christian; Nabok, Dmitrii; Pavone, Pasquale; Rigamonti, Santiago; Sagmeister, Stephan; Werner, Ute; Draxl, Claudia

    2014-09-01

    Linearized augmented planewave methods are known as the most precise numerical schemes for solving the Kohn-Sham equations of density-functional theory (DFT). In this review, we describe how this method is realized in the all-electron full-potential computer package, exciting. We emphasize the variety of different related basis sets, subsumed as (linearized) augmented planewave plus local orbital methods, discussing their pros and cons and we show that extremely high accuracy (microhartrees) can be achieved if the basis is chosen carefully. As the name of the code suggests, exciting is not restricted to ground-state calculations, but has a major focus on excited-state properties. It includes time-dependent DFT in the linear-response regime with various static and dynamical exchange-correlation kernels. These are preferably used to compute optical and electron-loss spectra for metals, molecules and semiconductors with weak electron-hole interactions. exciting makes use of many-body perturbation theory for charged and neutral excitations. To obtain the quasi-particle band structure, the GW approach is implemented in the single-shot approximation, known as G0W0. Optical absorption spectra for valence and core excitations are handled by the solution of the Bethe-Salpeter equation, which allows for the description of strongly bound excitons. Besides these aspects concerning methodology, we demonstrate the broad range of possible applications by prototypical examples, comprising elastic properties, phonons, thermal-expansion coefficients, dielectric tensors and loss functions, magneto-optical Kerr effect, core-level spectra and more.

  14. Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory.

    PubMed

    Gulans, Andris; Kontur, Stefan; Meisenbichler, Christian; Nabok, Dmitrii; Pavone, Pasquale; Rigamonti, Santiago; Sagmeister, Stephan; Werner, Ute; Draxl, Claudia

    2014-09-10

    Linearized augmented planewave methods are known as the most precise numerical schemes for solving the Kohn-Sham equations of density-functional theory (DFT). In this review, we describe how this method is realized in the all-electron full-potential computer package, exciting. We emphasize the variety of different related basis sets, subsumed as (linearized) augmented planewave plus local orbital methods, discussing their pros and cons and we show that extremely high accuracy (microhartrees) can be achieved if the basis is chosen carefully. As the name of the code suggests, exciting is not restricted to ground-state calculations, but has a major focus on excited-state properties. It includes time-dependent DFT in the linear-response regime with various static and dynamical exchange-correlation kernels. These are preferably used to compute optical and electron-loss spectra for metals, molecules and semiconductors with weak electron-hole interactions. exciting makes use of many-body perturbation theory for charged and neutral excitations. To obtain the quasi-particle band structure, the GW approach is implemented in the single-shot approximation, known as G(0)W(0). Optical absorption spectra for valence and core excitations are handled by the solution of the Bethe-Salpeter equation, which allows for the description of strongly bound excitons. Besides these aspects concerning methodology, we demonstrate the broad range of possible applications by prototypical examples, comprising elastic properties, phonons, thermal-expansion coefficients, dielectric tensors and loss functions, magneto-optical Kerr effect, core-level spectra and more.

  15. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis

    PubMed Central

    Grüter, Thomas; Wiescholleck, Valentina; Dubovyk, Valentyna; Aliane, Verena; Manahan-Vaughan, Denise

    2015-01-01

    Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signaling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR) results in similar molecular, cellular, cognitive and behavioral changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse (PP) facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A), and increase in GABA(B)-receptor-expression in PFC, along with a significant increase of GABA(B)- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry. PMID:26042007

  16. Structural and functional characterization of two unusual endonuclease III enzymes from Deinococcus radiodurans.

    PubMed

    Sarre, Aili; Ökvist, Mats; Klar, Tobias; Hall, David R; Smalås, Arne O; McSweeney, Sean; Timmins, Joanna; Moe, Elin

    2015-08-01

    While most bacteria possess a single gene encoding the bifunctional DNA glycosylase Endonuclease III (EndoIII) in their genomes, Deinococcus radiodurans possesses three: DR2438 (DrEndoIII1), DR0289 (DrEndoIII2) and DR0982 (DrEndoIII3). Here we have determined the crystal structures of DrEndoIII1 and an N-terminally truncated form of DrEndoIII3 (DrEndoIII3Δ76). We have also generated a homology model of DrEndoIII2 and measured activity of the three enzymes. All three structures consist of two all α-helical domains, one of which exhibits a [4Fe-4S] cluster and the other a HhH-motif, separated by a DNA binding cleft, similar to previously determined structures of endonuclease III from Escherichia coli and Geobacillus stearothermophilus. However, both DrEndoIII1 and DrEndoIII3 possess an extended HhH motif with extra helical features and an altered electrostatic surface potential. In addition, the DNA binding cleft of DrEndoIII3 seems to be less accessible for DNA interactions, while in DrEndoIII1 it seems to be more open. Analysis of the enzyme activities shows that DrEndoIII2 is most similar to the previously studied enzymes, while DrEndoIII1 seems to be more distant with a weaker activity towards substrate DNA containing either thymine glycol or an abasic site. DrEndoIII3 is the most distantly related enzyme and displays no detectable activity towards these substrates even though the suggested catalytic residues are conserved. Based on a comparative structural analysis, we suggest that the altered surface potential, shape of the substrate-binding pockets and specific amino acid substitutions close to the active site and in the DNA interacting loops may underlie the unexpected differences in activity.

  17. Cytochrome oxidase subunit III from Arbacia lixula: detection of functional constraints by comparison with homologous sequences.

    PubMed

    De Giorgi, C; Martiradonna, A; Saccone, C

    1993-01-01

    In this paper we report the comparison of the sequences of the cytochrome oxidase subunit III from three different sea urchin species. Both nucleotide and amino acid sequences have been analyzed. The nucleotide sequence analysis reveals that the sea urchin sequences obey some rules already found in mammals. The base substitution analysis carried out on the sequences of the three species pairs, shows that the evolutionary dynamics of the first and the second codon positions are so slow that do not allow a quantitative measurement of their genetic distances, thus demonstrating that also in these species the COIII gene is strongly conserved during evolution. Changes occurring at the third codon positions indicate that the three species evolved from a common ancestor under different directional mutational pressure. The multi-alignment of the sea urchin proteins indicates the existence of the amino acid sequence motif N R T that represents a possible glycosylation site. Another glycosylation site has been detected in the mammalian cytochrome oxidase subunit III, in a position slightly different. Such an analysis revealed, for the first time, a new functional aspect of this sequence.

  18. Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory

    SciTech Connect

    Jensen, Lasse; Govind, Niranjan

    2009-09-10

    In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitions in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.

  19. A simplified Tamm-Dancoff density functional approach for the electronic excitation spectra of very large molecules

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan

    2013-06-01

    Two approximations in the Tamm-Dancoff density functional theory approach (TDA-DFT) to electronically excited states are proposed which allow routine computations for electronic ultraviolet (UV)- or circular dichroism (CD) spectra of molecules with 500-1000 atoms. Speed-ups compared to conventional time-dependent DFT (TD-DFT) treatments of about two to three orders of magnitude in the excited state part at only minor loss of accuracy are obtained. The method termed sTDA ("s" for simplified) employs atom-centered Löwdin-monopole based two-electron repulsion integrals with the asymptotically correct 1/R behavior and perturbative single excitation configuration selection. It is formulated generally for any standard global hybrid density functional with given Fock-exchange mixing parameter ax. The method performs well for two standard benchmark sets of vertical singlet-singlet excitations for values of ax in the range 0.2-0.6. The mean absolute deviations from reference data are only 0.2-0.3 eV and similar to those from standard TD-DFT. In three cases (two dyes and one polypeptide), good mutual agreement between the electronic spectra (up to 10-11 eV excitation energy) from the sTDA method and those from TD(A)-DFT is obtained. The computed UV- and CD-spectra of a few typical systems (e.g., C60, two transition metal complexes, [7]helicene, polyalanine, a supramolecular aggregate with 483 atoms and about 7000 basis functions) compare well with corresponding experimental data. The method is proposed together with medium-sized double- or triple-zeta type atomic-orbital basis sets as a quantum chemical tool to investigate the spectra of huge molecular systems at a reliable DFT level.

  20. Density-functional calculations of carbon doping in III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Latham, C. D.; Jones, R.; Öberg, S.; Briddon, P. R.

    2001-04-01

    This article reports the results of investigations based on local-density-functional theory into the relative formation energies for single substitutional carbon atoms in nine III-V compound semiconductors. The calculations are performed using a supercell formalism derived from the AIMPRO real-space cluster method. Only a very slight trend is discernible down the periodic table. When a metal atom is replaced with carbon, it is energetically least favorable in the phosphides, very marginally lower energy in the arsenides, and ~0.5-0.7 eV lower in the antimonides. The situation is approximately reversed when a P, As, or Sb atom is substituted by a C atom: for the In compounds the energy is ~0.4-0.8 eV higher than for the Al and Ga compounds.

  1. Cancer Cell Mitochondria Targeting by Pancratistatin Analogs is Dependent on Functional Complex II and III.

    PubMed

    Ma, Dennis; Pignanelli, Christopher; Tarade, Daniel; Gilbert, Tyler; Noel, Megan; Mansour, Fadi; Adams, Scott; Dowhayko, Alexander; Stokes, Kyle; Vshyvenko, Sergey; Hudlicky, Tomas; McNulty, James; Pandey, Siyaram

    2017-02-21

    Enhanced mitochondrial stability and decreased dependence on oxidative phosphorylation confer an acquired resistance to apoptosis in cancer cells, but may present opportunities for therapeutic intervention. The compound pancratistatin (PST) has been shown to selectively induce apoptosis in cancer cells. However, its low availability in nature has hindered its clinical advancement. We synthesized PST analogs and a medium-throughput screen was completed. Analogs SVTH-7, -6, and -5 demonstrated potent anti-cancer activity greater than PST and several standard chemotherapeutics. They disrupted mitochondrial function, activated the intrinsic apoptotic pathway, and reduced growth of tumor xenografts in vivo. Interestingly, the pro-apoptotic effects of SVTH-7 on cancer cells and mitochondria were abrogated with the inhibition of mitochondrial complex II and III, suggesting mitochondrial or metabolic vulnerabilities may be exploited by this analog. This work provides a scaffold for characterizing distinct mitochondrial and metabolic features of cancer cells and reveals several lead compounds with high therapeutic potential.

  2. Cancer Cell Mitochondria Targeting by Pancratistatin Analogs is Dependent on Functional Complex II and III

    PubMed Central

    Ma, Dennis; Pignanelli, Christopher; Tarade, Daniel; Gilbert, Tyler; Noel, Megan; Mansour, Fadi; Adams, Scott; Dowhayko, Alexander; Stokes, Kyle; Vshyvenko, Sergey; Hudlicky, Tomas; McNulty, James; Pandey, Siyaram

    2017-01-01

    Enhanced mitochondrial stability and decreased dependence on oxidative phosphorylation confer an acquired resistance to apoptosis in cancer cells, but may present opportunities for therapeutic intervention. The compound pancratistatin (PST) has been shown to selectively induce apoptosis in cancer cells. However, its low availability in nature has hindered its clinical advancement. We synthesized PST analogs and a medium-throughput screen was completed. Analogs SVTH-7, -6, and -5 demonstrated potent anti-cancer activity greater than PST and several standard chemotherapeutics. They disrupted mitochondrial function, activated the intrinsic apoptotic pathway, and reduced growth of tumor xenografts in vivo. Interestingly, the pro-apoptotic effects of SVTH-7 on cancer cells and mitochondria were abrogated with the inhibition of mitochondrial complex II and III, suggesting mitochondrial or metabolic vulnerabilities may be exploited by this analog. This work provides a scaffold for characterizing distinct mitochondrial and metabolic features of cancer cells and reveals several lead compounds with high therapeutic potential. PMID:28220885

  3. 14 CFR Section 11 - Functional Classification-Operating Expenses of Group II and Group III Air Carriers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Functional Classification-Operating... ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 11 Functional Classification—Operating Expenses of Group II and Group III Air Carriers 5100Flying Operations....

  4. Quantal Density Functional Theory(Q-DFT) of Degenerate Ground and Excited States

    NASA Astrophysics Data System (ADS)

    Sahni, Viraht; Pan, Xiaoyin

    2002-03-01

    We present here Q-DFT (V.Sahni et al, PRL 87), 113002 (2001), and references therein. of degenerate states with degeneracy g. We describe : (a) The transformation from a degenerate ground or excited pure state of the interacting system to an S (single Slater determinant) system of noninteracting Fermions with equivalent density, total energy, and ionization potential; (b) The construction of g S systems to reproduce a subspace ensemble density and energy. The density and energy are defined via the ensemble density matrix formed from the degenerate ground or excited pure states of the interacting system; (c) The construction of an S system with a g-fold degenerate highest occupied level, (which leads to g Slater determinants (C.A. Ullrich and W. Kohn, PRL 87), 093001(2001).), to reproduce the ground or excited state ensemble density and energy.

  5. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    SciTech Connect

    Sato, Shunsuke A.; Taniguchi, Yasutaka; Shinohara, Yasushi; Yabana, Kazuhiro

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.

  6. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory.

    PubMed

    Sato, Shunsuke A; Taniguchi, Yasutaka; Shinohara, Yasushi; Yabana, Kazuhiro

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.

  7. Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations.

    PubMed

    Ye, Baihua; Cramer, Nicolai

    2015-05-19

    Transition-metal catalyzed C-H functionalizations became a complementary and efficient bond-forming strategy over the past decade. In this respect, Cp*Rh(III) complexes have emerged as powerful catalysts for a broad spectrum of reactions giving access to synthetically versatile building blocks. Despite their high potential, the corresponding catalytic enantioselective transformations largely lag behind. The targeted transformations require all the remaining three coordination sites of the central rhodium atom of the catalyst. In consequence, the chiral information on a competent catalyst can only by stored in the cyclopentadienyl unit. The lack of suitable enabling chiral cyclopentadienyl (Cp(x)) ligands is the key hurdle preventing the development of such asymmetric versions. In this respect, an efficient set of chiral Cp(x) ligands useable with a broad variety of different transition-metals can unlock substantial application potential. This Account provides a description of our developments of two complementary classes of C2-symmetric Cp(x) derivatives. We have introduced a side- and back-wall concept to enforce chirality transfer onto the central metal atom. The first generation consists of a fused cyclohexane unit having pseudo axial methyl groups as chiral selectors and a rigidifying acetal moiety. The second ligand generation derives from an atrop-chiral biaryl-backbone and which possesses adjustable substituents at its 3,3'-positions. Both ligand families can be modulated in their respective steric bulk to adjust for the specific needs of the targeted application. The cyclopentadienes can be metalated under standard conditions. The corresponding chiral rhodium(I) ethylene complexes are relatively air and moisture and represent storable stable precatalysts for the targeted asymmetric Rh(III)-catalyzed C-H functionalizations. These complexes are then conveniently oxidized in situ by dibenzoyl peroxide to give the reactive Cp(x)Rh(III)(OBz)2 species. For

  8. Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell.

    PubMed

    Ding, Dahu; Lei, Zhongfang; Yang, Yingnan; Feng, Chuanping; Zhang, Zhenya

    2014-04-15

    A novel nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell (Ni(II)HCF(III)-WS) was developed to selectively remove cesium ion (Cs(+)) from aqueous solutions. This paper showed the first integral study on Cs(+) removal behavior and waste reduction analysis by using biomass adsorption material. The results indicated that the removal process was rapid and reached saturation within 2h. As a special characteristic of Ni(II)HCF(III)-WS, acidic condition was preferred for Cs(+) removal, which was useful for extending the application scope of the prepared biomass material in treating acidic radioactive liquid waste. The newly developed Ni(II)HCF(III)-WS could selectively remove Cs(+) though the coexisting ions (Na(+) and K(+) in this study) exhibited negative effects. In addition, approximately 99.8% (in volume) of the liquid waste was reduced by using Ni(II)HCF(III)-WS and furthermore 91.9% (in volume) of the spent biomass material (Cs-Ni(II)HCF(III)-WS) was reduced after incineration (at 500°C for 2h). Due to its relatively high distribution coefficient and significant volume reduction, Ni(II)HCF(III)-WS is expected to be a promising material for Cs(+) removal in practice.

  9. Evaluation of the Interactions between Water Extractable Soil Organic Matter and Metal Cations (Cu(II), Eu(III)) Using Excitation-Emission Matrix Combined with Parallel Factor Analysis

    PubMed Central

    Wei, Jing; Han, Lu; Song, Jing; Chen, Mengfang

    2015-01-01

    The objectives of this study were to evaluate the binding behavior of Cu(II) and Eu(III) with water extractable organic matter (WEOM) in soil, and assess the competitive effect of the cations. Excitation-emission matrix (EEM) fluorescence spectrometry was used in combination with parallel factor analysis (PARAFAC) to obtain four WEOM components: fulvic-like, humic-like, microbial degraded humic-like, and protein-like substances. Fluorescence titration experiments were performed to obtain the binding parameters of PARAFAC-derived components with Cu(II) and Eu(III). The conditional complexation stability constants (logKM) of Cu(II) with the four components ranged from 5.49 to 5.94, and the Eu(III) logKM values were between 5.26 to 5.81. The component-specific binding parameters obtained from competitive binding experiments revealed that Cu(II) and Eu(III) competed for the same binding sites on the WEOM components. These results would help understand the molecular binding mechanisms of Cu(II) and Eu(III) with WEOM in soil environment. PMID:26121300

  10. Excitation Functions of Helion-Induced Nuclear Reactions for the Production of the Medical Radioisotope 103Pd

    NASA Astrophysics Data System (ADS)

    Skakun, Ye.; Qaim, S. M.

    2005-05-01

    Excitation functions were measured by the stacked-foil technique for the reactions 100Ru(α,n)103Pd, 101Ru(α,2n)103Pd, 101Ru(3He,n)103Pd, and 102Ru(3He,2n)103Pd for incident energies up to 25 and 34 MeV for α-particles and 3He ions, respectively. The integral thick target yields of the product radionuclide 103Pd calculated from the excitation functions of the above-named four reactions amount to 960, 1050, 50, and 725 KBq/μAh, respectively, at the maximum energy of the incident particle. The data are compared with the results of statistical model calculations and other charged particle induced reaction investigations.

  11. Measurement of the {sup 208}Pb({sup 52}Cr,n){sup 259}Sg excitation function

    SciTech Connect

    Folden III, C. M.; Dragojevic, I.; Garcia, M. A.; Gates, J. M.; Nelson, S. L.; Hoffman, D. C.; Nitsche, H.; Duellmann, Ch. E.; Sudowe, R.; Gregorich, K. E.; Eichler, R.

    2009-02-15

    The excitation function for the {sup 208}Pb({sup 52}Cr,n){sup 259}Sg reaction has been measured using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The maximum cross section of 320{sub -100}{sup +110} pb is observed at a center-of-target laboratory-frame energy of 253.0 MeV. In total, 25 decay chains originating from {sup 259}Sg were observed and the measured decay properties are in good agreement with previous reports. In addition, a partial excitation function for the {sup 208}Pb({sup 52}Cr,2n){sup 258}Sg reaction was obtained, and an improved {sup 258}Sg half-life of 2.6{sub -0.4}{sup +0.6} ms was calculated by combining all available experimental data.

  12. Extension of the excitation functions of deuteron induced reactions on natSn up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Ditrói, F.; Takács, S.

    2017-01-01

    Using the stacked-foil activation technique, cross-sections of deuteron induced reactions on natural Sn targets were determined up to 50 MeV. Excitation functions are reported for the product nuclides 116mSb, 117Sb, 118mSb, 120mSb 122m+gSb, 124m+gSb, 110Sn(cum), 113m+gSn(cum), 117mSn, 110mIn(cum), 110gIn, 111m+gIn(cum), 113mIn, 114mIn 115mIn. Comparison with earlier published data at lower energy is discussed. For all excitation functions a theoretical calculation using the TALYS 1.6 (on-line TENDL-2015 library) code is shown.

  13. Excitation functions for {sup 208-211}Fr produced in the {sup 18}O+{sup 197}Au fusion reaction

    SciTech Connect

    Corradi, L.; Behera, B.R.; Fioretto, E.; Gadea, A.; Latina, A.; Stefanini, A.M.; Szilner, S.; Trotta, M.; Wu, Y.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Sagaidak, R.N.; Atutov, S.N.; Mai, B.; Stancari, G.; Tomassetti, L.; Mariotti, E.; Khanbekyan, A.; Veronesi, S.

    2005-01-01

    Excitation functions for {sup 208-211}Fr isotopes produced in the {sup 18}O+{sup 197}Au fusion-evaporation reaction have been measured at E{sub lab}=75-130 MeV via characteristic {alpha} decays by means of an electrostatic deflector and a semiconductor detector. Data have been compared with calculations giving barrier-passing (capture) cross sections and probabilities of the compound nucleus decay into different channels according to the standard statistical model.

  14. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    DTIC Science & Technology

    2016-06-03

    of Arsenic- Water Complexes Using Density Functional Theory June 3, 2016 Approved for public release; distribution is unlimited. L. Huang S.g...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic- Water Complexes Using... water molecules should be associated with response features that are intermediate between that of isolated molecules and that of a bulk system. DFT and

  15. Variation of excited-state dynamics in trifluoromethyl functionalized C 60 fullerenes

    SciTech Connect

    Park, Jaehong; Ramirez, Jessica J.; Clikeman, Tyler T.; Larson, Bryon W.; Boltalina, Olga V.; Strauss, Steven H.; Rumbles, Garry

    2016-01-01

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1--T1 intersystem crossing quantum yield (..phi..ISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1--S0 relaxation mechanism and negligible ..phi..ISC, therefore decreasing the average excited-state lifetime (..tau..avg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (..tau..avg approx. 17 us and 54 us for C60/4-1 and C60/6-2, respectively, whereas ..tau..avg approx. 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited- state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.

  16. Variation of excited-state dynamics in trifluoromethyl functionalized C60 fullerenes.

    PubMed

    Park, Jaehong; Ramirez, Jessica J; Clikeman, Tyler T; Larson, Bryon W; Boltalina, Olga V; Strauss, Steven H; Rumbles, Garry

    2016-08-17

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1 → T1 intersystem crossing quantum yield (ΦISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1 → S0 relaxation mechanism and negligible ΦISC, therefore decreasing the average excited-state lifetime (τavg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (τavg ≈ 17 μs and 54 μs for C60/4-1 and C60/6-2, respectively, whereas τavg ≈ 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited-state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.

  17. Functional Effects of Schizophrenia-Linked Genetic Variants on Intrinsic Single-Neuron Excitability: A Modeling Study

    PubMed Central

    Mäki-Marttunen, Tuomo; Halnes, Geir; Devor, Anna; Witoelar, Aree; Bettella, Francesco; Djurovic, Srdjan; Wang, Yunpeng; Einevoll, Gaute T.; Andreassen, Ole A.; Dale, Anders M.

    2015-01-01

    Background Recent genome-wide association studies have identified a large number of genetic risk factors for schizophrenia (SCZ) featuring ion channels and calcium transporters. For some of these risk factors, independent prior investigations have examined the effects of genetic alterations on the cellular electrical excitability and calcium homeostasis. In the present proof-of-concept study, we harnessed these experimental results for modeling of computational properties on layer V cortical pyramidal cells and identified possible common alterations in behavior across SCZ-related genes. Methods We applied a biophysically detailed multicompartmental model to study the excitability of a layer V pyramidal cell. We reviewed the literature on functional genomics for variants of genes associated with SCZ and used changes in neuron model parameters to represent the effects of these variants. Results We present and apply a framework for examining the effects of subtle single nucleotide polymorphisms in ion channel and calcium transporter-encoding genes on neuron excitability. Our analysis indicates that most of the considered SCZ-related genetic variants affect the spiking behavior and intracellular calcium dynamics resulting from summation of inputs across the dendritic tree. Conclusions Our results suggest that alteration in the ability of a single neuron to integrate the inputs and scale its excitability may constitute a fundamental mechanistic contributor to mental disease, alongside the previously proposed deficits in synaptic communication and network behavior. PMID:26949748

  18. Preparation of amino-Fe(III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper.

    PubMed

    Zhang, Ziyang; Liu, Huijuan; Wu, Liyuan; Lan, Huachun; Qu, Jiuhui

    2015-11-01

    Finding effective methods for simultaneous removal of antibiotics and heavy metals has attracted increasing concern since both of them are frequently detected in aquatic environments. In this study, a novel mesoporous silica adsorbent (Fe-N,N-SBA15) contained dual-functional groups was synthesized by first grafting di-amino groups on SBA15, and then coordinating Fe(III) onto the adsorbent. The adsorbent was then used in the synchronous elimination of tetracycline (TC) and Cu(II) from water, which was deeply studied by solution pH, kinetics, equilibriums in sole and binary systems. It was found that the adsorbent had high affinity for both TC and Cu(II) and synergistic effects on the adsorption were found. The solution pH remarkably affected the adsorption due to pH-dependent speciation of TC, Cu(II), TC-Cu(II) complex and the surface properties of the adsorbent. Increasing adsorption amount of TC and Cu(II) on the adsorbent could be attributed to the formation of complex TC-Cu(II) bridging or the stronger affinity of the adsorbent for the TC-Cu(II) complex than that for TC or Cu(II) separately. FT-IR and XPS studies revealed that Fe(III) and amino groups on the adsorbent were complexed with the amide of TC and Cu(II), respectively. The recyclabilities of the adsorbent were also evaluated and the Fe-N,N-SBA15 exhibited good reusability for TC and Cu(II) removal. This study shows guidelines and offers an innovative, effective method for the synergistic removal of antibiotics and heavy metals from aquatic environments.

  19. Saccharomyces cerevisiae possesses two functional homologues of Escherichia coli endonuclease III.

    PubMed

    You, H J; Swanson, R L; Doetsch, P W

    1998-04-28

    We previously identified two distinct genes of Saccharomyces cerevisiae redoxyendonuclease (SCR1 and SCR2) which possess a high degree of sequence similarity to Escherichia coli endonuclease III [Augeri, L., Lee, Y. M., Barton, A. B., and Doetsch, P. W. (1997) Biochemistry 36, 721-729]. The proteins encoded by SCR1 and SCR2 were overexpressed in E. coli and purified to apparent homogeneity. Both proteins recognized and cleaved DNA substrates containing dihydrouracil, 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine (FaPy-7-MeGua), and abasic sites but not DNA substrates containing uracil or 8-oxoguanine. Purified Scr2, but not Scr1, possesses spectral properties which indicate the presence of an iron-sulfur center. Kinetic parameters for Scr1 and Scr2 were determined by using an oligonucleotide containing a single dihydrouracil. Analysis of the deduced amino acid sequences of Scr1 and Scr2 suggests that Scr2 bears an iron-sulfur motif, while Scr1 does not have this motif. However, Scr1 has a long, positively charged N-terminus that could be a mitochondrial transit sequence. Targeted gene disruption of SCR1 and SCR2 produced a double mutant that had no detectable enzymatic activity against the dihydrouracil-containing substrate. Northern blot analysis showed that SCR1 was induced by menadione, but SCR2 was not. These results indicate that although Scr1 and Scr2 are both functional homologues of E. coli endonuclease III, they differ from each other with respect to their amino acid sequences and inducibility by DNA damaging agents, suggesting that their precise biological roles may be different.

  20. Double excitations and state-to-state transition dipoles in π-π∗ excited singlet states of linear polyenes: Time-dependent density-functional theory versus multiconfigurational methods

    NASA Astrophysics Data System (ADS)

    Mikhailov, Ivan A.; Tafur, Sergio; Masunov, Artëm E.

    2008-01-01

    The effect of static and dynamic electron correlation on the nature of excited states and state-to-state transition dipole moments is studied with a multideterminant wave function approach on the example of all-trans linear polyenes ( C4H6 , C6H8 , and C8H10 ). Symmetry-forbidden singlet nAg states were found to separate into three groups: purely single, mostly single, and mostly double excitations. The excited-state absorption spectrum is dominated by two bright transitions: 1Bu-2Ag and 1Bu-mAg , where mAg is the state, corresponding to two-electron excitation from the highest occupied to lowest unoccupied molecular orbital. The richness of the excited-state absorption spectra and strong mixing of the doubly excited determinants into lower- nAg states, reported previously at the complete active space self-consistent field level of theory, were found to be an artifact of the smaller active space, limited to π orbitals. When dynamic σ-π correlation is taken into account, single- and double-excited states become relatively well separated at least at the equilibrium geometry of the ground state. This electronic structure is closely reproduced within time-dependent density-functional theory (TD DFT), where double excitations appear in a second-order coupled electronic oscillator formalism and do not mix with the single excitations obtained within the linear response. An extension of TD DFT is proposed, where the Tamm-Dancoff approximation (TDA) is invoked after the linear response equations are solved (a posteriori TDA). The numerical performance of this extension is validated against multideterminant-wave-function and quadratic-response TD DFT results. It is recommended for use with a sum-over-states approach to predict the nonlinear optical properties of conjugated molecules.

  1. Steps for Shigella Gatekeeper Protein MxiC Function in Hierarchical Type III Secretion Regulation*

    PubMed Central

    Roehrich, A. Dorothea; Bordignon, Enrica; Mode, Selma; Shen, Da-Kang; Liu, Xia; Pain, Maria; Murillo, Isabel; Martinez-Argudo, Isabel; Sessions, Richard B.

    2017-01-01

    Type III secretion systems are complex nanomachines used for injection of proteins from Gram-negative bacteria into eukaryotic cells. Although they are assembled when the environmental conditions are appropriate, they only start secreting upon contact with a host cell. Secretion is hierarchical. First, the pore-forming translocators are released. Second, effector proteins are injected. Hierarchy between these protein classes is mediated by a conserved gatekeeper protein, MxiC, in Shigella. As its molecular mechanism of action is still poorly understood, we used its structure to guide site-directed mutagenesis and to dissect its function. We identified mutants predominantly affecting all known features of MxiC regulation as follows: secretion of translocators, MxiC and/or effectors. Using molecular genetics, we then mapped at which point in the regulatory cascade the mutants were affected. Analysis of some of these mutants led us to a set of electron paramagnetic resonance experiments that provide evidence that MxiC interacts directly with IpaD. We suggest how this interaction regulates a switch in its conformation that is key to its functions. PMID:27974466

  2. Theoretical characterization of the potential energy surface for H + N2 yields HN2. III - Calculations for the excited state surfaces

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1991-01-01

    Additional calculations which characterize potential energy sources (PESs) for the excited 3A-double-prime state, for a bound 2(2A-prime) state, for HN2(+), and for the Rydberg states associated with HN2(+). It is anticipated that these excited state PESs will be important in interpreting and designing experiments to characterize the ground state HN2 species via neutralized ion beam techniques.

  3. Management of Grade III Mobile Anterior Tooth in Function Using Endostabilizer – A Case Report

    PubMed Central

    Patil, Swapnil N

    2014-01-01

    Impact of implant dentistry is such that today very few dentists think about saving grade III mobile anterior teeth. A patient with grade III mobility of central incisor due to apical root resorption was treated by using 80 no.stainless steel ‘H’ file as endostabiliser and one year follow up was done. Endostabiliser reduced the mobility of grade III mobile teeth drastically, immediately after its placement. Tooth was absolutely asymptomatic throughout one year follow up. PMID:25654043

  4. Crossed-beams and theoretical studies of the O((3)P) + H(2)O --> HO(2) + H reaction excitation function.

    PubMed

    Brunsvold, Amy L; Zhang, Jianming; Upadhyaya, Hari P; Minton, Timothy K; Camden, Jon P; Paci, Jeffrey T; Schatz, George C

    2007-11-01

    Hyperthermal collisions of ground-state atomic oxygen with H2O have been investigated, with special attention paid to the H-atom elimination reaction, O((3)P) + H(2)O(X (1)A(1)) --> HO(2)((2)A') + H((2)S). This reaction was observed in a crossed-beams experiment, and the relative excitation function in the region around its energy threshold (50-80 kcal mol(-1)) was measured. Direct dynamics calculations were also performed at two levels of theory, B3LYP/6-31G(d,p) and MP2/6-31G(d,p). The shape of the B3LYP excitation function closely matches that of the experiment. The calculations provided a detailed description of the dynamics and revealed a striking dependence of the reaction mechanism on collision energy, where the cross section rises from a threshold near 60 kcal mol(-1) to a peak at approximately 115 kcal mol(-1) and then decreases at higher energies as secondary dissociation of the internally excited HO(2) product becomes dominant. The calculations show that the cross section for H-atom elimination (O + H(2)O --> HO(2) + H) is about 10-25% that of the H-atom abstraction (O + H(2)O --> OH + OH) cross section for collision energies in the 70-160 kcal mol(-1) range.

  5. Functional Characterization of Two Type III Secretion Systems of Vibrio parahaemolyticus

    PubMed Central

    Park, Kwon-Sam; Ono, Takahiro; Rokuda, Mitsuhiro; Jang, Myoung-Ho; Okada, Kazuhisa; Iida, Tetsuya; Honda, Takeshi

    2004-01-01

    Vibrio parahaemolyticus, a gram-negative marine bacterium, is a worldwide cause of food-borne gastroenteritis. Recent genome sequencing of the clinical V. parahaemolyticus strain RIMD2210633 identified two sets of genes for the type III secretion system (TTSS), TTSS1 and TTSS2. Here, we constructed a series of mutant strains from RIMD2210633 to determine whether the two putative TTSS apparatus are functional. The cytotoxic activity of mutant strains having a deletion in one of the TTSS1 genes was significantly decreased compared with that of the parent and TTSS2-related mutant strains. In an enterotoxicity assay with the rabbit ileal loop test, intestinal fluid accumulation was diminished by deletion of the TTSS2-related genes while TTSS1-related mutants caused a level of fluid accumulation similar to that of the parent. VopD, a protein encoded in the proximity of the TTSS1 region and a homologue of the Yersinia YopD, was secreted in a TTSS1-dependent manner. In contrast, VopP, which is encoded by a pathogenicity island on chromosome 2 and is homologous to the Yersinia YopP, was secreted via the TTSS2 pathway. These results provide evidence that V. parahaemolyticus TTSSs function as secretion systems and may have a role in the pathogenicity of the organism. This is the first report of functional TTSSs in Vibrio species. The presence of TTSS apparatus gene homologues was demonstrated in other vibrios, such as Vibrio alginolyticus, Vibrio harveyi, and Vibrio tubiashii, suggesting that some other vibrios also contain TTSS and that the TTSS has a role in protein secretion in those organisms during interaction with eukaryotic cells. PMID:15501799

  6. Role of physiological ClC-1 Cl− ion channel regulation for the excitability and function of working skeletal muscle

    PubMed Central

    Riisager, Anders; de Paoli, Frank Vincenzo; Chen, Tsung-Yu; Nielsen, Ole Bækgaard

    2016-01-01

    Electrical membrane properties of skeletal muscle fibers have been thoroughly studied over the last five to six decades. This has shown that muscle fibers from a wide range of species, including fish, amphibians, reptiles, birds, and mammals, are all characterized by high resting membrane permeability for Cl− ions. Thus, in resting human muscle, ClC-1 Cl− ion channels account for ∼80% of the membrane conductance, and because active Cl− transport is limited in muscle fibers, the equilibrium potential for Cl− lies close to the resting membrane potential. These conditions—high membrane conductance and passive distribution—enable ClC-1 to conduct membrane current that inhibits muscle excitability. This depressing effect of ClC-1 current on muscle excitability has mostly been associated with skeletal muscle hyperexcitability in myotonia congenita, which arises from loss-of-function mutations in the CLCN1 gene. However, given that ClC-1 must be drastically inhibited (∼80%) before myotonia develops, more recent studies have explored whether acute and more subtle ClC-1 regulation contributes to controlling the excitability of working muscle. Methods were developed to measure ClC-1 function with subsecond temporal resolution in action potential firing muscle fibers. These and other techniques have revealed that ClC-1 function is controlled by multiple cellular signals during muscle activity. Thus, onset of muscle activity triggers ClC-1 inhibition via protein kinase C, intracellular acidosis, and lactate ions. This inhibition is important for preserving excitability of working muscle in the face of activity-induced elevation of extracellular K+ and accumulating inactivation of voltage-gated sodium channels. Furthermore, during prolonged activity, a marked ClC-1 activation can develop that compromises muscle excitability. Data from ClC-1 expression systems suggest that this ClC-1 activation may arise from loss of regulation by adenosine nucleotides and

  7. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle.

    PubMed

    Pedersen, Thomas Holm; Riisager, Anders; de Paoli, Frank Vincenzo; Chen, Tsung-Yu; Nielsen, Ole Bækgaard

    2016-04-01

    Electrical membrane properties of skeletal muscle fibers have been thoroughly studied over the last five to six decades. This has shown that muscle fibers from a wide range of species, including fish, amphibians, reptiles, birds, and mammals, are all characterized by high resting membrane permeability for Cl(-) ions. Thus, in resting human muscle, ClC-1 Cl(-) ion channels account for ∼80% of the membrane conductance, and because active Cl(-) transport is limited in muscle fibers, the equilibrium potential for Cl(-) lies close to the resting membrane potential. These conditions-high membrane conductance and passive distribution-enable ClC-1 to conduct membrane current that inhibits muscle excitability. This depressing effect of ClC-1 current on muscle excitability has mostly been associated with skeletal muscle hyperexcitability in myotonia congenita, which arises from loss-of-function mutations in the CLCN1 gene. However, given that ClC-1 must be drastically inhibited (∼80%) before myotonia develops, more recent studies have explored whether acute and more subtle ClC-1 regulation contributes to controlling the excitability of working muscle. Methods were developed to measure ClC-1 function with subsecond temporal resolution in action potential firing muscle fibers. These and other techniques have revealed that ClC-1 function is controlled by multiple cellular signals during muscle activity. Thus, onset of muscle activity triggers ClC-1 inhibition via protein kinase C, intracellular acidosis, and lactate ions. This inhibition is important for preserving excitability of working muscle in the face of activity-induced elevation of extracellular K(+) and accumulating inactivation of voltage-gated sodium channels. Furthermore, during prolonged activity, a marked ClC-1 activation can develop that compromises muscle excitability. Data from ClC-1 expression systems suggest that this ClC-1 activation may arise from loss of regulation by adenosine nucleotides and

  8. 77 FR 76382 - Payout Requirements for Type III Supporting Organizations That Are Not Functionally Integrated

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ...This document contains both final regulations and temporary regulations regarding the requirements to qualify as a Type III supporting organization that is operated in connection with one or more supported organizations. The regulations reflect changes to the law made by the Pension Protection Act of 2006. The regulations will affect Type III supporting organizations and their supported......

  9. Portable vibration exciter

    NASA Technical Reports Server (NTRS)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  10. Relaxation Models of the (110) Zinc-Blende III-V Semiconductor Surfaces: Density Functional Study

    SciTech Connect

    Ye, H.; Chen, G.; Wu, Y.; Zhu, Y.; Wei, S. H.

    2008-11-01

    Clean III-V zinc-blende (110) surfaces are the most extensively studied semiconductor surface. For conventional III-V compounds such as GaAs and InP, the surface relaxation follows a bond rotation relaxation model. However, for III-nitrides recent study indicates that they follow a bond-constricting relaxation model. First-principles atom relaxation calculations are performed to explore the origin of the difference between the two groups of materials. By analyzing the individual shift trends and ionic properties of the top layer anions and cations, we attribute the difference between the conventional and nitride III-V compounds to the strong electronegativity of N, which leads to the s{sup 2}p{sup 3} pyramid bond angle to be larger than the ideal one in bulk (109.5{sup o}). The general trends of the atomic relaxation at the III-nitrides (110) surfaces are explained.

  11. Doa4 function in ILV budding is restricted through its interaction with the Vps20 subunit of ESCRT-III

    PubMed Central

    Richter, Caleb M.; West, Matthew; Odorizzi, Greg

    2013-01-01

    Summary Assembly of the endosomal sorting complex required for transport (ESCRT)-III executes the formation of intralumenal vesicles (ILVs) at endosomes. Repeated cycles of ESCRT-III function requires disassembly of the complex by Vps4, an ATPase with a microtubule interaction and trafficking (MIT) domain that binds MIT-interacting motifs (MIM1 or MIM2) in ESCRT-III subunits. We identified a putative MIT domain at the N-terminus of Doa4, which is the ubiquitin (Ub) hydrolase in Saccharomyces cerevisiae that deubiquitinates ILV cargo proteins. The Doa4 N-terminus is predicted to have the α-helical structure common to MIT domains, and it binds directly to a MIM1-like sequence in the Vps20 subunit of ESCRT-III. Disrupting this interaction does not prevent endosomal localization of Doa4 but enhances the defect in ILV cargo protein deubiquitination observed in cells lacking Bro1, which is an ESCRT-III effector protein that stimulates Doa4 catalytic activity. Deletion of the BRO1 gene (bro1Δ) blocks ILV budding, but ILV budding was rescued upon disrupting the interaction between Vps20 and Doa4. This rescue in ILV biogenesis requires Doa4 expression but is independent of its Ub hydrolase activity. Thus, binding of Vps20 to the Doa4 N-terminus inhibits a non-catalytic function of Doa4 that promotes ILV formation. PMID:23444383

  12. Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function

    PubMed Central

    Liu, Yang; Kretz, Colin A.; Maeder, Morgan L.; Richter, Catherine E.; Tsao, Philip; Vo, Andy H.; Huarng, Michael C.; Rode, Thomas; Hu, Zhilian; Mehra, Rohit; Olson, Steven T.; Joung, J. Keith

    2014-01-01

    Pathologic blood clotting is a leading cause of morbidity and mortality in the developed world, underlying deep vein thrombosis, myocardial infarction, and stroke. Genetic predisposition to thrombosis is still poorly understood, and we hypothesize that there are many additional risk alleles and modifying factors remaining to be discovered. Mammalian models have contributed to our understanding of thrombosis, but are low throughput and costly. We have turned to the zebrafish, a tool for high-throughput genetic analysis. Using zinc finger nucleases, we show that disruption of the zebrafish antithrombin III (at3) locus results in spontaneous venous thrombosis in larvae. Although homozygous mutants survive into early adulthood, they eventually succumb to massive intracardiac thrombosis. Characterization of null fish revealed disseminated intravascular coagulation in larvae secondary to unopposed thrombin activity and fibrinogen consumption, which could be rescued by both human and zebrafish at3 complementary DNAs. Mutation of the human AT3-reactive center loop abolished the ability to rescue, but the heparin-binding site was dispensable. These results demonstrate overall conservation of AT3 function in zebrafish, but reveal developmental variances in the ability to tolerate excessive clot formation. The accessibility of early zebrafish development will provide unique methods for dissection of the underlying mechanisms of thrombosis. PMID:24782510

  13. [Cloning, expression and functional identification of a type III polyketide synthase gene from Huperzia serrata].

    PubMed

    Ye, Jin-cui; Zhang, Ping; Sun, Jie-yin; Guo, Chao-tan; Chen, Guo-shen; Abe, Ikuro; Noguchi, Hiroshi

    2011-10-01

    A cDNA encoding novel type III polyketide synthase (PKS) was cloned and sequenced from young leaves of Chinese club moss Huperzia serrata (Thunb.) Trev. by RT-PCR using degenerated primers based on the conserved sequences of known CHSs, and named as H. serrata PKS2. The terminal sequences of cDNA were obtained by the 3'- and 5'-RACE method. The full-length cDNA of H. serrata PKS2 contained a 1212 bp open reading frame encoding a 46.4 kDa protein with 404 amino acids. The deduced amino acid sequence of H. serrata PKS2 showed 50%-66% identities to those of other chalcone synthase super family enzymes of plant origin. The recombinant H. serrata PKS2 was functionally expressed in Escherichia coli with an additional hexahistidine tag at the N-terminus and showed unusually versatile catalytic potency to produce various aromatic tetraketides, including chalcones, benzophenones, phloroglucinols, and acridones. In particular, the enzyme accepted bulky starter substrates N-methylanthraniloyl-CoA, and carried out three condensations with malonyl-CoA to produce 1, 3-dihydroxy-N-methylacridone. Interestingly, H. serrata PKS2 lacks most of the consensus active site sequences with acridone synthase from Ruta graveolens (Rutaceae).

  14. Structural and Functional Characterization of the Bacterial Type III Secretion Export Apparatus

    PubMed Central

    Brunner, Matthias J.; Yan, Jun; Franz-Wachtel, Mirita; Schärfe, Charlotta; Grin, Iwan; Galán, Jorge E.; Macek, Boris; Marlovits, Thomas C.; Robinson, Carol V.

