Science.gov

Sample records for iii line wings

  1. The broad Hα, [O III] line wings in stellar supercluster A of NGC 2363 and the turbulent mixing layer hypothesis

    NASA Astrophysics Data System (ADS)

    Binette, L.; Drissen, L.; Ubeda, L.; Raga, A. C.; Robert, C.; Krongold, Y.

    2009-06-01

    Context: Supercluster A in the extragalactic H ii region NGC 2363 is remarkable for the hypersonic gas seen as faint extended broad emission lines with a full-width zero intensity of 7000 km s-1. Aims: We explore the possibility that the observed broad profiles are the result of the interaction of a high-velocity cluster wind with dense photoionized clumps. Methods: The geometry considered is that of near static photoionized condensations at the surface of which turbulent mixing layers arise as a result of the interaction with the hot wind. The approximative treatment of turbulence was carried out using the mixing length approach of Cantó & Raga. The code mappings ic was used to derive the mean quantities describing the flow and to compute the line emissivities within the turbulent layers. The velocity projection in three dimensions of the line sources was carried out analytically. Results: A fast entraining wind of up to ≈ 4300 km s-1 appears to be required to reproduce the faint wings of the broad Hα and [O iii] profiles. A slower wind of 3500 km s-1, however, can still reproduce the bulk of the broad component and does provide a better fit than an ad hoc Gaussian profile. Conclusions: Radial acceleration in 3D (away from supercluster A) of the emission gas provides a reasonable first-order fit to the broad line component. No broad component is predicted for the [N ii] and [S ii] lines, as observed. The wind velocity required is uncomfortably high and alternative processes that would provide comparable constant acceleration of the emission gas up to 4000 km s-1 might have to be considered.

  2. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1992-01-01

    The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.

  3. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the G-III Swept-Wing Structure

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    In support of the Adaptive Compliant Trailing Edge [ACTE] project at the NASA Armstrong Flight Research Center, displacement transfer functions were applied to the swept wing of a Gulfstream G-III airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) to obtain deformed shape predictions. Four strainsensing lines (two on the lower surface, two on the upper surface) were used to calculate the deformed shape of the G III wing under bending and torsion. There being an insufficient number of surface strain sensors, the existing G III wing box finite element model was used to generate simulated surface strains for input to the displacement transfer functions. The resulting predicted deflections have good correlation with the finite-element generated deflections as well as the measured deflections from the ground load calibration test. The convergence study showed that the displacement prediction error at the G III wing tip can be reduced by increasing the number of strain stations (for each strain-sensing line) down to a minimum error of l.6 percent at 17 strain stations; using more than 17 strain stations yielded no benefit because the error slightly increased to 1.9% when 32 strain stations were used.

  4. Emission line galaxies and active galactic nuclei in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  5. Spinning Characteristics of Wings III : a Rectangular and Tapered Clark Y Monoplane Wing with Rounded Tips

    NASA Technical Reports Server (NTRS)

    Bamber, M J; House, R O

    1937-01-01

    An investigation was made to determine the spinning characteristics of Clark Y monoplane wings with different plan forms. A rectangular wing and a wing tapered 5:2, both with rounded tips, were tested on the N.A.C.A. spinning balance in the 5-foot vertical wind tunnel. The aerodynamic characteristics of the models and a prediction of the angles of sideslip for steady spins are given. Also included is an estimate of the yawning moment that must be furnished by the parts of the airplane to balance the inertia couples and wing yawing moment for spinning equilibrium. The effects on the spin of changes in plan form and of variations of some of the important parameters are discussed and the results are compared with those for a rectangular wing with square tips. It is concluded that for a conventional monoplane using Clark Y wing the sideslip will be algebraically larger for the wing with the rounded tip than for the wing with the square tip and will be largest for the tapered wing. The effect of plan form on the spin will vary with the type of airplane; and the provision of a yawing-moment coefficient of -0.025 (i.e., opposing the spin) by the tail, fuselage, and interference effects will insure against the attainment of equilibrium on a steady spin for any of the plan forms tested and for any of the parameters used in the analysis.

  6. An improved quasistatic line-shape theory: The effects of molecular motion on the line wings

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, Richard H.

    1994-01-01

    A theory is presented for the modification of the line-shape functions and absorption coefficient due to the breakdown of the quasistatic approximation. This breakdown arises from the effects of molecular motion and increases the absorption in the near wings. Numerical calculations for the high-frequency wing of the nu(sub 3) band of CO2 broadened by Ar are reported and it is shown that these effects are significant near the bandhead. The importance of such corrections in other spectral regions and for other systems is discussed briefly.

  7. Kinetic equations for a density matrix describing nonlinear effects in spectral line wings

    SciTech Connect

    Parkhomenko, A. I. Shalagin, A. M.

    2011-11-15

    Kinetic quantum equations are derived for a density matrix with collision integrals describing nonlinear effects in spectra line wings. These equations take into account the earlier established inequality of the spectral densities of Einstein coefficients for absorption and stimulated radiation emission by a two-level quantum system in the far wing of a spectral line in the case of frequent collisions. The relationship of the absorption and stimulated emission probabilities with the characteristics of radiation and an elementary scattering event is found.

  8. A lifting line model to investigate the influence of tip feathers on wing performance.

    PubMed

    Fluck, M; Crawford, C

    2014-11-24

    Bird wings have been studied as prototypes for wing design since the beginning of aviation. Although wing tip slots, i.e. wings with distinct gaps between the tip feathers (primaries), are very common in many birds, only a few studies have been conducted on the benefits of tip feathers on the wing's performance, and the aerodynamics behind tip feathers remains to be understood. Consequently most aircraft do not yet copy this feature. To close this knowledge gap an extended lifting line model was created to calculate the lift distribution and drag of wings with tip feathers. With this model, is was easily possible to combine several lifting surfaces into various different birdwing-like configurations. By including viscous drag effects, good agreement with an experimental tip slotted reference case was achieved. Implemented in C++ this model resulted in computation times of less than one minute per wing configuration on a standard notebook computer. Thus it was possible to analyse the performance of over 100 different wing configurations with and without tip feathers. While generally an increase in wing efficiency was obtained by splitting a wing tip into distinct, feather-like winglets, the best performance was generally found when spreading more feathers over a larger dihedral angle out of the wing plane. However, as the results were very sensitive to the precise geometry of the feather fan (especially feather twist) a careless set-up could just as easily degrade performance. Hence a detailed optimization is recommended to realize the full benefits by simultaneously optimizing feather sweep, twist and dihedral angles.

  9. Intermittent Turbulence in the Attachment Line Flow Formed on an Infinite Swept Wing

    NASA Technical Reports Server (NTRS)

    Poll, Ian

    2007-01-01

    The transition process which takes place in the attachment-line boundary layer in the presence of gross contamination is an issue of considerable interest to wing designers. It is well known that this flow is very sensitive to the presence of isolated roughness and that transition can be initiated at a very low value of the local medium thickness Reynolds number.Moreover, once the attachment line is turbulent, the flow over the whole wing chords, top and bottom surface, will be turbulent and this has major implications for wind drag.

  10. Determination of the Mass Moments and Radii of Inertia of the Sections of a Tapered Wing and the Center-of-Gravity Line along the Wing Span

    NASA Technical Reports Server (NTRS)

    Savelyev, V. V.

    1943-01-01

    For computing the critical flutter velocity of a wing among the data required are the position of the line of centers of gravity of the wing sections along the span and the mass moments and radii of inertia of any section of the wing about the axis passing through the center of gravity of the section. A sufficiently detailed computation of these magnitudes even if the weights of all the wing elements are known, requires a great deal of time expenditure. Thus a rapid competent worker would require from 70 to 100 hours for the preceding computations for one wing only, while hundreds of hours would be required if all the weights were included. With the aid of the formulas derived in the present paper, the preceding work can be performed with a degree of accuracy sufficient for practical purposes in from one to two hours, the only required data being the geometric dimensions of the outer wing (tapered part), the position of its longerons, the total weight of the outer wing, and the approximate weight of the longerons, The entire material presented in this paper is applicable mainly to wings of longeron construction of the CAHI type and investigations are therefore being conducted by CAHI for the derivation of formulas for the determination of the preceding data for wings of other types.

  11. 7. Photograph of a line drawing. 'PART III, SECTION 1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photograph of a line drawing. 'PART III, SECTION 1, EQUIPMENT LAYOUT, BUILDING NO. 10, PRODUCER GAS & EXHAUSTER BLDG., PLANT A.' From U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant A, Parts I, II, III. (Nashville, TN: Office of District Engineer, 1944). - Holston Army Ammunition Plant, Producer Gas Plant, Kingsport, Sullivan County, TN

  12. 43. Photograph of a line drawing. 'PART III, SECTION 1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Photograph of a line drawing. 'PART III, SECTION 1, EQUIPMENT LAYOUT, BUILDINGS H-1 TO H-10 INCL., GRINDING, MANUFACTURING AREA, PLANT 'B'.' From U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  13. 38. Photograph of a line drawing. 'PART III, SECTION 1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photograph of a line drawing. 'PART III, SECTION 1, EQUIPMENT LAYOUT, BUILDINGS G-1 TO G-10 INCL., PURIFICATION, MANUFACTURING AREA, PLAN 'B'.' From U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  14. Calculations of the Supersonic Wave Drag of Nonlifting Wings with Arbitrary Sweepback and Aspect Ratio: Wings Swept Behind the Mach Lines

    NASA Technical Reports Server (NTRS)

    Harmon, Sidney M; Swanson, Margaret D

    1947-01-01

    On the basis of a recently developed theory for finite sweptback wings at supersonic speeds, calculations of the supersonic wave drag at zero lift were made for a series of wings having thin symmetrical biconvex sections with untapered plan forms and various angles of sweepback and aspect ratios. The results are presented in a unified form so that a single chart permits the direct determination of the wave drag for this family of airfoils for an extensive range of aspect ratio and sweepback angle for stream Mach numbers up to a value corresponding to that at which the Mach line coincides with the wing leading edge. The calculations showed that in general the wave-drag coefficient decreased with increasing sweepback. At Mach numbers for which the Mach lines are appreciably ahead of the wing leading edge, the 'wave-drag coefficient decreased to an important extent with increases in aspect ratio or slenderness ratio. At Mach numbers for which the Mach lines approach the wing leading edge (Mach numbers approaching a value equal to the secant of the angle of sweepback), the wave-drag coefficient decreased with reductions in aspect ratio or slenderness ratio. In order to check the results obtained by the theory, a comparison was made with the results of tests at the Langley Memorial Aeronautical Laboratory of sweptback wing attached to a freely falling body. The variation of the drag with Mach number and aspect ratio as given by the theory appeared to be in reasonable

  15. A z ∼ 5.7 Lyα emission line with an ultrabroad red wing

    SciTech Connect

    Yang, Huan; Wang, JunXian; Zheng, Zhen-Ya; Malhotra, Sangeeta; Rhoads, James E.; Infante, Leopoldo E-mail: jxw@mail.ustc.edu.cn E-mail: smalhotr@asu.edu E-mail: linfante@astro.puc.cl

    2014-03-20

    Using the Lyα emission line as a tracer of high-redshift, star-forming galaxies, hundreds of Lyα emission line galaxies (LAEs) at z > 5 have been detected. These LAEs are considered to be low-mass young galaxies, critical to the re-ionization of the universe and the metal enrichment of the circumgalactic medium (CGM) and the intergalactic medium (IGM). It is assumed that outflows in LAEs can help both ionizing photons and Lyα photons escape from galaxies. However, we still know little about the outflows in high-redshift LAEs due to observational difficulties, especially at redshift >5. Models of Lyα radiative transfer predict asymmetric Lyα line profiles with broad red wings in LAEs with outflows. Here, we report a z ∼ 5.7 Lyα emission line with a broad red wing extending to >1000 km s{sup –1} relative to the peak of Lyα line, which has been detected in only a couple of z > 5 LAEs until now. If the broad red wing is ascribed to gas outflow instead of active galactic nucleus activity, the outflow velocity could be larger than the escape velocity (∼500 km s{sup –1}) of a typical halo mass of z ∼ 5.7 LAEs, which is consistent with the idea that outflows in LAEs disperse metals to CGM and IGM.

  16. Oscillations of the sun's chromosphere. II - H-alpha line centre and wing filtergram time sequences

    NASA Astrophysics Data System (ADS)

    Kneer, F.; von Uexkuell, M.

    1985-03-01

    In order to investigate the dynamics of the solar chromosphere we perform a Fourier analysis of time sequences (total duration 128 min) of Hα photographic filtergrams taken simultaneously at disc centre in line centre and ±0.5 Å from the line centre. The results are: (i) At low frequencies (periods >450 s) the brightness fluctuations are caused by the temporal evolution of Hα structures at the boundaries of the chromospheric network. We observe that much of the coarse chromospheric structure survives the 128 min time span. We derive lifetimes of 2-8 min for the small-scale structure and 5-20 min for the larger structures. (ii) The modal structure of the 5 min oscillation is clearly visible in the power spectra of the three filtergram. The fundamental (f) mode can be followed to high horizontal wavenumbers kh ≍3.7 Mm-1 and follows the expected relationship ω2f = gkh, where g is the surface gravity. (iii) A chromospheric resonant mode cannot be found in the k - ω plane. (iv) The higher resonant p modes reach into the acoustic wave domain (periods T ≍ 150 s) and thus require the transition zone as the upper reflecting layer. (v) We find no evidence for internal gravity waves. (vi) From a coherence and phase analysis we conclude that the brightness fluctuations of the chromospheric structure seen in -0.5 Å lead those in +0.5 Å by 2 min at kh =2 Mm -1 and by 4 min at kh =0.5 Mm-1. (vii) From the same coherence and phase analysis we can identify acoustic waves in the solar atmosphere with periods as short as 80 s. They possess as much power as the 5 min oscillations and are seen better outside the chromospheric network than within the network. (viii) The phase difference between intensity in Hα line centre and velocity, constructed from the two Hα wing filtergrams, decreases from about 90° at low frequencies and high wavenumbers to 0° at high frequencies and low wavenumbers. Tentatively we interpret this as a change from mainly standing waves for the low

  17. The optically thin C III spectrum - Line and multiplet intensities

    NASA Astrophysics Data System (ADS)

    Bhatia, A. K.; Kastner, S. O.

    1993-05-01

    C III line/multiplet intensities expected under optically thin conditions are presented over the density/ temperature ranges 4.0 - 12.0 and 4.6 - 5.0 (40,000 - l00,000 K). These improved values are obtained from a hybrid level/term calculation which makes use of the most recently available atomic data and extends the treatment down to lower densities than were achieved with our previous term representation. Some illustrative applications are given, including a brief description of the importance of the present data for interpretation of the strong C III line emission from carbon Wolf-Rayet stars.

  18. The optically thin C III spectrum - Line and multiplet intensities

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Kastner, S. O.

    1993-01-01

    C III line/multiplet intensities expected under optically thin conditions are presented over the density/ temperature ranges 4.0 - 12.0 and 4.6 - 5.0 (40,000 - l00,000 K). These improved values are obtained from a hybrid level/term calculation which makes use of the most recently available atomic data and extends the treatment down to lower densities than were achieved with our previous term representation. Some illustrative applications are given, including a brief description of the importance of the present data for interpretation of the strong C III line emission from carbon Wolf-Rayet stars.

  19. A modified Eddington-Barbier relation in highly coherent resonance-line wings

    NASA Technical Reports Server (NTRS)

    Gayley, K. G.

    1992-01-01

    It is shown that resonance-line wings are just as useful in inferring plane-parallel stellar chromospheric S sub L distributions as complete redistribution (CRD) profiles. Although coherent scattering effects at a given frequency tend to average depth-dependent parameters over a larger volume than in CRD, this effect can be offset by simply looking closer to line center, where the same depth-dependent information exists as in CRD, albeit somewhat more compressed in frequency space. For resonance lines with high excitation energies such as Ly-alpha, steep Planck function gradients can invalidate the modified Eddington-Barbier approach given, but this problem also exists in CRD.

  20. FAINT CO LINE WINGS IN FOUR STAR-FORMING (ULTRA)LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Zschaechner, Laura; Bolatto, Alberto; Weiss, Axel

    2015-09-20

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s{sup −1}-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  1. Interpretation of the [ClIII] Lines in Gaseous Nebulae.

    PubMed

    Aller, L H; Czyzak, S J; Walker, M F; Krueger, T K

    1970-05-01

    The intensity ratio of the green lambdalambda5517 and 5537 lines of [ClIII] serves as an indicatrix of the electron density in many gaseous nebulae whose spectra can be observed with an image converter. Quantitative interpretation of the line ratio requires accurate values of the collisional strengths and transition probabilities. With improved values of these parameters we have revised electron densities for a number of nebulae; the results seem to be in good accord with those derived from other criteria.

  2. Comparisons of MgII core-wing data with Ground-Based Ca K-line

    NASA Astrophysics Data System (ADS)

    Chapman, G. A.; Preminger, D.

    2011-12-01

    Magnesium_II core-wing ratio data will be compared with ground-based K-line photometry for most of cycle 22 and 23. The ground-based data is the photmetric sum computed from the composite K-line obtained from the San Fernando Observatory. We will examine several MgII core-wing composites. This work is partially supported by grants NNX11AB51G from NASA and ATM-0848518 from NSF.

  3. A far wing line shape theory and its application to the water vibrational bands (II)

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Tipping, R. H.

    1992-06-01

    Attention is given to a far wing line shape theory based on binary collision and quasi-static approximations. The theory is applicable for both the LF and HF wings of vibrational-rotational bands. It is used to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000/cm for pure water vapor. The results are compared with existing laboratory data in the 2400-2700/cm window and in the 3000-4300/cm band center region, with field measurements in the 2000-2225/cm region and with a recent experimental measurement near 9466/cm. It is concluded that both the magnitude and temperature dependence of the water vapor continuum can be accounted for by the present theory without the introduction of any adjustable parameters. Refinements of the theory and extension to foreign-broadened absorption are also discussed.

  4. A far wing line shape theory and its application to the water vibrational bands (II)

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1992-01-01

    Attention is given to a far wing line shape theory based on binary collision and quasi-static approximations. The theory is applicable for both the LF and HF wings of vibrational-rotational bands. It is used to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000/cm for pure water vapor. The results are compared with existing laboratory data in the 2400-2700/cm window and in the 3000-4300/cm band center region, with field measurements in the 2000-2225/cm region and with a recent experimental measurement near 9466/cm. It is concluded that both the magnitude and temperature dependence of the water vapor continuum can be accounted for by the present theory without the introduction of any adjustable parameters. Refinements of the theory and extension to foreign-broadened absorption are also discussed.

  5. A Mach line panel method for computing the linearized supersonic flow over planar wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Rubbert, P. E.

    1978-01-01

    A method is described for solving the linearized supersonic flow over planar wings using panels bounded by two families of Mach lines. Polynomial distributions of source and doublet strength lead to simple, closed form solutions for the aerodynamic influence coefficients, and a nearly triangular matrix yields rapid solutions for the singularity parameters. The source method was found to be accurate and stable both for analysis and design boundary conditions. Similar results were obtained with the doublet method for analysis boundary conditions on the portion of the wing downstream of the supersonic leading edge, but instabilities in the solution occurred for the region containing a portion of the subsonic leading edge. Research on the method was discontinued before this difficulty was resolved.

  6. A far-wing line shape theory which satisfies the detailed balance principle

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Hartmann, J.-M.; Boulet, C.

    1995-01-01

    A far-wing theory in which the validity of the detailed balance principle is maintained in each step of the derivation is presented. The role of the total density matrix including the initial correlations is analyzed rigorously. By factoring out the rapidly varying terms in the complex-time development operator in the interaction representation, better approximate expressions can be obtained. As a result, the spectral density can be expressed in terms of the line-coupling functions in which two coupled lines are arranged symmetrically and whose frequency detunings are omega - 1/2(omega(sub ji) + omega (sub j'i'). Using the approximate values omega - omega(sub ji) results in expressions that do not satisfy the detailed balance principle. However, this principle remains satisfied for the symmetrized spectral density in which not only the coupled lines are arranged symmetrically, but also the initial and final states belonging to the same lines are arranged symmetrically as well.

  7. [Fe III] EMISSION LINES IN THE PLANETARY NEBULA NGC 2392

    SciTech Connect

    Zhang, Y.; Chau, W.; Hsia, C.-H.; Kwok, S.; Fang, X.; Liu, X.-W.; Koning, N.

    2012-07-20

    NGC 2392 is a young double-shell planetary nebula (PN). Its intrinsic structure and shaping mechanism are still not fully understood. In this paper we present new spectroscopic observations of NGC 2392. The slits were placed at two different locations to obtain the spectra of the inner and outer regions. Several [Fe III] lines are clearly detected in the inner region. We infer that NGC 2392 might have an intrinsic structure similar to the bipolar nebula Mz 3, which also exhibits a number of [Fe III] lines arising from the central regions. In this scenario, the inner and outer regions of NGC 2392 correspond to the inner lobes and the outer outflows of Mz 3, respectively. We construct a three-dimensional morpho-kinematic model to examine our hypothesis. We also compare the physical conditions and chemical composition of the inner and outer regions, and discuss the implications on the formation of this type of PN.

  8. Stark Shift Measurement of Some Xe III Lines

    SciTech Connect

    Djurovic, S.; Cirisaif, M.; Pelaez, R. J.; Aparicio, J. A.; Mar, S.

    2008-10-22

    Examination of ionized xenon spectrum is of a great interest for plasma diagnostic purposes, theory testing and different applications. In this paper, we present Stark shift data for one blue and five UV Xe III lines. One line belongs to the 5d-6p transition, while all other lines belong to 6s-6p transition. Most of the existing papers are devoted to Stark width measurements and only one paper deals with shift data of the lines studied herein. A low-pressure pulsed arc with 95% of helium and 5% of xenon was used as a plasma source. All measurements were performed under following plasma conditions: electron density (0.2-1.4)10{sup 23}m{sup -3} and electron temperature 18000-23000 K.

  9. Wind-tunnel investigation of aerodynamic efficiency of three planar elliptical wings with curvature of quarter-chord line

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Vijgen, Paul M. H. W.

    1993-01-01

    Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.

  10. Atomic Data and Spectral Line Intensities for Ne III

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s(sup 2) 2p(sup 4),2s2p(sup 5),2s(sup 2) 2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 10, 15, 20, and 25 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT,(K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensities are compared with SERTS rocket measurements of a solar active region and of a laboratory EUV light source.

  11. Characterization of cell lines developed from the glassy-winged sharpshooter, Homalodisca coagulata (Hemiptera: Cicadellidae).

    PubMed

    Kamita, Shizuo G; Do, Zung N; Samra, Aman I; Hagler, James R; Hammock, Bruce D

    2005-01-01

    Four continuous cell lines were established from the embryos of the glassy-winged sharpshooter, Homalodisca coagulata (Say), an economically important insect vector of bacterial pathogens of grape, almond, citrus, oleander, and other agricultural and ornamental plantings. The cell lines were designated GWSS-Z10, GWSS-Z15, GWSS-G3, and GWSS-LH. The GWSS-Z10, GWSS-Z15, and GWSS-G3 lines were cultured in Ex-Cell 401 medium supplemented with 10% fetal bovine serum (FBS), whereas the GWSS-LH line was cultured in LH medium supplemented with 20% FBS. The cell lines were characterized in terms of their morphology, growth, protein composition, and polymerase chain reaction- amplification patterns of their chromosomal deoxyribonucleic acid. The population doubling times of GWSS-Z10, GWSS-Z15, GWSS-G3, and GWSS-LH were 46.2, 90.9, 100.3, and 60.2 h, respectively. These lines should be useful for the study of insect-pathogenic viruses of leafhoppers, aphids, treehoppers, and other related insects as well as plant-pathogenic viruses that are transmitted by these insects.

  12. Subcritical instability on the attachment-line of an infinite swept wing

    NASA Astrophysics Data System (ADS)

    Sengupta, T. K.; Dipankar, A.

    2005-04-01

    The leading-edge contamination (LEC) problem of an infinite swept wing is shown here as vortex-induced instability. The governing equation for receptivity is presented for LEC in terms of disturbance energy based on the Navier-Stokes equation. The unperturbed shear layer given by the swept Hiemenz boundary-layer solution is two-dimensional and an exact solution of incompressible the Navier-Stokes equation. Thus, the LEC problem is solved numerically by solving the full two-dimensional Navier-Stokes equation. The contamination at the attachment-line is shown by solving a receptivity to a convecting vortex moving outside the attachment-line boundary layer, which triggers subcritical spatio-temporal instability.

  13. Collision strengths for nebular [O III] optical and infrared lines

    NASA Astrophysics Data System (ADS)

    Storey, P. J.; Sochi, Taha; Badnell, N. R.

    2014-07-01

    We present electron collision strengths and their thermally averaged values for the nebular forbidden lines of the astronomically abundant doubly ionized oxygen ion, O2+, in an intermediate coupling scheme using the Breit-Pauli relativistic terms as implemented in an R-matrix atomic scattering code. We use several atomic targets for the R-matrix scattering calculations including one with 72 atomic terms. We also compare with new results obtained using the intermediate coupling frame transformation method. We find spectroscopically significant differences against a recent Breit-Pauli calculation for the excitation of the [O III] λ4363 transition but confirm the results of earlier calculations.

  14. Height formation of bright points observed by IRIS in Mg II line wings during flux emergence

    NASA Astrophysics Data System (ADS)

    Grubecka, M.; Schmieder, B.; Berlicki, A.; Heinzel, P.; Dalmasse, K.; Mein, P.

    2016-09-01

    Context. A flux emergence in the active region AR 111850 was observed on September 24, 2013 with the Interface Region Imaging Spectrograph (IRIS). Many bright points are associated with the new emerging flux and show enhancement brightening in the UV spectra. Aims: The aim of this work is to compute the altitude formation of the compact bright points (CBs) observed in Mg II lines in the context of searching Ellerman bombs (EBs). Methods: IRIS provided two large dense rasters of spectra in Mg II h and k lines, Mg II triplet, C II and Si IV lines covering all the active region and slit jaws in the two bandpasses (1400 Å and 2796 Å) starting at 11:44 UT and 15:39 UT, and lasting 20 min each. Synthetic profiles of Mg II and Hα lines are computed with non-local thermodynamic equlibrium (NLTE) radiative transfer treatment in 1D solar atmosphere model including a hotspot region defined by three parameters: temperature, altitude, and width. Results: Within the two IRIS rasters, 74 CBs are detected in the far wings of the Mg II lines (at +/-1 Å and 3.5 Å). Around 10% of CBs have a signature in Si IV and CII. NLTE models with a hotspot located in the low atmosphere were found to fit a sample of Mg II profiles in CBs. The Hα profiles computed with these Mg II CB models are consistent with typical EB profiles observed from ground based telescopes e.g. THEMIS. A 2D NLTE modelling of fibrils (canopy) demonstrates that the Mg II line centres can be significantly affected but not the peaks and the wings of Mg II lines. Conclusions: We conclude that the bright points observed in Mg II lines can be formed in an extended domain of altitudes in the photosphere and/or the chromosphere (400 to 750 km). Our results are consistent with the theory of heating by Joule dissipation in the atmosphere produced by magnetic field reconnection during flux emergence.

  15. A Note about Self-Induced Velocity Generated by a Lifting-Line Wing or Rotor Blade

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2006-01-01

    This report presents an elementary analysis of the induced velocity created by a field of vortices that reside in the wake of a rotor blade. Progress achieved by other researchers in the last 70 years is briefly reviewed. The present work is presented in four stages of complexity that carry a lifting-line representation of a fixed wing into a single-blade rotor. The analysis leads to the conclusion that the lifting rotor's spiraling vortex wake structure has very high induced power when compared to the ideal wing. For an advanced ratio of one-half, induced power is on the order of 10 times that of the wing when the comparison is made at wingspan equal to rotor diameter and wing and rotor having equal lift.

  16. Collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines

    SciTech Connect

    Parkhomenko, A I; Shalagin, Anatolii M

    2011-11-30

    Using the eikonal approximation, we have calculated effective collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines. We have established the relation between the probabilities of absorption and stimulated emission and the characteristics of the radiation and elementary scattering event. The example of the power interaction potential shows that quantum mechanical calculation of the collision frequencies in the eikonal approximation and previously known spectral line wing theory give similar results for the probability of radiation absorption.

  17. Avian Wings

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  18. Atomic Data and Spectral Line Intensities for Ne III

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    A number of satellites and rockets have been launched to observe radiation from the Sun and other astrophysical objects. Line radiation is emitted when the electron impact excited levels decay to the lower levels by photon emission. From this radiation, the physical parameters such as electron temperature and density of the astrophysical plasma, elemental abundance, and opacity can be inferred. Ne III lines have been observed in H II regions, Ne-rich filaments in supernovae, and planetary nebulae. The allowed line at 489.50 Angstroms due to the transition 2s(sup 2) 2p(sup 5) (sup 3) P2 (goes to) 2s(sup 2)2p(sup 4)(sup 3)P2 has been identified in the solar spectrum by Vernazza and Reeves using Skylab observations. Other Ne III lines in the solar EUV spectrum have been reported by Thomas and Neupert based on observations from the Solar EUV Rocket Telescope and Spectrograph (SERTS) instrument. Atomic data for Ne III have been calculated by using a set of programs developed at, University College, London. The Superstructure and Distorted Wave (DW) programs have been updated over the years. In the Superstructure program, configuration interaction can be taken into account and radial functions are calculated in a modified Thomas-Fermi-Amaldi potential. This is a statistical potential and depends on parameters lambda 1 which are determined by optimizing the weighted sum of term energies. They are found to be lambda(sub 0)=1.2467, lambda(sub 1)=1.1617, and lambda(sub 2)=1.0663. The relativistic corrections are included by using the Breit-Pauli Hamiltonian as a perturbation to the nonrelativistic Hamiltonian. The same potential is used to calculate reactance matrices in the DW approximation in LS coupling. Collision strengths in intermediate coupling are obtained by using term coupling coefficients obtained from the Superstructure program. In this calculation, the configurations used are 2s(sup 2)2p(sup 4), 2s2p(sup 5), 2s(sup 2)2p(sup 3)3s, 2s(sup 2)p(sup 3)3d giving rise

  19. Hyper III on ramp with single-piece pivot wing installed & Princeton sailwing on ground, with Da

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Hyper III's shape provided too little lift to land without some type of deployable wing. The single free flight was made using a simulated one-piece pivot wing, which was attached to the upper surface of the fuselage. This used a wing kit from an HP-11 sailplane, which was assembled by Daniel Garrabrant (shown in the photo). Another possible wing was the Flexible Princeton Sailwing. The piloted Hyper III flights were to be made using an SA-16B Albatross seaplane as the drop aircraft. The Hyper III would be carried under the SA-16B's wing on a drop-tank rack. Flight Research Center Director Paul Bikle asked NASA Headquarters for permission to exchange the Center's C-47 for the SA-16. Headquarters turned down this request, effectively ending the possibility of Hyper III flights with a pilot on board. The Flight Research Center (FRC--as Dryden was named from 1959 until 1976) already had experience with testing small-scale aircraft using model-airplane techniques, but the first true remotely piloted research vehicle was the Hyper III, which flew only once in December 1969. At that time, the Center was engaged in flight research with a variety of reentry shapes called lifting bodies, and there was a desire both to expand the flight research experience with maneuverable reentry vehicles, including a high-performance, variable-geometry craft, and to investigate a remotely piloted flight research technique that made maximum use of a research pilot's skill and experience by placing him 'in the loop' as if he were in the cockpit. (There have been, as yet, no female research pilots assigned to Dryden.) The Hyper III as originally conceived was a stiletto-shaped lifting body that had resulted from a study at NASA's Langley Research Center in Hampton, Virginia. It was one of a number of hypersonic, cross-range reentry vehicles studied at Langley. (Hypersonic means Mach 5--five times the speed of sound--or faster; cross-range means able to fly a considerable distance to the

  20. Extension of the quasistatic far-wing line shape theory to multicomponent anisotropic potentials

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1994-01-01

    The formalism developed previously for the calculation of the far-wing line shape function and the corresponding absorption coefficient using a single-component anisotropic interaction term and the binary collision and quasistatic approximations is generalized to multicomponent anisotropic potential functions. Explicit expressions are presented for several common cases, including the long-range dipole-dipole plus dipole-quadrupole interaction and a linear molecule interacting with a perturber atom. After determining the multicomponent functional representation for the interaction between the CO2 and Ar from previously published data, we calculate the theoretical line shape function and the corresponding absorption due to the nu(sub 3) band of CO2 in the frequency range 2400-2580 cm(exp -1) and compare our results with previous calculations carried out using a single-component anisotropic interaction, and with the results obtained assuming Lorentzian line shapes. The principal uncertainties in the present results, possible refinements of the theoretical formalism, and the applicability to other systems are discussed briefly.

  1. ORIGIN OF SPATIAL VARIATIONS OF SCATTERING POLARIZATION IN THE WINGS OF THE Ca I 4227 A line

    SciTech Connect

    Sampoorna, M.; Nagendra, K. N.; Anusha, L. S.; Stenflo, J. O.; Bianda, M.; Ramelli, R.

    2009-07-10

    Polarization that is produced by coherent scattering can be modified by magnetic fields via the Hanle effect. This has opened a window to explorations of solar magnetism in parameter domains not accessible to the Zeeman effect. According to standard theory the Hanle effect should only be operating in the Doppler core of spectral lines but not in the wings. In contrast, our observations of the scattering polarization in the Ca I 4227 A line reveal the existence of spatial variations of the scattering polarization throughout the far line wings. This raises the question whether the observed spatial variations in wing polarization have a magnetic or nonmagnetic origin. A magnetic origin may be possible if elastic collisions are able to cause sufficient frequency redistribution to make the Hanle effect effective in the wings without causing excessive collisional depolarization, as suggested by recent theories for partial frequency redistribution (PRD) with coherent scattering in magnetic fields. To model the wing polarization we bypass the problem of solving the full polarized radiative transfer equations and instead apply an extended version of the technique based on the 'last scattering approximation'. It assumes that the polarization of the emergent radiation is determined by the anisotropy of the incident radiation field at the last scattering event. We determine this anisotropy from the observed limb darkening as a function of wavelength throughout the spectral line. The empirical anisotropy profile is used together with the single-scattering redistribution matrix, which contains all the PRD, collisional, and magnetic field effects. The model further contains a continuum opacity parameter, which increasingly dilutes the polarized line photons as we move away from the line center, and a continuum polarization parameter that represents the observed polarization level far from the line. This model is highly successful in reproducing the observed Stokes Q

  2. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    NASA Technical Reports Server (NTRS)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  3. Interaction of the hemolytic lectin, CEL-III, with cultured human leukemic cell lines.

    PubMed

    Sallay, I; Moriwaki, S; Nakamura, O; Yasuda, S; Kimura, M; Yamasaki, N; Itoh, K; Ohba, H

    2000-12-01

    We studied interaction of CEL-III with cultured human leukemic cell lines and lymphocytes from normal adults by evaluating the extent of cytotoxicity and cytoagglutination. Among acute T lymphoblastic leukemia (T-ALL) cell lines, CEL-III displayed increased toxicity against different acute lymphoblastic leukemia (ALL) cell lines as a function of increasing differentiation stage. In the case of acute B lymphoblastic leukemia (B-ALL) cell lines, CEL-III showed strong cytotoxicity against relatively immature cell lines. We found that CEL-III was more toxic for ALL cell lines than leukocytes obtained from peripheral blood of healthy adults. Strong influence of the additional amount of calcium ion on the extent of cytotoxicity was observed. In addition, we describe a new way to evaluate the extent of cytoagglutination in "% of agglutinated cells". These findings make CEL-III a promising candidate in research for lectins which bind to and destroy only the targeted leukemic cells.

  4. Broad-wing molecular lines without internal energy sources. [in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Blitz, Leo; Magnani, Loris; Wandel, Amri

    1988-01-01

    The discovery of broad CO wings in four high-latitude molecular clouds which do not have associated internal energy sources is reported. The velocity width of the wings is as much as five times greater than the width of the cloud cores. Neither visible stars brighter than the background population, optical nebulosity, nor IRAS point sources are found at the position of the wings, except for one case with an IRAS source 3 arcmin from the peak position of the wings. The possibility that the wings are the result of conductive interfaces resulting from cold molecular clouds in a hotter ambient medium is examined, and it is concluded that the expected column density of such gas is more than three orders of magnitude smaller than that observed.

  5. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings III : Clark Y Wing - Various Radial-engine Cowlings - Tractor Propeller

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1933-01-01

    This report is the third of a series giving the results obtained in the 20-foot wind tunnel on the interference drag, and propulsive efficiency of nacelle-propeller-wing combinations. The first report gave the results of the tests of an NACA cowled air-cooled engine nacelle with tractor propeller located in 21 positions with reference to a thick wing. The second report gave the results for several engine cowlings and nacelles with tractor propeller located in four positions with reference to same wing. The present report gives results of tests of the same nacelles and cowlings in the same positions with reference to a smaller wing of Clark y section. The lift, drag, and propulsive efficiency were determined at several angles of attack for each cowling and in each nacelle location.

  6. Annular wing

    NASA Technical Reports Server (NTRS)

    Walker, H. J. (Inventor)

    1981-01-01

    An annular wing particularly suited for use in supporting in flight an aircraft characterized by the absence of directional stabilizing surfaces is described. The wing comprises a rigid annular body of a substantially uniformly symmetrical configuration characterized by an annular positive lifting surface and cord line coincident with the segment of a line radiating along the surface of an inverted truncated cone. A decalage is established for the leading and trailing semicircular portions of the body, relative to instantaneous line of flight, and a dihedral for the laterally opposed semicircular portions of the body, relative to the line of flight. The direction of flight and climb angle or glide slope angle are established by selectively positioning the center of gravity of the wing ahead of the aerodynamic center along the radius coincident with an axis for a selected line of flight.

  7. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  8. Apparent [O III] variability in the narrow line Seyfert I Mrk142

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Guang; Feng, Long-Long

    2016-03-01

    In this Letter, we checked spectral properties of the well-known narrow line Seyfert I Mrk142, in order to try to find effects of narrow line variability on BLR radius of Mrk142 which is an outlier in the R-L plane. Although, no improvement can be found on BLR radius, apparent narrow line variability can be confirmed in Mrk142. Using the public spectra collected from the Lick AGN Monitoring Project, the spectral scaling method based on assumption of constant [O III] line is first checked by examining broad and narrow emission line properties. We find that with the application of the spectral scaling method, there is a strong correlation between the [O III] line flux and the [O III] line width, but weaker correlations between the broad Hα flux and the broad Hβ flux, and between the broad Hα flux and the continuum emission at 5100 Å. The results indicate that the assumption of constant [O III] line is not preferred, and caution should be exercised when applying the spectral scaling calibration method. And then, we can find a strong correlation between the [O III] line flux and the continuum emission at 5100 Å, which indicates apparent short-term variability of the [O III] line in Mrk142 over about two months.

  9. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines.

    PubMed

    Ma, Q; Tipping, R H; Leforestier, C

    2008-03-28

    It is well known that the water-vapor continuum plays an important role in the radiative balance in the Earth's atmosphere. This was first discovered by Elsasser almost 70 years ago, and since that time there has been a large body of work, both experimental and theoretical, on this topic. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H(2)O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: Far wings of allowed transitions, water dimers, and collision-induced absorption. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the absorption. The first mechanism proposed was the accumulation of the far-wing absorption of the strong allowed transitions. Later, absorption by water dimers was proposed and this mechanism provides a qualitative explanation for the strong, negative T dependence. Recently, some atmospheric modelers have proposed that collision-induced absorption is one of the major contributors. However, based on improvements in the theoretical calculation of accurate far-wing line shapes, ab initio dimer calculations, and theoretical collision-induced absorptions, it is now generally accepted that the dominant mechanism for the absorption in the infrared (IR) windows is that due to the far wings. Whether this is true for other spectral regions is not presently established. Although all these three mechanisms have a negative T dependence, their T dependences will be characterized by individual features. To analyze the characteristics of the latter will enable one to assess their roles with more certainty. In this paper, we present a detailed study of the T dependence of the far-wing absorption mechanism. We will then compare our theoretical calculations with the most recent and accurate

  10. Computer program for calculating supersonic flow on the windward side conical delta wings by the method of lines

    NASA Technical Reports Server (NTRS)

    Klunker, E. B.; South, J. C., Jr.; Davis, R. M.

    1972-01-01

    A user's manual is presented for a program that calculates the supersonic flow on the windward side of conical delta wings with shock attached at the sharp leading edge by the method of lines. The program also has a limited capability for computing the flow about circular and elliptic cones at incidence. It provides information including the shock shape, flow field, isentropic surface-flow properties, and force coefficients. A description of the program operation, a sample computation, and a FORTRAN 4 program listing are included.

  11. ANALYSIS OF BREIT-PAULI TRANSITION PROBABILITIES FOR LINES IN O III

    SciTech Connect

    Fischer, C. Froese; Tachiev, G.; Rubin, R. H.; Rodriguez, M.

    2009-09-20

    Accurate atomic data are essential for understanding the properties of both O III lines produced by the Bowen fluorescence mechanism and [O III] forbidden lines observed in numerous gaseous nebulae. Improved Breit-Pauli transition probabilities have been published for the carbon sequence. Included were revised data for O III. The present paper analyzes the accuracy of the data specifically for O III by comparison with other theory as well as some recent experiments and observations. For the electric dipole transition probabilities, good agreement is found for allowed Bowen fluorescence lines between predictions of intensity ratios with observed data. For forbidden transitions, the Breit-Pauli magnetic dipole transition operator requires corrections that often are neglected. Good agreement is found when these transition probabilities are computed with multiconfiguration Dirac-Hartree-Fock methods.

  12. Nebular and auroral emission lines of [Cl III] in the optical spectra of planetary nebulae.

    PubMed

    Keenan, F P; Aller, L H; Ramsbottom, C A; Bell, K L; Crawford, F L; Hyung, S

    2000-04-25

    Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (T(e)) and density (N(e)) emission line ratios involving both the nebular (5517.7, 5537.9 A) and auroral (8433.9, 8480.9, 8500.0 A) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R(1) = I(5518 A)/I(5538 A) intensity ratio provides estimates of N(e) in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R(1) is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl iii] 8433.9 A line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl iii] intensity may be reliably measured, it provides accurate determinations of T(e) when ratioed against the sum of the 5518 and 5538 A line fluxes. Similarly, the 8500.0 A line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [Cl iii] transition at 8480.9 A is found to be blended with the He i 8480.7 A line, except in planetary nebulae that show a relatively weak He i spectrum, where it also provides reliable estimates of T(e) when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl iii] lines at 3344 and 3354 A is briefly discussed.

  13. The winged scapula.

    PubMed

    Fiddian, N J; King, R J

    1984-05-01

    Twenty-five patients with 23 different types of winging of the scapula are described. A simple clinical and etiologic classification of the winged scapula is proposed based on the study of these patients in conjunction with a review of the literature. Winging of the scapula is either static or dynamic. Static winging is due to fixed deformity in the shoulder girdle, spine, or ribs. Dynamic winging is due to a neuromuscular disorder. The great variety of lesions that produce winging of the scapula may be classified anatomically into four types: Type I, nerve; Type II, muscle; Type III, bone; and Type IV, joint. Winging of the scapula is a surprisingly common physical sign, but because it is often asymptomatic it receives little attention. However, symptoms of pain, weakness, or cosmetic deformity may demand attention, and it is hoped that this classification will help in the diagnosis and assessment of these patients.

  14. The Balmer Lines of He ii in the Blue Wing of the Hydrogen Lyman α Line Observed in a Quiescent Prominence

    NASA Astrophysics Data System (ADS)

    Vial, J.-C.; Eurin, G.; Curdt, W.

    2015-02-01

    We revisit the prominence observations in the Lyman α line of Curdt et al. ( Astron. Astrophys. 511, L4, 2010) and focus on the bump in the blue wing of the line, which we identify with He ii Balmer lines. We determine the transition candidates, derive an upper limit for the width of the profile and an associated non-thermal velocity close to 0 km s-1, with the assumption that the kinetic temperature is equal to the formation temperature. We compare the total intensity with the corresponding H Lyman α intensity and find a ratio much lower than that measured by Ebadi, Vial, and Ajabshirizadeh ( Solar Phys. 257, 91, 2009) in other Lyman lines. We confirm this result with observations performed by Schwartz et al. (private communication, 2014), we discuss a possible interpretation, and suggest that this issue needs to be addressed closely in future observations.

  15. POLARIZED LINE FORMATION IN MULTI-DIMENSIONAL MEDIA. III. HANLE EFFECT WITH PARTIAL FREQUENCY REDISTRIBUTION

    SciTech Connect

    Anusha, L. S.; Nagendra, K. N.

    2011-09-01

    In two previous papers, we solved the polarized radiative transfer (RT) equation in multi-dimensional (multi-D) geometries with partial frequency redistribution as the scattering mechanism. We assumed Rayleigh scattering as the only source of linear polarization (Q/I, U/I) in both these papers. In this paper, we extend these previous works to include the effect of weak oriented magnetic fields (Hanle effect) on line scattering. We generalize the technique of Stokes vector decomposition in terms of the irreducible spherical tensors T{sup K}{sub Q}, developed by Anusha and Nagendra, to the case of RT with Hanle effect. A fast iterative method of solution (based on the Stabilized Preconditioned Bi-Conjugate-Gradient technique), developed by Anusha et al., is now generalized to the case of RT in magnetized three-dimensional media. We use the efficient short-characteristics formal solution method for multi-D media, generalized appropriately to the present context. The main results of this paper are the following: (1) a comparison of emergent (I, Q/I, U/I) profiles formed in one-dimensional (1D) media, with the corresponding emergent, spatially averaged profiles formed in multi-D media, shows that in the spatially resolved structures, the assumption of 1D may lead to large errors in linear polarization, especially in the line wings. (2) The multi-D RT in semi-infinite non-magnetic media causes a strong spatial variation of the emergent (Q/I, U/I) profiles, which is more pronounced in the line wings. (3) The presence of a weak magnetic field modifies the spatial variation of the emergent (Q/I, U/I) profiles in the line core, by producing significant changes in their magnitudes.

  16. Vortex flap flow reattachment line and subsonic longitudinal aerodynamic data on 50 deg to 74 deg Delta wings on common fuselage

    NASA Technical Reports Server (NTRS)

    Frink, N. T.; Huffman, J. K.; Johnson, T. D., Jr.

    1983-01-01

    Positions of the primary vortex flow reattachment line and longitudinal aerodynamic data were obtained at Mach number 0.3 for a systematic series of vortex flaps on delta wing body configurations with leading edge sweeps of 50, 58, 66, and 74 deg. The investigation was performed to study the parametric effects of wing sweep, vortex flap geometry and deflection, canards, and trailing edge flaps on the location of the primary vortex reattachment line relative to the flap hinge line. The vortex reattachment line was located via surface oil flow photographs taken at selected angles of attack. Force and moment measurements were taken over an angle of attack range of -1 deg to 22 deg at zero sideslip angle for many configurations to further establish the data base and to assess the aforementioned parametric effects on longitudinal aerodynamics. Both the flow reattachment and aerodynamic data are presented.

  17. Formulas for the Supersonic Loading, Lift, and Drag of Flat Swept-Back Wings with Leading Edges Behind the Mach Line

    NASA Technical Reports Server (NTRS)

    Cohen, Doris

    1951-01-01

    The method of superposition of linearized conical flows has been applied to the calculation of the aerodynamic properties, in supersonic flight, of thin flat, swept-back wings at an angle of attack. The wings are assumed to have rectilinear plan forms, with tips parallel to the stream, and to taper in the conventional sense. The investigation covers the moderately supersonic speed range where the Mach lines from the leading-edge apex lie ahead of the wing. The trailing edge may lie ahead of or behind the Mach lines from its apex. The case in which the Mach cone from one tip intersects the other tip is not treated. Formulas are obtained for the load distribution, the total lift, and the drag due to lift. For the cases in which the trailing edge is outside the Mach cone from its apex the formulas are complete. For wings with both leading and trailing edges behind their respective Mach lines, a degree of approximation is necessary. Charts of some of the functions derived are included to facilitate computing, and several examples are worked out in outline.

  18. Hydrogen line and continuum emission in young stellar objects. III - Line ratios and physical conditions

    NASA Technical Reports Server (NTRS)

    Alonso-Costa, Jose L.; Kwan, John

    1990-01-01

    A detailed analysis of the dependence of Br-gamma/Br-alpha and other hydrogen line ratios on nucleon density (over the range 10 to the 10th - 10 to the 12th/cu cm), column density (about 10 to the 18th - 10 to the 24th/sq cm), young stellar object (YSO) luminosity (about 10-10,000 solar luminosities), and distance of the gas cloud from the YSO, r (about 10 to the 12th - 10 to the 14th cm). For a given continuum model, the value of Br-gamma/Br-alpha can provide a constraint on r. The ionization and thermal structures of the emission region are described. The electron fraction is fairly constant and is small (less than 10 percent) in the region where most of the hydrogen line fluxes are produced. The temperature in this region is also quite constant, with a value of 5000-7000 K.

  19. Diagnostics of the κ-distribution using Si III lines in the solar transition region

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Kulinová, A.