    2016-01-01

    Bacterial type III protein secretion systems inject effector proteins into eukaryotic host cells in order to promote survival and colonization of Gram-negative pathogens and symbionts. Secretion across the bacterial cell envelope and injection into host cells is facilitated by a so-called injectisome. Its small hydrophobic export apparatus components SpaP and SpaR were shown to nucleate assembly of the needle complex and to form the central “cup” substructure of a Salmonella Typhimurium secretion system. However, the in vivo placement of these components in the needle complex and their function during the secretion process remained poorly defined. Here we present evidence that a SpaP pentamer forms a 15 Å wide pore and provide a detailed map of SpaP interactions with the export apparatus components SpaQ, SpaR, and SpaS. We further refine the current view of export apparatus assembly, consolidate transmembrane topology models for SpaP and SpaR, and present intimate interactions of the periplasmic domains of SpaP and SpaR with the inner rod protein PrgJ, indicating how export apparatus and needle filament are connected to create a continuous conduit for substrate translocation. PMID:27977800

  15. Type III phosphatidylinositol 4 kinases: structure, function, regulation, signalling and involvement in disease.

    PubMed

    Dornan, Gillian L; McPhail, Jacob A; Burke, John E

    2016-02-01

    Many important cellular functions are regulated by the selective recruitment of proteins to intracellular membranes mediated by specific interactions with lipid phosphoinositides. The enzymes that generate lipid phosphoinositides therefore must be properly positioned and regulated at their correct cellular locations. Phosphatidylinositol 4 kinases (PI4Ks) are key lipid signalling enzymes, and they generate the lipid species phosphatidylinositol 4-phosphate (PI4P), which plays important roles in regulating physiological processes including membrane trafficking, cytokinesis and organelle identity. PI4P also acts as the substrate for the generation of the signalling phosphoinositides phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). PI4Ks also play critical roles in a number of pathological processes including mediating replication of a number of pathogenic RNA viruses, and in the development of the parasite responsible for malaria. Key to the regulation of PI4Ks is their regulation by a variety of both host and viral protein-binding partners. We review herein our current understanding of the structure, regulatory interactions and role in disease of the type III PI4Ks.

  16. Two-photon excited fluorescence of intrinsic fluorophores enables label-free assessment of adipose tissue function

    NASA Astrophysics Data System (ADS)

    Alonzo, Carlo Amadeo; Karaliota, Sevasti; Pouli, Dimitra; Liu, Zhiyi; Karalis, Katia P.; Georgakoudi, Irene

    2016-08-01

    Current methods for evaluating adipose tissue function are destructive or have low spatial resolution. These limit our ability to assess dynamic changes and heterogeneous responses that occur in healthy or diseased subjects, or during treatment. Here, we demonstrate that intrinsic two-photon excited fluorescence enables functional imaging of adipocyte metabolism with subcellular resolution. Steady-state and time-resolved fluorescence from intracellular metabolic co-factors and lipid droplets can distinguish the functional states of excised white, brown, and cold-induced beige fat. Similar optical changes are identified when white and brown fat are assessed in vivo. Therefore, these studies establish the potential of non-invasive, high resolution, endogenous contrast, two-photon imaging to identify distinct adipose tissue types, monitor their functional state, and characterize heterogeneity of induced responses.

  17. Pathophysiology of functional heartburn based on Rome III criteria in Japanese patients

    PubMed Central

    Tamura, Yasuhiro; Funaki, Yasushi; Izawa, Shinya; Iida, Akihito; Yamaguchi, Yoshiharu; Adachi, Kazunori; Ogasawara, Naotaka; Sasaki, Makoto; Kaneko, Hiroshi; Kasugai, Kunio

    2015-01-01

    AIM: To investigate the pathophysiology of functional heartburn (FH) in Japanese patients. METHODS: A total of 111 patients with proton pump inhibitor (PPI)-refractory non-erosive gastroesophageal reflux disease underwent intraesophageal pressure testing and 24-h multichannel intraluminal impedance-pH (24MII-pH) testing. The patients also completed several questionnaires while they were receiving the PPI treatment, including the questionnaire for the diagnosis of reflux disease (QUEST), the frequency scale for the symptoms of gastroesophageal reflux disease (FSSG), the gastrointestinal symptoms rating scale (GSRS), SF-36, and the Cornell Medical Index (CMI). The subjects were classified into FH and endoscopy-negative reflux disease (ENRD) groups based on the Rome III criteria. RESULTS: Thirty-three patients with esophageal motility disorder were excluded from this study, while 22 patients with abnormal esophageal acid exposure time (pH-POS) and 34 with hypersensitive esophagus (HE) were included in the ENRD group. The FH group included 22 patients with no reflux involvement. Sex, age, and body mass index did not differ significantly between the groups. The mean SF-36 values were < 50 (normal) for all scales in these groups, with no significant differences. The GSRS scores in these groups were not different and showed overlap with other gastrointestinal symptoms. The QUEST and the FSSG scores did not differ significantly between the groups. Neuroticism was diagnosed using the CMI questionnaire in 17 of the 78 included subjects within the pH-POS (n = 4), HE (n = 8), and FH (n = 5) groups, with no significant differences. CONCLUSION: Clinical characteristics of the FH and PPI-refractory ENRD groups were similar. Therefore, esophageal function should be examined via manometry and 24MII-pH testing to differentiate between them. PMID:25945016

  18. Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc.

    PubMed

    Leo-Macias, Alejandra; Agullo-Pascual, Esperanza; Sanchez-Alonso, Jose L; Keegan, Sarah; Lin, Xianming; Arcos, Tatiana; Feng-Xia-Liang; Korchev, Yuri E; Gorelik, Julia; Fenyö, David; Rothenberg, Eli; Rothenberg, Eli; Delmar, Mario

    2016-01-20

    Intercellular adhesion and electrical excitability are considered separate cellular properties. Studies of myelinated fibres, however, show that voltage-gated sodium channels (VGSCs) aggregate with cell adhesion molecules at discrete subcellular locations, such as the nodes of Ranvier. Demonstration of similar macromolecular organization in cardiac muscle is missing. Here we combine nanoscale-imaging (single-molecule localization microscopy; electron microscopy; and 'angle view' scanning patch clamp) with mathematical simulations to demonstrate distinct hubs at the cardiac intercalated disc, populated by clusters of the adhesion molecule N-cadherin and the VGSC NaV1.5. We show that the N-cadherin-NaV1.5 association is not random, that NaV1.5 molecules in these clusters are major contributors to cardiac sodium current, and that loss of NaV1.5 expression reduces intercellular adhesion strength. We speculate that adhesion/excitability nodes are key sites for crosstalk of the contractile and electrical molecular apparatus and may represent the structural substrate of cardiomyopathies in patients with mutations in molecules of the VGSC complex.

  19. Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc

    PubMed Central

    Leo-Macias, Alejandra; Agullo-Pascual, Esperanza; Sanchez-Alonso, Jose L.; Keegan, Sarah; Lin, Xianming; Arcos, Tatiana; Feng-Xia-Liang; Korchev, Yuri E.; Gorelik, Julia; Fenyö, David; Rothenberg, Eli; Delmar, Mario

    2016-01-01

    Intercellular adhesion and electrical excitability are considered separate cellular properties. Studies of myelinated fibres, however, show that voltage-gated sodium channels (VGSCs) aggregate with cell adhesion molecules at discrete subcellular locations, such as the nodes of Ranvier. Demonstration of similar macromolecular organization in cardiac muscle is missing. Here we combine nanoscale-imaging (single-molecule localization microscopy; electron microscopy; and ‘angle view' scanning patch clamp) with mathematical simulations to demonstrate distinct hubs at the cardiac intercalated disc, populated by clusters of the adhesion molecule N-cadherin and the VGSC NaV1.5. We show that the N-cadherin-NaV1.5 association is not random, that NaV1.5 molecules in these clusters are major contributors to cardiac sodium current, and that loss of NaV1.5 expression reduces intercellular adhesion strength. We speculate that adhesion/excitability nodes are key sites for crosstalk of the contractile and electrical molecular apparatus and may represent the structural substrate of cardiomyopathies in patients with mutations in molecules of the VGSC complex. PMID:26787348

  20. Many-body Green's function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide.

    PubMed

    Faber, C; Boulanger, P; Duchemin, I; Attaccalite, C; Blase, X

    2013-11-21

    We study within the many-body Green's function GW and Bethe-Salpeter formalisms the excitation energies of a paradigmatic model dipeptide, focusing on the four lowest-lying local and charge-transfer excitations. Our GW calculations are performed at the self-consistent level, updating first the quasiparticle energies, and further the single-particle wavefunctions within the static Coulomb-hole plus screened-exchange approximation to the GW self-energy operator. Important level crossings, as compared to the starting Kohn-Sham LDA spectrum, are identified. Our final Bethe-Salpeter singlet excitation energies are found to agree, within 0.07 eV, with CASPT2 reference data, except for one charge-transfer state where the discrepancy can be as large as 0.5 eV. Our results agree best with LC-BLYP and CAM-B3LYP calculations with enhanced long-range exchange, with a 0.1 eV mean absolute error. This has been achieved employing a parameter-free formalism applicable to metallic or insulating extended or finite systems.

  1. Hydration effects on the barrier function of stratum corneum lipids: Raman analysis of ceramides 2, III and 5.

    PubMed

    Tfayli, Ali; Jamal, Dima; Vyumvuhore, Raoul; Manfait, Michel; Baillet-Guffroy, Arlette

    2013-11-07

    The stratum corneum is the outermost layer of the skin; its barrier function is highly dependent on the composition and the structure as well as the organization of lipids in its extracellular matrix. Ceramides, free fatty acids and cholesterol represent the major lipid classes present in this matrix. They play an important role in maintaining the normal hydration levels required for the normal physiological function. Despite the advancement in the understanding of the structure, composition and the function of the stratum corneum (SC), the concern of "dry skin" remains important in dermatology and care research. Most studies focus on the quantification of water in the skin using different techniques including Raman spectroscopy, while the studies that investigate the effect of hydration on the quality of the barrier function of the skin are limited. Raman spectroscopy provides structural, conformational and organizational information that could help elucidate the effect of hydration on the barrier function of the skin. In order to assess the effect of relative humidity on the lipid barrier function; we used Raman spectroscopy to follow-up the evolution of the conformation and the organization of three synthetic ceramides (CER) differing from each other by the nature of their polar heads (sphingosine, phytosphingosine and α hydroxyl sphingosine), CER 2, III and 5 respectively. CER III and 5 showed a more compact and ordered organization with stronger polar interactions at intermediate relative humidity values, while CER 2 showed opposite tendencies to those observed with CER III and 5.

  2. Exact ensemble density functional theory for excited states in a model system: Investigating the weight dependence of the correlation energy

    NASA Astrophysics Data System (ADS)

    Deur, Killian; Mazouin, Laurent; Fromager, Emmanuel

    2017-01-01

    Ensemble density functional theory (eDFT) is an exact time-independent alternative to time-dependent DFT (TD-DFT) for the calculation of excitation energies. Despite its formal simplicity and advantages in contrast to TD-DFT (multiple excitations, for example, can be easily taken into account in an ensemble), eDFT is not standard, which is essentially due to the lack of reliable approximate exchange-correlation (x c ) functionals for ensembles. Following Smith et al. [Phys. Rev. B 93, 245131 (2016), 10.1103/PhysRevB.93.245131], we propose in this work to construct an exact eDFT for the nontrivial asymmetric Hubbard dimer, thus providing more insight into the weight dependence of the ensemble x c energy in various correlation regimes. For that purpose, an exact analytical expression for the weight-dependent ensemble exchange energy has been derived. The complementary exact ensemble correlation energy has been computed by means of Legendre-Fenchel transforms. Interesting features like discontinuities in the ensemble x c potential in the strongly correlated limit have been rationalized by means of a generalized adiabatic connection formalism. Finally, functional-driven errors induced by ground-state density-functional approximations have been studied. In the strictly symmetric case or in the weakly correlated regime, combining ensemble exact exchange with ground-state correlation functionals gives better ensemble energies than when calculated with the ground-state exchange-correlation functional. However, when approaching the asymmetric equiensemble in the strongly correlated regime, the former approximation leads to highly curved ensemble energies with negative slope which is unphysical. Using both ground-state exchange and correlation functionals gives much better results in that case. In fact, exact ensemble energies are almost recovered in some density domains. The analysis of density-driven errors is left for future work.

  3. Diabatic-At-Construction Method for Diabatic and Adiabatic Ground and Excited States Based on Multistate Density Functional Theory.

    PubMed

    Grofe, Adam; Qu, Zexing; Truhlar, Donald G; Li, Hui; Gao, Jiali

    2017-03-14

    We describe a diabatic-at-construction (DAC) strategy for defining diabatic states to determine the adiabatic ground and excited electronic states and their potential energy surfaces using the multistate density functional theory (MSDFT). The DAC approach differs in two fundamental ways from the adiabatic-to-diabatic (ATD) procedures that transform a set of preselected adiabatic electronic states to a new representation. (1) The DAC states are defined in the first computation step to form an active space, whose configuration interaction produces the adiabatic ground and excited states in the second step of MSDFT. Thus, they do not result from a similarity transformation of the adiabatic states as in the ATD procedure; they are the basis for producing the adiabatic states. The appropriateness and completeness of the DAC active space can be validated by comparison with experimental observables of the ground and excited states. (2) The DAC diabatic states are defined using the valence bond characters of the asymptotic dissociation limits of the adiabatic states of interest, and they are strictly maintained at all molecular geometries. Consequently, DAC diabatic states have specific and well-defined physical and chemical meanings that can be used for understanding the nature of the adiabatic states and their energetic components. Here we present results for the four lowest singlet states of LiH and compare them to a well-tested ATD diabatization method, namely the 3-fold way; the comparison reveals both similarities and differences between the ATD diabatic states and the orthogonalized DAC diabatic states. Furthermore, MSDFT can provide a quantitative description of the ground and excited states for LiH with multiple strongly and weakly avoided curve crossings spanning over 10 Å of interatomic separation.

  4. Multiphoton excitation microscopy of in vivo human skin. Functional and morphological optical biopsy based on three-dimensional imaging, lifetime measurements and fluorescence spectroscopy.

    PubMed

    Masters, B R; So, P T; Gratton, E

    1998-02-09

    Two-photon excitation microscopy has the potential as an effective, noninvasive, diagnostic tool for in vivo examination of human deep tissue structure at the subcellular level. By using infrared photons as the excitation source in two-photon microscopy, a significant improvement in penetration depth can be achieved because of the much lower tissue scattering and absorption coefficients in the infrared wavelengths. Two-photon absorption occurs primarily at the focal point and provides the physical basis for optical sectioning. Multiphoton excitation microscopy at 730 nm was used to image in vivo human skin autofluorescence from the surface to a depth of about 200 microns. The spectroscopic data suggest that reduced pyridine nucleotides, NAD(P)H, are the primary source of the skin autofluorescence using 730 nm excitation. This study demonstrates the use of multiphoton excitation microscopy for functional imaging of the metabolic states of in vivo human skin cells and provides a functional and morphological optical biopsy.

  5. Excitation functions for production of heavy actinides from interactions of /sup 16/O with /sup 249/Cf

    SciTech Connect

    Chasteler, R.M.; Henderson, R.A.; Lee, D.; Gregorich, K.E.; Nurmia, M.J.; Welch, R.B.; Hoffman, D.C.

    1987-11-01

    Excitation functions have been measured for the production of isotopes of Bk through Fm in bombardments of /sup 249/Cf with 90- to 150-MeV /sup 16/O ions. A comparison of the maxima of the mass-yield curves measured in this experiment with those for the reactions of /sup 18/O ions with /sup 249/Cf shows different shifts from those that have been measured for reactions of the /sup 16,18/O and /sup 20,22/Ne ion pairs with /sup 248/Cm. However, the shifts appear similar to those recently measured for reactions of these ion pairs with /sup 254/Es.

  6. A Convenient Approach To Synthesize o-Carborane-Functionalized Phosphorescent Iridium(III) Complexes for Endocellular Hypoxia Imaging.

    PubMed

    Li, Xiang; Tong, Xiao; Yan, Hong; Lu, Changsheng; Zhao, Qiang; Huang, Wei

    2016-11-21

    The structure-property relationship of carborane-modified iridium(III) complexes was investigated. Firstly, an efficient approach for the synthesis of o-carborane-containing pyridine ligands a-f in high yields was developed by utilizing stable and cheap B10 H10 (Et4 N)2 as the starting material. By using these ligands, iridium(III) complexes I-VII were efficiently prepared. In combination with DFT calculations, the photophysical and electrochemical properties of these complexes were studied. The hydrophilic nido-o-carborane-based iridium(III) complex VII showed the highest phosphorescence efficiency (abs. ϕP =0.48) among known water-soluble homoleptic cyclometalated iridium(III) complexes and long emission lifetime (τ=1.24 μs) in aqueous solution. Both of them are sensitive to O2 , and thus endocellular hypoxia imaging of complex VII was realized by time-resolved luminescence imaging (TRLI). This is the first example of applying TRLI in endocellular oxygen detection with a water-soluble nido-carborane functionalized iridium(III) complex.

  7. GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity

    PubMed Central

    Lindberg, Olle R.; McKinney, Andrew; Engler, Jane R.; Koshkakaryan, Gayane; Gong, Henry; Robinson, Aaron E.; Ewald, Andrew J.; Huillard, Emmanuelle; James, C. David; Molinaro, Annette M.; Shieh, Joseph T.; Phillips, Joanna J.

    2016-01-01

    Abnormal activation of the epidermal growth factor receptor (EGFR) due to a deletion of exons 2-7 of EGFR (EGFRvIII) is a common alteration in glioblastoma (GBM). While this alteration can drive gliomagenesis, tumors harboring EGFRvIII are heterogeneous. To investigate the role for EGFRvIII activation in tumor phenotype we used a neural progenitor cell-based murine model of GBM driven by EGFR signaling and generated tumor progenitor cells with high and low EGFRvIII activation, pEGFRHi and pEGFRLo. In vivo, ex vivo, and in vitro studies suggested a direct association between EGFRvIII activity and increased tumor cell proliferation, decreased tumor cell adhesion to the extracellular matrix, and altered progenitor cell phenotype. Time-lapse confocal imaging of tumor cells in brain slice cultures demonstrated blood vessel co-option by tumor cells and highlighted differences in invasive pattern. Inhibition of EGFR signaling in pEGFRHi promoted cell differentiation and increased cell-matrix adhesion. Conversely, increased EGFRvIII activation in pEGFRLo reduced cell-matrix adhesion. Our study using a murine model for GBM driven by a single genetic driver, suggests differences in EGFR activation contribute to tumor heterogeneity and aggressiveness. PMID:27738329

  8. Time-dependent density functional study of the electronic potential energy curves and excitation spectrum of the oxygen molecule.

    PubMed

    Guan, Jingang; Wang, Fan; Ziegler, Tom; Cox, Hazel

    2006-07-28

    Orbital energies, ionization potentials, molecular constants, potential energy curves, and the excitation spectrum of O(2) are calculated using time-dependent density functional theory (TDDFT) with Tamm-Dancoff approximation (TDA). The calculated negative highest occupied molecular orbital energy (-epsilon(HOMO)) is compared with the energy difference ionization potential for five exchange correlation functionals consisting of the local density approximation (LDAxc), gradient corrected Becke exchange plus Perdew correlation (B(88X)+P(86C)), gradient regulated asymptotic correction (GRAC), statistical average of orbital potentials (SAOP), and van Leeuwen and Baerends asymptotically correct potential (LB94). The potential energy curves calculated using TDDFT with the TDA at internuclear distances from 1.0 to 1.8 A are divided into three groups according to the electron configurations. The 1pi(u) (4)1pi(g) (2) electron configuration gives rise to the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) states; the 1pi(u) (3)1pi(g) (3) electron configuration gives rise to the c (1)Sigma(u) (-), C (3)Delta(u), and A (3)Sigma(u) (+) states; and the B (3)Sigma(u) (-), A (1)Delta(u), and f (1)Sigma(u) (+) states are determined by the mixing of two or more electron configurations. The excitation spectrum of the oxygen molecule, calculated with the aforementioned exchange correlation functionals, shows that the results are quite sensitive to the choice of functional. The LDAxc and the B(88X)+P(86C) functionals produce similar spectroscopic patterns with a single strongly absorbing band positioned at 19.82 and 19.72 eV, respectively, while the asymptotically corrected exchange correlation functionals of the SAOP and the LB94 varieties yield similar excitation spectra where the computed strongly absorbing band is located at 16.09 and 16.42 eV, respectively. However, all of the exchange correlation functionals yield only one strongly absorbing band (oscillator strength

  9. SERS Activity of Silver Nanoparticles Functionalized with A Desferrioxamine B Derived Ligand for FE(III) Binding and Sensing

    NASA Astrophysics Data System (ADS)

    Galinetto, P.; Taglietti, A.; Pasotti, L.; Pallavicini, P.; Dacarro, G.; Giulotto, E.; Grandi, M. S.

    2016-01-01

    We report the SERS activity of colloidal silver nanoparticles functionalized with a ligand, derived from the siderophore desferrioxamine B (desferal, DFO), an iron chelator widely used in biological and medical applications. The ligand was equipped with a sulfur-containing moiety to ensure optimal binding with silver surfaces. By means of Raman and SERS effects we monitored the route of material preparation from the modified DFO-S molecule to the colloidal aggregates. The results indicate that the functionalization of the chelating agent does not affect its binding ability towards Fe(III). The resulting functionalized silver nanoparticles are a promising SERS tag for operation in biological environments. The Fe-O stretching signature, arising when DFO-S grafted to silver nanoparticles binds Fe(III), could provide a tool for cation sensing in solution.

  10. Type III restriction is alleviated by bacteriophage (RecE) homologous recombination function but enhanced by bacterial (RecBCD) function.

    PubMed

    Handa, Naofumi; Kobayashi, Ichizo

    2005-11-01

    Previous works have demonstrated that DNA breaks generated by restriction enzymes stimulate, and are repaired by, homologous recombination with an intact, homologous DNA region through the function of lambdoid bacteriophages lambda and Rac. In the present work, we examined the effect of bacteriophage functions, expressed in bacterial cells, on restriction of an infecting tester phage in a simple plaque formation assay. The efficiency of plaque formation on an Escherichia coli host carrying EcoRI, a type II restriction system, is not increased by the presence of Rac prophage-presumably because, under the single-infection conditions of the plaque assay, a broken phage DNA cannot find a homologue with which to recombine. To our surprise, however, we found that the efficiency of plaque formation in the presence of a type III restriction system, EcoP1 or EcoP15, is increased by the bacteriophage-mediated homologous recombination functions recE and recT of Rac prophage. This type III restriction alleviation does not depend on lar on Rac, unlike type I restriction alleviation. On the other hand, bacterial RecBCD-homologous recombination function enhances type III restriction. These results led us to hypothesize that the action of type III restriction enzymes takes place on replicated or replicating DNA in vivo and leaves daughter DNAs with breaks at nonallelic sites, that bacteriophage-mediated homologous recombination reconstitutes an intact DNA from them, and that RecBCD exonuclease blocks this repair by degradation from the restriction breaks.

  11. A simplified relativistic time-dependent density-functional theory formalism for the calculations of excitation energies including spin-orbit coupling effect.

    PubMed

    Wang, Fan; Ziegler, Tom

    2005-10-15

    In the present work we have proposed an approximate time-dependent density-functional theory (TDDFT) formalism to deal with the influence of spin-orbit coupling effect on the excitation energies for closed-shell systems. In this formalism scalar relativistic TDDFT calculations are first performed to determine the lowest single-group excited states and the spin-orbit coupling operator is applied to these single-group excited states to obtain the excitation energies with spin-orbit coupling effects included. The computational effort of the present method is much smaller than that of the two-component TDDFT formalism and this method can be applied to medium-size systems containing heavy elements. The compositions of the double-group excited states in terms of single-group singlet and triplet excited states are obtained automatically from the calculations. The calculated excitation energies based on the present formalism show that this formalism affords reasonable excitation energies for transitions not involving 5p and 6p orbitals. For transitions involving 5p orbitals, one can still obtain acceptable results for excitations with a small truncation error, while the formalism will fail for transitions involving 6p orbitals, especially 6p1/2 spinors.

  12. Cobalt(III)-Catalyzed Synthesis of Indazoles and Furans by C–H Bond Functionalization/Addition/Cyclization Cascades

    PubMed Central

    2015-01-01

    The development of operationally straightforward and cost-effective routes for the assembly of heterocycles from simple inputs is important for many scientific endeavors, including pharmaceutical, agrochemical, and materials research. In this article we describe the development of a new air-stable cationic Co(III) catalyst for convergent, one-step benchtop syntheses of N-aryl-2H-indazoles and furans by C–H bond additions to aldehydes followed by in situ cyclization and aromatization. Only a substoichiometric amount of AcOH is required as an additive that is both low-cost and convenient to handle. The syntheses of these heterocycles are the first examples of Co(III)-catalyzed additions to aldehydes, and reactions are demonstrated for a variety of aromatic, heteroaromatic, and aliphatic derivatives. The syntheses of both N-aryl-2H-indazoles and furans have been performed on 20 mmol scales and should be readily applicable to larger scales. The reported heterocycle syntheses also demonstrate the use of directing groups that have not previously been applied to Co(III)-catalyzed C–H bond functionalizations. Additionally, the synthesis of furans demonstrates the first example of Co(III)-catalyzed functionalization of alkenyl C–H bonds. PMID:25494296

  13. Identification and functional study of type III-A CRISPR-Cas systems in clinical isolates of Staphylococcus aureus.

    PubMed

    Cao, Linyan; Gao, Chun-Hui; Zhu, Jiade; Zhao, Liping; Wu, Qingfa; Li, Min; Sun, Baolin

    2016-12-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats [CRISPR]-CRISPR associated proteins [Cas]) system can provide prokaryote with immunity against invading mobile genetic elements (MGEs) such as phages and plasmids, which are the main sources of staphylococcal accessory genes. To date, only a few Staphylococcus aureus strains containing CRISPR-Cas systems have been identified, but no functional study in these strains has been reported. In this study, 6 clinical isolates of S. aureus with type III-A CRISPR-Cas systems were identified, and whole-genome sequencing and functional study were conducted subsequently. Genome sequence analysis revealed a close linkage between the CRISPR-Cas system and the staphylococcal cassette chromosome mec (SCCmec) element in five strains. Comparative sequence analysis showed that the type III-A repeats are conserved within staphylococci, despite of the decreased conservation in trailer-end repeats. Highly homologous sequences of some spacers were identified in staphylococcal MGEs, and partially complementary sequences of spacers were mostly found in the coding strand of lytic regions in staphylococcal phages. Transformation experiments showed that S. aureus type III-A CRISPR-Cas system can specifically prevent plasmid transfer in a transcription-dependent manner. Base paring between crRNA and target sequence, the endoribonuclease, and the Csm complex were proved to be necessary for type III-A CRISPR-Cas immunity.

  14. Cobalt(III)-catalyzed synthesis of indazoles and furans by C-H bond functionalization/addition/cyclization cascades.

    PubMed

    Hummel, Joshua R; Ellman, Jonathan A

    2015-01-14

    The development of operationally straightforward and cost-effective routes for the assembly of heterocycles from simple inputs is important for many scientific endeavors, including pharmaceutical, agrochemical, and materials research. In this article we describe the development of a new air-stable cationic Co(III) catalyst for convergent, one-step benchtop syntheses of N-aryl-2H-indazoles and furans by C-H bond additions to aldehydes followed by in situ cyclization and aromatization. Only a substoichiometric amount of AcOH is required as an additive that is both low-cost and convenient to handle. The syntheses of these heterocycles are the first examples of Co(III)-catalyzed additions to aldehydes, and reactions are demonstrated for a variety of aromatic, heteroaromatic, and aliphatic derivatives. The syntheses of both N-aryl-2H-indazoles and furans have been performed on 20 mmol scales and should be readily applicable to larger scales. The reported heterocycle syntheses also demonstrate the use of directing groups that have not previously been applied to Co(III)-catalyzed C-H bond functionalizations. Additionally, the synthesis of furans demonstrates the first example of Co(III)-catalyzed functionalization of alkenyl C-H bonds.

  15. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the G-III Swept-Wing Structure

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    In support of the Adaptive Compliant Trailing Edge [ACTE] project at the NASA Armstrong Flight Research Center, displacement transfer functions were applied to the swept wing of a Gulfstream G-III airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) to obtain deformed shape predictions. Four strainsensing lines (two on the lower surface, two on the upper surface) were used to calculate the deformed shape of the G III wing under bending and torsion. There being an insufficient number of surface strain sensors, the existing G III wing box finite element model was used to generate simulated surface strains for input to the displacement transfer functions. The resulting predicted deflections have good correlation with the finite-element generated deflections as well as the measured deflections from the ground load calibration test. The convergence study showed that the displacement prediction error at the G III wing tip can be reduced by increasing the number of strain stations (for each strain-sensing line) down to a minimum error of l.6 percent at 17 strain stations; using more than 17 strain stations yielded no benefit because the error slightly increased to 1.9% when 32 strain stations were used.

  16. Complex Function for SicA, a Salmonella enterica Serovar Typhimurium Type III Secretion-Associated Chaperone

    PubMed Central

    Tucker, Stephanie C.; Galán, Jorge E.

    2000-01-01

    Salmonella enterica encodes a type III secretion system within a pathogenicity island located at centisome 63 that is essential for virulence. All type III secretion systems require the function of a family of low-molecular-weight proteins that aid the secretion process by acting as partitioning factors and/or secretion pilots. One such protein is SicA, which is encoded immediately upstream of the type III secreted proteins SipB and SipC. We found that the absence of SicA results in the degradation of both SipB and SipC. Interestingly, in the absence of SipC, SipB was not only stable but also secreted at wild-type levels in a sicA mutant background, indicating that SicA is not required for SipB secretion. We also found that SicA is capable of binding both SipB and SipC. These results are consistent with a SicA role as a partitioning factor for SipB and SipC, thereby preventing their premature association and degradation. We also found that introduction of a sicA null mutation results in the lack of expression of SopE, another type III-secreted protein. Such an effect was shown to be transcriptional. Introduction of a loss-of-function sipC mutation into the sicA mutant background rescued sopE expression. These results indicate that the effect of sicA on sopE expression is indirect and most likely exerted through a regulatory factor(s) partitioned by SicA from SipC. These studies therefore describe a surprisingly complex function for the Salmonella enterica type III secretion-associated chaperone SicA. PMID:10735870

  17. Longest-Wavelength Electronic Excitations of Linear Cyanines: The Role of Electron Delocalization and of Approximations in Time-Dependent Density Functional Theory.

    PubMed

    Ii, Barry Moore; Autschbach, Jochen

    2013-11-12

    The lowest-energy/longest-wavelength electronic singlet excitation energies of linear cyanine dyes are examined, using time-dependent density functional theory (TDDFT) and selected wave function methods in comparison with literature data. Variations of the bond-length alternation obtained with different optimized structures produce small differences of the excitation energy in the limit of an infinite chain. Hybrid functionals with range-separated exchange are optimally 'tuned', which is shown to minimize the delocalization error (DE) in the cyanine π systems. Much unlike the case of charge-transfer excitations, small DEs are not strongly correlated with better performance. A representative cyanine is analyzed in detail. Compared with accurate benchmark data, TDDFT with 'pure' local functionals gives too high singlet excitation energies for all systems, but DFT-based ΔSCF calculations with a local functional severely underestimates the energies. TDDFT strongly overestimates the difference between singlet and triplet excitation energies. An analysis points to systematically much too small magnitudes of integrals from the DFT components of the exchange-correlation response kernel as the likely culprit. The findings support previous suggestions that the differential correlation energy between the ground and excited state is not correctly produced by TDDFT with most functionals.

  18. Cognitive Profiles of Adults with Asperger's Disorder, High-Functioning Autism, and Pervasive Developmental Disorder Not Otherwise Specified Based on the WAIS-III

    ERIC Educational Resources Information Center

    Kanai, Chieko; Tani, Masayuki; Hashimoto, Ryuichiro; Yamada, Takashi; Ota, Haruhisa; Watanabe, Hiromi; Iwanami, Akira; Kato, Nobumasa

    2012-01-01

    Little is known about the cognitive profiles of high-functioning Pervasive Developmental Disorders (PDD) in adults based on the Wechsler Intelligence Scale III (WAIS-III). We examined cognitive profiles of adults with no intellectual disability (IQ greater than 70), and in adults with Asperger's disorder (AS; n = 47), high-functioning autism (HFA;…

  19. Correlated wave functions for the ground and some excited states of the iron atom.

    PubMed

    Buendía, E; Gálvez, F J; Sarsa, A

    2006-04-21

    We study the states arising from the [Ar]4s(2)3d6 and [Ar]4s(1)3d7 configurations of iron atom with explicitly correlated wave functions. The variational wave function is the product of the Jastrow correlation factor times a model function obtained within the parametrized optimized effective potential framework. A systematic analysis of the dependence of both the effective potential and the correlation factor on the configuration and on the term is carried out. The ground state of both, the cation, Fe+, and anion, Fe-, are calculated with correlated wave functions and the ionization potential and the electron affinity are obtained.

  20. New excitation functions for proton induced reactions on natural titanium, nickel and copper up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2016-09-01

    New excitation functions for proton induced nuclear reactions on natural titanium, nickel and copper were measured, using the stacked-foil technique and gamma spectrometry, up to 70 MeV. The experimental cross sections were measured using the Ti-nat(p,x) V-48, Ni-nat(p,x) Ni-57 and Cu-nat(p,x) Zn-62,Co-56 monitor reactions recommended by the International Atomic Energy Agency (IAEA), depending on the investigated energy range. Data have been extracted for the Ti-nat(p,x) Sc-43,44m,46,47,48, V-48, K-42,43, Ni-nat(p,x) Ni-56,57, Co-55,56,57,58, Mn-52,54, Cu-nat(p,x) Cu-61,64, Ni-57, Co-56,57,58,60, Zn-62,65, Mn-54 reactions. Our results are discussed and compared to the existing ones as well as with the TALYS code version 1.6 calculations using default models. Our experimental data are in overall good agreement with the literature. TALYS is able to reproduce, in most cases, the experimental trend. Our new experimental results allow to expand our knowledge on these excitation functions, to confirm the existing trends and to give additional values on a large energy range. This work is in line with the new Coordinated Research Project (CRP) launched by the IAEA to expand the database of monitor reactions.

  1. Genetic Inhibition of CaMKII in Dorsal Striatal Medium Spiny Neurons Reduces Functional Excitatory Synapses and Enhances Intrinsic Excitability

    PubMed Central

    Klug, Jason R.; Mathur, Brian N.; Kash, Thomas L.; Wang, Hui-Dong; Matthews, Robert T.; Robison, A. J.; Anderson, Mark E.; Deutch, Ariel Y.; Lovinger, David M.; Colbran, Roger J.; Winder, Danny G.

    2012-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is abundant in striatal medium spiny neurons (MSNs). CaMKII is dynamically regulated by changes in dopamine signaling, as occurs in Parkinson's disease as well as addiction. Although CaMKII has been extensively studied in the hippocampus where it regulates excitatory synaptic transmission, relatively little is known about how it modulates neuronal function in the striatum. Therefore, we examined the impact of selectively overexpressing an EGFP-fused CaMKII inhibitory peptide (EAC3I) in striatal medium spiny neurons (MSNs) using a novel transgenic mouse model. EAC3I-expressing cells exhibited markedly decreased excitatory transmission, indicated by a decrease in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs). This decrease was not accompanied by changes in the probability of release, levels of glutamate at the synapse, or changes in dendritic spine density. CaMKII regulation of the AMPA receptor subunit GluA1 is a major means by which the kinase regulates neuronal function in the hippocampus. We found that the decrease in striatal excitatory transmission seen in the EAC3I mice is mimicked by deletion of GluA1. Further, while CaMKII inhibition decreased excitatory transmission onto MSNs, it increased their intrinsic excitability. These data suggest that CaMKII plays a critical role in setting the excitability rheostat of striatal MSNs by coordinating excitatory synaptic drive and the resulting depolarization response. PMID:23028932

  2. Genetic inhibition of CaMKII in dorsal striatal medium spiny neurons reduces functional excitatory synapses and enhances intrinsic excitability.

    PubMed

    Klug, Jason R; Mathur, Brian N; Kash, Thomas L; Wang, Hui-Dong; Matthews, Robert T; Robison, A J; Anderson, Mark E; Deutch, Ariel Y; Lovinger, David M; Colbran, Roger J; Winder, Danny G

    2012-01-01

    Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is abundant in striatal medium spiny neurons (MSNs). CaMKII is dynamically regulated by changes in dopamine signaling, as occurs in Parkinson's disease as well as addiction. Although CaMKII has been extensively studied in the hippocampus where it regulates excitatory synaptic transmission, relatively little is known about how it modulates neuronal function in the striatum. Therefore, we examined the impact of selectively overexpressing an EGFP-fused CaMKII inhibitory peptide (EAC3I) in striatal medium spiny neurons (MSNs) using a novel transgenic mouse model. EAC3I-expressing cells exhibited markedly decreased excitatory transmission, indicated by a decrease in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs). This decrease was not accompanied by changes in the probability of release, levels of glutamate at the synapse, or changes in dendritic spine density. CaMKII regulation of the AMPA receptor subunit GluA1 is a major means by which the kinase regulates neuronal function in the hippocampus. We found that the decrease in striatal excitatory transmission seen in the EAC3I mice is mimicked by deletion of GluA1. Further, while CaMKII inhibition decreased excitatory transmission onto MSNs, it increased their intrinsic excitability. These data suggest that CaMKII plays a critical role in setting the excitability rheostat of striatal MSNs by coordinating excitatory synaptic drive and the resulting depolarization response.

  3. Functional testing of space flight induced changes in tonic motor control by using limb-attached excitation and load devices

    NASA Astrophysics Data System (ADS)

    Gallasch, Eugen; Kozlovskaya, Inessa

    2007-02-01

    Long term space flights induce atrophy and contractile changes on postural muscles such effecting tonic motor control. Functional testing of tonic motor control structures is a challenge because of the difficulties to deliver appropriate test forces on crew members. In this paper we propose two approaches for functional testing by using limb attached loading devices. The first approach is based on a frequency and amplitude controllable moving magnet exciter to deliver sinusoidal test forces during limb postures. The responding limb deflection is recorded by an embedded accelerometer to obtain limb impedance. The second approach is based on elastic limb loading to evoke self-excited oscillations during arm extensions. Here the contraction force at the oscillation onset provides information about limb stiffness. The rationale for both testing approaches is based on Feldman's λ-model. An arm expander based on the second approach was probed in a 6-month MIR space flight. The results obtained from the load oscillations, confirmed that this device is well suited to capture space flight induced neuromuscular changes.

  4. Light-harvesting ytterbium(III)-porphyrinate-BODIPY conjugates: synthesis, excitation-energy transfer, and two-photon-induced near-infrared-emission studies.

    PubMed

    Zhang, Tao; Zhu, Xunjin; Wong, Wai-Kwok; Tam, Hoi-Lam; Wong, Wai-Yeung

    2013-01-07

    Based on a donor-acceptor framework, several conjugates have been designed and prepared in which an electron-donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron-acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower-energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the Yb(III) emission in the near-infrared (NIR) region with a quantum efficiency of up to 0.73% and a lifetime of around 40 μs. Moreover, these conjugates exhibited large two-photon-absorption cross-sections that ranged from 1048-2226 GM and strong two-photon-induced NIR emission.

  5. Sodium channel function and the excitability of human cutaneous afferents during ischaemia

    PubMed Central

    Lin, Cindy S-Y; Grosskreutz, Julian; Burke, David

    2002-01-01

    The changes in excitability of cutaneous afferents in the median nerve of healthy subjects were compared during 13 min of ischaemia and during 13 min continuous depolarizing DC. In addition, intermittent polarizing currents were used to compensate for or to accentuate the threshold change produced by ischaemia. Measurements were made alternately of the ischaemic (or current-induced) changes in threshold, refractoriness and, in some experiments, supernormality. The strength-duration time constant (τSD) was calculated from the thresholds to test stimuli of different duration. During ischaemia for 13 min, the threshold decreased steadily by 34 % over the initial 8 min, reached a plateau and increased slightly over the final few minutes. However, with continuous depolarizing DC, the threshold decreased linearly with the applied current, by 55 % with strong current ramps. Intermittent injection of hyperpolarizing DC was used to compensate for the ischaemic threshold change, but the compensating current increased progressively and did not reach a plateau as had occurred with the ischaemic threshold change. During ischaemia, τSD increased to a plateau, following the threshold more closely than the current required to compensate for threshold. Refractoriness, on the other hand, increased more steeply than the applied compensating current. There were similar discrepancies in the relationships of τSD and refractoriness to supernormality. The smaller-than-expected threshold change during ischaemia could result from limitations on the change in excitability produced by ischaemic metabolites acting on the gating and/or permeability of Na+ channels. Intermittent depolarizing DC was applied during the ischaemic depolarization to determine whether it would reduce or accentuate the discrepancies noted during ischaemia alone. The extent of the threshold change was greater than with ischaemia alone, and there was a greater change in τSD and a proportionately smaller change in

  6. Channels active in the excitability of nerves and skeletal muscles across the neuromuscular junction: basic function and pathophysiology.

    PubMed

    Goodman, Barbara E

    2008-06-01

    Ion channels are essential for the basic physiological function of excitable cells such as nerve, skeletal, cardiac, and smooth muscle cells. Mutations in genes that encode ion channels have been identified to cause various diseases and disorders known as channelopathies. An understanding of how individual ion channels are involved in the activation of motoneurons and their corresponding muscle cells is essential for interpreting basic neurophysiology in nerves, the heart, and skeletal and smooth muscle. This review article is intended to clarify how channels work in nerves, neuromuscular junctions, and muscle function and what happens when these channels are defective. Highlighting the human diseases that result from defective ion channels is likely to be interesting to students in helping them choose to learn about channel physiology.

  7. Enantioselective epoxidation of non-functionalized alkenes using carbohydrate based salen-Mn(III) complexes.

    PubMed

    Zhao, Shanshan; Zhao, Jiquan; Zhao, Dongmin

    2007-02-05

    Three new salen ligands with carbohydrate moieties were prepared from a salicylaldehyde derivative obtained by reaction of 1,2:5,6-di-O-isopropylidene-alpha-D-glucofuranose with 3-tert-butyl-5-(chloro-methyl)-2-hydroxybenzaldehyde. These ligands were coordinated with Mn(III) to give three chiral salen-Mn(III) complexes. The complexes were characterized and employed in the asymmetric epoxidation of unfunctionalized alkenes. Catalytic results showed that although there are no chiral groups on the diimine bridge, these complexes had some enantioselectivity, which indicates the carbohydrate moiety has an asymmetric inducing effect in the epoxidation reaction.

  8. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating

    PubMed Central

    Gudino, N.; Sonmez, M.; Yao, Z.; Baig, T.; Nielles-Vallespin, S.; Faranesh, A. Z.; Lederman, R. J.; Martens, M.; Balaban, R. S.; Hansen, M. S.; Griswold, M. A.

    2015-01-01

    Purpose: To provide a rapid method to reduce the radiofrequency (RF) E-field coupling and consequent heating in long conductors in an interventional MRI (iMRI) setup. Methods: A driving function for device heating (W) was defined as the integration of the E-field along the direction of the wire and calculated through a quasistatic approximation. Based on this function, the phases of four independently controlled transmit channels were dynamically changed in a 1.5 T MRI scanner. During the different excitation configurations, the RF induced heating in a nitinol wire immersed in a saline phantom was measured by fiber-optic temperature sensing. Additionally, a minimization of W as a function of phase and amplitude values of the different channels and constrained by the homogeneity of the RF excitation field (B1) over a region of interest was proposed and its results tested on the benchtop. To analyze the validity of the proposed method, using a model of the array and phantom setup tested in the scanner, RF fields and SAR maps were calculated through finite-difference time-domain (FDTD) simulations. In addition to phantom experiments, RF induced heating of an active guidewire inserted in a swine was also evaluated. Results: In the phantom experiment, heating at the tip of the device was reduced by 92% when replacing the body coil by an optimized parallel transmit excitation with same nominal flip angle. In the benchtop, up to 90% heating reduction was measured when implementing the constrained minimization algorithm with the additional degree of freedom given by independent amplitude control. The computation of the optimum phase and amplitude values was executed in just 12 s using a standard CPU. The results of the FDTD simulations showed similar trend of the local SAR at the tip of the wire and measured temperature as well as to a quadratic function of W, confirming the validity of the quasistatic approach for the presented problem at 64 MHz. Imaging and heating

  9. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating

    SciTech Connect

    Gudino, N.; Sonmez, M.; Nielles-Vallespin, S.; Faranesh, A. Z.; Lederman, R. J.; Balaban, R. S.; Hansen, M. S.; Yao, Z.; Baig, T.; Martens, M.; Griswold, M. A.

    2015-01-15

    Purpose: To provide a rapid method to reduce the radiofrequency (RF) E-field coupling and consequent heating in long conductors in an interventional MRI (iMRI) setup. Methods: A driving function for device heating (W) was defined as the integration of the E-field along the direction of the wire and calculated through a quasistatic approximation. Based on this function, the phases of four independently controlled transmit channels were dynamically changed in a 1.5 T MRI scanner. During the different excitation configurations, the RF induced heating in a nitinol wire immersed in a saline phantom was measured by fiber-optic temperature sensing. Additionally, a minimization of W as a function of phase and amplitude values of the different channels and constrained by the homogeneity of the RF excitation field (B{sub 1}) over a region of interest was proposed and its results tested on the benchtop. To analyze the validity of the proposed method, using a model of the array and phantom setup tested in the scanner, RF fields and SAR maps were calculated through finite-difference time-domain (FDTD) simulations. In addition to phantom experiments, RF induced heating of an active guidewire inserted in a swine was also evaluated. Results: In the phantom experiment, heating at the tip of the device was reduced by 92% when replacing the body coil by an optimized parallel transmit excitation with same nominal flip angle. In the benchtop, up to 90% heating reduction was measured when implementing the constrained minimization algorithm with the additional degree of freedom given by independent amplitude control. The computation of the optimum phase and amplitude values was executed in just 12 s using a standard CPU. The results of the FDTD simulations showed similar trend of the local SAR at the tip of the wire and measured temperature as well as to a quadratic function of W, confirming the validity of the quasistatic approach for the presented problem at 64 MHz. Imaging and heating

  10. Structure, Evolution, and Functions of Bacterial Type III Toxin-Antitoxin Systems

    PubMed Central

    Goeders, Nathalie; Chai, Ray; Chen, Bihe; Day, Andrew; Salmond, George P. C.

    2016-01-01

    Toxin-antitoxin (TA) systems are small genetic modules that encode a toxin (that targets an essential cellular process) and an antitoxin that neutralises or suppresses the deleterious effect of the toxin. Based on the molecular nature of the toxin and antitoxin components, TA systems are categorised into different types. Type III TA systems, the focus of this review, are composed of a toxic endoribonuclease neutralised by a non-coding RNA antitoxin in a pseudoknotted configuration. Bioinformatic analysis shows that the Type III systems can be classified into subtypes. These TA systems were originally discovered through a phage resistance phenotype arising due to a process akin to an altruistic suicide; the phenomenon of abortive infection. Some Type III TA systems are bifunctional and can stabilise plasmids during vegetative growth and sporulation. Features particular to Type III systems are explored here, emphasising some of the characteristics of the RNA antitoxin and how these may affect the co-evolutionary relationship between toxins and cognate antitoxins in their quaternary structures. Finally, an updated analysis of the distribution and diversity of these systems are presented and discussed. PMID:27690100

  11. Tailoring the optimal control cost function to a desired output: application to minimizing phase errors in short broadband excitation pulses.

    PubMed

    Skinner, Thomas E; Reiss, Timo O; Luy, Burkhard; Khaneja, Navin; Glaser, Steffen J

    2005-01-01

    The de facto standard cost function has been used heretofore to characterize the performance of pulses designed using optimal control theory. The freedom to choose new, creative quality factors designed for specific purposes is demonstrated. While the methodology has more general applicability, its utility is illustrated by comparison to a consistently chosen example--broadband excitation. The resulting pulses are limited to the same maximum RF amplitude used previously and tolerate the same variation in RF homogeneity deemed relevant for standard high-resolution NMR probes. Design criteria are unchanged: transformation of I(z)--> I(x) over resonance offsets of +/-20 kHz and RF variability of +/-5%, with a peak RF amplitude equal to 17.5 kHz. However, the new cost effectively trades a small increase in residual z magnetization for improved phase in the transverse plane. Compared to previous broadband excitation by optimized pulses (BEBOP), significantly shorter pulses are achievable, with only marginally reduced performance. Simulations transform I(z) to greater than 0.98 I(x), with phase deviations of the final magnetization less than 2 degrees, over the targeted ranges of resonance offset and RF variability. Experimental performance is in excellent agreement with the simulations.

  12. [Study of the "stimulus--excitation" function in the peripheral portion of the frog taste analyzer].

    PubMed

    Shmarov, D A; Samoĭlov, V O

    1979-04-01

    The intensity of glossopharyngeal nerve afferent discharges in the frog was studied during stimulation of gustatory receptors by caffeine, acetic acid, saccharose and sodium chloride ranging widely in the concentration changes. It was shown, that the function "stimulus-exitation" for the summary discharges in response on the coffeine and acetic acid was being logaryphmic. The character of off-effects dependence on the concentration of bitter and sour stimuli. Was proved to be the same. The curve "stimulus-exitation" for the saccharose was "S" shaped, but for the sodium chloride it might be described by the power function with the exponent equal 0,8.

  13. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems

    SciTech Connect

    Nakata, Hiroya; Fedorov, Dmitri G.; Yokojima, Satoshi; Kitaura, Kazuo; Sakurai, Minoru; Nakamura, Shinichiro

    2014-04-14

    We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer.

  14. Determination of excitation profile and dielectric function spatial nonuniformity in porous silicon by using WKB approach.

    PubMed

    He, Wei; Yurkevich, Igor V; Canham, Leigh T; Loni, Armando; Kaplan, Andrey

    2014-11-03

    We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.

  15. Density-functional theory study of vibrational relaxation of CO stretching excitation on Si(100)

    NASA Astrophysics Data System (ADS)

    Sakong, Sung; Kratzer, Peter; Han, Xu; Laß, Kristian; Weingart, Oliver; Hasselbrink, Eckart

    2008-11-01

    A first-principles theory is presented for calculating the lifetime of adsorbate vibrations on semiconductor or insulator surfaces, where dissipation of the vibrational energy to substrate phonons is the dominant relaxation mechanism. As an example, we study the stretching vibration of CO/Si(100), where a lifetime of 2.3 ns has been measured recently [K. Laß, X. Han, and E. Hasselbrink, J. Chem. Phys. 123, 051102 (2005)]. Density-functional theory (DFT) calculations for the local modes of the adsorbate, including their anharmonic coupling, are combined with force field calculations for the substrate phonons. Using the DFT-Perdew-Burke-Ernzerhof functional, we have determined the most stable adsorption site for CO on top of the lower Si atom of the Si surface dimer, the local normal modes of CO, and the multidimensional potential energy surface for the CO vibrations. The anharmonic stretching frequency of adsorbed CO obtained in DFT-PBE is 5% lower than the experimental value, while the B3LYP functional reproduces the CO stretching frequency with only 1.4% error. The coupling between the anharmonic vibrational modes and the phonon continuum is evaluated within first-order perturbation theory, and transition rates for the CO vibrational relaxation are calculated using Fermi's golden rule. The lifetime of 0.5 ns obtained with DFT-PBE is in qualitative agreement with experiment, while using vibrational frequencies from the B3LYP functional gives a much too long lifetime as compared to experiment. We find that the numerical value of the lifetime is very sensitive to the harmonic frequencies used as input to the calculation of the transition rate. An empirical adjustment of these frequencies yields excellent agreement between our theory and experiment. From these calculations we conclude that the most probable microscopic decay channel of the CO stretching mode is into four lateral shift/bending quanta and one phonon.

  16. Near and Above Ionization Electronic Excitations with Non-Hermitian Real-Time Time-Dependent Density Functional Theory

    SciTech Connect

    Lopata, Kenneth A.; Govind, Niranjan

    2013-11-12

    We present a real-time time-dependent density functional theory (RT-TDDFT) prescription for capturing near and post-ionization excitations based on non-Hermitian von Neumann density matrix propagation with atom-centered basis sets, tuned range-separated DFT, and a phenomenological imaginary molecular orbital-based absorbing potential to mimic coupling to the continuum. The computed extreme ultraviolet absorption spectra for acetylene (C2H2), water (H2O), and Freon 12 (CF2Cl2) agree well with electron energy loss spectroscopy (EELS) data over the range 0 to 50 eV. The absorbing potential removes spurious high energy finite basis artifacts, yielding correct bound to bound transitions, metastable (autoionizing) resonance states, and consistent overall absorption shapes.

  17. Investigation of excitation functions of alpha induced reactions on natXe: Production of the therapeutic radioisotope 131Cs

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Király, B.; Takács, S.; Ditrói, F.; Sonck, M.; Kovalev, S. F.; Ignatyuk, A. V.

    2009-03-01

    Excitation functions were measured for alpha-particle induced nuclear reactions on natural xenon leading to the formation of the radionuclides 129m(rel),129g,131m,131mg,133m,135m,137m,139cumBa and 129cum,130mg,132,134m,135m,136mg,138mgCs from the respective thresholds up to 40 MeV. No earlier experimental cross section data were found in the literature. The experimental data were compared to and analyzed with the results of the theoretical model code ALICE-IPPE. The feasibility of the production of the therapeutic radioisotope 131Cs by using gas target technology was investigated. Comparison of reactor and cyclotron production routes of 131Cs was given.

  18. Converging genetic and functional brain imaging evidence links neuronal excitability to working memory, psychiatric disease, and brain activity.

    PubMed

    Heck, Angela; Fastenrath, Matthias; Ackermann, Sandra; Auschra, Bianca; Bickel, Horst; Coynel, David; Gschwind, Leo; Jessen, Frank; Kaduszkiewicz, Hanna; Maier, Wolfgang; Milnik, Annette; Pentzek, Michael; Riedel-Heller, Steffi G; Ripke, Stephan; Spalek, Klara; Sullivan, Patrick; Vogler, Christian; Wagner, Michael; Weyerer, Siegfried; Wolfsgruber, Steffen; de Quervain, Dominique J-F; Papassotiropoulos, Andreas

    2014-03-05

    Working memory, the capacity of actively maintaining task-relevant information during a cognitive task, is a heritable trait. Working memory deficits are characteristic for many psychiatric disorders. We performed genome-wide gene set enrichment analyses in multiple independent data sets of young and aged cognitively healthy subjects (n = 2,824) and in a large schizophrenia case-control sample (n = 32,143). The voltage-gated cation channel activity gene set, consisting of genes related to neuronal excitability, was robustly linked to performance in working memory-related tasks across ages and to schizophrenia. Functional brain imaging in 707 healthy participants linked this gene set also to working memory-related activity in the parietal cortex and the cerebellum. Gene set analyses may help to dissect the molecular underpinnings of cognitive dimensions, brain activity, and psychopathology.

  19. Comparative assessment of density functional methods for evaluating essential parameters to simulate SERS spectra within the excited state energy gradient approximation

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Mozhdeh; Jamshidi, Zahra

    2016-05-01

    The prospect of challenges in reproducing and interpretation of resonance Raman properties of molecules interacting with metal clusters has prompted the present research initiative. Resonance Raman spectra based on the time-dependent gradient approximation are examined in the framework of density functional theory using different methods for representing the exchange-correlation functional. In this work the performance of different XC functionals in the prediction of ground state properties, excitation state energies, and gradients are compared and discussed. Resonance Raman properties based on time-dependent gradient approximation for the strongly low-lying charge transfer states are calculated and compared for different methods. We draw the following conclusions: (1) for calculating the binding energy and ground state geometry, dispersion-corrected functionals give the best performance in comparison to ab initio calculations, (2) GGA and meta GGA functionals give good accuracy in calculating vibrational frequencies, (3) excited state energies determined by hybrid and range-separated hybrid functionals are in good agreement with EOM-CCSD calculations, and (4) in calculating resonance Raman properties GGA functionals give good and reasonable performance in comparison to the experiment; however, calculating the excited state gradient by using the hybrid functional on the hessian of GGA improves the results of the hybrid functional significantly. Finally, we conclude that the agreement of charge-transfer surface enhanced resonance Raman spectra with experiment is improved significantly by using the excited state gradient approximation.

  20. Density functional theory calculations of III-N based semiconductors with mBJLDA

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi

    2017-02-01

    In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.

  1. Mitochondrial Reactive Oxygen Species Production in Excitable Cells: Modulators of Mitochondrial and Cell Function

    PubMed Central

    Camara, Amadou K. S.

    2009-01-01

    Abstract The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O2•−) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H2O2 inside and outside the mitochondrial matrix by superoxide dismutases. H2O2 is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O2•−. Cell ischemia, hypoxia, or toxins can result in excess O2•− production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H2O2 can combine with Fe2+ complexes to form reactive ferryl species (e.g., Fe(IV) = O•). In the presence of nitric oxide (NO•), O2•− forms the reactant peroxynitrite (ONOO−), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca2+ entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O2•− emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O2•− by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O2•− generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in

  2. OFF-ON-OFF Dual Emission at Visible and UV Wavelengths from Carbazole Functionalized β-Diketonate Europium(III) Complex.

    PubMed

    Imai, Yuki; Kawai, Tsuyoshi; Yuasa, Junpei

    2016-06-23

    This work demonstrates dual emission "OFF-ON-OFF" switching at visible and UV wavelengths of a carbazole functionalized β-diketone (LH) by a simple change of a europium(III) ion (Eu(3+)) concentration in the submicromolar concentration range. In the presence of 0.25 equiv of Eu(3+) (5 μM), LH forms a luminescent 4:1 complex ([Eu(3+)(L(-))4](-)) exhibiting dual emission at 357 and 613 nm resulting from the local excitation of the carbazole ring and ligand-sensitized luminescence from the Eu(3+)-β-diketonate unit, respectively. The 4:1 complex begins to convert into a 2:1 complex ([Eu(3+)(L(-))2](+)) via a 3:1 complex [Eu(3+)(L(-))3] above a molar ratio ([Eu(3+)]/[LH]) of 0.25, which provides the opportunity for binding of solvent methanol molecules to the vacant site of the Eu(3+) ion in the complex ([Eu(3+)(L(-))2(MeOH)n](+)). The OH oscillators of coordinated methanol molecules facilitate the nonradiative pathway of the Eu(3+) emission; hence the emission at 613 nm almost disappears above the 0.50 equivalent of Eu(3+) (11 μM), while the UV emission at 357 nm remains mostly constant over the whole concentration range.

  3. Investigation of effect of excitation frequency on electron energy distribution functions in low pressure radio frequency bounded plasmas

    SciTech Connect

    Bhattacharjee, Sudeep; Lafleur, Trevor; Charles, Christine; Boswell, Rod

    2011-07-15

    Particle in cell (PIC) simulations are employed to investigate the effect of excitation frequency {omega} on electron energy distribution functions (EEDFs) in a low pressure radio frequency (rf) discharge. The discharge is maintained over a length of 0.10 m, bounded by two infinite parallel plates, with the coherent heating field localized at the center of the discharge over a distance of 0.05 m and applied perpendicularly along the y and z directions. On varying the excitation frequency f (={omega}/2{pi}) in the range 0.01-50 MHz, it is observed that for f {<=} 5 MHz the EEDF shows a trend toward a convex (Druyvesteyn-like) distribution. For f > 5 MHz, the distribution resembles more like a Maxwellian with the familiar break energy visible in most of the distributions. A prominent ''hot tail'' is observed at f{>=} 20 MHz and the temperature of the tail is seen to decrease with further increase in frequency (e.g., at 30 MHz and 50 MHz). The mechanism for the generation of the ''hot tail'' is considered to be due to preferential transit time heating of energetic electrons as a function of {omega}, in the antenna heating field. There exists an optimum frequency for which high energy electrons are maximally heated. The occurrence of the Druyvesteyn-like distributions at lower {omega} may be explained by a balance between the heating of the electrons in the effective electric field and elastic cooling due to electron neutral collision frequency {nu}{sub en}; the transition being dictated by {omega} {approx} 2{pi}{nu}{sub en}.

  4. Calculations of Excitation Functions of Some Structural Fusion Materials for ( n, t) Reactions up to 50 MeV Energy

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.

    2010-06-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.

  5. Functional initiators for both ATRP and ROP catalyzed by iron(III) catalyst

    NASA Astrophysics Data System (ADS)

    Li, J.; Yang, C.; Cheng, C. J.

    2016-07-01

    α-Trichloromethyl benzyl alcohol was successfully used as initiators for both AGET ATRP and ROP reactions, which was catalyzed by only one non-toxic and very cheap catalyst iron(III) chloride. The corresponding polymers PMMA and PCL were characterized by 1H NMR, and their molecular mass were calculated as 7.53 kDa and 10.08 kDa, respectively.

  6. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    SciTech Connect

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  7. Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis

    SciTech Connect

    Im, Young Jun; Wollert, Thomas; Boura, Evzen; Hurley, James H.

    2009-09-08

    The ESCRT-II-ESCRT-III interaction coordinates the sorting of ubiquitinated cargo with the budding and scission of intralumenal vesicles into multivesicular bodies. The interacting regions of these complexes were mapped to the second winged helix domain of human ESCRT-II subunit VPS25 and the first helix of ESCRT-III subunit VPS20. The crystal structure of this complex was determined at 2.0 {angstrom} resolution. Residues involved in structural interactions explain the specificity of ESCRT-II for Vps20, and are critical for cargo sorting in vivo. ESCRT-II directly activates ESCRT-III-driven vesicle budding and scission in vitro via these structural interactions. VPS20 and ESCRT-II bind membranes with nanomolar affinity, explaining why binding to ESCRT-II is dispensable for the recruitment of Vps20 to membranes. Docking of the ESCRT-II-VPS202 supercomplex reveals a convex membrane-binding surface, suggesting a hypothesis for negative membrane curvature induction in the nascent intralumenal vesicle.

  8. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission.

    PubMed

    Christ, Liliane; Wenzel, Eva M; Liestøl, Knut; Raiborg, Camilla; Campsteijn, Coen; Stenmark, Harald

    2016-02-29

    Cytokinetic abscission, the final stage of cell division where the two daughter cells are separated, is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. The ESCRT-III subunit CHMP4B is a key effector in abscission, whereas its paralogue, CHMP4C, is a component in the abscission checkpoint that delays abscission until chromatin is cleared from the intercellular bridge. How recruitment of these components is mediated during cytokinesis remains poorly understood, although the ESCRT-binding protein ALIX has been implicated. Here, we show that ESCRT-II and the ESCRT-II-binding ESCRT-III subunit CHMP6 cooperate with ESCRT-I to recruit CHMP4B, with ALIX providing a parallel recruitment arm. In contrast to CHMP4B, we find that recruitment of CHMP4C relies predominantly on ALIX. Accordingly, ALIX depletion leads to furrow regression in cells with chromosome bridges, a phenotype associated with abscission checkpoint signaling failure. Collectively, our work reveals a two-pronged recruitment of ESCRT-III to the cytokinetic bridge and implicates ALIX in abscission checkpoint signaling.

  9. Structure and function of the ESCRT II-III interface in multivesicular body biogenesis

    PubMed Central

    Im, Young Jun; Wollert, Thomas; Boura, Evzen; Hurley, James H.

    2009-01-01

    SUMMARY The ESCRT-II-ESCRT-III interaction coordinates the sorting of ubiquitinated cargo with the budding and scission of intralumenal vesicles into multivesicular bodies. The interacting regions of these complexes were mapped to the second winged-helix domain of human ESCRT-II subunit VPS25 and the first helix of ESCRT-III subunit VPS20. The crystal structure of this complex was determined at 2.0 Å resolution. Residues involved in structural interactions explain the specificity of ESCRT-II for Vps20, and are critical for cargo sorting in vivo. ESCRT-II directly activates ESCRT-III driven vesicle budding and scission in vitro via these structural interactions. VPS20 and ESCRT-II bind membranes with nanomolar affinity, explaining why binding to ESCRT-II is dispensable for the recruitment of Vps20 to membranes. Docking of the ESCRT-II -VPS202 supercomplex reveals a convex membrane-binding surface, suggesting a hypothesis for negative membrane curvature induction in the nascent intralumenal vesicle. PMID:19686684

  10. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission

    PubMed Central

    Christ, Liliane; Wenzel, Eva M.; Liestøl, Knut; Raiborg, Camilla

    2016-01-01

    Cytokinetic abscission, the final stage of cell division where the two daughter cells are separated, is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. The ESCRT-III subunit CHMP4B is a key effector in abscission, whereas its paralogue, CHMP4C, is a component in the abscission checkpoint that delays abscission until chromatin is cleared from the intercellular bridge. How recruitment of these components is mediated during cytokinesis remains poorly understood, although the ESCRT-binding protein ALIX has been implicated. Here, we show that ESCRT-II and the ESCRT-II–binding ESCRT-III subunit CHMP6 cooperate with ESCRT-I to recruit CHMP4B, with ALIX providing a parallel recruitment arm. In contrast to CHMP4B, we find that recruitment of CHMP4C relies predominantly on ALIX. Accordingly, ALIX depletion leads to furrow regression in cells with chromosome bridges, a phenotype associated with abscission checkpoint signaling failure. Collectively, our work reveals a two-pronged recruitment of ESCRT-III to the cytokinetic bridge and implicates ALIX in abscission checkpoint signaling. PMID:26929449

  11. Genetic analysis of the Salmonella enterica type III secretion-associated ATPase InvC defines discrete functional domains.

    PubMed

    Akeda, Yukihiro; Galán, Jorge E

    2004-04-01

    An essential component of all type III secretion systems is a highly conserved ATPase that shares significant amino acid sequence similarity to the beta subunit of the F(0)F(1) ATPases and is thought to provide the energy for the secretion process. We have performed a genetic and functional analysis of InvC, the ATPase associated with the Salmonella enterica type III secretion system encoded within its pathogenicity island 1. Through a mutagenesis analysis, we have identified amino acid residues that are essential for specific activities of InvC, such as nucleotide hydrolysis and membrane binding. This has allowed us to define discrete domains of InvC that are specifically associated with different essential activities of this protein.

  12. Corticospinal excitability as a predictor of functional gains at the affected upper limb following robotic training in chronic stroke survivors

    PubMed Central

    Milot, Marie-Hélène; Spencer, Steven J.; Chan, Vicky; Allington, James P.; Klein, Julius; Chou, Cathy; Pearson-Fuhrhop, Kristin; Bobrow, James E.; Reinkensmeyer, David J.; Cramer, Steven C.

    2014-01-01

    Background Robotic training can help improve function of a paretic limb following a stroke, but individuals respond differently to the training. A predictor of functional gains might improve the ability to select those individuals more likely to benefit from robot based therapy. Studies evaluating predictors of functional improvement after a robotic training are scarce. One study has found that white matter tract integrity predicts functional gains following a robotic training of the hand and wrist. Objective Determine the predictive ability of behavioral and brain measures to improve selection of individuals for robotic training. Methods Twenty subjects with chronic stroke participated in an 8-week course of robotic exoskeletal training for the arm. Before training, a clinical evaluation, fMRI, diffusion tensor imaging, and transcranial magnetic stimulation (TMS) were each measured as predictors. Final functional gain was defined as change in the Box and Block Test (BBT). Measures significant in bivariate analysis were fed into a multivariate linear regression model. Results Training was associated with an average gain of 6±5 blocks on the BBT (p<0.0001). Bivariate analysis revealed that lower baseline motor evoked potential (MEP) amplitude on TMS, and lower laterality M1 index on fMRI each significantly correlated with greater BBT change. In the multivariate linear regression analysis, baseline MEP magnitude was the only measure that remained significant. Conclusion Subjects with lower baseline MEP magnitude benefited the most from robotic training of the affected arm. These subjects might have reserve remaining for the training to boost corticospinal excitability, translating into functional gains. PMID:24642382

  13. Density functional investigation of the electronic structure and charge transfer excited states of a multichromophoric antenna

    NASA Astrophysics Data System (ADS)

    Basurto, Luis; Zope, Rajendra R.; Baruah, Tunna

    2016-05-01

    We report an electronic structure study of a multichromophoric molecular complex containing two of each borondipyrromethane dye, Zn-tetraphenyl-porphyrin, bisphenyl anthracene and a fullerene. The snowflake shaped molecule behaves like an antenna capturing photon at different frequencies and transferring the photon energy to the porphyrin where electron transfer occurs from the porphyrin to the fullerene. The study is performed within density functional formalism using large polarized Guassian basis sets (12,478 basis functions in total). The energies of the HOMO and LUMO states in the complex, as adjudged by the ionization potential and the electron affinity values, show significant differences with respect to their values in participating subunits in isolation. These differences are also larger than the variations of the ionization potential and electron affinity values observed in non-bonded C60-ZnTPP complexes in co-facial arrangement or end-on orientations. An understanding of the origin of these differences is obtained by a systematic study of the effect of structural strain, the presence of ligands, the effect of orbital delocalization on the ionization energy and the electron affinity. Finally, a few lowest charge transfer energies involving electronic transitions from the porphyrin component to the fullerene subunit of the complex are predicted.

  14. Dual effect of local anesthetics on the function of excitable rod outer segment disk membrane

    SciTech Connect

    Mashimo, T.; Abe, K.; Yoshiya, I.

    1986-04-01

    The effects of local anesthetics and a divalent cation, Ca2+, on the function of rhodopsin were estimated from the measurements of light-induced proton uptake. The light-induced proton uptake by rhodopsin in the rod outer segment disk membrane was enhanced at lower pH (4) but depressed at higher pHs (6 to 8) by the tertiary amine local anesthetics lidocaine, bupivacaine, tetracaine, and dibucaine. The order of local anesthetic-induced depression of the proton uptake followed that of their clinical anesthetic potencies. The depression of the proton uptake versus the concentration of the uncharged form of local anesthetic nearly describes the same curve for small and large dose of added anesthetic. Furthermore, a neutral local anesthetic, benzocaine, depressed the proton uptake at all pHs between 4 and 7. These results indicate that the depression of the proton uptake is due to the effect of only the uncharged form. It is hypothesized that the uncharged form of local anesthetics interacts hydrophobically with the rhodopsin in the disk membrane. The dual effect of local anesthetics on the proton uptake, on the other hand, suggests that the activation of the function of rhodopsin may be caused by the charged form. There was no significant change in the light-induced proton uptake by rhodopsin when 1 mM of Ca2+ was introduced into the disk membrane at varying pHs in the absence or presence of local anesthetics. This fact indicates that Ca2+ ion does not influence the diprotonating process of metarhodopsin; neither does it interfere with the local anesthetic-induced changes in the rhodopsin molecule.

  15. Modification of humic acid by ether functional group as biosorbent to Au(III) adsorption in the presence of Sn(II) and Ni(II)

    NASA Astrophysics Data System (ADS)

    Yanti, Ika; Winata, Wahyu Fajar; Sudiono, Sri; Triyono

    2017-03-01

    Modification of humic acid on the phenolic functional group with dimethylsulfate (DMS) for adsorption Au(III) in the presence of Sn(II) and Ni(II) have been conducted. Ash content was analyzed and characterized by Fourier-Transform Infrared (FTIR). Determination of Au(III) adsorption in the presence of Sn(II) and Ni(II) was conducted by Atomic Adsorption Spectroscopy (AAS). The isolated humic acid has 19.8% ash content and after purification has 0.6% ash content, etherified humic acid (EHAs) has 1.4% ash content. Adsorption percentage of Au(III) in the presence of Sn(II) and Ni(II) by EHAs decreased until 4.936% and 41.782% respectively. The addition of Sn(II) and Ni(II) as competitors of Au(III) in the Au(III) adsorption by using EHAs, were affect the percentage of Au(III) adsorption.

  16. Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish.

    PubMed

    Hsieh, Jui-Yi; Ulrich, Brittany; Issa, Fadi A; Wan, Jijun; Papazian, Diane M

    2014-01-01

    The zebrafish has significant advantages for studying the morphological development of the brain. However, little is known about the functional development of the zebrafish brain. We used patch clamp electrophysiology in live animals to investigate the emergence of excitability in cerebellar Purkinje cells, functional maturation of the cerebellar circuit, and establishment of sensory input to the cerebellum. Purkinje cells are born at 3 days post-fertilization (dpf). By 4 dpf, Purkinje cells spontaneously fired action potentials in an irregular pattern. By 5 dpf, the frequency and regularity of tonic firing had increased significantly and most cells fired complex spikes in response to climbing fiber activation. Our data suggest that, as in mammals, Purkinje cells are initially innervated by multiple climbing fibers that are winnowed to a single input. To probe the development of functional sensory input to the cerebellum, we investigated the response of Purkinje cells to a visual stimulus consisting of a rapid change in light intensity. At 4 dpf, sudden darkness increased the rate of tonic firing, suggesting that afferent pathways carrying visual information are already active by this stage. By 5 dpf, visual stimuli also activated climbing fibers, increasing the frequency of complex spiking. Our results indicate that the electrical properties of zebrafish and mammalian Purkinje cells are highly conserved and suggest that the same ion channels, Nav1.6 and Kv3.3, underlie spontaneous pacemaking activity. Interestingly, functional development of the cerebellum is temporally correlated with the emergence of complex, visually-guided behaviors such as prey capture. Because of the rapid formation of an electrically-active cerebellum, optical transparency, and ease of genetic manipulation, the zebrafish has great potential for functionally mapping cerebellar afferent and efferent pathways and for investigating cerebellar control of motor behavior.

  17. Assessment of the Global and Regional Land Hydrosphere and Its Impact on the Balance of the Geophysical Excitation Function of Polar Motion

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta; Kołaczek, Barbara

    2016-02-01

    The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.

  18. Long-term outcome of surgical Class III correction as a function of age at surgery

    PubMed Central

    Bailey, L'Tanya J.; Phillips, Ceib; Proffit, William R.

    2009-01-01

    Introduction In this study, we assessed whether the likelihood of a positive overjet 5 to 10 years after Class III surgery was affected by age at the surgery or the type of surgery and evaluated the amount and pattern of postsurgical growth. Methods Cephalometric measurements including overjet were evaluated from immediately postsurgery and long-term recall cephalograms of 104 patients who had had surgical Class III correction and at least 5-year recalls. The patients were classified as younger (III surgery in younger patients. PMID:18331934

  19. Identification and functional characterization of three type III polyketide synthases from Aquilaria sinensis calli.

    PubMed

    Wang, Xiaohui; Zhang, Zhongxiu; Dong, Xianjuan; Feng, Yingying; Liu, Xiao; Gao, Bowen; Wang, Jinling; Zhang, Le; Wang, Juan; Shi, Shepo; Tu, Pengfei

    2017-03-30

    Type III polyketide synthases (PKSs) play an important role in biosynthesis of various plant secondary metabolites and plant adaptation to environmental stresses. Aquilaria sinensis is the main plant species for production of agarwood, little is known about the PKS family. In this study, AsCHS1 and two new type III PKSs, AsPKS1 and AsPKS2, were isolated and characterized in Aquilaria sinensis calli. The comparative sequence and phylogenetic analysis indicated that AsPKS1 and AsPKS2 belong to non-CHS group different from AsCHS1. The recombinant AsPKS1 and AsPKS2 produced the lactone-type products, suggesting different enzyme activities with AsCHS1. Three PKS genes had a tissues-specific pattern in A. sinensis. Moreover, we examined the expression profiles of three PKS genes in calli under different abiotic stresses and hormone treatments. AsCHS1 transcript was significantly induced by salt stress, AsPKS1 abundance was most remarkably enhanced by CdCl2 treatment, while AsPKS2 expression was most significantly induced by mannitol treatment. Furthermore, AsCHS1, AsPKS1 and AsPKS2 transcript were enhanced upon gibberellins (GA3), methyl jasmonate (MeJA), salicylic acid (SA) treatments, while three PKS genes displayed low transcript levels at the early stage under abscisic acid (ABA) treatment. In addition, three GFP:PKSs fusion proteins were localized in the cytoplasm and cell wall in Nicotiana benthamiana cells. These results indicated the multifunctional role of three type III PKSs in polyketide biosynthesis, plant resistance in abiotic stresses and signal transduction.

  20. New Approaches to Exciting Exergame-Experiences for People with Motor Function Impairments.

    PubMed

    Eckert, Martina; Gómez-Martinho, Ignacio; Meneses, Juan; Martínez, José-Fernán

    2017-02-12

    The work presented here suggests new ways to tackle exergames for physical rehabilitation and to improve the players' immersion and involvement. The primary (but not exclusive) purpose is to increase the motivation of children and adolescents with severe physical impairments, for doing their required exercises while playing. The proposed gaming environment is based on the Kinect sensor and the Blender Game Engine. A middleware has been implemented that efficiently transmits the data from the sensor to the game. Inside the game, different newly proposed mechanisms have been developed to distinguish pure exercise-gestures from other movements used to control the game (e.g., opening a menu). The main contribution is the amplification of weak movements, which allows the physically impaired to have similar gaming experiences as the average population. To test the feasibility of the proposed methods, four mini-games were implemented and tested by a group of 11 volunteers with different disabilities, most of them bound to a wheelchair. Their performance has also been compared to that of a healthy control group. Results are generally positive and motivating, although there is much to do to improve the functionalities. There is a major demand for applications that help to include disabled people in society and to improve their life conditions. This work will contribute towards providing them with more fun during exercise.

  1. New Approaches to Exciting Exergame-Experiences for People with Motor Function Impairments

    PubMed Central

    Eckert, Martina; Gómez-Martinho, Ignacio; Meneses, Juan; Martínez, José-Fernán

    2017-01-01

    The work presented here suggests new ways to tackle exergames for physical rehabilitation and to improve the players’ immersion and involvement. The primary (but not exclusive) purpose is to increase the motivation of children and adolescents with severe physical impairments, for doing their required exercises while playing. The proposed gaming environment is based on the Kinect sensor and the Blender Game Engine. A middleware has been implemented that efficiently transmits the data from the sensor to the game. Inside the game, different newly proposed mechanisms have been developed to distinguish pure exercise-gestures from other movements used to control the game (e.g., opening a menu). The main contribution is the amplification of weak movements, which allows the physically impaired to have similar gaming experiences as the average population. To test the feasibility of the proposed methods, four mini-games were implemented and tested by a group of 11 volunteers with different disabilities, most of them bound to a wheelchair. Their performance has also been compared to that of a healthy control group. Results are generally positive and motivating, although there is much to do to improve the functionalities. There is a major demand for applications that help to include disabled people in society and to improve their life conditions. This work will contribute towards providing them with more fun during exercise. PMID:28208682

  2. An alternative splicing event which occurs in mouse pachytene spermatocytes generates a form of DNA ligase III with distinct biochemical properties that may function in meiotic recombination.

    PubMed Central

    Mackey, Z B; Ramos, W; Levin, D S; Walter, C A; McCarrey, J R; Tomkinson, A E

    1997-01-01

    Three mammalian genes encoding DNA ligases have been identified. However, the role of each of these enzymes in mammalian DNA metabolism has not been established. In this study, we show that two forms of mammalian DNA ligase III, alpha and beta, are produced by a conserved tissue-specific alternative splicing mechanism involving exons encoding the C termini of the polypeptides. DNA ligase III-alpha cDNA, which encodes a 103-kDa polypeptide, is expressed in all tissues and cells, whereas DNA ligase III-beta cDNA, which encodes a 96-kDa polypeptide, is expressed only in the testis. During male germ cell differentiation, elevated expression of DNA ligase III-beta mRNA is restricted, beginning only in the latter stages of meiotic prophase and ending in the round spermatid stage. In 96-kDa DNA ligase III-beta, the C-terminal 77 amino acids of DNA ligase III-alpha are replaced by a different 17- to 18-amino acid sequence. As reported previously, the 103-kDa DNA ligase III-alpha interacts with the DNA strand break repair protein encoded by the human XRCC1 gene. In contrast, the 96-kDa DNA ligase III-beta does not interact with XRCC1, indicating that DNA ligase III-beta may play a role in cellular functions distinct from the DNA repair pathways involving the DNA ligase III-alpha x XRCC1 complex. The distinct biochemical properties of DNA ligase III-beta, in combination with the tissue- and cell-type-specific expression of DNA ligase III-beta mRNA, suggest that this form of DNA ligase III is specifically involved in the completion of homologous recombination events that occur during meiotic prophase. PMID:9001252

  3. Fluorescence Excitation Function Produced Through Photoexcitation of the Rydberg States b, cn, and o3 of N2 in the 80-100 nm Region

    NASA Astrophysics Data System (ADS)

    Wu, R. C.; Judge, D. L.; Singh, T. S.; Mu, X. L.; Nee, J. B.; Chiang, S. Y.; Fung, H. S.

    2006-12-01

    Fluorescence excitation functions produced through photoexcitation of N2 using synchrotron radiation in the spectral region between 80 and 100 nm have been studied. Two broadband detectors were employed to simultaneously monitor fluorescence in the 115-320 nm and 300-700 nm region, respectively. The peaks in the VUV Fluorescence excitation functions are found to correspond to excitation of absorption transitions from the ground electronic state to the Rydberg states of b, cn (with n= 4-9), and o3 of N2. The relative fluorescence production cross sections for the observed peaks are determined. No fluorescence has been produced through excitation of the most dominating absorption features of the b-X transition except the (1,0), (5,0), and (6,0) bands, in excellent agreement with the recent lifetime measurements [1] and theoretical calculations [2]. In addition, fluorescence peaks correlate with the long vibrational progression of the c4 (v = 0-7) has also been observed. Weak fluorescence excitation peaks are also found to correlate with the excitation of the (1,0), (2,0), and (3,0) bands of the o3 VX transition. The present results provide important information for further unraveling of complicated and intriguing interactions among the excited electronic states of N2. Furthermore, solar photon excitation of N2 leading to the production of c4(0) may provide useful data required for evaluation and analysis of dayglow models of the c4(0) issue of the Earth's atmosphere [3]. Detailed results will be presented. This research is based on work supported by NSF grant ATM-0096761. [1] Sprengers, J. P., W. Ubachs, and K. G. H. Baldwin, J. Chem. Phys., 122, 144301 (2005). [2] Lewis, B. R., S. T. Gibson, W. Zhang, H. Lefebvre-Brion, and J.-M. Robbe, J. Chem. Phys., 122, 144302 (2005). [3] e.g., Meier, R. R., Space Sci. Rev., 58, 1 (1991).

  4. Interaction of Eu(III) with mammalian cells: Cytotoxicity, uptake, and speciation as a function of Eu(III) concentration and nutrient composition.

    PubMed

    Sachs, Susanne; Heller, Anne; Weiss, Stephan; Bok, Frank; Bernhard, Gert

    2015-10-01

    In case of the release of lanthanides and actinides into the environment, knowledge about their behavior in biological systems is necessary to assess and prevent adverse health effects for humans. We investigated the interaction of europium with FaDu cells (human squamous cell carcinoma cell line) combining analytical methods, spectroscopy, and thermodynamic modeling with in-vitro cell experiments under defined conditions. Both the cytotoxicity of Eu(III) onto FaDu cells and its cellular uptake are mainly concentration-dependent. Moreover, they are governed by its chemical speciation in the nutrient medium. In complete cell culture medium, i.e., in the presence of fetal bovine serum, Eu(III) is stabilized in solution in a wide concentration range by complexation with serum proteins resulting in low cytotoxicity and cellular Eu(III) uptake. In serum-free medium, Eu(III) precipitates as hardly soluble phosphate species, exhibiting a significantly higher cytotoxicity and slightly higher cellular uptake. The presence of a tenfold excess of citrate in serum-free medium causes the formation of Eu(HCit)2(3-) complexes in addition to the dominating Eu(III) phosphate species, resulting in a decreased Eu(III) cytotoxicity and cellular uptake. The results of this study underline the crucial role of a metal ion's speciation for its toxicity and bioavailability.

  5. Green Phosphorescence and Electroluminescence of Sulfur Pentafluoride-Functionalized Cationic Iridium(III) Complexes.

    PubMed

    Shavaleev, Nail M; Xie, Guohua; Varghese, Shinto; Cordes, David B; Slawin, Alexandra M Z; Momblona, Cristina; Ortí, Enrique; Bolink, Henk J; Samuel, Ifor D W; Zysman-Colman, Eli

    2015-06-15

    We report on four cationic iridium(III) complexes [Ir(C^N)2(dtBubpy)](PF6) that have sulfur pentafluoride-modified 1-phenylpyrazole and 2-phenylpyridine cyclometalating (C^N) ligands (dtBubpy = 4,4'-di-tert-butyl-2,2'-bipyridyl). Three of the complexes were characterized by single-crystal X-ray structure analysis. In cyclic voltammetry, the complexes undergo reversible oxidation of iridium(III) and irreversible reduction of the SF5 group. They emit bright green phosphorescence in acetonitrile solution and in thin films at room temperature, with emission maxima in the range of 482-519 nm and photoluminescence quantum yields of up to 79%. The electron-withdrawing sulfur pentafluoride group on the cyclometalating ligands increases the oxidation potential and the redox gap and blue-shifts the phosphorescence of the iridium complexes more so than the commonly employed fluoro and trifluoromethyl groups. The irreversible reduction of the SF5 group may be a problem in organic electronics; for example, the complexes do not exhibit electroluminescence in light-emitting electrochemical cells (LEECs). Nevertheless, the complexes exhibit green to yellow-green electroluminescence in doped multilayer organic light-emitting diodes (OLEDs) with emission maxima ranging from 501 nm to 520 nm and with an external quantum efficiency (EQE) of up to 1.7% in solution-processed devices.

  6. Identification and functional analysis of type III effector proteins in Mesorhizobium loti.

    PubMed

    Okazaki, Shin; Okabe, Saori; Higashi, Miku; Shimoda, Yoshikazu; Sato, Shusei; Tabata, Satoshi; Hashiguchi, Masatsugu; Akashi, Ryo; Göttfert, Michael; Saeki, Kazuhiko

    2010-02-01

    Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, possesses a cluster of genes (tts) that encode a type III secretion system (T3SS). In the presence of heterologous nodD from Rhizobium leguminosarum and a flavonoid naringenin, we observed elevated expression of the tts genes and secretion of several proteins into the culture medium. Inoculation experiments with wild-type and T3SS mutant strains revealed that the presence of the T3SS affected nodulation at a species level within the Lotus genus either positively (L. corniculatus subsp. frondosus and L. filicaulis) or negatively (L. halophilus and two other species). By inoculating L. halophilus with mutants of various type III effector candidate genes, we identified open reading frame mlr6361 as a major determinant of the nodulation restriction observed for L. halophilus. The predicted gene product of mlr6361 is a protein of 3,056 amino acids containing 15 repetitions of a sequence motif of 40 to 45 residues and a shikimate kinase-like domain at its carboxyl terminus. Homologues with similar repeat sequences are present in the hypersensitive-response and pathogenicity regions of several plant pathogens, including strains of Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas species. These results suggest that L. halophilus recognizes Mlr6361 as potentially pathogen derived and subsequently halts the infection process.