    2011-07-01

    Aims: The solar transition region satisfies the conditions for appearance of the non-thermal κ-distribution. We aim to prove the occurrence of the non-thermal κ-distribution in the solar transition region and diagnose its parameters. Methods: The intensity ratios of Si iii lines observed by SUMER in 1100-1320 Å region do not correspond to the line ratios computed under the assumption of the Maxwellian electron distribution. We computed a set of synthetic Si iii spectra for the electron κ-distributions with different values of the parameter κ. We had to include the radiation field in our calculations to explain the observed line ratios. We propose diagnostics of the parameter κ and other plasma parameters and analyze the effect of the different gradient of differential emission measures (DEM) on the presented calculations. Results: The used line ratios are sensitive to T, density and the parameter κ. All these parameters were determined from the SUMER observations for the coronal hole (CH), quiet Sun (QS) and active region (AR) using our proposed diagnostics. A strong gradient of DEM influences the diagnosed parameters of plasma. The essential contributions to the total line intensities do not correspond to single T but a wider range of T, and they originate in different atmospheric layers. The amount of the contributions from these atmospheric layers depends on the gradient of DEM and the shape of the electron distribution function. Conclusions: The κ-distribution is able to explain the observed Si iii line spectrum in the transition region. The degree of non-thermality increases with the activity of the solar region, it is lower for CH and higher for the AR. The DEM influences the diagnosed T and Ne but it has only little effect on the diagnostics of the parameter κ.

  20. Inflatable wing

    DOEpatents

    Priddy, Tommy G.

    1988-01-01

    An inflatable wing is formed from a pair of tapered, conical inflatable tubes in bonded tangential contact with each other. The tubes are further connected together by means of top and bottom reinforcement boards having corresponding longitudinal edges lying in the same central diametral plane passing through the associated tube. The reinforcement boards are made of a stiff reinforcement material, such as Kevlar, collapsible in a direction parallel to the spanwise wing axis upon deflation of the tubes. The stiff reinforcement material cooperates with the inflated tubes to impart structural I-beam characteristics to the composite structure for transferring inflation pressure-induced tensile stress from the tubes to the reinforcement boards. A plurality of rigid hoops shaped to provide airfoil definition are spaced from each other along the spanwise axis and are connected to the top and bottom reinforcement boards. Tension lines are employed for stabilizing the hoops along the trailing and leading edges thereof.

  1. Direct potential and temperature effects on the MgHe line-core and far-wing photoabsorption profiles

    SciTech Connect

    Reggami, L.; Bouledroua, M.

    2011-03-15

    The present study deals with the collisional broadening of monatomic magnesium, evolving in a helium buffer gas, in the wavelength and temperature ranges 260-310 nm and 100-3000 K, respectively. The computed emission and absorption spectral profiles are based on the most recent potential-energy curves and transition dipole moments. The required interatomic Mg(3s{sup 2})+He(1s{sup 2}) and Mg(3s3p)+He(1s{sup 2}) potentials are constructed from two different sets. The purpose of this treatment is twofold. First, using the quantum-mechanical Baranger impact approximation, the width and shift of the line-core spectra are determined and their variation law with temperature is examined. Then, the satellite structures in the blue and red wings are analyzed quantum mechanically. The calculations show especially that the free-free transitions contribute most to the MgHe photoabsorption spectra and that a satellite structure is observable beyond the temperature 1800 K around the wavelengths 272 or 276 nm, depending on the used potential set. Weak satellites have also been investigated and, for all cases, the obtained results showed good agreement with those already published.

  2. SAGE III Educational Outreach and Student's On-Line Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Woods, D. C.; Moore, S. W.; Walters, S. C.

    2002-05-01

    Students On-Line Atmospheric Research (SOLAR) is a NASA-sponsored educational outreach program aimed at raising the level of interest in science among elementary, middle, and high school students. SOLAR is supported by, and closely linked to, NASA's Stratospheric Aerosol and Gas Experiment III (SAGE III). SAGE III, launched on a Russian METEOR 3M spacecraft in December 2001, is a key component of NASA's Earth Observing System. It will monitor the quantity and distribution of aerosols, ozone, clouds, and other important trace gases in the upper atmosphere. Early data from SAGE III indicate that the instrument is performing as expected. SAGE III measurements will extend the long-term data record established by its predecessors, SAGE I and SAGE II, which spans from 1979 to the present. In addition, SAGE III's added measurement capabilities will provide more detailed data on certain atmospheric species. SOLAR selects interesting topics related to the science issues addressed by the SAGE III experiments, and develops educational materials and projects to enhance science teaching, and to help students realize the relevance of these issues to our lives on Earth. For example, SOLAR highlights some of the major questions regarding the health of the atmosphere such as possible influences of aerosols on global climate, and atmospheric processes related to ozone depletion. The program features projects to give students hands-on experience with scientific equipment and help develop skills in collecting, analyzing, and reporting science results. SOLAR focuses on helping teachers become familiar with current research in the atmospheric sciences, helping teachers integrate SOLAR developed educational materials into their curriculum. SOLAR gives special presentations at national and regional science teacher conferences and conducts a summer teacher workshop at the NASA Langley Research Center. This poster will highlight some of the key features of the SOLAR program and will present

  3. Cell line with endogenous EGFRvIII expression is a suitable model for research and drug development purposes.

    PubMed

    Stec, Wojciech J; Rosiak, Kamila; Siejka, Paulina; Peciak, Joanna; Popeda, Marta; Banaszczyk, Mateusz; Pawlowska, Roza; Treda, Cezary; Hulas-Bigoszewska, Krystyna; Piaskowski, Sylwester; Stoczynska-Fidelus, Ewelina; Rieske, Piotr

    2016-05-31

    Glioblastoma is the most common and malignant brain tumor, characterized by high cellular heterogeneity. About 50% of glioblastomas are positive for EGFR amplification, half of which express accompanying EGFR mutation, encoding truncated and constitutively active receptor termed EGFRvIII. Currently, no cell models suitable for development of EGFRvIII-targeting drugs exist, while the available ones lack the intratumoral heterogeneity or extrachromosomal nature of EGFRvIII.The reports regarding the biology of EGFRvIII expressed in the stable cell lines are often contradictory in observations and conclusions. In the present study, we use DK-MG cell line carrying endogenous non-modified EGFRvIII amplicons and derive a sub-line that is near depleted of amplicons, whilst remaining identical on the chromosomal level. By direct comparison of the two lines, we demonstrate positive effects of EGFRvIII on cell invasiveness and populational growth as a result of elevated cell survival but not proliferation rate. Investigation of the PI3K/Akt indicated no differences between the lines, whilst NFκB pathway was over-active in the line strongly expressing EGFRvIII, finding further supported by the effects of NFκB pathway specific inhibitors. Taken together, these results confirm the important role of EGFRvIII in intrinsic and extrinsic regulation of tumor behavior. Moreover, the proposed models are stable, making them suitable for research purposes as well as drug development process utilizing high throughput approach.

  4. Cell line with endogenous EGFRvIII expression is a suitable model for research and drug development purposes

    PubMed Central

    Stec, Wojciech J.; Rosiak, Kamila; Siejka, Paulina; Peciak, Joanna; Popeda, Marta; Banaszczyk, Mateusz; Pawlowska, Roza; Treda, Cezary; Hulas-Bigoszewska, Krystyna; Piaskowski, Sylwester; Stoczynska-Fidelus, Ewelina; Rieske, Piotr

    2016-01-01

    Glioblastoma is the most common and malignant brain tumor, characterized by high cellular heterogeneity. About 50% of glioblastomas are positive for EGFR amplification, half of which express accompanying EGFR mutation, encoding truncated and constitutively active receptor termed EGFRvIII. Currently, no cell models suitable for development of EGFRvIII-targeting drugs exist, while the available ones lack the intratumoral heterogeneity or extrachromosomal nature of EGFRvIII. The reports regarding the biology of EGFRvIII expressed in the stable cell lines are often contradictory in observations and conclusions. In the present study, we use DK-MG cell line carrying endogenous non-modified EGFRvIII amplicons and derive a sub-line that is near depleted of amplicons, whilst remaining identical on the chromosomal level. By direct comparison of the two lines, we demonstrate positive effects of EGFRvIII on cell invasiveness and populational growth as a result of elevated cell survival but not proliferation rate. Investigation of the PI3K/Akt indicated no differences between the lines, whilst NFκB pathway was over-active in the line strongly expressing EGFRvIII, finding further supported by the effects of NFκB pathway specific inhibitors. Taken together, these results confirm the important role of EGFRvIII in intrinsic and extrinsic regulation of tumor behavior. Moreover, the proposed models are stable, making them suitable for research purposes as well as drug development process utilizing high throughput approach. PMID:27004406

  5. WINGS: a WIde-field nearby Galaxy-cluster survey. III. Deep near-infrared photometry of 28 nearby clusters

    NASA Astrophysics Data System (ADS)

    Valentinuzzi, T.; Woods, D.; Fasano, G.; Riello, M.; D'Onofrio, M.; Varela, J.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Fritz, J.; Moles, M.; Omizzolo, A.; Poggianti, B. M.; Kjærgaard, P.

    2009-07-01

    Context: This is the third paper in a series devoted to the WIde-field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long-term project aimed at gathering wide-field, multiband imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04WINGS sample and describes the procedures followed to construct them. Methods: The raw data has been reduced at CASU and special care has been devoted to the final coadding, drizzling technique, astrometric solution, and magnitude calibration for the WFCAM pipeline-processed data. We constructed the photometric catalogs based on the final calibrated, coadded mosaics (≈0.79 deg^2) in J (19 clusters) and K (27 clusters) bands. A customized interactive pipeline was used to clean the catalogs and to make mock images for photometric errors and completeness estimates. Results: We provide deep near-infrared photometric catalogs (90% complete in detection rate at total magnitudes J≈ 20.5, K≈ 19.4, and in classification rate at J≈19.5 and K≈ 18.5), giving positions, geometrical parameters, total and aperture magnitudes for all detected sources. For each field we classify the detected sources as stars, galaxies, and objects of “unknown” nature. Based on observations taken at the United Kingdom Infra-Red Telescope, operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the UK. J and K photometric catalogs are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/851

  6. Constraints on the merging of the transition lines at the tricritical point in a wing-structure phase diagram

    SciTech Connect

    Taufour, Valentin; Kaluarachchi, Udhara S.; Kogan, Vladimir G.

    2016-08-19

    Here, we consider the phase diagram of a ferromagnetic system driven to a quantum phase transition with a tuning parameter $p$. Before being suppressed, the transition becomes of the first order at a tricritical point, from which wings emerge under application of the magnetic field H in the T $-$ p $-$ H phase diagram. We show that the edge of the wings merge with tangent slopes at the tricritical point.

  7. Concentration dependence of the wings of a dipole-broadened magnetic resonance line in magnetically diluted lattices

    NASA Astrophysics Data System (ADS)

    Zobov, V. E.; Kucherov, M. M.

    2017-01-01

    The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole-dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole-dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components are described by different equations. Second, the long-range type of the dipole-dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different 29Si concentrations in magnetic fields directed along three crystallographic axes is considered.

  8. The Density Matrix of H20 - N2 In the Coordinate Representation: A Monte Carlo Calculation of the Far-Wing Line Shape

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1999-01-01

    The far-wing line shape theory within the binary collision and quasistatic framework has been developed using the coordinate representation. Within this formalism, the main computational task is the evaluation of multidimensional integrals whose variables are the orientational angles needed to specify the initial and final positions of the system during transition processes. Using standard methods, one is able to evaluate the 7-dimensional integrations required for linear molecular systems, or the 7-dimensional integrations for more complicated asymmetric-top (or symmetric-top) molecular systems whose interaction potential contains cyclic coordinates. In order to obviate this latter restriction on the form of the interaction potential, a Monte Carlo method is used to evaluate the 9-dimensional integrations required for systems consisting of one asymmetric-top (or symmetric-top) and one linear molecule, such as H20-N2. Combined with techniques developed previously to deal with sophisticated potential models, one is able to implement realistic potentials for these systems and derive accurate, converged results for the far-wing line shapes and the corresponding absorption coefficients. Conversely, comparison of the far-wing absorption with experimental data can serve as a sensitive diagnostic tool in order to obtain detailed information on the short-range anisotropic dependence of interaction potentials.

  9. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    SciTech Connect

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E.; Keenan, F. P.

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  10. Electron-impact Excitation Collision Strengths and Theoretical Line Intensities for Transitions in S III

    NASA Astrophysics Data System (ADS)

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E.; Keenan, F. P.

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log Te (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s 23p 2, 3s3p 3, 3s 23p3d, 3s 23p4s, 3s 23p4p, and 3s 23p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  11. On-line solid-phase extraction and multisyringe flow injection analysis of Al(III) and Fe(III) in drinking water.

    PubMed

    Vanloot, Pierre; Branger, Catherine; Margaillan, André; Brach-Papa, Christophe; Boudenne, Jean-Luc; Coulomb, Bruno

    2007-11-01

    A new analytical method was developed for on-line monitoring of residual coagulants (aluminium and iron salts) in potable water. The determination was based on a sequential procedure coupling an extraction/enrichment step of the analytes onto a modified resin and a spectrophotometric measurement of a surfactant-sensitized binary complex formed between eluted analytes and Chrome Azurol S. The optimization of the solid phase extraction was performed using factorial design and a Doehlert matrix considering six variables: sample percolation rate, sample metal concentration, flow-through sample volume (all three directly linked to the extraction step), elution flow rate, concentration and volume of eluent (all three directly linked to the elution step). A specific reagent was elaborated for sensitive and specific spectrophotometric determination of Al(III) and Fe(III), by optimizing surfactant and ligand concentrations and buffer composition. The whole procedure was automated by a multisyringe flow injection analysis (MSFIA) system. Detection limits of 4.9 and 5.6 microg L(-1) were obtained for Al(III) and Fe(III) determination , respectively, and the linear calibration graph up to 300 microg L(-1) (both for Al(III) and Fe(III)) was well adapted to the monitoring of drinking water quality. The system was successfully applied to the on-site determination of Al(III) and Fe(III) at the outlet of two water treatment units during two periods of the year (winter and summer conditions).

  12. Transition Probabilities for the 1815 and 3344 Å Forbidden Lines of NE III

    NASA Astrophysics Data System (ADS)

    Daw, Adrian; Parkinson, William H.; Smith, Peter L.; Calamai, Anthony G.

    2000-04-01

    We have measured the radiative lifetime of the 2s22p4 1S0 metastable level of Ne2+ (Ne III) to be 223+/-11 ms at the 90% confidence level by observing the photons emitted at 1815 Å by a decaying population of 1S0 Ne2+ ions produced and stored in a radio-frequency ion trap. This is the first lifetime measurement for an excited term of a ground configuration ion in the second row of the periodic table. The transition probabilities (A-values) for the forbidden transitions in the ground configurations of these ions are required for astrophysical line-ratio diagnostics. Using calculated branching ratios, we estimate that A(λ1815)=1.94+/-0.17 and A(λ3344)=2.55+/-0.19 s-1. Because these numbers have a sum with an experimentally determined uncertainty of 5%, they will provide more accurate results than the calculated A-values for determining electron temperature and density from astrophysical Ne III line ratios.

  13. Transition Probabilities for the 1815 and 3344 Å Forbidden Lines of Ne iii.

    PubMed

    Daw; Parkinson; Smith; Calamai

    2000-04-20

    We have measured the radiative lifetime of the 2s22p4 1S0 metastable level of Ne2+ (Ne iii) to be 223+/-11 ms at the 90% confidence level by observing the photons emitted at 1815 Å by a decaying population of 1S0 Ne2+ ions produced and stored in a radio-frequency ion trap. This is the first lifetime measurement for an excited term of a ground configuration ion in the second row of the periodic table. The transition probabilities (A-values) for the forbidden transitions in the ground configurations of these ions are required for astrophysical line-ratio diagnostics. Using calculated branching ratios, we estimate that A&parl0;lambda1815&parr0;=1.94+/-0.17 and A&parl0;lambda3344&parr0;=2.55+/-0.19 s-1. Because these numbers have a sum with an experimentally determined uncertainty of 5%, they will provide more accurate results than the calculated A-values for determining electron temperature and density from astrophysical Ne iii line ratios.

  14. Tests of a Triangular Wing of Aspect Ratio 2 in the Ames 12-foot Pressure Wind Tunnel III : the Effectiveness and Hinge Moments of a Skewed Wing-tip Flap

    NASA Technical Reports Server (NTRS)

    Kolbe, Carl D; Tinling, Bruce E

    1948-01-01

    Results of wind-tunnel tests of a semispan model of a triangular wing of aspect ratio 2 with a skewed wing-tip flap are presented. Lift, drag, pitching-moment, and hinge-moment data are included for subsonic Mach numbers up to 0.95. The flap showed extremely high hinge moments and low effectiveness as a longitudinal control. Although less affected by compressibility, this flap is indicated to be inferior to a constant-chord flap when applied to this triangular wing.

  15. Spectrophotometry near the atmospheric cutoff of the strongest Bowen resonance fluorescence lines of O III in two planetary nebulae

    NASA Technical Reports Server (NTRS)

    O'Dell, C. R.; Opal, Chet B.

    1989-01-01

    Spectrophotometric results are presented for the stronger, well-resolved Bowen O III resonance fluorescence emission lines in the planetary nebulae 7027 and NGC 7662 down to and including the intrinsically strong line at 3133 A. These data are combined with results from the IUE atlas of spectra and similar results for the longer wavelength lines by Likkel and Aller (1986) to give the first full coverage of the Bowen lines. Good agreement is found with fluorescence theory for the primary cascade lines, except for the Likkel and Aller results. The efficiency of conversion of the exciting He II Ly-alpha into O III lines is determined, and values comparable to other planetary nebulae are found.

  16. Synoptic and fast events on the sun according to observations at the center and wings of the Ca II K line at the Kislovodsk Mountain station patrol telescope

    NASA Astrophysics Data System (ADS)

    Tlatov, A. G.; Dormidontov, D. V.; Kirpichev, R. V.; Pashchenko, M. P.; Shramko, A. D.

    2015-12-01

    Observations performed at the solar telescope-spectroheliograph, which has continuously automatically operated at MAS MAO RAS, were analyzed. Measurements of the activity index in the Ca II K line, which were performed according to the program of synoptic observations, are presented. The development of the solar flares observed at the center and on the wings of the Ca II K line was compared with observations in the X-ray and radio bands. It was shown that the time variations in the intensity in the 1-8 Å range according to the Geostationary Orbiting Environmental Satellites' (GOES) data and in the Ca II K line are close to each other and that the total X-ray flux and Ca II K intensity amplitude substantially correlate during the entire flare.

  17. Flight-Test Evaluation of the Longitudinal Stability and Control Characteristics of 0.5-Scale Models of the Fairchild Lark Pilotless-Aircraft Configuration: Standard Configuration with Wing Flaps Deflected 60 Degrees and Model having Tail in Line with Wings, TED No. NACA 2387

    NASA Technical Reports Server (NTRS)

    Stone, David G.

    1947-01-01

    Flight tests were conducted at the Flight Test Station of the Pilotless Aircraft Research Division at Wallop Island, Va., to determine the longitudinal control and stability characteristics of 0.5-scale models of the Fairchild Lark pilotless aircraft with the tail in line with the wings a d with the horizontal wing flaps deflected 60 deg. The data were obtained by the use of a telemeter and by radar tracking.

  18. Searching for Dwarf H Alpha Emission-line Galaxies within Voids III: First Spectra

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Draper, Christian; McNeil, Stephen; Joner, Michael D.

    2017-02-01

    The presence or absence of dwarf galaxies with {M}r\\prime > -14 in low-density voids is determined by the nature of dark matter halos. To better understand what this nature is, we are conducting an imaging survey through redshifted Hα filters to look for emission-line dwarf galaxies in the centers of two nearby galaxy voids called FN2 and FN8. Either finding such dwarfs or establishing that they are not present is a significant result. As an important step in establishing the robustness of the search technique, we have observed six candidates from the survey of FN8 with the Gillett Gemini telescope and GMOS spectrometer. All of these candidates had emission, although none was Hα. The emission in two objects was the [O iii]λ4959, 5007 doublet plus Hβ, and the emission in the remaining four was the [O ii]λ3727 doublet, all from objects beyond the void. While no objects were within the void, these spectra show that the survey is capable of finding emission-line dwarfs in the void centers that are as faint as {M}r\\prime ∼ -12.4, should they be present. These spectra also show that redshifts estimated from our filtered images are accurate to several hundred km s‑1 if the line is identified correctly, encouraging further work in finding ways to conduct redshift surveys through imaging alone.

  19. Conceptual design report for environmental, safety and health phase III FY-91 line item

    SciTech Connect

    1988-09-01

    The Mound Facility (Mound), located in Miamisburg, Ohio, is a Department of Energy (DOE) development and production facility performing support work for DOE`s weapons and energy-related programs. EG&G Mound Applied Technologies (EG&G) is the Operating Contractor (OC) for this Government-Owned, Contractor-Operated (GOCO) facility. The work performed at Mound emphasizes nuclear energy and explosives technology. Mound is currently implementing an Environmental, Safety, and Health (ES&H) Program designed to protect its employees, the public, and the environment from adverse effects caused by the facility`s activities. Design has been completed, and construction is in progress for Phase I of this multiphase program. Phase II has been submitted for fiscal year (FY) 89 funding and Phase IV is being submitted as an FY 92 line item. This Conceptual Design Report (CDR) addresses Phase III of the ES&H program.

  20. First Detection of the [O(sub III)] 88 Micrometers Line at High Redshifts: Characterizing the Starburst and Narrow-Line Regions in Extreme Luminosity Systems

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Parshley, S. C.; Stacey, G. J.; Benford, D. J.; Staguhn, J. G.

    2010-01-01

    We have made the first detections of the 88 micrometers [O(sub III)] line from galaxies in the early universe, detecting the line from the lensed active galactic nucleus (AGN)/starburst composite systems APM 08279+5255 at z 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities approx.10(exp 11) Solar Luminosity, For APM 08279, the [O(sub III)] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, T(sub eff) > 36,000 K, similar to the starburst found in M82. The model implies approx.35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 881,tm line can also be generated in the narrow-line region of the AGN if gas densities are around a few 1000 cu cm. For SMM J02399, the [O(sub III)] line likely arises from HII regions formed by hot (T(sub eff) > 40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [O(sub III)] line for characterizing starbursts and AGN within galaxies in the early universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.s

  1. Composite Spectra of Broad Absorption Line Quasars in SDSS-III BOSS

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Hamann, Fred; Paris, Isabelle; Capellupo, Daniel M.

    2017-01-01

    We present preliminary results from a study of broad absorption line (BAL) quasars in the SDSS-III BOSS survey. We’re particularly interested in BALs because they arise from quasar outflows, which may be a source of feedback to the host galaxy. We analyze median composite spectra for BOSS QSOs in the redshift range 2.1 to 3.4 sorted by the strength of the BAL absorption troughs, parameterized by the Balnicity Index (BI), to study trends in the emission and absorption properties of BAL quasars. The wavelength coverage and high number of quasars observed in the BOSS survey allow us to examine BALs in the Lyman forest. Our main preliminary results when sorting the quasars by BI are 1) doublet absorption lines such as P V 1128A show a 1:1 ratio across all BI, indicating large column densities at all BI. This suggests that weaker BAL troughs result from smaller covering fractions rather than lower column densities. 2) The He II emission line, which is a measure of the far-UV/near-UV hardness of the ionizing continuum, is weaker in the larger BI composite spectra, indicating a far-UV spectral softening correlated with BI. This is consistent with the radiatively-driven BAL outflows being helped by intrinsically weaker ionizing continuum shapes (e.g., Baskin, Laor, and Hamann 2013). We also find a trend for slightly redder continuum slopes in the larger BI composite spectra, suggesting that the slope differences in the near-UV are also intrinsic.

  2. Type 2 Active Galactic Nuclei with Double-Peaked [O III] Lines: Narrow-Line Region Kinematics or Merging Supermassive Black Hole Pairs?

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Shen, Yue; Strauss, Michael A.; Greene, Jenny E.

    2010-01-01

    We present a sample of 167 type 2 active galactic nuclei (AGNs) with double-peaked [O III] λλ4959,5007 narrow emission lines, selected from the Seventh Data Release of the Sloan Digital Sky Survey. The double-peaked profiles can be well modeled by two velocity components, blueshifted and redshifted from the systemic velocity. Half of these objects have a more prominent redshifted component. In cases where the Hβ emission line is strong, it also shows two velocity components whose line-of-sight (LOS) velocity offsets are consistent with those of [O III]. The relative LOS velocity offset between the two components is typically a few hundred km s-1, larger by a factor of ~1.5 than the line full width at half maximum of each component. The offset correlates with the host stellar velocity dispersion σ*. The host galaxies of this sample show systematically larger σ*, stellar masses, and concentrations, and older luminosity-weighted mean stellar ages than a regular type 2 AGN sample matched in redshift, [O III] λ5007 equivalent width, and luminosity; they show no significant difference in radio properties. These double-peaked features could be due to narrow-line region kinematics, or binary black holes. The statistical properties do not show strong preference for or against either scenario, and spatially resolved optical imaging, spectroscopy, radio or X-ray follow-up are needed to draw firm conclusions.

  3. On-line updating Gaussian mixture model for aircraft wing spar damage evaluation under time-varying boundary condition

    NASA Astrophysics Data System (ADS)

    Qiu, Lei; Yuan, Shenfang; Chang, Fu-Kuo; Bao, Qiao; Mei, Hanfei

    2014-12-01

    Structural health monitoring technology for aerospace structures has gradually turned from fundamental research to practical implementations. However, real aerospace structures work under time-varying conditions that introduce uncertainties to signal features that are extracted from sensor signals, giving rise to difficulty in reliably evaluating the damage. This paper proposes an online updating Gaussian Mixture Model (GMM)-based damage evaluation method to improve damage evaluation reliability under time-varying conditions. In this method, Lamb-wave-signal variation indexes and principle component analysis (PCA) are adopted to obtain the signal features. A baseline GMM is constructed on the signal features acquired under time-varying conditions when the structure is in a healthy state. By adopting the online updating mechanism based on a moving feature sample set and inner probability structural reconstruction, the probability structures of the GMM can be updated over time with new monitoring signal features to track the damage progress online continuously under time-varying conditions. This method can be implemented without any physical model of damage or structure. A real aircraft wing spar, which is an important load-bearing structure of an aircraft, is adopted to validate the proposed method. The validation results show that the method is effective for edge crack growth monitoring of the wing spar bolts holes under the time-varying changes in the tightness degree of the bolts.

  4. Line identifications in the ultraviolet spectra of Tau Herculis, B5 IV, and Zeta Draconis, B6 III

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.; Adelman, S. J.

    1976-01-01

    Tables of the lines found on two tracings each of the ultraviolet spectrum of Tau Her, B5 IV, and Zeta Dra, B6 III, made by the Copernicus satellite and possible identifications are given. The ranges 1025-1451A for Tau Her and 1035 to 1425A for Zeta Dra are covered by the U2 spectrometer at a resolution of 0.2A; the ranges 2028 to 2959A for Tau Her and 2000 to 3000A for Zeta Dra are covered by the V2 spectrometer at a resolution of 0.4A. The observed density of lines in the U2 region is 1.1 lines/A for Tau Her and 1.7 lines/A for Zeta Dra. In the V2 region it is 0.8 lines/A for Tau Her and 0.9 lines/A for Zeta Dra.

  5. The Frequency Detuning Correction and the Asymmetry of Line Shapes: The Far Wings of H2O-H2O

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Hansen, James E. (Technical Monitor)

    2002-01-01

    A far-wing line shape theory which satisfies the detailed balance principle is applied to the H2O-H2O system. Within this formalism, two line shapes are introduced, corresponding to band-averages over the positive and negative resonance lines, respectively. Using the coordinate representation, the two line shapes can be obtained by evaluating 11-dimensional integrations whose integrands are a product of two factors. One depends on the interaction between the two molecules and is easy to evaluate. The other contains the density matrix of the system and is expressed as a product of two 3-dimensional distributions associated with the density matrices of the absorber and the perturber molecule, respectively. If most of the populated states are included in the averaging process, to obtain these distributions requires extensive computer CPU time, but only have to be computed once for a given temperature. The 11-dimensional integrations are evaluated using the Monte Carlo method, and in order to reduce the variance, the integration variables are chosen such that the sensitivity of the integrands on them is clearly distinguished.

  6. ACTE Wing Loads Analysis

    NASA Technical Reports Server (NTRS)

    Horn, Nicholas R.

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) project modified a Gulfstream III (GIII) aircraft with a new flexible flap that creates a seamless transition between the flap and the wing. As with any new modification, it is crucial to ensure that the aircraft will not become overstressed in flight. To test this, Star CCM a computational fluid dynamics (CFD) software program was used to calculate aerodynamic data for the aircraft at given flight conditions.

  7. Theoretical emission line ratios for [Fe III] and [Fe VII] applicable to the optical and infrared spectra of gaseous nebulae.

    PubMed

    Keenan, F P; Aller, L H; Ryans, R S; Hyung, S

    2001-08-14

    Recent calculations of electron impact excitation rates and Einstein A-coefficients for transitions among the 3d(6) levels of Fe III and among the 3d(2) levels of Fe VII are used to derive theoretical emission line ratios applicable to the optical and infrared spectra of gaseous nebulae. Results for [Fe III] are generated for electron temperatures T(e) = 7,000-20,000 K and densities N(e) = 10(2)-10(8) cm(-3), whereas those for [Fe VII] are provided for T(e) = 10,000-30,000 K and N(e) = 10(2)-10(8) cm(-3). The theoretical line ratios are significantly different in some instances from earlier calculations and resolve discrepancies between theory and observation found for the planetary nebulae IC 4997 and NGC 7027.

  8. The hind wing of the desert locust (Schistocerca gregaria Forskål). III. A finite element analysis of a deployable structure.

    PubMed

    Herbert, R C; Young, P G; Smith, C W; Wootton, R J; Evans, K E

    2000-10-01

    Finite element analysis is used to model the automatic cambering of the locust hind wing during promotion: the umbrella effect. It was found that the model required a high degree of sophistication before replicating the deformations found in vivo. The model has been validated using experimental data and the deformations recorded both in vivo and ex vivo. It predicts that even slight modifications to the geometrical description used can lead to significant changes in the deformations observed in the anal fan. The model agrees with experimental data and produces deformations very close to those seen in free-flying locusts. The validated model may be used to investigate the varying geometries found in orthopteran anal fans and the stresses found throughout the wing when loaded.

  9. Exploring AGN-starburst coexistence in galaxies at z ˜ 0.8 using the [O III]4959+5007/[O III]4363 line ratio

    NASA Astrophysics Data System (ADS)

    Contini, M.

    2016-09-01

    Using detailed modelling, we analyse the spectra observed from the sample galaxies at z ˜ 0.8 presented by Ly et al., constraining the models by the [O III]5007+4959/[O III]4363 line ratios. Composite models (shock + photoionization) are adopted. Shock velocities ≥100 km s-1 and pre-shock densities n0 ˜ 200 cm-3 characterize the gas surrounding the starburst (SB), while n0 are higher by a factor of 1.5-10 in the AGN emitting gas. SB effective temperatures are similar to those of quiescent galaxies (T* ˜ 4-7 × 104 K). Cloud geometrical thicknesses in the SB are ≤1016 cm, indicating major fragmentation, while in AGN they reach >10 pc. O/H are about solar for all the objects, except for a few AGN clouds with O/H = 0.3-0.5 solar. SB models reproduce most of the data within the observational errors. About half of the objects' spectra are well fitted by an accreting AGN. Some galaxies show multiple radiation sources, such as SB + AGN, or a double AGN.

  10. Generic Wing, Pylon, and Moving Finned Store

    DTIC Science & Technology

    2000-10-01

    66.4 cm 2.9 Area of planform 1425.8 cm’ 2.10 Location of reference of profiles and NACA 64A010 airfoil section over entire span definition of profiles...2.11 Lofting procedure between reference Straight line sections 2.12 Form of wing-body, or wing-root NACA 64A010 airfoil section; note references...below junction 2.13 Form of wing tip NACA 64A010 airfoil section 2.14 Wing centerbody Ogive-cylinder: Tangent at wailing edge of wing. Nose 16.51 cm from

  11. THE SDSS-III APOGEE SPECTRAL LINE LIST FOR H-BAND SPECTROSCOPY

    SciTech Connect

    Shetrone, M.; Bizyaev, D.; Chojnowski, D.; Lawler, J. E.; Prieto, C. Allende; Zamora, O.; García-Hernández, D. A.; Souto, D.; Smith, V. V.; Cunha, K.; Holtzman, J.; Pérez, A. E. García; Sobeck, J.; Majewski, S.; Mészáros, Sz.; Koesterke, L.; Zasowski, G.

    2015-12-15

    We present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists contains 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.

  12. Instabilities in line-driven stellar winds. III - Wave propagation in the case of pure line absorption

    NASA Technical Reports Server (NTRS)

    Owocki, S. P.; Rybicki, G. B.

    1986-01-01

    The spatial and temporal evolution of small-amplitude velocity perturbations is examined in the idealized case of a stellar wind that is driven by pure line absorption of the star's continuum radiation. It is established that the instability in the supersonic region is of the advective type relative to the star, but of the absolute type relative to the wind itself. It is also shown that the inward propagation of information in such a wind is limited to the sound speed, in contrast to the theory of Abbott, which predicts inward propagation faster than sound. This apparent contradiction is resolved through an extensive discussion of the analytically soluble case of zero sound speed.

  13. Microlensing of circumstellar envelopes. III. Line profiles from stellar winds in homologous expansion

    NASA Astrophysics Data System (ADS)

    Hendry, M. A.; Ignace, R.; Bryce, H. M.

    2006-05-01

    This paper examines line profile evolution due to the linear expansion of circumstellar material obsverved during a microlensing event. This work extends our previous papers on emission line profile evolution from radial and azimuthal flow during point mass lens events and fold caustic crossings. Both "flavours" of microlensing were shown to provide effective diagnostics of bulk motion in circumstellar envelopes. In this work a different genre of flow is studied, namely linear homologous expansion, for both point mass lenses and fold caustic crossings. Linear expansion is of particular relevance to the effects of microlensing on supernovae at cosmological distances. We derive line profiles and equivalent widths for the illustrative cases of pure resonance and pure recombination lines, modelled under the Sobolev approximation. The efficacy of microlensing as a diagnostic probe of the stellar environs is demonstrated and discussed.

  14. A flow method based on solvent extraction coupled on-line to a reversed micellar mediated chemiluminescence detection for selective determination of gold(III) and gallium(III) in water and industrial samples.

    PubMed

    Hasanin, Tamer H A; Okamoto, Yasuaki; Fujiwara, Terufumi

    2016-02-01

    A rapid and sensitive flow method, based on the combination of on-line solvent extraction with reversed micellar mediated chemiluminescence (CL) detection using rhodamine B (RB), was investigated for the selective determination of Au(III) and Ga(III) in aqueous solutions. 2.0 M HCl was the optimum for extracting Au(III) while a 5.0M HCl solution containing 2.5M LiCl was selected as an optimum acidic medium for extraction of Ga(III). The Au(III) and Ga(III) chloro-complex anions were extracted from the above aqueous acidic solutions into toluene as their ion-pair complexes with the protonated RBH(+) ion followed by membrane phase separation in a flow system. In a flow cell of a detector, the extract was mixed with the reversed micellar solution of cetyltrimethylammonium chloride (CTAC) in 1-hexanol-cyclohexane/water (1.0M HCl) containing 0.10 M cerium(IV) and 0.05 M lithium sulfate. Then uptake of the ion-pair by the CTAC reversed micelles and the subsequent CL oxidation of RB with Ce(IV) occurred easily and the CL signals produced were recorded. Using a flow injection system, a detection limit (DL) of 0.4 μM Au(III) and 0.6 μM Ga(III), and linear calibration graphs with dynamic ranges from the respective DLs to 10 μM for Au(III) and Ga(III) were obtained under the optimized experimental conditions. The relative standard deviations (n=6) obtained at 2.0 µM Au(III) and 4.0 µM Ga(III) were 3.0% and 2.4%, respectively. The presented CL methodology has been applied for the determination of Au(III) and Ga(III) in water and industrial samples with satisfactory results.

  15. Wing on a String

    ERIC Educational Resources Information Center

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an activity that shows students how flight occurs. The "wing on a string" is a simple teacher-made frame that consists of PVC pipe, fishing line, and rubber bands--all readily available hardware store items. The only other materials/tools involved are a sheet of paper, some pieces of a soda straw, a stapler,…

  16. BAT AGN Spectroscopic Survey - III. An observed link between AGN Eddington ratio and narrow-emission-line ratios

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; Gehrels, Neil; Harrison, Fiona; Masetti, Nicola; Soto, Kurt T.; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro

    2017-01-01

    We investigate the observed relationship between black hole mass (MBH), bolometric luminosity (Lbol) and Eddington ratio (λEdd) with optical emission-line ratios ([N II] λ6583/Hα, [S II] λλ6716, 6731/Hα, [O I] λ6300/Hα, [O III] λ5007/Hβ, [Ne III] λ3869/Hβ and He II λ4686/Hβ) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] λ6583/Hα ratio exhibits a significant correlation with λEdd (RPear = -0.44, p-value = 3 × 10-13, σ = 0.28 dex), and the correlation is not solely driven by MBH or Lbol. The observed correlation between [N II] λ6583/Hα ratio and MBH is stronger than the correlation with Lbol, but both are weaker than the λEdd correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] λ6583/Hα is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure λEdd and thus MBH from the measured Lbol, even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  17. Scapular Winging

    PubMed Central

    Gooding, Benjamin W. T.; Geoghegan, John M.; Wallace, W. Angus; Manning, Paul A.

    2013-01-01

    This review explores the causes of scapula winging, with overview of the relevant anatomy, proposed aetiology and treatment. Particular focus is given to lesions of the long thoracic nerve, which is reported to be the most common aetiological factor. PMID:27582902

  18. Recombination line intensities for hydrogenic ions. III - Effects of finite optical depth and dust

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Storey, P. J.

    1992-01-01

    The effect on the recombination spectrum of hydrogen arising from: (1) finite optical thickness in the Lyman lines; (2) the overlapping of Lyman lines near the series limit; (3) the absorption of Lyman lines by dust or photoionization, and (4) the long-wave radiation emitted by dust is examined. Full account is taken of electron and heavy particle collisions in redistributing energy and angular momentum. It is seen that each of these deviations from the classical Case B leads to observable effects, and that dust influences the recombination spectrum in characteristic ways that may make possible new observational constraints on dust properties in nebulosities. On the basis of these calculations it is believed that the uncertainty in the determination of the helium-to-hydrogen abundance ratio in the universe may be larger than currently claimed.

  19. The second spectrum of niobium: III. Evaluation of line isotope shifts

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2013-03-01

    Using isotope shift values of only one Nb II line, we propose for the first time to predict isotope shifts of all spectral lines for this ion for any pair of isotopes. For this purpose, we had recourse to ab intio calculations to determine specific mass and field shifts of all relevant Nb II configuration averages, which are respectively proportional to the Vinti integral k-factor and the charge density at the nucleus, 4л|Ψ(o)|2. With the help of very accurate level eigenvectors of these configurations and using the sharing rule, we computed specific mass and field shifts of each level. Since a transition wavenumber is the difference between two energy levels, we then deduced line isotope shifts.

  20. Hydrodynamic models of a Cepheid atmosphere. III - Line spectrum and radius determinations

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1975-01-01

    Line profiles are computed on the basis of the moving atmospheres from the hydrodynamic models investigated by Karp (1975). It is found that the velocity gradients in the atmosphere can be used to explain the apparent, slightly supersonic microturbulence. The total observed microturbulence is seen to be consistent with the linear sum of the classical microturbulence and that caused by the velocity gradients.

  1. Teacher-Student Interaction and Learning in On-Line Theological Education. Part III: Methodological Approach

    ERIC Educational Resources Information Center

    Heinemann, Mark H.

    2006-01-01

    Many theological educators ask how on-line classes can provide students with the kind of personal teacher-student interaction that is needed in a healthy and holistic approach to preparation for ministry. A quantitative study was undertaken for the purposes of examining the relationships between three major types of teacher-student interaction…

  2. Line shapes investigations in Yugoslavia and Serbia III (1989 - 1993). (Bibliography and citation index).

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    1994-08-01

    The first part of the publication contains review and analysis of the results of spectral line shapes investigations in Yugoslavia and Serbia in the period 1989 - 1993. In the second part, the bibliography of the contributions of Yugoslav and Serbian scientists is given, together with the citation index.

  3. Taste in chimpanzees. III: Labeled-line coding in sweet taste.

    PubMed

    Hellekant, G; Ninomiya, Y; Danilova, V

    1998-11-15

    In peripheral taste the coding mechanism remains an enigma. Among coding theories the "across-fiber pattern" argues that activity across fibers codes for taste, whereas the "labeled line" claims that activity in a particular set of fibers underlies a taste quality. We showed previously that chimpanzee chorda tympani taste fibers grouped according to human taste qualities into an S-cluster, responding predominantly to sweet stimuli, a Q-cluster, sensitive to bitter tastants, and an N-cluster, stimulated by salts. The analysis showed that information in the S-line suffices to distinguish stimuli of one taste quality from the others. However, one condition for the labeled line remained: that blockage of activity in a particular line must cause blockage of one taste quality, but of no other, or its onset give rise to the sensation of a taste quality. Here we studied this requirement with gymnemic acids and miraculin. In humans and chimpanzees, gymnemic acids suppress the sweet taste of all sweeteners whereas miraculin adds a sweet taste quality to sour stimuli. Gymnemic acids also abolish miraculin-induced sweet taste. We found that gymnemic acids practically abolished the response to every sweetener in the chimpanzee S-cluster. Equally important, they had no effect on the responses of the Q- and N-clusters. After miraculin, the S-cluster fibers responded to acids as well as to sweeteners, although they had not responded to acids before miraculin. Gymnemic acids abolished this miraculin-induced response to acids and responses to sweeteners in the S-fibers. These results link the sweet taste quality to activity in fibers of the S-cluster. Thus the S-cluster fibers satisfy the definition of the labeled-line theory: "that activity in a particular fiber type represents a specific taste quality."

  4. AST Composite Wing Program: Executive Summary

    NASA Technical Reports Server (NTRS)

    Karal, Michael

    2001-01-01

    The Boeing Company demonstrated the application of stitched/resin infused (S/RFI) composite materials on commercial transport aircraft primary wing structures under the Advanced Subsonic technology (AST) Composite Wing contract. This report describes a weight trade study utilizing a wing torque box design applicable to a 220-passenger commercial aircraft and was used to verify the weight savings a S/RFI structure would offer compared to an identical aluminum wing box design. This trade study was performed in the AST Composite Wing program, and the overall weight savings are reported. Previous program work involved the design of a S/RFI-base-line wing box structural test component and its associated testing hardware. This detail structural design effort which is known as the "semi-span" in this report, was completed under a previous NASA contract. The full-scale wing design was based on a configuration for a MD-90-40X airplane, and the objective of this structural test component was to demonstrate the maturity of the S/RFI technology through the evaluation of a full-scale wing box/fuselage section structural test. However, scope reductions of the AST Composite Wing Program pre-vented the fabrication and evaluation of this wing box structure. Results obtained from the weight trade study, the full-scale test component design effort, fabrication, design development testing, and full-scale testing of the semi-span wing box are reported.

  5. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES. III. NLTE EFFECTS IN J-BAND MAGNESIUM LINES

    SciTech Connect

    Bergemann, Maria; Kudritzki, Rolf-Peter; Gazak, Zach; Davies, Ben; Plez, Bertrand E-mail: kud@ifa.hawaii.edu E-mail: bdavies@ast.cam.ac.uk

    2015-05-10

    Non-local thermodynamic equilibrium (NLTE) calculations for Mg i in red supergiant stellar atmospheres are presented to investigate the importance of NLTE for the formation of Mg i lines in the NIR J-band. Recent work using medium resolution spectroscopy of atomic lines in the J-band of individual red supergiant stars has demonstrated this technique is a very promising tool for investigating the chemical composition of the young stellar population in star forming galaxies. As in previous work, where NLTE effects were studied for iron, titanium, and silicon, substantial effects are found resulting in significantly stronger Mg i absorption lines. For the quantitative spectral analysis the NLTE effects lead to magnesium abundances significantly smaller than in local thermodynamic equilibrium with the NLTE abundance corrections varying smoothly between −0.4 dex and −0.1 dex for effective temperatures between 3400 and 4400 K. We discuss the physical reasons of the NLTE effects and the consequences for extragalactic J-band abundance studies using individual red supergiants in the young massive galactic double cluster h and χ Persei.

  6. Theoretical damping in roll and rolling moment due to differential wing incidence for slender cruciform wings and wing-body combinations

    NASA Technical Reports Server (NTRS)

    Adams, Gaynor J; DUGAN DUANE W

    1952-01-01

    A method of analysis based on slender-wing theory is developed to investigate the characteristics in roll of slender cruciform wings and wing-body combinations. The method makes use of the conformal mapping processes of classical hydrodynamics which transform the region outside a circle and the region outside an arbitrary arrangement of line segments intersecting at the origin. The method of analysis may be utilized to solve other slender cruciform wing-body problems involving arbitrarily assigned boundary conditions. (author)

  7. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  8. Measurement of the transition probability of the C III 190.9 nanometer intersystem line

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.; Fang, Z.; Gibbons, T. T.; Parkinson, W. H.; Smith, Peter L.

    1993-01-01

    A radio-frequency ion trap has been used to store C(2+) ions created by electron bombardment of CO. The transition probability for the 2s2p 3Po1-2s2 1S0 intersystem line of C m has been measured by recording the radiative decay at 190.9 nm. The measured A-value is 121 +/- 7/s and agrees, within mutual uncertainty limits, with that of Laughlin et al. (1978), but is 20 percent larger than that of Nussbaumer and Storey (1978). The effective collision mixing rate coefficient among the fine structure levels of 3Po and the combined quenching and charge transfer rate coefficients out of the 3Po1 level with the CO source gas have also been measured.

  9. Line Identification of Atomic and Ionic Spectra of Holmium in the Near-UV. II. Spectra of Ho II and Ho III

    NASA Astrophysics Data System (ADS)

    Başar, Gö.; Al-Labady, N.; Özdalgiç, B.; Güzelçimen, F.; Er, A.; Öztürk, I. K.; Ak, T.; Bİlİr, S.; Tamanis, M.; Ferber, R.; Kröger, S.

    2017-02-01

    Fourier Transform spectra of holmium (Ho) in the UV spectral range from 31,530 to 25,000 cm‑1 (317 to 400 nm) have been investigated, particularly focusing on the ionic lines. The distinction between the different degrees of ionization (I, II, and III) is based on differences in signal-to-noise ratios from two Ho spectra, which have been measured with different buffer gases, i.e., neon and argon. Based on 106 known Ho ii and 126 known Ho iii energy levels, 97 lines could be classified as transitions of singly ionized Ho and 9 lines could be classified as transitions of doubly ionized Ho. Of the 97 Ho ii lines, 6 have not been listed in the extant literature. Another 215 lines have been assigned to Ho ii, though they could not be classified on the basis of the known energy levels.

  10. A LABORATORY log(gf) MEASUREMENT OF THE Ti II 15873.84 Å H-BAND LINE IN SUPPORT OF SDSS-III APOGEE

    SciTech Connect

    Wood, M. P.; Lawler, J. E.; Shetrone, M. D. E-mail: jelawler@wisc.edu

    2014-06-01

    The SDSS-III APOGEE collaboration has identified a single useable line in the H-band spectra of APOGEE target stars arising from a singly ionized species. This line of Ti II (λ{sub air} = 15873.84 Å) is therefore of great importance for use in stellar surface gravity, or log(g), determinations via the Saha equation. While a theoretical estimate of the line strength exists, to date no laboratory measurement of the line strength has been reported. Herein we report an absolute laboratory transition probability measurement for this important Ti II line. A relative line strength measurement is made of the Ti II H-band line of interest and a reference line with a previously reported absolute transition probability. This ratio is measured using multiple spectra of a high-current water-cooled HC lamp recorded with a calibrated FT-IR spectrometer.

  11. The function of resilin in honeybee wings.

    PubMed

    Ma, Yun; Ning, Jian Guo; Ren, Hui Lan; Zhang, Peng Fei; Zhao, Hong Yan

    2015-07-01

    The present work aimed to reveal morphological characteristics of worker honeybee (Apis mellifera) wings and demonstrate the function of resilin on camber changes during flapping flight. Detailed morphological investigation of the wings showed that different surface characteristics appear on the dorsal and ventral side of the honeybee wings and the linking structure connecting the forewing and hindwing plays an indispensable role in honeybee flapping flight. Resilin stripes were found on both the dorsal and ventral side of the wings, and resilin patches mostly existed on the ventral side. On the basis of resilin distribution, five flexion lines and three cambered types around the lines of passive deformation of the coupled-wing profile were obtained, which defined the deformation mechanism of the wing along the chord, i.e. concave, flat plate and convex. From a movie obtained using high-speed photography from three orthogonal views of free flight in honeybees, periodic changes of the coupled-wing profile were acquired and further demonstrated that the deformation mechanism is a fundamental property for variable deformed shapes of the wing profile during flapping flight, and, in particular, the flat wing profile achieves a nice transition between downstrokes and upstrokes.