  7. The EORTC emotional functioning computerized adaptive test: phases I–III of a cross-cultural item bank development

    PubMed Central

    Gamper, Eva-Maria; Groenvold, Mogens; Petersen, Morten Aa; Young, Teresa; Costantini, Anna; Aaronson, Neil; Giesinger, Johannes M; Meraner, Verena; Kemmler, Georg; Holzner, Bernhard

    2014-01-01

    Background The European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Group is currently developing computerized adaptive testing measures for the Quality of Life Questionnaire Core-30 (QLQ-C30) scales. The work presented here describes the development of an EORTC item bank for emotional functioning (EF), which is one of the core domains of the QLQ-C30. Methods According to the EORTC guidelines on module development, the development of the EF item bank comprised four phases, of which the phases I–III are reported in the present paper. Phase I involved defining the theoretical framework for the EF item bank and a literature search. Phase II included pre-defined item selection steps and a multi-stage expert review process. In phase III, feedback from cancer patients from different countries was obtained. Results On the basis of literature search in phase I, a list of 1750 items was generated. These were reviewed and further developed in phase II with a focus on relevance, redundancy, clarity, and difficulty. The development and selection steps led to a preliminary list of 41 items. In phase III, patient interviews (N = 41; Austria, Denmark, Italy, and the UK) were conducted with the preliminary item list, resulting in some minor changes to item wording. The final list comprised 38 items. Discussion The phases I–III of the developmental process have resulted in an EF item list that was well accepted by patients in several countries. The items will be subjected to larger-scale field testing in order to establish their psychometric characteristics and their fit to an item response theory model. PMID:24217943

  8. Implications of cortical balanced excitation and inhibition, functional heterogeneity, and sparseness of neuronal activity in fMRI

    PubMed Central

    Xu, Jiansong

    2015-01-01

    Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies often report inconsistent findings, probably due to brain properties such as balanced excitation and inhibition and functional heterogeneity. These properties indicate that different neurons in the same voxels may show variable activities including concurrent activation and deactivation, that the relationships between BOLD signal and neural activity (i.e., neurovascular coupling) are complex, and that increased BOLD signal may reflect reduced deactivation, increased activation, or both. The traditional general-linear-model-based-analysis (GLM-BA) is a univariate approach, cannot separate different components of BOLD signal mixtures from the same voxels, and may contribute to inconsistent findings of fMRI. Spatial independent component analysis (sICA) is a multivariate approach, can separate the BOLD signal mixture from each voxel into different source signals and measure each separately, and thus may reconcile previous conflicting findings generated by GLM-BA. We propose that methods capable of separating mixed signals such as sICA should be regularly used for more accurately and completely extracting information embedded in fMRI datasets. PMID:26341939

  9. Damage detection of metro tunnel structure through transmissibility function and cross correlation analysis using local excitation and measurement

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Yi, Xiaohua; Zhu, Dapeng; Xie, Xiongyao; Wang, Yang

    2015-08-01

    In a modern metropolis, metro rail systems have become a dominant mode for mass transportation. The structural health of a metro tunnel is closely related to public safety. Many vibration-based techniques for detecting and locating structural damage have been developed in the past several decades. However, most damage detection techniques and validation tests are focused on bridge and building structures; very few studies have been reported on tunnel structures. Among these techniques, transmissibility function and cross correlation analysis are two well-known diagnostic approaches. The former operates in frequency domain and the latter in time domain. Both approaches can be applied to detect and locate damage through acceleration data obtained from sensor arrays. Furthermore, the two approaches can directly utilize structural response data without requiring excitation measurement, which offers advantages in field testing on a large structure. In this research, a numerical finite element model of a metro tunnel is built and different types of structural defects are introduced at multiple locations of the tunnel. Transmissibility function and cross correlation analysis are applied to perform structural damage detection and localization, based on simulated structural vibration data. Numerical results demonstrate that the introduced defects can be successfully identified and located. The sensitivity and feasibility of the two approaches have been verified when sufficient distribution of measurement locations is available. Damage detection results of the two different approaches are compared and discussed.

  10. Mechanochemical Rhodium(III)-Catalyzed C-H Bond Functionalization of Acetanilides under Solventless Conditions in a Ball Mill.

    PubMed

    Hermann, Gary N; Becker, Peter; Bolm, Carsten

    2015-06-15

    In a proof-of-principle study, a planetary ball mill was applied to rhodium(III)-catalyzed C-H bond functionalization. Under solventless conditions and in the presence of a minute amount of Cu(OAc)2, the mechanochemical activation led to the formation of an active rhodium species, thus enabling an oxidative Heck-type cross-coupling reaction with dioxygen as the terminal oxidant. The absence of an organic solvent, the avoidance of a high reaction temperature, the possibility of minimizing the amount of the metallic mediator, and the simplicity of the protocol result in a powerful and environmentally benign alternative to the common solution-based standard protocol.

  11. Morphology evolution of gold nanoparticles as function of time, temperature, and Au(III)/sodium ascorbate molar ratio

    NASA Astrophysics Data System (ADS)

    Priolisi, Ornella; Fabrizi, Alberto; Deon, Giovanna; Bonollo, Franco; Cattini, Stefano

    2016-01-01

    In this work the morphology evolution of Au nanoparticles (AuNPs), obtained by direct reduction, was studied as a function of time, temperature, and Au(III)/sodium ascorbate molar ratio. The NPs morphology was examined by transmission electron microscope with image analysis, while time evolution was investigated by visible and near-infrared absorption spectroscopy and dynamic light scattering. It is found that initially formed star-like NPs transform in more spheroidal particles and the evolution appears more rapid by increasing the temperature while a large amount of reducing agent prevents the remodeling of AuNPs. An explication of morphology evolution is proposed.

  12. Functional characterization of the 19q12 amplicon in grade III breast cancers

    PubMed Central

    2012-01-01

    Introduction The 19q12 locus is amplified in a subgroup of oestrogen receptor (ER)-negative grade III breast cancers. This amplicon comprises nine genes, including cyclin E1 (CCNE1), which has been proposed as its 'driver'. The aim of this study was to identify the genes within the 19q12 amplicon whose expression is required for the survival of cancer cells harbouring their amplification. Methods We investigated the presence of 19q12 amplification in a series of 313 frozen primary breast cancers and 56 breast cancer cell lines using microarray comparative genomic hybridisation (aCGH). The nine genes mapping to the smallest region of amplification on 19q12 were silenced using RNA interference in phenotypically matched breast cancer cell lines with (MDA-MB-157 and HCC1569) and without (Hs578T, MCF7, MDA-MB-231, ZR75.1, JIMT1 and BT474) amplification of this locus. Genes whose silencing was selectively lethal in amplified cells were taken forward for further validation. The effects of cyclin-dependent kinase 2 (CDK2) silencing and chemical inhibition were tested in cancer cells with and without CCNE1 amplification. Results 19q12 amplification was identified in 7.8% of ER-negative grade III breast cancer. Of the nine genes mapping to this amplicon, UQCRFS1, POP4, PLEKHF1, C19ORF12, CCNE1 and C19ORF2 were significantly over-expressed when amplified in primary breast cancers and/or breast cancer cell lines. Silencing of POP4, PLEKHF1, CCNE1 and TSZH3 selectively reduced cell viability in cancer cells harbouring their amplification. Cancer cells with CCNE1 amplification were shown to be dependent on CDK2 expression and kinase activity for their survival. Conclusions The 19q12 amplicon may harbour more than a single 'driver', given that expression of POP4, PLEKHF1, CCNE1 and TSZH3 is required for the survival of cancer cells displaying their amplification. The observation that cancer cells harbouring CCNE1 gene amplification are sensitive to CDK2 inhibitors provides a

  13. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree–Fock and density functional theory via linear response

    SciTech Connect

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; Harrison, Robert J.

    2015-02-25

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using a numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H2, Be, N2, H2O, and C2H4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.

  14. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree-Fock and density functional theory via linear response.

    PubMed

    Yanai, Takeshi; Fann, George I; Beylkin, Gregory; Harrison, Robert J

    2015-12-21

    A fully numerical method for the time-dependent Hartree-Fock and density functional theory (TD-HF/DFT) with the Tamm-Dancoff (TD) approximation is presented in a multiresolution analysis (MRA) approach. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. The integral equation is efficiently and adaptively solved using a numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H2, Be, N2, H2O, and C2H4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. We introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.

  15. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree–Fock and density functional theory via linear response

    DOE PAGES

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; ...

    2015-02-25

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H2, Be, N2, H2O, and C2H4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  16. Cryogenic exciter

    DOEpatents

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  17. Electronic and Chemical State of Aluminum from the Single- (K) and Double-Electron Excitation (KLII&III, KLI) X-ray Absorption Near-Edge Spectra of α-Alumina, Sodium Aluminate, Aqueous Al(3+)·(H2O)6, and Aqueous Al(OH)4(-).

    PubMed

    Fulton, John L; Govind, Niranjan; Huthwelker, Thomas; Bylaska, Eric J; Vjunov, Aleksei; Pin, Sonia; Smurthwaite, Tricia D

    2015-07-02

    We probe, at high energy resolution, the double electron excitation (KLII&II) X-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral), are compared to aqueous species that have the same Al coordination symmetries, Al(3+)·6H2O (octahedral) and Al(OH)4(-) (tetrahedral). For the octahedral species, the edge height of the KLII&III-edge is approximately 10% of the main K-edge; however, the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al(3+)·6H2O the KLII&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KLII&III-edge feature interferes with an important region in the EXAFS spectra of the crystalline and aqueous standards. The K-edge spectra and K-edge energy positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge X-ray absorption near-edge spectra (XANES) reproduce the observed transitions in the experimental spectra of the four Al species. The KLII&II and KLI onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method.

  18. Cobalt preconcentration on a nitroso-R salt functional resin and elution with titanium(III)

    SciTech Connect

    Stella, R.; Valentini, M.T.G.; Maggi, L.

    1985-08-01

    The anion exchange resin Dowex 1X8, converted to the nitroso-R salt form, was used for adsorbing cobalt from large freshwater samples. Strongly acid titanium(III) chloride 10/sup -2/ M solution was found very effective at 60/sup 0/C as a new eluant and yielded complete recovery with a preconcentration factor of 100. Subsequent atomic absorption spectrometry determination of cobalt in the eluate was possible with no interference from titanium, reduced organics, and iron, copper, and nickel which partially might be fixed onto the resin. The suggested procedure allows a reproducibility of 5-10% for samples with cobalt concentrations in the range of 0.01-1 ..mu..g L/sup -1/. 15 references, 2 figures, 3 tables.

  19. Eu(III) Complexes of Functionalized Octadentate 1-Hydroxypyridin-2-ones: Stability, Bioconjugation and LRET Studies

    PubMed Central

    Moore, Evan G.; Xu, Jide; Jocher, Christoph J.; Corneillie, Todd M.; Raymond, Kenneth N.

    2011-01-01

    The synthesis, stability, and photophysical properties of several Eu(III) complexes featuring the 1-hydroxypyridin-2-one (1,2-HOPO) chelate group in tetradentate and octadentate ligands are reported. These complexes pair highly efficient emission with exceptional stabilities (pEu ~ 20.7 – 21.8) in aqueous solution at pH 7.4. Further analysis of their solution behavior has shown the observed luminescence intensity is significantly diminished below ca. pH ~ 6 due to an apparent quenching mechanism involving protonation of the amine backbones. Nonetheless, under biologically relevant conditions, these complexes are promising candidates for applications in Homogeneous Time-Resolved Fluorescence (HTRF) assays and synthetic methodology to prepare derivatives with either a terminal amine or carboxylate group suitable for bioconjugation has been developed. Lastly, we have demonstrated the use of these compounds as the energy donor in a Luminescence Resonance Energy Transfer (LRET) biological assay format. PMID:20873782

  20. S1 and S2 excited states of gas-phase Schiff-base retinal chromophores: a time-dependent density functional theoretical investigation.

    PubMed

    Sun, Mengtao; Ding, Yong; Cui, Ganglong; Liu, Yajun

    2007-04-19

    In concert with the recent photoabsorption experiments of gas-phase Schiff-base retinal chromophores (Nielsen et al. Phys. Rev. Lett. 2006, 96, 018304), quantum chemical calculations using time-dependent density functional theory coupled with different functionals and under the Tamm-Dancoff approximation were made on the first two excited states (S1 and S2) of two retinal chromophores: 11-cis and all-trans protonated Schiff bases. The calculated vertical excitation energies (Tv) and oscillator strengths (f) are consistent with the experimental absorption bands. The experimentally observed phenomenon that the transition dipole moment (mu) of S2 is much smaller that of S1 was interpreted by 3D representation of transition densities. The different optical behaviors (linear and nonlinear optical responds) of the excited states were investigated by considering different strengths of external electric fields.

  1. Translation and validation of the Farsi version of Rome III diagnostic questionnaire for the adult functional gastrointestinal disorders

    PubMed Central

    Toghiani, Ali; Maleki, Iradj; Afshar, Hamid; Kazemian, Amirhossein

    2016-01-01

    Background: The aim of this study was to validate the Farsi version of Rome III modular questionnaire which contains all functional gastrointestinal disorders (FGIDs). Materials and Methods: We used Rome foundation guidelines for translation of English version into Farsi, and all the steps were performed. In the first step, 2 forward translations into Farsi were completed by two authors separately, and then translators, who participated in Step 1, together with our monitor, compared the two target-language versions and made some changes. The product of Phase 2 was translated back into English by an American-Iranian physician. The final step was comparison of the two English versions and validation of the translation. In this step, we compared the final version item by item, and also we used focus groups of patients after pretesting. Results: Our results showed that FGIDs questionnaire diagnosed 153 patients among 169 patients who were diagnosed to have different types of FGIDs. The sensitivity of this questionnaire was 90.5%. It was determined that the odd questions' values of Cronbach’s alpha was 0.77 (very reliable), and it was 0.71 (very reliable) in other sections. The split-half test reliability of whole items value was 0.72, which is statistically significant. Conclusion: Our findings showed that the Farsi version of Rome III diagnostic questionnaire for the adult functional gastrointestinal disorders demonstrated good validity and reliability and could be used in clinical studies. PMID:28250780

  2. Myofibroblast differentiation and its functional properties are inhibited by nicotine and e-cigarette via mitochondrial OXPHOS complex III

    PubMed Central

    Lei, Wei; Lerner, Chad; Sundar, Isaac K.; Rahman, Irfan

    2017-01-01

    Nicotine is the major stimulant in tobacco products including e-cigarettes. Fibroblast to myofibroblast differentiation is a key process during wound healing and is dysregulated in lung diseases. The role of nicotine and e-cigarette derived nicotine on cellular functions including profibrotic response and other functional aspects is not known. We hypothesized that nicotine and e-cigarettes affect myofibroblast differentiation, gel contraction, and wound healing via mitochondria stress through nicotinic receptor-dependent mechanisms. To test the hypothesis, we exposed human lung fibroblasts with various doses of nicotine and e-cigarette condensate and determined myofibroblast differentiation, mitochondrial oxidative phosphorylation (OXPHOS), wound healing, and gel contraction at different time points. We found that both nicotine and e-cigarette inhibit myofibroblast differentiation as shown by smooth muscle actin and collagen type I, alpha 1 abundance. Nicotine and e-cigarette inhibited OXPHOS complex III accompanied by increased MitoROS, and this effect was augmented by complex III inhibitor antimycin A. These mitochondrial associated effects by nicotine resulted in inhibition of myofibroblast differentiation. These effects were associated with inhibition of wound healing and gel contraction suggesting that nicotine is responsible for dysregulated repair during injurious responses. Thus, our data suggest that nicotine causes dysregulated repair by inhibition of myofibroblast differentiation via OXPHOS pathway. PMID:28256533

  3. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior.

  4. Positive and negative functional interactions between promoter elements from different classes of RNA polymerase III-transcribed genes.

    PubMed Central

    Parry, H D; Mattaj, I W

    1990-01-01

    Consensus tRNA gene promoter elements, A and B boxes, were introduced into the coding sequence of a Xenopus U6 gene. Combinations in which A and B boxes were coupled to wild-type or mutant U6 promoters were made. In this way information about both the functions of individual promoter elements and functional relationships between different classes of RNA polymerase III promoter element were obtained. Mutants in which the U6 PSE was non-functional were rescued by the presence of a B box, indicating a degree of functional relationship between these two elements. Moreover, the B box acted to increase the transcriptional activity and competitive strength of the wild-type U6 promoter. In contrast, no evidence was obtained to suggest that a tRNA A box can interact productively with U6 promoter elements in the absence of a B box. Data obtained suggest that the U6 PSE functions as an 'adaptor', being necessary to enable the basal U6 promoter to respond to upstream enhancement. Certain combinations of U6 and tRNA promoter elements are shown to be mutually antagonistic by a mechanism which is likely to involve blockage of transcription initiation. In summary, the U6 and tRNA promoters are shown to consist of functionally related, but distinct, promoter elements whose interactions shed new light on their normal roles in transcription. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:2323333

  5. Reaction Mechanisms in 12C+93Nb System:. Excitation Functions and Recoil Range Distributions Below 7 MeV/u

    NASA Astrophysics Data System (ADS)

    Ahmad, Tauseef; Rizvi, I. A.; Agarwal, Avinash; Kumar, Rakesh; Golda, K. S.; Chaubey, A. K.

    The experiments were performed to study excitation functions (EFs) of evaporation residues (ERs), i.e. 103,102,101Ag, 101,100,99Pd, 101,100Rh, 97Ru, 96Tc, 95Tc, 94Tc, 93Mom, 92Nbm populated in the reactions induced by 12C on 93Nb for exploring the reaction dynamics involved at energies ≈ 47-75 MeV. The activation technique followed by offline γ-ray spectrometry has been employed to measure EFs. These measurements were simulated with other reported values available in literature as well as with theoretical predictions based on computer code PACE-2. The effect of variation of level density parameter involved in this code has also been studied. An excellent agreement was found between theoretical and experimental values in some of the fusion evaporation channels. However, significant enhancement of cross-section as observed in α-emission channels may be due to incomplete fusion (ICF) process and/or direct reaction process. To confirm the aforesaid reaction mechanism, Recoil Range Distributions (RRDs) of various ERs have been measured at ≈ 80 MeV. Moreover, an attempt is made to separate the percentage relative contributions of complete and incomplete fusion components from the analysis of the measured RRDs data. Further, the relative percentage ICF fraction, also estimated from EFs data, was found to be sensitive with the projectile energy.

  6. Investigation of the effect of inositol trisphosphate in skinned skeletal muscle fibres with functional excitation-contraction coupling.

    PubMed

    Posterino, G S; Lamb, G D

    1998-01-01

    The effect of inositol trisphosphate (IP3) was investigated in mechanically skinned fibres which had the endogenous level of sarcoplasmic reticulum (SR) Ca2+ and in which the normal excitation-contraction (E-C) coupling mechanism was still functional. Application of 50 or 100 microM IP3 failed to induce a detectable force response in any such skinned fibre from either the extensor digitorum longus muscle of the rat or iliofibularis muscle of the toad, irrespective of whether the fibre was: (a) in its normally polarized, resting state; (b) chronically depolarized to inactivate the voltage sensors; (c) paralysed with D600; or (d) depolarized to threshold for force activation. Furthermore, the size of the response to subsequent depolarization or exposure to caffeine (2mM) or reduced myoplasmic [Mg2+] indicated that little if any Ca2+ had been lost from the SR during the period of IP3 exposure (> or = 1 min). Also, IP3 did not induce a detectable force response when SR Ca2+ uptake was potently inhibited with 20 microM TBQ. Exposure to IP3 (50 microM) slightly potentiated the peak force response to depolarization in toad fibres, and this was probably because of an accompanying small increase in Ca2+ sensitivity of the contractile apparatus. These results appear inconsistent with the proposal that IP3 acts as the second messenger in E-C coupling in skeletal muscle.

  7. Excitation function shape and neutron spectrum of the 7Li(p ,n )7Be reaction near threshold

    NASA Astrophysics Data System (ADS)

    Martín-Hernández, Guido; Mastinu, Pierfrancesco; Maggiore, Mario; Pranovi, Lorenzo; Prete, Gianfranco; Praena, Javier; Capote-Noy, Roberto; Gramegna, Fabiana; Lombardi, Augusto; Maran, Luca; Scian, Carlo; Munaron, Enrico

    2016-09-01

    The forward-emitted low energy tail of the neutron spectrum generated by the 7Li(p ,n )7Be reaction on a thick target at a proton energy of 1893.6 keV was measured by time-of-flight spectroscopy. The measurement was performed at BELINA (Beam Line for Nuclear Astrophysics) of the Laboratori Nazionali di Legnaro. Using the reaction kinematics and the proton on lithium stopping power the shape of the excitation function is calculated from the measured neutron spectrum. Good agreement with two reported measurements was found. Our data, along with the previous measurements, are well reproduced by the Breit-Wigner single-resonance formula for s -wave particles. The differential yield of the reaction is calculated and the widely used neutron spectrum at a proton energy of 1912 keV was reproduced. Possible causes regarding part of the 6.5% discrepancy between the 197Au(n ,γ ) cross section measured at this energy by Ratynski and Kappeler [Phys. Rev. C 37, 595 (1988), 10.1103/PhysRevC.37.595] and the one obtained using the Evaluated Nuclear Data File version B-VII.1 are given.

  8. Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum.

    PubMed

    Wang, Keke; Remigi, Philippe; Anisimova, Maria; Lonjon, Fabien; Kars, Ilona; Kajava, Andrey; Li, Chien-Hui; Cheng, Chiu-Ping; Vailleau, Fabienne; Genin, Stéphane; Peeters, Nemo

    2016-05-01

    The soil-borne pathogen Ralstonia solanacearum causes bacterial wilt in a broad range of plants. The main virulence determinants of R. solanacearum are the type III secretion system (T3SS) and its associated type III effectors (T3Es), translocated into the host cells. Of the conserved T3Es among R. solanacearum strains, the Fbox protein RipG7 is required for R. solanacearum pathogenesis on Medicago truncatula. In this work, we describe the natural ripG7 variability existing in the R. solanacearum species complex. We show that eight representative ripG7 orthologues have different contributions to pathogenicity on M. truncatula: only ripG7 from Asian or African strains can complement the absence of ripG7 in GMI1000 (Asian reference strain). Nonetheless, RipG7 proteins from American and Indonesian strains can still interact with M. truncatula SKP1-like/MSKa protein, essential for the function of RipG7 in virulence. This indicates that the absence of complementation is most likely a result of the variability in the leucine-rich repeat (LRR) domain of RipG7. We identified 11 sites under positive selection in the LRR domains of RipG7. By studying the functional impact of these 11 sites, we show the contribution of five positively selected sites for the function of RipG7CMR15 in M. truncatula colonization. This work reveals the genetic and functional variation of the essential core T3E RipG7 from R. solanacearum. This analysis is the first of its kind on an essential disease-controlling T3E, and sheds light on the co-evolutionary arms race between the bacterium and its hosts.

  9. The 181Ta(7Li,5n)183Os reaction: Measurement and analysis of the excitation function and isomeric cross-section ratios

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Sharma, R. P.; Rashid, M. H.

    1998-03-01

    Excitation function and isomeric cross-section ratios for the production of 183Osm,g by 7Li-induced reactions on 181Ta are obtained from the measurements of the residual activities by the conventional stacked-foils technique from threshold to 50 MeV. The excitation function and isomeric cross-section ratios for nuclear reaction 181Ta(7Li,5n)183Osm,g are compared with the theoretical statistical model calculation by using the ALICE/91, STAPRE, and CASCADE codes. In the energy range of the present measurement the excitation functions are fitted fairly well by both the geometry dependent hybrid (GDH) model and the hybrid model of Blann with initial exciton number n0=7 (nn=4, np=3, nh=0) using the ALICE/91 code. The experimental isomeric cross-section ratios are also reproduced fairly well by the calculation using the STAPRE code. However, the CASCADE code calculations slightly underpredict the cross section but reproduce the shape. In general, the statistical model under a suitable set of global assumptions, can reproduce the excitation function as well as isomeric cross-section ratios.

  10. ASKtheta, a group-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway.

    PubMed

    Rozhon, Wilfried; Mayerhofer, Juliane; Petutschnig, Elena; Fujioka, Shozo; Jonak, Claudia

    2010-04-01

    Brassinosteroids (BRs) are plant hormones that regulate many processes including cell elongation, leaf development, pollen tube growth and xylem differentiation. GSK3/shaggy-like kinases (GSK) are critical regulators of intracellular signalling initiated by the binding of BR to the BRI1 receptor complex. Three GSKs have already been shown to relay BR responses, including phosphorylation of the transcriptional regulator BES1. However, recent studies indicate that one or more yet unidentified protein kinases are involved in BR signalling. Here, we show that the in vivo protein kinase activity of the group-III GSK, ASKtheta, was negatively regulated by BRI1. Arabidopsis thaliana plants with enhanced ASKtheta activity displayed a bri1-like phenotype. ASKtheta overexpressors accumulated high levels of brassinolide, castasterone and typhasterol, and were insensitive to BR. ASKtheta localized to the nucleus and directly phosphorylated BES1 and BZR1. Moreover, the BES1/BZR1-like transcription factor BEH2 was isolated as an ASKtheta interaction partner in a yeast two-hybrid screen. ASKtheta phosphorylated BEH2 both in vitro and in vivo. Overall, these data provide strong evidence that ASKtheta is a novel component of the BR signalling cascade, targeting the transcription factors BES1, BZR1 and BEH2.

  11. Masticatory muscle function three years after surgical correction of class III dentofacial deformity.

    PubMed

    Trawitzki, L V V; Dantas, R O; Mello-Filho, F V; Marques, W

    2010-09-01

    Individuals with dentofacial deformities have masticatory muscle changes. The objective of the present study was to determine the effect of interdisciplinary treatment in patients with dentofacial deformities regarding electromyographic activity (EMG) of masticatory muscles three years after surgical correction. Thirteen patients with class III dentofacial deformities were studied, considered as group P1 (before surgery) and group P3 (3 years to 3 years and 8 months after surgery). Fifteen individuals with no changes in facial morphology or dental occlusion were studied as controls. The participants underwent EMG examination of the temporal and masseter muscles during mastication and biting. Evaluation of the amplitude interval of EMG activity revealed a difference between P1 and P3 and no difference between P3 and the control group. In contrast, evaluation of root mean square revealed that, in general, P3 values were higher only when compared with P1 and differed from the control group. There was an improvement in the EMG activity of the masticatory muscles, mainly observed in the masseter muscle, with values close to those of the control group in one of the analyses.

  12. A comprehensive study of sensorimotor cortex excitability in chronic cocaine users: Integrating TMS and functional MRI data☆

    PubMed Central

    Hanlon, Colleen A.; DeVries, William; Dowdle, Logan T.; West, Julia A.; Siekman, Bradley; Li, Xingbao; George, Mark S.

    2016-01-01

    Background Disruptions in motor control are often overlooked features of chronic cocaine users. During a simple sensorimotor integration task, for example, cocaine users activate a larger area of cortex than controls but have lower functional connectivity between the cortex and dorsal striatum, which is further correlated with poor performance. The purpose of this study was to determine whether abnormal cortical excitability in cocaine users was related to disrupted inhibitory or excitatory mechanisms, as measured by transcranial magnetic stimulation (TMS). Methods A battery of TMS measures were acquired from 87 individuals (50 cocaine dependent, 37 controls). Functional MRI data were acquired from a subset of 28 individuals who performed a block-design finger tapping task. Results TMS measures revealed that cocaine users had significantly higher resting motor thresholds and higher intracortical cortical facilitation (ICF) than controls. There was no between-group difference in either measure of cortical inhibition. Task-evoked BOLD signal in the motor cortex was significantly correlated with ICF in the cocaine users. There was no significant difference in brain-skull distance between groups. Conclusion These data demonstrated that cocaine users have disrupted cortical facilitation (as measured with TMS), which is related to elevated BOLD signal. Cortical inhibition, however, is largely intact. Given the relationship between ICF and glutamatergic agents, this may be a potentially fruitful and treatable target in addiction. Finally, among controls the distance from the scalp to the cortex was correlated with the motor threshold which may be a useful parameter to integrate into therapeutic TMS protocols in the future. PMID:26541870

  13. The nearby Abell clusters. III - Luminosity functions for eight rich clusters

    NASA Technical Reports Server (NTRS)

    Oegerle, William R.; Hoessel, John G.

    1989-01-01

    Red photographic data on eight rich Abell clusters are combined with previous results on four other Abell clusters to study the luminosity functions of the clusters. The results produce a mean value of the characteristic galaxy magnitude (M asterisk) that is consistent with previous results. No relation is found between the magnitude of the first-ranked cluster galaxy and M asterisk, suggesting that the value of M asterisk is not changed by dynamical evolution. The faint ends of the luminosity functions for many of the clusters are quite flat, validating the nonuniversality in the parametrization of Schechter (1976) functions for rich clusters of galaxies.

  14. The nearby Abell clusters. III. Luminosity functions for eight rich clusters

    SciTech Connect

    Oegerle, W.R.; Hoessel, J.G. Washburn Observatory, Madison, WI )

    1989-11-01

    Red photographic data on eight rich Abell clusters are combined with previous results on four other Abell clusters to study the luminosity functions of the clusters. The results produce a mean value of the characteristic galaxy magnitude (M asterisk) that is consistent with previous results. No relation is found between the magnitude of the first-ranked cluster galaxy and M asterisk, suggesting that the value of M asterisk is not changed by dynamical evolution. The faint ends of the luminosity functions for many of the clusters are quite flat, validating the nonuniversality in the parametrization of Schechter (1976) functions for rich clusters of galaxies. 40 refs.

  15. Functional Anthology of Intrinsic Disorder. III. Ligands, Postranslational Modifications and Diseases Associated with Intrinsically Disordered Proteins

    PubMed Central

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Currently, the understanding of the relationships between function, amino acid sequence and protein structure continues to represent one of the major challenges of the modern protein science. As much as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bioinformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200,000 proteins from Swiss-Prot database, each annotated with at least one of the 875 functional keywords was described in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Using this tool, we have found that out of the 711 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic

  16. Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the Chinese bird spider Ornithoctonus hainana.

    PubMed

    Liu, Zhonghua; Cai, Tianfu; Zhu, Qi; Deng, Meichun; Li, Jiayan; Zhou, Xi; Zhang, Fan; Li, Dan; Li, Jing; Liu, Yu; Hu, Weijun; Liang, Songping

    2013-07-12

    In the present study, we investigated the structure and function of hainantoxin-III (HNTX-III), a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. HNTX-III suppressed Nav1.7 current amplitude without significantly altering the activation, inactivation, and repriming kinetics. Short extreme depolarizations partially activated the toxin-bound channel, indicating voltage-dependent inhibition of HNTX-III. HNTX-III increased the deactivation of the Nav1.7 current after extreme depolarizations. The HNTX-III·Nav1.7 complex was gradually dissociated upon prolonged strong depolarizations in a voltage-dependent manner, and the unbound toxin rebound to Nav1.7 after a long repolarization. Moreover, analysis of chimeric channels showed that the DIIS3-S4 linker was critical for HNTX-III binding to Nav1.7. These data are consistent with HNTX-III interacting with Nav1.7 site 4 and trapping the domain II voltage sensor in the closed state. The solution structure of HNTX-III was determined by two-dimensional NMR and shown to possess an inhibitor cystine knot motif. Structural analysis indicated that certain basic, hydrophobic, and aromatic residues mainly localized in the C terminus may constitute an amphiphilic surface potentially involved in HNTX-III binding to Nav1.7. Taken together, our results show that HNTX-III is distinct from β-scorpion toxins and other β-spider toxins in its mechanism of action and binding specificity and affinity. The present findings contribute to our understanding of the mechanism of toxin-sodium channel interaction and provide a useful tool for the investigation of the structure and function of sodium channel isoforms and for the development of analgesics.

  17. Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1989-01-01

    This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.

  18. Class III Receptor Tyrosine Kinases in Acute Leukemia – Biological Functions and Modern Laboratory Analysis

    PubMed Central

    Berenstein, Rimma

    2015-01-01

    Acute myeloid leukemia (AML) is a complex disease caused by deregulation of multiple signaling pathways. Mutations in class III receptor tyrosine kinases (RTKs) have been implicated in alteration of cell signals concerning the growth and differentiation of leukemic cells. Point mutations, insertions, or deletions of RTKs as well as chromosomal translocations induce constitutive activation of the receptor, leading to uncontrolled proliferation of undifferentiated myeloid blasts. Aberrations can occur in all domains of RTKs causing either the ligand-independent activation or mimicking the activated conformation. The World Health Organization recommended including RTK mutations in the AML classification since their detection in routine laboratory diagnostics is a major factor for prognostic stratification of patients. Polymerase chain reaction (PCR)–based methods are well-validated for the detection of fms-related tyrosine kinase 3 (FLT3) mutations and can easily be applied for other RTKs. However, when methodological limitations are reached, accessory techniques can be applied. For a higher resolution and more quantitative approach compared to agarose gel electrophoresis, PCR fragments can be separated by capillary electrophoresis. Furthermore, high-resolution melting and denaturing high-pressure liquid chromatography are reliable presequencing screening methods that reduce the sample amount for Sanger sequencing. Because traditional DNA sequencing is time-consuming, next-generation sequencing (NGS) is an innovative modern possibility to analyze a high amount of samples simultaneously in a short period of time. At present, standardized procedures for NGS are not established, but when this barrier is resolved, it will provide a new platform for rapid and reliable laboratory diagnostic of RTK mutations in patients with AML. In this article, the biological and physiological role of RTK mutations in AML as well as possible laboratory methods for their detection will be

  19. Translation and Validation of Enhanced Asian Rome III Questionnaires in Bengali Language for Diagnosis of Functional Gastrointestinal Disorders

    PubMed Central

    Rahman, M Masudur; Ghoshal, Uday C; Rowshon, A H M; Ahmed, Faruque; Kibria, Md Golam; Hasan, Mahmud; Gwee, Kok-Ann; Whitehead, William E

    2016-01-01

    Background/Aims Functional gastrointestinal disorders (FGIDs), diagnosed by symptom-based criteria due to lack of biomarkers, need translated-validated questionnaires in different languages. As Bengali, the mother tongue of Bangladesh and eastern India, is the seventh most spoken language in the world, we translated and validated the Enhanced Asian Rome III questionnaire (EAR3Q) in this language. Methods The EAR3Q was translated in Bengali as per guideline from the Rome Foundation. The translated questionnaire was validated prospectively on Bengali-speaking healthy subjects (HS, n = 30), and patients with functional dyspepsia (FD, n = 35), irritable bowel syndrome (IBS, n = 40) and functional constipation (FC, n = 12) diagnosed by clinicians using the Rome III criteria. The subjects were asked to fill-in the questionnaire again after 2 weeks, to check for its reproducibility. Results During translation, the original and the backward translated English versions of the questionnaire demonstrated high concordance. Sensitivity of the Bengali questionnaire to diagnose patients with FD, IBS, FC, and HS was 100%, 100%, 75%, and 100%, respectively, considering diagnosis by the clinicians as the gold standard. On test-retest reliability analysis, Kappa values for FD, IBS, FC, and HS were 1.0, 1.0, 0.83, and 1.0, respectively. The Bengali questionnaire detected considerable overlap of FD symptoms among patients with IBS, IBS among patients with FD, and FD among patients with FC, which were not detected by the clinicians. Conclusions We successfully translated and validated the EAR3Q in Bengali. We believe that this translated questionnaire will be useful for clinical evaluation and research on FGIDs in the Bengali-speaking population. PMID:26690730

  20. Population Genetics of Marine Pelecypods. III. Epistasis between Functionally Related Isoenzymes of MYTILUS EDULIS

    PubMed Central

    Mitton, Jeffry B.; Koehn, Richard K.

    1973-01-01

    The distribution of interlocus genotypic combinations was examined in Mytilus edulis for interdependence between two loci synthesizing functionally related isoenzymes. There is significant dependence between the Leucine Aminopeptidase and Aminopeptidase loci, which we attribute to epistasis, since the magnitude of dependency varies with age. Furthermore, dependency varies in magnitude with position in the intertidal zone from which samples were taken, suggesting that epistasis is a function of the combination of certain non-homologous alleles as well as of the environmental circumstance in which the combinations occur. PMID:4700061

  1. BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors.

    PubMed

    Dong, Xiaobao; Lu, Xiaotian; Zhang, Ziding

    2015-01-01

    Gram-negative pathogenic bacteria inject type III secreted effectors (T3SEs) into host cells to sabotage their immune signaling networks. Because T3SEs constitute a meeting-point of pathogen virulence and host defense, they are of keen interest to host-pathogen interaction research community. To accelerate the identification and functional understanding of T3SEs, we present BEAN 2.0 as an integrated web resource to predict, analyse and store T3SEs. BEAN 2.0 includes three major components. First, it provides an accurate T3SE predictor based on a hybrid approach. Using independent testing data, we show that BEAN 2.0 achieves a sensitivity of 86.05% and a specificity of 100%. Second, it integrates a set of online sequence analysis tools. Users can further perform functional analysis of putative T3SEs in a seamless way, such as subcellular location prediction, functional domain scan and disorder region annotation. Third, it compiles a database covering 1215 experimentally verified T3SEs and constructs two T3SE-related networks that can be used to explore the relationships among T3SEs. Taken together, by presenting a one-stop T3SE bioinformatics resource, we hope BEAN 2.0 can promote comprehensive understanding of the function and evolution of T3SEs.

  2. Effects of Risperidone on Destructive Behavior of Persons with Developmental Disabilities: III. Functional Analysis

    ERIC Educational Resources Information Center

    Zarcone, Jennifer R.; Lindauer, Steven E.; Morse, Paige S.; Crosland, Kimberly A.; Valdovinos, Maria G.; McKerchar, Todd L.; Reese, R. Matthew; Hellings, Jessica A.; Schroeder, Stephen R.

    2004-01-01

    Functional analyses were conducted during a double-blind, placebo-controlled study of the atypical antipsychotic medication risperidone with 13 individuals. Risperidone was effective in reducing destructive behavior (compared to placebo) for 10 participants. For 7 of these responders, an undifferentiated pattern of responding occurred across their…

  3. Neuropsychologic function in children with brain tumors. III. Interval changes in the six months following treatment

    SciTech Connect

    Mulhern, R.K.; Kun, L.E.

    1985-01-01

    Twenty-six children with primary brain tumors were studied prospectively with regard to their sensorimotor, intellectual, academic, and emotional status. Serial evaluations were conducted after surgery (pre-irradiation) and six months after the completion of radiation therapy. The timing of the second evaluation was chosen so as to antedate the late effects of irradiation. Children over 6 years old displayed significant improvement of intellectual function over time, with only 11% exhibiting deterioration on one or more cognitive parameters. In contrast, 68% of younger children clinically deteriorated in one or more areas of intellectual functioning, with prominent difficulties in memory and selective attention for age. Children under 6 years old with supratentorial tumors were less likely than those with posterior fossa tumors to improve their cognitive performance. At the second evaluation, 23% of the patients were functioning below normal (IQ less than 80) intellectually, with 50% of the younger children and 11% of the older children receiving special educational assistance. Approximately 40-50% of the patients manifested emotional adjustment problems at each evaluation. The results are discussed in terms of the clinical need to follow similar patient populations with formal psychological assessments over time, and in terms of the difficulties involved in defining factors that determine the functional status of children surviving brain tumors.

  4. Functional Significance of Iron Deficiency. Annual Nutrition Workshop Series, Volume III.

    ERIC Educational Resources Information Center

    Enwonwu, Cyril O., Ed.

    Iron deficiency anemia impairs cognitive performance, physical capacity, and thermoregulation. Recent evidence suggests that these functional impairments are also evident in subclinical nonanemic iron deficiency. Very little is known about the relevance of the latter to the health of blacks, who have been shown to have the highest prevalence of…

  5. Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions

    PubMed Central

    Chaudhuri, Shomesh E.; Merfeld, Daniel M.

    2012-01-01

    Psychophysics generally relies on estimating a subject’s ability to perform a specific task as a function of an observed stimulus. For threshold studies, the fitted functions are called psychometric functions. While fitting psychometric functions to data acquired using adaptive sampling procedures (e.g., “staircase” procedures), investigators have encountered a bias in the spread (“slope” or “threshold”) parameter that has been attributed to the serial dependency of the adaptive data. Using simulations, we confirm this bias for cumulative Gaussian parametric maximum likelihood fits on data collected via adaptive sampling procedures, and then present a bias-reduced maximum likelihood fit that substantially reduces the bias without reducing the precision of the spread parameter estimate and without reducing the accuracy or precision of the other fit parameters. As a separate topic, we explain how to implement this bias-reduction technique using generalized linear model fits as well as other numeric maximum likelihood techniques such as the Nelder-Mead simplex. We then provide a comparison of the iterative bootstrap and observed information matrix techniques for estimating parameter fit variance from adaptive sampling procedure data sets. The iterative bootstrap technique is shown to be slightly more accurate; however, the observed information technique executes in a small fraction (0.005%) of the time required by the iterative bootstrap technique, which is an advantage when a real-time estimate of parameter fit variance is required. PMID:23250442

  6. Atomic, Molecular, and Optical Physics: Optical Excitation Function of H(1s-2p) Produced by electron Impact from Threshold to 1.8 keV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J. M.

    1997-01-01

    The optical excitation function of prompt Lyman-Alpha radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet mono- chromator system was used to measure the emitted Lyman-Alpha radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Statistical and known systematic uncertainties in our data range from +/- 4% near threshold to +/- 2% at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close- coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10% level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7% of the CCC calculations over the 14 eV-1.8 keV range. The present CCC calculations converge on the Bethe- Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3% is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV - 1.8 keV energy range.

  7. Errata: A Wide-Field Multicolor Survey for High-Redshift Quasars, Z >= 2.2. III. The Luminosity Function

    NASA Astrophysics Data System (ADS)

    Warren, Stephen J.; Hewett, Paul C.; Osmer, Patrick S.

    1995-01-01

    In the paper "A Wide-Field Multicolor Survey for High-Redshift Quasars, z >= 2.2. III. The Luminosity Function" by Stephen. Warren, Paul C. Hewett and Patrick S. Osmer (ApJ, 421,412 [1994]), two equations should be corrected: On page 419, column one, line 11, the expression following the words "the error,, should have an opening parenthesis just before the integral sign, to read: [{SIGMA} 1/({integral} ρ(z)dV_a_)^2^]^1/2^. On page 421, equation (15) is missing the asterisk (*) in the M_c_^*^ term just prior to (β + 1); that is, the exponent in the second term the denominator should read: 0.4(M_c_ - M_c_^*^)(β + 1). The authors wish to draw these errors to the attention of any readers who will be using the expression and equation.

  8. Functional domains and motifs of bacterial type III effector proteins and their roles in infection.

    PubMed

    Dean, Paul

    2011-11-01

    A key feature of the virulence of many bacterial pathogens is the ability to deliver effector proteins into eukaryotic cells via a dedicated type three secretion system (T3SS). Many bacterial pathogens, including species of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia and Yersinia, depend on the T3SS to cause disease. T3SS effectors constitute a large and diverse group of virulence proteins that mimic eukaryotic proteins in structure and function. A salient feature of bacterial effectors is their modular architecture, comprising domains or motifs that confer an array of subversive functions within the eukaryotic cell. These domains/motifs therefore represent a fascinating repertoire of molecular determinants with important roles during infection. This review provides a snapshot of our current understanding of bacterial effector domains and motifs where a defined role in infection has been demonstrated.

  9. Identifying functional populations among the interneurons in laminae I-III of the spinal dorsal horn

    PubMed Central

    2017-01-01

    The spinal dorsal horn receives input from primary afferent axons, which terminate in a modality-specific fashion in different laminae. The incoming somatosensory information is processed through complex synaptic circuits involving excitatory and inhibitory interneurons, before being transmitted to the brain via projection neurons for conscious perception. The dorsal horn is important, firstly because changes in this region contribute to chronic pain states, and secondly because it contains potential targets for the development of new treatments for pain. However, at present, we have only a limited understanding of the neuronal circuitry within this region, and this is largely because of the difficulty in defining functional populations among the excitatory and inhibitory interneurons. The recent discovery of specific neurochemically defined interneuron populations, together with the development of molecular genetic techniques for altering neuronal function in vivo, are resulting in a dramatic improvement in our understanding of somatosensory processing at the spinal level. PMID:28326935

  10. [Changes in the excitability of the spinal motor neurons during sessions of functional biocontrol in patients with different forms of infantile cerebral palsy].

    PubMed

    Bogdanov, O V; Sheliakin, A M; Pinchuk, D Iu; Pisar'kova, E V

    1993-01-01

    Excitability changes at the segmentary level of the spine were examined during functional bioregulation sessions administered to patients with various forms of infantile cerebral paralysis (spastic diplegia, spastic hemiparesis) by recording N- and M-responses of musculus soleus and musculus gastrocnemius medial head. Neurophysiologic disorders were revealed at the spinal level depending on the disease form. The authors suppose that presynaptic inhibition is to a greater measure impaired in spastic hemiparesis, whereas spastic diplegia is associated with more extensive involvement even of spinal inhibitory mechanisms proper. Sessions of functional bioregulation resulted in clinical improvement and in development of a trend to normalization of spinal reflectory excitability. Such changes were recorded in musculus soleus of children with spastic diplegia and in gastrocnemius muscle median head of those with spastic hemiparesis. Possible effects of directed afferent currents on structure and function of supraspinal systems regulating spinal mechanisms activity are discussed.

  11. Echocardiography and right ventricular function in NKF stage III cronic kidney disease: Ultrasound nephrologists' role☆

    PubMed Central

    Floccari, F.; Granata, A.; Rivera, R.; Marrocco, F.; Santoboni, A.; Malaguti, M.; Andrulli, S.; Di Lullo, L.