  12. On-line determination of Sb(III) and total Sb using baker's yeast immobilized on polyurethane foam and hydride generation inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Menegário, Amauri A.; Silva, Ariovaldo José; Pozzi, Eloísa; Durrant, Steven F.; Abreu, Cassio H.

    2006-09-01

    The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(III) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to on-line pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 μg L - 1 were obtained for total Sb and Sb(III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 ± 19 and 111 ±15% when 120 s of sample loading were used.

  13. GALAXY CLUSTERS IN THE LINE OF SIGHT TO BACKGROUND QUASARS. III. MULTI-OBJECT SPECTROSCOPY

    SciTech Connect

    Andrews, H.; Barrientos, L. F.; Padilla, N.; Lacerna, I.; Lopez, S.; Lira, P.; Maureira, M. J.; Gilbank, D. G.; Ellingson, E.; Gladders, M. D.; Yee, H. K. C.

    2013-09-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from Lopez et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h{sub 71}{sup -1} Mpc from the QSO sight line (a {sup p}hotometric hit{sup )}. The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 A. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 {<=} z{sub gal} {<=} 1.0955, up to an impact parameter of 142 h{sub 71}{sup -1} kpc and a maximum velocity difference of 280 km s{sup -1}. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within {approx}650 km s{sup -1} from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference {Delta}z = 0.1. The general population of our confirmed absorbing galaxies have luminosities

  14. Galaxy Clusters in the Line of Sight to Background Quasars. III. Multi-object Spectroscopy

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Barrientos, L. F.; López, S.; Lira, P.; Padilla, N.; Gilbank, D. G.; Lacerna, I.; Maureira, M. J.; Ellingson, E.; Gladders, M. D.; Yee, H. K. C.

    2013-09-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from López et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h_{71}^{-1} Mpc from the QSO sight line (a "photometric hit"). The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 Å. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 <= z gal <= 1.0955, up to an impact parameter of 142\\ h_{71}^{-1} kpc and a maximum velocity difference of 280 km s-1. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within ~650 km s-1 from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference Δz = 0.1. The general population of our confirmed absorbing galaxies have luminosities L_{B} \\sim L_{B}^{\\ast } and mean rest

  15. Habitat variation and wing coloration affect wing shape evolution in dragonflies.

    PubMed

    Outomuro, D; Dijkstra, K-D B; Johansson, F

    2013-09-01

    Habitats are spatially and temporally variable, and organisms must be able to track these changes. One potential mechanism for this is dispersal by flight. Therefore, we would expect flying animals to show adaptations in wing shape related to habitat variation. In this work, we explored variation in wing shape in relation to preferred water body (flowing water or standing water with tolerance for temporary conditions) and landscape (forested to open) using 32 species of dragonflies of the genus Trithemis (80% of the known species). We included a potential source of variation linked to sexual selection: the extent of wing coloration on hindwings. We used geometric morphometric methods for studying wing shape. We also explored the phenotypic correlation of wing shape between the sexes. We found that wing shape showed a phylogenetic structure and therefore also ran phylogenetic independent contrasts. After correcting for the phylogenetic effects, we found (i) no significant effect of water body on wing shape; (ii) male forewings and female hindwings differed with regard to landscape, being progressively broader from forested to open habitats; (iii) hindwings showed a wider base in wings with more coloration, especially in males; and (iv) evidence for phenotypic correlation of wing shape between the sexes across species. Hence, our results suggest that natural and sexual selection are acting partially independently on fore- and hindwings and with differences between the sexes, despite evidence for phenotypic correlation of wing shape between males and females.

  16. Observations and theory of Mg II lines in early type stars. II - Theory and predicted profiles. III - The observations and a comparison with the predictions

    NASA Technical Reports Server (NTRS)

    Snijders, M. A. J.; Lamers, H. J. G. L. M.

    1975-01-01

    Profiles of the UV Mg II lines in the spectra of early type stars are computed in a grid of model atmospheres with effective temperatures between 8000 and 35,000 K and log g values of 2.5 to 4.0 using the LTE and non-LTE theories of line formation. The theoretical results indicate that the line cores are strengthened by non-LTE effects over the entire temperature range, resonance-line wings are weaker in the cooler models than in the LTE case, and very large deviations from LTE occur in the hot low-gravity models. These predictions are compared with the equivalent widths of the UV Mg II lines in 106 stars and of the visual lines in 48 stars (spectral types O4 to A3). The observed equivalent widths of normal stars in luminosity classes II through V are found to agree with the predictions over the entire range from O8 to A2 if a certain Mg/H abundance is adopted. The line intensities observed in supergiants, Be, Bp, and Ap stars are discussed.

  17. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles

    NASA Astrophysics Data System (ADS)

    Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.

    2015-06-01

    Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2

  18. Cytotoxicity of Manganese (III) Complex in Human Breast Adenocarcinoma Cell Line Is Mediated by the Generation of Reactive Oxygen Species Followed by Mitochondrial Damage.

    PubMed

    Al-Anbaky, Qudes; Al-Karakooly, Zeiyad; Kilaparty, Surya P; Agrawal, Megha; Albkuri, Yahya M; RanguMagar, Ambar B; Ghosh, Anindya; Ali, Nawab

    2016-11-01

    Manganese (Mn) complexes are widely studied because of their important catalytic properties in synthetic and biochemical reactions. A Mn (III) complex of an amidoamine ligand was synthesized using a tetradentate amidoamine ligand. In this study, the Mn (III) complex was evaluated for its biological activity by measuring its cytotoxicity in human breast adenocarcinoma cell line (MCF-7). Cytotoxic effects of the Mn (III) complex were determined using established biomarkers in an attempt to delineate the mechanism of action and the utility of the complex as a potential anticancer drug. The Mn (III) complex induces cell death in a dose- and time-dependent manner as shown by microculture tetrazolium assay, a measure of cytotoxic cell death. Our results demonstrated that cytotoxic effects were significantly increased at higher concentrations of Mn (III) complex and with longer time of treatment. The IC50 (Inhibitor concentration that results in 50% cell death) value of Mn (III) complex in MCF-7 cells was determined to be 2.5 mmol/L for 24 hours of treatment. In additional experiments, we determined the Mn (III) complex-mediated cell death was due to both apoptotic and nonspecific necrotic cell death mechanisms. This was assessed by ethidium bromide/acridine orange staining and flow cytometry techniques. The Mn (III) complex produced reactive oxygen species (ROS) triggering the expression of manganese superoxide dismutase 1 and ultimately damaging the mitochondrial function as is evident by a decline in mitochondrial membrane potential. Treatment of the cells with free radical scavenger, N, N-dimethylthiourea decreased Mn (III) complex-mediated generation of ROS and attenuated apoptosis. Together, these results suggest that the Mn (III) complex-mediated MCF-7 cell death utilizes combined mechanism involving apoptosis and necrosis perhaps due to the generation of ROS.

  19. TBT: Telecommunications-Based Training in the 90s (DELTA Programme--Action Line III). Proceedings of the Workshop (Madrid, Spain, January 21-22, 1991).

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium).

    This report contains a collection of papers presented at a workshop on telecommunications-based training systems as part of the DELTA (Developing European Learning through Technological Advance) Action Line III, which addressed research in telecommunications for open and distance education. The following presentations are included: (1)…

  20. Si III OV Bright Line of Scattering Polarized Light That Has Been Observed in the CLASP and Its Center-to-Limb Variation

    NASA Technical Reports Server (NTRS)

    Katsukawa, Yukio; Ishikawa, Ryoko; Kano, Ryohei; Kubo, Masahito; Noriyuki, Narukage; Kisei, Bando; Hara, Hirohisa; Yoshiho, Suematsu; Goto, Motouji; Ishikawa, Shinnosuke; Winebarger, A.; Kobayashi, Ken

    2017-01-01

    The CLASP (Chromospheric Lyman-Alpha Spectro- Polarimeter) rocket experiment, in addition to the ultraviolet region of the Ly alpha emission line (121.57 nm), emission lines of Si III (120.65 nm) and OV (121.83 nm) is can be observed. These are optically thin line compared to a Ly alpha line, if Rarere captured its polarization, there is a possibility that dripping even a new physical diagnosis chromosphere-transition layer. In particular, OV bright light is a release from the transition layer, further, three P one to one S(sub 0) is a forbidden line (cross-triplet transition between lines), it was not quite know whether to polarization.

  1. Isophotes of a field in the Cygnus loop photographed in the (O III) and (N II)+H. cap alpha. lines

    SciTech Connect

    Sitnik, T.G.; Toropova, M.S.

    1982-11-01

    From interference-filter image-tube photographs of a 9' field in the western part of the Cygnus Loop supernova remnant, taken in the lambda5007 (O III) and lambdalambda 6584, 6563 (N II) + H..cap alpha.. lines, sets of isophotes are derived by an equidensitometry technique based on the Sabattier effect. The emission regions in these lines exhibit a relative displacement, interpreted as evidence for radiative cooling of the gas behind the shock generated in the supernova outburst. An explanation is offered for the differing morphology of the nebular filaments in the (O III) and (N II) + H..cap alpha.. lines. The anomalously high I/sub Otsi/II/I/sub H/..beta.. intensity ratio may reflect a spatial separation of the corresponding emission zones.

  2. View east, showing Northwest Wing (Wing 5) and rear elevations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, showing Northwest Wing (Wing 5) and rear elevations of facade and tis flaking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC

  3. View east, showing Northwest Wing (Wing 5), west wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, showing Northwest Wing (Wing 5), west wall of the North Wing (Wing 2) and rear elevations of the facade and its flanking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC

  4. The oscillating wing with aerodynamically balanced elevator

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Schwartz, I

    1941-01-01

    The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

  5. A Relation between the Mid-Infrared [Ne v] 14.3 Micrometers and [Ne III] 15.6 Micrometer Lines in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Gorjian, V.; Cleary, K.; Werner, M. W.; Lawrence, C. R.

    2007-01-01

    We present a strong correlation between the [Ne v] 14.3 mm and [Ne III] 15.6 mm emission lines arising from the narrow-line regions (NLRs) of active galactic nuclei (AGNs), spanning 4 orders of magnitude in luminosity. The data are compiled primarily from Spitzer Space Telescope observations of nearby Seyfert galaxies (median z p 0.01) and 3C radio sources (median z p 0.52). This correlation is consistent with earlier studies in the optical/UV bands showing that line ratios arising in the NLRs are remarkably constant across AGNs. We also show that the correlation allows only a very narrow range in ionization parameter for simple photoionization models. The observed correlation will place tight constraints on alternative models, which predict constant line ratios over a broader range in ionization parameter.

  6. High-resolution autoionizing line spectra of Mg II and Al III in the 160--260-A range emitted from a Penning ionization discharge plasma

    SciTech Connect

    Finkenthal, M.; Litman, A.; Mandelbaum, P.; Stutman, D.; Schwob, J.L.

    1988-08-01

    Spectra of aluminum and magnesium emitted from a Penning ionization discharge have been recorded in the XUV range by 2-m grazing-incidence spectrometer. Autoionizing satellite lines, originating from transitions between core excited levels lying in the continuum and ground or lowest excited states of the Na I-like Al III and Mg II, have been classified. Their implication for ionization cross-section estimates and XUV laser research is discussed.

  7. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  8. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  9. Boosting Lyα and He II λ1640 Line Fluxes from Population III Galaxies: Stochastic IMF Sampling and Departures from Case-B

    NASA Astrophysics Data System (ADS)

    Mas-Ribas, Lluís; Dijkstra, Mark; Forero-Romero, Jaime E.

    2016-12-01

    We revisit calculations of nebular hydrogen Lyα and He ii λ1640 line strengths for Population III (Pop III) galaxies, undergoing continuous, and bursts of, star formation. We focus on initial mass functions (IMFs) motivated by recent theoretical studies, which generally span a lower range of stellar masses than earlier works. We also account for case-B departures and the stochastic sampling of the IMF. In agreement with previous work, we find that departures from case-B can enhance the Lyα flux by a factor of a few, but we argue that this enhancement is driven mainly by collisional excitation and ionization, and not due to photoionization from the n = 2 state of atomic hydrogen. The increased sensitivity of the Lyα flux to the high-energy end of the galaxy spectrum makes it more subject to stochastic sampling of the IMF. The latter introduces a dispersion in the predicted nebular line fluxes around the deterministic value by as much as a factor of ∼4. In contrast, the stochastic sampling of the IMF has less impact on the emerging Lyman Werner photon flux. When case-B departures and stochasticity effects are combined, nebular line emission from Pop III galaxies can be up to one order of magnitude brighter than predicted by “standard” calculations that do not include these effects. This enhances the prospects for detection with future facilities such as the James Webb Space Telescope and large, ground-based telescopes.

  10. High-Resolution H-Band Spectroscopy of Be Stars With SDSS-III/Apogee: I. New Be Stars, Line Identifications, and Line Profiles

    NASA Astrophysics Data System (ADS)

    Chojnowski, S. Drew; Whelan, David G.; Wisniewski, John P.; Majewski, Steven R.; Hall, Matthew; Shetrone, Matthew; Beaton, Rachael; Burton, Adam; Damke, Guillermo; Eikenberry, Steve; Hasselquist, Sten; Holtzman, Jon A.; Mészáros, Szabolcs; Nidever, David; Schneider, Donald P.; Wilson, John; Zasowski, Gail; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J.; Ebelke, Garrett; Frinchaboy, Peter M.; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Marchante, Moses; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey

    2015-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has amassed the largest ever collection of multi-epoch, high-resolution (R˜22,500), H-band spectra for B-type emission line (Be) stars. These stars were targeted by APOGEE as telluric standard stars and subsequently identified via visual inspection as Be stars based on H i Brackett series emission or shell absorption in addition to otherwise smooth continua and occasionally non-hydrogen emission features. The 128/238 APOGEE Be stars for which emission had never previously been reported serve to increase the total number of known Be stars by ˜6%. Because the H band is relatively unexplored compared to other wavelength regimes, we focus here on identification of the H-band lines and analysis of the emission peak velocity separations (Δ{{v}p}) and emission peak intensity ratios (V/R) of the usually double-peaked H i and non-hydrogen emission lines. H i Br11 emission is found to preferentially form in the circumstellar disks at an average distance of ˜2.2 stellar radii. Increasing Δ{{v}p} toward the weaker Br12-Br20 lines suggests these lines are formed interior to Br11. By contrast, the observed IR Fe ii emission lines present evidence of having significantly larger formation radii; distinctive phase lags between IR Fe ii and H i Brackett emission lines further supports that these species arise from different radii in Be disks. Several emission lines have been identified for the first time including C i 16895, a prominent feature in the spectra for almost a fifth of the sample and, as inferred from relatively large Δ{{v}p} compared to the Br11-Br20, a tracer of the inner regions of Be disks. Emission lines at 15760 Å and 16781 Å remain unidentified, but usually appear along with and always have similar line profile morphology to Fe ii 16878. Unlike the typical metallic lines observed for Be stars in the optical, the H-band metallic lines, such as Fe ii 16878, never exhibit any evidence of

  11. High-resolution H-band spectroscopy of Be stars with SDSS-III/apogee. I. New Be stars, line identifications, and line profiles

    SciTech Connect

    Chojnowski, S. Drew; Majewski, Steven R.; Hall, Matthew; Beaton, Rachael; Burton, Adam; Damke, Guillermo; Wilson, John; Whelan, David G.; Wisniewski, John P.; Shetrone, Matthew; Eikenberry, Steve; Hasselquist, Sten; Holtzman, Jon A.; Brewington, Howard; Brinkmann, J.; Mészáros, Szabolcs; Nidever, David; Schneider, Donald P.; Zasowski, Gail; Bizyaev, Dmitry; and others

    2015-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has amassed the largest ever collection of multi-epoch, high-resolution (R∼22,500), H-band spectra for B-type emission line (Be) stars. These stars were targeted by APOGEE as telluric standard stars and subsequently identified via visual inspection as Be stars based on H i Brackett series emission or shell absorption in addition to otherwise smooth continua and occasionally non-hydrogen emission features. The 128/238 APOGEE Be stars for which emission had never previously been reported serve to increase the total number of known Be stars by ∼6%. Because the H band is relatively unexplored compared to other wavelength regimes, we focus here on identification of the H-band lines and analysis of the emission peak velocity separations (Δv{sub p}) and emission peak intensity ratios (V/R) of the usually double-peaked H i and non-hydrogen emission lines. H i Br11 emission is found to preferentially form in the circumstellar disks at an average distance of ∼2.2 stellar radii. Increasing Δv{sub p} toward the weaker Br12–Br20 lines suggests these lines are formed interior to Br11. By contrast, the observed IR Fe ii emission lines present evidence of having significantly larger formation radii; distinctive phase lags between IR Fe ii and H i Brackett emission lines further supports that these species arise from different radii in Be disks. Several emission lines have been identified for the first time including C i 16895, a prominent feature in the spectra for almost a fifth of the sample and, as inferred from relatively large Δv{sub p} compared to the Br11–Br20, a tracer of the inner regions of Be disks. Emission lines at 15760 Å and 16781 Å remain unidentified, but usually appear along with and always have similar line profile morphology to Fe ii 16878. Unlike the typical metallic lines observed for Be stars in the optical, the H-band metallic lines, such as Fe ii 16878, never exhibit any

  12. Flapping of Insectile Wings

    NASA Astrophysics Data System (ADS)

    Huang, Yangyang; Kanso, Eva

    2015-11-01

    Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. Yet the effects of muscle stiffness on the performance of insect wings remain unclear. Here, we construct an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring and submerged in an oscillatory flow. The wing system is free to rotate and flap. We first explore the extent to which the flyer can withstand roll perturbations, then study its flapping behavior and performance as a function of spring stiffness. We find an optimal range of spring stiffness that results in large flapping amplitudes, high force generation and good storage of elastic energy. We conclude by conjecturing that insects may select and adjust the muscle spring stiffness to achieve desired movement. These findings may have significant implications on the design principles of wings in micro air-vehicles.

  13. Tracing the evolution of avian wing digits.

    PubMed

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation.

  14. IUE observations of Si and C lines and comparison with non-LTE models

    NASA Technical Reports Server (NTRS)

    Kamp, L. W.

    1982-01-01

    Classical model atmosphere techniques are applied to analyze IUE spectra, and to determine abundances, effective temperatures and gravities. Measurements of the equivalent widths and other properties of the line profiles of 24 photospheric lines of Si II, Si III, Si IV, C II, C III and C IV are presented in the range of 1175-1725 A for seven B and two O stars. Observed line profiles are compared with theoretical profiles computed using non-LTE theory and models, and using line-blanketed model atmospheres. Agreement is reasonably good, although strong lines are calculated to be systematically stronger than those observed, while the reverse occurs for weak lines, and empirical profiles have smaller wings than theoretical profiles. It is concluded that the present theory of line formation when used with solar abundances, represents fairly well observed UV photospheric lines of silicon and carbon ions in the atmospheres of main sequence stars of types B5-O9.

  15. Natural flow wing

    NASA Technical Reports Server (NTRS)

    Wood, Richard M. (Inventor); Bauer, Steven X. S. (Inventor)

    1992-01-01

    The invention is a natural flow wing and a method for constructing the same. The method comprises contouring a three-dimensional upper surface and a three-dimensional lower surface of the natural flow wing independently of one another into a prescribed shape. Experimental data and theoretical analysis show that flow and pressure-loading over an upper surface of a wing tend to be conical about an apex of the wing, producing favorable and unfavorable regions of performance based on drag. The method reduces these unfavorable regions by shaping the upper surface such that the maximum thickness near a tip of the natural flow wing moves aft, thereby, contouring the wing to coincide more closely with the conical nature of the flow on the upper surface. Nearly constant compressive loading characterizes the flow field over a lower surface of the conventional wing. Magnitude of these compressive pressures on the lower surface depends on angle of attack and on a streamwise curvature of the lower surface of the wing and not on a cross-sectional spanwise curvature. The method, thereby, shapes the lower surface to create an area as large as possible with negative slopes. Any type of swept wing may be used to obtain the final, shaped geometry of the upper and lower surfaces of the natural flow wing.

  16. Aerostructures Test Wing

    NASA Technical Reports Server (NTRS)

    Lind, RIck; Voracek, David F.; Doyle, Tim; Truax, Roger; Potter, Starr; Brenner, Marty; Voelker, Len; Freudinger, Larry; Stocjt. C (off)

    2003-01-01

    The Aerostructures Test Wing (ATW) was an apparatus used in a flight experiment during a program of research on aeroelastic instabilities. The ATW experiment was performed to study a specific instability known as flutter. Flutter is a destructive phenomenon caused by adverse coupling of structural dynamics and aerodynamics. The process of determining a flight envelope within which an aircraft will not experience flutter, known as flight flutter testing, is very dangerous and expensive because predictions of the instability are often unreliable. The ATW was a small-scale airplane wing that comprised an airfoil and boom (see upper part of Figure 1). For flight tests, the ATW was mounted on the F-15B/FTF-II testbed, which is a second-generation flight-test fixture described in Flight-Test Fixture for Aerodynamic Research (DRC- 95-27), NASA Tech Briefs, Vol. 19, No. 9, September 1995, page 84. The ATW was mounted horizontally on this fixture, and the entire assembly was attached to the undercarriage of the F-15B airplane (see lower part of Figure 1). The primary objective of the ATW project was to investigate traditional and advanced methodologies for predicting the onset of flutter. In particular, the ATW generated data that were used to evaluate a flutterometer. This particular flutterometer is an on-line computer program that uses method analysis to estimate worst-case flight conditions associated with flutter. This software was described in A Flutterometer Flight Test Tool NASA Tech Briefs, Vol. 23, No. 1, January 1999, page 52.

  17. On-line chemical vapour generation of cadmium in the presence of hexacyanochromate(III) for determination by inductively coupled plasma mass spectrometry (ICP-MS)

    PubMed Central

    Yilmaz, Vedat; Rose, LaKeysha; Little, Maria D.

    2012-01-01

    A vapour generation (VG) procedure has been described for determination of Cd by ICP-MS. Volatile species of Cd were generated on-line by interacting acidic sample solution containing potassium hexacyanochromate(III), K3Cr(CN)6, with sodium borohydride (NaBH4). The hexacyanochromate(III) complex was generated on-line by reacting 0.04 mol L−1 chromium(III) nitrate and 0.16 mol L−1 potassium cyanide (KCN) solutions in water. The resulting suspension of chromium(III) hydroxide, Cr(OH)3, was fed continuously to acidic stream of sample solution in the presence of excess KCN. The experimental conditions were optimized for effective generation of volatile species of Cd. Optimum signals were obtained from reaction of sample solutions in 4% v/v HCl with 2% m/v NaBH4 solution. Presence of K3Cr(CN)6 improved the efficiency of Cd vapour generation substantially affording 15-fold higher sensitivity. This phenomenon was thought to occur through formation of reactive intermediates evolved from interaction of [Cr(CN)6]3− with NaBH4 that react with Cd(II) to increase the yield volatile Cd species. Under the optimum conditions, no significant interferences were observed from the transition metals, including Cu and Ni, up to 1.0 μg mL−1 levels. Among the hydride forming elements, Bi, Pb, Sb and Sn depressed the signals above 0.1 μg mL−1. The detection limits (3s) were 6.2 and 5.2 ng L−1 for 110Cd and 111Cd isotopes, respectively. The method was successfully applied to determination of Cd by ICP-MS in several certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), Dogfish liver (DOLT-4) and Mussel tissue (SRM 2976). PMID:23997384

  18. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  19. The Hubble Space Telescope quasar absorption line key project. III - First observational results on Milky Way gas

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Lu, Limin; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Lockman, Felix J.; Sargent, W. L. W.

    1993-01-01

    Absorption lines found near zero redshift due to Milky Way disk and halo gas in the spectra of 15 quasars observed with the Faint Object Spectrograph (FOS) of the HST at a resolution of about 230 km/s are reported. Results show that Milky Way absorption lines comprise about 44 percent of all absorption lines seen in the first group of Key Project FOS spectra. Milky Way lines were observed for 3C 273 and H1821 + 643. Limits to the Mg-to-H abundance ratio obtained for very high velocity Mg II absorption detections imply gas-phase Mg abundances for the very high velocity gas ranging from more than 0.059 to more than 0.32 times the solar abundance. In all cases where high-velocity H I emission is seen, corresponding high-velocity metal-line absorption is observed.

  20. Winging of the scapula.

    PubMed

    Saeed, M A; Gatens, P F; Singh, S

    1981-10-01

    Common neurogenic causes of scapular winging are serratus anterior, trapezius and rhomboid palsy. Deformity is minimal in serratus anterior palsy (long thoracic nerve); winging is accentuated by forward elevation and pushing with outstretched arms. In trapezius palsy (spinal accessory nerve), the shoulder droops and winging is accentuated by arm abduction at the shoulder level. Rhomboid weakness (dorsal scapular nerve or C5 root) is best demonstrated by slowly lowering the arms from the forward elevated position.

  1. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  2. Propeller/wing interaction

    NASA Technical Reports Server (NTRS)

    Witkowski, David P.; Johnston, Robert T.; Sullivan, John P.

    1989-01-01

    The present experimental investigation of the steady-state and unsteady-state effects due to the interaction between a tractor propeller's wake and a wing employs, in the steady case, wind tunnel measurements at low subsonic speed; results are obtained which demonstrate wing performance response to variations in configuration geometry. Other steady-state results involve the propeller-hub lift and side-force due to the wing's influence on the propeller. The unsteady effects of interaction were studied through flow visualization of propeller-tip vortex distortion over a wing, again using a tractor-propeller configuration.

  3. Downwash measurements behind wings with detached float

    NASA Technical Reports Server (NTRS)

    Petersohn, E

    1931-01-01

    This investigation, which was made in the small wind tunnel having a diameter of 1.2 m (3.94 feet), embraced three wing models, behind which, at various angles of attack between 0 and 60 degrees, the static pressure and the total pressure along vertical lines (perpendicular to the direction of the undisturbed wind and to the wing span) were measured. The location of these vertical lines are indicated in Figure 1. Moreover, the wing polars were determined by the customary three-component measurements. For testing the pressure field, a Pitot tube and a static probe, both of 2 mm (0.08 in.) in diameter, were mounted 40 mm (1.57 in.) apart on the end of a shaft 1 m (39.37 in.) long.

  4. Comparison of the Antiproliferative Activity of Two Antitumour Ruthenium(III) Complexes With Their Apotransferrin and Transferrin-Bound Forms in a Human Colon Cancer Cell Line

    PubMed Central

    Keppler, B. K.; Hartmann, M.; Messori, L.; Berger, M. R.

    1996-01-01

    Two ruthenium(III) complexes, namely trans-indazolium[tetrachlorobis(indazole)- ruthenate(III)], HInd[RuInd2Cl4] and trans-imidazolium[tetrachlorobis(imidazole)- ruthenate(III)], HIm[RuIm2Cl4] exhibit high anticancer activity in an autochthonous colorectal carcinoma model in rats. Recently, it has been shown that both complexes bind specifically to human serum apotransferrin and the resulting adducts have been studied through spectroscopic and chromatographic techniques with the ultimate goal of preparing adducts with good selectivity for cancer cells due to the fact that tumour cells express high amounts of transferrin receptors on their cell surface. In order to investigate whether the cellular uptake of the complexes was mediated by apotransferrin or transferrin, we compared the antiproliferative efficacy of HInd[RuInd2Cl4] and HIm[RuIm2Cl4] with its apotransferrin- and transferrin-bound form in the human colon cancer cell line SW707 using the microculture tetrazolium test (MTT). Our results show that especially the transferrin-bound forms exhibit high antiproliferative activity, which exceeds that of the free complex, indicating that this protein can act as a carrier of the ruthenium complexes into the tumor cell. PMID:18472789

  5. Preservation of wing leading edge suction at the plane of symmetry as a factor in wing-fuselage design

    NASA Technical Reports Server (NTRS)

    Larrabee, E. E.

    1975-01-01

    Most fuselage geometries cover a portion of the wing leading edge near the plane of symmetry, and it seems reasonable to expect that a large fraction of the leading edge suction which would be developed by the covered wing at high angles of attack is not developed on the fuselage. This is one of the reasons that the Oswald span efficiency factor for the wing body combination fails to approach the value predicted by lifting line theory for the isolated wing. Some traditional and recent literature on wing-body interference is discussed and high Reynolds number data on wing-body-nacelle drag are reviewed. An exposed central leading edge geometry has been developed for a sailplane configuration. Low Reynolds number tests have not validated the design concept.

  6. A Coherent Study of Emission Lines from Broadband Photometry: Specific Star Formation Rates and [O iii]/Hβ Ratio at 3 > z > 6

    NASA Astrophysics Data System (ADS)

    Faisst, A. L.; Capak, P.; Hsieh, B. C.; Laigle, C.; Salvato, M.; Tasca, L.; Cassata, P.; Davidzon, I.; Ilbert, O.; Le Fèvre, O.; Masters, D.; McCracken, H. J.; Steinhardt, C.; Silverman, J. D.; de Barros, S.; Hasinger, G.; Scoville, N. Z.

    2016-04-01

    We measure the Hα and [O iii] emission line properties as well as specific star formation rates (sSFRs) of spectroscopically confirmed 3 < z < 6 galaxies in COSMOS from their observed colors versus redshift evolution. Our model describes consistently the ensemble of galaxies including intrinsic properties (age, metallicity, star formation history), dust attenuation, and optical emission lines. We forward-model the measured Hα equivalent widths (EW) to obtain the sSFR out to z ˜ 6 without stellar mass fitting. We find a strongly increasing rest-frame Hα EW that is flattening off above z ˜ 2.5 with average EWs of 300-600 Å at z ˜ 6. The sSFR is increasing proportionally to {(1+z)}2.4 at z < 2.2 and to {(1+z)}1.5 at higher redshifts, indicative of a fast build-up of mass in high-z galaxies within e-folding times of 100-200 Myr at z ˜ 6. The redshift evolution at z > 3 cannot be fully explained in a picture of growth driven by cold accretion. We find a progressively increasing [O iii]λ5007/Hβ ratio out to z ˜ 6, consistent with the ratios in local galaxies selected by increasing Hα EW (i.e., sSFR). This demonstrates the potential of using “local high-z analogs” to investigate the spectroscopic properties and relations of galaxies in the re-ionization epoch.

  7. On-line batch production of ferrate with an chemical method and its potential application for greywater recycling with Al(III) salt.

    PubMed

    Song, Yarui; Men, Bin; Wang, Dongsheng; Ma, Jianwei

    2017-02-01

    Ferrate(VI) salt is an oxidant and coagulant for water and wastewater treatment. It is considered as a possible alternative method in greywater treatment. However, challenges have existed in putting ferrate(VI) technology into full-scale practice in water and wastewater treatment due to the instability of ferrate solution and high production cost of solid ferrate products. This study demonstrated a new approach of greywater treatment with on-line batch production of Fe(VI) to which Fe(III) salt was oxidized at a weak acidity solution. A series of experiments were conducted to investigate the effect of Fe(VI) on light greywater (total organic carbon (TOC)=19.5mg/L) and dark greywater (TOC=55mg/L) treatment under different conditions with varying pH and Fe(VI) doses. In addition, the combination use of Fe(VI) and Al(III) salts was proved to be more efficient than using the Fe(VI) salts alone at greywater recycling. The optimum dosage of Fe(VI)/Al(III) salts was 25/25mg/L for light greywater, 90/60mg/L for dark greywater, respectively. The TOC values of both light greywater and dark greywater were reduced to less than 3mg/L with the dosages. The cost for treating greywater was 0.06-0.2$/ton at ferrate(VI) dosage of 25-90mg/L and 0.008-0.024$/ton at AlCl3 dosage of 25-60mg/L. The full operating cost needs further assessment before the Fe(VI)/Al(III) technology could be implemented in greywater treatment.

  8. Formation of broad Balmer wings in symbiotic stars

    NASA Astrophysics Data System (ADS)

    Chang, Seok-Jun; Heo, Jeong-Eun; Hong, Chae-Lin; Lee, Hee-Won

    2016-07-01

    Symbiotic stars are binary systems composed of a hot white dwarf and a mass losing giant. In addition to many prominent emission lines symbiotic stars exhibit Raman scattered O VI features at 6825 and 7088 Å. Another notable feature present in the spectra of many symbiotics is the broad wings around Balmer lines. Astrophysical mechanisms that can produce broad wings include Thomson scattering by free electrons and Raman scattering of Ly,β and higher series by neutral hydrogen. In this poster presentation we produce broad wings around Hα and H,β adopting a Monte Carlo techinique in order to make a quantitative comparison of these two mechanisms. Thomson wings are characterized by the exponential cutoff given by the termal width whereas the Raman wings are dependent on the column density and continuum shape in the far UV region. A brief discussion is provided.

  9. Folding wings like a cockroach: a review of transverse wing folding ensign wasps (Hymenoptera: Evaniidae: Afrevania and Trissevania).

    PubMed

    Mikó, István; Copeland, Robert S; Balhoff, James P; Yoder, Matthew J; Deans, Andrew R

    2014-01-01

    We revise two relatively rare ensign wasp genera, whose species are restricted to Sub-Saharan Africa: Afrevania and Trissevania. Afrevania longipetiolata sp. nov., Trissevania heatherae sp. nov., T. hugoi sp. nov., T. mrimaensis sp. nov. and T. slideri sp. nov. are described, males and females of T. anemotis and Afrevania leroyi are redescribed, and an identification key for Trissevaniini is provided. We argue that Trissevania mrimaensis sp. nov. and T. heatherae sp. nov. populations are vulnerable, given their limited distributions and threats from mining activities in Kenya. We hypothesize that these taxa together comprise a monophyletic lineage, Trissevaniini, tr. nov., the members of which share the ability to fold their fore wings along two intersecting fold lines. Although wing folding of this type has been described for the hind wing of some insects four-plane wing folding of the fore wing has never been documented. The wing folding mechanism and the pattern of wing folds of Trissevaniini is shared only with some cockroach species (Blattodea). It is an interesting coincidence that all evaniids are predators of cockroach eggs. The major wing fold lines of Trissevaniini likely are not homologous to any known longitudinal anatomical structures on the wings of other Evaniidae. Members of the new tribe share the presence of a coupling mechanism between the fore wing and the mesosoma that is composed of a setal patch on the mesosoma and the retinaculum of the fore wing. While the setal patch is an evolutionary novelty, the retinaculum, which originally evolved to facilitate fore and hind wing coupling in Hymenoptera, exemplifies morphological exaptation. We also refine and clarify the Semantic Phenotype approach used in previous taxonomic revisions and explore the consequences of merging new with existing data. The way that semantic statements are formulated can evolve in parallel, alongside improvements to the ontologies themselves.

  10. Supercritical Wing Technology: A Progress Report on Flight Evaluations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The papers in this compilation were presented at the NASA Symposium on "Supercritical Wing Technology: A Progress Report on Flight Evaluation" held at the NASA Flight Research Center, Edwards, Calif., on February 29, 1972. The purpose of the symposium was to present timely information on flight results obtained with the F-8 and T-2C supercritical wing configurations, discuss comparisons with wind-tunnel predictions, and project [ ] flight programs planned for the F-8 and F-III (TACT) airplanes.

  11. Title IX Line: Vol. III, No. 1, Winter 1983 through Vol. V, No. 2, Spring/Summer 1985.

    ERIC Educational Resources Information Center

    Title IX Line, 1983

    1983-01-01

    "Title IX Line" is a periodic publication of The Center for Sex Equity in Schools, a desegregation assistance center funded by the U.S. Department of Education pursuant to Title IV of the 1964 Civil Rights Act. Each issue is devoted to a separate topic. This compilation of 9 sequential issues treats the follwoing themes: (1) vocational…

  12. 1. VIEW OF WEST HEADWALL AND WING WALL, FROM BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF WEST HEADWALL AND WING WALL, FROM BRIDGE TO THE WEST, FACING EAST. - Cut Stone Bridge, Southern Pacific Railroad line spanning runoff channel at South Spruce Avenue, South San Francisco, San Mateo County, CA

  13. 2. VIEW OF WEST HEADWALL AND WING WALL, FROM EMBANKMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF WEST HEADWALL AND WING WALL, FROM EMBANKMENT TO THE SOUTHWEST, FACING NORTHEAST. - Cut Stone Bridge, Southern Pacific Railroad line spanning runoff channel at South Spruce Avenue, South San Francisco, San Mateo County, CA

  14. 6. VIEW OF EAST HEADWALL, TWO WING WALLS, AND CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF EAST HEADWALL, TWO WING WALLS, AND CONCRETE CULVERT (PORTION OF TOP), FACING SOUTHWEST. - Cut Stone Bridge, Southern Pacific Railroad line spanning runoff channel at South Spruce Avenue, South San Francisco, San Mateo County, CA

  15. Force measurements of flexible tandem wings in hovering and forward flights.

    PubMed

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-02-06

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight.

  16. The evolution of the [O II], H β and [O III] emission line luminosity functions over the last nine billions years

    NASA Astrophysics Data System (ADS)

    Comparat, Johan; Zhu, Guangtun; Gonzalez-Perez, Violeta; Norberg, Peder; Newman, Jeffrey; Tresse, Laurence; Richard, Johan; Yepes, Gustavo; Kneib, Jean-Paul; Raichoor, Anand; Prada, Francisco; Maraston, Claudia; Yèche, Christophe; Delubac, Timothée; Jullo, Eric

    2016-09-01

    Emission line galaxies are one of the main tracers of the large-scale structure to be targeted by the next-generation dark energy surveys. To provide a better understanding of the properties and statistics of these galaxies, we have collected spectroscopic data from the VVDS and DEEP2 deep surveys and estimated the galaxy luminosity functions (LFs) of three distinct emission lines, [O II}] (λ λ 3726,3729) (0.5 < z < 1.3), Hβ (λ4861) (0.3 < z < 0.8) and [O {III}] (λ 5007) (0.3 < z < 0.8). Our measurements are based on 35 639 emission line galaxies and cover a volume of ˜107 Mpc3. We present the first measurement of the Hβ LF at these redshifts. We have also compiled LFs from the literature that were based on independent data or covered different redshift ranges, and we fit the entire set over the whole redshift range with analytic Schechter and Saunders models, assuming a natural redshift dependence of the parameters. We find that the characteristic luminosity (L*) and density (φ*) of all LFs increase with redshift. Using the Schechter model over the redshift ranges considered, we find that, for [O {II}] emitters, the characteristic luminosity L*(z = 0.5) = 3.2 × 1041 erg s-1 increases by a factor of 2.7 ± 0.2 from z = 0.5 to 1.3; for Hβ emitters L*(z = 0.3) = 1.3 × 1041 erg s-1 increases by a factor of 2.0 ± 0.2 from z = 0.3 to 0.8; and for [O {III}] emitters L*(z = 0.3) = 7.3 × 1041 erg s-1 increases by a factor of 3.5 ± 0.4 from z = 0.3 to 0.8.

  17. Computational wing optimization and comparisons with experiment for a semi-span wing model

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Haney, H. P.; Ballhaus, W. F.

    1978-01-01

    A computational wing optimization procedure was developed and verified by an experimental investigation of a semi-span variable camber wing model in the NASA Ames Research Center 14 foot transonic wind tunnel. The Bailey-Ballhaus transonic potential flow analysis and Woodward-Carmichael linear theory codes were linked to Vanderplaats constrained minimization routine to optimize model configurations at several subsonic and transonic design points. The 35 deg swept wing is characterized by multi-segmented leading and trailing edge flaps whose hinge lines are swept relative to the leading and trailing edges of the wing. By varying deflection angles of the flap segments, camber and twist distribution can be optimized for different design conditions. Results indicate that numerical optimization can be both an effective and efficient design tool. The optimized configurations had as good or better lift to drag ratios at the design points as the best designs previously tested during an extensive parametric study.

  18. Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: III. Emission Line Diagnostics of Ensembles of H II Regions

    SciTech Connect

    Dopita, M A; Fischera, J; Sutherland, R S; Kewley, L J; Leitherer, C; Tuffs, R J; Popescu, C C; van Breugel, W; Groves, B A

    2006-05-10

    We have built, as far as possible, fully self-consistent models of H II regions around aging clusters of stars. These produce strong emission line diagnostics applicable to either individual H II regions in galaxies, or to the integrated emission line spectra of disk or starburst galaxies. The models assume that the expansion and internal pressure of individual H II regions is driven by the net input of mechanical energy from the central cluster, be it through winds or supernova events. This eliminates the ionization parameter as a free variable, replacing it with a parameter which depends on the ratio of the cluster mass to the pressure in the surrounding interstellar medium. These models explain why H II regions with low abundances have high excitation, and demonstrate that at least part of the warm ionized medium is the result of overlapping faint, old, large, and low pressure H II regions. We present a number of line ratios (at both optical and IR wavelengths) that provide reliable abundance diagnostics for either single H II regions or for integrated galaxy spectra, and others that are sensitive to the age of the cluster stars exciting individual H II regions.

  19. Comparative analysis of BRAF, NRAS and c-KIT mutation status between tumor tissues and autologous tumor cell-lines of stage III/IV melanoma.

    PubMed

    Knol, Anne-Chantal; Pandolfino, Marie-Christine; Vallée, Audrey; Nguyen, Frédérique; Lella, Virginie; Khammari, Amir; Denis, Marc; Puaux, Anne-Laure; Dréno, Brigitte

    2015-01-01

    In the last decade, advances in molecular biology have provided evidence of the genotypic heterogeneity of melanoma. We analysed BRAF, NRAS and c-KIT alterations in tissue samples from 63 stage III/IV melanoma patients and autologous cell-lines, using either allele-specific or quantitative PCR. The expression of BRAF V600E protein was also investigated using an anti-BRAF antibody in the same tissue samples. 81% of FFPE samples and tumor cell-lines harboured a genetic alteration in either BRAF (54%) or NRAS (27%) oncogenes. There was a strong concordance (100%) between tissue samples and tumor cell-lines. The BRAF V600E mutant-specific antibody showed high sensitivity (96%) and specificity (100%) for detecting the presence of a BRAF V600E mutation. The correlation was of 98% between PCR and immunohistochemistry results for BRAF mutation. These results suggest that BRAF and NRAS mutation status of tumor cells is not affected by culture conditions.

  20. High-resolution H-band Spectroscopy of Be Stars with SDSS-III/APOGEE. II. Line Profile and Radial Velocity Variability

    NASA Astrophysics Data System (ADS)

    Chojnowski, S. Drew; Wisniewski, John P.; Whelan, David G.; Labadie-Bartz, Jonathan; Borges Fernandes, Marcelo; Lin, Chien-Cheng; Majewski, Steven R.; Stringfellow, Guy S.; Mennickent, Ronald E.; Roman-Lopes, Alexandre; Tang, Baitian; Hearty, Fred. R.; Holtzman, Jon A.; Pepper, Joshua; Zasowski, Gail

    2017-04-01

    We report on the H-band spectral variability of classical Be stars observed over the course of the Apache Point Galactic Evolution Experiment (APOGEE), one of four subsurveys comprising SDSS-III. As described in the first paper of this series, the APOGEE B-type emission-line (ABE) star sample was culled from the large number of blue stars observed as telluric standards during APOGEE observations. In this paper, we explore the multi-epoch ABE sample, consisting of 1100 spectra for 213 stars. These “snapshots” of the circumstellar disk activity have revealed a wealth of temporal variability including, but not limited to, gradual disappearance of the line emission and vice versa over both short and long timescales. Other forms of variability include variation in emission strength, emission peak intensity ratios, and emission peak separations. We also analyze radial velocities (RVs) of the emission lines for a subsample of 162 stars with sufficiently strong features, and we discuss on a case-by-case basis whether the RV variability exhibited by some stars is caused by binary motion versus dynamical processes in the circumstellar disks. Ten systems are identified as convincing candidates for binary Be stars with as of yet undetected companions.

  1. VizieR Online Data Catalog: Collision Strengths for [Co III] Forbidden Lines - SS5 (Storey+, 2016)

    NASA Astrophysics Data System (ADS)

    Storey, P. J.; Sochi, T.

    2016-04-01

    The data set consists of 105 files which are labeled as 'OMEGAmn_CoIII.dat' where m=1,2,...,14 and n=2,3,...,15 with m

  2. Flying wings / flying fuselages

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    The present paper has documented the historical relationships between various classes of all lifting vehicles, which includes the flying wing, all wing, tailless, lifting body, and lifting fuselage. The diversity in vehicle focus was to ensure that all vehicle types that map have contributed to or been influenced by the development of the classical flying wing concept was investigated. The paper has provided context and perspective for present and future aircraft design studies that may employ the all lifting vehicle concept. The paper also demonstrated the benefit of developing an understanding of the past in order to obtain the required knowledge to create future concepts with significantly improved aerodynamic performance.

  3. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    Vassberg, John C. (Inventor); Gea, Lie-Mine (Inventor); McLean, James D. (Inventor); Witowski, David P. (Inventor); Krist, Steven E. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    An aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one slot is defined by the wing during at least one transonic condition of the wing. The slot may either extend spanwise along only a portion of the wingspan, or it may extend spanwise along the entire wingspan. In either case, the slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  4. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the GIII Swept-Wing Structure

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    The displacement transfer functions (DTFs) were applied to the GIII swept wing for the deformed shape prediction. The calculated deformed shapes are very close to the correlated finite element results as well as the measured data. The convergence study showed that using 17 strain stations, the wing-tip displacement prediction error was 1.6 percent, and that there is no need to use a large number of strain stations for G-III wing shape predictions.

  5. Phase I/II study of biweekly vinorelbine and oxaliplatin as first-line treatment in patients with metastatic breast cancer.

    PubMed

    Guerrero, Antonio; Servitja, Sonia; Rodríguez-Lescure, Alvaro; Calvo, Lourdes; del Barco, Sonia; Quintanar, María Teresa; Juárez, José Ignacio; Gayo, Javier; Llombart, Antonio; Tusquets, Ignasi

    2011-03-01

    The objective of this phase I/II study was to establish the recommended dose of biweekly vinorelbine and oxaliplatin in patients with metastatic breast cancer and to evaluate the efficacy and safety profile of this schedule as first-line treatment. Four different dose levels of vinorelbine and oxaliplatin were selected for the phase I study: (i) 25 and 80 mg/m²; (ii) 25 and 90 mg/m²; (iii) 25 and 100 mg/m²; and (iv) 30 and 90 mg/m²; respectively. At least three patients were treated at each dose level. Overall, 12 patients were included in the phase I trial. No dose-limiting toxicities occurred at any dose level. Therefore, the fourth dose level (30 mg/m² of vinorelbine and 90 mg/m² of oxaliplatin) every 2 weeks was selected for the phase II trial. In this part, 44 patients were included and 61% completed the eight 2-week cycles of study treatment. On an intention-to-treat basis, overall response rate was 59%, and median progression-free survival and overall survival were 9.2 months (95% confidence interval: 7.6-10.9) and 18.6 months (95% confidence interval: 14.4-22.9), respectively. The main severe toxicities were neutropenia (46%) and fatigue (14%). We conclude that the biweekly combination of vinorelbine and oxaliplatin at doses of 30 mg/m² and 90 mg/m², respectively, is highly active and well tolerated as first-line treatment for patients with metastatic breast cancer.

  6. Action of cytochalasin D on cells of established lines. III. Zeiosis and movements at the cell surface.

    PubMed

    Godman, G C; Miranda, A F; Deitch, A D; Tanenbaum, S W

    1975-03-01

    The projection of knobby protuberances at the cell surface (zeiosis) is a general cellular response to cytochalasin D (CD), resulting from herniation of endoplasm through undefended places of the cortex during cell contractions and displacement of microfilaments induced by CD. Zeiosis is prevented by agents that interfere with the contractile response to CD, such as inhibitors of energy metabolism or cyclic AMP. The developed protrusions, which remain relatively stable in the presence of CD, contain chiefly mono- or subribosomes, and occasionally other organelles normally resident in endoplasm; compact microfilament felt occupies their bases and extends into their proximal stalks. Protein synthesis in the knobs is less than half of that in the polyribosome-containing endoplasm residual in the main body of the cell. Knobs first protrude singly near the margin of the contracting cells and rapidly cluster into small groups in the periphery even at lower temperature. The clusters then migrate centripetally and coalesce into a large aggregate near the apex of the immobilized and retracted cell: this movement is energy- and temperature-dependent. Aggregation is more prominent and stable in cell lines of epithelial derivation than in fibroblastic or other lines in which nuclear extrusion occurs more readily. The latter is regarded as a special manifestation of zeiosis. Macromarkers, such as latex spherules, migrate like the zeiotic knobs on the cell surfaces in the presence of CD. The aggregated knobs, although persistent for days in the presence of CD, are rapidly recessed after withdrawal of the agent as ruffling is resumed and the cells spread. These movements are discussed in terms of current concepts of mobility of the cell membrane.

  7. Determination of lead by hydride generation inductively coupled plasma mass spectrometry (HG-ICP-MS): on-line generation of plumbane using potassium hexacyanomanganate(III).