    2012-01-01

    TAPSE measurement during echocardiography is a well known measure of right heart systo-diastolic function. Low TAPSE means reduced cranio-caudal excursion of tricuspidal annulus, sign of both reduced ejection fraction and reduced distensibility of right ventricle. It is a good prognostic index for cardiac mortality risk in CHF patients, adding significant prognostic information to NYHA stadiation. Nephrologists do not always fully aware of right ventricular function in their patients affected by chronic renal failure (CRF), even if this datum is probably crucial in vascular access policy. Our study was designed to study right ventricle function and TAPSE on 202 patients affected by moderate chronic renal failure, free from overt pulmonary hypertension. TAPSE, PAPs, right chambers diameters, classical Framingham factors, estimated glomerular filtration rate were recorded. TAPSE was reduced (<23 mm) in 43% of patients enrolled, while dilated right chambers were present in 24%. PAPs exceeded 30 mmHg in 29% of patients. Echocardiographic signs of left ventricular hypertrophy were found in 36% of patients. The ejection fraction was normal in all patients. Statistical analysis showed a significant indirect correlation between TAPSE and PAPs and between TAPSE and tele-diastolic diameters and volumes of the right ventricle, while a direct correlation was observed between TAPSE and Framingham score. TAPSE showed a bimodal distribution, with a subpopulation “low TAPSE – high PAPs”, next to a population characterized by normal values ??for both parameters. A reduction in compliance and systolic function of the right heart chambers is quite early and frequent in course of CKD, a fact that the nephrologist should take in due consideration, managing blood volume or planning vascular access for hemodialysis. PMID:23730390

  12. Echocardiography and right ventricular function in NKF stage III cronic kidney disease: Ultrasound nephrologists' role.

    PubMed

    Floccari, F; Granata, A; Rivera, R; Marrocco, F; Santoboni, A; Malaguti, M; Andrulli, S; Di Lullo, L

    2012-12-01

    TAPSE measurement during echocardiography is a well known measure of right heart systo-diastolic function. Low TAPSE means reduced cranio-caudal excursion of tricuspidal annulus, sign of both reduced ejection fraction and reduced distensibility of right ventricle. It is a good prognostic index for cardiac mortality risk in CHF patients, adding significant prognostic information to NYHA stadiation. Nephrologists do not always fully aware of right ventricular function in their patients affected by chronic renal failure (CRF), even if this datum is probably crucial in vascular access policy. Our study was designed to study right ventricle function and TAPSE on 202 patients affected by moderate chronic renal failure, free from overt pulmonary hypertension. TAPSE, PAPs, right chambers diameters, classical Framingham factors, estimated glomerular filtration rate were recorded. TAPSE was reduced (<23 mm) in 43% of patients enrolled, while dilated right chambers were present in 24%. PAPs exceeded 30 mmHg in 29% of patients. Echocardiographic signs of left ventricular hypertrophy were found in 36% of patients. The ejection fraction was normal in all patients. Statistical analysis showed a significant indirect correlation between TAPSE and PAPs and between TAPSE and tele-diastolic diameters and volumes of the right ventricle, while a direct correlation was observed between TAPSE and Framingham score. TAPSE showed a bimodal distribution, with a subpopulation "low TAPSE - high PAPs", next to a population characterized by normal values ??for both parameters. A reduction in compliance and systolic function of the right heart chambers is quite early and frequent in course of CKD, a fact that the nephrologist should take in due consideration, managing blood volume or planning vascular access for hemodialysis.

  13. Structural Features Reminiscent of ATP-Driven Protein Translocases Are Essential for the Function of a Type III Secretion-Associated ATPase

    PubMed Central

    Kato, Junya; Lefebre, Matthew

    2015-01-01

    ABSTRACT Many bacterial pathogens and symbionts utilize type III secretion systems to interact with their hosts. These machines have evolved to deliver bacterial effector proteins into eukaryotic target cells to modulate a variety of cellular functions. One of the most conserved components of these systems is an ATPase, which plays an essential role in the recognition and unfolding of proteins destined for secretion by the type III pathway. Here we show that structural features reminiscent of other ATP-driven protein translocases are essential for the function of InvC, the ATPase associated with a Salmonella enterica serovar Typhimurium type III secretion system. Mutational and functional analyses showed that a two-helix-finger motif and a conserved loop located at the entrance of and within the predicted pore formed by the hexameric ATPase are essential for InvC function. These findings provide mechanistic insight into the function of this highly conserved component of type III secretion machines. IMPORTANCE Type III secretion machines are essential for the virulence or symbiotic relationships of many bacteria. These machines have evolved to deliver bacterial effector proteins into host cells to modulate cellular functions, thus facilitating bacterial colonization and replication. An essential component of these machines is a highly conserved ATPase, which is necessary for the recognition and secretion of proteins destined to be delivered by the type III secretion pathway. Using modeling and structure and function analyses, we have identified structural features of one of these ATPases from Salmonella enterica serovar Typhimurium that help to explain important aspects of its function. PMID:26170413

  14. Reply to Comment on 'Excited states of DNA base pairs using long-range corrected time-dependent density functional theory

    SciTech Connect

    Jensen, Lasse; Govind, Niranjan

    2009-09-18

    In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitions in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.

  15. Polarization measurement analysis. III. Analysis of the polarization angle dispersion function with high precision polarization data

    NASA Astrophysics Data System (ADS)

    Alina, D.; Montier, L.; Ristorcelli, I.; Bernard, J.-P.; Levrier, F.; Abdikamalov, E.

    2016-10-01

    High precision polarization measurements, such as those from the Planck satellite, open new opportunities for the study of the magnetic field structure as traced by polarimetric measurements of the interstellar dust emission. The polarization parameters suffer from bias in the presence of measurement noise. It is critical to take into account all the information available in the data in order to accurately derive these parameters. In our previous work, we studied the bias on polarization fraction and angle, various estimators of these quantities, and their associated uncertainties. The goal of this paper is to characterize the bias on the polarization angle dispersion function that is used to study the spatial coherence of the polarization angle. We characterize for the first time the bias on the conventional estimator of the polarization angle dispersion function and show that it can be positive or negative depending on the true value. Monte Carlo simulations were performed to explore the impact of the noise properties of the polarization data, as well as the impact of the distribution of the true polarization angles on the bias. We show that in the case where the ellipticity of the noise in (Q,U) varies by less than 10%, one can use simplified, diagonal approximation of the noise covariance matrix. In other cases, the shape of the noise covariance matrix should be taken into account in the estimation of the polarization angle dispersion function. We also study new estimators such as the dichotomic and the polynomial estimators. Though the dichotomic estimator cannot be directly used to estimate the polarization angle dispersion function, we show that, on the one hand, it can serve as an indicator of the accuracy of the conventional estimator and, on the other hand, it can be used for deriving the polynomial estimator. We propose a method for determining the upper limit of the bias on the conventional estimator of the polarization angle dispersion function. The

  16. Stability of the DSM-5 Section III pathological personality traits and their longitudinal associations with psychosocial functioning in personality disordered individuals.

    PubMed

    Wright, Aidan G C; Calabrese, William R; Rudick, Monica M; Yam, Wern How; Zelazny, Kerry; Williams, Trevor F; Rotterman, Jane H; Simms, Leonard J

    2015-02-01

    This study was conducted to establish (a) the stability of the DSM-5 Section III personality disorder (PD) traits, (b) whether these traits predict future psychosocial functioning, and (c) whether changes in traits track with changes in psychosocial functioning across time. Ninety-three outpatients (61% female) diagnosed with at least 1 PD completed patient-report measures at 2 time-points (M time between assessments = 1.44 years), including the Personality Inventory for the DSM-5 and several measures of psychosocial functioning. Effect sizes of rank-order and mean-level change were calculated. In addition, Time 1 traits were used to predict functioning measures at Time 2. Finally, latent change score models were estimated for DSM-5 Section III traits and functioning measures, and correlations among latent change scores were calculated to establish the relationship between change in traits and functional outcomes. Findings demonstrated that the DSM-5 Section III traits were highly stable in terms of normative (i.e., mean-level) change and rank-order stability over the course of the study. Furthermore, traits prospectively predicted psychosocial functioning. However, at the individual level traits and functioning were not entirely static over the study, and change in individuals' functioning tracked with changes in trait levels. These findings demonstrate that the DSM-5 Section III traits are highly stable consistent with the definition of PD, prospectively predictive of psychosocial functioning, and are dynamically associated with functioning over time. This study provides important evidence in support of the DSM-5 Section III PD model.

  17. Stability of the DSM-5 Section III Pathological Personality Traits and their Longitudinal Associations with Psychosocial Functioning in Personality Disordered Individuals

    PubMed Central

    Wright, Aidan G.C.; Calabrese, William R.; Rudick, Monica M.; Yam, Wern How; Zelazny, Kerry; Williams, Trevor F.; Rotterman, Jane H.; Simms, Leonard J.

    2014-01-01

    This study was conducted to establish (a) the stability of the DSM-5 Section III personality disorder (PD) traits, (b) whether these traits predict future psychosocial functioning, and (c) whether changes in traits track with changes in psychosocial functioning across time. Ninety-three outpatients (61% Female) diagnosed with at least one PD completed patient-report measures at two time-points (M time between assessments = 1.44 years), including the Personality Inventory for the DSM-5 and several measures of psychosocial functioning. Effect sizes of rank-order and mean-level change were calculated. In addition, Time 1 traits were used to predict functioning measures at Time 2. Finally, latent change score models were estimated for DSM-5 Section III traits and functioning measures, and correlations among latent change scores were calculated to establish the relationship between change in traits and functional outcomes. Findings demonstrated that the DSM-5 Section III traits were highly stable in terms of normative (i.e., mean-level) change and rank-order stability over the course of the study. Furthermore, traits prospectively predicted psychosocial functioning. However, at the individual level traits and functioning were not entirely static over the study, and change in individuals’ functioning tracked with changes in trait levels. These findings demonstrate that the DSM-5 Section III traits are highly stable consistent with the definition of PD, prospectively predictive of psychosocial functioning, and dynamically associated with functioning over time. This study provides important evidence in support of the DSM-5 Section III PD model. PMID:25384070

  18. Modeling laser induced molecule excitation using real-time time-dependent density functional theory: application to 5- and 6-benzyluracil.

    PubMed

    Bende, Attila; Toşa, Valer

    2015-02-28

    The fully propagated real time-dependent density functional theory method has been applied to study the laser-molecule interaction in 5- and 6-benzyluracil (5BU and 6BU). The molecular geometry optimization and the time-dependent electronic dynamics propagation were carried out using the M11-L local meta-NGA (nonseparable gradient approximations) exchange-correlation functional together with the def2-TZVP basis set. Different laser field parameters like direction, strength, and wavelength have been varied in order to estimate the conditions for an efficient excitation of the molecules. The results show that the two molecules respond differently to the applied laser field and therefore specific laser field parameters have to be chosen for each of them in order to get efficient and selective excitation behavior. It was also found that from the molecular excitation point of view not only the magnitude of the transition dipoles between the involved orbitals but also their orientation with respect to the laser field is important. On the other hand, it was shown that the molecular excitation is a very complex overlapping of different one-electron orbital depopulation-population processes of the occupied and virtual orbitals.

  19. Vibration testing based on impulse response excited by pulsed-laser ablation: Measurement of frequency response function with detection-free input

    NASA Astrophysics Data System (ADS)

    Hosoya, Naoki; Kajiwara, Itsuro; Hosokawa, Takahiko

    2012-03-01

    We have developed a non-contact vibration-measurement system that is based on impulse excitation by laser ablation (i.e. laser excitation) to measure the high-frequency-vibration characteristics of objects. The proposed method makes it possible to analyse the frequency response function just by measuring the output (acceleration response) of a test object excited by pulsed-laser ablation. This technique does not require detection of the input force. Firstly, using a rigid block, the pulsed-laser-ablation force is calibrated via Newton's second law. Secondly, an experiment is conducted in which an object whose natural frequency lies in the high-frequency domain is excited by pulsed-laser ablation. The complex frequency spectrum obtained by Fourier transform of the measured response is then divided by the estimated pulsed-laser-ablation force. Finally, because of the error involved in the trigger position of the response with respect to the impulse arrival time, the phase of the complex Fourier transform is modified by accounting for the response dead time. The result is the frequency response function of the object. The effectiveness of the proposed method is demonstrated by a vibration test of an aluminium block.

  20. Ab Initio Geometry and Bright Excitation of Carotenoids: Quantum Monte Carlo and Many Body Green’s Function Theory Calculations on Peridinin

    PubMed Central

    Coccia, Emanuele; Varsano, Daniele; Guidoni, Leonardo

    2016-01-01

    In this letter, we report the singlet ground state structure of the full carotenoid peridinin by means of variational Monte Carlo (VMC) calculations. The VMC relaxed geometry has an average bond length alternation of 0.1165(10) Å, larger than the values obtained by DFT (PBE, B3LYP, and CAM-B3LYP) and shorter than that calculated at the Hartree–Fock (HF) level. TDDFT and EOM-CCSD calculations on a reduced peridinin model confirm the HOMO–LUMO major contribution of the Bu+-like (S2) bright excited state. Many Body Green’s Function Theory (MBGFT) calculations of the vertical excitation energy of the Bu+-like state for the VMC structure (VMC/MBGFT) provide an excitation energy of 2.62 eV, in agreement with experimental results in n-hexane (2.72 eV). The dependence of the excitation energy on the bond length alternation in the MBGFT and TDDFT calculations with different functionals is discussed. PMID:26580027

  1. Excited-State Electronic Structure with Configuration Interaction Singles and Tamm-Dancoff Time-Dependent Density Functional Theory on Graphical Processing Units.

    PubMed

    Isborn, Christine M; Luehr, Nathan; Ufimtsev, Ivan S; Martínez, Todd J

    2011-06-14

    Excited-state calculations are implemented in a development version of the GPU-based TeraChem software package using the configuration interaction singles (CIS) and adiabatic linear response Tamm-Dancoff time-dependent density functional theory (TDA-TDDFT) methods. The speedup of the CIS and TDDFT methods using GPU-based electron repulsion integrals and density functional quadrature integration allows full ab initio excited-state calculations on molecules of unprecedented size. CIS/6-31G and TD-BLYP/6-31G benchmark timings are presented for a range of systems, including four generations of oligothiophene dendrimers, photoactive yellow protein (PYP), and the PYP chromophore solvated with 900 quantum mechanical water molecules. The effects of double and single precision integration are discussed, and mixed precision GPU integration is shown to give extremely good numerical accuracy for both CIS and TDDFT excitation energies (excitation energies within 0.0005 eV of extended double precision CPU results).

  2. Chemical association in simple models of molecular and ionic fluids. III. The cavity function

    NASA Astrophysics Data System (ADS)

    Zhou, Yaoqi; Stell, George

    1992-01-01

    Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle association, the combination of the zeroth-order approximation with a ``linear'' approximation (for n-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an n-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.

  3. Chemical association in simple models of molecular and ionic fluids. III. The cavity function

    SciTech Connect

    Zhou, Y. ); Stell, G. )

    1992-01-15

    Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For {ital n}-particle association, the combination of the zeroth-order approximation with a linear'' approximation (for {ital n}-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an {ital n}-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.

  4. Implementation and Testing of Ice and Mud Source Functions in WAVEWATCH III (registered trademark)

    DTIC Science & Technology

    2013-04-19

    dispersed ice field, J. Fluid Mech., 202, 43-81. Mei, C.C. and Liu, K.-F., 1987: A Bingham - plastic model for a muddy seabed under long waves. J...Implementation and Testing of Ice and Mud Source Functions in WAVEWATCH III® W. Erick rogErs Mark D. orzEch Ocean Dynamics and Prediction Branch Oceanography...11 Figure 6. Final state of the second two-dimensional test case, as explained in the text. .............. 13 Figure 7. Comparison of WW3- predicted

  5. Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters

    SciTech Connect

    Costanzi, Matteo; Borgani, Stefano; Villaescusa-Navarro, Francisco; Viel, Matteo; Xia, Jun-Qing; Castorina, Emanuele; Sefusatti, Emiliano E-mail: villaescusa@oats.inaf.it E-mail: xiajq@ihep.ac.cn E-mail: castori@sissa.it

    2013-12-01

    We use a suite of N-body simulations that incorporate massive neutrinos as an extra-set of particles to investigate their effect on the halo mass function. We show that for cosmologies with massive neutrinos the mass function of dark matter haloes selected using the spherical overdensity (SO) criterion is well reproduced by the fitting formula of Tinker et al. (2008) once the cold dark matter power spectrum is considered instead of the total matter power, as it is usually done. The differences between the two implementations, i.e. using P{sub cdm}(k) instead of P{sub m}(k), are more pronounced for large values of the neutrino masses and in the high end of the halo mass function: in particular, the number of massive haloes is higher when P{sub cdm}(k) is considered rather than P{sub m}(k). As a quantitative application of our findings we consider a Planck-like SZ-clusters survey and show that the differences in predicted number counts can be as large as 30% for ∑m{sub ν} = 0.4 eV. Finally, we use the Planck-SZ clusters sample, with an approximate likelihood calculation, to derive Planck-like constraints on cosmological parameters. We find that, in a massive neutrino cosmology, our correction to the halo mass function produces a shift in the σ{sub 8}(Ω{sub m}/0.27){sup γ} relation which can be quantified as Δγ ∼ 0.05 and Δγ ∼ 0.14 assuming one (N{sub ν} = 1) or three (N{sub ν} = 3) degenerate massive neutrino, respectively. The shift results in a lower mean value of σ{sub 8} with Δσ{sub 8} = 0.01 for N{sub ν} = 1 and Δσ{sub 8} = 0.02 for N{sub ν} = 3, respectively. Such difference, in a cosmology with massive neutrinos, would increase the tension between cluster abundance and Planck CMB measurements.

  6. Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms.

    PubMed

    Xu, Xuefei; Yang, Ke R; Truhlar, Donald G

    2014-05-13

    Conventional time-dependent density functional theory (TDDFT) is based on a closed-shell Kohn-Sham (KS) singlet ground state with the adiabatic approximation, using either linear response (KS-LR) or the Tamm-Dancoff approximation (KS-TDA); these methods can only directly predict singly excited states. This deficiency can be overcome by using a triplet state as the reference in the KS-TDA approximation and "exciting" the singlet by a spin flip (SF) from the triplet; this is the method suggested by Krylov and co-workers, and we abbreviate this procedure as SF-KS-TDA. SF-KS-TDA can be applied either with the original collinear kernel of Krylov and co-workers or with a noncollinear kernel, as suggested by Wang and Ziegler. The SF-KS-TDA method does bring some new practical difficulties into play, but it can at least formally model doubly excited states and states with double-excitation character, so it might be more useful than conventional TDDFT (both KS-LR and KS-TDA) for photochemistry if these additional difficulties can be surmounted and if it is accurate with existing approximate exchange-correlation functionals. In the present work, we carried out calculations specifically designed to understand better the accuracy and limitations of the conventional TDDFT and SF-KS-TDA methods; we did this by studying closed-shell atoms and closed-shell monatomic cations because they provide a simple but challenging testing ground for what we might expect in studying the photochemistry of molecules with closed-shell ground states. To test their accuracy, we applied conventional KS-LR and KS-TDA and 18 versions of SF-KS-TDA (nine collinear and nine noncollinear) to the same set of vertical excitation energies (including both Rydberg and valence excitations) of Be, B(+), Ne, Na(+), Mg, and Al(+). We did this for 10 exchange-correlation functionals of various types, both local and nonlocal. We found that the GVWN5 and M06 functionals with nonlocal kernels in spin-flip calculations

  7. Diverse functions of cationic Mn(III) substituted N-pyridylporphyrins, known as SOD mimics

    PubMed Central

    Batinic-Haberle, Ines; Rajic, Zrinka; Tovmasyan, Artak; Ye, Xiaodong; Leong, Kam W.; Dewhirst, Mark W.; Vujaskovic, Zeljko; Benov, Ludmil; Spasojevic, Ivan

    2011-01-01

    Oxidative stress, a redox imbalance between the endogenous reactive species and antioxidant systems, is common to numerous pathological conditions such as cancer, central nervous system injuries, radiation injury, diabetes etc. Therefore, compounds able to reduce oxidative stress have been actively sought for over 3 decades. Superoxide is the major species involved in oxidative stress either in its own right or through its progeny, such as ONOO−, H2O2, ·OH, CO3·−, and ·NO2. Therefore, the very first compounds developed in the late 1970-ies were the superoxide dismutase (SOD) mimics. Thus far the most potent mimics have been the cationic meso Mn(III) N-substituted pyridylporphyrins and N,N′-disubstituted imidazolylporphyrins (MnPs), some of them with kcat(O2·−) similar to the kcat of SOD enzymes. Most frequently studied are ortho isomers MnTE-2-PyP5+, MnTnHex-2-PyP5+, and MnTDE-2-ImP5+. The ability to disproportionate O2·− parallels their ability to remove the other major oxidizing species, peroxynitrite, ONOO−. The same structural feature that gives rise to the high kcat (O2·−) and kred (ONOO−), allows MnPs to strongly impact the activation of the redox-sensitive transcription factors, HIF-1α, NF-κB, AP-1, and SP-1, and therefore modify the excessive inflammatory and immune responses. Coupling with cellular reductants and other redox-active endogenous proteins seems to be involved in the actions of Mn porphyrins. While hydrophilic analogues, such as MnTE-2-PyP5+ and MnTDE-2-ImP5+ are potent in numerous animal models of diseases, the lipophilic analogues were developed to cross blood brain barrier and target central nervous system and critical cellular compartment, mitochondria. The modification of its structure, aimed to preserve the SOD-like potency and lipophilicity, and diminish the toxicity, has presently been pursued. The pulmonary radioprotection by MnTnHex-2-PyP5+ was the first efficacy study performed successfully with non

  8. Fc gamma receptor III on human neutrophils. Allelic variants have functionally distinct capacities.

    PubMed Central

    Salmon, J E; Edberg, J C; Kimberly, R P

    1990-01-01

    As a model system to explore the functional consequences of structural variants of human Fc gamma receptors (Fc gamma R), we have investigated Fc gamma R-mediated phagocytosis in relation to the NA1-NA2 polymorphism of Fc gamma RIII (CD16) on neutrophils (Fc gamma RIIIPMN). The neutrophil-specific NA antigen system is a biallelic polymorphism with codominant expression demonstrating a gene dose effect with the anti-NA1 MAb CLB-gran 11 in a large donor population. To explore the impact of this allelic variation of Fc gamma RIIIPMN on phagocytosis, we used two Fc gamma RIII-dependent probes, IgG-sensitized erythrocytes (EA) and concanavalin. A-treated erythrocytes (E-ConA). Comparison of Fc gamma R-mediated phagocytosis by PMN from NA1 subjects and from NA2 subjects showed lower levels of phagocytosis of both probes by the NA2 individuals. The difference was most pronounced with lightly opsonized EA: at the lowest level of sensitization the phagocytic index was 72% lower for NA2 donors, whereas at the highest level of sensitization it was 21% lower (P less than 0.003). Blockade of Fc gamma RII with MAb IV.3 Fab amplified by threefold the difference between NA1 and NA2 donors. NA1 and NA2 individuals had identical phagocytic capacities for the non-Fc gamma RIII probes, serum-treated and heat-treated zymosan. These individuals did not show differential quantitative cell surface expression of Fc gamma RIIIPMN measured by a panel of anti-CD16 MAb (3G8, CLB FcR-gran 1, VEP13, BW209/2) and by Scatchard analysis of 125I-IgG dimer binding. The difference in Fc gamma R-mediated phagocytosis was not explicable on the basis of differential collaboration of Fc gamma RIIIPMN alleles with Fc gamma RII, since (a) the difference in phagocytic capacity between NA1 and NA2 individuals was readily apparent with the E-ConA probe (which is independent of Fc gamma RII) and (b) the difference in phagocytosis of EA was magnified by Fc gamma RII blockade. The demonstration that allelic

  9. [Structure and function of the bacterial flagellar type III protein export system in Salmonella
].

    PubMed

    Minamino, Tohru

    2015-01-01

    The bacterial flagellum is a filamentous organelle that propels the bacterial cell body in liquid media. For construction of the bacterial flagellum beyond the cytoplasmic membrane, flagellar component proteins are transported by its specific protein export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane export gate complex and a cytoplasmic ATPase ring complex. Flagellar substrate-specific chaperones bind to their cognate substrates in the cytoplasm and escort the substrates to the docking platform of the export gate. The export apparatus utilizes ATP and proton motive force across the cytoplasmic membrane as the energy sources to drive protein export and coordinates protein export with assembly by ordered export of substrates to parallel with their order of assembly. In this review, we summarize our current understanding of the structure and function of the flagellar protein export system in Salmonella enterica serovar Typhimurium.

  10. The Catalytic Function of Nonheme Iron (III) Complex for Hydrocarbon Oxidation

    PubMed Central

    Bilis, Giorgos; Louloudi, Maria

    2010-01-01

    A detailed catalytic study of LFeIIICl (where L = 3-{2-[2-(3-hydroxy-1,3-diphenyl-allylideneamino)-ethylamino]-ethylimino}-1,3-diphenyl-propen-1-ol) for hydrocarbon oxidation was carried out, focusing on the role of solvent, atmospheric dioxygen, and oxidant on catalytic efficiency. The data showed that LFeIIICl catalyst was efficient in homogeneous hydrocarbon oxidations providing significant yields. Moreover, tert-BuOOH provided comparable oxidation yields with H2O2, slightly favoring the formation of alcohols and ketones versus epoxides. Dioxygen intervened in the catalytic reaction, influencing the nature of oxidation products. The polarity of solvent strongly influenced the reaction rates and the nature of oxidation products. A mechanistic model is postulated assuming that LFeIIICl functions via the formation of iron-hydroperoxo-species, followed by a radical-based mechanistic path. PMID:20689711

  11. ANALYTICAL THEORY FOR THE INITIAL MASS FUNCTION. III. TIME DEPENDENCE AND STAR FORMATION RATE

    SciTech Connect

    Hennebelle, Patrick

    2013-06-20

    The present paper extends our previous theory of the stellar initial mass function (IMF) by including time dependence and by including the impact of the magnetic field. The predicted mass spectra are similar to the time-independent ones with slightly shallower slopes at large masses and peak locations shifted toward smaller masses by a factor of a few. Assuming that star-forming clumps follow Larson-type relations, we obtain core mass functions in good agreement with the observationally derived IMF, in particular, when taking into account the thermodynamics of the gas. The time-dependent theory directly yields an analytical expression for the star formation rate (SFR) at cloud scales. The SFR values agree well with the observational determinations of various Galactic molecular clouds. Furthermore, we show that the SFR does not simply depend linearly on density, as is sometimes claimed in the literature, but also depends strongly on the clump mass/size, which yields the observed scatter. We stress, however, that any SFR theory depends, explicitly or implicitly, on very uncertain assumptions like clump boundaries or the mass of the most massive stars that can form in a given clump, making the final determinations uncertain by a factor of a few. Finally, we derive a fully time dependent model for the IMF by considering a clump, or a distribution of clumps accreting at a constant rate and thus whose physical properties evolve with time. In spite of its simplicity, this model reproduces reasonably well various features observed in numerical simulations of converging flows. Based on this general theory, we present a paradigm for star formation and the IMF.

  12. The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2017-03-01

    We obtained follow-up HST observations of the seven low surface brightness galaxies discovered with the Dragonfly Telephoto Array in the field of the massive spiral galaxy M101. Out of the seven galaxies, only three were resolved into stars and are potentially associated with the M101 group at D = 7 Mpc. Based on HST ACS photometry in the broad F606W and F814W filters, we use a maximum likelihood algorithm to locate the Tip of the Red Giant Branch in galaxy color–magnitude diagrams. Distances are {6.38}-0.35+0.35,{6.87}-0.30+0.21 and {6.52}-0.27+0.25 {Mpc} and we confirm that they are members of the M101 group. Combining the three confirmed low-luminosity satellites with previous results for brighter group members, we find the M101 galaxy group to be a sparsely populated galaxy group consisting of seven group members, down to M V = ‑9.2 mag. We compare the M101 cumulative luminosity function to that of the Milky Way and M31. We find that they are remarkably similar; in fact, the cumulative luminosity function of the M101 group gets even flatter for fainter magnitudes, and we show that the M101 group might exhibit the two known small-scale flaws in the ΛCDM model, namely “the missing satellite” problem and the “too big to fail” problem. Kinematic measurements of M101's satellite galaxies are required to determine whether the “too big to fail” problem does in fact exist in the M101 group.

  13. Lowest excited states and optical absorption spectra of donor-acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals.

    PubMed

    Pandey, Laxman; Doiron, Curtis; Sears, John S; Brédas, Jean-Luc

    2012-11-07

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated.

  14. Functional and Computational Analysis of Amino Acid Patterns Predictive of Type III Secretion System Substrates in Pseudomonas syringae

    PubMed Central

    Schechter, Lisa M.; Valenta, Joy C.; Schneider, David J.; Collmer, Alan; Sakk, Eric

    2012-01-01

    Bacterial type III secretion systems (T3SSs) deliver proteins called effectors into eukaryotic cells. Although N-terminal amino acid sequences are required for translocation, the mechanism of substrate recognition by the T3SS is unknown. Almost all actively deployed T3SS substrates in the plant pathogen Pseudomonas syringae pathovar tomato strain DC3000 possess characteristic patterns, including (i) greater than 10% serine within the first 50 amino acids, (ii) an aliphatic residue or proline at position 3 or 4, and (iii) a lack of acidic amino acids within the first 12 residues. Here, the functional significance of the P. syringae T3SS substrate compositional patterns was tested. A mutant AvrPto effector protein lacking all three patterns was secreted into culture and translocated into plant cells, suggesting that the compositional characteristics are not absolutely required for T3SS targeting and that other recognition mechanisms exist. To further analyze the unique properties of T3SS targeting signals, we developed a computational algorithm called TEREE (Type III Effector Relative Entropy Evaluation) that distinguishes DC3000 T3SS substrates from other proteins with a high sensitivity and specificity. Although TEREE did not efficiently identify T3SS substrates in Salmonella enterica, it was effective in another P. syringae strain and Ralstonia solanacearum. Thus, the TEREE algorithm may be a useful tool for identifying new effector genes in plant pathogens. The nature of T3SS targeting signals was additionally investigated by analyzing the N-terminus of FtsX, a putative membrane protein that was classified as a T3SS substrate by TEREE. Although the first 50 amino acids of FtsX were unable to target a reporter protein to the T3SS, an AvrPto protein substituted with the first 12 amino acids of FtsX was translocated into plant cells. These results show that the T3SS targeting signals are highly mutable and that secretion may be directed by multiple features of

  15. Surface Hydrophilicity and Functional Group-Driven Iron(III) Hydroxide Nucleation on Organic-Coated Substrates in Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Ray, J.; Lee, B.; Baltrusaitis, J.; Jun, Y.

    2012-12-01

    Homogeneous and heterogeneous iron hydroxide nanoparticle nucleation can occur continuously in both natural and complex aqueous systems. Iron oxide nanoparticles can act as sinks and/or carriers for heavy metal contaminants; therefore, it is important to develop a better understanding of factors affecting their formation. Organic coatings are ubiquitous in aqueous environments where they can exist on mineral surfaces (e.g., biofilm), as nanoparticle surface coatings (e.g., natural organic matter), or be introduced as coagulants in water treatment systems. These surface coatings could influence the formation of iron oxide nanoparticles and thus, the mobility of aqueous contaminants. Therefore, to better understand the fate and transport of contaminants in complex aqueous environments, we need more accurate information about mechanisms governing heterogeneous and homogeneous nucleation and growth of iron(III) hydroxide nanoparticles in the presence of organic surface coatings. In this work, we used a unique measurement technique allowing for simultaneous small-angle X-ray scattering (SAXS) and grazing incidence (GISAXS) analysis to monitor nanoparticle nucleation in solution and at substrate surfaces. Clean quartz, and polyaspartate- and alginate-coated substrates were chosen as model substrates to represent mineral coatings, engineered organic coatings and natural organic coatings. Polyaspartate was determined to be the most negatively charged substrate and quartz to be the least negatively charged substrate; however, after 2 h of reaction, the total nanoparticle volume calculations—determined from GISAXS—indicate that precipitation of positively-charged iron(III) hydroxide nanoparticles is 10 times higher on the quartz substrate than on the polyaspartate substrate. This implies that electrostatics do not govern iron(III) hydroxide nucleation. Furthermore, homogeneous nucleation approximately 250 μm above the substrate surface was highest in the presence of the

  16. The relationship between the WAIS-III digit symbol Coding and executive functioning.

    PubMed

    Davis, Andrew S; Pierson, Eric E

    2012-01-01

    The current study examined the performance of college students (N = 63) on the Coding subtest of the Wechsler Adult Intelligence Scale-Third Edition and examined whether differences in performance could in part be explained by performance on the Delis-Kaplan Executive Functions System Trail-Making Test. The results of a multiple regression analysis indicated that performance on Coding was correlated most with Letter-Number Sequencing and to a lesser extent with Visual Scanning and with Number Sequencing approaching significance. There was no significant relationship with Letter Sequencing or Motor Speed. The three significant predictor variables were then entered into a stepwise hierarchical regression analysis. Subsequent models using Visual Scanning and Number Sequencing did not improve the predictive value of the model. These results are consistent with other recent reports suggesting that performance on Coding taps cognitive skills and abilities beyond that of simple motor speed or paired-associative learning. The findings also suggest a limited improvement in understanding test performance using a process analysis approach.

  17. Excitation functions of some (n,p) and (n,{alpha}) reactions from threshold to 16 MeV

    SciTech Connect

    Doczi, R.; Buczko, C.M.; Csikai, J.; Semkova, V.; Fenyvesi, A.; Yamamuro, N.

    1998-06-01

    Precise cross sections were measured for the {sup 90}Zr(n,{alpha}){sup 87m}Sr, {sup 94}Zr(n,{alpha}){sup 91}Sr, {sup 92}Mo(n,{alpha}){sup 89m+g}Zr, {sup 45}Sc(n,{alpha}){sup 42}K, {sup 51}V(n,{alpha}){sup 48}Sc, {sup 59}Co(n,{alpha}){sup 56}Mn, {sup 93}Nb(n,{alpha}){sup 90m}Y, {sup 92}Mo(n,p){sup 92m}Nb, {sup 96}(n,p){sup 96}Nb, {sup 97}Mo(n,p){sup 97m+g}Nb, {sup 90}Zr(n,p){sup 90m}Y, {sup 91}Zr(n,p){sup 91m}Y, {sup 92}Zr(n,p){sup 92}Y, and {sup 60}Ni(n,p){sup 60m+g}Co reactions in the 7- to 14.7-MeV neutron energy range. Excitation functions were completed with a number of new differential data. Spectrum-averaged (n,{alpha}) and (n,p) cross sections were measured for the {sup 54}Fe(n,{alpha}){sup 51}Cr, {sup 68}Zn(n,{alpha}){sup 65}Ni, {sup 27}Al(n,{alpha}){sup 24}Na, {sup 58}Ni(n,p){sup 58m+g}Co, {sup 64}Zn(n,p){sup 64}Cu, {sup 59}Co(n,p){sup 59}Fe, {sup 94}Zr(n,p){sup 94}Y, {sup 56}Fe(n,p){sup 56}Mn, {sup 46}Ti(n,p){sup 46m+g}Sc, {sup 47}Ti(n,p){sup 47}Sc, {sup 48}Ti(n,p){sup 48}Sc, and {sup 62}Ni(n,{alpha}){sup 59}Fe reactions in addition to those aforementioned using a thick target Be(d,n) neutron field at E{sub d} = 9.72 MeV. Results were compared with the ENDF/B-VI, IRDF90, JENDL-3, BROND, JEF-2, CENDL-2, and ADL-3 data files and the SINCROS-II system for testing the validation of differential data and the nuclear model calculations.

  18. Effect of Peruvosid (CD412) on excitability and functional refractory period of atrial and ventricular tissues in cardiomyopathy caused by Trypanosoma cruzi

    PubMed Central

    Moleiro, Frederico; Anselmi, Alfonso; Suárez, Régulo; Suárez, José Angel; Drayer, Alberto

    1970-01-01

    Attempts were made to produce myocarditis by Trypanosoma cruzi inoculation in healthy dog puppies 6 to 8 weeks old. Significant electrocardiographic abnormalities were produced, coinciding with interstitial inflammatory processes in the cardiac tissue and with degenerative changes in the myocardial fibres. In puppies showing these changes, profound changes in the excitability and the functional refractory period of the atrial and ventricular muscular tissue were observed. The administration of Peruvosid in doses of 0·0240 to 0·0647 mg./kg. tended to diminish the excitability, previously increased by the inflammatory process, at the same time increasing the functional refractory period duration which had previously been shortened. The fact that Peruvosid corrects these fundamental factors in the genesis of cardiac arrhythmias suggests that the drug may be useful in the treatment of cardiac insufficiency produced by Chagas' myocardiopathy, in which arrhythmias are one of the basic characteristics. Images PMID:4985863

  19. The Prevalence and Symptoms Characteristic of Functional Constipation Using Rome III Diagnostic Criteria among Tertiary Education Students

    PubMed Central

    2016-01-01

    Background and Aims Functional constipation is very common with heterogeneous symptoms that have substantial impact on patient quality of life as well as medical resources which are rarely reported as life-threatening. The aim of this study is to examine the prevalence and symptoms characteristic of functional constipation (FC) by using Rome III diagnostic criteria among tertiary education students with an intention to introduce treatment in the future. Methods Demographic, socio-economics characteristics and symptoms of FC using the Rome III criteria were sought using a questionnaire administered to Malaysian students in a tertiary education setting. Other data obtained were the general health status, lifestyle factors and anthropometric measurements. Using a simple random sampling method, a total of 1662 students were recruited in the study with a response rate of 95.0%. Sampled data are presented as frequency and percentage and stratified accordingly into categories for Chi-square analysis. Results The prevalence of functional constipation among the students was 16.2%, with a significantly higher prevalence among women (17.4%) than men (12.5%). Hard or lumpy stool, incomplete evacuation, anorectal obstruction and straining were reported as the commonest symptoms experienced. Type 3 was the most frequent stool consistency experienced among the constipated individuals (35.2%). Only 4.4% of individuals reported having less than three defecations per week. Using univariable analysis, FC was significantly associated with sex (odds ratio: 1.48, 95% CI: 1.06–2.06) and age group (odds ratio: 1.34, 95% CI: 1.01–1.79) with P value < 0.05 significance level. In multivariate logistic regression analysis, only sex was found significantly associated with FC (adjusted odds ratio: 1.53, 95% CI: 1.08–2.17, P < 0.05). Conclusions Based on the prevalence rate, constipation is a common problem among tertiary education students (16.2%), with significantly more prevalence among

  20. Transition moments between excited electronic states from the Hermitian formulation of the coupled cluster quadratic response function

    NASA Astrophysics Data System (ADS)

    Tucholska, Aleksandra M.; Lesiuk, Michał; Moszynski, Robert

    2017-01-01

    We introduce a new method for the computation of the transition moments between the excited electronic states based on the expectation value formalism of the coupled cluster theory [B. Jeziorski and R. Moszynski, Int. J. Quantum Chem. 48, 161 (1993)]. The working expressions of the new method solely employ the coupled cluster operator T and an auxiliary operator S that is expressed as a finite commutator expansion in terms of T and T†. In the approximation adopted in the present paper, the cluster expansion is limited to single, double, and linear triple excitations. The computed dipole transition probabilities for the singlet-singlet and triplet-triplet transitions in alkali earth atoms agree well with the available theoretical and experimental data. In contrast to the existing coupled cluster response theory, the matrix elements obtained by using our approach satisfy the Hermitian symmetry even if the excitations in the cluster operator are truncated, but the operator S is exact. The Hermitian symmetry is slightly broken if the commutator series for the operator S are truncated. As a part of the numerical evidence for the new method, we report calculations of the transition moments between the excited triplet states which have not yet been reported in the literature within the coupled cluster theory. Slater-type basis sets constructed according to the correlation-consistency principle are used in our calculations.

  1. Transition moments between excited electronic states from the Hermitian formulation of the coupled cluster quadratic response function.

    PubMed

    Tucholska, Aleksandra M; Lesiuk, Michał; Moszynski, Robert

    2017-01-21

    We introduce a new method for the computation of the transition moments between the excited electronic states based on the expectation value formalism of the coupled cluster theory [B. Jeziorski and R. Moszynski, Int. J. Quantum Chem. 48, 161 (1993)]. The working expressions of the new method solely employ the coupled cluster operator T and an auxiliary operator S that is expressed as a finite commutator expansion in terms of T and T(†). In the approximation adopted in the present paper, the cluster expansion is limited to single, double, and linear triple excitations. The computed dipole transition probabilities for the singlet-singlet and triplet-triplet transitions in alkali earth atoms agree well with the available theoretical and experimental data. In contrast to the existing coupled cluster response theory, the matrix elements obtained by using our approach satisfy the Hermitian symmetry even if the excitations in the cluster operator are truncated, but the operator S is exact. The Hermitian symmetry is slightly broken if the commutator series for the operator S are truncated. As a part of the numerical evidence for the new method, we report calculations of the transition moments between the excited triplet states which have not yet been reported in the literature within the coupled cluster theory. Slater-type basis sets constructed according to the correlation-consistency principle are used in our calculations.

  2. A mathematical model of rat ascending Henle limb. III. Tubular function.

    PubMed

    Weinstein, Alan M

    2010-03-01

    K+ plays a catalytic role in AHL Na+ reabsorption via Na+-K+-2Cl- cotransporter (NKCC2), recycling across luminal K+ channels, so that luminal K+ is not depleted. Based on models of the ascending Henle limb (AHL) epithelium, it has been hypothesized that NH4+ may also catalyze luminal Na+ uptake. This hypothesis requires that luminal NH4+ not be depleted, implying replenishment via either direct secretion of NH4+, or NH3 in parallel with a proton. In the present work, epithelial models of rat medullary and cortical AHL (Weinstein AM, Krahn TA. Am J Physiol Renal Physiol 298: F000-F000, 2009) are configured as tubules and examined in simulations of function in vitro and in vivo to assess the feasibility of a catalytic role for NH4+ in Na+ reabsorption. Modulation of Na+ transport is also examined by peritubular K+ concentration and by Bartter-type transport defects in NKCC2 (type 1), in luminal membrane K+ channels (type 2), and in peritubular Cl- channels (type 3). It is found that a catalytic role for NH4+, which is significant in magnitude (relative to K+), is quantitatively realistic, in terms of uptake via NKCC2, and in terms of luminal membrane ammonia backflux. Simulation of a 90% NKCC2 defect is predicted to double distal Na+ delivery; it is also predicted to increase distal acid delivery (principally as NH4+). With doubling of medullary K+, the model predicts a 30% increase in distal Na+ delivery, but in this case there is a decrease in AHL acidification. This effect of peritubular K+ on proton secretion appears to be akin to type 3 Bartter's pathophysiology, in which there is decreased peritubular HCO3- exit, cytosolic alkalinization, and a consequent decrease in luminal proton secretion by NHE3. One consequence of overlapping and redundant roles for K+ and NH4+, is a blunted impact of luminal membrane K+ permeability on overall Na+ reabsorption, so that type 2 Bartter pathophysiology is not well captured by the model.

  3. Time-dependent density functional theory study on the electronic excited-state hydrogen bonding of the chromophore coumarin 153 in a room-temperature ionic liquid.

    PubMed

    Wang, Dandan; Hao, Ce; Wang, Se; Dong, Hong; Qiu, Jieshan

    2012-03-01

    In the present work, in order to investigate the electronic excited-state intermolecular hydrogen bonding between the chromophore coumarin 153 (C153) and the room-temperature ionic liquid N,N-dimethylethanolammonium formate (DAF), both the geometric structures and the infrared spectra of the hydrogen-bonded complex C153-DAF(+) in the excited state were studied by a time-dependent density functional theory (TDDFT) method. We theoretically demonstrated that the intermolecular hydrogen bond C(1) = O(1)···H(1)-O(3) in the hydrogen-bonded C153-DAF(+) complex is significantly strengthened in the S(1) state by monitoring the spectral shifts of the C=O group and O-H group involved in the hydrogen bond C(1) = O(1)···H(1)-O(3). Moreover, the length of the hydrogen bond C(1) = O(1)···H(1)-O(3) between the oxygen atom and hydrogen atom decreased from 1.693 Å to 1.633 Å upon photoexcitation. This was also confirmed by the increase in the hydrogen-bond binding energy from 69.92 kJ mol(-1) in the ground state to 90.17 kJ mol(-1) in the excited state. Thus, the excited-state hydrogen-bond strengthening of the coumarin chromophore in an ionic liquid has been demonstrated theoretically for the first time.