    PubMed

    Yilmaz, Vedat; Arslan, Zikri; Rose, LaKeysha

    2013-01-25

    A hydride generation (HG) procedure has been described for determination of Pb by ICP-MS using potassium hexacyanomanganate(III), K(3)Mn(CN)(6), as an additive to facilitate the generation of plumbane (PbH(4)). Potassium hexacyanomanganate(III) was prepared in acidic medium as it was unstable in water. The stability of hexacyanomanganate(III) was examined in dilute solutions of HCl, HNO(3) and H(2)SO(4). The solutions prepared in 1% v/v H(2)SO(4) were found to be stable for over a period of 24h. The least suitable medium was 1% v/v HNO(3). For generation of plumbane, acidic hexacyanomanganate(III) and sample solutions were mixed on-line along a 5-cm long tygon tubing (1.14 mm i.d.) and then reacted with 2% m/v sodium borohydride (NaBH(4)). A concentration of 0.5% m/v K(3)Mn(CN)(6) facilitated the generation of PbH(4) remarkably. In comparison to H(2)SO(4), HCl provided broader working range for which optimum concentration was 1% v/v. No significant interferences were noted from transition metals and hydride forming elements, up to 0.5 μg mL(-1) levels, except Cu which depressed the signals severely. The depressive effects in the presence of 0.1 μg mL(-1) Cu were alleviated by increasing the concentration of K(3)Mn(CN)(6) to 2% m/v. Under these conditions, the sensitivity was enhanced by a factor of at least 42 to 48. The detection limit (3s) was 0.008 μg L(-1) for (208)Pb isotope. Average signal-to-noise ratio (S/N) ranged between 18 and 20 for 1.0 μg mL(-1) Pb solution. The accuracy of the method was verified by analysis of several certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), and Mussel tissue (SRM 2976). The procedure was also successfully applied to the determination of Pb in coastal seawater samples by ICP-MS.

  8. Lightplane Wing Design

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Venture, a kit airplane designed and manufactured by Questair, is a high performance lightplane with excellent low speed characteristics and enhanced safety due to NASA technology incorporated in its unusual wing design. In 1987, North Carolina State graduate students and Langley Research Center spent seven months researching and analyzing the Venture. The result was a wing modification, improving control and providing more usable lift. The plane subsequently set 10 world speed records.

  9. Air Force Combat Wings: Lineage and Honors Histories, 1947-1977

    DTIC Science & Technology

    1984-06-01

    Aeronautics and Space Administratiop iii The Author CHARLES A. RAVENSTEIN is a historian with the Research Division, USAF Historical Research Center...34wise, for short periods in 1958, 1960, verified combat record. and in 1961, the wing did not control Decorations. (See Appendix III .) KC-135 aircraft...7- . - - .7-74r*-*..’ .’ * - .. * % 41 Contents Page FGreword ..................................................... iii

  10. Computational wing design studies relating to natural laminar flow

    NASA Technical Reports Server (NTRS)

    Waggoner, Edgar G.

    1986-01-01

    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  11. Crystal-field analysis and calculation of two-photon absorption line strengths of dicesium sodium hexachlorogadolinate(III).

    PubMed

    Duan, Chang-Kui; Tanner, Peter A

    2010-03-31

    The crystal-field energy level calculation of the 4f(7) ion Gd(3+) in the crystal Cs(2)NaGdCl(6) has fitted 45 levels with standard deviation 12 cm(-1), with the energy parameters being consistent with those from other studies. The resulting eigenvectors have been employed in the calculation of two-photon absorption (TPA) intensities of transitions from the electronic ground state (8)S(7/2) to the crystal-field levels of excited (6)P, (6)I and (6)D multiplet terms. The TPA line strengths are highly polarization dependent and exhibit striking differences for linearly polarized incident radiation compared with circularly polarized radiation. The relative intensities are compared with those available from previous experimental studies and some reassignments have been made. Good agreement of calculated and experimental TPA spectra is found, except for the intensity ratio of the transitions to (6)P(7/2) or (6)P(5/2) compared with that to (6)P(3/2), for linear and circular polarizations, where the calculation overestimates the ratio. Reasons for this disagreement are presented.

  12. Phase I/II Trial of Sorafenib in Combination with Vinorelbine as First-Line Chemotherapy for Metastatic Breast Cancer

    PubMed Central

    Ferrario, Cristiano; Strepponi, Ivan; Charamis, Helen; Langleben, Adrian; Scarpi, Emanuela; Nanni, Oriana; Miller, Wilson H.; Panasci, Lawrence C.

    2016-01-01

    Background Preclinical models have reported a synergistic interaction between sorafenib and vinorelbine. We investigated the toxicity, efficacy, and pharmacokinetics interaction of this combination as first-line treatment for patients with metastatic breast cancer. Methods Patients were HER2-negative and treated with vinorelbine 30 mg/m2 IV days 1,8 every 21 plus daily oral sorafenib. In the phase I portion (3+3 design) patients received sorafenib 200 mg BID (cohort 1) or 400 mg BID (cohort 2). In the phase II expansion, 21 more evaluable patients were planned to receive the maximum tolerated dose (MTD). Pharmacokinetic analysis was performed in 6 patients: blood concentrations were compared for each drug in the presence or absence of the other drug. Results In cohort 1, one patient experienced a dose-limiting toxicity (DLT) (grade 3 pancreatitis), requiring the expansion of this cohort to 6 patients, without further documented DLTs. In cohort 2, one patient of six experienced a grade 4 DLT (asymptomatic rise in amylase not requiring drug discontinuation), establishing this dose level as the MTD (sorafenib 400 mg BID). After expansion at the MTD, a total of 27 patients (median age 57) were treated for a median of 8 cycles. One grade 5 febrile neutropenia occurred. With repeated cycles, 52% of patients required at least 1 dose reduction of either drug. One patient experienced a sustained grade 3 fatigue resulting in treatment discontinuation. The response rate was 30%. Median PFS was 5.7 months (95% CI 4.4–7.6), and clinical benefit (absence of disease progression at 6 months) was 48%. PK analysis showed a significant interaction between the two drugs, resulting in a higher Cmax of vinorelbine in the presence of sorafenib. Conclusion The combination of sorafenib and vinorelbine at full doses is feasible but not devoid of toxicity, likely also due to a significant PK interaction. Trial Registration ClinicalTrials.gov NCT00764972 PMID:27992451

  13. Low noise wing slat system with rigid cove-filled slat

    NASA Technical Reports Server (NTRS)

    Shmilovich, Arvin (Inventor); Yadlin, Yoram (Inventor)

    2013-01-01

    Concepts and technologies described herein provide for a low noise aircraft wing slat system. According to one aspect of the disclosure provided herein, a cove-filled wing slat is used in conjunction with a moveable panel rotatably attached to the wing slat to provide a high lift system. The moveable panel rotates upward against the rear surface of the slat during deployment of the slat, and rotates downward to bridge a gap width between the stowed slat and the lower wing surface, completing the continuous outer mold line shape of the wing, when the cove-filled slat is retracted to the stowed position.

  14. The Aerodynamics of Deforming Wings at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Medina, Albert

    Flapping flight has gained much attention in the past decade driven by the desire to understand capabilities observed in nature and the desire to develop agile small-scale aerial vehicles. Advancing our current understanding of unsteady aerodynamics is an essential component in the development of micro-air vehicles (MAV) intended to utilize flight mechanics akin to insect flight. Thus the efforts undertaken that of bio-mimicry. The complexities of insect wing motion are dissected and simplified to more tractable problems to elucidate the fundamentals of unsteady aerodynamics in biologically inspired kinematics. The MAV's fruition would satisfy long established needs in both the military and civilian sectors. Although recent studies have provided great insight into the lift generating mechanisms of flapping wings the deflection response of such wings remains poorly understood. This dissertation numerically and experimentally investigates the aerodynamic performance of passively and actively deflected wings in hover and rotary kinematics. Flexibility is distilled to discrete lines of flexion which acknowledging major flexion lines in insect wings to be the primary avenue for deformation. Of primary concern is the development of the leading-edge vortex (LEV), a high circulation region of low pressure above the wing to which much of the wing's lift generation is attributed. Two-dimensional simulations of wings with chord-wise flexibility in a freestream reveal a lift generating mechanism unavailable to rigid wings with origins in vortical symmetry breaking. The inclusion of flexibility in translating wings accelerated from rest revealed the formation time of the initial LEV was very weakly dependent on the flexible stiffness of the wing, maintaining a universal time scale of four to five chords of travel before shedding. The frequency of oscillatory shedding of the leading and trailing-edge vortices that develops after the initial vortex shedding was shown to be

  15. [A winged scapula].

    PubMed

    Faber, C G; Klaver, M M; Wokke, J H J

    2002-09-14

    Three patients, one woman aged 22 and two men aged 54 and 28, presented with scapular winging. In the first patient amyotrophic plexus neuralgia was diagnosed. The second patient most probably suffered from a stretch injury of the long thoracic nerve. The third patient had scapular winging due to an isolated paresis of the trapezius muscle, which was caused by an idiopathic lesion of the accessory nerve. In the first and second patient an improvement was noticeable after 9 months and 1.5 years respectively. There was no improvement in the third patient after 11 years. Paresis of the M. serratus anterior occurs due to paralysis of the N. thoracicus longus, as a result of direct compression, stump trauma, interventions such as thoracic operations, (repeated) stretch injuries or neuralgic brachial plexus amyotrophy; in these cases the scapular winging increases as the arm is lifted forwards. Paresis of the M. trapezius occurs due to the paralysis of the N. accessorius, due to trauma, interventions such as in the neck area, a space-occupying abnormality or an idiopathic abnormality; in these cases the scapular winging increases upon the arm being lifted sideways. Another possible cause of scapular winging is muscular dystrophy, especially fascioscapulohumeral muscular dystrophy (FSHD). Usually the prognosis for recovery from a neuropraxia and an idiopathic lesion of the N. thoracicus longus within a two-year period is good. The prognosis for an isolated lesion of the N. accessorius is much less favourable. An EMG is essential for establishing a diagnosis.

  16. Chordwise and compressibility corrections to slender-wing theory

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Sluder, Loma

    1952-01-01

    Corrections to slender-wing theory are obtained by assuming a spanwise distribution of loading and determining the chordwise variation which satisfies the appropriate integral equation. Such integral equations are set up in terms of the given vertical induced velocity on the center line or, depending on the type of wing plan form, its average value across the span at a given chord station. The chordwise distribution is then obtained by solving these integral equations. Results are shown for flat-plate rectangular, and triangular wings.

  17. A Method for Estimating the Rolling Moments Caused by Wing-tail Interference for Missiles at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Edwards, Sherman; Hikido, Katsumi

    1953-01-01

    A method is presented for estimating the rolling moments caused by wing-tail interference for missiles composed of wing-tail-body combination. The considerations involved in determining the structure of the downwash field behind lifting cruciform wing-body combinations and the rolling moment on cruciform wings of various plan forms induced by an infinite line vortex are discussed in detail. Computations of induced rolling moments for several missile designs are compared with experimental results.

  18. Risk Factors for GI Adverse Events in a Phase III Randomized Trial of Bevacizumab in First-Line Therapy of Advanced Ovarian Cancer: A Gynecologic Oncology Group Study

    PubMed Central

    Burger, Robert A.; Brady, Mark F.; Bookman, Michael A.; Monk, Bradley J.; Walker, Joan L.; Homesley, Howard D.; Fowler, Jeffrey; Greer, Benjamin E.; Boente, Matthew; Fleming, Gini F.; Lim, Peter C.; Rubin, Stephen C.; Katsumata, Noriyuki; Liang, Sharon X.

    2014-01-01

    Purpose To evaluate risk factors for GI adverse events (AEs) within a phase III trial of bevacizumab in first-line ovarian cancer therapy. Patients and Methods Women with previously untreated advanced disease after surgery were randomly allocated to six cycles of platinum-taxane chemotherapy plus placebo cycles (C)2 to C22 (R1); chemotherapy plus bevacizumab C2 to C6 plus placebo C7 to C22 (R2); or chemotherapy plus bevacizumab C2 to C22 (R3). Patients were evaluated for history or on-study development of potential risk factors for GI AEs defined as grade ≥ 2 perforation, fistula, necrosis, or hemorrhage. Results Of 1,873 patients enrolled, 1,759 (94%) were evaluable, and 2.8% (50 of 1,759) experienced a GI AE: 10 of 587 (1.7%, R1), 20 of 587 (3.4%, R2), and 20 of 585 (3.4%, R3). Univariable analyses indicated that previous treatment of inflammatory bowel disease (IBD; P = .005) and small bowel resection (SBR; P = .032) or large bowel resection (LBR; P = .012) at primary surgery were significantly associated with a GI AE. The multivariable estimated relative odds of a GI AE were 13.4 (95% CI, 3.44 to 52.3; P < .001) for IBD; 2.05 (95% CI, 1.09 to 3.88; P = .026) for LBR; 1.95 (95% CI, 0.894 to 4.25; P = .093) for SBR; and 2.15 for bevacizumab exposure (aggregated 95% CI, 1.05 to 4.40; P = .036). Conclusion History of treatment for IBD, and bowel resection at primary surgery, increase the odds of GI AEs in patients receiving first-line platinum-taxane chemotherapy for advanced ovarian cancer. After accounting for these risk factors, concurrent bevacizumab doubles the odds of a GI AE, but is not appreciably increased by continuation beyond chemotherapy. PMID:24637999

  19. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C. H.; Lan, C. E.

    1984-01-01

    A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.

  20. The "red shelf" of the Hβ line in the Seyfert 1 galaxies RXS J01177+3637 and HS 0328+05.

    NASA Astrophysics Data System (ADS)

    Véron, P.; Gonçalves, A. C.; Véron-Cetty, M.-P.

    2002-03-01

    A few Seyfert 1s have a Hβ profile with a red wing usually called the "red shelf". The most popular interpretation of this feature is that it is due to broad redshifted lines of Hβ and [O III]λλ4959, 5007; we have observed two Seyfert 1s displaying a "red shelf" and showed that in these two objects the main contributor is most probably the He I λλ4922, 5016 lines having the velocity and width of the broad Hβ component. There is no evidence for the presence of a broad redshifted component of Hβ or [O III] in any of these two objects.

  1. Phase I/II study of gemcitabine with pegylated liposomal doxorubicin as first-line therapy in Asian women with metastatic breast cancer.

    PubMed

    Wong, Zee-Wan; Ang, Peter Cher-Siang; Chowbay, Balram; Wong, Nan-Soon; See, Hui-Ti; Khoo, Kei-Siong

    2008-10-01

    This was a single institution phase I/II study to determine the maximum tolerated dose (MTD) and efficacy of pegylated liposomal doxorubicin (PLD) and gemcitabine in Asian women with metastatic breast cancer. PLD was administered on day 1 and gemcitabine on days 1 and 8 every 3 weeks at escalating doses from 25 mg/m(2) and 1000 mg/m(2) onwards respectively. The median age was 56 years with a median disease-free interval of 43 months. Majority of the patients had visceral involvement. At PLD 35 mg/m(2) and gemcitabine 1200 mg/m(2), the overall response rate for 23 evaluable patients was 83% (1 CR, 18 PR, 3 SD, 1 PD). Six had prior adjuvant anthracyclines (3 PR, 1 SD). The median follow-up was 81 weeks and progression free interval was 29 weeks. Overall survival was 23.9 months. The dose limiting toxicities were mucositis and myelosuppression. This regimen is active and reasonably tolerated as first-line therapy.

  2. [Dynamic winged scapula].

    PubMed

    Perjés, K

    1990-01-01

    Author describes the paralysis of the serratus muscle in consequence of the paralysis of the long thoracic nerve. The form of appearance is the winged of "flying" scapula. Beside the presentation of the literary and anatomical data the own cases are described. Only conservative therapy was made, an operation was in no case necessary.

  3. Experimental investigation of the flow on the suction side of a thin Delta wing

    NASA Technical Reports Server (NTRS)

    Hummel, D.

    1981-01-01

    Surface oil flow patterns were photographed and pressure distribution measurements were carried out on a sharp edged delta wing of aspect ratio lambda = 1.0 in order to determine the influence of Reynolds number and of vortex breakdown on the flow on the suction side of the wing. The formation of the secondary vortex occurs due to separation of a laminar boundary layer in the front part of the wing and due to separation of a turbulent boundary layer in the rear part of the wing. In the case of turbulent separation, the secondary separation line is closer to the wing leading edge than in the laminar case. The position of the transition depends on the Reynolds number and on the angle of incidence. The breakdown of a vortex above the wing leads to a kink in the secondary separation line.

  4. Are Narrow Line Seyfert 1 Galaxies Viewed Pole-on?

    DTIC Science & Technology

    2011-04-01

    0.2’’ respectively. Figure 1 displays the position of each slit over a Barbosa et al. (2009) GMOS IFU image of the [S III] flux (which originates...C. Winge, H. Schmitt: Gemini/ GMOS IFU gas velocity ’tomography’ of the narrow line region of nearby active galaxies, MNRAS, 396 (2009) 2. [2] D...1995) 81. 4 P o S ( N L S 1 ) 0 5 0 Are NLS1s Pole-on? Travis C. Fischer 5 Figure 1: NGC 4051 GMOS IFU image showing integrated [SIII] flux

  5. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  6. Approximate calculation of multispar cantilever and semicantilever wings with parallel ribs under direct and indirect loading

    NASA Technical Reports Server (NTRS)

    Sanger, Eugen

    1932-01-01

    A method is presented for approximate static calculation, which is based on the customary assumption of rigid ribs, while taking into account the systematic errors in the calculation results due to this arbitrary assumption. The procedure is given in greater detail for semicantilever and cantilever wings with polygonal spar plan form and for wings under direct loading only. The last example illustrates the advantages of the use of influence lines for such wing structures and their practical interpretation.

  7. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings.

    PubMed

    Lehmann, Fritz-Olaf

    2008-01-01

    Understanding the fluid dynamics of force control in flying insects requires the exploration of how oscillating wings interact with the surrounding fluid. The production of vorticity and the shedding of vortical structures within the stroke cycle thus depend on two factors: the temporal structure of the flow induced by the wing's own instantaneous motion and the flow components resulting from both the force production in previous wing strokes and the motion of other wings flapping in close proximity. These wake-wing interactions may change on a stroke-by-stroke basis, confronting the neuro-muscular system of the animal with a complex problem for force control. In a single oscillating wing, the flow induced by the preceding half stroke may lower the wing's effective angle of attack but permits the recycling of kinetic energy from the wake via the wake capture mechanism. In two-winged insects, the acceleration fields produced by each wing may strongly interact via the clap-and-fling mechanism during the dorsal stroke reversal. Four-winged insects must cope with the fact that the flow over their hindwings is affected by the presence of the forewings. In these animals, a phase-shift between the stroke cycles of fore- and hindwing modulates aerodynamic performance of the hindwing via leading edge vortex destruction and changes in local flow condition including wake capture. Moreover, robotic wings demonstrate that phase-lag during peak performance and the strength of force modulation depend on the vertical spacing between the two stroke planes and the size ratio between fore- and hindwing. This study broadly summarizes the most prominent mechanisms of wake-wing and wing-wing interactions found in flapping insect wings and evaluates the consequences of these processes for the control of locomotor forces in the behaving animal.

  8. Attachment Line Blockage Models

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Photographs shows the attachment-line experiment model with fairing and fence for supersonic attachment-line experiments. The fairing is intended to eliminate the wing/fuselage juncture shock and align the flow for the streamlined fence. The streamlined fence traps the turbulent fuselage boundary layer to prevent turbulent contamination of the leading edge flow.

  9. A randomized, multicenter, phase III study of gemcitabine combined with capecitabine versus gemcitabine alone as first-line chemotherapy for advanced pancreatic cancer in South Korea

    PubMed Central

    Lee, Hee Seung; Chung, Moon Jae; Park, Jeong Youp; Bang, Seungmin; Park, Seung Woo; Kim, Ho Gak; Noh, Myung Hwan; Lee, Sang Hyub; Kim, Yong-Tae; Kim, Hyo Jung; Kim, Chang Duck; Lee, Dong Ki; Cho, Kwang Bum; Cho, Chang Min; Moon, Jong Ho; Kim, Dong Uk; Kang, Dae Hwan; Cheon, Young Koog; Choi, Ho Soon; Kim, Tae Hyeon; Kim, Jae Kwang; Moon, Jieun; Shin, Hye Jung; Song, Si Young

    2017-01-01

    Abstract Background: This phase III trial compared the efficacy and safety of gemcitabine plus capecitabine (GemCap) versus single-agent gemcitabine (Gem) in advanced pancreatic cancer as first-line chemotherapy. Methods: A total of 214 advanced pancreatic cancer patients were enrolled from 16 hospitals in South Korea between 2007 and 2011. Patients were randomly assigned to receive GemCap (oral capecitabine 1660 mg/m2 plus Gem 1000 mg/m2 by 30-minute intravenous infusion weekly for 3 weeks followed by a 1-week break every 4 weeks) or Gem (by 30-minute intravenous infusion weekly for 3 weeks every 4 weeks). Results: Median overall survival (OS) time, the primary end point, was 10.3 and 7.5 months in the GemCap and Gem arms, respectively (P = 0.06). Progression-free survival was 6.2 and 5.3 months in the GemCap and Gem arms, respectively (P = 0.08). GemCap significantly improved overall response rate compared with Gem alone (43.7% vs 17.6%; P = 0.001). Overall frequency of grade 3 or 4 toxicities was similar in each group. Neutropenia was the most frequent grade 3 or 4 toxicity in both groups. Conclusion: GemCap failed to improve OS at a statistically significant level compared to Gem treatment. This study showed a trend toward improved OS compared to Gem alone. GemCap and Gem both exhibited similar safety profiles. PMID:28072706

  10. Wing shaping and strain sensing using fiber optics

    NASA Astrophysics Data System (ADS)

    Mendoza, Sergio Licon

    Current technologies to measure strain rely on strain gauges that become heavy with increased measurement points. One significant improvement is the Fiber Bragg Gratings (FBG) which allows light to reflect through a fiber optic line in relation to the strain applied on that fiber. Significant advantages over conventional strain gauges allow for a light weight detailed view of the strain applied to any structure containing these fibers. The SPACE Center in conjunction with the AERO Institute have produced preliminary conclusions on how to implement such fibers on a wing structure and how they could be used to control the shape of a wing. Such a wing structure could be built lighter and flexible than today's wings thus enabling a lighter aircraft. Further studies show that if a feedback mechanism is encompassed, flutter suppression techniques can be accomplished with the use of these fibers thus avoiding catastrophic failure.

  11. Non-linear unsteady wing theory, part 1. Quasi two-dimensional behavior: Airfoils and slender wings

    NASA Technical Reports Server (NTRS)

    Mccune, J. E.

    1987-01-01

    The initial phases of a study of the large-amplitude unsteady aerodynamics of wings in severe maneuver are reported. The research centers on vortex flows, their initiation at wing surfaces, their subsequent convection, and interaction dynamically with wings and control surfaces. The focus is on 2D and quasi-2D aspects of the problem and features the development of an exact nonlinear unsteady airfoil theory as well as an approach to the crossflow problem for slender wing applications including leading-edge separation. The effective use of interactive on-line computing in quantifying and visualizing the nonsteady effects of severe maneuver is demonstrated. Interactive computational work is now possible, in which a maneuver can be initiated and its effects observed and analyzed immediately.

  12. On Celestial Wings,

    DTIC Science & Technology

    1995-11-01

    warning at headquarters of Japanese planes approaching Clark Field. Despite all our warning systems and all the reconnaissance missions we had flown, the...late January 1942. 49 ON CELESTIAL WINGS Davao on 3 January 1942. They staged through Samarinda, Bomeo , and flew the 730 nautical miles to find the...knocking out our hydraulic system , our brakes, landing gear and bomb release mechanism. We kicked the bombs out manually over Bali and returned to Java

  13. Variable Camber Morphing Wings

    DTIC Science & Technology

    2016-02-02

    exploring smart materials , aiming at achieving more efficient morphing capability in terms of control authority and energy consump- tion. Other specific...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT...methodology of variable camber morphing wings based on the use of active materials , namely piezoelectric materials and shape memory alloys. The research work

  14. Quantitative evaluations of the effect of UV irradiation on the infectivity of HTLV-III (AIDS virus) with HTLV-I-carrying cell line, MT-4

    SciTech Connect

    Nakashima, H.; Koyanagi, Y.; Harada, S.; Yamamoto, N.

    1986-08-01

    The effect of UV irradiation on HTLV-III was quantitatively studied to evaluate the dosage of UV irradiation which inactivates the virus for sterilization of blood products and for laboratory decontamination. In order to estimate the biologic activity and quantitation of the virus, induction of HTLV-III-specific antigens and inhibition of DNA synthesis in MT-4 cells infected by UV-irradiated HTLV-III were detected by indirect immunofluorescence technique and proliferation assay using (3H)thymidine uptake, respectively. Furthermore, plaque-forming assay was performed to count the infectious viral particles. Results showed that HTLV-III was completely inactivated by 5000 J/m2 UV irradiation. Cloned UV-irradiated HTLV-III (UV-1) was obtained from a plaque that was formed by 2000 J/m2 UV-irradiated virus. When MT-4 cells were infected by the clone UV-1, ballooning degeneration of cells was predominantly induced. These ballooning cells were not usually observed in MT-4 cells infected by unirradiated HTLV-III. The resistance to UV was not different between clone UV-1 and unirradiated HTLV-III.

  15. Fog spontaneously folds mosquito wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Liu, Xing; Zhu, Ting; Hu, David L.

    2015-02-01

    The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation of a water drop. We predict shapes of the deformed wing using two-dimensional elastica theory, considering both surface tension and Laplace pressure. We also recommend fold-resistant geometries for the wings of flapping micro-aerial vehicles. Our work reveals the mechanism of insect wing folding and provides a framework for further study of capillarity-driven folding in both natural and biomimetic systems at small scales.

  16. Line-vortex theory for calculation of supersonic downwash

    NASA Technical Reports Server (NTRS)

    Mirels, Harold; Haefeli, Rudolph C

    1950-01-01

    The perturbation field induced by a line vortex in a supersonic stream and the downwash behind a supersonic lifting surface are examined to establish approximate methods for determining the downwash behind supersonic wings. Lifting-lines methods are presented for calculating supersonic downwash. A bent lifting-line method is proposed for computing the downwash field behind swept wings. When applied to triangular wings with subsonic leading edges, this method gives results that, in general, are in good agreement with the exact linearized solution. An unbent lifting-line method (horseshoe-vortex system) is proposed for unswept wings. This method is applied to determine downwash behind rectangular wings with aspect ratios of 2 and 4. Excellent agreement with exact linearized theory is obtained for both aspect ratios by placing the lifting line at the 1/2-chord point. The use of lifting-lines therefore appears promising for obtaining estimates of the downwash behind supersonic wings.

  17. Theoretical antisymmetric span loading for wings of arbitrary plan form at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Deyoung, John

    1951-01-01

    A simplified lifting-surface theory that includes effects of compressibility and spanwise variation of section lift-curve slope is used to provide charts with which antisymmetric loading due to arbitrary antisymmetric angle of attack can be found for wings having symmetric plan forms with a constant spanwise sweep angle of the quarter-chord line. Consideration is given to the flexible wing in roll. Aerodynamic characteristics due to rolling, deflected ailerons, and sideslip of wings with dihedral are considered. Solutions are presented for straight-tapered wings for a range of swept plan forms.

  18. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  19. FIRST SPECTROSCOPIC MEASUREMENTS OF [O III] EMISSION FROM Ly{alpha} SELECTED FIELD GALAXIES AT z {approx} 3.1

    SciTech Connect

    McLinden, Emily M.; Rhoads, James E.; Malhotra, Sangeeta; Hibon, Pascale; Richardson, Mark L. A.; Finkelstein, Steven L.; Cresci, Giovanni; Quirrenbach, Andreas; Pasquali, Anna; Bian Fuyan; Fan Xiaohui; Woodward, Charles E.

    2011-04-01

    We present the first spectroscopic measurements of the [O III] 5007 A line in two z {approx} 3.1 Ly{alpha} emitting galaxies (LAEs) using the new near-infrared instrument LUCIFER1 on the 8.4 m Large Binocular Telescope. We also describe the optical imaging and spectroscopic observations used to identify these LAEs. Using the [O III] line we have measured accurate systemic redshifts for these two galaxies, and discovered a velocity offset between the [O III] and Ly{alpha} lines in both, with the Ly{alpha} line peaking 342 and 125 km s{sup -1} redward of the systemic velocity. These velocity offsets imply that there are powerful outflows in high-redshift LAEs. They also ease the transmission of Ly{alpha} photons through the interstellar medium and intergalactic medium around the galaxies. By measuring these offsets directly, we can refine both Ly{alpha}-based tests for reionization, and Ly{alpha} luminosity function measurements where the Ly{alpha} forest affects the blue wing of the line. Our work also provides the first direct constraints on the strength of the [O III] line in high-redshift LAEs. We find [O III] fluxes of 7 and 36 x10{sup -17} erg s{sup -1} cm{sup -2} in two z {approx} 3.1 LAEs. These lines are strong enough to dominate broadband flux measurements that include the line (in this case, K{sub s} -band photometry). Spectral energy distribution fits that do not account for the lines would therefore overestimate the 4000 A (and/or Balmer) break strength in such galaxies, and hence also the ages and stellar masses of such high-z galaxies.

  20. Simulation of iced wing aerodynamics

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Bragg, M. B.; Kwon, O. J.; Sankar, L. N.

    1991-01-01

    The sectional and total aerodynamic load characteristics of moderate aspect ratio wings with and without simulated glaze leading edge ice were studied both computationally, using a three dimensional, compressible Navier-Stokes solver, and experimentally. The wing has an untwisted, untapered planform shape with NACA 0012 airfoil section. The wing has an unswept and swept configuration with aspect ratios of 4.06 and 5.0. Comparisons of computed surface pressures and sectional loads with experimental data for identical configurations are given. The abrupt decrease in stall angle of attack for the wing, as a result of the leading edge ice formation, was demonstrated numerically and experimentally.

  1. Sunitinib Plus Paclitaxel Versus Bevacizumab Plus Paclitaxel for First-Line Treatment of Patients With Advanced Breast Cancer: A Phase III, Randomized, Open-Label Trial

    PubMed Central

    Robert, Nicholas J.; Saleh, Mansoor N.; Paul, Devchand; Generali, Daniele; Gressot, Laurent; Copur, Mehmet S.; Brufsky, Adam M.; Minton, Susan E.; Giguere, Jeffrey K.; Smith, John W.; Richards, Paul D.; Gernhardt, Diana; Huang, Xin; Liau, Katherine F.; Kern, Kenneth A.; Davis, John

    2015-01-01

    Introduction A multicenter, open-label phase III study was conducted to test whether sunitinib plus paclitaxel prolongs progression-free survival (PFS) compared with bevacizumab plus paclitaxel as first-line treatment for patients with HER2− advanced breast cancer. Patients and Methods Patients with HER2− advanced breast cancer who were disease free for ≥ 12 months after adjuvant taxane treatment were randomized (1:1; planned enrollment 740 patients) to receive intravenous (I.V.) paclitaxel 90 mg/m2 every week for 3 weeks in 4-week cycles plus either sunitinib 25 to 37.5 mg every day or bevacizumab 10 mg/kg I.V. every 2 weeks. Results The trial was terminated early because of futility in reaching the primary endpoint as determined by the independent data monitoring committee during an interim futility analysis. At data cutoff, 242 patients had been randomized to sunitinib-paclitaxel and 243 patients to bevacizumab-paclitaxel. Median PFS was shorter with sunitinib-paclitaxel (7.4 vs. 9.2 months; hazard ratio [HR] 1.63 [95% confidence interval (CI), 1.18–2.25]; 1-sided P = .999). At a median follow-up of 8.1 months, with 79% of sunitinib-paclitaxel and 87% of bevacizumab-paclitaxel patients alive, overall survival analysis favored bevacizumab-paclitaxel (HR 1.82 [95% CI, 1.16–2.86]; 1-sided P = .996). The objective response rate was 32% in both arms, but median duration of response was shorter with sunitinib-paclitaxel (6.3 vs. 14.8 months). Bevacizumab-paclitaxel was better tolerated than sunitinib-paclitaxel. This was primarily due to a high frequency of grade 3/4, treatment-related neutropenia with sunitinib-paclitaxel (52%) precluding delivery of the prescribed doses of both drugs. Conclusion The sunitinib-paclitaxel regimen evaluated in this study was clinically inferior to the bevacizumab-paclitaxel regimen and is not a recommended treatment option for patients with advanced breast cancer. PMID:21569994

  2. Study of lee-side flows over conically cambered delta wings at supersonic speeds, part 1

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Watson, Carolyn B.

    1987-01-01

    An experimental investigation was performed in which surface pressure data, flow visualization data, and force and moment data were obtained on four conical delta wing models which differed in leading-edge camber only. Wing leading-edge camber was achieved through a deflection of the outboard 30% of the local wind semispan of a reference 75 degrees swept flat delta wing. The four wing models have leading-edge deflection angles delta sub F of 0, 5, 10, and 15 degrees measured streamwise. Data for the wings with delta sub F = 10 and 15 degrees showed that hinge-line separation dominated the lee-side wing loading and prohibited the develpment of leading-edge separation on the deflected portion of wing leading edge. However, data for the wing with delta sub F = 5 degrees, a vortex was positioned on the deflected leading edge with reattachment at the hinge line. Flow visualization results were presented which detail the influence of Mach number, angle of attack, and camber on the lee-side flow characteristics of conically cambered delta wings. Analysis of photgraphic data identified the existence of 12 distinctive lee-side flow types. In general, the aerodynamic force and moment data correlated well with the pressure and flow visualization data.

  3. Synthesis, spectroscopic characterization, electrochemical behavior and computational analysis of mixed diamine ligand gold(III) complexes: antiproliferative and in vitro cytotoxic evaluations against human cancer cell lines.

    PubMed

    Al-Jaroudi, Said S; Monim-ul-Mehboob, M; Altaf, Muhammad; Al-Saadi, Abdulaziz A; Wazeer, Mohammed I M; Altuwaijri, Saleh; Isab, Anvarhusein A

    2014-12-01

    The gold(III) complexes of the type [(DACH)Au(en)]Cl3, 1,2-Diaminocyclohexane ethylenediamine gold(III) chloride [where 1,2-DACH = cis-, trans-1,2- and S,S-1,2diaminocyclohexane and en = ethylenediamine] have been synthesized and characterized using various analytical and spectroscopic techniques including elemental analysis, UV-Vis and FTIR spectra; and solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and ethylenediamine (en) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was determined by (1)H and (13)C NMR spectra. Their electrochemical behavior was studied by cyclic voltammetry. The structural details and relative stabilities of the four possible isomers of the complexes were also reported at the B3LYP/LANL2DZ level of theory. The coordination sphere of these complexes around gold(III) center adopts distorted square planar geometry. The computational study also demonstrates that trans- conformations is slightly more stable than the cis-conformations. The antiproliferative effects and cytotoxic properties of the mixed diamine ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 1 is the most effective antiproliferative agent among mixed ligand based gold(III) complexes 1-3. The IC50 data reveal that the in vitro cytotoxicity of complexes 1 and 3 against SGC7901 cancer cells are fairly better than that of cisplatin.

  4. Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings

    NASA Astrophysics Data System (ADS)

    Tanahashi, Ichiro; Harada, Yoshiyuki

    2014-06-01

    Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates.

  5. Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings.

    PubMed

    Tanahashi, Ichiro; Harada, Yoshiyuki

    2014-01-01

    Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar(+) laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates.

  6. Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings

    PubMed Central

    2014-01-01

    Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates. PMID:24959110

  7. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Seamless Flaps

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    2016-01-01

    Computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a Gulfstream G-III airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) swept wing modified with an experimental seamless, compliant flap called the Adaptive Compliant Trailing Edge (ACTE) flap. The stall characteristics of the modified ACTE wing were analyzed and compared with the unmodified, clean wing at the flight speed of 120 knots and altitude of 2300 feet above mean sea level, in free air as well as in ground effect. A polyhedral finite-volume unstructured full Navier-Stokes CFD code, STAR-CCM (registered trademark) plus (CD-adapco [Computational Dynamics Limited, United Kingdom, and Analysis & Design Application Co., United States]), was used. Steady Reynolds-averaged Navier-Stokes CFD simulations were conducted for a clean wing and the ACTE wings at various ACTE deflection angles in free air (-2 degrees, 15 degrees, and 30 degrees) as well as in ground effect (15 degrees and 30 degrees). Solution sensitivities to grid densities were examined. In free air, the ACTE wings are predicted to stall at lower angles of attack than the clean wing. In ground effect, all wings are predicted to stall at lower angles of attack than the corresponding wings in free air. Even though the lift curves are higher in ground effect than in free air, the maximum lift coefficients for all wings are lower in ground effect. Finally, the lift increase due to ground effect for the ACTE wing is predicted to be less than the clean wing.

  8. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  9. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  10. The natural flow wing-design concept

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1992-01-01

    A wing-design study was conducted on a 65 degree swept leading-edge delta wing in which the wing geometry was modified to take advantage of the naturally occurring flow that forms over a slender wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study which was divided into three parts: preliminary design, initial design, and final design. In the preliminary design, the wing planform, the design conditions, and the near-conical wing-design concept were derived, and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential flow solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and to investigate modifications to the airfoil thickness, leading-edge radius, airfoil maximum-thickness position, and wing upper to lower surface asymmetry on the baseline near-conical wing. The final design employed an Euler solver to analyze the best wing configurations found in the initial design and to extend the study of wing asymmetry to develop a more refined wing. Benefits resulting from each modification are discussed, and a final 'natural flow' wing geometry was designed that provides an improvement in aerodynamic performance compared with that of a baseline conventional uncambered wing, linear-theory cambered wing, and near-conical wing.

  11. Calculation of far wing of allowed spectra: The water continuum

    NASA Technical Reports Server (NTRS)

    Tipping, R. H.; Ma, Q.

    1995-01-01

    A far-wing line shape theory based on the binary collision and quasistatic approximations that is applicable for both the low- and high-frequency wings of allowed vibrational-rotational lines has been developed. This theory has been applied in order to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000 cm(exp -1) for pure H2O and for H2O-N2 mixtures. The calculations are made assuming an interaction potential consisting of an isotropic Lennard-Jones part and the leading long-range anisotropic part, and utilizing the measured line strengths and transition frequencies. The results compare well with existing data, both in magnitude and in temperature dependence. This leads us to the conclusion that although dimer and collision-induced absorptions are present, the primary mechanism responsible for the observed water continuum is the far-wing absorption of allowed lines. Recent progress on near-wing corrections to the theory and validations with recent laboratory measurements are discussed briefly.

  12. 54. PRODUCTION MOLD STORAGE, SECOND FLOOR, EAST WING. THE WALLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. PRODUCTION MOLD STORAGE, SECOND FLOOR, EAST WING. THE WALLS OF THIS ROOM WERE ORIGINALLY LINED WITH STEAM PIPES CONNECTED TO THE BOILER WHICH WERE USED TO DRY THE TILES BEFORE FIRING. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  13. 93. PRODUCTION MOLDS STORAGE, SECOND FLOOR, EAST WING. THE WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. PRODUCTION MOLDS STORAGE, SECOND FLOOR, EAST WING. THE WALL OF THIS ROOM WERE ORIGINALLY LINED WITH STEAM PIPES CONNECTED TO THE BOILER WHICH WERE USED TO DRY THE TILES BEFORE FIRING. SAME VIEW AS PA-107-54. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  14. Beetle wings are inflatable origami

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  15. X-31 wing removal

    NASA Technical Reports Server (NTRS)

    1995-01-01

    U.S. and German personnel of the X-31 Enhanced Fighter Maneuverability Technology Demonstrator aircraft program removing the right wing of the aircraft, which was ferried from Edwards Air Force Base, California, to Europe on May 22, 1995 aboard an Air Force Reserve C-5 transport. The X-31, based at the NASA Dryden Flight Research Center was ferried to Europe and flown in the Paris Air Show in June. The wing of the X-31 was removed on May 18, 1995, to allow the aircraft to fit inside the C-5 fuselage. Officials of the X-31 project used Manching, Germany, as a staging base to prepare the aircraft for the flight demonstration. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The aircraft arrived back at Edwards in a Air Force Reserve C-5 on June 25, 1995 and off loaded at Dryden June 27. The X-31 aircraft was developed jointly by Rockwell International's North American Aircraft Division (now part of Boeing) and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm), under sponsorship by the U.S. Department of Defense and The German Federal Ministry of Defense.

  16. CONNECTION BETWEEN MID-INFRARED EMISSION PROPERTIES AND NARROW-LINE REGION OUTFLOWS IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang Kai; Wang Tinggui; Dong Xiaobo; Yan Lin

    2013-05-01

    The location of warm dust producing the mid-infrared (MIR) emission in type 1 active galactic nuclei (AGNs) is complex and not yet fully known. We explore this problem by studying how the MIR covering factor (CF{sub MIR} = L{sub MIR}/L{sub bol}) correlates with the fundamental parameters of AGN accretion process (such as L{sub bol}, black hole mass M{sub BH}, and Eddington ratio L/L{sub Edd}) and the properties of narrow emission lines (as represented by [O III] {lambda}5007), using large data sets derived from the Sloan Digital Sky Spectroscopic Survey (SDSS) and the Wide Infrared Sky Survey (WISE). First, we find that the luminosity of the [O III] wing component (L{sub wing}) correlates more tightly with the continuum luminosity ({lambda}L{sub {lambda}}(5100)) than the luminosity of the line core component (L{sub core}) does, which is in line with our previous conclusion that the wing component, generally blueshifted, originates from the polar outflows in the inner narrow-line region (NLR). We then find that the MIR CF shows the strongest correlation with L{sub wing}/L{sub bol} rather than with L{sub core}/L{sub bol} or the above fundamental AGN parameters, and the correlation becomes stronger as the infrared wavelength increases. We also confirm the anti-correlations of CF{sub MIR} with L{sub bol} and M{sub BH}, and the lack of dependence of CF{sub MIR} on the Eddington ratio. These results suggest that a large fraction of the warm dust producing MIR emission in AGNs is likely embedded in polar outflows in the NLR instead of in the torus.

  17. 10 Gbit/s all-optical NRZ-OOK to RZ-OOK format conversion in an ultra-small III-V-on-silicon microdisk fabricated in a CMOS pilot line.

    PubMed

    Kumar, Rajesh; Spuesens, Thijs; Mechet, Pauline; Olivier, Nicolas; Fedeli, Jean-Marc; Regreny, Philippe; Roelkens, Gunther; van Thourhout, Dries; Morthier, Geert

    2011-11-21

    We report the demonstration of an all-optical, bias free and error-free (bit-error-rate ~10(-12)), 10 Gbit/s non-return-to-zero (NRZ) to return-to-zero (RZ) data format conversion using a 7.5 µm diameter III-V-on-silicon microdisk resonator. The device is completely processed in a 200 mm CMOS pilot line. The data format conversion is based on the phenomenon of pulse carving of an NRZ optical data stream by an optical clock. The underlying physical effect for the pulse carving is the change in the refractive index caused by the generation of free-carriers in a pump -probe configuration. We believe it to be the first NRZ-to-RZ format convertor built on a hybrid III-V-on-silicon technology platform.

  18. Integrated aerodynamic/structural design of a sailplane wing

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Gurdal, Z.; Haftka, R. T.; Strauch, G. J.; Eppard, W. M.

    1986-01-01

    Using lifting-line theory and beam analysis, the geometry (planiform and twist) and composite material structural sizes (skin thickness, spar cap, and web thickness) were designed for a sailplane wing, subject to both structural and aerodynamic constraints. For all elements, the integrated design (simultaneously designing the aerodynamics and the structure) was superior in terms of performance and weight to the sequential design (where the aerodynamic geometry is designed to maximize the performance, following which a structural/aeroelastic design minimizes the weight). Integrated designs produced less rigid, higher aspect ratio wings with favorable aerodynamic/structural interactions.

  19. [Maintenance of Pure Lines and Hybridization.] Student Materials. V.A. III. [IV-A-1 through IV-A-2].

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Part of a series of eight student learning modules in vocational agriculture, this booklet deals with plant reproduction. Topics covered include the pure line theory and its history, pure line selection, the effect of inbreeding on vitality, the definition of and reasons for hybridization in plants, and techniques for producing hybirds; a list of…

  20. Assembly modes of dragonfly wings.

    PubMed

    Zhao, Hong-Xiao; Yin, Ya-Jun; Zhong, Zheng

    2011-12-01

    The assembly modes of dragonfly wings are observed through FEG-ESEM. Different from airplane wings, dragonfly wings are found to be assembled through smooth transition mode and global package mode. First, at the vein/membrane conjunctive site, the membrane is divided into upper and lower portions from the center layer and transited smoothly to the vein. Then the two portions pack the vein around and form the outer surface of the vein. Second, at the vein/spike conjunctive site, the vein and spike are connected smoothly into a triplet. Last, at the vein/membrane/spike conjunctive site, the membrane (i.e., the outer layer of the vein) transits smoothly to the spike, packs it around, and forms its outer layer. In short, the membrane looks like a closed coat packing the wing as a whole. The smooth transition mode and the global package mode are universal assembly modes in dragonfly wings. They provide us the references for better understanding of the functions of dragonfly wings and the bionic manufactures of the wings of flights with mini sizes.

  1. Wind-Tunnel Investigation of the Effects of Wing Bodies, Fences, Flaps, and a Fuselage Addition on the Wing Buffet Response of a Transonic-Transport Model

    NASA Technical Reports Server (NTRS)

    Cornette, Elden S.

    1961-01-01

    The experimental wing buffet response of a transport-type airplane model with and without wing bodies, fences, flaps, and a fuselage addition has been investigated at Mach numbers from 0.20 to 1.03. The wing had NACA 64A-series airfoil sections inclined 5 degrees to the free-stream direction. The quarter-chord line of the wing was swept back 45 degrees, the aspect ratio was 7, the taper ratio was 0.3, and the thickness ratio varied from 0.115 at the root to 0.074 at the midsemispan and was constant from that station to the tip. The wing was twisted and cambered for a design lift coefficient of 0.3. The results of the investigation indicated that a marked reduction of buffet intensity and a delay of buffet onset at transonic speeds were achieved by the addition to the wing of special bodies designed to reduce shock-induced separation. The further addition of wing fences and wing trailing-edge flaps deflected 30 degrees increased the lift coefficients at which low-speed stall buffeting occurred. An addition to the fuselage near the upper forward portion produced no consistent change in the buffet characteristics.

  2. Finite Span Wings in Compressible Flow

    NASA Technical Reports Server (NTRS)

    Krasilschchikova, E A

    1956-01-01

    Equations are developed using the source distribution method for the velocity potential function and pressure on thin wings in steady and unsteady motion. Closed form solutions are given for harmonically oscillating wings of general plan form including the effect of the wing wake. Some useful examples are presented in an appendix for arrow, semielliptical, and hexagonal plan form wings.

  3. Effect of outer wing separation on lift and thrust generation in a flapping wing system.

    PubMed

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-09-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  4. Synthesis, characterization and theoretical calculations of (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride complexes: in vitro cytotoxic evaluations against human cancer cell lines.

    PubMed

    Al-Jaroudi, Said S; Altaf, Muhammad; Al-Saadi, Abdulaziz A; Kawde, Abdel-Nasser; Altuwaijri, Saleh; Ahmad, Saeed; Isab, Anvarhusein A

    2015-10-01

    The gold(III) complexes of the type (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride, [(DACH)Au(pn)]Cl3, [where DACH = cis-, trans-1,2- and S,S-1,2-diaminocyclohexane and pn = 1,3-diaminopropane] have been synthesized and characterized using various spectroscopic and analytical techniques including elemental analysis, UV-Vis and FTIR spectroscopy; solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and 1,3-diaminopropane (pn) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was checked by UV-Vis spectroscopy and NMR measurements. The molecular structure of compound 1 (containing cis-1,2-DACH) was determined by X-ray diffraction analysis. The structure of 1 consists of [(cis-DACH)Au(pn)](3+) complex ion and chloride counter ions. Each gold atom in the complex ion adopts a distorted square-planar geometry. The structural details and relative stabilities of the four possible isomers of the complexes were also estimated at the B3LYP/LANL2DZ level of theoretical calculations. The computational study demonstrates that trans- conformations are slightly more stable than the cis- conformations. The antiproliferative effects and cytotoxic properties of the mixed ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 3 (containing 1S,2S-(+)-1,2-(DACH)) is the most effective antiproliferative agent. The IC50 data reveal that the in vitro cytotoxicity of complex 3 against SGC7901 cancer cells manifested similar and very pronounced cytotoxic effects with respect to cisplatin. Moreover, the electrochemical behavior, and the interaction of complex 3 with two well-known model proteins, namely, hen egg white lysozyme and bovine serum albumin is also reported.

  5. The Interference Effects of a Body on the Spanwise Load Distributions of Two 45 Degree Sweptback Wings of Aspect Ratio 8.02 from Low-Speed Tests

    NASA Technical Reports Server (NTRS)

    Martina, Albert P.