  4. Measurement of natW(p,xn)177,178,179Re excitation function of natural tungsten by using a 100-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Yoon, Jungran; Lee, Jieun; Lee, Samyol

    2017-01-01

    Measurements of the proton-induced excitation function for the natW(p,xn)177,178,179Re nuclear reaction has been measured in the energy region below 100 MeV by using the 100-MeV proton linear accelerator at the Korea Multi-Purpose Accelerator Complex. The stacked foil activation technique was adopted in the present study. The gamma-rays generated from the proton-irradiated samples were measured by using a gamma-ray spectroscopy system with a HPGe detector. The 27Al(p,3p+n)24Na reaction was used as a monitor reaction for proton flux monitoring. The nuclear reactions of natW(p,xn)177,178,179Re were observed in the present study. The proton-induced excitation functions of natural tungsten were derived from the delayed gamma-ray yield of the produced nucleus. The present results were compared with the previous experimental excitation function data of Yu. E. Titarenko et al. [1].

  5. Introduction of ester and amido functions in tetrairon(III) single-molecule magnets: synthesis and physical characterization.

    PubMed

    Rodriguez-Douton, Maria Jesus; Cornia, Andrea; Sessoli, Roberta; Sorace, Lorenzo; Barra, Anne-Laure

    2010-07-07

    Tetrairon(III) complexes with a propeller-like structure derived from [Fe(4)(OMe)(6)(dpm)(6)] (1) (Hdpm = 2,2,6,6-tetramethylheptane-3,5-dione) are providing a growing class of Single Molecule Magnets (SMMs) displaying unprecedented synthetic flexibility and ease of functionalization. Herein we report the synthesis, crystal structures and magnetic properties of two novel tetrairon(III) SMMs, [Fe(4)(esterC5)(2)(dpm)(6)] (2) and [Fe(4)(amideC5)(2)(dpm)(6)].Et(2)O.4MeOH (3.Et(2)O.4MeOH), in which functionalization of the cluster core is achieved using ester and amido linkages, respectively. To this aim, two new tripodal ligands were prepared by acylation of pentaerythritol (2,2-bis(hydroxymethyl)propane-1,3-diol) and TRIS (2-amino-2-(hydroxymethyl)propane-1,3-diol), namely H(3)esterC5 = RC(O)OCH(2)C(CH(2)OH)(3) and H(3)amideC5 = RC(O)NHC(CH(2)OH)(3) with R = n-butyl. The compounds were structurally investigated by single-crystal XRD, which demonstrated coordination of the tripodal ligands to the cluster core. The products display SMM behavior with anisotropy barriers U(eff)/k(B) congruent with 11 K due to a high-spin (S = 5) ground state and an easy axis anisotropy, described by D = -0.421 cm(-1) in 2 and -0.414 cm(-1) in 3.Et(2)O.4MeOH. The departure of U(eff) from the total splitting of the S = 5 ground multiplet, U/k(B) congruent with 15 K, has to be ascribed to the sizeable rhombic anisotropy that characterizes the two compounds (E = 0.021 cm(-1) in 2 and 0.019 cm(-1) in 3.Et(2)O.4MeOH), as confirmed by master matrix calculations of the temperature-dependent relaxation time.

  6. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.

    PubMed

    Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A

    2016-06-15

    We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G

  7. Systematic defect donor levels in III-V and II-VI semiconductors revealed by hybrid functional density-functional theory

    NASA Astrophysics Data System (ADS)

    Petretto, Guido; Bruneval, Fabien

    2015-12-01

    The identification of defect levels from photoluminescence spectroscopy is a useful but challenging task. Density-functional theory (DFT) is a highly valuable tool to this aim. However, the semilocal approximations of DFT that are affected by a band gap underestimation are not reliable to evaluate defect properties, such as charge transition levels. It is now established that hybrid functional approximations to DFT improve the defect description in semiconductors. Here we demonstrate that the use of hybrid functionals systematically stabilizes donor defect states in the lower part of the band gap for many defects, impurities or vacancies, in III-V and in II-VI semiconductors, even though these defects are usually considered as acceptors. These donor defect states are a very general feature and, to the best of our knowledge, have been overlooked in previous studies. The states we identify here may challenge the older assignments to photoluminescent peaks. Though appealing to screen quickly through the possible stable charge states of a defect, semilocal approximations should not be trusted for that purpose.

  8. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions.

    PubMed

    Li, Zhendong; Liu, Wenjian

    2016-06-14

    Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems.

  9. Role of Autocleavage in the Function of a Type III Secretion Specificity Switch Protein in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Monjarás Feria, Julia V.; Lefebre, Matthew D.; Stierhof, York-Dieter

    2015-01-01

    ABSTRACT Type III secretion systems (T3SSs) are multiprotein machines employed by many Gram-negative bacteria to inject bacterial effector proteins into eukaryotic host cells to promote bacterial survival and colonization. The core unit of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins through the bacterial envelope. A distinct feature of the T3SS is that protein export occurs in a strictly hierarchical manner in which proteins destined to form the needle complex filament and associated structures are secreted first, followed by the secretion of effectors and the proteins that will facilitate their translocation through the target host cell membrane. The secretion hierarchy is established by complex mechanisms that involve several T3SS-associated components, including the “switch protein,” a highly conserved, inner membrane protease that undergoes autocatalytic cleavage. It has been proposed that the autocleavage of the switch protein is the trigger for substrate switching. We show here that autocleavage of the Salmonella enterica serovar Typhimurium switch protein SpaS is an unregulated process that occurs after its folding and before its incorporation into the needle complex. Needle complexes assembled with a precleaved form of SpaS function in a manner indistinguishable from that of the wild-type form. Furthermore, an engineered mutant of SpaS that is processed by an external protease also displays wild-type function. These results demonstrate that the cleavage event per se does not provide a signal for substrate switching but support the hypothesis that cleavage allows the proper conformation of SpaS to render it competent for its switching function. PMID:26463164

  10. Supramolecular Structure and Functional Analysis of the Type III Secretion System in Pseudomonas fluorescens 2P24

    PubMed Central

    Liu, Ping; Zhang, Wei; Zhang, Li-Qun; Liu, Xingzhong; Wei, Hai-Lei

    2016-01-01

    The type III secretion system (T3SS) of plant and animal bacterial pathogens directs the secretion and injection of proteins into host cells. Some homologous genes of T3SS were found also in non-pathogenic bacteria, but the organization of its machinery and basic function are still unknown. In this study, we identified a T3SS gene cluster from the plant growth-promoting Pseudomonas fluorescens 2P24 and isolated the corresponding T3SS apparatus. The T3SS gene cluster of strain 2P24 is similar organizationally to that of pathogenic P. syringae, except that it lacks the regulator hrpR and the hrpK1 and hrpH genes, which are involved in translocation of proteins. Electron microscopy revealed that the T3SS supramolecular structure of strain 2P24 was comprised of two distinctive substructures: a long extracellular, filamentous pilus, and a membrane-embedded base. We show that strain 2P24 deploys a harpin homolog protein, RspZ1, to elicit a hypersensitive response when infiltrated into Nicotiana tabacum cv. xanthi leaves with protein that is partially purified, and by complementing the hrpZ1 mutation of pHIR11. The T3SS of strain 2P24 retained ability to secrete effectors, whereas its effector translocation activity appeared to be excessively lost. Mutation of the rscC gene from 2P24 T3SS abolished the secretion of effectors, but the general biocontrol properties were unaffected. Remarkably, strain 2P24 induced functional MAMP-triggered immunity that included a burst of reactive oxygen species, strong suppression of challenge cell death, and disease expansion, while it was not associated with the secretion functional T3SS. PMID:26779224

  11. Excitability of nodose ganglion cells and their role in vago-vagal reflex control of gastrointestinal function.

    PubMed

    Browning, Kirsteen N

    2003-12-01

    A large body of evidence has demonstrated that vagal afferent neurones show non-uniform properties and that distinct neuronal populations can be identified within the nodose ganglia. Of particular interest is recent work illustrating the significant degree of plasticity displayed by vagal sensory neurones; alterations in vagal afferent neuronal excitability might be important in the development and maintenance of gastrointestinal pathological states. Although it is unclear whether such adaptations are mimicked centrally, recent studies suggest that tonic afferent vagal inputs act as a 'brake' on inputs to the dorsal motor nucleus of the vagus. It would be reasonable to assume, therefore, that plasticity in the excitability of vagal afferent neurones would have dramatic consequences for the regulation and modulation of gastrointestinal vago-vagal reflexes.

  12. Density functional theory investigations of the homoleptic tris(dithiolene) complexes [M(dddt)(3)](-q) (q = 3, 2 ; M = Nd(3+) and U(3+/4+)) related to lanthanide(III)/actinide(III) differentiation.

    PubMed

    Meskaldji, Samir; Belkhiri, Lotfi; Arliguie, Thérèse; Fourmigué, Marc; Ephritikhine, Michel; Boucekkine, Abdou

    2010-04-05

    The structures of the homoleptic lanthanide and actinide tris(dithiolene) complexes [M(dddt)(3)](q-) (q = 3, M = Nd(3+) and q = 3 or 2, M = U(3+/4+)) have been investigated using relativistic Density Functional Theory (DFT) computations including spin-orbit corrections coupled with the COnductor-like Screening Model (COSMO) for a realistic solvation approach. The dithiolene ligands are known to be very efficient at stabilizing metal high oxidation states. The aim of the work is to explain the peculiar symmetric folding of the three Mdddt metallacycles in these complexes, some of them existing under a polymeric form, in relation with the Ln(III)/An(III) differentiation. In the [M(dddt)(3)(py)](q-) species, where an additional pyridine ligand is linked to the metal center, the Mdddt moieties appear to be almost planar. The study brings to light the occurrence of a M...C=C interaction explaining the Mdddt folding of the [U(dddt)(3)](q-) uranium species, the metal 5f electrons playing a driving role. No such interaction appears in the case of the Nd(III) complex, and the folding of the rather flexible dddt ligands in the polymeric structure of this species should be mainly due to steric effects. Moreover, the analysis of the normal modes of vibration shows that the U(III) complex [U(dddt)(3)](3-), which has not yet been isolated, is thermodynamically stable. It appears that the X-ray characterized U(IV) complex [U(dddt)(3)](2-) should be less stable than the calculated U(III) complex in a polar solvent.

  13. Exciting Pools

    ERIC Educational Resources Information Center

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  14. In Vitro Assessment Reveals Parameters-Dependent Modulation on Excitability and Functional Connectivity of Cerebellar Slice by Repetitive Transcranial Magnetic Stimulation

    PubMed Central

    Tang, Rongyu; Zhang, Guanghao; Weng, Xiechuan; Han, Yao; Lang, Yiran; Zhao, Yuwei; Zhao, Xiaobo; Wang, Kun; Lin, Qiuxia; Wang, Changyong

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is an increasingly common technique used to selectively modify neural excitability and plasticity. There is still controversy concerning the cortical response to rTMS of different frequencies. In this study, a novel in vitro paradigm utilizing the Multi-Electrodes Array (MEA) system and acute cerebellar slicing is described. In a controllable environment that comprises perfusion, incubation, recording and stimulation modules, the spontaneous single-unit spiking activity in response to rTMS of different frequencies and powers was directly measured and analyzed. Investigation using this in vitro paradigm revealed frequency-dependent modulation upon the excitability and functional connectivity of cerebellar slices. The 1-Hz rTMS sessions induced short-term inhibition or lagged inhibition, whereas 20-Hz sessions induced excitation. The level of modulation is influenced by the value of power. However the long-term response fluctuated without persistent direction. The choice of evaluation method may also interfere with the interpretation of modulation direction. Furthermore, both short-term and long-term functional connectivity was strengthened by 1-Hz rTMS and weakened by 20-Hz rTMS. PMID:27000527

  15. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  16. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  17. Complementary functions of SK and Kv7/M potassium channels in excitability control and synaptic integration in rat hippocampal dentate granule cells

    PubMed Central

    Mateos-Aparicio, Pedro; Murphy, Ricardo; Storm, Johan F

    2014-01-01

    The dentate granule cells (DGCs) form the most numerous neuron population of the hippocampal memory system, and its gateway for cortical input. Yet, we have only limited knowledge of the intrinsic membrane properties that shape their responses. Since SK and Kv7/M potassium channels are key mechanisms of neuronal spiking and excitability control, afterhyperpolarizations (AHPs) and synaptic integration, we studied their functions in DGCs. The specific SK channel blockers apamin or scyllatoxin increased spike frequency (excitability), reduced early spike frequency adaptation, fully blocked the medium-duration AHP (mAHP) after a single spike or spike train, and increased postsynaptic EPSP summation after spiking, but had no effect on input resistance (Rinput) or spike threshold. In contrast, blockade of Kv7/M channels by XE991 increased Rinput, lowered the spike threshold, and increased excitability, postsynaptic EPSP summation, and EPSP–spike coupling, but only slightly reduced mAHP after spike trains (and not after single spikes). The SK and Kv7/M channel openers 1-EBIO and retigabine, respectively, had effects opposite to the blockers. Computational modelling reproduced many of these effects. We conclude that SK and Kv7/M channels have complementary roles in DGCs. These mechanisms may be important for the dentate network function, as CA3 neurons can be activated or inhibition recruited depending on DGC firing rate. PMID:24366266

  18. Excitation functions for production of heavy actinides from interactions of /sup 40/Ca and /sup 48/Ca ions with /sup 248/Cm

    SciTech Connect

    Hoffman, D.C.; Fowler, M.M.; Daniels, W.R.; von Gunten, H.R.; Lee, D.; Moody, K.J.; Gregorich, K.; Welch, R.; Seaborg, G.T.; Bruechle, W.

    1985-05-01

    Excitation functions have been measured for production of isotopes of Bk through Fm in bombardments of /sup 248/Cm with 234- to 294-MeV /sup 40/Ca ions and with 239- to 318-MeV /sup 48/Ca ions. The maxima of the isotopic distributions for these elements occur at only 2 to 3 mass numbers larger for /sup 48/Ca than for /sup 40/Ca reactions. The shapes of the distributions and the half-widths of about 2.5 mass numbers are quite similar to those observed previously for reactions of /sup 16/O, /sup 18/O, /sup 20/Ne, and /sup 22/Ne with /sup 248/Cm. In general, the excitation functions for /sup 40/Ca show maxima near the Coulomb barrier while those for /sup 48/Ca are about 20 MeV above the barrier. The cross sections decrease rather slowly with increasing projectile energy over the energy range studied, indicating that the additional projectile energy is not manifested as excitation energy of these actinide products.

  19. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants.

    PubMed

    Zarycz, M Natalia C; Provasi, Patricio F; Sauer, Stephan P A

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  20. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many bacterial pathogens of plants and animals disarm and remodel host cells by injecting large repertoires of effectors via the type III secretion system (T3SS). The repertoires of individual strains appear to function as robust systems that can tolerate loss of individual effectors with little or ...

  1. Reliability of a Shuttle Run Test for Children with Cerebral Palsy Who Are Classified at Gross Motor Function Classification System Level III

    ERIC Educational Resources Information Center

    Verschuren, Olaf; Bosma, Liesbeth; Takken, Tim

    2011-01-01

    For children and adolescents with cerebral palsy (CP) classified as Gross Motor Function Classification System (GMFCS) level III there is no running-based field test available to assess their cardiorespiratory fitness. The current study investigated whether a shuttle run test can be reliably (test-retest) performed in a group of children with…

  2. Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes.

    PubMed

    Rottloff, Sandy; Stieber, Regina; Maischak, Heiko; Turini, Florian G; Heubl, Günther; Mithöfer, Axel

    2011-08-01

    Carnivory in plants is an adaptation strategy to nutrient-poor environments and soils. Carnivorous plants obtain some additional mineral nutrients by trapping and digesting prey; the genus Nepenthes is helped by its specialized pitcher traps. To make the nutrients available, the caught prey needs to be digested, a process that requires the concerted activity of several hydrolytic enzymes. To identify and investigate the various enzymes involved in this process, fluid from Nepenthes traps has been analysed in detail. In this study, a novel type of Nepenthes endochitinase was identified in the digestion fluid of closed pitchers. The encoding endochitinase genes have been cloned from eight different Nepenthes species. Among these, the deduced amino acid sequence similarity was at least 94.9%. The corresponding cDNA from N. rafflesiana was heterologously expressed, and the purified protein, NrChit1, was biochemically characterized. The enzyme, classified as a class III acid endochitinase belonging to family 18 of the glycoside hydrolases, is secreted into the pitcher fluid very probably due to the presence of an N-terminal signal peptide. Transcriptome analyses using real-time PCR indicated that the presence of prey in the pitcher up-regulates the endochitinase gene not only in the glands, which are responsible for enzyme secretion, but at an even higher level, in the glands' surrounding tissue. These results suggest that in the pitchers' tissues, the endochitinase as well as other proteins from the pitcher fluid might fulfil a different, primary function as pathogenesis-related proteins.

  3. Structural, Evolutionary, and Functional Analysis of the Class III Peroxidase Gene Family in Chinese Pear (Pyrus bretschneideri)

    PubMed Central

    Cao, Yunpeng; Han, Yahui; Meng, Dandan; Li, Dahui; Jin, Qing; Lin, Yi; Cai, Yongping

    2016-01-01

    Peroxidases (PRXs) are widely existed in various organisms and could be divided into different types according to their structures and functions. Specifically, the Class III Peroxidase, a plant-specific multi-gene family, involves in many physiological processes, such as the metabolism of auxin, the extension and thickening of cell wall, as well as the formation of lignin. By searching the pear genome database, 94 non-redundant PRXs from Pyrus bretschneideri (PbPRXs) were identified. Subsequently, analysis of phylogenetic relationships, gene structures, conserved motifs, and microsynteny was performed. These PbPRXs were unevenly distributed among 17 chromosomes of pear. In addition, 26 segmental duplication events but only one tandem duplication were occurred in these PbPRXs, implying segmental duplication was the main contributor to the expansion of the PbPRX family. By the Ka/Ks analysis, 26 out of 27 duplicated PbPRXs has experienced purifying selection. Twenty motifs were identified in PbPRXs based on the MEME analysis, 11 of which were enriched in pear. A total of 41 expressed genes were identified from ESTs of pear fruit. According to qRT-PCR, the expression trends of five PbPRXs in subgroup C were consistent with the change of lignin content during pear fruit development. So we inferred that the five PbPRXs were candidate genes involved in the lignin synthesis pathway. These results provided useful information for further researches of PRX genes in pear. PMID:28018406

  4. Chromium(III) catalysed ethylene tetramerization promoted by bis(phosphino)amines with an N-functionalized pendant.

    PubMed

    Weng, Zhiqiang; Teo, Shihui; Andy Hor, T S

    2007-08-28

    Several N-functionalized bis(phosphino)amine ligands with ether, thioether and pyridyl tethers [(R'')2PN(R')P(R'')2=PNP] () have been synthesized. They react with CrCl3(THF)3 in CH2Cl2 to give dinuclear chloro bridged Cr2(micro-Cl)2Cl4(PNP)2 () which converts to the corresponding mononuclear solvento complexes fac-CrCl3(PNP)(NCR) (). The structures of the ligand with R'=-(CH2)3SCH3 and R''=Ph, and the complexes with R=CH3 () and C2H5 (), R'=-(CH2)3SCH3 and R''=Ph) have been established by single-crystal X-ray crystallography. All ligands are active towards ethylene tetramerization in the presence of Cr(III) and excess MAO at 80 degrees C in toluene. The ligand with thioether pendant Et2PN(CH2CH2CH2SCH3)PEt2 () shows the highest selectivity (55% weight in liquid product distribution) towards 1-octene. Complexes and are active towards ethylene polymerization under thermal conditions.

  5. Functional Analysis of Plant Defense Suppression and Activation by the Xanthomonas Core Type III Effector XopX.

    PubMed

    Stork, William; Kim, Jung-Gun; Mudgett, Mary Beth

    2015-02-01

    Many phytopathogenic type III secretion effector proteins (T3Es) have been shown to target and suppress plant immune signaling but perturbation of the plant immune system by T3Es can also elicit a plant response. XopX is a "core" Xanthomonas T3E that contributes to growth and symptom development during Xanthomonas euvesicatoria infection of tomato but its functional role is undefined. We tested the effect of XopX on several aspects of plant immune signaling. XopX promoted ethylene production and plant cell death (PCD) during X. euvesicatoria infection of susceptible tomato and in transient expression assays in Nicotiana benthamiana, which is consistent with its requirement for the development of X. euvesicatoria-induced disease symptoms. Additionally, although XopX suppressed flagellin-induced reactive oxygen species, it promoted the accumulation of pattern-triggered immunity (PTI) gene transcripts. Surprisingly, XopX coexpression with other PCD elicitors resulted in delayed PCD, suggesting antagonism between XopX-dependent PCD and other PCD pathways. However, we found no evidence that XopX contributed to the suppression of effector-triggered immunity during X. euvesicatoria-tomato interactions, suggesting that XopX's primary virulence role is to modulate PTI. These results highlight the dual role of a core Xanthomonas T3E in simultaneously suppressing and activating plant defense responses.

  6. Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for Type III secretion system functionality.

    PubMed

    Bibova, Ilona; Hot, David; Keidel, Kristina; Amman, Fabian; Slupek, Stephanie; Cerny, Ondrej; Gross, Roy; Vecerek, Branislav

    2015-01-01

    Bordetella pertussis, the causative agent of human whooping cough (pertussis) produces a complex array of virulence factors in order to establish efficient infection in the host. The RNA chaperone Hfq and small regulatory RNAs are key players in posttranscriptional regulation in bacteria and have been shown to play an essential role in virulence of a broad spectrum of bacterial pathogens. This study represents the first attempt to characterize the Hfq regulon of the human pathogen B. pertussis under laboratory conditions as well as upon passage in the host and indicates that loss of Hfq has a profound effect on gene expression in B. pertussis. Comparative transcriptional profiling revealed that Hfq is required for expression of several virulence factors in B. pertussis cells including the Type III secretion system (T3SS). In striking contrast to the wt strain, T3SS did not become operational in the hfq mutant passaged either through mice or macrophages thereby proving that Hfq is required for the functionality of the B. pertussis T3SS. Likewise, expression of virulence factors vag8 and tcfA encoding autotransporter and tracheal colonization factor, respectively, was strongly reduced in the hfq mutant. Importantly, for the first time we demonstrate that B. pertussis T3SS can be activated upon contact with macrophage cells in vitro.

  7. Structural, Evolutionary, and Functional Analysis of the Class III Peroxidase Gene Family in Chinese Pear (Pyrus bretschneideri).

    PubMed

    Cao, Yunpeng; Han, Yahui; Meng, Dandan; Li, Dahui; Jin, Qing; Lin, Yi; Cai, Yongping

    2016-01-01

    Peroxidases (PRXs) are widely existed in various organisms and could be divided into different types according to their structures and functions. Specifically, the Class III Peroxidase, a plant-specific multi-gene family, involves in many physiological processes, such as the metabolism of auxin, the extension and thickening of cell wall, as well as the formation of lignin. By searching the pear genome database, 94 non-redundant PRXs from Pyrus bretschneideri (PbPRXs) were identified. Subsequently, analysis of phylogenetic relationships, gene structures, conserved motifs, and microsynteny was performed. These PbPRXs were unevenly distributed among 17 chromosomes of pear. In addition, 26 segmental duplication events but only one tandem duplication were occurred in these PbPRXs, implying segmental duplication was the main contributor to the expansion of the PbPRX family. By the Ka/Ks analysis, 26 out of 27 duplicated PbPRXs has experienced purifying selection. Twenty motifs were identified in PbPRXs based on the MEME analysis, 11 of which were enriched in pear. A total of 41 expressed genes were identified from ESTs of pear fruit. According to qRT-PCR, the expression trends of five PbPRXs in subgroup C were consistent with the change of lignin content during pear fruit development. So we inferred that the five PbPRXs were candidate genes involved in the lignin synthesis pathway. These results provided useful information for further researches of PRX genes in pear.

  8. Adsorption of La(III) in aqueous systems by N-(2-hydroxyethyl) salicylaldimine-functionalized mesoporous silica

    SciTech Connect

    Tadjarodi, Azadeh Jalalat, Vahideh; Zare-Dorabei, Rouholah

    2015-01-15

    Highlights: • HESI-SBA-15 as a new adsorbent was synthesized for the first time. • This adsorbent was selective for lanthanum ion removal in presence of other ions. • The factors that affected adsorption of La(III) in aqueous solution were studied. • La{sup 3+} uptake process was according to pseudo-second-order kinetic model. - Abstract: In this work, a novel modified SBA-15 with covalently bonded N-(2-hydroxyethyl) salicylaldimine Schiff base as a ligand (HESI-SBA-15) was successfully synthesized, characterized and used as a selective absorbent for lanthanum ions removal from water systems. The structure and physicochemical properties were identified by elemental analysis, X-ray diffraction, nitrogen adsorption–desorption, thermogravimetric analysis and FTIR spectroscopy, scanning electron microscopy, BET surface area and BJH pore size. These techniques have confirmed that the Schiff base ligand was successfully grafted on the SBA-15 surface and ordered arrangement of the silica support was preserved under functionalization. The effect of pH, adsorbent dose, contact time, ionic strength and initial metal ions concentration were studied by using a batch method. This new adsorbent showed high adsorption capacity and selectivity for lanthanum in the presence of other ions. The adsorption process was exactly according to the pseudo-second-order kinetic model. The adsorbent showed a good reusability after four cycles recovery.

  9. Cloning and functional analysis of adhS gene encoding quinoprotein alcohol dehydrogenase subunit III from Acetobacter pasteurianus SKU1108.

    PubMed

    Masud, Uraiwan; Matsushita, Kazunobu; Theeragool, Gunjana

    2010-03-31

    The adhS gene which encodes the smallest subunit, subunit III, of quinoprotein alcohol dehydrogenase (PQQ-ADH) from Acetobacter pasteurianus SKU1108 has been cloned and characterized. The role of this subunit on the function of PQQ-ADH was investigated by construction of adhS gene disruptant and mutants. The adhS gene disruptant completely lost its PQQ-ADH activity and acetate-producing ability but retained acetic acid toleration. In contrast, this disruptant grew well, even better than the wild type, in the ethanol containing medium even though its PQQ-ADH activity and ethanol oxidizing ability was completely lost, while NAD(+)-dependent ADH (NAD(+)-ADH) was induced. Heme staining and immunoblot analysis of both membrane and soluble fractions with anti-ADH subunit III suggested that ethanol did not affect the adhS gene expression but induced PQQ-ADH activity. Over-expressed adhS did not enhance acetic acid production in both the wild type and the adhS disruptant. In addition, deletion analysis of upstream region of adhS gene suggested that its tentative promoter(s) might be located at around 118-268 bp upstream from an initiation codon. Random mutagenesis of adhS gene revealed that complete loss of PQQ-ADH activity and ethanol oxidizing ability were observed in the mutants' lack of the 140 and 73 amino acid residues at the C-terminal, whereas the lack of 22 amino acid residues at the C-terminal affected neither the PQQ-ADH activity nor ethanol oxidizing ability. In addition, some amino acid substitutions such as Leu18Gln, Ala26Val, Val36Ile, Val54Ile, Gly55Asp, Val70Ala and Val107Ala did not show any affect on PQQ-ADH activity and ethanol oxidizing ability. Interestingly, alteration of Thr104Lys led to a complete loss of ethanol oxidizing ability. However, point mutation at the possible promoter region also exhibited low PQQ-ADH activity and ethanol oxidizing ability. This result suggests that 104Thr might be involved in molecular coupling with subunit I in order

  10. Analysis of Gastric and Duodenal Eosinophils in Children with Abdominal Pain Related Functional Gastrointestinal Disorders According to Rome III Criteria

    PubMed Central

    Lee, Eun Hye; Yang, Hye Ran; Lee, Hye Seung

    2016-01-01

    Background/Aims Abdominal pain-related functional gastrointestinal disorder (AP-FGID) is common in children and adults. However, the mechanism of AP-FGID is not clearly known. Recently, micro-inflammation, especially eosinophilia in the gastrointestinal tract, was suggested in the pathophysiology of AP-FGID in adults. The aim of this study was to evaluate the association of gastric and duodenal eosinophilia with pediatric AP-FGID. Methods In total, 105 pediatric patients with AP-FGID were recruited and classified into 4 subgroups based on the Rome III criteria. Eosinophil counts in the gastric and duodenal tissues of children with AP-FGID were compared to those from normal pathology references or those of children with Helicobacter pylori infection. Tissue eosinophil counts were also compared among the 4 subtypes of AP-FGID. Results Eosinophil counts in the gastric antrum and body were significantly higher in children with AP-FGID than normal reference values. Duodenal eosinophil counts were higher in children with AP-FGID, but not significantly when compared with normal reference values. There were no significant differences in eosinophil counts of the stomach or duodenum among the 4 subtypes of AP-FGID. Eosinophils counts in the gastric antrum and body were significantly higher in children with H. pylori infection than in those with AP-FGID. Duodenal eosinophilia was prominent in cases of H. pylori infection, but not statistically significant when compared with AP-FGID. Conclusions Our study revealed that gastric eosinophilia is associated with AP-FGID in children, regardless of the subtype of functional abdominal pain. This suggests some contribution of gastrointestinal eosinophils in the development of pediatric AP-FGID. PMID:27053514

  11. Excited states of large open-shell molecules: an efficient, general, and spin-adapted approach based on a restricted open-shell ground state wave function.

    PubMed

    Roemelt, Michael; Neese, Frank

    2013-04-11

    A spin-adapted configuration interaction with singles method that is based on a restricted open-shell reference function (ROCIS) with general total spin S is presented. All excited configuration state functions (CSFs) are generated with the aid of a spin-free second quantization formalism that only leads to CSFs within the first order interacting space. By virtue of the CSF construction, the formalism involves higher than singly excited determinants but not higher than singly excited configurations. Matrix elements between CSFs are evaluated on the basis of commutator relationships using a symbolic algebra program. The final equations were, however, hand-coded in order to maximize performance. The method can be applied to fairly large systems with more than 100 atoms in reasonable wall-clock times and also parallelizes well. Test calculations demonstrate that the approach is far superior to UHF-based configuration interaction with single excitations but necessarily falls somewhat short of quantitative accuracy due to the lack of dynamic correlation contributions. In order to implicitly account for dynamic correlation in a crude way, the program optionally allows for the use of Kohn-Sham orbitals in combination with a modest downscaling of two-electron integrals (DFT/ROCIS). All two-electron integrals of Kohn-Sham orbitals that appear in the Hamiltonian matrix are reduced by a total of three scaling parameters that are suitable for a wide range of molecules. Test calculations on open-shell organic radicals as well as transition metal complexes demonstrate the wide applicability of the method and its ability to calculate the electronic spectra of large molecular systems.

  12. Source mechanism of long-period events at Kusatsu-Shirane Volcano, Japan, inferred from waveform inversion of the effective excitation functions

    USGS Publications Warehouse

    Nakano, M.; Kumagai, H.; Chouet, B.A.

    2003-01-01

    We investigate the source mechanism of long-period (LP) events observed at Kusatsu-Shirane Volcano, Japan, based on waveform inversions of their effective excitation functions. The effective excitation function, which represents the apparent excitation observed at individual receivers, is estimated by applying an autoregressive filter to the LP waveform. Assuming a point source, we apply this method to seven LP events the waveforms of which are characterized by simple decaying and nearly monochromatic oscillations with frequency in the range 1-3 Hz. The results of the waveform inversions show dominant volumetric change components accompanied by single force components, common to all the events analyzed, and suggesting a repeated activation of a sub-horizontal crack located 300 m beneath the summit crater lakes. Based on these results, we propose a model of the source process of LP seismicity, in which a gradual buildup of steam pressure in a hydrothermal crack in response to magmatic heat causes repeated discharges of steam from the crack. The rapid discharge of fluid causes the collapse of the fluid-filled crack and excites acoustic oscillations of the crack, which produce the characteristic waveforms observed in the LP events. The presence of a single force synchronous with the collapse of the crack is interpreted as the release of gravitational energy that occurs as the slug of steam ejected from the crack ascends toward the surface and is replaced by cooler water flowing downward in a fluid-filled conduit linking the crack and the base of the crater lake. ?? 2003 Elsevier Science B.V. All rights reserved.

  13. How Do Executive Functions Fit with the Cattell-Horn-Carroll Model? Some Evidence from a Joint Factor Analysis of the Delis-Kaplan Executive Function System and the Woodcock-Johnson III Tests of Cognitive Abilities

    ERIC Educational Resources Information Center

    Floyd, Randy G.; Bergeron, Renee; Hamilton, Gloria; Parra, Gilbert R.

    2010-01-01

    This study investigated the relations among executive functions and cognitive abilities through a joint exploratory factor analysis and joint confirmatory factor analysis of 25 test scores from the Delis-Kaplan Executive Function System and the Woodcock-Johnson III Tests of Cognitive Abilities. Participants were 100 children and adolescents…

  14. Americium(III) capture using phosphonic acid-functionalized silicas with different mesoporous morphologies: adsorption behavior study and mechanism investigation by EXAFS/XPS.

    PubMed

    Zhang, Wen; He, Xihong; Ye, Gang; Yi, Rong; Chen, Jing

    2014-06-17

    Efficient capture of highly toxic radionuclides with long half-lives such as Americium-241 is crucial to prevent radionuclides from diffusing into the biosphere. To reach this purpose, three different types of mesoporous silicas functionalized with phosphonic acid ligands (SBA-POH, MCM-POH, and BPMO-POH) were synthesized via a facile procedure. The structure, surface chemistry, and micromorphology of the materials were fully characterized by (31)P/(13)C/(29)Si MAS NMR, XPS, and XRD analysis. Efficient adsorption of Am(III) was realized with a fast rate to reach equilibrium (within 10 min). Influences including structural parameters and functionalization degree on the adsorption behavior were investigated. Slope analysis of the equilibrium data suggested that the coordination with Am(III) involved the exchange of three protons. Moreover, extended X-ray absorption fine structure (EXAFS) analysis, in combination with XPS survey, was employed for an in-depth probe into the binding mechanism by using Eu(III) as a simulant due to its similar coordination behavior and benign property. The results showed three phosphonic acid ligands were coordinated to Eu(III) in bidentate fashion, and Eu(P(O)O)3(H2O) species were formed with the Eu-O coordination number of 7. These phosphonic acid-functionalized mesoporous silicas should be promising for the treatment of Am-containing radioactive liquid waste.

  15. Thermal and optical properties of Tb(III), Eu(III) and Tb(III)/Eu(III) co-complexed silicone fluorinated acrylate copolymer

    NASA Astrophysics Data System (ADS)

    Zhai, Yinfeng; Xie, Hongde; Cai, Haijun; Cai, Peiqing; Seo, Hyo Jin

    2015-07-01

    Tb(III), Eu(III) and Tb(III)/Eu(III) activated silicone fluorinated acrylate (SFA) have been successfully synthesized using the method of semi-continuous emulsion polymerization. The copolymers are characterized by flourier transform infrared (FT-IR), thermal gravity analysis (TGA), photoluminescence excitation (PLE) and emission (PL) spectroscopy. The copolymer containing Tb(III) and Eu(III) ions display green and red luminescent colors under UV light excitation, respectively. The TGA curves show the thermal decomposition temperatures of the copolymers are up to about 300 °C. The PL spectra show a strong green emission at 546 nm (5D4 → 7F5) of Tb(III) complexed copolymers, and show a prominent red emission at 615 nm (5D0 → 7F2) of Eu(III) complexed copolymers. Different concentrations of Eu(III) and Tb(III) ions are introduced into the copolymer and the energy transfer from Tb(III) to Eu(III) ions in the copolymer was found. Thus, based on the results it can be suggested that SFA:Eu(III), SFA:Tb(III) and SFA:Tb(III)/Eu(III) can be used potentially as luminescent materials.

  16. Charge-transfer pipi* excited state in the 7-azaindole dimer. A hybrid configuration interactions singles/time-dependent density functional theory description.

    PubMed

    Gelabert, Ricard; Moreno, Miquel; Lluch, José M

    2006-01-26

    The hybrid configuration interaction singles/time dependent density functional theory approach of Dreuw and Head-Gordon [Dreuw, A.; Head-Gordon, M. J. Am. Chem. Soc. 2004, 126, 4007] has been applied to study the potential energy landscape and accessibility of the charge-transfer pipi* excited state in the dimer of 7-azaindole, which has been traditionally considered a model for DNA base pairing. It is found that the charge-transfer pipi* excited state preferentially stabilizes the product of a single proton transfer. In this situation, the crossing between this state and the photoactive electronic state of the dimer is accessible. It is found that the charge-transfer pipi* excited state has a very steep potential energy profile with respect to any single proton-transfer coordinate and, in contrast, an extremely flat potential energy profile with respect to the stretch of the single proton-transfer complex. This is predicted to bring about a pair of rare fragments of the 7-azaindole dimer, physically separated and hence having very long lifetimes. This could have implications in the DNA base pairs of which the system is an analogue, in the form of replication errors.

  17. Free electrons and ionic liquids: study of excited states by means of electron-energy loss spectroscopy and the density functional theory multireference configuration interaction method.

    PubMed

    Regeta, Khrystyna; Bannwarth, Christoph; Grimme, Stefan; Allan, Michael

    2015-06-28

    The technique of low energy (0-30 eV) electron impact spectroscopy, originally developed for gas phase molecules, is applied to room temperature ionic liquids (IL). Electron energy loss (EEL) spectra recorded near threshold, by collecting 0-2 eV electrons, are largely continuous, assigned to excitation of a quasi-continuum of high overtones and combination vibrations of low-frequency modes. EEL spectra recorded by collecting 10 eV electrons show predominantly discrete vibrational and electronic bands. The vibrational energy-loss spectra correspond well to IR spectra except for a broadening (∼0.04 eV) caused by the liquid surroundings, and enhanced overtone activity indicating a contribution from resonant excitation mechanism. The spectra of four representative ILs were recorded in the energy range of electronic excitations and compared to density functional theory multireference configuration interaction (DFT/MRCI) calculations, with good agreement. The spectra up to about 8 eV are dominated by π-π* transitions of the aromatic cations. The lowest bands were identified as triplet states. The spectral region 2-8 eV was empty in the case of a cation without π orbitals. The EEL spectrum of a saturated solution of methylene green in an IL band showed the methylene green EEL band at 2 eV, indicating that ILs may be used as a host to study nonvolatile compounds by this technique in the future.

  18. Geomagnetic excitation of nutation

    NASA Astrophysics Data System (ADS)

    Ron, C.; Vondrák, J.

    2015-08-01

    We tested the hypothesis of Malkin (2013), who demonstrated that the observed changes of Free Core Nutation parameters (phase, amplitude) occur near the epochs of geomagnetic jerks. We found that if the numerical integration of Brzeziński broad-band Liouville equations of atmospheric/oceanic excitations is re-initialized at the epochs of geomagnetic jerks, the agreement between the integrated and observed celestial pole offsets is improved (Vondrák & Ron, 2014). Nevertheless, this approach assumes that the influence of geomagnetic jerks leads to a stepwise change in the position of celestial pole, which is physically not acceptable. Therefore we introduce a simple continuous excitation function that hypothetically describes the influence of geomagnetic jerks, and leads to rapid but continuous changes of pole position. The results of numerical integration of atmospheric/oceanic excitations and this newly introduced excitation are then compared with the observed celestial pole offsets, and prove that the agreement is improved significantly.

  19. Dance-based exercise program in rheumatoid arthritis. Feasibility in individuals with American College of Rheumatology functional class III disease.

    PubMed

    Noreau, L; Moffet, H; Drolet, M; Parent, E

    1997-01-01

    Many studies have demonstrated that aerobic exercise training is beneficial to prevent physical deconditioning in persons with rheumatoid arthritis (RA) without inducing adverse effects on individual's joints and general health. After significant results in individuals with RA (Functional Class I and II), the present study was conducted to demonstrate the feasibility of a modified dance-based exercise program to improve the physical fitness and psychological state of persons with RA (Class III). Ten (10) female subjects (mean age, 54 +/- 10 years) participated in an eight-week exercise program (twice weekly). Health status, use of medication, joint pain and swelling, cardiorespiratory fitness, activity of daily living, and psychological state were assessed before and after the training program. A high level of participation has been maintained by the participants (mean = 14.8/16 sessions). Most of them were able to perform a maximal exercise test on treadmill and reached 90% of the predicted heart rate at maximal exercise. No significant gain in aerobic power was observed for the group as a whole, but four subjects showed improvements of between 10% and 20% of their cardiorespiratory fitness. Positive changes in depression, anxiety, fatigue, and tension were observed after the eight-week exercise program. No deleterious effect on the health status was observed. These findings provide some evidences as to the feasibility of submitting individuals with RA to a modified dance-exercise program. Further studies, however, are required to determine the long-term effect of weight-bearing exercise on the health status of individuals with RA.

  20. Electronic Excitations in Push-Pull Oligomers and Their Complexes with Fullerene from Many-Body Green's Functions Theory with Polarizable Embedding.

    PubMed

    Baumeier, Björn; Rohlfing, Michael; Andrienko, Denis

    2014-08-12

    We present a comparative study of excited states in push-pull oligomers of PCPDTBT and PSBTBT and prototypical complexes with a C60 acceptor using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. We analyze excitations in oligomers up to a length of 5 nm and find that for both materials the absorption energy practically saturates for structures larger than two repeat units due to the localized nature of the excitation. In the bimolecular complexes with C60, the transition from Frenkel to charge transfer excitons is generally exothermic and strongly influenced by the acceptor's position and orientation. The high CT binding energy of the order of 2 eV results from the lack of an explicit molecular environment. External polarization effects are then modeled in a GW-BSE based QM/MM approach by embedding the donor-acceptor complex into a polarizable lattice. The lowest charge transfer exciton is energetically stabilized by about 0.5 eV, while its binding energy is reduced to about 0.3 eV. We also identify a globally unbound charge transfer state with a more delocalized hole at higher energy while still within the absorption spectrum, which opens another potential pathway for charge separation. For both PCPDTBT and PSBTBT, the energetics are largely similar with respect to absorption and the driving force to form intermediate charge transfer excitations for free charge generation. These results support that the higher power conversion efficiency observed for solar cells using PSBTBT as donor material is a result of molecular packing rather than of the electronic structure of the polymer.

  1. Time-dependent density functional theory/discrete reaction field spectra of open shell systems: The visual spectrum of [FeIII(PyPepS)2]- in aqueous solution.

    PubMed

    van Duijnen, Piet Th; Greene, Shannon N; Richards, Nigel G J

    2007-07-28

    We report the calculated visible spectrum of [FeIII(PyPepS)2]- in aqueous solution. From all-classical molecular dynamics simulations on the solute and 200 water molecules with a polarizable force field, 25 solute/solvent configurations were chosen at random from a 50 ps production run and subjected the systems to calculations using time-dependent density functional theory (TD-DFT) for the solute, combined with a solvation model in which the water molecules carry charges and polarizabilities. In each calculation the first 60 excited states were collected in order to span the experimental spectrum. Since the solute has a doublet ground state several excitations to states are of type "three electrons in three orbitals," each of which gives rise to a manifold of a quartet and two doublet states which cannot properly be represented by single Slater determinants. We applied a tentative scheme to analyze this type of spin contamination in terms of Delta and Delta transitions between the same orbital pairs. Assuming the associated states as pure single determinants obtained from restricted calculations, we construct conformation state functions (CFSs), i.e., eigenfunctions of the Hamiltonian Sz and S2, for the two doublets and the quartet for each Delta,Delta pair, the necessary parameters coming from regular and spin-flip calculations. It appears that the lower final states remain where they were originally calculated, while the higher states move up by some tenths of an eV. In this case filtering out these higher states gives a spectrum that compares very well with experiment, but nevertheless we suggest investigating a possible (re)formulation of TD-DFT in terms of CFSs rather than determinants.

  2. Excitation function and yield for the (103)Rh(d,2n)(103)Pd nuclear reaction: Optimization of the production of palladium-103.

    PubMed

    Manenti, Simone; Alí Santoro, María Del Carmen; Cotogno, Giulio; Duchemin, Charlotte; Haddad, Ferid; Holzwarth, Uwe; Groppi, Flavia

    2017-03-06

    Deuteron-induced nuclear reactions for the generation of (103)Pd were investigated using the stacked-foil activation technique on rhodium targets at deuteron energies up to Ed=33MeV. The excitation functions of the reactions (103)Rh(d,xn)(101,103)Pd, (103)Rh(d,x)(100g,cum,101m,g,102m,g)Rh and (103)Rh(d,2p)(103)Ru have been measured, and the Thick-Target Yield for (103)Pd has been calculated.