    1956-01-01

    Tests of two wing-body combinations have been conducted in the Langley 19-foot pressure tunnel at a Reynolds number of 4 x 10(exp 6) and a Mach number of 0.19 to determine the effects of the bodies on the wing span load distributions. The wings had 45 degrees sweepback of the quarter-chord line, aspect ratio 8.02, taper ratio 0.45, and incorporated 12-percent-thick airfoil sections streamwise. One wing was untwisted and uncambered whereas the second wing incorporated both twist and camber. Identical bodies of revolution, of 10:1 fineness ratio, having diameter-to-span ratios of 0.10, were mounted in mid-high-wing arrangements. The effects of wind incidence, wing fences, and flap deflection were determined for the plane uncambered wing. The addition of the body to the plane wing increased the exposed wing loading at a given lift coefficient as much as 10 percent with the body at 0 degrees incidence and 4 percent at 4 degrees incidence. The bending-moment coefficients at the wing-body juncture were increased about 2 percent with the body at 0 degrees incidence, whereas the increases were as much as 10 percent with the body at 4 degrees incidence. The spanwise load distributions due to the body on the plane wing as calculated by using a swept-wing method employing 19 spanwise lifting elements and control points generally showed satisfactory agreement with experiment. The spanwise load distributions due to body on the flapped plane wing and on the twisted and cambered wing were dissimilar to those obtained on the plane wing. Neither of the methods of calculation which were employed yielded distributions that agreed consistently with experiment for either the flapped plane wing or the twisted and cambered wing.

  6. Mission Adaptive Wing test program

    NASA Technical Reports Server (NTRS)

    Birk, Frank T.; Smith, Rogers E.

    1986-01-01

    With the completion of the F-111 test-bed Mission Adaptive Wing (MAW) test program's manual flight control system, emphasis has been shifted to flight testing of MAW automatic control modes. These encompass (1) cruise camber control, (2) maneuver camber control, (3) maneuver load control, and (4) maneuver enhancement and load alleviation control. The aircraft is currently cleared to a 2.5-g maneuvering limit due to generally higher variable-incidence wing pivot loads than had been anticipated, especially at the higher wing-camber settings. Buffet is noted to be somewhat higher than expected at the higher camber settings.

  7. Wing design for spin resistance

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Dicarlo, D. J.; Glover, K. E.; Stewart, E. C.

    1984-01-01

    Use of a discontinuous outboard wing leading edge to improve stall/spin characteristics has been evaluated through wind-tunnel and flight tests. Addition of such a discontinuous outboard wing leading-edge droop design to three light airplanes having NACA 6-series airfoil sections produced significant improvements in stall characteristics and spin resistance. The increased spin resistance of the modified airplanes has been related to the difference in angle of attack between the outer wing panel stall and the maximum attainable angle of attack.

  8. Recent developments in rotary-wing aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  9. The optical depth of the 158 micrometer (C-12 II) line: Detection of the F=1 yields 0 (C-13 III) hyperfine-structure component

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Poglitsch, A.; Madden, S. C.; Jackson, J. M.; Herrmann, F.; Genzel, R.; Geis, N.

    1991-01-01

    The first detection of the F = 1 yields 0 hyperfine component of the 158 micrometer (C-13 II) fine structure line in the interstellar medium is reported. A twelve point intensity map was obtained of the (C-13 II) distribution over the inner 190 inch (right ascension) by 190 inch (declination) regions of the Orion nebula using an imaging Fabry-Perot interferometer. The (C-12 II)/(C-13 II) line intensity ratio varied significantly over the region mapped. It is highest (86 plus or minus 9) in the core of the Orion H II region and significantly lower (62 plus or minus 7) in the outer regions of the map, reflecting higher optical depth in the (C-12 II) line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin (C-13 II) line at the edges of the bowl-shaped H II region blister. If the C-12/C-13 abundance ratio is 43, the (C-12 II) line in the inner regions of the Orion nebula, has a low optical depth: tau sub 12 approximately = 0.75 plus or minus 0.25. The optical depth together with the large brightness temperature of the (C-12 II) line (approximately 160 K) requires that the excitation temperature of the P-2 sub 3/2 level be approximately 310 K, in very good agreement with the previous analysis of the physical conditions of the Orion interface region based on fine structure line intensity ratios and photodissociation region models. If the C-12/C-13 abundance ratio is 67, the line optical depth is somewhat larger (tau sub 12 approximately = 1.85), and the transition excitation temperature is somewhat smaller (approximately 190 K) than that predicted by these models. The present results therefore support values approximately = 43 for the C-12/C-13 abundance ratio in the Orion nebula.

  10. Origin Story: Blended Wing Body

    NASA Video Gallery

    NASA is partnering with the Boeing Company, among others, to develop and test the blended wing body aircraft. The BWB has the potential to significantly reduce fuel use and noise. In this video, Bo...

  11. Embedded Wing Propulsion Conceptual Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Saunders, John D.

    2003-01-01

    As a part of distributed propulsion work under NASA's Revolutionary Aeropropulsion Concepts or RAC project, a new propulsion-airframe integrated vehicle concept called Embedded Wing Propulsion (EWP) is developed and examined through system and computational fluid dynamics (CFD) studies. The idea behind the concept is to fully integrate a propulsion system within a wing structure so that the aircraft takes full benefits of coupling of wing aerodynamics and the propulsion thrust stream. The objective of this study is to assess the feasibility of the EWP concept applied to large transport aircraft such as the Blended-Wing-Body aircraft. In this paper, some of early analysis and current status of the study are presented. In addition, other current activities of distributed propulsion under the RAC project are briefly discussed.

  12. Downwash in the plane of symmetry of an elliptically loaded wing

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.

    1985-01-01

    A closed-form solution for the downwash in the plane of symmetry of an elliptically loaded line is given. This theoretical result is derived from Prandtl's lifting-line theory and assumes that: (1) a three-dimensional wing can be replaced by a straight lifting line, (2) this line is elliptically loaded, and (3) the trailing wake is a flat-sheet which does not roll up. The first assumption is reasonable for distances greater than about 1 chord from the wing aerodynamic center. The second assumption is satisfied by any combination of wing twist, spanwise camber variation, or planform that approximates elliptic loading. The third assumption is justified only for high-aspect-ratio wings at low lift coefficients and downstream distances less than about 1 span from the aerodynamic center. It is shown, however, that assuming the wake to be fully rolled up gives downwash values reasonably close to those of the flat-sheet solution derived in this paper. The wing can therefore be modeled as a single horseshoe vortex with the same lift and total circulation as the equivalent ellipticity loaded line, and the predicted downwash will be a close approximation independent of aspect ratio and lift coefficient. The flat-sheet equation and the fully rolled up wake equation are both one-line formulas that predict the upwash field in front of the wing, as well as the downwash field behind it. These formulas are useful for preliminary estimates of the complex aerodynamic interaction between two wings (i.e., canard, tandem wing, and conventional aircraft) including the effects of gap and stagger.

  13. Oblique-wing supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Inventor)

    1976-01-01

    An aircraft including a single fuselage having a main wing and a horizontal stabilizer airfoil pivotally attached at their centers to the fuselage is described. The pivotal attachments allow the airfoils to be yawed relative to the fuselage for high speed flight, and to be positioned at right angles with respect to the fuselage during takeoff, landing, and low speed flight. The main wing and the horizontal stabilizer are upwardly curved from their center pivotal connections towards their ends to form curvilinear dihedrals.

  14. CF-HiZELS, an ˜10 deg2 emission-line survey with spectroscopic follow-up: Hα, [O III] + Hβ and [O II] luminosity functions at z = 0.8, 1.4 and 2.2

    NASA Astrophysics Data System (ADS)

    Sobral, D.; Matthee, J.; Best, P. N.; Smail, I.; Khostovan, A. A.; Milvang-Jensen, B.; Kim, J.-W.; Stott, J.; Calhau, J.; Nayyeri, H.; Mobasher, B.

    2015-08-01

    We present results from the largest contiguous narrow-band survey in the near-infrared. We have used the wide-field infrared camera/Canada-France-Hawaii Telescope and the lowOH2 filter (1.187 ± 0.005 μm) to survey ≈10 deg2 of contiguous extragalactic sky in the SA22 field. A total of ˜6000 candidate emission-line galaxies are found. We use deep ugrizJK data to obtain robust photometric redshifts. We combine our data with the High-redshift(Z) Emission Line Survey (HiZELS), explore spectroscopic surveys (VVDS, VIPERS) and obtain our own spectroscopic follow-up with KMOS, FMOS and MOSFIRE to derive large samples of high-redshift emission-line selected galaxies: 3471 Hα emitters at z = 0.8, 1343 [O III] + Hβ emitters at z = 1.4 and 572 [O II] emitters at z = 2.2. We probe comoving volumes of >106 Mpc3 and find significant overdensities, including an 8.5σ (spectroscopically confirmed) overdensity of Hα emitters at z = 0.81. We derive Hα, [O III] + Hβ and [O II] luminosity functions at z = 0.8, 1.4, 2.2, respectively, and present implications for future surveys such as Euclid. Our uniquely large volumes/areas allow us to subdivide the samples in thousands of randomized combinations of areas and provide a robust empirical measurement of sample/cosmic variance. We show that surveys for star-forming/emission-line galaxies at a depth similar to ours can only overcome cosmic-variance (errors <10 per cent) if they are based on volumes >5 × 105 Mpc3; errors on L* and φ* due to sample (cosmic) variance on surveys probing ˜104 and ˜105 Mpc3 are typically very high: ˜300 and ˜40-60 per cent, respectively.

  15. Effect of structure in middle part of leading edge of a thick wing : communication from Rijks-Studiedienst voor de Luchtvaart of Amsterdam

    NASA Technical Reports Server (NTRS)

    1922-01-01

    The experiments herein described were made for the purpose of finding whether removing a larger portion of the wing to improve the pilot's view would be possible, without too great detriment to the aerodynamic properties of the airplane. The experiments were conducted on a wing similar to the Fokker F III.

  16. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.

    PubMed

    Hinson, Brian T; Morgansen, Kristi A

    2015-10-06

    The wings of the hawkmoth Manduca sexta are lined with mechanoreceptors called campaniform sensilla that encode wing deformations. During flight, the wings deform in response to a variety of stimuli, including inertial-elastic loads due to the wing flapping motion, aerodynamic loads, and exogenous inertial loads transmitted by disturbances. Because the wings are actuated, flexible structures, the strain-sensitive campaniform sensilla are capable of detecting inertial rotations and accelerations, allowing the wings to serve not only as a primary actuator, but also as a gyroscopic sensor for flight control. We study the gyroscopic sensing of the hawkmoth wings from a control theoretic perspective. Through the development of a low-order model of flexible wing flapping dynamics, and the use of nonlinear observability analysis, we show that the rotational acceleration inherent in wing flapping enables the wings to serve as gyroscopic sensors. We compute a measure of sensor fitness as a function of sensor location and directional sensitivity by using the simulation-based empirical observability Gramian. Our results indicate that gyroscopic information is encoded primarily through shear strain due to wing twisting, where inertial rotations cause detectable changes in pronation and supination timing and magnitude. We solve an observability-based optimal sensor placement problem to find the optimal configuration of strain sensor locations and directional sensitivities for detecting inertial rotations. The optimal sensor configuration shows parallels to the campaniform sensilla found on hawkmoth wings, with clusters of sensors near the wing root and wing tip. The optimal spatial distribution of strain directional sensitivity provides a hypothesis for how heterogeneity of campaniform sensilla may be distributed.

  17. Determination of lead by hydride generation inductively coupled plasma mass spectrometry (HG-ICP-MS): on-line generation of plumbane using potassium hexacyanomanganate(III)

    PubMed Central

    Yilmaz, Vedat; Arslan, Zikri; Rose, LaKeysha

    2012-01-01

    A hydride generation (HG) procedure has been described for determination of Pb by ICP-MS using potassium hexacyanomanganate(III), K3Mn(CN)6, as an additive to facilitate the generation of plumbane (PbH4). Potassium hexacyanomanganate(III) was prepared in acidic medium as it was unstable in water. The stability of hexacyanomanganate(III) was examined in dilute solutions of HCl, HNO3 and H2SO4. The solutions prepared in 1% v/v/ H2SO4 were found to be stable for over a period of 24 h. The least suitable medium was 1% v/v HNO3. For generation of plumbane, acidic hexacyanomanganate(III) and sample solutions were mixed online along a 5-cm long tygon tubing (1.14 mm i.d.) and then reacted with 2% m/v sodium borohydride (NaBH4). A concentration of 0.5% m/v K3Mn(CN)6 facilitated the generation of PbH4 remarkably. In comparison to H2SO4, HCl provided broader working range for which optimum concentration was 1% v/v. No significant interferences were noted from transition metals and hydride forming elements, up to 0.5 μg mL−1 levels, except Cu which depressed the signals severely. The depressive effects in the presence of 0.1 μg mL−1 Cu were alleviated by increasing the concentration of K3Mn(CN)6 to 2% m/v. Under these conditions, the sensitivity was enhanced by a factor of at least 42 to 48. The detection limit (3s) was 0.008 μg L−1 for 208Pb isotope. Average signal-to-noise ratio (S/N) ranged between 18 and 20 for 1.0 μg mL−1 Pb solution. The accuracy of the method was verified by analysis of several certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), and Mussel tissue (SRM 2976). The procedure was also successfully applied to the determination of Pb in coastal seawater samples by ICP-MS. PMID:23312310

  18. A comparison of the C III, O V, F VI, and Ne VII Delta n = 0 (2-2) line emissions from a laboratory plasma with theoretical predictions and astrophysical observations

    NASA Technical Reports Server (NTRS)

    Finkenthal, M.; Yu, . L.; Lippmann, S.; Huang, L. K.; Moos, H. W.; Stratton, B. C.; Bhatia, A. K.

    1987-01-01

    Spectra of the Delta n = 0 (2-2) transitions of Be I-like ions, C III, O V, F VI, and Ne VII emitted from the TEXT tokamak, were measured with photometrically calibrated instrumentation and compared to the predictions of several models which differ in their treatment of electron impact excitation, using either the distorted wave or R-matrix approach. It was found that the ions from C III to Ne VII were located near the edge of the plasma, at densities between 10 to the 12th and 13th/cu cm. The experimental line ratios were compared with several sets of computations. Agreement is obtained between the experimental data and computations by using the R-matrix technique. This leads to the conclusion that the effect resonances must be included in collision strength calculations, particularly at low nuclear charge. The results show that the line ratios studied may be used with confidence as electron density diagnostics for laboratory or astrophysical plasmas.

  19. Unsteady aerodynamics of membrane wings with adaptive compliance

    NASA Astrophysics Data System (ADS)

    Kiser, Jillian; Breuer, Kenneth

    2016-11-01

    Membrane wings are known to provide superior aerodynamic performance at low Reynolds numbers (Re =104 -105), primarily due to passive shape adaptation to flow conditions. In addition to this passive deformation, active control of the fluid-structure interaction and resultant aerodynamic properties can be achieved through the use of dielectric elastomer actuators as the wing membrane material. When actuated, membrane pretension is decreased and wing camber increases. Additionally, actuation at resonance frequencies allows additional control over wing camber. We present results using synchronized (i) time-resolved particle image velocimetry (PIV) to resolve the flow field, (ii) 3D direct linear transformation (DLT) to recover membrane shape, (iii) lift/drag/torque measurements and (iv) near-wake hot wire anemometry measurements to characterize the fluid-structure interactions. Particular attention is paid to cases in which the vortex shedding frequency, the membrane resonance, and the actuation frequency coincide. In quantitatively examining both flow field and membrane shape at a range of actuation frequencies and vortex shedding frequencies, this work seeks to find actuation parameters that allow for active control of boundary layer separation over a range of flow conditions. Also at Naval Undersea Warfare Center, Division Newport.

  20. Experimental and Theoretical Study of a Rectangular Wing in a Vortical Wake at Low Speed

    NASA Technical Reports Server (NTRS)

    Smith, Willard G.; Lazzeroni, Frank A.

    1960-01-01

    A systematic study has been made, experimentally and theoretically, of the effects of a vortical wake on the aerodynamic characteristics of a rectangular wing at subsonic speed. The vortex generator and wing were mounted on a reflection plane to avoid body-wing interference. Vortex position, relative to the wing, was varied both in the spanwise direction and normal to the wing. Angle of attack of the wing was varied from -40 to +60. Both chordwise and spanwise pressure distributions were obtained with the wing in uniform and vortical flow fields. Stream surveys were made to determine the flow characteristics in the vortical wake. The vortex-induced lift was calculated by several theoretical methods including strip theory, reverse-flow theory, and reverse-flow theory including a finite vortex core. In addition, the Prandtl lifting-line theory and the Weissinger theory were used to calculate the spanwise distribution of vortex-induced loads. With reverse-flow theory, predictions of the interference lift were generally good, and with Weissinger's theory the agreement between the theoretical spanwise variation of induced load and the experimental variation was good. Results of the stream survey show that the vortex generated by a lifting surface of rectangular plan form tends to trail back streamwise from the tip and does not approach the theoretical location, or centroid of circulation, given by theory. This discrepancy introduced errors in the prediction of vortex interference, especially when the vortex core passed immediately outboard of the wing tip. The wake produced by the vortex generator in these tests was not fully rolled up into a circular vortex, and so lacked symmetry in the vertical direction of the transverse plane. It was found that the direction of circulation affected the induced loads on the wing either when the wing was at angle of attack or when the vortex was some distance away from the plane of the wing.

  1. An analytical study of the effects of jets located more than one jet diameter above a wing at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.

    1974-01-01

    A procedure has been developed to calculate the effects of blowing two jets over a swept tapered wing at low subsonic speeds. The algorithm used is based on a vortex lattice representation of the wing lifting surface and a line sink-source distribution to simulate the effects of the jet exhaust on the wing lift and drag. The method is limited to those cases where the jet exhaust does not intersect or wash the wing. The predictions of this relatively simple procedure are in remarkably good agreement with experimentally measured interference lift and interference induced drag.

  2. An analytical study of the effects of jets located more than one jet diameter above a wing at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.

    1974-01-01

    A procedure has been developed for calculating the effects of blowing two jets over a swept tapered wing at low subsonic speeds. The algorithm used is based on a vortex-lattice representation of the wing lifting surface and a line sink-source distribution to simulate the effects of the jet exhaust on the wing lift and drag. The method is limited to those cases in which the jet exhaust does not intersect or wash the wing. The predictions of this relatively simple procedure are in remarkably good agreement with experimentally measured interference lift and interference induced drag.

  3. Randomised phase III trial of S-1 versus capecitabine in the first-line treatment of metastatic colorectal cancer: SALTO study by the Dutch Colorectal Cancer Group.

    PubMed

    Kwakman, J J M; Simkens, L H J; van Rooijen, J M; van de Wouw, A J; Ten Tije, A J; Creemers, G J M; Hendriks, M P; Los, M; van Alphen, R J; Polée, M B; Muller, E W; van der Velden, A M T; van Voorthuizen, T; Koopman, M; Mol, L; van Werkhoven, E; Punt, C J A

    2017-04-05

    Hand-foot syndrome (HFS) is a common side effect of capecitabine. S-1 is an oral fluoropyrimidine with comparable efficacy to capecitabine in gastrointestinal cancers but associated with a lower incidence of HFS in Asian patients. This study compares the incidence of HFS between S-1 and capecitabine as first-line treatment in Western metastatic colorectal cancer (mCRC) patients.

  4. Wind-Tunnel Investigation at Low Speed of the Effects of Chordwise Wing Fences and Horizontal-Tail Position on the Static Longitudinal Stability Characteristics of an Airplane Model with a 35 Degree Sweptback Wing

    NASA Technical Reports Server (NTRS)

    Queijo, M J; Jaquet, Byron M; Wolhart, Walter D

    1954-01-01

    Low-speed tests of a model with a wing swept back 35 degrees at the 0.33-chord line and a horizontal tail located well above the extended wing-chord plane indicated static longitudinal instability at moderate angles of attack for all configurations tested. An investigation therefore was made to determine whether the longitudinal stability could be improved by the use of chordwise wing fences, by lowering the horizontal tail, or by a combination of both. The results of the investigation showed that the longitudinal stability characteristics of the model with slats retracted could be improved at moderate angles of attack by placing chordwise wing fences at a spanwise station of about 73 percent of the wing semispan from the plane of symmetry provided the nose of the fence extended slightly beyond or around the wing leading edge.

  5. Probing the Physics of Narrow-line Regions in Active Galaxies. III. Accretion and Cocoon Shocks in the LINER NGC 1052

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Ho, I.-Ting; Dressel, Linda L.; Sutherland, Ralph; Kewley, Lisa; Davies, Rebecca; Hampton, Elise; Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2015-03-01

    We present Wide Field Spectrograph integral field spectroscopy and Hubble Space Telescope Faint Object Spectrograph spectroscopy for the low-ionization nuclear emission line region (LINER) galaxy NGC 1052. We infer the presence of a turbulent accretion flow forming a small-scale accretion disk. We find a large-scale outflow and ionization cone along the minor axis of the galaxy. Part of this outflow region is photoionized by the active galactic nucleus and shares properties with the extended narrow-line region of Seyfert galaxies, but the inner (R≲ 1.0″) accretion disk and the region around the radio jet appear shock excited. The emission-line properties can be modeled by a “double-shock” model in which the accretion flow first passes through an accretion shock in the presence of a hard X-ray radiation, and the accretion disk is then processed through a cocoon shock driven by the overpressure of the radio jets. This model explains the observation of two distinct densities (˜104 and ˜106 cm-3) and provides a good fit to the observed emission-line spectrum. We derive estimates for the velocities of the two shock components and their mixing fractions, the black hole mass, and the accretion rate needed to sustain the LINER emission and derive an estimate for the jet power. Our emission-line model is remarkably robust against variation of input parameters and hence offers a generic explanation for the excitation of LINER galaxies, including those of spiral type such as NGC 3031 (M81).

  6. Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.

    1984-01-01

    The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip.

  7. Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick

    2005-01-01

    During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.

  8. Results of recent experiments with slotted wings

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1925-01-01

    This report gives the results of a recent series of experiments performed on a wing designed for a cantilever monoplane. Both wings were trapezial in their ground plan, with their tips rounded elliptically. These wing sections combine all known devices for increasing the lift, namely, the slot, the increased camber and angle of attack by means of an aileron running the whole length of the span. The last advance included in the wing section was an increase in wing area by means of an auxiliary wing adjusted by a sort of rectangular joint.

  9. The IRAM-30 m line survey of the Horsehead PDR. III. High abundance of complex (iso-)nitrile molecules in UV-illuminated gas

    NASA Astrophysics Data System (ADS)

    Gratier, P.; Pety, J.; Guzmán, V.; Gerin, M.; Goicoechea, J. R.; Roueff, E.; Faure, A.

    2013-09-01

    Context. Complex (iso-)nitrile molecules, such as CH3CN and HC3N, are relatively easily detected in our Galaxy and in other galaxies. Aims: We aim at constraining their chemistry through observations of two positions in the Horsehead edge: the photo-dissociation region (PDR) and the dense, cold, and UV-shielded core just behind it. Methods: We systematically searched for lines of CH3CN, HC3N, C3N, and some of their isomers in our sensitive unbiased line survey at 3, 2, and 1 mm. We stacked the lines of C3N to improve the detectability of this species. We derived column densities and abundances through Bayesian analysis using a large velocity gradient radiative transfer model. Results: We report the first clear detection of CH3NC at millimeter wavelength. We detected 17 lines of CH3CN at the PDR and 6 at the dense core position, and we resolved its hyperfine structure for 3 lines. We detected 4 lines of HC3N, and C3N is clearly detected at the PDR position. We computed new electron collisional rate coefficients for CH3CN, andwe found that including electron excitation reduces the derived column density by 40% at the PDR position, where the electron density is 1-5 cm-3. While CH3CN is 30 times more abundant in the PDR (2.5 × 10-10) than in the dense core (8 × 10-12), HC3N has similar abundance at both positions (8 × 10-12). The isomeric ratio CH3NC/CH3CN is 0.15 ± 0.02. Conclusions: The significant amount of complex (iso-)nitrile molecule in the UV illuminated gas is puzzling as the photodissociation is expected to be efficient. This is all the more surprising in the case of CH3CN, which is 30 times more abundant in the PDR than in the dense core. In this case, pure gas phase chemistry cannot reproduce the amount of CH3CN observed in the UV-illuminated gas. We propose that CH3CN gas phase abundance is enhanced when ice mantles of grains are destroyed through photo-desorption or thermal-evaporation in PDRs, and through sputtering in shocks. Based on observations

  10. Survival in patients with class III idiopathic pulmonary arterial hypertension treated with first line oral bosentan compared with an historical cohort of patients started on intravenous epoprostenol

    PubMed Central

    Sitbon, O; McLaughlin, V; Badesch, D; Barst, R; Black, C; Galie, N; Humbert, M; Rainisio, M; Rubin, L; Simonneau, G

    2005-01-01

    Background: The oral dual endothelin receptor antagonist bosentan improves exercise capacity and delays clinical worsening in patients with pulmonary arterial hypertension, but its use could delay starting intravenous epoprostenol, a life saving treatment. Methods: Survival in patients with functional class III idiopathic pulmonary arterial hypertension (PAH) treated with bosentan in clinical trials was compared with historical data from similar patients treated with epoprostenol in the clinic. Statistical methods were used to adjust for possible underlying differences between the two groups. Results: Baseline factors for the 139 patients treated with bosentan and the 346 treated with epoprostenol suggested that the epoprostenol cohort had more severe disease—that is, a lower cardiac index (2.01 v 2.39 l/min/m2) and higher pressures and resistance. Kaplan-Meier survival estimates after 1 and 2 years were 97% and 91%, respectively, in the bosentan cohort and 91% and 84% in the epoprostenol cohort. Cox regression analyses adjusting for differences in baseline factors showed a greater probability of death in the epoprostenol cohort (hazard ratio 2.2 (95% confidence interval 1.2 to 4.0) in the model adjusted for haemodynamics). Alternative regression analyses and analyses to adjust for different data collection dates gave consistently similar results. When matched cohorts of 83 patients each were selected, survival estimates were similar. In the bosentan cohort 87% and 75% of patients followed for 1 and 2 years, respectively, remained on monotherapy. Conclusions: No evidence was found to suggest that initial treatment with oral bosentan, followed by or with the addition of other treatment if needed, adversely affected the long term outcome compared with initial intravenous epoprostenol in patients with class III idiopathic PAH. PMID:16055621

  11. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. III - Further observations of NGC 5548 at optical wavelengths

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Alloin, D.; Axon, D.; Balonek, T. J.; Bertram, R.; Boroson, T. A.; Christensen, J. A.; Clements, S. D.; Dietrich, M.; Elvis, M.

    1992-01-01

    The results of the second year of an intensive ground-based spectroscopic and photometric study of variability in the bright Seyfert 1 galaxy NGC 5548 are reported in order to study the relationship between continuum and emission-line variability. Relative to the first year of the monitoring program, the nucleus of NGC 5548 was considerably fainter and the continuum variations slower during the second year, but the continuum H-beta cross-correlation results for the two years are nearly identical. The variations in the broad H-beta emission-line lag behind those in the continuum by somewhat less than 20 days, as concluded from the first year's data.

  12. The formation of interstellar molecular lines in a turbulent velocity field with finite correlation length III. Spherical clouds in hydrostatic equilibrium.

    NASA Astrophysics Data System (ADS)

    Piehler, G.; Kegel, W. H.

    1995-05-01

    We investigated the formation of interstellar molecular lines in a turbulent velocity field with finite correlation length, extending previous work (Albrecht & Kegel 1987; Kegel et al. 1992) to isothermal spheres in hydrostatic equilibrium as cloud models with σ>>v_ therm _. For this we use the transformed generalized radiative transfer equation (Kegel et al. 1992). We concentrate our calculations on the CO-molecule with up to 12 energy levels. We give numerical results for models with T_kin_=50K, σ=3.9km/sec (σ/v_ therm _=22), and different values of the central H_2_ density and different values of the correlation length. As our results show, accounting for a velocity field with a finite correlation length affects the line profiles, the center-to-limb variation, and the intensity ratios. We find that the higher transitions are more strongly affected than the J=1-0 transition.

  13. Elements of butterfly wing patterns.

    PubMed

    Nijhout, H F

    2001-10-15

    The color patterns on the wings of butterflies are unique among animal color patterns in that the elements that make up the overall pattern are individuated. Unlike the spots and stripes of vertebrate color patterns, the elements of butterfly wing patterns have identities that can be traced from species to species, and typically across genera and families. Because of this identity it is possible to recognize homologies among pattern elements and to study their evolution and diversification. Individuated pattern elements evolved from non-individuated precursors by compartmentalization of the wing into areas that became developmentally autonomous with respect to color pattern formation. Developmental compartmentalization led to the evolution of serially repeated elements and the emergence of serial homology. In these compartments, serial homologues were able to acquire site-specific developmental regulation and this, in turn, allowed them to diverge morphologically. Compartmentalization of the wing also reduced the developmental correlation among pattern elements. The release from this developmental constraint, we believe, enabled the great evolutionary radiation of butterfly wing patterns. During pattern evolution, the same set of individual pattern elements is arranged in novel ways to produce species-specific patterns, including such adaptations as mimicry and camouflage.

  14. New aspects of absorption-line formation in intervening turbulent clouds - III. The inverse problem in the study of H+D profiles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.; Takahara, Fumio

    1999-02-01

    A new method, based on a reverse Monte Carlo technique and aimed at the inverse problem in the analysis of intergalactic (interstellar) H+D absorption profiles, is presented. We consider the process of line formation in media with a stochastic velocity field accounting for correlation effects (mesoturbulence). This approach generalizes the standard microturbulent approximation, which is commonly used to model the formation of absorption spectra in turbulent media. The method allows one to estimate, from an observed spectrum, both the physical parameters of the absorbing gas and an appropriate structure of the distribution of the velocity component parallel to the line of sight. The validity of the computational procedure is demonstrated using a series of synthetic spectra that emulate the up-to-date best quality data. The H+D Lyα, Lyβ and H I Ly-14 lines were fitted simultaneously. The confidence regions calculated for the `NH i-D/H' plane show that the difference between the recovered and adopted values does not exceed the 3σ level.

  15. Aircraft wing structural detail design (wing, aileron, flaps, and subsystems)

    NASA Technical Reports Server (NTRS)

    Downs, Robert; Zable, Mike; Hughes, James; Heiser, Terry; Adrian, Kenneth

    1993-01-01

    The goal of this project was to design, in detail, the wing, flaps, and ailerons for a primary flight trainer. Integrated in this design are provisions for the fuel system, the electrical system, and the fuselage/cabin carry-through interface structure. This conceptual design displays the general arrangement of all major components in the wing structure, taking into consideration the requirements set forth by the appropriate sections of Federal Aviation Regulation Part 23 (FAR23) as well as those established in the statement of work.

  16. Schooling of flapping wings: Simulations

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan; Becker, Alexander; Ristroph, Leif; Shelley, Michael

    2014-11-01

    We examine the locomotion of an infinite array of wings that heave vertically with a prescribed sinusoidal motion and are free to translate in the horizontal direction. To do this, we simulate the motion of a freely translating flapping airfoil in a domain with periodic horizontal boundary conditions. These simulations indicate that the wings can ``take advantage'' of their collectively generated wake flows. In agreement with our experiments in a rotational geometry, we find ranges of flapping frequency over which there are multiple stable states of locomotion, with one of these swimming states having both higher speeds and efficiencies than an isolated flapping and locomoting wing. A simple mathematical model, which emphasizes the importance of history dependence in vortical flows, explains this multi-stability. These results may be important to understanding the role of hydrodynamic interactions in fish schooling and bird flocking.

  17. Aircraft wing structure detail design

    NASA Technical Reports Server (NTRS)

    Sager, Garrett L.; Roberts, Ron; Mallon, Bob; Alameri, Mohamed; Steinbach, Bill

    1993-01-01

    The provisions of this project call for the design of the structure of the wing and carry-through structure for the Viper primary trainer, which is to be certified as a utility category trainer under FAR part 23. The specific items to be designed in this statement of work were Front Spar, Rear Spar, Aileron Structure, Wing Skin, and Fuselage Carry-through Structure. In the design of these parts, provisions for the fuel system, electrical system, and control routing were required. Also, the total weight of the entire wing planform could not exceed 216 lbs. Since this aircraft is to be used as a primary trainer, and the SOW requires a useful life of 107 cycles, it was decided that all of the principle stresses in the structural members would be kept below 10 ksi. The only drawback to this approach is a weight penalty.

  18. The Nichols Wing Cutting Equipment

    NASA Technical Reports Server (NTRS)

    Ford, James B

    1923-01-01

    Described here is wing cutting equipment for the economical production of metal wings for wind tunnel models. The machine will make any size of constant-section wing or strut up to one-sixth inch chord by 36-inch span and up to a thickness of one and one-quarter inches. It cuts a smooth, true model that is accurate to within two-thousandths of an inch on any ordinate. The holding jaws are so designed as to leave the model free of chip marks, and the only hand finishing necessary after the cutting is a rub with amunite to remove burrs. The actual change on ordinate in this finishing rub is less than .0002 inches.

  19. Biotransformation of Two-Line Silica-Ferrihydrite by a Dissimilatory Fe(III)-Reducing Bacterium: Formation of Carbonate Green Rust in the Presence of Phosphate

    SciTech Connect

    Kukkadapu, Ravi K.; Zachara, John M.; Fredrickson, Jim K.; Kennedy, David W.

    2004-07-01

    The reductive biotransformation of two Si-ferrihydrite (0.01 and 0.05 mole% Si) coprecipiates by Shewanella putrefaciens, strain CN32, was investigated in 1,4-piperazinediethanesulfonic acid-buffered media (pH ~7) with lactate as the electron donor. Anthraquinone-2,6-disulfonate (electron shuttle) that stimulates respiration was present in the media. Experiments were performed without and with PO43- (ranging from 1 to 20 mmol/L in media containing 50 mmol/L Fe). Our objectives were to define the combined effects of SiO44- and PO43- on the bioreducibility and biomineralization of ferrihydrites under anoxic conditions. Iron reduction was measured as a function of time, solids were characterized by powder X-ray diffraction (XRD) and Mossbauer spectroscopy, and aqueous solutions were analyzed for Si, P, Cl- and inorganic carbon. Both of the ferrihydrites were rapidly reduced regardless of the Si content. Si concentration had no effect on the reduction rate or mineralization products. Magnetite was formed in the absence of PO43- whereas carbonate green rust GR(CO32-) ([FeII(6-x)FeIIIx(OH)12]x+(CO32-)0.5x.yH2O) and vivianite [Fe3(PO4)2.8H2O], were formed when PO43- was present. GR(CO32-) dominated as a mineral product in samples with < 4 mmol/L PO43-. The Fe(II)/Fe(III) ratio of GR(CO32-) varied with PO43- concentration; it was 2 in the 1 mmol/L PO43- and approached 1 in the 4- and 10-mmol/L PO43- samples. GR appeared to form by solid-state transformation of ferrihydrite. Medium PO43- concentration dictated the mechanism of transformation. In 1 mmol/L PO43- media, an intermediate Fe(II)/Fe(III) phase with structural Fe(II), which we tentatively assigned to a protomagnetite phase, slowly transformed to GR with time. In contrast, in medium with >4 mmol/L PO43-, a residual ferrihydrite with sorbed Fe2+ phase transformed to GR. Despite similar chemistries, PO43- was shown to have a profound effect on ferrihydrite biotransformations while that of SiO44- was minimal.

  20. Aerodynamic control with passively pitching wings

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  1. The function of resilin in beetle wings.

    PubMed Central

    Haas, F; Gorb, S; Blickhan, R

    2000-01-01

    This account shows the distribution of elastic elements in hind wings in the scarabaeid Pachnoda marginata and coccinellid Coccinella septempunctata (both Coleoptera). Occurrence of resilin, a rubber-like protein, in some mobile joints together with data on wing unfolding and flight kinematics suggest that resilin in the beetle wing has multiple functions. First, the distribution pattern of resilin in the wing correlates with the particular folding pattern of the wing. Second, our data show that resilin occurs at the places where extra elasticity is needed, for example in wing folds, to prevent material damage during repeated folding and unfolding. Third, resilin provides the wing with elasticity in order to be deformable by aerodynamic forces. This may result in elastic energy storage in the wing. PMID:10983820

  2. Evolution: taking wing with weak feathers.

    PubMed

    Xu, Xing

    2012-12-04

    Scientists long thought they knew what the wings of early birds looked like. But new reconstructions of Archaeopteryx and its kin suggest quite different feather arrangements on their wings with profound implications for the evolution of flight.

  3. Insect Evolution: The Origin of Wings.

    PubMed

    Ross, Andrew

    2017-02-06

    The debate on the evolution of wings in insects has reached a new level. The study of primitive fossil insect nymphs has revealed that wings developed from a combination of the dorsal part of the thorax and the body wall.

  4. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  5. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  6. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  7. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  8. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  9. STUDIES OF NGC 6720 WITH CALIBRATED HST/WFC3 EMISSION-LINE FILTER IMAGES. III. TANGENTIAL MOTIONS USING ASTRODRIZZLE IMAGES

    SciTech Connect

    O'Dell, C. R.; Ferland, G. J.; Henney, W. J.; Peimbert, M.

    2013-06-01

    We have been able to compare with astrometric precision AstroDrizzle processed images of NGC 6720 (the Ring Nebula) made using two cameras on the Hubble Space Telescope. The time difference of the observations was 12.925 yr. This large time base allowed the determination of tangential velocities of features within this classic planetary nebula. Individual features were measured in [N II] images as were the dark knots seen in silhouette against background nebular [O III] emission. An image magnification and matching technique was also used to test the accuracy of the usual assumption of homologous expansion. We found that homologous expansion does apply, but the rate of expansion is greater along the major axis of the nebula, which is intrinsically larger than the minor axis. We find that the dark knots expand more slowly than the nebular gas, that the distance to the nebula is 720 pc {+-}30%, and that the dynamic age of the Ring Nebula is about 4000 yr. The dynamic age is in agreement with the position of the central star on theoretical curves for stars collapsing from the peak of the asymptotic giant branch to being white dwarfs.

  10. Flexible-Wing-Based Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Jenkins, David A.; Ettinger, Scott; Lian, Yong-Sheng; Shyy, Wei; Waszak, Martin R.

    2002-01-01

    This paper documents the development and evaluation of an original flexible-wing-based Micro Air Vehicle (MAV) technology that reduces adverse effects of gusty wind conditions and unsteady aerodynamics, exhibits desirable flight stability, and enhances structural durability. The flexible wing concept has been demonstrated on aircraft with wingspans ranging from 18 inches to 5 inches. Salient features of the flexible-wing-based MAV, including the vehicle concept, flexible wing design, novel fabrication methods, aerodynamic assessment, and flight data analysis are presented.

  11. A search for Low Surface Brightness galaxies in the near-infrared. III. Nançay H I line observations

    NASA Astrophysics Data System (ADS)

    Monnier Ragaigne, D.; van Driel, W.; Schneider, S. E.; Balkowski, C.; Jarrett, T. H.

    2003-09-01

    A total of 334 Low Surface Brightness galaxies detected in the 2MASS all-sky near-infrared survey have been observed in the 21 cm H I line using the Nançay telescope. All have a Ks-band mean central surface brightness, measured within a 5'' radius, fainter than 18 mag arcsec-2 and a Ks-band isophotal radius at the 20 mag arcsec-2 level larger than 20''. We present global H I line parameters for the 171 clearly detected objects and the 23 marginal detections, as well as upper limits for the undetected objects. The 171 clear detections comprise 50 previously uncatalogued objects and 41 objects with a PGC entry only. Tables 3-5 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/465 Figures 1 and 2 are only available in electronic form at http://www.edpsciences.org

  12. Small interfering RNAs expressed from a Pol III promoter suppress the EWS/Fli-1 transcript in an Ewing sarcoma cell line.

    PubMed

    Dohjima, Taikoh; Lee, Nan Sook; Li, Haitang; Ohno, Takatoshi; Rossi, John J

    2003-06-01

    The EWS/Fli-1 fusion gene encodes an oncogenic fusion protein. The fusion is a product of the translocation t(11;22) (q24;q12), which is detected in 85% of Ewing sarcoma and primitive neuroectodermal tumor cells. Utilizing intracellularly expressed 21- to 23-nucleotide small interfering RNAs (siRNAs) targeting the EWS/Fli-1 fusion transcript in an Ewing sarcoma cell line, we achieved a greater than 80% reduction in the EWS/Fli-1 transcript. The reduction in transcript levels was accompanied by growth inhibition of an Ewing cell line. In addition to quantitating the reduction of the fusion transcript, we carefully monitored reduction of the endogenous EWS and Fli-1 mRNAs as well. One of the two siRNAs targeted to the fusion transcript also partially downregulated the Fli-1 mRNA, further potentiating the growth inhibition. These results highlight both the power of siRNAs and the potential side reactions that need to be carefully monitored. In addition, these results provide the first demonstration of expressed siRNAs downregulating an oncogenic fusion transcript. The results and observations from these studies should prove useful in targeting other fusion transcripts characteristic of sarcomas and erythroleukemias.

  13. Biomarker analysis of the MITO2 phase III trial of first-line treatment in ovarian cancer: predictive value of DNA-PK and phosphorylated ACC

    PubMed Central

    Perrone, Francesco; Baldassarre, Gustavo; Indraccolo, Stefano; Signoriello, Simona; Chiappetta, Gennaro; Esposito, Franca; Ferrandina, Gabriella; Franco, Renato; Mezzanzanica, Delia; Sonego, Maura; Zulato, Elisabetta; Zannoni, Gian F.; Canzonieri, Vincenzo; Scambia, Giovanni; Sorio, Roberto; Savarese, Antonella; Breda, Enrico; Scollo, Paolo; Ferro, Antonella; Tamberi, Stefano; Febbraro, Antonio; Natale, Donato; Maio, Massimo Di; Califano, Daniela; Scognamiglio, Giosuè; Lorusso, Domenica; Canevari, Silvana; Losito, Simona; Gallo, Ciro; Pignata, Sandro

    2016-01-01

    Background No biomarker is available to predict prognosis of patients with advanced ovarian cancer (AOC) and guide the choice of chemotherapy. We performed a prospective-retrospective biomarker study within the MITO2 trial on the treatment of AOC. Patients and methods: MITO2 is a randomised multicentre phase 3 trial conducted with 820 AOC patients assigned carboplatin/paclitaxel (carboplatin: AUC5, paclitaxel: 175 mg/m², every 3 weeks for 6 cycles) or carboplatin/PLD-pegylated liposomal doxorubicin (carboplatin: AUC5, PLD: 30 mg/m², every 3 weeks for 6 cycles) as first line treatment. Sixteen biomarkers (pathways of adhesion/invasion, apoptosis, transcription regulation, metabolism, and DNA repair) were studied in 229 patients, in a tissue microarray. Progression-free and overall survival were analysed with multivariable Cox model. Results After 72 months median follow-up, 594 progressions and 426 deaths were reported; there was no significant difference between the two arms in the whole trial. No biomarker had significant prognostic value. Statistically significant interactions with treatment were found for DNA-dependent protein kinase (DNA-PK) and phosphorylated acetyl-coenzymeA carboxylase (pACC), both predicting worse outcome for patients receiving carboplatin/paclitaxel. Conclusion These data show that in presence of DNA-PK or pACC overexpression, carboplatin/paclitaxel might be less effective than carboplatin/PLD as first line treatment of ovarian cancer patients. Further validation of these findings is warranted. PMID:27655643

  14. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    DTIC Science & Technology

    2011-03-03

    Thankfully, nature has already optimized micro air vehicles with the evolution of birds and insects, which become the instinctual inspirational candidates...properties to those wings found in nature. More specifically, with size comparable to a hummingbird , elastic modulus comparable to a cicada, and

  15. On the autorotation of animal wings.

    PubMed

    Ortega-Jimenez, Victor Manuel; Martín-Alcántara, Antonio; Fernandez-Feria, Ramon; Dudley, Robert

    2017-01-01

    Botanical samaras spin about their centre of mass and create vertical aerodynamic forces which slow their rate of descent. Descending autorotation of animal wings, however, has never been documented. We report here that isolated wings from Anna's hummingbirds, and also from 10 species of insects, can stably autorotate and achieve descent speeds and aerodynamic performance comparable to those of samaras. A hummingbird wing loaded at its base with the equivalent of 50% of the bird's body mass descended only twice as fast as an unloaded wing, and rotated at frequencies similar to those of the wings in flapping flight. We found that even entire dead insects could stably autorotate depending on their wing postures. Feather removal trials showed no effect on descent velocity when the secondary feathers were removed from hummingbird wings. By contrast, partial removal of wing primaries substantially improved performance, except when only the outer primary was present. A scaling law for the aerodynamic performance of autorotating wings is well supported if the wing aspect ratio and the relative position of the spinning axis from the wing base are included. Autorotation is a useful and practical method that can be used to explore the aerodynamics of wing design.

  16. BIOPLUME III

    EPA Pesticide Factsheets

    BIOPLUME III is a two-dimensional finite difference model for simulating the natural attenuation of organic contaminants in groundwater due to the processes of advection, dispersion, sorption, and biodegradation.

  17. On-line speciation and determination of Cr(III) and Cr(VI) in drinking and waste water samples by reversed-phase high performance liquid chromatography coupled with atomic absorption spectrometry.

    PubMed

    Sarica, Deniz Yurtsever; Türker, A Rehber; Erol, Esra

    2006-07-01

    A simple, rapid, and selective on-line method for the speciation and determination of Cr(III) and Cr(VI) in aqueous solutions by ion-pairing HPLC coupled with flame atomic absorption spectrometry (FAAS) is described. The composition of the mobile phase has been optimized for better separation. The effects of column temperature, volume of injection loop, fuel flow rate of FAAS, and nebulizer suction rate of FAAS have also been investigated. Separation is accomplished in almost 2.5 min on a 25 cm length C18 column at 40 degrees C. The selectivity of the method has been established by investigating the effect of interfering elements on chromium determination. The detection limit (3sigma) achieved by the method was calculated as 3.7 ng/mL for Cr(III) and 2.0 ng/mL for Cr(VI). The proposed method has been validated by analyzing certified reference material (BCR 544) and successfully applied to the analysis of drinking water and wastewater samples with a relative error below 6%.

  18. Global variations in optical thickness of the atmosphere of Venus. III. Analysis of behavior of equivalent widths of CO2 lines for an inhomogeneous model atmosphere.

    NASA Astrophysics Data System (ADS)

    Fomin, N. N.; Yanovitskij, E. G.

    A two-layer model of Venus atmosphere is considered. The upper layer is a gas-and-aerosol medium with a fixed lower boundary height (h = 50 km) above the planet's surface. The lower layer is a pure CO2 gas. The pressure and temperature in the layers are assumed to satisfy the polytrope equation. The observed variations in the equivalent widths of R(0) lines in the CO2 absorption bands λλ788.3 and 868.9 nm are studied within the context of this model. The observed scatter in the equivalent widths is shown to be explicable in the framework of the model of globally asymmetrical cloud layer on Venus proposed earlier by the authors. The optical thickness of the cloud layer is found in such a case to be τx = 34.4 for one hemisphere, while it is τn = 24.4 for the other hemisphere. The heights of the cloud layer upper boundary in this case are 68.4 and 75.8 km, respectively. The value τx/τn = 1.4 is in complete agreement with independent estimate obtained earlier from measurements of the integral brightness of the planet. Observed variations in the equivalent widths of R(0) lines of the CO2 absorption bands λλ782.0 and 1062.7 nm verify this estimate. Finally, variations in the height of the cloud layer upper boundary are in complete accord with observed scatter in the amount of polarization over the disk of Venus in the UV region. Further feasible observational tests of this effect are discussed.

  19. Formation of Raman Scattering Wings around H alpha, H beta, and Pa alpha in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chang, Seok-Jun; Heo, Jeong-Eun; Di Mille, Francesco; Angeloni, Rodolfo; Palma, Tali; Lee, Hee-Won

    2015-12-01

    Powered by a supermassive black hole with an accretion disk, the spectra of active galactic nuclei (AGNs) are characterized by prominent emission lines including Balmer lines. The unification schemes of AGNs require the existence of a thick molecular torus that may hide the broad emission line region from the view of observers near the equatorial direction. In this configuration, one may expect that the far-UV radiation from the central engine can be Raman scattered by neutral hydrogen to reappear around Balmer and Paschen emission lines, which can be identified with broad wings. We produce Hα, Hβ, and Paα wings using a Monte Carlo technique to investigate their properties. The neutral scattering region is assumed to be a cylindrical torus specified by the inner and outer radii and the height. While the covering factor of the scattering region affects the overall strengths of the wings, the wing widths are primarily dependent on the neutral hydrogen column density {N}{{H} {{I}}} being roughly proportional to {N}{{H} {{I}}}1/2. In particular, with {N}{{H} {{I}}}={10}23 {{cm}}-2 the Hα wings typically show a width ∼ 2× {10}4 {km} {{{s}}}-1. We also find that Hα and Paα wing profiles are asymmetric with the red part stronger than the blue part and an opposite behavior is seen for Hβ wings.

  20. Broad Halpha Wing Formation in the Planetary Nebula IC 4997.

    PubMed

    Lee; Hyung

    2000-02-10

    The young and compact planetary nebula IC 4997 is known to exhibit very broad wings with a width exceeding 5000 km s-1 around Halpha. We propose that the broad wings are formed through Rayleigh-Raman scattering that involves atomic hydrogen, by which Lybeta photons with a velocity width of a few 102 km s-1 are converted to optical photons and fill the Halpha broad wing region. The conversion efficiency reaches 0.6 near the line center, where the scattering optical depth is much larger than 1, and rapidly decreases in the far wings. Assuming that close to the central star there exists an unresolved inner compact core of high density, nH approximately 109-1010 cm-3, we use the photoionization code "CLOUDY" to show that sufficient Lybeta photons for scattering are produced. Using a top-hat-incident profile for the Lybeta flux and a scattering region with a H i column density NHi=2x1020 cm-2 and a substantial covering factor, we perform a profile-fitting analysis in order to obtain a satisfactory fit to the observed flux. We briefly discuss the astrophysical implications of the Rayleigh-Raman processes in planetary nebulae and other emission objects.

  1. Bat flight with bad wings: is flight metabolism affected by damaged wings?

    PubMed

    Voigt, Christian C

    2013-04-15

    Infection of North American bats with the keratin-digesting fungus Geomyces destructans often results in holes and ruptures of wing membranes, yet it is unknown whether flight performance and metabolism of bats are altered by such injuries. I conducted flight experiments in a circular flight arena with Myotis albescens and M. nigricans individuals with an intact or ruptured trailing edge of one of the plagiopatagial membranes. In both species, individuals with damaged wings were lighter, had a higher aspect ratio (squared wing span divided by wing area) and an increased wing loading (weight divided by wing area) than conspecifics with intact wings. Bats with an asymmetric reduction of the wing area flew at similar speeds to conspecifics with intact wings but performed fewer flight manoeuvres. Individuals with damaged wings showed lower metabolic rates during flight than conspecifics with intact wings, even when controlling for body mass differences; the difference in mass-specific metabolic rate may be attributable to the lower number of flight manoeuvres (U-turns) by bats with damaged wings compared with conspecifics with intact wings. Possibly, bats compensated for an asymmetric reduction in wing area by lowering their body mass and avoiding flight manoeuvres. In conclusion, it may be that bats suffer from moderate wing damage not directly, by experiencing increased metabolic rate, but indirectly, by a reduced manoeuvrability and foraging success. This could impede a bat's ability to gain sufficient body mass before hibernation.

  2. Aerodynamic yawing moment characteristics of bird wings.

    PubMed

    Sachs, Gottfried

    2005-06-21

    The aerodynamic yawing moments due to sideslip are considered for wings of birds. Reference is made to the experience with aircraft wings in order to identify features which are significant for the yawing moment characteristics. Thus, it can be shown that wing sweep, aspect ratio and lift coefficient have a great impact. Focus of the paper is on wing sweep which can considerably increase the yawing moment due to sideslip when compared with unswept wings. There are many birds the wings of which employ sweep. To show the effect of sweep for birds, the aerodynamic characteristics of a gull wing which is considered as a representative example are treated in detail. For this purpose, a sophisticated aerodynamic method is used to compute results of high precision. The yawing moments of the gull wing with respect to the sideslip angle and the lift coefficient are determined. They show a significant level of yaw stability which strongly increases with the lift coefficient. It is particularly high in the lift coefficient region of best gliding flight conditions. In order to make the effect of sweep more perspicuous, a modification of the gull wing employing no sweep is considered for comparison. It turns out that the unswept wing yields yawing moments which are substantially smaller than those of the original gull wing with sweep. Another feature significant for the yawing moment characteristics concerns the fact that sweep is at the outer part of bird wings. By considering the underlying physical mechanism, it is shown that this feature is most important for the efficiency of wing sweep. To sum up, wing sweep provides a primary contribution to the yawing moments. It may be concluded that this is an essential reason why there is sweep in bird wings.

  3. Wings: Women Entrepreneurs Take Flight.

    ERIC Educational Resources Information Center

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  4. FLEXIBLE WING INDIVIDUAL DROP GLIDER

    DTIC Science & Technology

    The feasibility of the paraglider concept as a means of descent for individual airborne troops is presented. Full-scale 22-foot inflatable wings and...in an effort to achieve system reliability. The feasibility of using the paraglider as a means of controlled delivery of airborne paratroopers was successfully demonstrated.

  5. Wing Leading Edge Debris Analysis

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Jerman, Gregory

    2004-01-01

    This is a slide presentation showing the Left Wing Leading Edge (WLE) heat damage observations: Heavy "slag" deposits on select RCC panels. Eroded and knife-edged RCC rib sections. Excessive overheating and slumping of carrier panel tiles. Missing or molten attachment bolts but intact bushing. Deposit mainly on "inside" RCC panel. Deposit on some fractured RCC surface

  6. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  7. The Wings for Angels Project

    ERIC Educational Resources Information Center

    McMillan, Liberty; McMillan, Ellen; Ayers, Ann

    2012-01-01

    How can the spirits of critically ill children be raised? Alexis Weisel (co-president of the Monarch High School National Art Honor Society, 2010-2011) had this question in mind when she initiated and developed the Wings for Angels Project after hearing about the Believe in Tomorrow (BIT) organization through her art teacher, Ellen McMillan. The…

  8. Active Flexible Wing (AFW) Technology

    DTIC Science & Technology

    1988-02-01

    copy of zeach of the fbllowing records: AD B253477, XV-8A Flexible Win& Aerial Utility Vehicle, by H-. Kredit . January 1964, 144 pages AD 13252433...Counterinsurgency Operations by R.A. Wise, Feb 0965, 74 pages - AD 461202. XV-8A Flexible Wing Aerial Utility Vehicle, H. Kredit , Feb. 1965. 100 pages _-AD

  9. [Winged scapula in lyme borreliosis].

    PubMed

    Rausch, V; Königshausen, M; Gessmann, J; Schildhauer, T A; Seybold, D

    2016-06-01

    Here we present the case of a young patient with one-sided winged scapula and lyme borreliosis. This disease can be very delimitating in daily life. If non-operative treatment fails, dynamic or static stabilization of the scapula can be a therapeutic option.

  10. F-8 oblique wing structural feasibility study

    NASA Technical Reports Server (NTRS)

    Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.

    1975-01-01

    The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.

  11. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. III. Correlation between Reactivity Levels, Crossover Frequency and Repair Efficiency

    PubMed Central

    Laurencon, A.; Gay, F.; Ducau, J.; Bregliano, J. C.

    1997-01-01

    We previously reported evidence that the so-called reactivity level, a peculiar cellular state of oocytes that regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, might be one manifestation of a DNA repair system. In this article, we report data showing that the reactivity level is correlated with the frequency of crossing over, at least on the X chromosome and on the pericentromeric region of the third chromosome. Moreover, a check for X-chromosome losses and recessive lethals produced after gamma irradiation in flies with different reactivity levels, but common genetic backgrounds, brings more precise evidence for the relationship between reactivity levels and DNA repair. Those results support the existence of a repair-recombination system whose efficiency is modulated by endogenous and environmental factors. The implications of this biological system in connecting genomic variability and environment may shed new lights on adaptative mechanisms. We propose to call it VAMOS for variability modulation system. PMID:9258678

  12. Rotor/wing aerodynamic interactions in hover

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Light, J. S.

    1986-01-01

    An experimental and theoretical investigation of rotor/wing aerodynamic interactions in hover is described. The experimental investigation consisted of both a large-scale and small-scale test. A 0.658-scale, V-22 rotor and wing was used in the large-scale test. Wind download, wing surface pressure, rotor performance, and rotor downwash data from the large-scale test are presented. A small-scale experiment was conducted to determine how changes in the rotor/wing geometry affected the aerodynamic interactions. These geometry variations included the distance between the rotor and wing, wing incidence angle, and configurations both with the rotor axis at the tip of the wing (tilt rotor configuration) and with the rotor axis at the center of the wing (compound helicopter configuration). A wing with boundary-layer control was also tested to evaluate the effect of leading and trailing edge upper surface blowing on the wing download. A computationally efficient, semi-empirical theory was developed to predict the download on the wing. Finally, correlations between the theoretical predictions and test data are presented.

  13. Topology of Vortex-Wing Interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  14. Global Positioning System III (GPS III)

    DTIC Science & Technology

    2013-12-01

    Global Positioning System III ( GPS III) As of FY 2015 President’s Budget...00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Global Positioning System III ( GPS III) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Responsible Office References Program Name Global Positioning System III ( GPS III) DoD Component Air Force

  15. The Spitzer c2d Survey of Weak-line T Tauri Stars. III. The Transition from Primordial Disks to Debris Disks

    NASA Astrophysics Data System (ADS)

    Wahhaj, Zahed; Cieza, Lucas; Koerner, David W.; Stapelfeldt, Karl R.; Padgett, Deborah L.; Case, April; Keller, James R.; Merín, Bruno; Evans, Neal J., II; Harvey, Paul; Sargent, Anneila; van Dishoeck, Ewine F.; Allen, Lori; Blake, Geoff; Brooke, Tim; Chapman, Nicholas; Mundy, Lee; Myers, Philip C.

    2010-12-01

    We present 3.6 to 70 μm Spitzer photometry of 154 weak-line T Tauri stars (WTTSs) in the Chamaeleon, Lupus, Ophiuchus, and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars which are located in the same star-forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 μm) and the 24 μm MIPS band. In the 70 μm MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTSs survey in the mid- to far-infrared to date and reveal the frequency of outer disks (r = 3-50 AU) around WTTSs. The 70 μm photometry for half the c2d WTTSs sample (the on-cloud objects), which were not included in the earlier papers in this series, those of Padgett et al. and Cieza et al., are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTSs, but just 5% for off-cloud WTTSs, similar to the value reported in the earlier works. WTTSs exhibit spectral energy distributions that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than L disk/L * = 2 × 10-3 in 2 Myr and more tenuous than L disk/L * = 5 × 10-4 in 4 Myr.

  16. THE SPITZER c2d SURVEY OF WEAK-LINE T TAURI STARS. III. THE TRANSITION FROM PRIMORDIAL DISKS TO DEBRIS DISKS

    SciTech Connect

    Wahhaj, Zahed; Cieza, Lucas; Koerner, David W.; Case, April; Stapelfeldt, Karl R.; Chapman, Nicholas; Padgett, Deborah L.; Brooke, Tim; Keller, James R.; MerIn, Bruno; Evans, Neal J.; Harvey, Paul; Sargent, Anneila; Van Dishoeck, Ewine F.; Allen, Lori; Blake, Geoff; Mundy, Lee; Myers, Philip C.

    2010-12-01

    We present 3.6 to 70 {mu}m Spitzer photometry of 154 weak-line T Tauri stars (WTTSs) in the Chamaeleon, Lupus, Ophiuchus, and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars which are located in the same star-forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 {mu}m) and the 24 {mu}m MIPS band. In the 70 {mu}m MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTSs survey in the mid- to far-infrared to date and reveal the frequency of outer disks (r = 3-50 AU) around WTTSs. The 70 {mu}m photometry for half the c2d WTTSs sample (the on-cloud objects), which were not included in the earlier papers in this series, those of Padgett et al. and Cieza et al., are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTSs, but just 5% for off-cloud WTTSs, similar to the value reported in the earlier works. WTTSs exhibit spectral energy distributions that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than L{sub disk}/L{sub *} = 2 x 10{sup -3} in 2 Myr and more tenuous than L{sub disk}/L{sub *} = 5 x 10{sup -4} in 4 Myr.

  17. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.

    PubMed

    Nan, Yanghai; Karásek, Matěj; Lalami, Mohamed Esseghir; Preumont, André

    2017-03-06

    Flapping wing micro air vehicles (MAVs) take inspiration from natural fliers, such as insects and hummingbirds. Existing designs manage to mimic the wing motion of natural fliers to a certain extent; nevertheless, differences will always exist due to completely different building blocks of biological and man-made systems. The same holds true for the design of the wings themselves, as biological and engineering materials differ significantly. This paper presents results of experimental optimization of wing shape of a flexible wing for a hummingbird-sized flapping wing MAV. During the experiments we varied the wing 'slackness' (defined by a camber angle), the wing shape (determined by the aspect and taper ratios) and the surface area. Apart from the generated lift, we also evaluated the overall power efficiency of the flapping wing MAV achieved with the various wing design. The results indicate that especially the camber angle and aspect ratio have a critical impact on the force production and efficiency. The best performance was obtained with a wing of trapezoidal shape with a straight leading edge and an aspect ratio of 9.3, both parameters being very similar to a typical hummingbird wing. Finally, the wing performance was demonstrated by a lift-off of a 17.2 g flapping wing robot.

  18. Spinning Characteristics of Wings I : Rectangular Clark Y Monoplane Wing

    NASA Technical Reports Server (NTRS)

    Bamber, M J; Zimmerman, C H

    1936-01-01

    A series of wind tunnel tests of a rectangular Clark Y wing was made with the NACA spinning balance as part of a general program of research on airplane spinning. All six components of the aerodynamic force and moment were measured throughout the range of angles of attack, angles of sideslip, and values omega b/2v likely to be attained by a spinning airplane; the results were reduced to coefficient form. It is concluded that a conventional monoplane with a rectangular Clark y wing can be made to attain spinning equilibrium throughout a wide range of angles of attack but that provision of a yawing moment coefficient of -0.02 (against the spin) by the tail, fuselage, and interferences will insure against attainment of equilibrium in a steady spin.

  19. Reynolds Number, Compressibility, and Leading-Edge Bluntness Effects on Delta-Wing Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2004-01-01

    An overview of Reynolds number, compressibility, and leading edge bluntness effects is presented for a 65 degree delta wing. The results of this study address both attached and vortex-flow aerodynamics and are based upon a unique data set obtained in the NASA-Langley National Transonic Facility (NTF) for i) Reynolds numbers ranging from conventional wind-tunnel to flight values, ii) Mach numbers ranging from subsonic to transonic speeds, and iii) leading-edge bluntness values that span practical slender wing applications. The data were obtained so as to isolate the subject effects and they present many challenges for Computational Fluid Dynamics (CFD) studies.

  20. Genetic basis of wing morphogenesis in Drosophila: sexual dimorphism and non-allometric effects of shape variation

    PubMed Central

    2011-01-01

    Background The Drosophila wing represents a particularly appropriate model to investigate the developmental control of phenotypic variation. Previous studies which aimed to identify candidate genes for wing morphology demonstrated that the genetic basis of wing shape variation in D. melanogaster is composed of numerous genetic factors causing small, additive effects. In this study, we analyzed wing shape in males and females from 191 lines of D. melanogaster, homozygous for a single P-element insertion, using geometric morphometrics techniques. The analysis allowed us to identify known and novel candidate genes that may contribute to the expression of wing shape in each sex separately and to compare them to candidate genes affecting wing size which have been identified previously using the same lines. Results Our results indicate that more than 63% of induced mutations affected wing shape in one or both sexes, although only 33% showed significant differences in both males and females. The joint analysis of wing size and shape revealed that only 19% of the P-element insertions caused coincident effects on both components of wing form in one or both sexes. Further morphometrical analyses revealed that the intersection between veins showed the smallest displacements in the proximal region of the wing. Finally, we observed that mutations causing general deformations were more common than expected in both sexes whereas the opposite occurred with those generating local changes. For most of the 94 candidate genes identified, this seems to be the first record relating them with wing shape variation. Conclusions Our results support the idea that the genetic architecture of wing shape is complex with many different genes contributing to the trait in a sexually dimorphic manner. This polygenic basis, which is relatively independent from that of wing size, is composed of genes generally involved in development and/or metabolic functions, especially related to the regulation of

  1. Welding III.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding III, an advanced course in arc welding offered at the Community College of Allegheny County to provide students with the proficiency necessary for industrial certification. The course objectives, which are outlined first, specify that students will…

  2. The Effects of Streamwise-Deflected Wing Tips on the Aerodynamic Characteristics of an Aspect Ratio-2 Triangular Wing, Body, and Tail Combination

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.

    1959-01-01

    An investigation has been conducted on a triangular wing and body combination to determine the effects on the aerodynamic characteristics resulting from deflecting portions of the wing near the tips 900 to the wing surface about streamwise hinge lines. Experimental data were obtained for Mach numbers of 0.70, 1.30, 1.70, and 2.22 and for angles of attack ranging from -5 deg to +18 deg at sideslip angles of 0 deg and 5 deg. The results showed that the aerodynamic center shift experienced by the triangular wing and body combination as the Mach number was increased from subsonic to supersonic could be reduced by about 40 percent by deflecting the outboard 4 percent of the total area of each wing panel. Deflection about the same hinge line of additional inboard surfaces consisting of 2 percent of the total area of each wing panel resulted in a further reduction of the aerodynamic center travel of 10 percent. The resulting reductions in the stability were accompanied by increases in the drag due to lift and, for the case of the configuration with all surfaces deflected, in the minimum drag. The combined effects of reduced stability and increased drag of the untrimmed configuration on the trimmed lift-drag ratios were estimated from an analysis of the cases in which the wing-body combination with or without tips deflected was assumed to be controlled by a canard. The configurations with deflected surfaces had higher trimmed lift-drag ratios than the model with undeflected surfaces at Mach numbers up to about 1.70. Deflecting either the outboard surfaces or all of the surfaces caused the directional stability to be increased by increments that were approximately constant with increasing angle of attack at each Mach number. The effective dihedral was decreased at all angles of attack and Mach numbers when the surfaces were deflected.

  3. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  4. Aerodynamic-structural study of canard wing, dual wing, and conventional wing systems for general aviation applications

    NASA Technical Reports Server (NTRS)

    Selberg, B. P.; Cronin, D. L.

    1985-01-01

    An analytical aerodynamic-structural airplane configuration study was conducted to assess performance gains achievable through advanced design concepts. The mission specification was for 350 mph, range of 1500 st. mi., at altitudes between 30,000 and 40,000 ft. Two payload classes were studied - 1200 lb (6 passengers) and 2400 lb (12 passengers). The configurations analyzed included canard wings, closely coupled dual wings, swept forward - swept rearward wings, joined wings, and conventional wing tail arrangements. The results illustrate substantial performance gains possible with the dual wing configuration. These gains result from weight savings due to predicted structural efficiencies. The need for further studies of structural efficiencies for the various advanced configurations was highlighted.

  5. Swept wing ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Bidwell, C. S.

    1990-01-01

    An effort to develop a three-dimensional ice accretion modeling method is initiated. This first step toward creation of a complete aircraft icing simulation code builds on previously developed methods for calculating three-dimensional flowfields and particle trajectories combined with a two-dimensional ice accretion calculation along coordinate locations corresponding to streamlines. This work is intended as a demonstration of the types of calculations necessary to predict a three-dimensional ice accretion. Results of calculations using the 3D method for a MS-317 swept wing geometry are projected onto a 2D plane normal to the wing leading edge and compared to 2D results for the same geometry. These results indicate that the flowfield over the surface and the particle trajectories differed for the two calculations. This led to lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and ultimately ice accumulation for the 3D calculation.

  6. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    2009-05-01

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  7. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  8. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.

    PubMed

    Shang, J K; Combes, S A; Finio, B M; Wood, R J

    2009-09-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  9. Flexible Wing Model for Structural Sizing and Multidisciplinary Design Optimization of a Strut-Braced Wing

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.; Naghshineh, Amir H.; Sulaeman, Erwin; Kapania, Rakesh K.; Haftka, Raphael T.

    2000-01-01

    This paper describes a structural and aeroelastic model for wing sizing and weight calculation of a strut-braced wing. The wing weight is calculated using a newly developed structural weight analysis module considering the special nature of strut-braced wings. A specially developed aeroelastic model enables one to consider wing flexibility and spanload redistribution during in-flight maneuvers. The structural model uses a hexagonal wing-box featuring skin panels, stringers, and spar caps, whereas the aerodynamics part employs a linearized transonic vortex lattice method. Thus, the wing weight may be calculated from the rigid or flexible wing spanload. The calculations reveal the significant influence of the strut on the bending material weight of the wing. The use of a strut enables one to design a wing with thin airfoils without weight penalty. The strut also influences wing spanload and deformations. Weight savings are not only possible by calculation and iterative resizing of the wing structure according to the actual design loads. Moreover, as an advantage over the cantilever wing, employment of the strut twist moment for further load alleviation leads to increased savings in structural weight.

  10. View of Arcade interior from line of connection between First ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Arcade interior from line of connection between First Street Wing and Broadway Wing, facing east-southeast. Note infill at extreme right, where vaulted arcade space continues to Main Street - Post Office Arcade, 2118 First Street, Fort Myers, Lee County, FL

  11. Effect of wing flexibility on the experimental aerodynamic characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Yee, S. C.

    1977-01-01

    A solid-aluminum oblique wing was designed to deflect considerably under load so as to relieve the asymmetric spanwise stalling that is characteristic of this type of wing by creating washout on the trailing wing panel and washin on the leading wing panel. Experimental forces, and pitching, rolling and yawing moments were measured with the wing mounted on a body of revolution. In order to vary the dynamic pressure, measurements were made at several unit Reynolds numbers, and at Mach numbers. The wing was investigated when unswept (at subsonic Mach numbers only) and when swept 45 deg, 50 deg, and 60 deg. The wing was straight tapered in planform, had an aspect ratio of 7.9 (based on the unswept span), and a profile with a maximum thickness of 4 percent chord. The results substantiate the concept that an oblique wing designed with the proper amount of flexibility self relieves itself of asymmetric spanwise stalling and the associated nonlinear moment curves.

  12. A Discrete-Vortex Method for Studying the Wing Rock of Delta Wings

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    2002-01-01

    A discrete-vortex method is developed to investigate the wing rock problem associated with highly swept wings. The method uses two logarithmic vortices placed above the wing to represent the vortex flow field and uses boundary conditions based on conical flow, vortex rate of change of momentum, and other considerations to position the vortices and determine their strengths. A relationship based on the time analogy and conical-flow assumptions is used to determine the hysteretic positions of the vortices during roll oscillations. Static and dynamic vortex positions and wing rock amplitudes and frequencies calculated by using the method are generally in good agreement with available experimental data. The results verify that wing rock is caused by hysteretic deflections of the vortices and indicate that the stabilizing moments that limit wing rock amplitudes are the result of the one primary vortex moving outboard of the wing where it has little influence on the wing.

  13. Elements of the Wing Section Theory and of the Wing Theory

    NASA Technical Reports Server (NTRS)

    Munk, Max M.

    1979-01-01

    Results are presented of the theory of wings and of wing sections which are of immediate practical value. They are proven and demonstrated by the use of the simple conceptions of kinetic energy and momentum only.

  14. Constraints on the wing morphology of pterosaurs.

    PubMed

    Palmer, Colin; Dyke, Gareth

    2012-03-22

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine-let alone measure-optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability.

  15. Rotor/Wing Interactions in Hover

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  16. Constraints on the wing morphology of pterosaurs

    PubMed Central

    Palmer, Colin; Dyke, Gareth

    2012-01-01

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine—let alone measure—optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability. PMID:21957137

  17. Straight-line climbing flight aerodynamics of a fruit bat

    NASA Astrophysics Data System (ADS)

    Viswanath, K.; Nagendra, K.; Cotter, J.; Frauenthal, M.; Tafti, D. K.

    2014-02-01

    From flight data obtained on a fruit bat, Cynopterus brachyotis, a kinematic model for straight-line flapping motion is extracted and analyzed in a computational fluid dynamics (CFD) framework to gain insight into the complexity of bat flight. The intricate functional mechanics and architecture of the bat wings set it apart from other vertebrate flight. The extracted kinematic model is simulated for a range of Reynolds numbers, to observe the effect these phenomena have on the unsteady transient mechanisms of the flow produced by the flapping wings. The Strouhal number calculated from the data is high indicating that the oscillatory motion dominates the flow physics. From the obtained data, the bat exhibits fine control of its mechanics by actively varying wing camber, wing area, torsional rotation of the wing, forward and backward translational sweep of the wing, and wing conformation to dictate the fluid dynamics. As is common in flapping flight, the primary force generation is through the attached unsteady vortices on the wing surface. The bat through varying the wing camber and the wing area modulates this force output. The power requirement for the kinematics is analyzed and correlated with the aerodynamic performance.

  18. Subtractive Structural Modification of Morpho Butterfly Wings.

    PubMed

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings.

  19. Digest: Imperfect convergence in butterfly wing patterns.

    PubMed

    Earl, Chandra; Guralnick, Robert P; Kawahara, Akito Y

    2017-02-27

    Butterfly wing patterns are among the most diverse morphological characteristics in nature, with many of the 18,000 or so described butterfly species readily distinguished by wing pattern alone. Wing pattern serves as one of the primary means of communication among species and is thus subject to strong natural selection for mimicry and warning color (aposematism). Convergent wing patterns are particularly evident across the butterfly genus Adelpha, suggesting this genus may be a good system to study the underlying mechanisms behind mimicry. This article is protected by copyright. All rights reserved.

  20. Optimal redesign study of the harm wing

    NASA Technical Reports Server (NTRS)

    Mcintosh, S. C., Jr.; Weynand, M. E.

    1984-01-01

    The purpose of this project was to investigate the use of optimization techniques to improve the flutter margins of the HARM AGM-88A wing. The missile has four cruciform wings, located near mid-fuselage, that are actuated in pairs symmetrically and antisymmetrically to provide pitch, yaw, and roll control. The wings have a solid stainless steel forward section and a stainless steel crushed-honeycomb aft section. The wing restraint stiffness is dependent upon wing pitch amplitude and varies from a low value near neutral pitch attitude to a much higher value at off-neutral pitch attitudes, where aerodynamic loads lock out any free play in the control system. The most critical condition for flutter is the low-stiffness condition in which the wings are moved symmetrically. Although a tendency toward limit-cycle flutter is controlled in the current design by controller logic, wing redesign to improve this situation is attractive because it can be accomplished as a retrofit. In view of the exploratory nature of the study, it was decided to apply the optimization to a wing-only model, validated by comparison with results obtained by Texas Instruments (TI). Any wing designs that looked promising were to be evaluated at TI with more complicated models, including body modes. The optimization work was performed by McIntosh Structural Dynamics, Inc. (MSD) under a contract from TI.

  1. Waving Wing Aerodynamics at Low Reynolds Numbers

    DTIC Science & Technology

    2010-07-01

    canonical pitch - up , pitch -down wing maneuver, in 39th AIAA Fluid Dynamics Conference, AIAA 2009-3687, San Antonio, TX, 22-25 June 2009. [7] C. P. Ellington...unsteady lift generation on three-dimensional flapping wings in the MAV flight regime and, if a leading edge vortex develops at MAV-like Reynolds numbers... wing rotates in a propeller-like motion through a wing stroke angle up to 90 degrees. Unsteady lift and drag force data was acquired throughout the

  2. A magnetic fluid microdevice using insect wings

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Tsuyuki, K.; Yano, T.; Takagi, K.

    2008-05-01

    A magnetic fluid microdevice using Diptera insect wings is proposed and constructed. The magnetic fluid device is composed of insect wings, a small permanent magnet, coil, and kerosene-based magnetic fluid. First, the structural properties of insect wings are studied through measurements of certain morphological parameters. Secondly, the novel type of microwind energy converter is constructed. Thirdly, the power generation characteristics of the magnetic fluid microdevice using insect wings are examined. It is found that the output power is roughly proportional to the cube of the airflow velocity.

  3. High performance forward swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  4. Veins improve fracture toughness of insect wings.

    PubMed

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  5. Aeroelastic tailoring for oblique wing lateral trim

    NASA Technical Reports Server (NTRS)

    Bohlmann, Jonathan D.; Weisshaar, Terrence A.; Eckstrom, Clinton V.

    1988-01-01

    Composite material aeroelastic tailoring is presently explored as a means for the correction of the roll trim imbalance of oblique-wing aircraft configurations. The concept is demonstrated through the analysis of a realistic oblique wing by a static aeroelastic computational procedure encompassing the full potential transonic aerodynamic code FLO22 and a Ritz structural plate program that models the stiffness due to symmetrical-but-unbalanced composite wing skins. Results indicate that asymetric composite tailoring reduces the aileron deflection needed for roll equilibrium, and reduces control surface hinge moment and drag. Wing skin stresses are, however, very high.

  6. Euler calculations for wings using Cartesian grids

    NASA Technical Reports Server (NTRS)

    Gaffney, R. L., Jr.; Hassan, H. A.; Salas, M. D.

    1987-01-01

    A method is presented for the calculation of transonic flows past wings using Cartesian grids. The calculations are based on a finite volume formulation of the Euler equations. Results are presented for a rectangular wing with a flat tip and the ONERA M6 wing. In general, the results are in good agreement with other computations and available experiment. However, Cartesian grids require a greater number of points than body fitted grids in order to resolve the flow properties near the leading edge of a swept wing.

  7. First-Line XELOX Plus Bevacizumab Followed by XELOX Plus Bevacizumab or Single-Agent Bevacizumab as Maintenance Therapy in Patients with Metastatic Colorectal Cancer: The Phase III MACRO TTD Study

    PubMed Central

    Gómez-España, Auxiliadora; Massutí, Bartomeu; Sastre, Javier; Abad, Albert; Valladares, Manuel; Rivera, Fernando; Safont, Maria J.; Martínez de Prado, Purificación; Gallén, Manuel; González, Encarnación; Marcuello, Eugenio; Benavides, Manuel; Fernández-Martos, Carlos; Losa, Ferrán; Escudero, Pilar; Arrivi, Antonio; Cervantes, Andrés; Dueñas, Rosario; López-Ladrón, Amelia; Lacasta, Adelaida; Llanos, Marta; Tabernero, Jose M.; Antón, Antonio; Aranda, Enrique

    2012-01-01

    Purpose. The aim of this phase III trial was to compare the efficacy and safety of bevacizumab alone with those of bevacizumab and capecitabine plus oxaliplatin (XELOX) as maintenance treatment following induction chemotherapy with XELOX plus bevacizumab in the first-line treatment of patients with metastatic colorectal cancer (mCRC). Patients and Methods. Patients were randomly assigned to receive six cycles of bevacizumab, capecitabine, and oxaliplatin every 3 weeks followed by XELOX plus bevacizumab or bevacizumab alone until progression. The primary endpoint was the progression-free survival (PFS) interval; secondary endpoints were the overall survival (OS) time, objective response rate (RR), time to response, duration of response, and safety. Results. The intent-to-treat population comprised 480 patients (XELOX plus bevacizumab, n = 239; bevacizumab, n = 241); there were no significant differences in baseline characteristics. The median follow-up was 29.0 months (range, 0–53.2 months). There were no statistically significant differences in the median PFS or OS times or in the RR between the two arms. The most common grade 3 or 4 toxicities in the XELOX plus bevacizumab versus bevacizumab arms were diarrhea, hand–foot syndrome, and neuropathy. Conclusion. Although the noninferiority of bevacizumab versus XELOX plus bevacizumab cannot be confirmed, we can reliably exclude a median PFS detriment >3 weeks. This study suggests that maintenance therapy with single-agent bevacizumab may be an appropriate option following induction XELOX plus bevacizumab in mCRC patients. PMID:22234633

  8. Biological activity and redistribution of nucleolar proteins of two different cell lines treated with cis-dichloro-1,2-propylenediamine-N,N,N',N'-tetraacetato ruthenium (III) (RAP).

    PubMed

    Delmani, Fatima Azzahra; Torreblanca, José; Moreno, Javier; García-Herdugo, Gregorio; Vilaplana, Rosario; González-Víltchez, Francisco

    2014-06-01

    The interaction of a newly synthesized antitumor complex cis-dichloro-1,2-propylenediamine-N,N,N',N'-tetraacetato ruthenium (III) (RAP) with DNA was investigated in vitro through a number of techniques including comet assay, immunoprecipitation, and immunolocalization of certain nucleolar proteins (the upstream binding factor (UBF) and fibrillarin) involved in DNA transcription, rRNA processing, and ribosomal assembly. The results showed that RAP binds to the DNA of two cell lines (H4 and Hs-683) causing a delay in cell proliferation rate leading to a number of cellular modifications. These modifications include DNA-damage assessed by the single cell gel electrophoresis method (comet assay) and variation in the expression of nucleolar proteins; UBF was more abundant in RAP treated cells, this was explained by the high affinity of this protein to DNA modified by RAP. On the other hand, fibrillarin was found in less quantities in RAP treated cells which was explained by a de-regulation of the ribosomal machinery caused by RAP.

  9. Evaluation of the mutagenicity and genotoxic potential of carvacrol and thymol using the Ames Salmonella test and alkaline, Endo III- and FPG-modified comet assays with the human cell line Caco-2.

    PubMed

    LLana-Ruiz-Cabello, Maria; Maisanaba, Sara; Puerto, Maria; Prieto, Ana I; Pichardo, Silvia; Jos, Ángeles; Cameán, Ana M

    2014-10-01

    Currently, direct antimicrobial and antioxidant additives derived from essential oils are used in food packaging and are perceived by consumers as low-health-risk compounds. In this study, we investigated the potential mutagenicity and genotoxicity of carvacrol and thymol, major compounds in several essential oils, using the Ames Salmonella test and the alkaline, Endo III- and formamidopyrimidine glycosylase (FPG)-modified comet assays, respectively. Thymol did not show any mutagenic activity at any concentration assayed (0-250 μM), whereas carvacrol exhibited mutagenic potential, displaying greater activity in presence of the metabolic fraction (29-460 μM). The genotoxic effects were evaluated in the human colon carcinoma cell line Caco-2, and the standard comet assay revealed that neither carvacrol (0-460 μM) nor thymol (0-250 μM) had any affects at 24 and 48 h. The FPG-modified comet assay showed that the highest concentration of carvacrol (460 μM) caused DNA damage, indicating damage to the purine bases. These results should be used to identify the appropriate concentrations of carvacrol and thymol as additives in food packaging. Moreover, further studies are necessary to explore the safety and/or the toxicity mechanisms of these compounds.

  10. Weighted f-values, A-values, and line strengths for the E1 transitions among 3d 6, 3d 54s, and 3d 54p levels of Fe III

    NASA Astrophysics Data System (ADS)

    Deb, Narayan C.; Hibbert, Alan

    2009-03-01

    Weighted oscillator strengths, weighted radiative rates, and line strengths for all the E1 transitions between 285 fine-structure levels belonging to the 3d 6, 3d 54s, and 3d 54p configurations of Fe III are presented, in ascending order of wavelength. Calculations have been undertaken using the general configuration interaction (CI) code CIV3. The large configuration set is constructed by allowing single and double replacements from any of 3d 6, 3d 54s, 3d 54p, and 3d 54d configurations to nl orbitals with n⩽5,l⩽3 as well as 6p. Additional selective promotions from 3s and 3p subshells are also included in the CI expansions to incorporate the important correlation effects in the n=3 shell. Results of some strong transitions between levels of 3d 6, 3d 54s, and 3d 54p configurations are also presented and compared with other available calculations. It is found that large disagreements occur in many transitions among the existing calculations.

  11. Projection Moire Interferometry Measurements of Micro Air Vehicle Wings

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-01-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  12. Spatial differences in patterns of modification: selection on hairy in Drosophila melanogaster wings.

    PubMed

    Fletcher, R B; Thompson, J N

    2000-01-01

    Artificial selection was carried out for over 45 generations to enhance and suppress expression of the mutation hairy on the Drosophila melanogaster wing. Whole chromosome mapping of X-linked and autosomal modifiers of sense organ number displayed regional differences in magnitude and direction of their effects. Regional specificity of modifier effects was also seen in some interchromosomal interactions. Scanning electron microscopy allowed precise measurement of sense organ size and position along the L3 longitudinal wing vein. Sense organ size varied in a predictable fashion along the proximal-distal axis, and the dorsal pattern differed from the ventral pattern. The high and low selection lines differed most in the proximal portion of the L3 vein. Extra sense organs in the High line were often associated with vein fragments at locations predicted from ancestral vein patterns. Thus, regional specificity of polygenic or quantitative trait locus modifier effects was identified in several different parts of the wing.

  13. Transonic Aerodynamic Loading Characteristics of a Wing-Body-Tail Combination Having a 52.5 deg. Sweptback Wing of Aspect Ratio 3 With Conical Wing Camber and Body Indentation for a Design Mach Number of Square Root of 2

    NASA Technical Reports Server (NTRS)

    Cassetti, Marlowe D.; Re, Richard J.; Igoe, William B.

    1961-01-01

    An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5 deg. with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0 deg. to 14 deg., with Reynolds numbers based on mean aerodynamic chord varying from 7 x 10(exp 6) to 8 x 10(exp 6). Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced the transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.

  14. DOT tomography of the solar atmosphere. VI. Magnetic elements as bright points in the blue wing of Hα

    NASA Astrophysics Data System (ADS)

    Leenaarts, J.; Rutten, R. J.; Sütterlin, P.; Carlsson, M.; Uitenbroek, H.

    2006-04-01

    High-resolution solar images taken in the blue wing of the Balmer H α line with the Dutch Open Telescope show intergranular magnetic elements as strikingly bright features, similar to, but with appreciably larger contrast over the surrounding granulation than their more familiar manifestation as G-band bright points. Part of this prominent appearance is due to low granular contrast, without granule/lane brightness reversal as, e.g., in the wings of Ca II H & K. We use 1D and 2D radiative transfer modeling and 3D solar convection and magnetoconvection simulations to reproduce and explain the H α wing images. We find that the blue H α wing obeys near-LTE line formation. It appears particularly bright in magnetic elements through low temperature gradients. The granulation observed in the blue wing of H α has low contrast because of the lack of H α opacity in the upper photosphere, Doppler cancellation, and large opacity sensitivity to temperature working against source function sensitivity. We conclude that the blue H α wing represents a promising proxy magnetometer to locate and track isolated intermittent magnetic elements, a better one than the G band and the wings of Ca II H & K although less sharp at given aperture.

  15. Theoretical and Experimental Comparison of Aerodynamic Characteristics for Flexible Membrane Wings with Cambered Frames

    NASA Astrophysics Data System (ADS)

    Wrist, Andrew; Hubner, James

    2015-11-01

    Flexible membrane wings of the MAV (micro air vehicle) scale can experience improved lift/drag ratios, delays in stall, and decreased time-averaged flow separation when compared to rigid wings. Previous research examined the effect of frame camber on the time-averaged shapes of membrane wings and observed that increasing frame camber results in increased aero-induced membrane camber. This study involves a more in-depth DIC (Digital Image Correlation) analysis of the previous research to increase the understanding of the time-averaged shapes for membrane wings with cambered frames and offers a theoretical comparison to the experimental results. The author performed a theoretical lifting-line analysis based on the time-averaged shape for the membrane wings to calculate lift, induced drag, and circulation. The calculations include the effects of geometric twist, aspect ratio, and effective angle-of-attack. The wings, with an aspect ratio of 2, were fabricated with silicone rubber membranes and 3D printed cambered frames differing in percent camber, maximum camber location, and thickness. The DIC images were acquired in The University of Alabama's MAV wind tunnel as tests were performed at 10 m/s (Re = 50,000). The analysis will be discussed in the presentation. Graduate Research Assistant.

  16. Theoretical symmetric span loading at subsonic speeds for wings having arbitrary plan form

    NASA Technical Reports Server (NTRS)

    Deyoung, John; Harper, Charles W

    1948-01-01

    A method is shown by which the symmetric span loading for a certain class of wings can be simply found. The geometry of these wings is limited only to the extent that they must have symmetry about the root chord, must have a straight quarter-chord line over the semispan, and must have no discontinuities in twist. A procedure is shown for finding the lift-curve slope, pitching moment, center of lift, and induced drag from the span load distribution. A method of accounting for the effects of Mach number and for changes in section lift-curve slope is also given. Charts are presented which give directly the characteristics of many wings. Other charts are presented which reduce the problem of finding the symmetric loading on all wings falling within the prescribed limits to the solution of not more than four simultaneous equations. The loadings and wing characteristics predicted by the theory are compared to those given by other theories and by experiment. It is concluded that the results given by the subject theory are satisfactory. The theory is applied to a number of wings to exhibit the effects of such variables as sweep, aspect ratio, taper, and twist. The results are compared and conclusions drawn as to the relative effects of these variables.

  17. Surface photometry of WINGS galaxies with GASPHOT

    NASA Astrophysics Data System (ADS)

    D'Onofrio, M.; Bindoni, D.; Fasano, G.; Bettoni, D.; Cava, A.; Fritz, J.; Gullieuszik, M.; Kjærgaard, P.; Moretti, A.; Moles, M.; Omizzolo, A.; Poggianti, B. M.; Valentinuzzi, T.; Varela, J.

    2014-12-01

    softwares for common galaxies indicates that the systematic differences are small in general. The only significant deviations are most likely due to the peculiar (and very accurate) image processing adopted by WINGS for large galaxies. The main advantages of GASPHOT with respect to other tools are (i) the automatic finding of the local PSF; (ii) the short CPU execution time; and (iii) the remarkable stability against the choice of the initial-guess parameters. All these characteristics make GASPHOT an ideal tool for blind surface photometry of large galaxy samples in wide-field CCD mosaics. Catalogs are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A87

  18. Winged launcher thermal design aspects

    NASA Astrophysics Data System (ADS)

    Keller, K.

    1991-12-01

    The need for significant reduction in launch cost favors the consideration of reusable space transportation systems which are assisted by aerodynamic lift. The thermomechanical and thermochemical environments and the basic design requirements of two airbreathing vehicle classes are put in relation to vehiles like Shuttle and Hermes. Similarities as well as essential differences between the various vehicles are highlighted. State of the art thermal protection concepts and materials are analyzed with respect to winged launcher concepts. Future development trends for design and materials with potential application are identified. The need for improved thermostructural analysis and optimization techniques is outlined.

  19. Test results from large wing and fuselage panels

    NASA Technical Reports Server (NTRS)

    Madan, Ram C.; Voldman, Mike

    1993-01-01

    This paper presents the first results in an assessment of the strength, stiffness, and damage tolerance of stiffened wing and fuselage subcomponents. Under this NASA funded program, 10 large wing and fuselage panels, variously fabricated by automated tow placement and dry-stitched preform/resin transfer molding, are to be tested. The first test of an automated tow placement six-longeron fuselage panel under shear load was completed successfully. Using NASTRAN finite-element analysis the stiffness of the panel in the linear range prior to buckling was predicted within 3.5 percent. A nonlinear analysis predicted the buckling load within 10 percent and final failure load within 6 percent. The first test of a resin transfer molding six-stringer wing panel under compression was also completed. The panel failed unexpectedly in buckling because of inadequate supporting structure. The average strain was 0.43 percent with a line load of 20.3 kips per inch of width. This strain still exceeds the design allowable strains. Also, the stringers did not debond before failure, which is in contrast to the general behavior of unstitched panels.

  20. Epidermal Growth Factor Receptor (EGFR) Pathway Biomarkers in the Randomized Phase III Trial of Erlotinib Versus Observation in Ovarian Cancer Patients with No Evidence of Disease Progression after First-Line Platinum-Based Chemotherapy

    PubMed Central

    Vergote, Ignace; Anderson, Ryan; Coens, Corneel; Katsaros, Dionyssios; Hirsch, Fred R.; Boeckx, Bram; Varella-Garcia, Marileila; Ferrero, Annamaria; Ray-Coquard, Isabelle; Berns, Els M. J. J.; Casado, Antonio; Lambrechts, Diether; Jimeno, Antonio

    2015-01-01

    Background In this work, we aimed to identify molecular epidermal growth factor receptor (EGFR) tissue biomarkers in patients with ovarian cancer who were treated within the phase III randomized European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group (EORTC-GCG) 55041 study comparing erlotinib with observation in patients with no evidence of disease progression after first-line platinum-based chemotherapy. Methods Somatic mutations in KRAS, BRAF, NRAS, PIK3CA, EGFR, and PTEN were determined in 318 (38 %) and expression of EGFR, pAkt, pMAPK, E-cadherin and Vimentin, and EGFR and HER2 gene copy numbers in 218 (26 %) of a total of 835 randomized patients. Biomarker data were correlated with progression-free survival (PFS) and overall survival (OS). Results Only 28 mutations were observed among KRAS, BRAF, NRAS, PIK3CA, EGFR, and PTEN (in 7.5 % of patients), of which the most frequent were in KRAS and PIK3CA. EGFR mutations occurred in only three patients. When all mutations were pooled, patients with at least one mutation in KRAS, NRAS, BRAF, PIK3CA, or EGFR had longer PFS (33.1 versus 12.3 months; HR 0.57; 95 % CI 0.33 to 0.99; P=0.042) compared to those with wild-type tumors. EGFR overexpression was detected in 93 of 218 patients (42.7 %), and 66 of 180 patients (36.7 %) had EGFR gene amplification or high levels of copy number gain. Fifty-eight of 128 patients had positive pMAPK expression (45.3 %), which was associated with inferior OS (38.9 versus 67.0 months; HR 1.81; 95 % CI 1.11 to 2.97; P=0.016). Patients with positive EGFR fluorescence in situ hybridization (FISH) status had worse OS (46.1 months) than those with negative status (67.0 months; HR 1.56; 95 % CI 1.01 to 2.40; P=0.044) and shorter PFS (9.6 versus 16.1 months; HR 1.57; 95 % CI 1.11 to 2.22; P=0.010). None of the investigated biomarkers correlated with responsiveness to erlotinib. Conclusions In this phase III study, increased EGFR gene copy number was associated

  1. Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.

    PubMed

    Muijres, Florian T; Iwasaki, Nicole A; Elzinga, Michael J; Melis, Johan M; Dickinson, Michael H

    2017-02-06

    Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage.

  2. The role of plasma slowdown in the generation of Rhea's Alfvén wings

    NASA Astrophysics Data System (ADS)

    Khurana, Krishan K.; Fatemi, Shahab; Lindkvist, Jesper; Roussos, Elias; Krupp, Norbert; Holmström, Mats; Russell, Christopher T.; Dougherty, Michele K.

    2017-02-01

    Alfvén wings are known to form when a conducting or mass-loading object slows down a flowing plasma in its vicinity. Alfvén wings are not expected to be generated when an inert moon such as Rhea interacts with Saturn's magnetosphere, where the plasma impacting the moon is absorbed and the magnetic flux passes unimpeded through the moon. However, in two close polar passes of Rhea, Cassini clearly observed magnetic field signatures consistent with Alfvén wings. In addition, observations from a high-inclination flyby (Distance > 100 RRh) of Rhea on 3 June 2010 showed that the Alfvén wings continue to propagate away from Rhea even at this large distance. We have performed three-dimensional hybrid simulations of Rhea's interaction with Saturn's magnetosphere which show that the wake refilling process generates a plasma density gradient directed in the direction of corotating plasma. The resulting plasma pressure gradient exerts a force directed toward Rhea and slows down the plasma streaming into the wake along field lines. As on the same field lines, outside of the wake, the plasma continues to move close to its full speed, this differential motion of plasma bends the magnetic flux tubes, generating Alfvén wings in the wake. The current system excited by the Alfvén wings transfers momentum to the wake plasma extracting it from plasma outside the wake. Our work demonstrates that Alfvén wings can be excited even when a moon does not possess a conducting exosphere.

  3. Wing Deployment Sequence #2: The deployable, inflatable wing technology demonstrator experiment airc

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Wing Deployment Sequence #2: The deployable, inflatable wing technology demonstrator experiment aircraft's wings continue deploying following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  4. Wing Deployment Sequence #3: The deployable, inflatable wing technology demonstrator experiment airc

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Wing Deployment Sequence #3: The deployable, inflatable wing technology demonstrator experiment aircraft's wings fully deployed during flight following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, Californiaornia. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  5. Wing Deployment Sequence #1: The deployable, inflatable wing technology demonstrator experiment airc

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Wing Deployment Sequence #1: The deployable, inflatable wing technology demonstrator experiment aircraft's wings begin deploying following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  6. An aerodynamic model for one and two degree of freedom wing rock of slender delta wings

    NASA Technical Reports Server (NTRS)

    Hong, John

    1993-01-01

    The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.

  7. Numerical investigation of insect wing fracture behaviour.

    PubMed

    Rajabi, H; Darvizeh, A; Shafiei, A; Taylor, D; Dirks, J-H

    2015-01-02

    The wings of insects are extremely light-weight biological composites with exceptional biomechanical properties. In the recent years, numerical simulations have become a very powerful tool to answer experimentally inaccessible questions on the biomechanics of insect flight. However, many of the presented models require a sophisticated balance of biomechanical material parameters, many of which are not yet available. In this article we show the first numerical simulations of crack propagation in insect wings. We have used a combination of the maximum-principal stress theory, the traction separation law and basic biomechanical properties of cuticle to develop simple yet accurate finite element (FE) models of locust wings. The numerical results of simulated tensile tests on wing samples are in very good qualitative, and interestingly, also in excellent quantitative agreement with previously obtained experimental data. Our study further supports the idea that the cross-veins in insect wings act as barriers against crack propagation and consequently play a dominant role in toughening the whole wing structure. The use of numerical simulations also allowed us to combine experimental data with previously inaccessible data, such as the distribution of the first principal stress through the wing membrane and the veins. A closer look at the stress-distribution within the wings might help to better understand fracture-toughening mechanisms and also to design more durable biomimetic micro-air vehicles.

  8. Wing-Design And -Analysis Code

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.; Carlson, Harry W.

    1990-01-01

    WINGDES2 computer program provides wing-design algorithm based on modified linear theory taking into account effects of attainable leading-edge thrust. Features improved numerical accuracy and additional capabilities. Provides analysis as well as design capability and applicable to both subsonic and supersonic flow. Replaces earlier wing-design code designated WINGDES (see LAR-13315). Written in FORTRAN V.