  3. Evaluation of excitation functions of proton and deuteron induced reactions on enriched tellurium isotopes with special relevance to the production of iodine-124.

    PubMed

    Aslam, M N; Sudár, S; Hussain, M; Malik, A A; Shah, H A; Qaim, S M

    2010-09-01

    Cross-section data for the production of medically important radionuclide (124)I via five proton and deuteron induced reactions on enriched tellurium isotopes were evaluated. The nuclear model codes, STAPRE, EMPIRE and TALYS, were used for consistency checks of the experimental data. Recommended excitation functions were derived using a well-defined statistical procedure. Therefrom integral yields were calculated. The various production routes of (124)I were compared. Presently the (124)Te(p,n)(124)I reaction is the method of choice; however, the (125)Te(p,2n)(124)I reaction also appears to have great potential.

  4. Solvent effects on optical excitations of poly para phenylene ethynylene studied by QM/MM simulations based on many-body Green's functions theory

    NASA Astrophysics Data System (ADS)

    Bagheri, B.; Karttunen, M.; Baumeier, B.

    2016-10-01

    Electronic excitations in dilute solutions of poly para phenylene ethynylene (poly-PPE) are studied using a QM/MM approach combining many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation with polarizable force field models. Oligomers up to a length of 7.5 nm (10 repeat units) functionalized with nonyl side chains are solvated in toluene and water, respectively. After equilibration using atomistic molecular dynamics (MD), the system is partitioned into a quantum region (backbone) embedded into a classical (side chains and solvent) environment. Optical absorption properties are calculated solving the coupled QM/MM system self-consistently and special attention is paid to the effects of solvents. The model allows to differentiate the influence of oligomer conformation induced by the solvation from electronic effects related to local electric fields and polarization. It is found that the electronic environment contributions are negligible compared to the conformational dynamics of the conjugated PPE. An analysis of the electron-hole wave function reveals a sensitivity of energy and localization characteristics of the excited states to bends in the global conformation of the oligomer rather than to the relative of phenyl rings along the backbone.

  5. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: A Green's function model for ferromagnetism and spin excitations of (Ga, Mn)As diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Liu, Gui-Bin; Liu, Bang-Gui

    2009-11-01

    We study (Ga, Mn)As diluted magnetic semiconductors in terms of the Ruderman-Kittel-Kasuya-Yosida quantum spin model in Green's function approach. Random distributions of the magnetic atoms are treated by using an analytical average of magnetic configurations. Average magnetic moments and spin excitation spectra as functions of temperature can be obtained by solving self-consistent equations, and the Curie temperature TC is given explicitly. TC is proportional to magnetic atomic concentration, and there exists a maximum for TC as a function of carrier concentration. Applied to (Ga, Mn)As, the theoretical results are consistent with experiment and the experimental TC can be obtained with reasonable parameters. This modelling can also be applied to other diluted magnetic semiconductors.

  6. The absence of core fucose up-regulates GnT-III and Wnt target genes: a possible mechanism for an adaptive response in terms of glycan function.

    PubMed

    Kurimoto, Ayako; Kitazume, Shinobu; Kizuka, Yasuhiko; Nakajima, Kazuki; Oka, Ritsuko; Fujinawa, Reiko; Korekane, Hiroaki; Yamaguchi, Yoshiki; Wada, Yoshinao; Taniguchi, Naoyuki

    2014-04-25

    Glycans play key roles in a variety of protein functions under normal and pathological conditions, but several glycosyltransferase-deficient mice exhibit no or only mild phenotypes due to redundancy or compensation of glycan functions. However, we have only a limited understanding of the underlying mechanism for these observations. Our previous studies indicated that 70% of Fut8-deficient (Fut8(-/-)) mice that lack core fucose structure die within 3 days after birth, but the remainder survive for up to several weeks although they show growth retardation as well as emphysema. In this study, we show that, in mouse embryonic fibroblasts (MEFs) from Fut8(-/-) mice, another N-glycan branching structure, bisecting GlcNAc, is specifically up-regulated by enhanced gene expression of the responsible enzyme N-acetylglucosaminyltransferase III (GnT-III). As candidate target glycoproteins for bisecting GlcNAc modification, we confirmed that level of bisecting GlcNAc on β1-integrin and N-cadherin was increased in Fut8(-/-) MEFs. Moreover using mass spectrometry, glycan analysis of IgG1 in Fut8(-/-) mouse serum demonstrated that bisecting GlcNAc contents were also increased by Fut8 deficiency in vivo. As an underlying mechanism, we found that in Fut8(-/-) MEFs Wnt/β-catenin signaling is up-regulated, and an inhibitor against Wnt signaling was found to abrogate GnT-III expression, indicating that Wnt/β-catenin is involved in GnT-III up-regulation. Furthermore, various oxidative stress-related genes were also increased in Fut8(-/-) MEFs. These data suggest that Fut8(-/-) mice adapted to oxidative stress, both ex vivo and in vivo, by inducing various genes including GnT-III, which may compensate for the loss of core fucose functions.

  7. The nature of Hβ+[O III] and [O II] emitters to z ˜ 5 with HiZELS: stellar mass functions and the evolution of EWs

    NASA Astrophysics Data System (ADS)

    Khostovan, A. A.; Sobral, D.; Mobasher, B.; Smail, I.; Darvish, B.; Nayyeri, H.; Hemmati, S.; Stott, J. P.

    2016-12-01

    We investigate the properties of ˜7000 narrow-band selected galaxies with strong Hβ+[O III] and [O II] nebular emission lines from the High-z Emission-Line Survey between z ˜ 0.8 and 5.0. Our sample covers a wide range in stellar mass (Mstellar ˜ 107.5-12.0 M⊙), rest-frame equivalent widths (EWrest˜10-105 Å), and line luminosities (Lline ˜ 1040.5-43.2 erg s-1). We measure the Hβ+[O III]-selected stellar mass functions out to z ˜ 3.5 and find that both M⋆ and φ⋆ increases with cosmic time. The [O II]-selected stellar mass functions show a constant M⋆ ≈ 1011.6 M⊙ and a strong, increasing evolution with cosmic time in φ⋆ in line with Hα studies. We also investigate the evolution of the EWrest as a function of redshift with a fixed mass range (109.5-10.0 M⊙) and find an increasing trend best represented by (1 + z)3.81 ± 0.14 and (1 + z)2.72 ± 0.19 up to z ˜ 2 and ˜3 for Hβ+[O III] and [O II] emitters, respectively. This is the first time that the EWrest evolution has been directly measured for Hβ+[O III] and [O II] emitters up to these redshifts. There is evidence for a slower evolution for z > 2 in the Hβ+[O III] EWrest and a decreasing trend for z > 3 in the [O II] EWrest evolution, which would imply low [O II] EW at the highest redshifts and higher [O III]/[O II] line ratios. This suggests that the ionization parameter at higher redshift may be significantly higher than the local Universe. Our results set the stage for future near-IR space-based spectroscopic surveys to test our extrapolated predictions and also produce z > 5 measurements to constrain the high-z end of the EWrest and [O III]/[O II] evolution.

  8. Thiol-functionalized Fe3O4/SiO2 microspheres with superparamagnetism and their adsorption properties for Au(III) ion separation

    NASA Astrophysics Data System (ADS)

    Peng, Xiangqian; Zhang, Wei; Gai, Ligang; Jiang, Haihui; Tian, Yan

    2016-08-01

    Thiol-functionalized Fe3O4/SiO2 microspheres (Fe3O4/SiO2-SH) with high saturation magnetization (69.3 emu g-1), superparamagnetism, and good dispersibility have been prepared by an ethylene glycol reduction method in combination with a modified Stöber method. The as-prepared composite magnetic spheres are characterized with fourier transform infrared spectroscopy (FT-IR), zeta potential, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and superconducting quantum interference magnetometer, and tested in separation of Au(III) ions from aqueous solutions. The data for Au(III) adsorption on Fe3O4/SiO2-SH are analyzed with the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models, and the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. The adsorption behaviors of Au(III) on Fe3O4/SiO2-SH follow the Langmuir isotherm model, and the adsorption process conforms to the pseudo-second-order kinetic model. The maximum adsorption capacity of Au(III) on Fe3O4/SiO2-SH is 43.7 mg g-1. Acetate anions play an important role yet Cu(II) ions have little interference in the adsorption of Au(III) on the adsorbent. A satisfactory recovery percentage of 89.5% is acquired by using an eluent with 1 M thiourea and 5% HCl, although thiols have a high affinity to Au(III) ions based on the hard-soft acid-base (HSAB) theory by Pearson.

  9. Characterization of functional domains of the hemolytic lectin CEL-III from the marine invertebrate Cucumaria echinata.

    PubMed

    Kouzuma, Yoshiaki; Suzuki, Yota; Nakano, Masahiro; Matsuyama, Kayo; Tojo, Sumiki; Kimura, Makoto; Yamasaki, Takayuki; Aoyagi, Haruhiko; Hatakeyama, Tomomitsu

    2003-09-01

    CEL-III is a Ca(2+)-dependent, galactose/N-acetylgalactosamine (GalNAc)-specific lectin isolated from the marine invertebrate Cucumaria echinata. This lectin exhibits strong hemolytic activity and cytotoxicity through pore formation in target cell membranes. The amino acid sequence of CEL-III revealed the N-terminal two-thirds to have homology to the B-chains of ricin and abrin, which are galactose-specific plant toxic lectins; the C-terminal one-third shows no homology to any known proteins. To examine the carbohydrate-binding ability of the N-terminal region of CEL-III, the protein comprising Pyr1-Phe283 was expressed in Escherichia coli cells. The expressed protein showed both the ability to bind to a GalNAc-immobilized column as well as hemagglutinating activity for rabbit erythrocytes, confirming that the N-terminal region has binding activity for specific carbohydrates. Since the C-terminal region could not be expressed in E. coli cells, a fragment containing this region was produced by limited proteolysis of the native protein by trypsin. The resulting C-terminal 15 kDa fragment of CEL-III exhibited a tendency to self-associate, forming an oligomer. When mixed with erythrocytes, the oligomer of the C-terminal fragment caused hemagglutination, probably due to hydrophobic interaction with cell membranes, while the monomeric fragment did not. Chymotryptic digestion of the preformed CEL-III oligomer induced upon lactose binding also yielded an oligomer of the C-terminal fragment comprising six molecules of the 16 kDa fragment. These results suggest that after binding to cell surface carbohydrate chains, CEL-III oligomerizes through C-terminal domains, leading to the formation of ion-permeable pores by hydrophobic interaction with the cell membrane.

  10. 1s22p3 and 1s22s23l, l = s,p,d, excited states of boron isoelectronic series from explicitly correlated wave functions.

    PubMed

    Gálvez, F J; Buendía, E; Sarsa, A

    2005-07-15

    For some members of the boron isoelectronic series and starting from explicitly correlated wave functions, six low-lying excited states have been studied. Three of them arise from the 1s(2)2p(3) configuration, and the other three from the 1s(2)2s(2)3l, l = s,p,d, configurations. This work follows a previous one on both the 1s(2)2s(2)2p-(2)P ground state and the four excited states coming from the 1s(2)2s2p(2) configuration. Energies, one- and two-body densities in position space and some other two-body properties in position and momentum spaces have been obtained. A systematic analysis of the energetic ordering of the states as a function of the total orbital angular momentum and spin is performed in terms of the electron-nucleus and electron-electron potential energies and the role of the angular correlation is discussed. All calculations have been carried out by using the Monte Carlo algorithm.

  11. Excitation function for H+O2 reaction: A study of zero-point energy effects and rotational distributions in trajectory calculations

    NASA Astrophysics Data System (ADS)

    Varandas, A. J. C.

    1993-07-01

    The excitation function of the H+O2 (v=0)→OH+O reaction has been determined from trajectory calculations using the HO2 DMBE IV potential energy surface. Reactive cross sections for thirteen translational energies, corresponding to a total of a quarter of a million trajectories, have been computed covering the range 65≤Etr/kJ mol-1≤550. Various schemes for analyzing the trajectories, three of which aim to correct approximately for the zero-point energy problem of classical dynamics, have been investigated. One of these schemes aims to correct also for known requirements on rotational distributions, e.g., for the fact that by Hund's rules for the coupling of angular momentum the product OH (2Π) molecule always rotates. It has been found that zero-point energy effects and lowest-J constraints on rotational distributions may have a crucial role, especially close to the threshold energy of reaction. Agreement with recent measurements of absolute reactive cross sections is generally satisfactory but, unlike experiment, no sharp maximum is found on the excitation function in the vicinity of Etr=170 kJ mol-1. Possible reasons for this discrepancy are discussed. There is also good agreement with existing experimental data on the products rotational distribution.

  12. Contrasting Anticancer Activity of Half-Sandwich Iridium(III) Complexes Bearing Functionally Diverse 2-Phenylpyridine Ligands

    PubMed Central

    2015-01-01

    We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η5-Cp*)Ir(2-(R′-phenyl)-R-pyridine)Cl] bearing either an electron-donating (−OH, −CH2OH, −CH3) or electron-withdrawing (−F, −CHO, −NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)Ir(2-(2′-fluorophenyl)pyridine)Cl] (1) and [(η5-Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] (2) exhibit the expected “piano-stool” configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)Ir(2-(2′-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η5-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] (2) and [(η5-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate

  13. Predictions of Optical Excitations in Transition-Metal Complexes with Time Dependent-Density Functional Theory:  Influence of Basis Sets.

    PubMed

    Petit, Laurence; Maldivi, Pascale; Adamo, Carlo

    2005-09-01

    The calculation of the absorption spectra of four families of transition-metal complexes (Ni(CO)4, MnO4(-), MF6 (M = Cr, Mo, W) and CpM(CO)2 (M = Rh, Ir)) has been undertaken to unravel the influence of basis sets onto excitation energies, oscillator strengths, and assignments. Three among the most common pseudopotentials, with the corresponding valence basis sets, and two all-electron basis sets have been used for the metal center description in the framework of the time dependent Density Functional Theory (TD-DFT). Our results show that this approach does not particularly depend on the basis set used on the metal atoms. Furthermore, the chosen functional PBE0 provides transitions in good agreement with experiments, and it provides an accuracy of about 0.3 eV, comparable to that of refined post-Hartree-Fock methods.

  14. Ultrasensitive electrochemical DNA biosensor based on functionalized gold clusters/graphene nanohybrids coupling with exonuclease III-aided cascade target recycling.

    PubMed

    Wang, Wei; Bao, Ting; Zeng, Xi; Xiong, Huayu; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2017-05-15

    In this work, a novel and ultrasensitive electrochemical biosensor was constructed for DNA detection based on functionalized gold clusters/graphene nanohybrids (AuNCs/GR nanobybrids) and exonuclease III (Exo III)-aided cascade target recycling. By utilizing the capacity of GR as universal template, different metal nanoclusters including AuNCs/GR nanobybrids and PtNCs/GR nanohybrids were synthesized through convenient ultrasonic method. Exo III-aided cascade recycling was initiated by target DNA, generating the final cleavage product (S2), which acted as a linkage between capture probe and the functionalized metal nanoclusters/GR conjugates in the construction of the biosensor. The AuNCs/GR-DNA-enzyme conjugates acted as interfaces of enzyme-catalyzed silver deposition reaction, achieving DNA detection ranging from 0.02 fM to 20 pM with a detection limit of 0.057 fM. In addition, PtNCs/GR-DNA conjugates presented peroxidase-like activity and the functionalized PtNCs/GR nanohybrids-based electrochemical biosensor also realized DNA detection by catalyzing the 3,3',5,5'-tetramethylbenzidine-hydrogen peroxide (TMB-H2O2) system to produce electrochemical signal. This metal clusters/GR-based multiple-amplified electrochemical biosensor provided an universal method for DNA detection.

  15. On Diversity of Configurations Generated by Excitable Cellular Automata with Dynamical Excitation Intervals

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2012-11-01

    Excitable cellular automata with dynamical excitation interval exhibit a wide range of space-time dynamics based on an interplay between propagating excitation patterns which modify excitability of the automaton cells. Such interactions leads to formation of standing domains of excitation, stationary waves and localized excitations. We analyzed morphological and generative diversities of the functions studied and characterized the functions with highest values of the diversities. Amongst other intriguing discoveries we found that upper boundary of excitation interval more significantly affects morphological diversity of configurations generated than lower boundary of the interval does and there is no match between functions which produce configurations of excitation with highest morphological diversity and configurations of interval boundaries with highest morphological diversity. Potential directions of future studies of excitable media with dynamically changing excitability may focus on relations of the automaton model with living excitable media, e.g. neural tissue and muscles, novel materials with memristive properties and networks of conductive polymers.

  16. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems

    NASA Astrophysics Data System (ADS)

    van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2014-01-01

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ωα and oscillator strengths fα for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ωα(R) curves along the bond dissociation coordinate R for the molecules LiH, Li2, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate.

  17. The Functional Cycle of Rnt1p: Five Consecutive Steps of Double-Stranded RNA Processing by a Eukaryotic RNase III.

    PubMed

    Song, He; Fang, Xianyang; Jin, Lan; Shaw, Gary X; Wang, Yun-Xing; Ji, Xinhua

    2017-02-07

    Double-stranded RNA (dsRNA)-specific RNase III proteins are required for RNA maturation and gene regulation. The mechanism of prokaryotic RNase IIIs has been well characterized, but how eukaryotic RNase IIIs (exemplified by Rnt1p, Drosha, and Dicer) work is less clear. Recently, we reported the crystal structure of Rnt1p in complex with RNA, revealing a double-ruler mechanism for substrate selection. Here, we present more structures of Rnt1p, either RNA free or RNA bound, featuring two major conformations of the enzyme. Using these structures with existing data, we describe the functional cycle of Rnt1p in five steps, selecting, loading, locking, cleavage, and releasing. We also describe atomic details of the two-Mg(2+)-ion catalytic mechanism that is applicable to all eukaryotic RNase III enzymes. Overall, our results indicate that substrate selection is achieved independent of cleavage, allowing the recognition of substrates with different structures while preserving the basic mechanism of cleavage.

  18. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  19. Graduate Student WAIS-III Scoring Accuracy Is a Function of Full Scale IQ and Complexity of Examiner Tasks

    ERIC Educational Resources Information Center

    Hopwood, Christopher J.; Richard, David C. S.

    2005-01-01

    Research on the Wechsler Adult Intelligence Scale-Revised and Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) suggests that practicing clinical psychologists and graduate students make item-level scoring errors that affect IQ, index, and subtest scores. Studies have been limited in that Full-Scale IQ (FSIQ) and examiner administration,…

  20. Functional and computational analysis of amino acid patterns predictive of type III secretion system substrates in Pseudomonas syringae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial type III secretion systems (T3SSs) deliver proteins called effectors into eukaryotic cells. Although N-terminal amino acid sequences are required for translocation, the mechanism of substrate recognition by the T3SS is unknown. Almost all actively deployed T3SS substrates in the plant path...

  1. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum

    NASA Astrophysics Data System (ADS)

    Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter

    2009-06-01

    Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H5O2+ cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D2d symmetry, instead of the G16 symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.

  2. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.

    PubMed

    Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter

    2009-06-21

    Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.

  3. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory

    SciTech Connect

    Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus J. J.; Jensen, Lasse

    2013-12-10

    A parallel implementation of analytical time-dependent density functional theory gradients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids, and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G, and a molecular host–guest complex (TTFcCBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host–guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experimental data for most exchange-correlation functionals. Finally, however, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

  4. Electronic structure and spectral properties of terbium(III) nitrate complex with hexamethylphosphoramide.

    PubMed

    Kharchenko, Valerii I; Kurbatov, Ilya A; Cherednichenko, Alexander I; Mirochnik, Anatoly G; Zhikhareva, Polina A

    2017-03-05

    Spectral properties of terbium(III) nitrate complex with hexamethylphosphoramide have been studied by quantum-chemical methods within the density functional theory and methods of luminescent and X-ray photoelectron spectroscopy. Analysis of the luminescence excitation spectrum of the complex has indicated the absence of intramolecular transfer of electronic excitation energy from the ligand levels to the resonance levels of the rare earth central ion, so luminescence of the complex is associated with the electronic f-f-transitions of Tb(3+) ion (transitions (5)D4→(7)FJ, J=3-6). According to quantum-chemical modeling of the excited singlet and triplet levels of the complex, the excitation energy transfer from the ligands onto the central ion does not occur because of the significant difference of energies of their excited states.

  5. Electronic structure and spectral properties of terbium(III) nitrate complex with hexamethylphosphoramide

    NASA Astrophysics Data System (ADS)

    Kharchenko, Valerii I.; Kurbatov, Ilya A.; Cherednichenko, Alexander I.; Mirochnik, Anatoly G.; Zhikhareva, Polina A.

    2017-03-01

    Spectral properties of terbium(III) nitrate complex with hexamethylphosphoramide have been studied by quantum-chemical methods within the density functional theory and methods of luminescent and X-ray photoelectron spectroscopy. Analysis of the luminescence excitation spectrum of the complex has indicated the absence of intramolecular transfer of electronic excitation energy from the ligand levels to the resonance levels of the rare earth central ion, so luminescence of the complex is associated with the electronic f-f-transitions of Tb3 + ion (transitions 5D4 → 7FJ, J = 3-6). According to quantum-chemical modeling of the excited singlet and triplet levels of the complex, the excitation energy transfer from the ligands onto the central ion does not occur because of the significant difference of energies of their excited states.

  6. Assessment of density functional theory based Î'SCF (self-consistent field) and linear response methods for longest wavelength excited states of extended π-conjugated molecular systems

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Huix-Rotllant, Miquel

    2014-07-01

    Computational investigation of the longest wavelength excitations in a series of cyanines and linear n-acenes is undertaken with the use of standard spin-conserving linear response time-dependent density functional theory (TD-DFT) as well as its spin-flip variant and a ΔSCF method based on the ensemble DFT. The spin-conserving linear response TD-DFT fails to accurately reproduce the lowest excitation energy in these π-conjugated systems by strongly overestimating the excitation energies of cyanines and underestimating the excitation energies of n-acenes. The spin-flip TD-DFT is capable of correcting the underestimation of excitation energies of n-acenes by bringing in the non-dynamic electron correlation into the ground state; however, it does not fully correct for the overestimation of the excitation energies of cyanines, for which the non-dynamic correlation does not seem to play a role. The ensemble DFT method employed in this work is capable of correcting for the effect of missing non-dynamic correlation in the ground state of n-acenes and for the deficient description of differential correlation effects between the ground and excited states of cyanines and yields the excitation energies of both types of extended π-conjugated systems with the accuracy matching high-level ab initio multireference calculations.

  7. Assessment of density functional theory based ΔSCF (self-consistent field) and linear response methods for longest wavelength excited states of extended π-conjugated molecular systems.

    PubMed

    Filatov, Michael; Huix-Rotllant, Miquel

    2014-07-14

    Computational investigation of the longest wavelength excitations in a series of cyanines and linear n-acenes is undertaken with the use of standard spin-conserving linear response time-dependent density functional theory (TD-DFT) as well as its spin-flip variant and a ΔSCF method based on the ensemble DFT. The spin-conserving linear response TD-DFT fails to accurately reproduce the lowest excitation energy in these π-conjugated systems by strongly overestimating the excitation energies of cyanines and underestimating the excitation energies of n-acenes. The spin-flip TD-DFT is capable of correcting the underestimation of excitation energies of n-acenes by bringing in the non-dynamic electron correlation into the ground state; however, it does not fully correct for the overestimation of the excitation energies of cyanines, for which the non-dynamic correlation does not seem to play a role. The ensemble DFT method employed in this work is capable of correcting for the effect of missing non-dynamic correlation in the ground state of n-acenes and for the deficient description of differential correlation effects between the ground and excited states of cyanines and yields the excitation energies of both types of extended π-conjugated systems with the accuracy matching high-level ab initio multireference calculations.

  8. Assessment of density functional theory based ΔSCF (self-consistent field) and linear response methods for longest wavelength excited states of extended π-conjugated molecular systems

    SciTech Connect

    Filatov, Michael; Huix-Rotllant, Miquel

    2014-07-14

    Computational investigation of the longest wavelength excitations in a series of cyanines and linear n-acenes is undertaken with the use of standard spin-conserving linear response time-dependent density functional theory (TD-DFT) as well as its spin-flip variant and a ΔSCF method based on the ensemble DFT. The spin-conserving linear response TD-DFT fails to accurately reproduce the lowest excitation energy in these π-conjugated systems by strongly overestimating the excitation energies of cyanines and underestimating the excitation energies of n-acenes. The spin-flip TD-DFT is capable of correcting the underestimation of excitation energies of n-acenes by bringing in the non-dynamic electron correlation into the ground state; however, it does not fully correct for the overestimation of the excitation energies of cyanines, for which the non-dynamic correlation does not seem to play a role. The ensemble DFT method employed in this work is capable of correcting for the effect of missing non-dynamic correlation in the ground state of n-acenes and for the deficient description of differential correlation effects between the ground and excited states of cyanines and yields the excitation energies of both types of extended π-conjugated systems with the accuracy matching high-level ab initio multireference calculations.

  9. Site-specific functionalization for chemical speciation of Cr(III) and Cr(VI) using polyaniline impregnated nanocellulose composite: equilibrium, kinetic, and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Jain, Priyanka; Varshney, Shilpa; Srivastava, Shalini

    2015-10-01

    Site-specific functionalizations are the emergent attention for the enhancement of sorption latent of heavy metals. Limited chemistry has been applied for the fabrication of diafunctionalized materials having potential to tether both environmentally stable oxidation states of chromium (Cr(III) and Cr(VI). Polyaniline impregnated nanocellulose composite (PANI-NCC) has been fabricated using click chemistry and explored for the removal of Cr(III) and Cr(VI) from hydrological environment. The structure, stability, morphology, particle size, surface area, hydrophilicity, and porosity of fabricated PANI-NCC were characterized comprehensively using analytical techniques and mathematical tools. The maximum sorption performance of PANI-NCC was procured for (Cr(III): 47.06 mg g-1; 94.12 %) and (Cr(VI): 48.92 mg g-1; 97.84 %) by equilibrating 0.5 g sorbent dose with 1000 mL of 25 mg L-1 chromium conc. at pH 6.5 and 2.5 for Cr(III) and Cr(VI), respectively. The sorption data showed a best fit to the Langmuir isotherm and pseudo-second-order kinetic model. The negative value of ∆ G° (-8.59 and -11.16 kJ mol-1) and ∆ H° (66.46 × 10-1 and 17.84 × 10-1 kJ mol-1), and positive value of ∆ S° (26.66 and 31.46 J mol-1K-1) for Cr(III) and Cr(VI), respectively, reflect the spontaneous, feasibility, and exothermic nature of the sorption process. The application of fabricated PANI-NCC for removing both the forms of chromium in the presence of other heavy metals was also tested at laboratory and industrial waste water regime. These findings open up new avenues in the row of high performance, scalable, and economic nanobiomaterial for the remediation of both forms of chromium from water streams.

  10. Structural and Functional Analysis of the Type III Secretion System from Pseudomonas fluorescens Q8r1-96▿ §

    PubMed Central

    Mavrodi, Dmitri V.; Joe, Anna; Mavrodi, Olga V.; Hassan, Karl A.; Weller, David M.; Paulsen, Ian T.; Loper, Joyce E.; Alfano, James R.; Thomashow, Linda S.

    2011-01-01

    Pseudomonas fluorescens Q8r1-96 represents a group of rhizosphere strains responsible for the suppressiveness of agricultural soils to take-all disease of wheat. It produces the antibiotic 2,4-diacetylphloroglucinol and aggressively colonizes the roots of cereal crops. In this study, we analyzed the genome of Q8r1-96 and identified a type III protein secretion system (T3SS) gene cluster that has overall organization similar to that of the T3SS gene cluster of the plant pathogen Pseudomonas syringae. We also screened a collection of 30 closely related P. fluorescens strains and detected the T3SS genes in all but one of them. The Q8r1-96 genome contained ropAA and ropM type III effector genes, which are orthologs of the P. syringae effector genes hopAA1-1 and hopM1, as well as a novel type III effector gene designated ropB. These type III effector genes encoded proteins that were secreted in culture and injected into plant cells by both P. syringae and Q8r1-96 T3SSs. The Q8r1-96 T3SS was expressed in the rhizosphere, but mutants lacking a functional T3SS were not altered in their rhizosphere competence. The Q8r1-96 type III effectors RopAA, RopB, and RopM were capable of suppressing the hypersensitive response and production of reactive oxygen species, two plant immune responses. PMID:20971913

  11. Postnatal Excitability Development and Innervation by Functional Transient Receptor Potential Vanilloid 1 (TRPV1) Terminals in Neurons of the Rat Spinal Sacral Dorsal Commissural Nucleus: an Electrophysiological Study.

    PubMed

    Yang, Kun

    2016-11-01

    The sacral dorsal commissural nucleus (SDCN) in the spinal cord receives both somatic and visceral primary afferents. Transient receptor potential vanilloid 1 (TRPV1) channels are preferentially expressed in certain fine primary afferents. However, knowledge of the SDCN neurons postnatal excitability development and their contacts with TRPV1 fibers remains elusive. Here, whole-cell recordings were conducted in spinal cord slices to evaluate the postnatal development of SDCN neurons and their possible contacts with functional TRPV1-expressing terminals. SDCN neurons in neonatal (postnatal day (P) 1-2), young (P8-10), and adult rats (P35-40) have different electrophysiological properties. SDCN neurons in neonatal rats have higher frequency of spontaneous firing, higher resting membrane potential, and lower presynaptic glutamate release probability. However, no difference in quantal release was found. At all developmental stages, TRPV1 activation with the selective agonist capsaicin increases glutamate release in the presence of tetrodotoxin, which blocks action potential-dependent and polysynaptic neurotransmission, indicating that functional TRPV1 fibers innervate SDCN neurons directly. Capsaicin-induced presynaptic glutamate release onto SDCN neurons depends on external Ca(2+) influx through TRPV1 channels; voltage-dependent calcium channels had a slighter impact. In contrast, capsaicin blocked C fiber-evoked synaptic transmission, indicating that TRPV1 activation has opposite effects on spontaneous asynchronous and action potential-dependent synchronous glutamate release. These data indicate that excitability of SDCN neurons undergoes a developmental shift, and these neurons receive functional TRPV1 terminals from early postnatal stage. The opposite action of capsaicin on asynchronous and synchronous glutamate release should be taken into account when TRPV1 channels are considered as therapeutic targets.

  12. Excitation functions for some W, Ta and Hf radionuclides obtained by deuteron irradiation of 181Ta up to 40 MeV

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Daraban, L.; Tárkányi, F.; Takács, S.; Ditrói, F.; Ignatyuk, A.; Rebeles, R. Adam; Baba, M.

    2009-10-01

    Experimental excitation functions for deuteron induced reactions up to 40 MeV on mono-isotopic Ta ( 181Ta) were measured with the activation method using a stacked foil irradiation technique. From high resolution gamma spectrometry and X-ray analysis cross-section data for the production of 181W, 177,178g,180g,182m+gTa, and 179m2,180mHf were determined. Comparison with the scarce earlier published data are presented and results for values predicted by different theoretical codes, adapted for more reliable calculations for d-induced reactions, are included. Thick target yields for 182m+g,180g,178gTa and 181W were calculated from a fit to our experimental excitation curves. Using dose conversion factors and irradiation scenarios, possible occupational doses to maintenance or scientific personnel around high power accelerators where Ta based structural elements (collimators, beam stoppers, shielding) are present could be derived.

  13. Evidence of iron (III) reduction in γ-Fe2O3 nanoparticles due to meso-2,3-dimercaptosuccinic acid functionalization

    NASA Astrophysics Data System (ADS)

    Nunes, Eloiza S.; Lima, Emilia C. D.; Soler, Maria A. G.; Silva, Fabio R. L.; Azevedo, Ricardo B.; Morais, Paulo C.

    2014-03-01

    In this study we report on the meso-2,3-dimercaptosuccinic acid (DMSA) surface functionalization of nanosized maghemite particles which were obtained from oxidation of freshly-precipitated magnetite nanoparticles. Stable magnetic sols were produced while using [DMSA]/[Fe] in a wide range (2 to 90%) of values for the surface functionalization protocol. We found experimental evidence of Fe (III) reduction down to Fe (II) in the whole range of [DMSA]/[Fe] values employed, though presenting differences for lower and higher values of DMSA/Fe molar ratio. At lower (up to 10%) [DMSA]/[Fe] values the DMSA-functionalized iron oxide core remains essentially maghemite while the reduced Fe (II) ions move out to the bulk solution as soluble species. In contrast, at higher (20% and above) [DMSA]/[Fe] values the DMSA-functionalized iron oxide core holds the reduced Fe (II) on its crystal structure. The thiol group oxidation, via disulfide bridge formation, plays a key role in the Fe (III) reduction to Fe (II) during the surface functionalization process. We hypothesize that at higher [DMSA]/[Fe] values (20% and above) intermolecular disulfide bridge formation dominates, leading to the onset of a network at the nanoparticle’s surface, thus preventing the surface reduced Fe (II) ions moving out into the bulk solution. Experimental evidence based on visual inspection and different techniques (UV-vis-IR spectroscopy, chemical analysis, x-ray diffraction, and Raman spectroscopy) are present to support the model picture herein introduced.

  14. Synthesis and application of Amberlite xad-4 functionalized with alizarin red-s for preconcentration and adsorption of rhodium (III)

    PubMed Central

    2012-01-01

    A new chelating resin was prepared by coupling Amberlite XAD-4 with alizarin red-s through an azo spacer, characterized by infra-red spectroscopy and thermal analysis and studied for Rh(III) preconcentration using inductively coupled plasma atomic emission spectroscopy (ICP-AES) for rhodium monitoring in the environment. The optimum pH for sorption of the metal ion was 6.5. The sorption capacity was found 2.1 mg/g of resin for Rh(III). A recovery of 88% was obtained for the metal ion with 1.5 M HCl as eluting agent. Kinetic adsorption data were analyzed by adsorption and desorption times of Rh(III) on modified resin. Scat chard analysis revealed that the homogeneous binding sites were formed in the polymers. The linear regression equation was Q/C = –1.3169Q + 27.222 (R2 = 0.9239), for Rh were formed in the SPE sorbent,Kd and Qmax for the affinity binding sites were calculated to be 0.76 μmol/mL and 20.67 μmol/g, respectively. The equilibrium data and parameters of Rh(III) adsorption on modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich–Peterson models. The experimental adsorption isotherm was in good concordance with Langmuir and Freundlich models (R2 > 0.998) and based on the Langmuir isotherm the maximum amount of adsorption (qmax) was 4.842 mg/g. The method was applied for rhodium ions determination in environmental samples. with high recovery (>80%). PMID:23369526

  15. Spatiotemporal Patterns of a Predator-Prey System with an Allee Effect and Holling Type III Functional Response

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Wang, Jinfeng

    A diffusive Gause type predator-prey system with Allee effect in prey growth and Holling type III response subject to Neumann boundary conditions is investigated. Existence of nonconstant positive steady state solutions is proved by Leray-Schauder degree theory and bifurcation theory. Global stability of the positive equilibrium of the system is also investigated. Moreover, bifurcations of spatially homogeneous and nonhomogeneous periodic solutions are analyzed. Our rigorous results justify some recent ecological observations.

  16. Purification, crystal structure determination and functional characterization of type III antifreeze proteins from the European eelpout Zoarces viviparus.

    PubMed

    Wilkens, Casper; Poulsen, Jens-Christian N; Ramløv, Hans; Lo Leggio, Leila

    2014-08-01

    Antifreeze proteins (AFPs) are essential components of many organisms adaptation to cold temperatures. Fish type III AFPs are divided into two groups, SP isoforms being much less active than QAE1 isoforms. Two type III AFPs from Zoarces viviparus, a QAE1 (ZvAFP13) and an SP (ZvAFP6) isoform, are here characterized and their crystal structures determined. We conclude that the higher activity of the QAE1 isoforms cannot be attributed to single residues, but rather a combination of structural effects. Furthermore both ZvAFP6 and ZvAFP13 crystal structures have water molecules around T18 equivalent to the tetrahedral-like waters previously identified in a neutron crystal structure. Interestingly, ZvAFP6 forms dimers in the crystal, with a significant dimer interface. The presence of ZvAFP6 dimers was confirmed in solution by native electrophoresis and gel filtration. To our knowledge this is the first report of dimerization of AFP type III proteins.

  17. Electron impact excitation of the electronic states of N2. III - Transitions in the 12.5-14.2-eV energy-loss region at incident energies of 40 and 60 eV

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Trajmar, S.; Cartwright, D. C.

    1977-01-01

    Analysis of electron energy-loss data at incident electron energies of 40 and 60 eV has led to the determination of normalized absolute differential cross sections for electron-impact excitation of five optically-allowed singlet states, two known triplet states, and two unknown triplet-like states of N2, lying in the energy-loss range 12.5-14.2 eV. The range of scattering angles was 5 to 138 deg. The optically allowed transitions and the known triplet excitations are identified. Cross sections for excitation to two unidentified triplet-like states at 13.155 and 13.395 eV were also obtained. The relationship of the generalized oscillator strength for the dipole-allowed states obtained from the described data to known optical oscillator strengths is discussed.

  18. Taxonomical and functional microbial community dynamics in an Anammox-ASBR system under different Fe (III) supplementation.

    PubMed

    Wang, Xiao; Shu, Duntao; Yue, Hong

    2016-12-01

    In the present study, we explored the metabolic versatility of anaerobic ammonium oxidation (anammox) bacteria in a variety of Fe (III) concentrations. Specifically, we investigated the impacts of Fe (III) on anammox growth rates, on nitrogen removal performance, and on microbial community dynamics. The results from our short-term experiments revealed that Fe (III) concentrations (0.04-0.10 mM) significantly promote the specific anammox growth rate from 0.1343 to 0.1709 d(-1). In the long-term experiments, the Anammox-anaerobic sequencing batch reactor (ASBR) was operated over 120 days and achieved maximum NH4(+)-N, NO2(-)-N, and TN efficiencies of 90.98 ± 0.35, 93.78 ± 0.29, and 83.66 ± 0.46 %, respectively. Pearson's correlation coefficients between anammox-(narG + napA), anammox-nrfA, and anammox-FeRB all exceeded r = 0.820 (p < 0.05), confirming an interaction and ecological association among the nitrogen and iron-cycling-related microbial communities. Illumina MiSeq sequencing indicated that Chloroflexi (34.39-39.31 %) was the most abundant phylum in an Anammox-ASBR system, followed by Planctomycetes (30.73-35.31 %), Proteobacteria (15.40-18.61 %), and Chlorobi (4.78-6.58 %). Furthermore, we found that higher Fe (III) supplementation (>0.06 mM) could result in the community succession of anammox species, in which Candidatus Brocadia and Candidatus Kuenenia were the dominant anammox bacteria species. Combined analyses indicated that the coupling of anammox, dissimilatory nitrogen reduction to ammonium, and iron reduction accounted for nitrogen loss in the Anammox-ASBR system. Overall, the knowledge gained in this study provides novel insights into the microbial community dynamics and metabolic potential of anammox bacteria under Fe (III) supplementation.

  19. Application of the dressed time-dependent density functional theory for the excited states of linear polyenes.

    PubMed

    Mazur, Grzegorz; Włodarczyk, Radosław

    2009-04-15

    Dressed Time-Dependent Density Functional Theory (Maitra et al., J Chem Phys 2004, 120, 5932) is applied to selected linear polyenes. Limits of validity of the approximation are briefly discussed. The implementation strategy is described. Results for the 2(1)B(u) and 2(1)A(g) states of selected linear polyenes are presented and compared with accessible experimental and theoretical results.

  20. An efficient formulation and implementation of the analytic energy gradient method to the single and double excitation coupled-cluster wave function - Application to Cl2O2

    NASA Technical Reports Server (NTRS)

    Rendell, Alistair P.; Lee, Timothy J.

    1991-01-01

    The analytic energy gradient for the single and double excitation coupled-cluster (CCSD) wave function has been reformulated and implemented in a new set of programs. The reformulated set of gradient equations have a smaller computational cost than any previously published. The iterative solution of the linear equations and the construction of the effective density matrices are fully vectorized, being based on matrix multiplications. The new method has been used to investigate the Cl2O2 molecule, which has recently been postulated as an important intermediate in the destruction of ozone in the stratosphere. In addition to reporting computational timings, the CCSD equilibrium geometries, harmonic vibrational frequencies, infrared intensities, and relative energetics of three isomers of Cl2O2 are presented.

  1. Extension of excitation functions up to 50 MeV for activation products in deuteron irradiations of Pr and Tm targets

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.

    2016-09-01

    Extension up to 50 MeV incident deuteron energy is presented for excitation functions of activation products formed in monoisotopic Tm (169Tm) and Pr (141Pr). By stacked foil irradiations direct and/or cumulative production of 140,139m,138Nd, 138mPr, 141,139,137m,135Ce on Pr and 166,169Yb, 166,167,168Tm on Tm targets were measured. Confirmation of earlier experimental results for all investigated radionuclides is found and the influence of the higher energy on thick target yields and batch production of medically relevant radionuclides (140Nd, 139Pr (as decay product of 139mNd), 166,169Yb, 167Tm) is discussed. A comparison of experimental values with TALYS1.6 code results (predicted values from TENDL-2015 on-line library) shows a better description of the (d,pxn) reactions than older ones.

  2. Evaluation of excitation functions of 3He- and α-particle induced reactions on antimony isotopes with special relevance to the production of iodine-124.

    PubMed

    Aslam, M N; Sudár, S; Hussain, M; Malik, A A; Qaim, S M

    2011-01-01

    Cross section data were evaluated for the production of the medically important positron emitter (124)I (T(1/2)=4.18d) via (3)He- and α-particle induced reactions on Sb isotopes. The consistency in the measured data available in the literature was checked against the cross section calculations of three nuclear model codes (i.e. STAPRE, EMPIRE and TALYS). The recommended excitation functions obtained by a statistical procedure were used to derive the integral yields. An assessment of the (124)I yields and associated radioisotopic impurities suggests that the (123)Sb(α,3n)(124)I process over the energy range of E(α)=45 → 32 MeV could be of potential interest for the production of (124)I.

  3. Functional involvement of Ca(2+) and Ca(2+)-activated K(+) channels in anethol-induced changes in Ca(2+) dependent excitability of F1 neurons in Helix aspersa.

    PubMed

    Ghasemi, Zahra; Hassanpour-Ezatti, Majid; Kamalinejad, Mohammad; Janahmadi, Mahyar

    2011-07-01

    The effects of anethol, the major component of anise oil, on the Ca(2+)-dependent excitability and afterhyperpolarization (AHP) in snail neurons were examined using intracellular recording. Anethol (0.5%) significantly broadened the spike, reduced the firing frequency and enhanced the AHP amplitude. In contrast, anethol (2%) significantly increased the firing frequency and decreased the AHP. Blockade of Ca(2+) channels after anethol application depolarized the membrane potential and significantly reduced the firing rate. Furthermore, in the presence of anethol (0.5%) a significant decrease in the AHP was observed by Ca(2+) channels blockage. Here, anethol-induced functional modification of Ca(2+) and Ca(2+)-activated K(+) channels is suggested.

  4. Excitation functions for production of heavy actinides from interactions of /sup 18/O with /sup 248/Cm and /sup 249/Cf

    SciTech Connect

    Lee, D.; Moody, K.J.; Nurmia, M.J.; Seaborg, G.T.; von Gunten, H.R.; Hoffman, D.C.

    1983-06-01

    Excitation functions have been measured for the production of isotopes of Bk through Fm in bombardments of /sup 248/Cm with 97- to 122-MeV /sup 18/O ions and of isotopes of Bk through No in bombardments of /sup 249/Cf with 91- to 150-MeV /sup 18/O ions. The cross sections and widths of the mass distributions for the actinides produced in these reactions are very similar for transfer of the same numbers of nucleons. A semiquantitative comparison of the experimental results with calculations based on a simple model shows that calculations of this type are helpful in selection of projectile-target systems and optimum energies for production of specific actinide isotopes and for synthesis of as yet unknown heavy isotopes and elements. Comparisons of experimental results with calculations show that, in general, about half of the kinetic energy of the projectile is transferred to the actinide product.

  5. Excitation function for deuteron induced nuclear reactions on natural ytterbium for production of high specific activity 177g Lu in no-carrier-added form for metabolic radiotherapy.

    PubMed

    Manenti, Simone; Groppi, Flavia; Gandini, Andrea; Gini, Luigi; Abbas, Kamel; Holzwarth, Uwe; Simonelli, Federica; Bonardi, Mauro

    2011-01-01

    Deuteron-induced nuclear reactions for generation of no-carrier-added Lu radionuclides were investigated using the stacked-foil activation technique on natural Yb targets at energies up to E(d)=18.18 MeV. Excitation functions of the reactions (nat)Yb(d,xn)(169,170,171,172,173,174g,174m,176m,177g)Lu and (nat)Yb(d,pxn)(169,175,177)Yb have been measured, among them three ((169)Lu, (174m)Lu and (176m)Lu) are reported for the first time. The upper limit of the contamination from the long-lived metastable level (177m)Lu was evaluated too. Thick-target yields for all investigated radionuclides are calculated.

  6. Collisional energy transfer probabilities of highly excited molecules from KCSI. III. Azulene: P(E',E) and moments of energy transfer for energies up to 40 000 cm-1 via self-calibrating experiments

    NASA Astrophysics Data System (ADS)

    Hold, Uwe; Lenzer, Thomas; Luther, Klaus; Symonds, Andrew C.

    2003-12-01

    Complete experimental transition probability density functions P(E',E) have been determined for collisions between highly vibrationally excited azulene and several bath gases over a wide energy range. This was achieved by applying 2-color "kinetically controlled selective ionization (KCSI)" [U. Hold, T. Lenzer, K. Luther, K. Reihs, and A. C. Symonds, J. Chem. Phys. 112, 4076 (2000)]. The results are "self-calibrating," i.e., independent of any empirical calibration curve, as usually needed in traditional energy transfer experiments like time-resolved ultraviolet absorption or infrared fluorescence. The complete data set can be described by our recently introduced monoexponential 3-parameter P(E',E) form with a parametric exponent Y in the argument, P(E',E)∝exp[-{(E-E')/(C0+C1ṡE)}Y]. For small colliders (helium, argon, xenon, N2, and CO2) the P(E',E) show increased amplitudes in the wings compared to a monoexponential form (Y<1). For larger colliders, the wings of P(E',E) have an even smaller amplitude (Y>1) than that provided by a monoexponential. Approximate simulations show that the wings of P(E',E) at amplitudes <1×10-6 (cm-1)-1 have a nearly negligible influence on the population distributions and the net energy transfer. All optimized P(E',E) representations exhibit a linear energy dependence of the collision parameter α1(E)=C0+C1ṡE, which also results in an (approximately) linear dependence of <ΔE> and <ΔE2>1/2. The energy transfer parameters presented in this study have benchmark character in certainty and accuracy, e.g., with only 2%-5% uncertainty for our <ΔE> data below 25 000 cm-1. Deviations of previously reported first moment data from ultraviolet absorption and infrared fluorescence measurements can be traced back to either the influence of azulene self-collisions or well-known uncertainties in calibration curves.

  7. Proteins of Excitable Membranes

    PubMed Central

    Nachmansohn, David

    1969-01-01

    Excitable membranes have the special ability of changing rapidly and reversibly their permeability to ions, thereby controlling the ion movements that carry the electric currents propagating nerve impulses. Acetylcholine (ACh) is the specific signal which is released by excitation and is recognized by a specific protein, the ACh-receptor; it induces a conformational change, triggering off a sequence of reactions resulting in increased permeability. The hydrolysis of ACh by ACh-esterase restores the barrier to ions. The enzymes hydrolyzing and forming ACh and the receptor protein are present in the various types of excitable membranes. Properties of the two proteins directly associated with electrical activity, receptor and esterase, will be described in this and subsequent lectures. ACh-esterase has been shown to be located within the excitable membranes. Potent enzyme inhibitors block electrical activity demonstrating the essential role in this function. The enzyme has been recently crystallized and some protein properties will be described. The monocellular electroplax preparation offers a uniquely favorable material for analyzing the properties of the ACh-receptor and its relation to function. The essential role of the receptor in electrical activity has been demonstrated with specific receptor inhibitors. Recent data show the basically similar role of ACh in the axonal and junctional membranes; the differences of electrical events and pharmacological actions are due to variations of shape, structural organization, and environment. PMID:19873642

  8. Measurements of Excitation Functions and Line Polarizations for Electron Impact Excitation of the n = 2, 3 States of Atomic Hydrogen in the Energy Range 11 - 2000 eV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Kanik, I.; Slevin, J.; Franklin, B.; Shemansky, D.

    1993-01-01

    The electron-atomic hydrogen scattering system is an important testing ground for theoretical models and has received a great deal of attention from experimentalists and theoreticians alike over the years. A complete description of the excitation process requires a knowledge of many different parameters, and experimental measurements of these parameters have been performed in various laboratories around the world. As far as total cross section data are concerned it has been noted that the discrepancy between the data of Long et al. and Williams for n = 2 excitations needs to be resolved in the interests of any further refinement of theory. We report new measurements of total cross sections and atomic line polarizations for both n=2 and n=3 excitations at energies from threshold to 2000 eV...

  9. Graduate student WAIS-III scoring accuracy is a function of full scale IQ and complexity of examiner tasks.

    PubMed

    Hopwood, Christopher J; Richard, David C S

    2005-12-01

    Research on the Wechsler Adult Intelligence Scale-Revised and Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) suggests that practicing clinical psychologists and graduate students make item-level scoring errors that affect IQ, index, and subtest scores. Studies have been limited in that Full-Scale IQ (FSIQ) and examiner administration, recording, and scoring tasks have not been systematically varied. In this study, graduate student participants score a high (FSIQ = 112) and low (FSIQ = 85) IQ record form in one of two stimulus conditions: digitized film clips (N = 13) or partially completed record forms (N = 11). Results demonstrate that examiners are less accurate in the high IQ condition, and that recording examinee responses from scoring video clips results in more scoring errors. Obtained FSIQs are significantly higher than criterion IQ scores in the high IQ condition (8.46 for video condition, 2.55 for record form condition). Self-reported proficiency in WAIS-III administration and scoring is positively related to number of scoring errors.

  10. Structure-based mutagenesis of SigE verifies the importance of hydrophobic and electrostatic residues in type III chaperone function.

    PubMed

    Knodler, Leigh A; Bertero, Michela; Yip, Calvin; Strynadka, Natalie C J; Steele-Mortimer, Olivia

    2006-11-01

    Despite sharing little sequence identity, most type III chaperones display a similar homodimeric structure characterized by negative charges distributed broadly over their entire surface, interspersed with hydrophobic patches. Here we have used SigE from Salmonella as a model for class IA type III chaperones to investigate the role of these surface-exposed residues in chaperone function. SigE is essential for the stability, secretion and translocation of its cognate effector, SopB (SigD). We analysed the effect of mutating nine conserved hydrophobic and electronegative surface-exposed amino acids of SigE on SopB binding, stability, secretion and translocation. Six of these mutations affected some aspect of SigE function (Leu14, Asp20, Leu22, Leu23, Ile25 and Asp51) and three were without effect (Leu54, Glu92 and Glu99). Our results highlight that both hydrophobic and electronegative surfaces are required for the function of SigE and provide an important basis for the prediction of side-chain requirements for other chaperone-effector pairs.

  11. Normative values for stool frequency and form using Rome III diagnostic criteria for functional constipation in adults: systematic review with meta-analysis.

    PubMed

    Miller, Larry E; Ibarra, Alvin; Ouwehand, Arthur C; Zimmermann, Angela K

    2017-01-01

    When designing clinical trials focused on functional constipation therapies, understanding the normative values of populations selected using the Rome III criteria is important for estimating baseline symptom severity, and for power analysis and sample size calculations. The objective of this review was to determine normative ranges for stool frequency and form in adults with functional constipation (Rome III criteria). Eligible studies reported stool frequency or form; random effects meta-analysis was performed with subgroup analyses to explore sources of heterogeneity. A total of 25 studies (43 groups, 2292 subjects) were included. Pooled estimates were 2.7 (95% CI 2.4-3.0) for weekly stools and 2.4 (95% CI 2.1-2.6) for stool form (Bristol scale). Heterogeneity was high for both outcomes (both I(2)=96%, P<0.001). Subgroup analysis revealed that weekly bowel movement frequency was higher in larger than in smaller studies (3.1 vs. 2.3, P<0.001) and in studies conducted in Europe compared with those in the Americas (3.1 vs. 2.2, P=0.02). For stool form, the use of a daily diary versus subject recall was the sole explanatory variable (2.5 vs. 2.1, P<0.05). We conclude that adults with functional constipation have significant variation in stool frequency and form, explained in part by geography and study design.

  12. Normative values for stool frequency and form using Rome III diagnostic criteria for functional constipation in adults: systematic review with meta-analysis

    PubMed Central

    Miller, Larry E.; Ibarra, Alvin; Ouwehand, Arthur C.; Zimmermann, Angela K.

    2017-01-01

    When designing clinical trials focused on functional constipation therapies, understanding the normative values of populations selected using the Rome III criteria is important for estimating baseline symptom severity, and for power analysis and sample size calculations. The objective of this review was to determine normative ranges for stool frequency and form in adults with functional constipation (Rome III criteria). Eligible studies reported stool frequency or form; random effects meta-analysis was performed with subgroup analyses to explore sources of heterogeneity. A total of 25 studies (43 groups, 2292 subjects) were included. Pooled estimates were 2.7 (95% CI 2.4-3.0) for weekly stools and 2.4 (95% CI 2.1-2.6) for stool form (Bristol scale). Heterogeneity was high for both outcomes (both I2=96%, P<0.001). Subgroup analysis revealed that weekly bowel movement frequency was higher in larger than in smaller studies (3.1 vs. 2.3, P<0.001) and in studies conducted in Europe compared with those in the Americas (3.1 vs. 2.2, P=0.02). For stool form, the use of a daily diary versus subject recall was the sole explanatory variable (2.5 vs. 2.1, P<0.05). We conclude that adults with functional constipation have significant variation in stool frequency and form, explained in part by geography and study design. PMID:28243036

  13. Induction of Cytotoxicity in Pyridine Analogues of the Anti-metastatic Ru(III) Complex NAMI-A by Ferrocene Functionalization.

    PubMed

    Mu, Changhua; Chang, Stephanie W; Prosser, Kathleen E; Leung, Ada W Y; Santacruz, Stephanie; Jang, Thalia; Thompson, John R; Yapp, Donald T T; Warren, Jeffrey J; Bally, Marcel B; Beischlag, Timothy V; Walsby, Charles J

    2016-01-04

    A series of novel ferrocene (Fc) functionalized Ru(III) complexes was synthesized and characterized. These compounds are derivatives of the anti-metastatic Ru(III) complex imidazolium [trans-RuCl4(1H-imidazole) (DMSO-S)] (NAMI-A) and are derived from its pyridine analogue (NAMI-Pyr), with direct coupling of Fc to pyridine at the 4 or 3 positions, or at the 4 position via a two-carbon linker, which is either unsaturated (vinyl) or saturated (ethyl). Electron paramagnetic resonance (EPR) and UV-vis spectroscopic studies of the ligand exchange processes of the compounds in phosphate buffered saline (PBS) report similar solution behavior to NAMI-Pyr. However, the complex with Fc substitution at the 3 position of the coordinated pyridine shows greater solution stability, through resistance to the formation of oligomeric species. Further EPR studies of the complexes with human serum albumin (hsA) indicate that the Fc groups enhance noncoordinate interactions with the protein and help to inhibit the formation of protein-coordinated species, suggesting the potential for enhanced bioavailability. Cyclic voltammetry measurements demonstrate that the Fc groups modestly reduce the reduction potential of the Ru(III) center as compared to NAMI-Pyr, while the reduction potentials of the Fc moieties of the four compounds vary by 217 mV, with the longer linkers giving significantly lower values of E1/2. EPR spectra of the compounds with 2-carbon linkers show the formation of a high-spin Fe(III) species (S = 5/2) in PBS with a distinctive signal at g = 4.3, demonstrating oxidation of the Fe(II) ferrocene center and likely reflecting degradation products. Density functional theory calculations and paramagnetic (1)H NMR describe delocalization of spin density onto the ligands and indicate that the vinyl linker could be a potential pathway for electron transfer between the Ru and Fe centers. In the case of the ethyl linker, electron transfer is suggested to occur via an indirect

  14. Pre- and postsynaptic excitation and inhibition at octopus optic lobe photoreceptor terminals; implications for the function of the 'presynaptic bags'.

    PubMed

    Piscopo, Stefania; Moccia, Francesco; Di Cristo, Carlo; Caputi, Luigi; Di Cosmo, Anna; Brown, Euan R

    2007-10-01

    Synaptic transmission was examined in the plexiform zone of Octopus vulgaris optic lobes using field-potential recording from optic lobe slices. Stimulation of the optic nerve produced pre- and postsynaptic field potentials. Transmission was abolished in calcium-free seawater, L- glutamate or the AMPA/Kainate receptor blocker CNQX (EC(50), 40 microm), leaving an intact presynaptic field potential. ACh markedly reduced or blocked and d-tubocurarine augmented both pre- and postsynaptic field potentials, while alpha-bungarotoxin and atropine were without effect. Paired-pulse stimulation showed short-term depression of pre- and postsynaptic components with a half-time of recovery of approximately 500 ms. The depression was partially relieved in the presence of d-tubocurarine (half-time of recovery, 350 ms). No long-term changes in synaptic strength were induced by repetitive stimulation. A polyclonal antibody raised against a squid glutamate receptor produced positive staining in the third radial layer of the plexiform zone. No positive staining was observed in the other layers. Taking into account previous morphological data and our results, we propose that the excitatory terminations of the photoreceptors are in the innermost layer of the plexiform zone where the transmitter is likely to be glutamate and postsynaptic receptors are AMPA/kainate-like. Thus, the function of the terminal bags is to provide a location for a presynaptic cholinergic inhibitory shunt. The results imply that this arrangement provides a temporal filter for visual processing and enhances the perception of moving vs. stationary objects.

  15. Tunable Excited-State Properties and Dynamics as a Function of Pt–Pt Distance in Pyrazolate-Bridged Pt(II) Dimers

    SciTech Connect

    Brown-Xu, Samantha E.; Kelley, Matthew S. J.; Fransted, Kelly A.; Chakraborty, Arnab; Schatz, George C.; Castellano, Felix N.; Chen, Lin X.

    2016-02-04

    The influence of molecular structure on excited state properties and dynamics of a series of cyclometalated platinum dimers was investigated through a combined experimental and theoretical approach using femtosecond transient absorption (fs TA) spectroscopy and density functional theory (DFT) calculations. The molecules have the general formula [Pt(ppy)(µ-R2pz)]2 where ppy = 2-phenylpyridine, pz = pyrazolate and R = H, Me, Ph, or tBu, and are strongly photoluminescent at room temperature. The distance between the platinum centers in this A frame geometry can be varied depending on the steric bulk of the bridging pyrazolate ligands that exert structural constraints and compress the Pt-Pt distance. At large Pt-Pt distances there is little interaction between the subunits and the chromophore behaves similar to a monomer with excited states described as mixtures of ligand-centered and metal-to-ligand charge transfer (LC/MLCT) transitions. When the Pt(II) centers are brought closer together with bulky bridging ligands, they interact through their orbitals and the S1 and T1 states are best characterized as metal metal to ligand charge transfer (MMLCT) in character. The results of the fs TA experiments reveal that intersystem crossing (ISC) occurs on ultrafast timescales (τS1 < 200 fs) while there are two relaxation processes occurring within the triplet manifold, τ1 = 0.5 – 3.2 ps and τ2 = 20 – 70 ps; the longer time constants correspond to the presence of bulkier bridging ligands. DFT calculations illustrate that the Pt-Pt distances further contract in the T1 3MMLCT states, therefore slower relaxation may be related to a larger structural reorganization. Subsequent investigations using faster time resolution are planned to measure the ISC process as well as to identify any potential coherent interaction(s) between the platinum centers that may occur.

  16. Cerebellar cortex granular layer interneurons in the macaque monkey are functionally driven by mossy fiber pathways through net excitation or inhibition.

    PubMed

    Laurens, Jean; Heiney, Shane A; Kim, Gyutae; Blazquez, Pablo M

    2013-01-01

    The granular layer is the input layer of the cerebellar cortex. It receives information through mossy fibers, which contact local granular layer interneurons (GLIs) and granular layer output neurons (granule cells). GLIs provide one of the first signal processing stages in the cerebellar cortex by exciting or inhibiting granule cells. Despite the importance of this early processing stage for later cerebellar computations, the responses of GLIs and the functional connections of mossy fibers with GLIs in awake animals are poorly understood. Here, we recorded GLIs and mossy fibers in the macaque ventral-paraflocculus (VPFL) during oculomotor tasks, providing the first full inventory of GLI responses in the VPFL of awake primates. We found that while mossy fiber responses are characterized by a linear monotonic relationship between firing rate and eye position, GLIs show complex response profiles characterized by "eye position fields" and single or double directional tunings. For the majority of GLIs, prominent features of their responses can be explained by assuming that a single GLI receives inputs from mossy fibers with similar or opposite directional preferences, and that these mossy fiber inputs influence GLI discharge through net excitatory or inhibitory pathways. Importantly, GLIs receiving mossy fiber inputs through these putative excitatory and inhibitory pathways show different firing properties, suggesting that they indeed correspond to two distinct classes of interneurons. We propose a new interpretation of the information flow through the cerebellar cortex granular layer, in which mossy fiber input patterns drive the responses of GLIs not only through excitatory but also through net inhibitory pathways, and that excited and inhibited GLIs can be identified based on their responses and their intrinsic properties.

  17. Double excitations in finite systems.

    PubMed

    Romaniello, P; Sangalli, D; Berger, J A; Sottile, F; Molinari, L G; Reining, L; Onida, G

    2009-01-28

    Time-dependent density-functional theory (TDDFT) is widely used in the study of linear response properties of finite systems. However, there are difficulties in properly describing excited states, which have double- and higher-excitation characters, which are particularly important in molecules with an open-shell ground state. These states would be described if the exact TDDFT kernel were used; however, within the adiabatic approximation to the exchange-correlation (xc) kernel, the calculated excitation energies have a strict single-excitation character and are fewer than the real ones. A frequency-dependent xc kernel could create extra poles in the response function, which would describe states with a multiple-excitation character. We introduce a frequency-dependent xc kernel, which can reproduce, within TDDFT, double excitations in finite systems. In order to achieve this, we use the Bethe-Salpeter equation with a dynamically screened Coulomb interaction W(omega), which can describe these excitations, and from this we obtain the xc kernel. Using a two-electron model system, we show that the frequency dependence of W does indeed introduce the double excitations that are instead absent in any static approximation of the electron-hole screening.

  18. Photoionization of ground and excited levels of P II

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2017-01-01

    Photoionization cross section (σPI) of P II, (hν + P II → P III + e), from ground and a large number of excited levels are presented. The study includes the resonant structures and the characteristics of the background in photoionization cross sections. The present calculations were carried out in the Breit-Pauli R-matrix (BPRM) method that includes relativistic effects. The autoionizing resonances are delineated with a fine energy mesh to observe the fine structure effects. A singular resonance, formed by the coupling of channels in fine structure but not allowed in LS coupling, is seen at the ionization threshold of photoionization for the ground and many excited levels. The background cross section is seen enhanced compared to smooth decay for the excited levels. Examples are presented to illustrate the enhanced background cross sections at the energies of the core levels, 4P3/2 and 2D3/2, that are allowed for electric dipole transitions by the core ground level 2 P1/2o. In addition strong Seaton or photo-excitation-of-core (PEC) resonances are found in the photoionization of single valence electron excited levels. Calculations used a close coupling wave function expansion that included 18 fine structure levels of core P III from configurations 3s23p, 3s3p2, 3s23d, 3s24s, 3s24p and 3p3. Photoionization cross sections are presented for all 475 fine structure levels of P II found with n ≤ 10 and l ≤ 9. The present results will provide high precision parameters of various applications involving this less studied ion.

  19. BIOPLUME III

    EPA Pesticide Factsheets

    BIOPLUME III is a two-dimensional finite difference model for simulating the natural attenuation of organic contaminants in groundwater due to the processes of advection, dispersion, sorption, and biodegradation.

  20. Two-Axis Acceleration of Functional Connectivity Magnetic Resonance Imaging by Parallel Excitation of Phase-Tagged Slices and Half k-Space Acceleration

    PubMed Central

    Jesmanowicz, Andrzej; Nencka, Andrew S.; Li, Shi-Jiang

    2011-01-01

    Abstract Whole brain functional connectivity magnetic resonance imaging requires acquisition of a time course of gradient-recalled (GR) volumetric images. A method is developed to accelerate this acquisition using GR echo-planar imaging and radio frequency (RF) slice phase tagging. For N-fold acceleration, a tailored RF pulse excites N slices using a uniform-field transmit coil. This pulse is the Fourier transform of the profile for the N slices with a predetermined RF phase tag on each slice. A multichannel RF receive coil is used for detection. For n slices, there are n/N groups of slices. Signal-averaged reference images are created for each slice within each slice group for each member of the coil array and used to separate overlapping images that are simultaneously received. The time-overhead for collection of reference images is small relative to the acquisition time of a complete volumetric time course. A least-squares singular value decomposition method allows image separation on a pixel-by-pixel basis. Twofold slice acceleration is demonstrated using an eight-channel RF receive coil, with application to resting-state functional magnetic resonance imaging in the human brain. Data from six subjects at 3 T are reported. The method has been extended to half k-space acquisition, which not only provides additional acceleration, but also facilitates slice separation because of increased signal intensity of the central lines of k-space coupled with reduced susceptibility effects. PMID:22432957

  1. Electronic states of thiophene/phenylene co-oligomers: Extreme-ultra violet excited photoelectron spectroscopy observations and density functional theory calculations

    SciTech Connect

    Kawaguchi, Yoshizo; Sasaki, Fumio; Mochizuki, Hiroyuki; Ishitsuka, Tomoaki; Tomie, Toshihisa; Ootsuka, Teruhisa; Watanabe, Shuji; Shimoi, Yukihiro; Yamao, Takeshi; Hotta, Shu

    2013-02-28

    We have investigated electronic states in the valence electron bands for the thin films of three thiophene/phenylene co-oligomer (TPCO) compounds, 2,5-bis(4-biphenylyl)thiophene (BP1T), 1,4-bis(5-phenylthiophen-2-yl)benzene (AC5), and 1,4-bis{l_brace}5-[4-(trifluoromethyl)phenyl]thiophen-2-yl{r_brace}benzene (AC5-CF{sub 3}), by using extreme-UV excited photoelectron spectroscopy (EUPS). By comparing both EUPS spectra and secondary electron spectra between AC5 and AC5-CF{sub 3}, we confirm that CF{sub 3} substitution to AC5 deepens valence states by 2 eV, and increases the ionization energy by 3 eV. From the cut-off positions of secondary electron spectra, the work functions of AC5, AC5-CF{sub 3}, and BP1T are evaluated to be 3.8 eV, 4.8 eV, and 4.0 eV, respectively. We calculate molecular orbital (MO) energy levels by the density functional theory and compare results of calculations with those of experiments. Densities of states obtained by broadening MO levels well explain the overall features of experimental EUPS spectra of three TPCOs.

  2. Functional interaction between type III-secreted protein IncA of Chlamydophila psittaci and human G3BP1.

    PubMed

    Borth, Nicole; Litsche, Katrin; Franke, Claudia; Sachse, Konrad; Saluz, Hans Peter; Hänel, Frank

    2011-01-31

    Chlamydophila (Cp.) psittaci, the causative agent of psittacosis in birds and humans, is the most important zoonotic pathogen of the family Chlamydiaceae. These obligate intracellular bacteria are distinguished by a unique biphasic developmental cycle, which includes proliferation in a membrane-bound compartment termed inclusion. All Chlamydiaceae spp. possess a coding capacity for core components of a Type III secretion apparatus, which mediates specific delivery of anti-host effector proteins either into the chlamydial inclusion membrane or into the cytoplasm of target eukaryotic cells. Here we describe the interaction between Type III-secreted protein IncA of Cp. psittaci and host protein G3BP1 in a yeast two-hybrid system. In GST-pull down and co-immunoprecipitation experiments both in vitro and in vivo interaction between full-length IncA and G3BP1 were shown. Using fluorescence microscopy, the localization of G3BP1 near the inclusion membrane of Cp. psittaci-infected Hep-2 cells was demonstrated. Notably, infection of Hep-2 cells with Cp. psittaci and overexpression of IncA in HEK293 cells led to a decrease in c-Myc protein concentration. This effect could be ascribed to the interaction between IncA and G3BP1 since overexpression of an IncA mutant construct disabled to interact with G3BP1 failed to reduce c-Myc concentration. We hypothesize that lowering the host cell c-Myc protein concentration may be part of a strategy employed by Cp. psittaci to avoid apoptosis and scale down host cell proliferation.

  3. Functional Interaction between Type III-Secreted Protein IncA of Chlamydophila psittaci and Human G3BP1

    PubMed Central

    Borth, Nicole; Litsche, Katrin; Franke, Claudia; Sachse, Konrad; Saluz, Hans Peter; Hänel, Frank

    2011-01-01

    Chlamydophila (Cp.) psittaci, the causative agent of psittacosis in birds and humans, is the most important zoonotic pathogen of the family Chlamydiaceae. These obligate intracellular bacteria are distinguished by a unique biphasic developmental cycle, which includes proliferation in a membrane-bound compartment termed inclusion. All Chlamydiaceae spp. possess a coding capacity for core components of a Type III secretion apparatus, which mediates specific delivery of anti-host effector proteins either into the chlamydial inclusion membrane or into the cytoplasm of target eukaryotic cells. Here we describe the interaction between Type III-secreted protein IncA of Cp. psittaci and host protein G3BP1 in a yeast two-hybrid system. In GST-pull down and co-immunoprecipitation experiments both in vitro and in vivo interaction between full-length IncA and G3BP1 were shown. Using fluorescence microscopy, the localization of G3BP1 near the inclusion membrane of Cp. psittaci-infected Hep-2 cells was demonstrated. Notably, infection of Hep-2 cells with Cp. psittaci and overexpression of IncA in HEK293 cells led to a decrease in c-Myc protein concentration. This effect could be ascribed to the interaction between IncA and G3BP1 since overexpression of an IncA mutant construct disabled to interact with G3BP1 failed to reduce c-Myc concentration. We hypothesize that lowering the host cell c-Myc protein concentration may be part of a strategy employed by Cp. psittaci to avoid apoptosis and scale down host cell proliferation. PMID:21304914

  4. Cloning and Structure-Function Analyses of Quinolone- and Acridone-producing Novel Type III Polyketide Synthases from Citrus microcarpa*

    PubMed Central

    Mori, Takahiro; Shimokawa, Yoshihiko; Matsui, Takashi; Kinjo, Keishi; Kato, Ryohei; Noguchi, Hiroshi; Sugio, Shigetoshi; Morita, Hiroyuki; Abe, Ikuro

    2013-01-01

    Two novel type III polyketide synthases, quinolone synthase (QNS) and acridone synthase (ACS), were cloned from Citrus microcarpa (Rutaceae). The deduced amino acid sequence of C. microcarpa QNS is unique, and it shared only 56–60% identities with C. microcarpa ACS, Medicago sativa chalcone synthase (CHS), and the previously reported Aegle marmelos QNS. In contrast to the quinolone- and acridone-producing A. marmelos QNS, C. microcarpa QNS produces 4-hydroxy-N-methylquinolone as the “single product” by the one-step condensation of N-methylanthraniloyl-CoA and malonyl-CoA. However, C. microcarpa ACS shows broad substrate specificities and produces not only acridone and quinolone but also chalcone, benzophenone, and phloroglucinol from 4-coumaroyl-CoA, benzoyl-CoA, and hexanoyl-CoA, respectively. Furthermore, the x-ray crystal structures of C. microcarpa QNS and ACS, solved at 2.47- and 2.35-Å resolutions, respectively, revealed wide active site entrances in both enzymes. The wide active site entrances thus provide sufficient space to facilitate the binding of the bulky N-methylanthraniloyl-CoA within the catalytic centers. However, the active site cavity volume of C. microcarpa ACS (760 Å3) is almost as large as that of M. sativa CHS (750 Å3), and ACS produces acridone by employing an active site cavity and catalytic machinery similar to those of CHS. In contrast, the cavity of C. microcarpa QNS (290 Å3) is significantly smaller, which makes this enzyme produce the diketide quinolone. These results as well as mutagenesis analyses provided the first structural bases for the anthranilate-derived production of the quinolone and acridone alkaloid by type III polyketide synthases. PMID:23963450

  5. The HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis thaliana.

    PubMed

    Lewis, Jennifer D; Abada, Wasan; Ma, Wenbo; Guttman, David S; Desveaux, Darrell

    2008-04-01

    Pseudomonas syringae utilizes the type III secretion system to translocate effector proteins into plant cells, where they can contribute to the pathogen's ability to infect and cause disease. Recognition of these effectors by resistance proteins induces defense responses that typically include a programmed cell death reaction called the hypersensitive response. The YopJ/HopZ family of type III effector proteins is a common family of effector proteins found in animal- and plant-pathogenic bacteria. The HopZ family in P. syringae includes HopZ1a(PsyA2), HopZ1b(PgyUnB647), HopZ1c(PmaE54326), HopZ2(Ppi895A) and HopZ3(PsyB728a). HopZ1a is predicted to be most similar to the ancestral hopZ allele and causes a hypersensitive response in multiple plant species, including Arabidopsis thaliana. Therefore, it has been proposed that host defense responses have driven the diversification of this effector family. In this study, we further characterized the hypersensitive response induced by HopZ1a and demonstrated that it is not dependent on known resistance genes. Further, we identified a novel virulence function for HopZ2 that requires the catalytic cysteine demonstrated to be required for protease activity. Sequence analysis of the HopZ family revealed the presence of a predicted myristoylation sequence in all members except HopZ3. We demonstrated that the myristoylation site is required for membrane localization of this effector family and contributes to the virulence and avirulence activities of HopZ2 and HopZ1a, respectively. This paper provides insight into the selective pressures driving virulence protein evolution by describing a detailed functional characterization of the diverse HopZ family of type III effectors with the model plant Arabidopsis.

  6. The HopZ Family of Pseudomonas syringae Type III Effectors Require Myristoylation for Virulence and Avirulence Functions in Arabidopsis thaliana▿ †

    PubMed Central

    Lewis, Jennifer D.; Abada, Wasan; Ma, Wenbo; Guttman, David S.; Desveaux, Darrell

    2008-01-01

    Pseudomonas syringae utilizes the type III secretion system to translocate effector proteins into plant cells, where they can contribute to the pathogen's ability to infect and cause disease. Recognition of these effectors by resistance proteins induces defense responses that typically include a programmed cell death reaction called the hypersensitive response. The YopJ/HopZ family of type III effector proteins is a common family of effector proteins found in animal- and plant-pathogenic bacteria. The HopZ family in P. syringae includes HopZ1aPsyA2, HopZ1bPgyUnB647, HopZ1cPmaE54326, HopZ2Ppi895A and HopZ3PsyB728a. HopZ1a is predicted to be most similar to the ancestral hopZ allele and causes a hypersensitive response in multiple plant species, including Arabidopsis thaliana. Therefore, it has been proposed that host defense responses have driven the diversification of this effector family. In this study, we further characterized the hypersensitive response induced by HopZ1a and demonstrated that it is not dependent on known resistance genes. Further, we identified a novel virulence function for HopZ2 that requires the catalytic cysteine demonstrated to be required for protease activity. Sequence analysis of the HopZ family revealed the presence of a predicted myristoylation sequence in all members except HopZ3. We demonstrated that the myristoylation site is required for membrane localization of this effector family and contributes to the virulence and avirulence activities of HopZ2 and HopZ1a, respectively. This paper provides insight into the selective pressures driving virulence protein evolution by describing a detailed functional characterization of the diverse HopZ family of type III effectors with the model plant Arabidopsis. PMID:18263728

  7. Excited state proton-coupled electron transfer in 8-oxoG-C and 8-oxoG-A base pairs: a time dependent density functional theory (TD-DFT) study.

    PubMed

    Kumar, Anil; Sevilla, Michael D

    2013-08-01

    In a recent experiment, the repair efficiency of DNA thymine cyclobutane dimers (T<>T) on UV excitation of 8-oxoG base paired either to C or A was reported. An electron transfer mechanism from an excited charge transfer state of 8-oxoG-C (or 8-oxoG-A) to T<>T was proposed and 8-oxoG-A was found to be 2-3 times more efficient than 8-oxoG-C in repair of T<>T. Intra base pair proton transfer (PT) in charge transfer (CT) excited states of the base pairs was proposed to quench the excited state and prevent T<>T repair. In this work, we investigate this process with TD-DFT calculations of the excited states of 8-oxoG-C and 8-oxoG-A base pairs in the Watson-Crick and Hoogsteen base pairs using long-range corrected density functional, ωB97XD/6-31G* method. Our gas phase calculations showed that CT excited state ((1)ππ*(CT)) of 8-oxoG-C appears at lower energy than the 8-oxoG-A. For 8-oxoG-C, TD-DFT calculations show the presence of a conical intersection (CI) between the lowest (1)ππ*(PT-CT) excited state and the ground state which likely deactivates the CT excited state via a proton-coupled electron transfer (PCET) mechanism. The (1)ππ*(PT-CT) excited state of 8-oxoG-A base pair lies at higher energy and its crossing with ground state is inhibited because of a high energy gap between (1)ππ*(PT-CT) excited state and ground state. Thus the gas phase calculations suggest the 8-oxoG-A would have longer excited state lifetimes. When the effect of solvation is included using the PCM model, both 8-oxoG-A and 8-oxoG-C show large energy gaps between the ground state and both the excited CT and PT-CT states and suggest little difference would be found between the two base pairs in repair of the T<>T lesion. However, in the FC region the solvent effect is greatly diminished owing to the slow dielectric response time and smaller gaps would be expected.

  8. Role of disulfide bonds in modulating internal motions of proteins to tune their function: molecular dynamics simulation of scorpion toxin Lqh III.

    PubMed

    Moghaddam, Majid Erfani; Naderi-Manesh, Hossein

    2006-04-01

    A series of 1-ns MD simulations were performed on the scorpion toxin Lqh III in native and disulfide bond broken states. The removal of disulfide bonds has caused hydrogen bond network alteration in the five-residue turn, the long loop, the alpha-helix, the loop connecting strands II and III, and the C-terminal region. In addition and more importantly, it has influenced the amplitude of the fluctuations of five-residue turn, loops, and C-terminal region with a minor effect on the fluctuations of the cysteines in the broken bond sites. These findings suggest that disulfide bonds are not the most important factors in rigidifying their own locations, while they have more important effects at a global scale. Furthermore, our results reveal that disulfide bonds have considerable influence on the functionally important essential modes of motions and the correlations between the motions of the binding site residues. Therefore, we can conclude that disulfide bonds have a crucial role in modulating the function via adjusting the dynamics of scorpion toxin molecules. Although this conclusion cannot be generalized to all peptides and proteins, it demonstrates the importance of more investigations on this aspect of disulfide bond efficacy.

  9. Detection of the nanomolar level of total Cr[(iii) and (vi)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models.

    PubMed

    Chen, Wenwen; Cao, Fengjing; Zheng, Wenshu; Tian, Yue; Xianyu, Yunlei; Xu, Peng; Zhang, Wei; Wang, Zhuo; Deng, Ke; Jiang, Xingyu

    2015-02-07

    We report a method for rapid, effective detection of both Cr(iii) and Cr(vi) (in the form of Cr(3+) and Cr2O7(2-), the main species of chromium in the natural environment) by making use of meso-2,3-dimercaptosuccinic acid (DMSA)-functionalized gold nanoparticles (Au NPs). The limit of detection (LOD) is 10 nM with the naked eye and the assay can be applied in detecting chromium in polluted soil from Yun-Nan Province in Southwest China. We use density functional theory to calculate the change of the Gibbs free energy (ΔG) of the interactions between the DMSA-Au NP system and various metal ions, which shows that DMSA-Au NPs have high specificity for both Cr(3+) and Cr2O7(2-).

  10. Excitable scale free networks

    NASA Astrophysics Data System (ADS)

    Copelli, M.; Campos, P. R. A.

    2007-04-01

    When a simple excitable system is continuously stimulated by a Poissonian external source, the response function (mean activity versus stimulus rate) generally shows a linear saturating shape. This is experimentally verified in some classes of sensory neurons, which accordingly present a small dynamic range (defined as the interval of stimulus intensity which can be appropriately coded by the mean activity of the excitable element), usually about one or two decades only. The brain, on the other hand, can handle a significantly broader range of stimulus intensity, and a collective phenomenon involving the interaction among excitable neurons has been suggested to account for the enhancement of the dynamic range. Since the role of the pattern of such interactions is still unclear, here we investigate the performance of a scale-free (SF) network topology in this dynamic range problem. Specifically, we study the transfer function of disordered SF networks of excitable Greenberg-Hastings cellular automata. We observe that the dynamic range is maximum when the coupling among the elements is critical, corroborating a general reasoning recently proposed. Although the maximum dynamic range yielded by general SF networks is slightly worse than that of random networks, for special SF networks which lack loops the enhancement of the dynamic range can be dramatic, reaching nearly five decades. In order to understand the role of loops on the transfer function we propose a simple model in which the density of loops in the network can be gradually increased, and show that this is accompanied by a gradual decrease of dynamic range.

  11. Liquid-liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid.

    PubMed

    Rout, Alok; Binnemans, Koen

    2014-01-28

    A new non-fluorinated malonamide-based ionic liquid extractant was synthesized and investigated for the extraction behavior of europium(III) and other trivalent rare-earth ions from nitric acid medium. The extractant was the functionalized ionic liquid trihexyl(tetradecyl)phosphonium N,N,N',N'-tetra(2-ethylhexyl)malonate, [P66614][MA], and it was used in combination with the non-fluorinated ionic liquid trihexyl(tetradecyl)phosphonium nitrate, [P66614][NO3], as diluents. The extraction behavior of europium in this ionic liquid solution was studied as a function of various parameters such as the pH, concentration of the extractant, the type of acidic medium, temperature, concentration of the salting-out agent and the metal concentration of the aqueous feed. The extraction behavior of [P66614][MA] in [P66614][NO3] was compared with that of [P66614][MA] in the chloride-containing ionic liquid diluent trihexyl(tetradecyl)phosphonium chloride, [P66614][Cl] (Cyphos IL 101). The nitrate system was found to be superior. Marked differences in extraction behavior were observed between [P66614][MA] and the molecular malonamide extractant N,N,N',N'-tetra(2-ethylhexyl)malonamide (TEHMA), i.e. the compound from which the anion of the ionic liquid extractant was prepared. The extraction behavior of other rare earths (La, Ce, Nd, Sm, Ho, Yb) and some transition metals (Ni, Co, Zn) was investigated using this functionalized ionic liquid. A good separation of the rare earths from the transition metals could be achieved. For the rare earths, the extraction efficiency increases over the lanthanide series. The effects of thermodynamic parameters, the stripping of europium(iii) from the ionic liquid and the reusability of the functionalized ionic liquid were studied in detail.

  12. Spectral characterization and white light generation by yttrium silicate nanopowders undoped and doped with Ytterbium(III) at different concentrations when excited by a laser diode at 975 nm

    NASA Astrophysics Data System (ADS)

    Cinkaya, Hatun; Eryurek, Gonul; Bilir, Gokhan; Collins, John; Di Bartolo, Baldassare

    2017-01-01

    We have studied nanophosphors of yttrium silicate (YSO) undoped and doped with different concentration of ytterbium (Yb3+) synthesized by using the sol-gel method. Structural and luminescence properties of the nanophosphors were studied experimentally by using different analytical techniques. For the structural analysis, we performed X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectrometry (EDS) measurements. Upconversion (UC) and the white light (WL) emission properties were investigated by using the near infrared cw laser excitation of 975 nm. The spectral properties have been found to depend on several physical parameters.

  13. Function of the conserved FHIPEP domain of the flagellar type III export apparatus, protein FlhA.

    PubMed

    Barker, Clive S; Inoue, Tomoharu; Meshcheryakova, Irina V; Kitanobo, Seiya; Samatey, Fadel A

    2016-04-01

    The Type III flagellar protein export apparatus of bacteria consists of five or six membrane proteins, notably FlhA, which controls the export of other proteins and is homologous to the large family of FHIPEP export proteins. FHIPEP proteins contain a highly-conserved cytoplasmic domain. We mutagenized the cloned Salmonella flhA gene for the 692 amino acid FlhA, changing a single, conserved amino acid in the 68-amino acid FHIPEP region. Fifty-two mutations at 30 positions mostly led to loss of motility and total disappearance of microscopically visible flagella, also Western blot protein/protein hybridization showed no detectable export of hook protein and flagellin. There were two exceptions: a D199A mutant strain, which produced short-stubby flagella; and a V151L mutant strain, which did not produce flagella and excreted mainly un-polymerized hook protein. The V151L mutant strain also exported a reduced amount of hook-cap protein FlgD, but when grown with exogenous FlgD it produced polyhooks and polyhook-filaments. A suppressor mutant in the cytoplasmic domain of the export apparatus membrane protein FlhB rescued export of hook-length control protein FliK and facilitated growth of full-length flagella. These results suggested that the FHIPEP region is part of the gate regulating substrate entry into the export apparatus pore.

  14. Redox Control of Cardiac Excitability

    PubMed Central

    Aggarwal, Nitin T.

    2013-01-01

    Abstract Reactive oxygen species (ROS) have been associated with various human diseases, and considerable attention has been paid to investigate their physiological effects. Various ROS are synthesized in the mitochondria and accumulate in the cytoplasm if the cellular antioxidant defense mechanism fails. The critical balance of this ROS synthesis and antioxidant defense systems is termed the redox system of the cell. Various cardiovascular diseases have also been affected by redox to different degrees. ROS have been indicated as both detrimental and protective, via different cellular pathways, for cardiac myocyte functions, electrophysiology, and pharmacology. Mostly, the ROS functions depend on the type and amount of ROS synthesized. While the literature clearly indicates ROS effects on cardiac contractility, their effects on cardiac excitability are relatively under appreciated. Cardiac excitability depends on the functions of various cardiac sarcolemal or mitochondrial ion channels carrying various depolarizing or repolarizing currents that also maintain cellular ionic homeostasis. ROS alter the functions of these ion channels to various degrees to determine excitability by affecting the cellular resting potential and the morphology of the cardiac action potential. Thus, redox balance regulates cardiac excitability, and under pathological regulation, may alter action potential propagation to cause arrhythmia. Understanding how redox affects cellular excitability may lead to potential prophylaxis or treatment for various arrhythmias. This review will focus on the studies of redox and cardiac excitation. Antioxid. Redox Signal. 18, 432–468. PMID:22897788

  15. Modeling the chelation of As(III) in lewisite by dithiols using density functional theory and solvent-assisted proton exchange.

    PubMed

    Harper, Lenora K; Bayse, Craig A

    2015-12-01

    Dithiols such as British anti-lewisite (BAL, rac-2,3-dimercaptopropanol) are an important class of antidotes for the blister agent lewisite (trans-2-chlorovinyldichloroarsine) and, more generally, are chelating agents for arsenic and other toxic metals. The reaction of the vicinal thiols of BAL with lewisite through the chelation of the As(III) center has been modeled using density functional theory (DFT) and solvent-assisted proton exchange (SAPE), a microsolvation method that uses a network of water molecules to mimic the role of bulk solvent in models of aqueous phase chemical reactions. The small activation barriers for the stepwise SN2-type nucleophilic attack of BAL on lewisite (0.7-4.9kcal/mol) are consistent with the favorable leaving group properties of the chloride and the affinity of As(III) for soft sulfur nucleophiles. Small, but insignificant, differences in activation barriers were found for the initial attack of the primary versus secondary thiol of BAL and the R vs S enantiomer. An examination of the relative stability of various dithiol-lewisite complexes shows that ethanedithiols like BAL form the most favorable chelation complexes because the angles formed in five-membered ring are most consistent with the hybridization of As(III). More obtuse S-As-S angles are required for larger chelate rings, but internal As⋯N or As⋯O interactions can enhance the stability of moderate-sized rings. The low barriers for lewisite detoxification by BAL and the greater stability of the chelation complexes of small dithiols are consistent with the rapid reversal of toxicity demonstrated in previously reported animal models.