  9. The Realization and Study of Optical Wings

    NASA Astrophysics Data System (ADS)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  10. Effect of aileron displacement on wing characteristics

    NASA Technical Reports Server (NTRS)

    Heald, R H

    1933-01-01

    The effect of aileron displacement on wing characteristics has been investigated for the Clark Y and the U.S.A. 27 wing sections equipped with rectangular ailerons. The airfoils, rectangular in plan, and having a 10 inch chord and 60 inch span, were mounted on a model fuselage.

  11. Materials Analysis of Foreign Produced Flex Wings

    DTIC Science & Technology

    1995-03-01

    Vehicle, by H. Kredit , January 1964, 144 pages AD B252433, Pilot’s Handbook for tbe Flexible Wing Aerial Utility Vehicle XV-8A, Match 1964, 52 pp AD...Vehicle. H. Kredit , Feb. 1965. 100 pages _AD 460405, XV-8A Flexible Wing Aerial Utility Vehicle. Final Report. Feb. 1965, 113 page; -AD 431128

  12. Flex Wing Fabrication and Static Pressure Testing

    DTIC Science & Technology

    1995-06-01

    Vehicle, by H. Kredit , January 1964, 144 pages AD. B252433, Pilot’s Handbook for the Flexible Wing Aerial Utility Vehicle XV-8A, Match 1964, 52 pp AD...Vehicle, H. Kredit , Feb. 1965. 100 pages .- AD 460405, XV-8A Flexible Wing Aerial Utility Vehicle. Final Report. Feb. 1965, 113 page; -- AD 431128

  13. Computer Code Aids Design Of Wings

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1993-01-01

    AERO2S computer code developed to aid design engineers in selection and evaluation of aerodynamically efficient wing/canard and wing/horizontal-tail configurations that includes simple hinged-flap systems. Code rapidly estimates longitudinal aerodynamic characteristics of conceptual airplane lifting-surface arrangements. Developed in FORTRAN V on CDC 6000 computer system, and ported to MS-DOS environment.

  14. Advanced wing design survivability testing and results

    NASA Technical Reports Server (NTRS)

    Bruno, J.; Tobias, M.

    1992-01-01

    Composite wings on current operational aircraft are conservatively designed to account for stress/strain concentrations, and to assure specified damage tolerance. The technology that can lead to improved composite wing structures and associated structural efficiency is to increase design ultimate strain levels beyond their current limit of 3500 to 4000 micro-in/in to 6000 micro-in/in without sacrificing structural integrity, durability, damage tolerance, or survivability. Grumman, under the sponsorship of the Naval Air Development Center (NADC), has developed a high-strain composite wing design for a subsonic aircraft wing using novel and innovative design concepts and manufacturing methods, while maintaining a state-of-the-art fiber/resin system. The current advanced wing design effort addressed a tactical subsonic aircraft wing using previously developed, high-strain wing design concepts in conjunction with newer/emerging fiber and polymer matrix composite (PMC) materials to achieve the same goals, while reducing complexity. Two categories of advanced PMC materials were evaluated: toughened thermosets; and engineered thermoplastics. Advanced PMC materials offer the technological opportunity to take maximum advantage of improved material properties, physical characteristics, and tailorability to increase performance and survivability over current composite structure. Damage tolerance and survivability to various threats, in addition to structural integrity and durability, were key technical issues addressed during this study, and evaluated through test. This paper focuses on the live-fire testing, and the results performed to experimentally evaluate the survivability of the advanced wing design.

  15. Modeling flexible flapping wings oscillating at resonance

    NASA Astrophysics Data System (ADS)

    Alexeev, Alexander; Masoud, Hassan

    2010-03-01

    Using a hybrid approach for fluid-structure interactions that integrates the lattice Boltzmann and lattice spring models, we study the three-dimensional aerodynamics of flexible flapping wings at hovering. The wings are a pair of flat elastic plates tilted from the horizontal and driven to oscillate according to the sinusoidal law. Our simulations reveal that resonance oscillations of flexible wings dramatically increase aerodynamic lift at low Reynolds number. Comparing to otherwise identical rigid wings, flexible wings at resonance generate up to two orders of magnitude greater lift. Within the resonance band, we identify two operation regimes leading to the maximum lift and the maximum efficiency, respectively. The maximum lift occurs when the wing tip and root move with a phase lag of 90 degrees, whereas the maximum efficiency occurs at the frequency where the wing tip and root oscillate in counterphase. Our results suggest that the resonance regimes would be optimal for the design of microscale flying machines using flexible flapping wings driven by simple kinematic strokes.

  16. Acquisition and Application of Transonic Wing and Far-Field Test Data for Three-Dimensional Computational Method Evaluation. Volume I.

    DTIC Science & Technology

    1980-03-01

    ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER TITLE (and Subtitle) .ORT a PERID COVERED ACQUISITION AND APPLICATION OF TRANSONIC W NG Final e,_;. AND FAR...the FLO-22 analysis. The difference between viscous and inviscid solutions was small. iii TABLE OF CONTENTS Page SYMBOLS...computational methods for analyzing the transonic flow about isolated wings and simple wing-body combinations. Table 1 lists some of the methods which are readily

  17. Design and Testing of a Morphing Wing for an Experimental UAV

    DTIC Science & Technology

    2007-11-01

    line through the use of conformal flaps [6]. Variable cant angle winglets [7] and variable span wing [8] research has also been made. RTO-MP-AVT...A.Gatto and M.I. Friswell, “The Application of Variable Cant Angle Winglets for Morphing Aircraft Control”, University of Bristol, AIAA2006-3660, 2006

  18. Preliminary results on the evaluation of honey bee stocks for susceptibility to deformed wing virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We assessed the susceptibility of honey bee stocks to Deformed Wing Virus (DWV) infection. Three stocks (n = 4 colonies per stock) were evaluated: Italian (IHB), Pol-line (POL, hybrid Varroa Sensitive Hygienic bees) and Russian honey bees (RHB). Each queen was caged to obtain uniformly-aged larvae....

  19. Transonic perturbation analysis of wing-fuselage-nacelle-pylon configurations with powered jet exhausts

    NASA Technical Reports Server (NTRS)

    Wai, J. C.; Sun, C. C.; Yoshihara, H.

    1982-01-01

    A method using a transonic small disturbance code with successive line over-relaxation is described for treating wing/fuselage configurations with a nacelle/pylon/powered jet. Examples illustrating its use for the NASA transport research model are given. Reasonable test/theory comparisons were obtained.

  20. SOUTH WING, TRA661. WEST SIDE. CAMERA FACING NORTHEAST. MTR WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH WING, TRA-661. WEST SIDE. CAMERA FACING NORTHEAST. MTR WEST WALL BEYOND ROOF LINE. INL NEGATIVE NO. HD46-45-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Winglets on low aspect ratio wings

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Liaw, Paul

    1987-01-01

    The drag reduction potentially available from the use of winglets at the tips of low aspect ratio (1.75-2.67) wings with pronounced (45-60 deg) leading edge sweep is assessed numerically for the case of a cruise design point at Mach of 0.8 and a lift coefficient of 0.3. Both wing-winglet and wing-alone design geometries are derived from a linear-theory, minimum induced drag design methodology. Relative performance is evaluated with a nonlinear extended small disturbance potential flow analysis code. Predicted lift coefficient/pressure drag coefficient increases at equal lift for the wing-winglet configurations over the wing-alone planform are of the order of 14.6-15.8, when boundary layer interaction is included.

  2. Collective Flow Enhancement by Tandem Flapping Wings.

    PubMed

    Gravish, Nick; Peters, Jacob M; Combes, Stacey A; Wood, Robert J

    2015-10-30

    We examine the fluid-mechanical interactions that occur between arrays of flapping wings when operating in close proximity at a moderate Reynolds number (Re≈100-1000). Pairs of flapping wings are oscillated sinusoidally at frequency f, amplitude θ_{M}, phase offset ϕ, and wing separation distance D^{*}, and outflow speed v^{*} is measured. At a fixed separation distance, v^{*} is sensitive to both f and ϕ, and we observe both constructive and destructive interference in airspeed. v^{*} is maximized at an optimum phase offset, ϕ_{max}, which varies with wing separation distance, D^{*}. We propose a model of collective flow interactions between flapping wings based on vortex advection, which reproduces our experimental data.

  3. Wing rock suppression using forebody vortex control

    NASA Technical Reports Server (NTRS)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  4. Wing extensions for improving climb performance

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.

    1983-01-01

    Recent wind tunnel studies have shown that significant improvements in wing efficiency and climb performance can be achieved using wing extensions having sharp edges and unmodified upper airfoil contours. Based on tests of six configurations, a simple tip shape provided the best wing efficiency at high lift conditions without penalty during cruise conditions. The best configuration tested exhibited more than 20 percent improvement in the maximum rate of climb, plus a reduction in stall speed and a slight improvement in cruise performance over a baseline tip with a round edge. In addition to measurements that were used to determine performance, flow visualization studies provided insight into reasons for improved wing efficiency. Tests were conducted using a high performance general aviation aircraft model with a tapered, cantilevered wing.

  5. Design of a transonically profiled wing

    NASA Technical Reports Server (NTRS)

    Kiekebusch, B.

    1978-01-01

    The application of well known design concepts with the combined use of thick transonic profiles to aircraft wing design was investigated. Optimization in terms of weight and operational costs was emphasized. It is shown that the usual design criteria and concepts are too restricted and do not sufficiently represent the physical processes over the wing. Suggestions are made for improving this situation, and a design example given. Compared with a wing design according to previously used criteria, the new design is found to be superior in the most important functions. It is concluded that an isobar concept adjusted to the planform in conjunction with an 'organically' designed wing will lead to the weight optimum solutions of wing profiles.

  6. Strain monitoring of a composite wing

    NASA Astrophysics Data System (ADS)

    Strathman, Joseph; Watkins, Steve E.; Kaur, Amardeep; Macke, David C.

    2016-04-01

    An instrumented composite wing is described. The wing is designed to meet the load and ruggedness requirements for a fixed-wing unmanned aerial vehicle (UAV) in search-and-rescue applications. The UAV supports educational systems development and has a 2.1-m wingspan. The wing structure consists of a foam core covered by a carbon-fiber, laminate composite shell. To quantify the wing characteristics, a fiber-optic strain sensor was surface mounted to measure distributed strain. This sensor is based on Rayleigh scattering from local index variations and it is capable of high spatial resolution. The use of the Rayleigh-scattering fiber-optic sensors for distributed measurements is discussed.

  7. High speed flow past wings

    NASA Technical Reports Server (NTRS)

    Norstrud, H.

    1973-01-01

    The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.

  8. Surgical treatment of winged scapula.

    PubMed

    Galano, Gregory J; Bigliani, Louis U; Ahmad, Christopher S; Levine, William N

    2008-03-01

    Injuries to the long thoracic and spinal accessory nerves present challenges in diagnosis and treatment. Palsies of the serratus anterior and trapezius muscles lead to destabilization of the scapula with medial and lateral scapular winging, respectively. Although nonoperative treatment is successful in some patients, failures have led to the evolution of surgical techniques involving various combinations of fascial graft and/or transfer of adjacent muscles. Our preferred method of reconstruction for serratus anterior palsy is a two-incision, split pectoralis major transfer without fascial graft. For trapezius palsy, we prefer a modified version of the Eden-Lange procedure. At a minimum followup of 16 months (mean, 47 months), six patients who underwent the Eden-Lange procedure showed improvement in mean American Shoulder and Elbow Surgeons Shoulder scores (33.3-64.6), forward elevation (141.7-151.0), and visual analog scale (7.0-2.3). At a minimum followup of 16 months (mean, 44 months), 10 patients (11 shoulders) who underwent split pectoralis transfer also improved American Shoulder and Elbow Surgeons Shoulder scores (53.3-63.8), forward elevation (158.2-164.5), and visual analog scale (5.0-2.9). We encountered two complications, both superficial wound infections. These tendon transfers were effective for treating scapular winging in patients who did not respond to nonoperative treatment.

  9. Effects of Body Shape on the Drag of a 45 degree Sweptback-Wing-Body Configuration at Mach Numbers from 0.90 to 1.43

    NASA Technical Reports Server (NTRS)

    Olstad, Walter B.; Fischetti, Thomas L.

    1958-01-01

    An investigation was made of the effects of body shape on the drag of a 45 deg sweptback-wing-body combination at Mach numbers from 0.90 to 1.43. Both the expansion and compression fields induced by body indentation were swept back as the stream Mach number increased from 0.94. The line of zero pressure change was generally tangent to the Mach lines associated with the local velocities over the wing and body. The strength of the induced pressure fields over the wing were attenuated with spanwise distance and the major effects were limited to the inboard 60 percent of the wing semispan. Asymmetrical body indentation tended to increase the lift on the forward portion of the wing and reduce the lift on the rearward portion. This redistribution of lift had a favorable effect on the wave drag due to lift. Symmetrical body indentation reduced the drag loading near the wing-body juncture at all Mach numbers. The reduction in drag loading increased in spanwise extent as the Mach number increased and the line of zero induced pressure became more nearly aligned with the line of maximum wing thickness. Calculations of the wave drag due to thickness, the wave drag due to lift, and the vortex drag of the basic and symmetrical M = 1.2 body and wing combinations at an angle of attack of 0 deg predicted the effects of indentation within 11 percent of the wing-basic-body drag throughout the Mach number range from 1.0 to 1.43. Calculations of the wave drag due to thickness, the wave drag due to lift, and the vortex drag for the basic, symmetrical M = 1.2, and asymmetrical M = 1.4 body and wing combinations predicted the total pressure drag to within 8 percent of the experimental value at M = 1.43.

  10. A randomized, phase III trial of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in first-line treatment of metastatic colorectal cancer: The AIO KRK 0110 Trial/ML22011 Trial

    PubMed Central

    2011-01-01

    Background Several randomized trials have indicated that combination chemotherapy applied in metastatic colorectal cancer (mCRC) does not significantly improve overall survival when compared to the sequential use of cytotoxic agents (CAIRO, MRC Focus, FFCD 2000-05). The present study investigates the question whether this statement holds true also for bevacizumab-based first-line treatment including escalation- and de-escalation strategies. Methods/Design The AIO KRK 0110/ML22011 trial is a two-arm, multicenter, open-label randomized phase III trial comparing the efficacy and safety of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in the first-line treatment of metastatic colorectal cancer. Patients with unresectable metastatic colorectal cancer, Eastern Cooperative Oncology Group (ECOG) performance status 0-1, will be assigned in a 1:1 ratio to receive either capecitabine 1250 mg/m2 bid for 14d (d1-14) plus bevacizumab 7.5 mg/kg (d1) q3w (Arm A) or capecitabine 800 mg/m2 BID for 14d (d1-14), irinotecan 200 mg/m2 (d1) and bevacizumab 7.5 mg/kg (d1) q3w (Arm B). Patients included into this trial are required to consent to the analysis of tumour tissue and blood for translational investigations. In Arm A, treatment escalation from Cape-Bev to CAPIRI-Bev is recommended in case of progressive disease (PD). In Arm B, de-escalation from CAPIRI-Bev to Cape-Bev is possible after 6 months of treatment or in case of irinotecan-associated toxicity. Re-escalation to CAPIRI-Bev after PD is possible. The primary endpoint is time to failure of strategy (TFS). Secondary endpoints are overall response rate (ORR), overall survival, progression-free survival, safety and quality of life. Conclusion The AIO KRK 0110 trial is designed for patients with disseminated, but asymptomatic mCRC who are not potential candidates for surgical resection of metastasis. Two bevacizumab-based strategies are compared: one starting as single

  11. Non-pegylated liposomal doxorubicin combined with gemcitabine as first-line treatment for metastatic or locally advanced breast cancer. Final results of a phase I/II trial.

    PubMed

    Del Barco, S; Colomer, R; Calvo, L; Tusquets, I; Adrover, E; Sánchez, P; Rifà, J; De la Haba, J; Virizuela, J A

    2009-07-01

    Doxorubicin and gemcitabine are active as single agents in breast cancer, have different mechanisms of action, and mainly have non-overlapping side effects. Dose-dependent doxorubicin-related cardiac toxicity is the principal limitation in the metastatic setting. This open, multicenter, single-arm phase I/II study assessed the safety and activity of gemcitabine in combination with non-pegylated liposomal doxorubicin (Myocet), a more cardiac-friendly anthracycline, in the first-line treatment of patients with advanced breast cancer. We aimed to determine the optimal recommended dose (RD) of gemcitabine combined with Myocet in a population, with performance status >or=2 and LVEF >or=50%. A formal phase II study was performed afterwards. A total of 53 patients were recruited. Gemcitabine 900 mg/m(2) intravenously day 1 and 8 combined with Myocet 55 mg/m(2) intravenously day 1, every 21 days, was the final RD. The principal toxicity observed was hematological, and 48% of patients developed grade 3-4 neutropenia. Other toxicities were mild and infrequent, including nausea and vomiting. There were no symptomatic cardiac events despite the fact that 36% of the patients had received prior treatment with adjuvant anthracyclines. Objective responses were observed in 51.1% of 47 evaluable patients (95% CI: 36-66%), including two complete response. In addition, 14 patients (29.8%) demonstrated stable disease. The combination of Myocet and gemcitabine at the RD is safe and has encouraging clinical activity in patients with advanced breast cancer, without apparent cardiac toxicity in anthracycline-pretreated patients. These data support further development of this combination.

  12. Experimental effects of wing location on wing-body pressures at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Allen, Jerry M.; Watson, Carolyn B.

    1993-01-01

    An experimental study was performed at supersonic speeds to measure wing and body spanwise pressure distributions on an axisymmetric-body delta wing model on which the wing vertical location on the body was systematically varied from low- to high-mounted positions. In addition, for two of these positions both horizontal and radial wing angular orientations relative to the body were tested, and roll angle effects were investigated for one of the positions. Seven different wing-body configurations and a body-alone configuration were studied. The test was conducted at Mach numbers from 1.70 to 2.86 at angles of attack from about -4 deg to 24 deg. Pressure orifices were located at three longitudinal stations on each wing-body model, and at each station the orifices were located completely around the body, along the lower surface of the right wing (looking upstream), and along the upper surface of the left wing. All pressure coefficient data are tabulated and selected samples are shown graphically to illustrate the effects of the test variables. The effects of angle of attack, roll angle, Mach number, longitudinal station, wing vertical location, wing angular orientation, and wing-body juncture are analyzed. The vertical location of the wing on the body had a very strong effect on the body pressures. For a given angle of attack at a roll angle of 0 deg, the pressures were virtually constant in the spanwise direction across the windward surfaces of the wing-body combination. Pressure-relieving, channeling, and vortex effects were noted in the data.

  13. Transonic Aerodynamic Characteristics of a Wing-Body Combination having a 52.5 deg Sweptback Wing of Aspect Ratio 3 with Conical Camber and Designed for a Mach Number of the Square Root of 2

    NASA Technical Reports Server (NTRS)

    Igoe, William B.; Re, Richard J.; Cassetti, Marlowe

    1961-01-01

    An investigation has been made of the effects of conical wing camber and supersonic body indentation on the aerodynamic characteristics of a wing-body configuration at transonic speeds. Wing aspect ratio was 3.0, taper ratio was 0.1, and quarter-chord line sweepback was 52.5 deg with airfoil sections of 0.03 thickness ratio. The tests were conducted in the Langley 16-foot transonic tunnel at various Mach numbers from 0.80 to 1.05 at angles of attack from -4 deg to 14 deg. The cambered-wing configuration achieved higher lift-drag ratios than a similar plane-wing configuration. The camber also reduced the effects of wing-tip flow separation on the aerodynamic characteristics. In general, no stability or trim changes below wing-tip flow separation resulted from the use of camber. The use of supersonic body indentation improved the lift-drag ratios at Mach numbers from 0.96 to 1.05.

  14. Analysis of In-Flight Structural Failures of P-3C Wing Leading Edge Segments

    DTIC Science & Technology

    1992-06-01

    the remaining distance from the outboard engines to the wing tips. The length (fore and aft) of these leading-edge sections is 15% of the chord (total... Chord , Root (ft) 18.9 Tip 7.6 Aileron Area, S. (ft 2 ) 45.5 Hinge Line (cw) 0.725 Deflection Limit, Up (degrees) -23.3 Down +16.2 Horizontal Tail Area...playing a large role in the problem because of the location of the wing’s elastic axis at a constant 40 percent of chord , according to available

  15. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  16. Insect Wing Displacement Measurement Using Digital Holography

    SciTech Connect

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-04-15

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.

  17. Drosophila Lipid Storage Droplet 2 gene (Lsd-2) is expressed and controls lipid storage in wing imaginal discs.

    PubMed

    Fauny, Jean Daniel; Silber, Joël; Zider, Alain

    2005-03-01

    Lipid droplets are the major neutral lipid storage organelles in higher eukaryotes. The PAT domain proteins (Perilipin, ADRP [adipose differentiation related protein], and TIP47 [tail-interacting 47-kDa protein]) are associated with these structures. Perilipin and ADRP are involved in the regulation of lipid storage and metabolism in mammals. Two genes encoding PAT proteins, Drosophila Lipid Storage Droplet 2 Gene (Lsd-2) and Lsd-2, have been identified in Drosophila. Lsd-2 is expressed in fat bodies and in the female germ line and is involved in lipid storage in these tissues. We showed that Lsd-2 is expressed in third-instar wing imaginal discs in Drosophila, with higher levels in the wing pouch, which corresponds to the presumptive wing region of the wing disc. This specific expression pattern is correlated with a high level of neutral lipid accumulation. We also showed that neutral lipid deposition in the wing disc is severely reduced in an Lsd-2 mutant and is increased with Lsd-2 overexpression. Finally, we showed that overexpression of the vestigial (vg) pro-wing gene induces Lsd-2 expression, suggesting that Lsd-2 mediates a vg role during wing formation. Our results suggest that Lsd-2 function is not restricted to tissues directly involved in lipid storage and could play additional roles during development.

  18. Experiments on a Slotted Wing

    NASA Technical Reports Server (NTRS)

    Ruden, P

    1939-01-01

    The results of pressure distribution measurements that were made on a model wing section of a Fieseler F 5 R type airplane are presented. Comparison of those model tests with the corresponding flight tests indicates the limitations and also the advantages of wind tunnel investigations, the advantages being particularly that through the variety of measuring methods employed the more complicated flow conditions may also be clarified. A fact brought out in these tests is that even in the case of "well rounded" slots it is possible for a vortex to be set up at the slot entrance and this vortex is responsible for certain irregularities in the pressure distribution and in the efficiency of the slot.

  19. Integrated technology wing design study

    NASA Technical Reports Server (NTRS)

    Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.

    1984-01-01

    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.

  20. Novel Control Effectors for Truss Braced Wing

    NASA Technical Reports Server (NTRS)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  1. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  2. 14 CFR 23.697 - Wing flap controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Wing flap controls. 23.697 Section 23.697... Systems § 23.697 Wing flap controls. (a) Each wing flap control must be designed so that, when the flap... with § 23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted,...

  3. 14 CFR 23.697 - Wing flap controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Wing flap controls. 23.697 Section 23.697... Systems § 23.697 Wing flap controls. (a) Each wing flap control must be designed so that, when the flap... with § 23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted,...

  4. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  5. 14 CFR 23.697 - Wing flap controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Wing flap controls. 23.697 Section 23.697... Systems § 23.697 Wing flap controls. (a) Each wing flap control must be designed so that, when the flap... with § 23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted,...

  6. 14 CFR 23.697 - Wing flap controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wing flap controls. 23.697 Section 23.697... Systems § 23.697 Wing flap controls. (a) Each wing flap control must be designed so that, when the flap... with § 23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted,...

  7. 14 CFR 23.697 - Wing flap controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Wing flap controls. 23.697 Section 23.697... Systems § 23.697 Wing flap controls. (a) Each wing flap control must be designed so that, when the flap... with § 23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted,...

  8. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  9. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  10. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  11. Surgical Treatment of Winged Scapula

    PubMed Central

    Galano, Gregory J.; Bigliani, Louis U.; Ahmad, Christopher S.

    2008-01-01

    Injuries to the long thoracic and spinal accessory nerves present challenges in diagnosis and treatment. Palsies of the serratus anterior and trapezius muscles lead to destabilization of the scapula with medial and lateral scapular winging, respectively. Although nonoperative treatment is successful in some patients, failures have led to the evolution of surgical techniques involving various combinations of fascial graft and/or transfer of adjacent muscles. Our preferred method of reconstruction for serratus anterior palsy is a two-incision, split pectoralis major transfer without fascial graft. For trapezius palsy, we prefer a modified version of the Eden-Lange procedure. At a minimum followup of 16 months (mean, 47 months), six patients who underwent the Eden-Lange procedure showed improvement in mean American Shoulder and Elbow Surgeons Shoulder scores (33.3–64.6), forward elevation (141.7–151.0), and visual analog scale (7.0–2.3). At a minimum followup of 16 months (mean, 44 months), 10 patients (11 shoulders) who underwent split pectoralis transfer also improved American Shoulder and Elbow Surgeons Shoulder scores (53.3–63.8), forward elevation (158.2–164.5), and visual analog scale (5.0–2.9). We encountered two complications, both superficial wound infections. These tendon transfers were effective for treating scapular winging in patients who did not respond to nonoperative treatment. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196359

  12. Sensitivity Analysis of Wing Aeroelastic Responses

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian

    1995-01-01

    Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight

  13. A Miniature Controllable Flapping Wing Robot

    NASA Astrophysics Data System (ADS)

    Arabagi, Veaceslav Gheorghe

    The agility and miniature size of nature's flapping wing fliers has long baffled researchers, inspiring biological studies, aerodynamic simulations, and attempts to engineer their robotic replicas. Flapping wing flight is characterized by complex reciprocating wing kinematics, transient aerodynamic effects, and very small body lengths. These characteristics render robotic flapping wing aerial vehicles ideal for surveillance and defense applications, search and rescue missions, and environment monitoring, where their ability to hover and high maneuverability is immensely beneficial. One of the many difficulties in creating flapping wing based miniature robotic aerial vehicles lies in generating a proper wing trajectory that would result in sufficient lift forces for hovering and maneuvering. Since design of a flapping wing system is a balance between overall weight and the number of actuated inputs, we take the approach of having minimal controlled inputs, allowing passive behavior wherever possible. Hence, we propose a completely passive wing pitch reversal design that relies on wing inertial dynamics, an elastic energy storage mechanism, and low Reynolds number aerodynamic effects. Theoretical models, compiling previous research on piezoelectric actuators, four-bar transmissions, and aerodynamics effects, are developed and used as basis for a complete numerical simulation. Limitations of the model are discussed in comparison to experimental results obtained from a working prototype of the proposed passive pitch reversal flapping wing mechanism. Given that the mechanism is under-actuated, methods to control lift force generation by actively varying system parameters are proposed, discussed, and tested experimentally. A dual wing aerial platform is developed based on the passive pitch reversal wing concept. Design considerations are presented, favoring controllability and structural rigidity of the final platform. Finite element analysis and experimental

  14. Moveable Leading Edge Device for a Wing

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  15. Generic Wing-Body Aerodynamics Data Base

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  16. Wing design with attainable thrust considerations

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Shrout, B. L.; Darden, C. M.

    1984-01-01

    A CAD process that includes leading-edge thrust considerations for wings with high aerodynamic efficiencies is outlined. Rectangular grids are used for evaluation of both subsonic and supersonic pressure loadings. Account is taken of the Mach number, Re, the wing planform, the presence of camber, the airfoil geometry and the locations and forces induced by shed vortices. Optimization techniques are applied to the candidate surfaces in order to consider the attainable thrust. Inclusion of the optimization techniques permits analyses of mission-adaptive wings and various flap systems and the elimination of singularities in the flight envelope.

  17. The plane problem of the flapping wing

    NASA Technical Reports Server (NTRS)

    Birnbaum, Walter

    1954-01-01

    In connection with an earlier report on the lifting vortex sheet which forms the basis of the following investigations this will show how the methods developed there are also suitable for dealing with the air forces for a wing with a circulation variable with time. The theory of a propulsive wing flapping up and down periodically in the manner of a bird's wing is developed. This study shows how the lift and its moment result as a function of the flapping motion, what thrust is attainable, and how high is the degree of efficiency of this flapping propulsion unit if the air friction is disregarded.

  18. Transonic flow theory of airfoils and wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P. R.

    1976-01-01

    There are plans to use the supercritical wing on the next generation of commercial aircraft so as to economize on fuel consumption by reducing drag. Computer codes have served well in meeting the consequent demand for new wing sections. The possibility of replacing wind tunnel tests by computational fluid dynamics is discussed. Another approach to the supercritical wing is through shockless airfoils. A novel boundary value problem in the hodograph plane is studied that enables one to design a shockless airfoil so that its pressure distribution very nearly takes on data that are prescribed.

  19. Active Dihedral Control System for a Torisionally Flexible Wing

    NASA Technical Reports Server (NTRS)

    Kendall, Greg T. (Inventor); Lisoski, Derek L. (Inventor); Morgan, Walter R. (Inventor); Griecci, John A. (Inventor)

    2015-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  20. Aerodynamic shape optimization of wing and wing-body configurations using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. Recently, the method has been implemented for both potential flows and flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can more easily be extended to treat general configurations. Here results are presented both for the optimization of a swept wing using an analytic mapping, and for the optimization of wing and wing-body configurations using a general mesh.

  1. The effect of asymmetric vortex wake characteristics on a slender delta wing undergoing wing rock motion

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.

    1989-01-01

    An experimental investigation into the fluid mechanisms responsible for wing rock on a slender delta wing with 80 deg leading edge sweep has been conducted. Time history and flow visualization data are presented for a wide angle-of-attack range. The use of an air bearing spindle has allowed the motion of the wing to be free from bearing friction or mechanical hysteresis. A bistable static condition has been found in vortex breakdown at an angle of attack of 40 deg which causes an overshoot of the steady state rocking amplitude. Flow visualization experiments also reveal a difference in static and dynamic breakdown locations on the wing. A hysteresis loop in dynamic breakdown location similar to that seen on pitching delta wings was observed as the wing was undergoing the limit cycle oscillation.

  2. The effect of over-the-wing nacelles on wing-body aerodynamics

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.

    1978-01-01

    An investigation was conducted in the Langley 16-foot transonic tunnel to further study benefits in climb and cruise performance due to blowing the jet over the wing for a transport-type wing-body configuration. In this investigation a wing-body model/powered-nacelle test rig combination was tested at Mach numbers of 0.5 and 0.8 at angles of attack from -2 to 4 deg and jet total-pressure ratios from jet off to 3 or 4 (depending on Mach number) for a variety of nacelle locations relative to the wing. Results from this investigation show that positioning of the nacelles can have very large effects on the wing-body drag (nacelles were nonmetric). Some positions yielded much higher drag than the baseline wing-body while others yielded drag which was somewhat lower than the baseline.

  3. Transonic perturbation analysis of wing-fuselage-nacelle-pylon configurations with powered jet exhausts

    NASA Technical Reports Server (NTRS)

    Wai, J. C.; Yoshihara, H.; Abeyounis, W. K.

    1982-01-01

    A transonic small perturbation method has been developed for the analysis of general wing-fuselage-nacelle-pylon configurations with powered jet exhausts. Finite difference successive line relaxation algorithm is used to solve the small disturbance potential equation in conservative form. The nacelle tangency condition and the jet exhaust plume contact conditions are fulfilled in a quasi-cylindrical fashion on a surface fitting the Cartesian grid. The pylon tangency condition is treated in a quasi-planar manner as for the wing. Viscous displacement effects on the wing are modeled by suitable shape changes including the placement of a viscous ramp at the base of the shock. Computed results of a transport configuration show satisfactory correlation with test data.

  4. An experimental study of pressures on 60 deg Delta wings with leading edge vortex flaps

    NASA Technical Reports Server (NTRS)

    Marchman, J. F., III; Terry, J. E.; Donatelli, D. A.

    1983-01-01

    An experimental study was conducted in the Virginia Tech Stability Wind Tunnel to determine surface pressures over a 60 deg sweep delta wing with three vortex flap designs. Extensive pressure data was collected to provide a base data set for comparison with computational design codes and to allow a better understanding of the flow over vortex flaps. The results indicated that vortex flaps can be designed which will contain the leading edge vortex with no spillage onto the wing upper surface. However, the tests also showed that flaps designed without accounting for flap thickness will not be optimum and the result can be oversized flaps, early flap vortex reattachment and a second separation and vortex at the wing/flap hinge line.

  5. Analysis of high-aspect-ratio jet-flap wings of arbitrary geometry

    NASA Technical Reports Server (NTRS)

    Lissaman, P. B. S.

    1973-01-01

    An analytical technique to compute the performance of an arbitrary jet-flapped wing is developed. The solution technique is based on the method of Maskell and Spence in which the well-known lifting-line approach is coupled with an auxiliary equation providing the extra function needed in jet-flap theory. The present method is generalized to handle straight, uncambered wings of arbitrary planform, twist, and blowing (including unsymmetrical cases). An analytical procedure is developed for continuous variations in the above geometric data with special functions to exactly treat discontinuities in any of the geometric and blowing data. A rational theory for the effect of finite wing thickness is introduced as well as simplified concepts of effective aspect ratio for rapid estimation of performance.

  6. Pressure Loads Produced on a Flat-Plate Wing By Rocket Jets Exhausting in a Spanwise Direction Below the Wing and Perpendicular to a Free-Stream Flow of Mach Number 2.0

    NASA Technical Reports Server (NTRS)

    Falanga, Ralph A.; Janos, Joseph J.

    1961-01-01

    An investigation at a Reynolds number per foot of 14.4 x 10(exp 6) was made to determine the pressure loads produced on a flat-plate wing by rocket jets exhausting in a spanwise direction beneath the wing and perpendicular to a free-stream flow of Mach number 2.0. The ranges of the variables involved were (1) nozzle types - one sonic (jet Mach number of 1.00), two supersonic (jet Mach numbers of 1.74 and 3.04),. and one two-dimensional supersonic (jet Mach number of 1.71); (2) vertical nozzle positions beneath the wing of 4, 8 and 12 nozzle-throat diameters; and (3) ratios of rocket-chamber total pressure to free- stream static pressure from 0 to 130. The incremental normal force due to jet interference on the wing varied from one to two times the rocket thrust and generally decreased as the pressure ratio increased. The chordwise coordinate of the incremental-normal-force center of pressure remained upstream of the nozzle center line for the nozzle positions and pressure ratios of the investigation. The chordwise coordinate approached zero as the jet vertical distance beneath the wing increased. In the spanwise direction there was little change due to varying rocket-jet position and pressure ratio. Some boundary-layer flow separation on the wing was observed for the rocket jets close to the wing and at the higher pressure ratios. The magnitude of the chordwise and spanwise pressure distributions due to jet interference was greatest for rocket jets close to the wing and decreased as the jet was displaced farther from the wing. The design procedure for the rockets used is given in the appendix.

  7. Parametric weight evaluation of joined wings by structural optimization

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Shyu, Albert T.; Wolkovitch, Julian

    1988-01-01

    Joined-wing aircraft employ tandem wings having positive and negative sweep and dihedral, arranged to form diamond shapes in both plan and front views. An optimization method was applied to study the effects of joined-wing geometry parameters on structural weight. The lightest wings were obtained by increasing dihedral and taper ratio, decreasing sweep and span, increasing fraction of airfoil chord occupied by structural box, and locating the joint inboard of the front wing tip.

  8. Theoretical symmetric span loading due to flap deflection for wings of arbitrary plan form at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Deyoung, John

    1952-01-01

    A simplified lifting-surface theory is applied to the problem of evaluating span loading due to flap deflection for arbitrary wing plan forms. With the resulting procedure, the effects of flap deflection on the span loading and associated aerodynamic characteristics can be easily computed for any wing which is symmetrical about the root chord and which has a straight quarter-chord line over the wing semispan. The effects of compressibility and spanwise variation of section lift-curve slope are taken into account by the procedure. The method presented can also be used to calculate the downwash in the vertical center of the wake of a wing which has arbitrary spanwise loading.

  9. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.

    PubMed

    Hawkes, Elliot W; Lentink, David

    2016-10-01

    Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots.

  10. Resilin in dragonfly and damselfly wings and its implications for wing flexibility.

    PubMed

    Donoughe, Seth; Crall, James D; Merz, Rachel A; Combes, Stacey A

    2011-12-01

    Although there is mounting evidence that passive mechanical dynamics of insect wings play an integral role in insect flight, our understanding of the structural details underlying insect wing flexibility remains incomplete. Here, we use comparative morphological and mechanical techniques to illuminate the function and diversity of two mechanisms within Odonata wings presumed to affect dynamic wing deformations: flexible resilin vein-joints and cuticular spikes. Mechanical tests show that joints with more resilin have lower rotational stiffness and deform more in response to a load applied to an intact wing. Morphological studies of 12 species of Odonata reveal that resilin joints and cuticular spikes are widespread taxonomically, yet both traits display a striking degree of morphological and functional diversity that follows taxonomically distinct patterns. Interestingly, damselfly wings (suborder Zygoptera) are mainly characterized by vein-joints that are double-sided (containing resilin both dorsally and ventrally), whereas dragonfly wings (suborder Epiprocta) are largely characterized by single-sided vein-joints (containing resilin either ventrally or dorsally, but not both). The functional significance and diversity of resilin joints and cuticular spikes could yield insight into the evolutionary relationship between form and function of wings, as well as revealing basic principles of insect wing mechanical design.

  11. Experimental and numerical analysis of the wing rock characteristics of a 'wing-body-tail' configuration

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll wind tunnel tests were conducted and a computer simulation exercise was performed in an effort to investigate in detail the mechanism of wing rock on a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. In the wind tunnel test, the roll angle and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the wind tunnel test confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly showed the energy balance necessary to sustain the limit cycle oscillation. Pressure measurements on the wing revealed the hysteresis of the wing rock process. First, second and nth order models for the aerodynamic damping were developed and examined with a one degree of freedom computer simulation. Very good agreement with the observed behavior from the wind tunnel was obtained.

  12. Evolution of wing shape in hornets: why is the wing venation efficient for species identification?

    PubMed

    Perrard, A; Baylac, M; Carpenter, J M; Villemant, C

    2014-12-01

    Wing venation has long been used for insect identification. Lately, the characterization of venation shape using geometric morphometrics has further improved the potential of using the wing for insect identification. However, external factors inducing variation in wing shape could obscure specific differences, preventing accurate discrimination of species in heterogeneous samples. Here, we show that interspecific difference is the main source of wing shape variation within social wasps. We found that a naive clustering of wing shape data from taxonomically and geographically heterogeneous samples of workers returned groups congruent with species. We also confirmed that individuals can be reliably attributed to their genus, species and populations on the basis of their wing shape. Our results suggested that the shape variation reflects the evolutionary history with a potential influence of other factors such as body shape, climate and mimicry selective pressures. However, the high dimensionality of wing shape variation may have prevented absolute convergences between the different species. Wing venation shape is thus a taxonomically relevant marker combining the accuracy of quantitative characters with the specificity required for identification criteria. This marker may also highlight adaptive processes that could help understand the wing's influence on insect flight.

  13. Probing the Broad-Line Region and the Accretion Disk in the Lensed Quasars HE 0435-1223, WFI 2033-4723, and HE 2149-2745 Using Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Motta, V.; Mediavilla, E.; Rojas, K.; Falco, E. E.; Jiménez-Vicente, J.; Muñoz, J. A.

    2017-02-01

    We use single-epoch spectroscopy of three gravitationally lensed quasars, HE 0435-1223, WFI 2033-4723, and HE 2149-2745, to study their inner structure (broad-line region [BLR] and continuum source). We detect microlensing-induced magnification in the wings of the broad emission lines of two of the systems (HE 0435-1223 and WFI 2033-4723). In the case of WFI 2033-4723, microlensing affects two “bumps” in the spectra that are almost symmetrically arranged on the blue (coincident with an Al iii emission line) and red wings of C iii]. These match the typical double-peaked profile that follows from disk kinematics. The presence of microlensing in the wings of the emission lines indicates the existence of two different regions in the BLR: a relatively small one with kinematics possibly related to an accretion disk, and another one that is substantially more extended and insensitive to microlensing. There is good agreement between the estimated size of the region affected by microlensing in the emission lines, {r}s={10}-7+15\\sqrt{M/{M}ȯ } lt-day (red wing of C iv in HE 0435-1223) and {r}s={11}-7+28\\sqrt{M/{M}ȯ } lt-day (C iii] bumps in WFI 2033-4723), and the sizes inferred from the continuum emission, {r}s={13}-4+5\\sqrt{M/{M}ȯ } lt-day (HE 0435-1223) and {r}s={10}-2+3\\sqrt{M/{M}ȯ } lt-day (WFI 2033-4723). For HE 2149-2745 we measure an accretion disk size {r}s={8}-5+11\\sqrt{M/{M}ȯ } lt-day. The estimates of p, the exponent of the size versus wavelength ({r}s\\propto {λ }p), are 1.2 ± 0.6, 0.8 ± 0.2, and 0.4 ± 0.3 for HE 0435-1223, WFI 2033-4723, and HE 2149-2745, respectively. In conclusion, the continuum microlensing amplitude in the three quasars and chromaticity in WFI 2033-4723 and HE 2149-2745 are below expectations for the thin-disk model. The disks are larger and their temperature gradients are flatter than predicted by this model.

  14. On the Minimum Induced Drag of Wings

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2007-01-01

    This viewgraph presentation reviews the minimum induced drag of wings. The topics include: 1) The History of Spanload Development of the optimum spanload Winglets and their implications; 2) Horten Sailplanes; and 3) Flight Mechanics & Adverse yaw.

  15. The Design of Airplane Wing Ribs

    NASA Technical Reports Server (NTRS)

    Newlin, J A; Trayer, George W

    1931-01-01

    The purpose of this investigation was to obtain information for use in the design of truss and plywood forms, particularly with reference to wing ribs. Tests were made on many designs of wing ribs, comparing different types in various sizes. Many tests were also made on parallel-chord specimens of truss and plywood forms in place of the actual ribs and on parts of wing ribs, such as truss diagonals and sections of cap strips. It was found that for ribs of any size or proportions, when they were designed to obtain a well-balanced construction and were carefully manufactured, distinct types are of various efficiencies; the efficiency is based on the strength per unit of weight. In all types of ribs the heavier are the stronger per unit of weight. Reductions in the weight of wing ribs are accompanied even in efficient designs by a much greater proportional reduction in strength.

  16. Mallard age and sex determination from wings

    USGS Publications Warehouse

    Carney, S.M.; Geis, A.D.

    1960-01-01

    This paper describes characters on the wing plumage of the mallard that indicate age and sex. A key outlines a logical order in which to check age and sex characters on wings. This method was tested and found to be more than 95 percent reliable, although it was found that considerable practice and training with known-age specimens was required to achieve this level of accuracy....The implications of this technique and the sampling procedure it permits are discussed. Wing collections could provide information on production, and, if coupled with a banding program could permit seasonal population estimates to be calculated. In addition, representative samples of wings would provide data to check the reliability of several other waterfowl surveys.

  17. Oblique Wing Research Aircraft on ramp

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen. The Oblique Wing Research Aircraft was a small, remotely piloted, research craft designed and flight tested to look at the aerodynamic characteristics of an oblique wing and the control laws necessary to achieve acceptable handling qualities. NASA Dryden Flight Research Center and the NASA Ames Research Center conducted research with this aircraft in the mid-1970s to investigate the feasibility of flying an oblique wing aircraft.

  18. Coriolis effects enhance lift on revolving wings.

    PubMed

    Jardin, T; David, L

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.

  19. Evaluation and treatment of the winged scapula.

    PubMed

    Duralde, X A

    1995-01-01

    Winging of the scapula is often associated with palsy of the serratus anterior muscle, but can be due to numerous pathologic processes. Often representing more than just a cosmetic deformity of the shoulder, it can lead to significant pain and functional impairment. Winging can be due to disease in the nerves, muscles, bones, and joints in the periscapular area and may be either a static or dynamic deformity. Treatment of the winged scapula depends on the severity of the patient's complaints, and the exact treatment required is determined by the underlying pathologic process. A systematic approach to the winged scapula is essential to ascertain the underlying cause and successfully manage this deformity of the shoulder girdle.

  20. Measurements of Supersonic Wing Tip Vortices

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James

    1994-01-01

    An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.

  1. Territoriality in the Red-winged Blackbird

    ERIC Educational Resources Information Center

    Newhouse, Chris

    1977-01-01

    Reports findings on research in Red-winged Blackbird territoriality and describes the educational potential of use of similar studies in the classroom. Territorial mapping and observational techniques are explained. (CS)

  2. Left-Wing Extremism: The Current Threat

    SciTech Connect

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  3. Strake-wing analysis and design

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1978-01-01

    The technology is still evolving for improving the transonic maneuver capability of strake-wing configurations. Much of the work to date has been of an experimental nature; whereas, the theories that are available to handle vortex-flow aerodynamics have mostly treated wings of constant sweep. Hence, two efforts were undertaken. They are: (1) to extend the suction analogy to more general configurations and evaluate the method by using selected critical planforms; and (2) to develop a procedure for strake planform shaping and test the resulting shape in conjunction with a wing-body. The conclusions from this study are that (1) some improvement has been made in estimating high-angle-of-attack longitudinal aerodynamics, and (2) the gothic strake designed with the developed procedure does produce a stable vortex system in the presence of a wing body and flat post-maximum-lift characteristics.

  4. An Iterative Decambering Approach for Post-Stall Prediction of Wing Characteristics using known Section Data

    NASA Technical Reports Server (NTRS)

    Mukherjee, Rinku; Gopalarathnam, Ashok; Kim, Sung Wan

    2003-01-01

    An iterative decambering approach for the post stall prediction of wings using known section data as inputs is presented. The method can currently be used for incompressible .ow and can be extended to compressible subsonic .ow using Mach number correction schemes. A detailed discussion of past work on this topic is presented first. Next, an overview of the decambering approach is presented and is illustrated by applying the approach to the prediction of the two-dimensional C(sub l) and C(sub m) curves for an airfoil. The implementation of the approach for iterative decambering of wing sections is then discussed. A novel feature of the current e.ort is the use of a multidimensional Newton iteration for taking into consideration the coupling between the di.erent sections of the wing. The approach lends itself to implementation in a variety of finite-wing analysis methods such as lifting-line theory, discrete-vortex Weissinger's method, and vortex lattice codes. Results are presented for a rectangular wing for a from 0 to 25 deg. The results are compared for both increasing and decreasing directions of a, and they show that a hysteresis loop can be predicted for post-stall angles of attack.

  5. Lift generation by a two-dimensional symmetric flapping wing: immersed boundary-lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Ota, Keigo; Suzuki, Kosuke; Inamuro, Takaji

    2012-08-01

    Two-dimensional (2D) symmetric flapping flight is investigated by an immersed boundary-lattice Boltzmann method (IB-LBM). In this method, we can treat the moving boundary problem efficiently on the Cartesian grid. We consider a model consisting of 2D symmetric flapping wings without mass connected by a hinge with mass. Firstly, we investigate the effect of the Reynolds number in the range of 40-200 on flows around symmetric flapping wings under no gravity field and find that for high Reynolds numbers (Re ⩾ 55), asymmetric vortices with respect to the horizontal line appear and the time-averaged lift force is induced on the wings, whereas for low Reynolds numbers (Re ⩽ 50), only symmetric vortices appear around the wings and no lift force is induced. Secondly, the effect of the initial position of the wings is investigated, and the range of the initial phases where the upward flight is possible is found. The effects of the mass and flapping amplitude are also studied. Finally, we carry out free flight simulations under gravity field for various Reynolds numbers in the range 60 ⩽ Re ⩽ 300 and Froude numbers in the range 3 ⩽ Fr ⩽ 60 and identify the region where upward flight is possible.

  6. Computational design of natural laminar flow wings for transonic transport application

    NASA Technical Reports Server (NTRS)

    Waggoner, Edgar G.; Campbell, Richard L.; Phillips, Pamela S.; Viken, Jeffrey K.

    1986-01-01

    Two research programs are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wind planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first program supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. Boundary-layer and static-pressure data will be measured on this design during the supporting wind-tunnel and flight tests. These data will then be analyzed and used to infer the relationship between crossflow and Tollmein-Schlichting disturbances on laminar boundary-layer transition. A wing was designed computationally for a corporate transport aircraft in the second program. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs. Wing surface pressure distributions, which support the design objective and were derived from transonic three-dimensional analyses codes, are also presented. Current status of each of the research programs is included in the summary.

  7. AMELIA CESTOL Test: Acoustic Characteristics of Circulation Control Wing with Leading- and Trailing-Edge Slot Blowing

    NASA Technical Reports Server (NTRS)

    Horne, William C.; Burnside, Nathan J.

    2013-01-01

    The AMELIA Cruise-Efficient Short Take-off and Landing (CESTOL) configuration concept was developed to meet future requirements of reduced field length, noise, and fuel burn by researchers at Cal Poly, San Luis Obispo and Georgia Tech Research Institute under sponsorship by the NASA Fundamental Aeronautics Program (FAP), Subsonic Fixed Wing Project. The novel configuration includes leading- and trailing-edge circulation control wing (CCW), over-wing podded turbine propulsion simulation (TPS). Extensive aerodynamic measurements of forces, surfaces pressures, and wing surface skin friction measurements were recently measured over a wide range of test conditions in the Arnold Engineering Development Center(AEDC) National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Ft Wind Tunnel. Acoustic measurements of the model were also acquired for each configuration with 7 fixed microphones on a line under the left wing, and with a 48-element, 40-inch diameter phased microphone array under the right wing. This presentation will discuss acoustic characteristics of the CCW system for a variety of tunnel speeds (0 to 120 kts), model configurations (leading edge(LE) and/or trailing-edge(TE) slot blowing, and orientations (incidence and yaw) based on acoustic measurements acquired concurrently with the aerodynamic measurements. The flow coefficient, Cmu= mVSLOT/qSW varied from 0 to 0.88 at 40 kts, and from 0 to 0.15 at 120 kts. Here m is the slot mass flow rate, VSLOT is the slot exit velocity, q is dynamic pressure, and SW is wing surface area. Directivities at selected 1/3 octave bands will be compared with comparable measurements of a 2-D wing at GTRI, as will as microphone array near-field measurements of the right wing at maximum flow rate. The presentation will include discussion of acoustic sensor calibrations as well as characterization of the wind tunnel background noise environment.

  8. Aircraft noise propagation. [sound diffraction by wings

    NASA Technical Reports Server (NTRS)

    Hadden, W. J.; Pierce, A. D.

    1978-01-01

    Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources.

  9. Modal control of an oblique wing aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, James D.

    1989-01-01

    A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.

  10. Numerical simulation of swept-wing flows

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1991-01-01

    The transition process characteristics of flows over swept wings were computationally modelled. The crossflow instability and crossflow/T-S wave interaction are analyzed through the numerical solution of the full three dimensional Navier-Stokes equations including unsteadiness, curvature, and sweep. The leading-edge region of a swept wing is considered in a three-dimensional spatial simulation with random disturbances as the initial conditions.

  11. Omnidirectional and Controllable Wing Using Fluid Ejection

    DTIC Science & Technology

    1996-10-22

    8217 Q edge along a continuous perimeter from which fluid outflow tangential to the Coanda edge is -1 o selectively effected by omnidirectional...the air flow over the wing ’ ^ surfaces is directed internally within the fuselage. The tangential ejection of fluid outflow over Coanda edge...tangential ejection 2 outflow from a Coanda edge of a lift wing independently of its translation direction through an d ambient fluid so as

  12. Integrated technology wing study (oral presentation)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The design of a plan for a commercial transport manufacturer to integrate advanced technology into a new wing for a derivative and/or new aircraft that could enter service in the late 1980s to early 1990s time period is proposed. The development of a new wing for a derivative or a new long range commercial aircraft and the incorporation of cost effective technologies are studied. The decision provides guidelines for the best allocation of research funds.

  13. Kinematics and dynamics of sphenisciform wings

    NASA Astrophysics Data System (ADS)

    Noca, Flavio; Crisinel, Fabien; Munier, Pierre

    2011-11-01

    Three-dimensional scans of three different species of taxidermied penguins (Aptenodytes patagonicus, Pygoscelis papua, and Spheniscus magellanicus) have been performed. A three-dimensional reproduction of an African penguin (Sphenicus demersus) wing was manufactured and tested in a hydrodynamic channel. A six-degree-of-freedom robot was programmed to perform the three dimensional kinematics, obtained from actual footage. A six-component force balance was used to retrieve the dynamics of the wing motion. Results will be presented and discussed.

  14. Butterfly wing color: A photonic crystal demonstration

    NASA Astrophysics Data System (ADS)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  15. Drag Prediction for the DLR-F6 Wing/Body and DPW Wing using CFL3D and OVERFLOW Overset Mesh

    NASA Technical Reports Server (NTRS)

    Sclanfani, Anthony J.; Vassberg, John C.; Harrison, Neal A.; DeHaan, Mark A.; Rumsey, Christopher L.; Rivers, S. Melissa; Morrison, Joseph H.

    2007-01-01

    A series of overset grids was generated in response to the 3rd AIAA CFD Drag Prediction Workshop (DPW-III) which preceded the 25th Applied Aerodynamics Conference in June 2006. DPW-III focused on accurate drag prediction for wing/body and wing-alone configurations. The grid series built for each configuration consists of a coarse, medium, fine, and extra-fine mesh. The medium mesh is first constructed using the current state of best practices for overset grid generation. The medium mesh is then coarsened and enhanced by applying a factor of 1.5 to each (I,J,K) dimension. The resulting set of parametrically equivalent grids increase in size by a factor of roughly 3.5 from one level to the next denser level. CFD simulations were performed on the overset grids using two different RANS flow solvers: CFL3D and OVERFLOW. The results were post-processed using Richardson extrapolation to approximate grid converged values of lift, drag, pitching moment, and angle-of-attack at the design condition. This technique appears to work well if the solution does not contain large regions of separated flow (similar to that seen n the DLR-F6 results) and appropriate grid densities are selected. The extra-fine grid data helped to establish asymptotic grid convergence for both the OVERFLOW FX2B wing/body results and the OVERFLOW DPW-W1/W2 wing-alone results. More CFL3D data is needed to establish grid convergence trends. The medium grid was utilized beyond the grid convergence study by running each configuration at several angles-of-attack so drag polars and lift/pitching moment curves could be evaluated. The alpha sweep results are used to compare data across configurations as well as across flow solvers. With the exception of the wing/body drag polar, the two codes compare well qualitatively showing consistent incremental trends and similar wing pressure comparisons.

  16. Discovery of a Be/X-ray pulsar binary and associated supernova remnant in the Wing of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hénault-Brunet, V.; Oskinova, L. M.; Guerrero, M. A.; Sun, W.; Chu, Y.-H.; Evans, C. J.; Gallagher, J. S., III; Gruendl, R. A.; Reyes-Iturbide, J.

    2012-02-01

    We report on a new Be/X-ray pulsar binary located in the Wing of the Small Magellanic Cloud (SMC). The strong pulsed X-ray source was discovered with the Chandra and XMM-Newton X-ray observatories. The X-ray pulse period of 1062 s is consistently determined from both Chandra and XMM-Newton observations, revealing one of the slowest rotating X-ray pulsars known in the SMC. The optical counterpart of the X-ray source is the emission-line star 2dFS 3831. Its B0-0.5(III)e+ spectral type is determined from VLT-FLAMES and 2dF optical spectroscopy, establishing the system as a Be/X-ray binary (Be-XRB). The hard X-ray spectrum is well fitted by a power law with additional thermal and blackbody components, the latter reminiscent of persistent Be-XRBs. This system is the first evidence of a recent supernova in the low-density surroundings of NGC 602. We detect a shell nebula around 2dFS 3831 in Hα and [O III] images and conclude that it is most likely a supernova remnant. If it is linked to the supernova explosion that created this new X-ray pulsar, its kinematic age of (2-4) × 104 yr provides a constraint on the age of the pulsar.

  17. Effect of Wing Thickness and Sweep on the Oscillating Hinge-Moment and Flutter Characteristics of a Flap-Type Control at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Moseley, William C., Jr.; Gainer, Thomas G.

    1959-01-01

    Free-oscillation tests were made in the Langley high-speed 7- by 10-foot tunnel to determine the effects of wing thickness and wing sweep on the hinge-moment and flutter characteristics of a trailing-edge flap-type control. The untapered semispan wings had full-span aspect ratios of 5 and NACA 65A-series airfoil sections. Unswept wings having ratios of wing thickness to chord of 0.04, 0.06, 0.08, and 0.10 were investigated. The swept wings were 6 percent thick and had sweep angles of 30 deg and 45 deg. The full-span flap-type controls had a total chord of 50 percent of the wing chord and were hinged at the 0.765-wing-chord line. Tests were made at zero angle of attack over a Mach number range from 0.60 to 1.02, control oscillation amplitudes up to about 12 deg, and a range of control-reduced frequencies. Static hinge-moment data were also obtained. Results indicate that the control aerodynamic damping for the 4-percent-thick wing-control model was unstable in the Mach number range from 0.92 to 1.02 (maximum for these tests). Increasing the ratio of wing thickness to chord to 0.06, 0.08, and then to 0.10 had a stabilizing effect on the aerodynamic damping in this speed range so that the aerodynamic damping was stable for the 10-percent-thick model at all Mach numbers. The 6-percent-thick unswept-wing-control model generally had unstable aerodynamic damping in the Mach number range from 0.96 to 1.02. Increasing the wing sweep resulted in a general decrease in the stable aerodynamic damping at the lower Mach numbers and in the unstable aerodynamic damping at the higher Mach numbers. The one-degree-of-freedom control-surface flutter which occurred in the transonic Mach number range (0.92 to 1.02) for the 4-, 6-, and 8-percent-thick unswept-wing-control models could be eliminated by further increasing the ratio of thickness to chord to 0.10. Flutter could also be eliminated by increasing the wing sweep angle to either 30 deg or 45 deg. The magnitude of variation in

  18. Factors Affecting the Incidence of Angel Wing in White Roman Geese: Stocking Density and Genetic Selection.

    PubMed

    Lin, M J; Chang, S C; Lin, T Y; Cheng, Y S; Lee, Y P; Fan, Y K

    2016-06-01

    The present study investigated stocking density and genetic lines, factors that may alter the severity and incidence of angel wing (AW), in White Roman geese. Geese (n = 384) from two genetically selected lines (normal- winged line, NL, and angel-winged line, AL, respectively) and one commercial line (CL) were raised in four pens. Following common commercial practice, low-stocking-density (LD), medium-stocking-density, and high-stocking-density treatments were respectively administered to 24, 32, and 40 geese per pen at 0 to 3 weeks (1.92 m(2)/pen) and 4 to 6 weeks (13.2 m(2)/pen) of age and to 24, 30, and 36 geese at 7 to 14 weeks (20.0 m(2)/pen) of age. The results revealed that stocking density mainly affected body weight gain in geese younger than 4 weeks, and that geese subjected to LD had a high body weight at 2 weeks of age. However, the effect of stocking density on the severity score of AW (SSAW) and incidence of AW (IAW) did not differ significantly among the treatments. Differences were observed among the genetic stocks; that is, SSAW and IAW were significantly higher in AL than in NL and CL. Genetic selection generally aggravates AW, complicating its elimination. To effectively reduce IAW, stocking density, a suspected causal factor, should be lower than that presently applied commercially.

  19. Line Narrowing Parameter Measurement by Modulation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin N.

    1998-01-01

    Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown

  20. Topology of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Rockwell, D.

    2016-10-01

    A trailing vortex incident upon a wing can generate different modes of vortex-wing interaction. These modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing, are classified on the basis of the present experiments together with computations at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is relatively insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic interaction modes is clarified using streamline topology with associated critical points that show compatibility between complex streamline patterns in the vicinity of the tip of the wing. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-reattachment bubble bounded by downwash at the wing tip.

  1. Effects of Horizontal-Control Planform and Wing-Leading-Edge Modification on Low-Speed Longitudinal Aerodynamic Characteristics of a Canard Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Spencer, Bernard, Jr.

    1981-01-01

    An investigation at low subsonic speeds has been conducted in the Langley 300-MPH 7- by 10-foot tunnel. The basic wing had a trapezoidal planform, an aspect ratio of 3.0., a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the basic wing included deflectable full-span and partial-span leading-edge chord-extensions. A trapezoidal horizontal control similar in planform to the basic wing and a 60 deg sweptback delta horizontal control were tested in conjunction with the wing. The total planform area of each horizontal control was 16 percent of the total basic-wing area. Modifications to these horizontal controls included addition of a full-span chord-extension to the trapezoidal planform and a fence to the delta planform.

  2. Numerical study of the trailing vortex of a wing with wing-tip blowing

    NASA Technical Reports Server (NTRS)

    Lim, Hock-Bin

    1994-01-01

    Trailing vortices generated by lifting surfaces such as helicopter rotor blades, ship propellers, fixed wings, and canard control surfaces are known to be the source of noise, vibration, cavitation, degradation of performance, and other hazardous problems. Controlling these vortices is, therefore, of practical interest. The formation and behavior of the trailing vortices are studied in the present research. In addition, wing-tip blowing concepts employing axial blowing and spanwise blowing are studied to determine their effectiveness in controlling these vortices and their effects on the performance of the wing. The 3D, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The wing-tip blowing is simulated using the actuator plane concept, thereby, not requiring resolution of the jet slot geometry. Furthermore, the solution blanking feature of the chimera scheme is used to simplify the parametric study procedure for the wing-tip blowing. Computed results are shown to compare favorably with experimental measurements. It is found that axial wing-tip blowing, although delaying the rolling-up of the trailing vortices and the near-field behavior of the flowfield, does not dissipate the circulation strength of the trailing vortex farther downstream. Spanwise wing-tip blowing has the effect of displacing the trailing vortices outboard and upward. The increased 'wing-span' due to the spanwise wing-tip blowing has the effect of lift augmentation on the wing and the strengthening of the trailing vortices. Secondary trailing vortices are created at high spanwise wing-tip blowing intensities.

  3. The Wing-Nib Anomaly of Cool CP2 Stars

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Hubrig, S.; Kamp, I.

    2005-12-01

    We present spectra of number of cool, magnetic Ap (or CP2) stars showing sharp, deep, ``nibs'' at the cores of the Ca II K-lines. At high resolution, the contrast with normal stars is pronounced. Similar nibs are found for Ca II H-lines, but the profiles are strongly perturbed by H-ɛ . The Ca K profile of the Am star HR 1353 resembles that of normal stars. All spectra are from the ESO UVES spectrograph. They are of generally higher quality than those used in previous investigations because of resolution, S/N, and the intrinsically narrow lines of the spectra studied. Babel (A&A, 258, 449, 1992), working with specially-defined equivalent widths, found that the absorption within 0.3Å of Ca II K-line cores of magnetic CP stars is characteristically less than that of normal stars. His sample, though more numerous than ours, had relatively few objects with truly sharp-lined spectra. In spite of the nibs, our stars still show the absorption within a few tenths of an Angstrom of the line cores is lower than in normal stars. This agrees with Babel's result. The nibs are not apparent in hotter CP2 stars; weaker total Ca K-line absorption reduces the contrast between the line center and near wings. Ryabchikova et al. (A&A, 423, 705, 2004) synthesized a nib-like core in LTE for a Gamma Equ model with a stratified calcium abundance. We find that NLTE calculations modify the K-line cores, though not substantially. We show that other possibilities in addition to chemical stratification may yield nib-like cores.

  4. Static and Vibration Analyses of General Wing Structures Using Equivalent Plate Models

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Liu, Youhua

    1999-01-01

    An efficient method, using equivalent plate model, is developed for studying the static and vibration analyses of general built-up wing structures composed of skins, spars, and ribs. The model includes the transverse shear effects by treating the built-up wing as a plate following the Reissner-Mindlin theory, the so-called First-order Shear Deformation Theory (FSDT). The Ritz method is used with the Legendre polynomials being employed as the trial functions. This is in contrast to previous equivalent plate model methods which have used simple polynomials, known to be prone to numerical ill-conditioning, as the trial functions. The present developments are evaluated by comparing the results with those obtained using MSC/NASTRAN, for a set of examples. These examples are: (i) free-vibration analysis of a clamped trapezoidal plate with (a) uniform thickness, and (b) non-uniform thickness varying as an airfoil, (ii) free-vibration and static analyses (including skin stress distribution) of a general built-up wing, and (iii) free-vibration and static analyses of a swept-back box wing. The results obtained by the present equivalent plate model are in good agreement with those obtained by the finite element method.

  5. Applications of Ko Displacement Theory to the Deformed Shape Predictions of the Doubly-Tapered Ikhana Wing

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Richards, W. Lance; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.

  6. Imaging and Laser Spectroscopy Investigation of Insect Wings

    NASA Astrophysics Data System (ADS)

    Shiver, Tegan; Lawhead, Carlos; Anderson, Josiah; Cooper, Nathan; Ujj, Laszlo; Pall Life Sciences Collaboration

    2014-03-01

    Measuring the surface morphology and chemical composition of insect wings is important to understand the extreme mechanical properties and the biophysical functionalities of the wings. We have measured the image of the membrane of the cicada (genus Tibicen) wing with the help of Scanning Electron Microscopy (SEM). The results confirm the existing periodic structure of the wing measured previously. The SEM imaging can be used to measure the surface morphology of any insect species wings. The physical surface structure of the cicada wing is an example of a new class of biomaterials that can kill bacteria on contact. In order to identify the chemical composition of the wing, we have measured the vibrational spectra of the wing's membrane (Raman and CARS). The measured spectra are consistent with the original assumption that the wing membrane is composed of protein, wax, and chitin. The results of these studies can be used to make artificial materials in the future.

  7. Nonlinear Aerodynamics and the Design of Wing Tips

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan

    1991-01-01

    The analysis and design of wing tips for fixed wing and rotary wing aircraft still remains part art, part science. Although the design of airfoil sections and basic planform geometry is well developed, the tip regions require more detailed consideration. This is important because of the strong impact of wing tip flow on wing drag; although the tip region constitutes a small portion of the wing, its effect on the drag can be significant. The induced drag of a wing is, for a given lift and speed, inversely proportional to the square of the wing span. Concepts are proposed as a means of reducing drag. Modern computational methods provide a tool for studying these issues in greater detail. The purpose of the current research program is to improve the understanding of the fundamental issues involved in the design of wing tips and to develop the range of computational and experimental tools needed for further study of these ideas.

  8. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    PubMed

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches.

  9. Core and Wing Densities of Asymmetric Coronal Spectral Profiles: Implications for the Mass Supply of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R.

    2014-01-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding approximately equal to 50 km per sec. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe(sub XIV) lines at 264.78 and 274.20 Angstroms is used to determine wing and core densities.We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe(sub XIV) lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  10. Core and wing densities of asymmetric coronal spectral profiles: Implications for the mass supply of the solar corona

    SciTech Connect

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R. E-mail: james.a.klimchuk@nasa.gov

    2014-02-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding ≈50 km s{sup –1}. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe XIV lines at 264.78 and 274.20 Å is used to determine wing and core densities. We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe XIV lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  11. Aerodynamics of two-dimensional flapping wings in tandem configuration

    NASA Astrophysics Data System (ADS)

    Lua, K. B.; Lu, H.; Zhang, X. H.; Lim, T. T.; Yeo, K. S.

    2016-12-01

    This paper reports a fundamental investigation on the aerodynamics of two-dimensional flapping wings in tandem configuration in forward flight. Of particular interest are the effects of phase angle (φ) and center-to-center distance (L) between the front wing and the rear wing on the aerodynamic force generation at a Reynolds number of 5000. Both experimental and numerical methods were employed. A force sensor was used to measure the time-history aerodynamic forces experienced by the two wings and digital particle image velocimetry was utilized to obtain the corresponding flow structures. Both the front wing and the rear wing executed the same simple harmonic motions with φ ranging from -180° to 180° and four values of L, i.e., 1.5c, 2c, 3c, and 4c (c is the wing chord length). Results show that at fixed L = 2c, tandem wings perform better than the sum of two single wings that flap independently in terms of thrust for phase angle approximately from -90° to 90°. The maximum thrust on the rear wing occurs during in-phase flapping (φ = 0°). Correlation of transient thrust and flow structure indicates that there are generally two types of wing-wake interactions, depending on whether the rear wing crosses the shear layer shed from the front wing. Finally, increasing wing spacing has similar effect as reducing the phase angle, and an approximate mathematical model is derived to describe the relationship between these two parameters.

  12. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William; Miller, Eric; Hudson, Larry; Holguin, Andrew; Neufeld, David; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and its results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three air bags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 pounds.

  13. Structural Design of Wing Twist for Pitch Control of Joined Wing Sensor Craft

    DTIC Science & Technology

    2006-03-01

    obtained deflections either. Although the strain induced into the structure by the aft wing twist was on the order of the aerodynamic forces alone...4-14 4.14 Slit Vertical Restraint Forces for Configuration #4 with Twist and Aerodynamic ...4-4 4.3 Aft Wing Strains Due to Twist and Aerodynamic Loads . . . . . . . . . . . . . . . . 4-4

  14. 3. N elevation, E wing; 3/4 view of W wing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. N elevation, E wing; 3/4 view of W wing showing E and N elevations; N elevation of Building 69, Plating and Tinning Shop; looking SW. (Ceronie) - Rock Island Arsenal, Building No. 66, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL

  15. Effect of wing-wake interaction on aerodynamic force generation on a 2D flapping wing

    NASA Astrophysics Data System (ADS)

    Lua, K. B.; Lim, T. T.; Yeo, K. S.

    2011-07-01

    This paper is motivated by the works of Dickinson et al. (Science 284:1954-1960, 1999) and Sun and Tang (J Exp Biol 205:55-70, 2002) which provided two different perspectives on the influence of wing-wake interaction (or wake capture) on lift generation during flapping motion. Dickinson et al. (Science 284:1954-1960, 1999) hypothesize that wake capture is responsible for the additional lift generated at the early phase of each stroke, while Sun and Tang (J Exp Biol 205:55-70, 2002) believe otherwise. Here, we take a more fundamental approach to study the effect of wing-wake interaction on the aerodynamic force generation by carrying out simultaneous force and flow field measurements on a two-dimensional wing subjected to two different types of motion. In one of the motions, the wing at a fixed angle of attack was made to follow a motion profile described by "acceleration-constant velocity-deceleration". Here, the wing was first linearly accelerated from rest to a predetermined maximum velocity and remains at that speed for set duration before linearly decelerating to a stop. The acceleration and deceleration phase each accounted for only 10% of the stroke, and the stroke covered a total distance of three chord lengths. In another motion, the wing was subjected to the same above-mentioned movement, but in a back and forth manner over twenty strokes. Results show that there are two possible outcomes of wing-wake interaction. The first outcome occurs when the wing encounters a pair of counter-rotating wake vortices on the reverse stroke, and the induced velocity of these vortices impinges directly on the windward side of the wing, resulting in a higher oncoming flow to the wing, which translates into a higher lift. Another outcome is when the wing encounters one vortex on the reverse stroke, and the close proximity of this vortex to the windward surface of the wing, coupled with the vortex suction effect (caused by low pressure region at the center of the vortex

  16. Design of flapping wings for application to single active degree of freedom micro air vehicles

    NASA Astrophysics Data System (ADS)

    Chang, Kelvin Thomas

    This dissertation covers an experimental program to understand how wing compliance influences the performance of flapping micro air vehicle wings. The focus is the design of a membraned flapping wing for a single active degree of freedom mechanism, looking to maximize thrust performance in hover conditions. The optimization approach is unique in that experiments were the chosen engine as opposed to a computation model; this is because of the complexity involved in hover-mode flapping aerodynamics. The flapping mechanism and manufacturing process for fabricating the wings were carefully developed. The uncertainty in the thrust measurement was identified and reduced by implementing precision machining and repeatable techniques for fabrication. This resulted in a reduction of the manufacturing coefficient of variation from 16.8% to 2.6%. Optimization was then conducted for a single objective (Maximize thrust), using a three parameter design space, finding the highest thrust performance in wings with high aspect ratio; then, a multi-objective optimization was conducted with two objectives (Thrust and Power) and a four parameter space. The research then shifted focus to identifying the stiffness and deformation characteristics of high performance wing designs. Static stiffness measurements with a simple line load suggested that high chordwise stiffness or lower spanwise stiffness would be favorable for aerodynamic performance. To explore more components of the deformation, a full-field imaging technique was used and a uniform load was substituted to engage with the membrane. It was found that there is a range of torsional compliance where the wing is most efficient especially at higher flapping frequencies. The final component of the study was the dynamic deformation measurement. The two system, four camera digital image correlation setup uses stroboscopic measurement to capture the wing deformation. The phase shift between the twist and stroke, and the tip deflection

  17. Physical Properties of the Narrow-line Region of Low-mass Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ludwig, Randi R.; Greene, Jenny E.; Barth, Aaron J.; Ho, Luis C.

    2012-09-01

    We present spectroscopic observations of 27 active galactic nuclei (AGNs) with some of the lowest black hole (BH) masses known. We use the high spectral resolution and small aperture of our Keck data, taken with the Echellette Spectrograph and Imager, to isolate the narrow-line regions (NLRs) of these low-mass BHs. We investigate their emission-line properties and compare them with those of AGNs with higher-mass BHs. While we are unable to determine absolute metallicities, some of our objects plausibly represent examples of the low-metallicity AGNs described by Groves et al., based on their [N II]/Hα ratios and their consistency with the Kewley & Ellison mass-metallicity relation. We find tentative evidence for steeper far-UV spectral slopes in lower-mass systems. Overall, NLR emission lines in these low-mass AGNs exhibit trends similar to those seen in AGNs with higher-mass BHs, such as increasing blueshifts and broadening with increasing ionization potential. Additionally, we see evidence of an intermediate-line region whose intensity correlates with L/L Edd, as seen in higher-mass AGNs. We highlight the interesting trend that, at least in these low-mass AGNs, the [O III] equivalent width (EW) is highest in symmetric NLR lines with no blue wing. This trend of increasing [O III] EW with line symmetry could be explained by a high covering factor of lower-ionization gas in the NLR. In general, low-mass AGNs preserve many well-known trends in the structure of the NLR, while exhibiting steeper ionizing continuum slopes and somewhat lower gas-phase metallicities.

  18. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  19. A Fundamental Study for Aerodynamic Characteristics of Supersonic Biplane Wing and Wing-Body Configurations

    NASA Astrophysics Data System (ADS)

    Odaka, Yusuke; Kusunose, Kazuhiro

    In order to develop a quiet supersonic transport, it is necessary to reduce shock waves around the transport. Shock waves, in general, are the cause of the airplane's sonic boom. Authors have been studying an aerodynamic feasibility of supersonic biplanes based on the concept of the Busemann biplane. In this paper, the three dimensional effect of wing geometries on their wave drags, including wing tip effects and the interference effects between the wing and a body (Wing-Body configurations) are investigated, using CFD code in Euler (inviscid) mode. As a result, we can conclude that the supersonic biplane wings at their design Mach number (M∞=1.7) are still capable of reducing wave drag significantly similar to that of the 2-D supersonic biplane.

  20. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    2009-05-01

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  1. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  2. Lift, Drag, and Pitching Moment of an Aspect-Ratio-2 Triangular Wing with Leading-Edge Flaps Designed to Simulate Conical Camber

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.

    1958-01-01

    An investigation was conducted to determine the effectiveness of leading-edge flaps in reducing the drag at lifting conditions of a triangular wing of aspect ratio 2.0. The flaps, deflected to simulate conically cambered wings having a wide range of design lift coefficients, were tested over a Mach number range of 0.70 to 2.22 through an angle-of-attack variation from -6 deg to +18 deg at a constant Reynolds number of 3.68 million based on the wing mean aerodynamic chord. A symmetrical wing of the same plan form and aspect ratio was also tested to provide a basis for comparison. The experimental results showed that with the flaps in the undeflected position, a small amount of fixed leading-edge droop incorporated over the outboard 5 percent of the wing semispan was as effective at high subsonic speeds as conical camber in improving the maximum lift-drag ratio above that of the symmetrical wing. At supersonic speeds, the penalty in minimum drag above that of the symmetrical wing was less than that incurred by conical camber. Deflecting the leading-edge flaps about the hinge line through 80 percent of the wing semispan resulted in further improvements of the drag characteristics at lift coefficients above 0.20 throughout the Mach number range investigated. The lift and pitching-moment characteristics were not significantly affected by the leading-edge flaps.

  3. Wind-tunnel investigation of a variable camber and twist wing. [in the Langley 8-ft transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Ferris, J. C.

    1977-01-01

    The longitudinal aerodynamic characteristics of a 35 deg swept, variable camber and twist semispan wing in the presence of a body were studied. The variable camber and twist were incorporated to allow a near optimum lift distribution over the wing for both the cruise condition and the high lift conditions for maneuverability. The wing incorporated movable leading-edge segments whose swept hinge lines provided maximum camber variations at the outboard leading edge and movable trailing-edge segments whose swept hinge lines provided maximum camber variations near the inboard trailing edge. The model was investigated at Mach numbers of 0.60, 0.80, and 0.90 through an angle-of-attack range from 0 deg to 10 deg or buffet onset.

  4. Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster

    PubMed Central

    Okada, Hirokazu; Ebhardt, H. Alexander; Vonesch, Sibylle Chantal; Aebersold, Ruedi; Hafen, Ernst

    2016-01-01

    The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype–phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations. PMID:27582081

  5. Mission adaptive wing soars at NASA Facility

    NASA Technical Reports Server (NTRS)

    Rahn, D.; Reinertson, L.

    1986-01-01

    Research pilots have flown the Mission Adaptive Wing (MAW) aircraft, a highly modified F-111 jet fighter, from subsonic speeds up to Mach 1.4 in initial flight tests. The inital test flights are clearing the envelope with the wings flexed at various curvatures. This process allows further research data to be safely gathered so that designers of future variable camber wing aircraft have the best information possible. The altitude envelope was cleared from 27,500 down to 7,500 feet where denser air can cause more stress on the aircraft. Testing with the aircraft was conducted with wing sweep angles of 26 and 58 degrees. At the conclusion of the performance tests in the manual configuration, the system will be reconfigured for automatic mode tests. The limited automatic modes include maneuver camber control where the wings are deflected automatically to the best lift versus drag combination for a particular speed; cruise camber control which can help protect the aircraft from high G stresses; and maneuver enhancement/gust alleviation which is designed to improve the aircraft's up and down movement response to pilot commands and reduce the aircraft response to turbulence.

  6. Flapping wing aerodynamics: from insects to vertebrates.

    PubMed

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight.

  7. Antifatigue properties of dragonfly Pantala flavescens wings.

    PubMed

    Li, Xiu-Juan; Zhang, Zhi-Hui; Liang, Yun-Hong; Ren, Lu-Quan; Jie, Meng; Yang, Zhi-Gang

    2014-05-01

    The wing of a dragonfly is thin and light, but can bear high frequent alternating stress and present excellent antifatigue properties. The surface morphology and microstructure of the wings of dragonfly Pantala flavescens were observed using SEM in this study. Based on the biological analysis method, the configuration, morphology, and structure of the vein were studied, and the antifatigue properties of the wings were investigated. The analytical results indicated that the longitudinal veins, cross veins, and membrane of dragonfly wing form a optimized network morphology and spacially truss-like structure which can restrain the formation and propagation of the fatigue cracks. The veins with multilayer structure present high strength, flexibility, and toughness, which are beneficial to bear alternating load during the flight of dragonfly. Through tensile-tensile fatigue failure tests, the results were verified and indicate that the wings of dragonfly P. flavescens have excellent antifatigue properties which are the results of the biological coupling and synergistic effect of morphological and structural factors.

  8. BMI Sandwich Wing Box Analysis and Test

    NASA Technical Reports Server (NTRS)

    Palm, Tod; Mahler, Mary; Shah, Chandu; Rouse, Marshall; Bush, Harold; Wu, Chauncey; Small, William J.

    2000-01-01

    A composite sandwich single bay wing box test article was developed by Northrop Grumman and tested recently at NASA Langley Research Center. The objectives for the wing box development effort were to provide a demonstration article for manufacturing scale up of structural concepts related to a high speed transport wing, and to validate the structural performance of the design. The box concept consisted of highly loaded composite sandwich wing skins, with moderately loaded composite sandwich spars. The dimensions of the box were chosen to represent a single bay of the main wing box, with a spar spacing of 30 inches, height of 20 inches constant depth, and length of 64 inches. The bismaleimide facesheet laminates and titanium honeycomb core chosen for this task are high temperature materials able to sustain a 300F service temperature. The completed test article is shown in Figure 1. The tests at NASA Langley demonstrated the structures ability to sustain axial tension and compression loads in excess of 20,000 lb/in, and to maintain integrity in the thermal environment. Test procedures, analysis failure predictions, and test results are presented.

  9. Limb-brightening observations from the OSO-7 satellite. III - Comparison of EUV line intensities of Fe XII, Fe XI, Fe XV, Si X and S XII, Si IX and S XI with predictions

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Mason, H. E.

    1978-01-01

    Continuing a study of heliocentric dependence of EUV emission line intensities observed by the Goddard OSO-7 spectroheliograph in 1972, the variation of lines of the ions Fe XII, Fe XI, Fe XV, Si X and S XII, Si IX and S XI is compared with the results of individual calculations for these ions, including theoretical intensities presented for Fe XII and Fe XI. Agreement is found to be good for Fe XII and reasonable for some of the lines of the other ions which in general are weaker in intensity. Several apparent anomalies are found however which may be due to unknown line components near the wavelengths observed.

  10. Elastic deformation and energy loss of flapping fly wings.

    PubMed

    Lehmann, Fritz-Olaf; Gorb, Stanislav; Nasir, Nazri; Schützner, Peter

    2011-09-01

    During flight, the wings of many insects undergo considerable shape changes in spanwise and chordwise directions. We determined the origin of spanwise wing deformation by combining measurements on segmental wing stiffness of the blowfly Calliphora vicina in the ventral and dorsal directions with numerical modelling of instantaneous aerodynamic and inertial forces within the stroke cycle using a two-dimensional unsteady blade elementary approach. We completed this approach by an experimental study on the wing's rotational axis during stroke reversal. The wing's local flexural stiffness ranges from 30 to 40 nN m(2) near the root, whereas the distal wing parts are highly compliant (0.6 to 2.2 nN m(2)). Local bending moments during wing flapping peak near the wing root at the beginning of each half stroke due to both aerodynamic and inertial forces, producing a maximum wing tip deflection of up to 46 deg. Blowfly wings store up to 2.30 μJ elastic potential energy that converts into a mean wing deformation power of 27.3 μW. This value equates to approximately 5.9 and 2.3% of the inertial and aerodynamic power requirements for flight in this animal, respectively. Wing elasticity measurements suggest that approximately 20% or 0.46 μJ of elastic potential energy cannot be recovered within each half stroke. Local strain energy increases from tip to root, matching the distribution of the wing's elastic protein resilin, whereas local strain energy density varies little in the spanwise direction. This study demonstrates a source of mechanical energy loss in fly flight owing to spanwise wing bending at the stroke reversals, even in cases in which aerodynamic power exceeds inertial power. Despite lower stiffness estimates, our findings are widely consistent with previous stiffness measurements on insect wings but highlight the relationship between local flexural stiffness, wing deformation power and energy expenditure in flapping insect wings.

  11. Principle of bio-inspired insect wing rotational hinge design

    NASA Astrophysics Data System (ADS)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  12. Physical Mechanisms of Glaze Ice Scallop Formations on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Reshotko, Eli

    1998-01-01

    An experiment was conducted to understand the physical mechanisms that lead to the formation of scallops on swept wings. Icing runs were performed on a NACA 0012 swept wing tip at 45 deg, 30 deg, and 15 deg sweep angles. A baseline case was chosen and direct measurements of scallop height and spacing, castings, video data and close-up photographic data were obtained. The results showed the scallops are made of glaze ice feathers that grow from roughness elements that have reached a minimum height and are located beyond a given distance from the attachment line. This distance depends on tunnel conditions and sweep angle, and is the critical parameter in the formation of scallops. It determines if complete scallops, incomplete scallops or no scallops are going to be formed. The mechanisms of growth for complete and incomplete scallops were identified. The effect of velocity, temperature and LWC on scallop formation was studied. The possibility that cross flow instability may be the physical mechanism that triggers the growth of roughness elements into glaze ice feathers is examined.

  13. Airframe Noise from a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.

    2016-01-01

    A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.

  14. Gliding swifts attain laminar flow over rough wings.

    PubMed

    Lentink, David; de Kat, Roeland

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  15. Automated Kinematic Extraction of Wing and Body Motions of Free Flying Diptera

    NASA Astrophysics Data System (ADS)

    Kostreski, Nicholas I.

    In the quest to understand the forces generated by micro aerial systems powered by oscillating appendages, it is necessary to study the kinematics that generate those forces. Automated and manual tracking techniques were developed to extract the complex wing and body motions of dipteran insects, ideal micro aerial systems, in free flight. Video sequences were captured by three high speed cameras (7500 fps) oriented orthogonally around a clear flight test chamber. Synchronization and image-based triggering were made possible by an automated triggering circuit. A multi-camera calibration was implemented using image-based tracking techniques. Three-dimensional reconstructions of the insect were generated from the 2-D images by shape from silhouette (SFS) methods. An intensity based segmentation of the wings and body was performed using a mixture of Gaussians. In addition to geometric and cost based filtering, spectral clustering was also used to refine the reconstruction and Principal Component Analysis (PCA) was performed to find the body roll axis and wing-span axes. The unobservable roll state of the cylindrically shaped body was successfully estimated by combining observations of the wing kinematics with a wing symmetry assumption. Wing pitch was determined by a ray tracing technique to compute and minimize a point-to-line cost function. Linear estimation with assumed motion models was accomplished by discrete Kalman filtering the measured body states. Generative models were developed for different species of diptera for model based tracking, simulation, and extraction of inertial properties. Manual and automated tracking results were analyzed and insect flight simulation videos were developed to quantify ground truth errors for an assumed model. The results demonstrated the automated tracker to have comparable performance to a human digitizer, though manual techniques displayed superiority during aggressive maneuvers and image blur. Both techniques demonstrated

  16. Measurement of Oxygen A Band Line Parameters by Using Modulation Spectroscopy with Higher Harmonic Detection

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin

    1999-01-01

    Wavelength modulation spectroscopy is used to demonstrate that extremely weak absorption lines can be measured even when these lines suffer from interference from the wings of adjacent stronger lines. It is shown that the use of detection at several harmonics allows such interference to be examined clearly and conveniently. The results of experimental measurements on a weak magnetic dipole driven, spin-forbidden line in the oxygen A band, which experiences interference from the wings of a pair of adjacent lines towards the blue and red regions of line center, are presented. A comparison of the experimental results to theory is given.

  17. Installation Restoration Program. Preliminary Assessment: 137th Tactical Airlift Wing, Oklahoma Air National Guard, Will Rogers World Airport, Oklahoma City, Oklahoma

    DTIC Science & Technology

    1989-02-01

    INSTALLATION RESTORATION PROGRAM 00 PRELIMINARY ASSESSMENTcc U 137th Tactical Airlift Wing Oklahoma Aih National Guard I’~~C Will Rogers World...TRUST PROPERTY LINE 3 :40w OKLAHOV A ANG I,LL R G[R ORLD AIRPORT -1 I LU Copies of the final report may be purchased from: National Technical Information...Preliminary Assessment 4. TITLE AND SUBTITLE Preliminary Assessment S. FUNDING NUMBERS 137th Tactical Airlift Wing Oklahoma Air National Guard Will Rogers

  18. Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.

    1996-01-01

    We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in

  19. The role of wing kinematics of freely flying birds downstream the wake of flapping wings

    NASA Astrophysics Data System (ADS)

    Krishnan, Krishnamoorthy; Gurka, Roi

    2016-11-01

    Avian aerodynamics has been a topic of research for centuries. Avian flight features such as flapping, morphing and maneuvering make bird aerodynamics a complex system to study, analyze and understand. Aerodynamic performance of the flapping wings can be quantified by measuring the vortex structures present in the downstream wake. Still, the direct correlation between the flapping wing kinematics and the evolution of wake features need to be established. In this present study, near wake of three bird species (western sandpiper, European starling and American robin) have been measured experimentally. Long duration, time-resolved, particle image velocimetry technique has been used to capture the wake properties. Simultaneously, the bird kinematics have been captured using high speed camera. Wake structures are reconstructed from the collected PIV images for long chord distances downstream. Wake vorticities and circulation are expressed in the wake composites. Comparison of the wake features of the three birds shows similarities and some key differences are also found. Wing tip motions of the birds are extracted for four continuous wing beat cycle to analyze the wing kinematics. Kinematic parameters of all the three birds are compared to each other and similar trends exhibited by all the birds have been observed. A correlation between the wake evolutions with the wing motion is presented. It was found that the wings' motion generates unique flow patterns at the near wake, especially at the transition phases. At these locations, a drastic change in the circulation was observed.

  20. General Potential Theory of Arbitrary Wing Sections

    NASA Technical Reports Server (NTRS)

    Theodorsen, T.; Garrick, I. E.

    1979-01-01

    The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.

  1. Oblique wing transonic transport configuration development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Studies of transport aircraft designed for boom-free supersonic flight show the variable sweep oblique wing to be the most efficient configuration for flight at low supersonic speeds. Use of this concept leads to a configuration that is lighter, quieter, and more fuel efficient than symmetric aircraft designed for the same mission. Aerodynamic structural, weight, aeroelastic and flight control studies show the oblique wing concept to be technically feasible. Investigations are reported for wing planform and thickness, pivot design and weight estimation, engine cycle (bypass ratio), and climb, descent and reserve fuel. Results are incorporated into a final configuration. Performance, weight, and balance characteristics are evaluated. Flight control requirements are reviewed, and areas in which further research is needed are identified.

  2. AD-1 multiple exposure showing wing sweep

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This photograph is a multiple exposure showing the AD-1 aircraft with its wing swept at different angles between zero and 60 degrees. The Ames-Dryden-1 (AD-1) aircraft was designed to investigate the concept of an oblique (pivoting) wing. The wing could be rotated on its center pivot, so that it could be set at its most efficient angle for the speed at which the aircraft was flying. NASA Ames Research Center Aeronautical Engineer Robert T. Jones conceived the idea of an oblique wing. His wind tunnel studies at Ames (Moffett Field, CA) indicated that an oblique wing design on a supersonic transport might achieve twice the fuel economy of an aircraft with conventional wings. The oblique wing on the AD-1 pivoted about the fuselage, remaining perpendicular to it during slow flight and rotating to angles of up to 60 degrees as aircraft speed increased. Analytical and wind tunnel studiesthat Jones conducted at Ames indicated that a transport-sized oblique-wing aircraft flying at speeds of up to Mach 1.4 (1.4 times the speed of sound) would have substantially better aerodynamic performance than aircraft with conventional wings. The AD-1 structure allowed the project to complete all of its technical objectives. The type of low-speed, low-cost vehicle - as expected - exhibited aeroelastic and pitch-roll-coupling effects that contributed to poor handling at sweep angles above 45 degrees. The fiberglass structure limited the wing stiffness that would have improved the handling qualities. Thus, after completion of the AD-1 project, there was still a need for a transonic oblique-wing research aircraft to assess the effects of compressibility, evaluate a more representative structure, and analyze flight performance at transonic speeds (those on either side of the speed of sound). The aircraft was delivered to the Dryden Flight Research Center, Edwards, CA, in March 1979 and its first flight was on December 21, 1979. Piloting the aircraft on that flight, as well as on its last

  3. Wing-Body Aeroelasticity on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Byun, Chansup

    1996-01-01

    This article presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a high speed civil transport type wing-body configuration.

  4. Mathematical modeling of appendicular bone growth in glaucous-winged gulls.

    PubMed

    Hayward, James L; Henson, Shandelle M; Banks, John C; Lyn, Sheena L

    2009-01-01

    Development of locomotor activity is crucial in tetrapods. In birds, this development leads to different functions for hindlimbs and forelimbs. The emergence of walking and flying as very different complex behavior patterns only weeks after hatching provides an interesting case study in animal development. We measured the diaphyseal lengths and midshaft diameters of three wing bones (humerus, ulna, and carpometacarpus) and three leg bones (femur, tibiotarsus, and tarsometatarsus) of 79 juvenile (ages 0-42 days) and 13 adult glaucous-winged gulls (Larus glaucescens), a semiprecocial species. From a suite of nine alternative mathematical models, we used information-theoretic criteria to determine the best model(s) for length and diameter of each bone as a function of age; that is, we determined the model(s) that obtained the best tradeoff between the minimized sum of squared residuals and the number of parameters used to fit the model. The Janoschek and Holling III models best described bone growth, with at least one of these models yielding an R(2) > or = 0.94 for every dimension except tarsometatarsus diameter (R(2) = 0.87). We used the best growth models to construct accurate allometric comparisons of the bones. Early maximal absolute growth rates characterize the humerus, femur, and tarsometatarsus, bones that assume adult-type support functions relatively early during juvenile development. Leg bone lengths exhibit more rapid but less sustained relative growth than wing bone lengths. Wing bone diameters are initially smaller than leg bone diameters, although this relationship is reversed by fledging. Wing bones and the femur approach adult length by fledging but continue to increase in diameter past fledging; the tibiotarsus and tarsometatarsus approach both adult length and diameter by fledging. In short, the pattern of bone growth in this semiprecocial species reflects the changing behavioral needs of the developing organism.

  5. Active Aeroelastic Tailoring of High-Aspect-Ratio Composite Wings

    DTIC Science & Technology

    2005-09-01

    34 - 26000 , ......... . . . ...... . . .... .. .......................... ... - - ----------- 21000 ... ........... ~0 50 LOAD... ISO 5: B s mission....f Figure 5: Basic mission profile 7 Figure 6: Baseline single-wing and joined-wing vehicles 3.1 Baseline vehicles Three sets

  6. FRONT DETAIL OF RIGHT ENGINE AND WING. MECHANICS CHECK METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT DETAIL OF RIGHT ENGINE AND WING. MECHANICS CHECK METAL CHIP DETECTOR ON RIGHT ENGINE. THE LEADING EDGE FLAPS ON THE RIGHT WING ARE DOWN PRIOR TO LUBRICATION. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY

  7. Structure analysis of the wing of a dragonfly

    NASA Astrophysics Data System (ADS)

    Machida, Kenji; Shimanuki, J.

    2005-04-01

    It is considered that wing corrugation increases not only the warping rigidity but also the flexibility. The wing of a dragonfly has some characteristic structures, such as "Nodus", "Stigma". Nodus is located in the center of the leading edge, and stigma like a mark is located near the end of the wing. It is considered that these structures not only increase the flexibility of the wing, but also prevent fatigue fracture of wings. Therefore, to investigate the mechanism of dragonfly's wing, the configuration of wing used for analyses was measured using an optical coordinate profile measuring machine and a laser microscope. Moreover, several 3-D models of the dragonfly's wing were made, and calculated by the 3-D finite element method.

  8. View of intersection with west wall of north wing and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of intersection with west wall of north wing and north wall of west wing; camera facing southeast. - Mare Island Naval Shipyard, Marine Prison, Suisun Avenue, west side between Mesa Road & San Pablo, Vallejo, Solano County, CA

  9. Lock 5 View west of wing walls and chamber ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock 5 - View west of wing walls and chamber with gate pockets visible. Note two small notches in brick at lower portion of wing walls - Savannah & Ogeechee Barge Canal, Between Ogeechee & Savannah Rivers, Savannah, Chatham County, GA

  10. 11. VIEW OF SOUTHWEST CORNER OF SOUTH WING OF TECHWOOD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF SOUTHWEST CORNER OF SOUTH WING OF TECHWOOD DORMITORY. WEST FRONT OF SOUTH WING OBSCURED BY DEEP SHADE. - Techwood Homes, McDaniel Dormitory, 581-587 Techwood Drive, Atlanta, Fulton County, GA

  11. Wing flexibility enhances load-lifting capacity in bumblebees.

    PubMed

    Mountcastle, Andrew M; Combes, Stacey A

    2013-05-22

    The effect of wing flexibility on aerodynamic force production has emerged as a central question in insect flight research. However, physical and computational models have yielded conflicting results regarding whether wing deformations enhance or diminish flight forces. By experimentally stiffening the wings of live bumblebees, we demonstrate that wing flexibility affects aerodynamic force production in a natural behavioural context. Bumblebee wings were artificially stiffened in vivo by applying a micro-splint to a single flexible vein joint, and the bees were subjected to load-lifting tests. Bees with stiffened wings showed an 8.6 per cent reduction in maximum vertical aerodynamic force production, which cannot be accounted for by changes in gross wing kinematics, as stroke amplitude and flapping frequency were unchanged. Our results reveal that flexible wing design and the resulting passive deformations enhance vertical force production and load-lifting capacity in bumblebees, locomotory traits with important ecological implications.

  12. Advanced composites wing study program. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Harvey, S. T.; Michaelson, G. L.

    1978-01-01

    The effort necessary to achieve a state of production readiness for the design and manufacturing of advanced composite wing structure is outlined. Technical assessment and program options are also reviewed for the wing study results.

  13. 6. DETAIL OF MASONRY ON SOUTHWEST WING WALL. MASONRY ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF MASONRY ON SOUTHWEST WING WALL. MASONRY ON WING WALLS IS LAID IN A RANDOM RUBBLE PATTERN. - Core Creek County Bridge, Spanning Core Creek, approximately 1 mile South of State Route 332 (Newtown Bypass), Newtown, Bucks County, PA

  14. Detail of northeast wing wall and guiderail. The section of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of northeast wing wall and guiderail. The section of the wing wall in the foreground is a historic extension of this element. - Chester County Bridge No. 225, Spanning Tweed Creek at Hopewell Road, Oxford, Chester County, PA

  15. Supersonic aerodynamic characteristics of a Sparrow 3 type missile model with wing controls and comparison with existing tail-control results

    NASA Technical Reports Server (NTRS)

    Monta, W. J.

    1977-01-01

    An experimental investigation was conducted on a model of a wing control version of the Sparrow III type missile to determine the static aerodynamic characteristics over an angle of attack range from 0 deg to 40 deg for Mach numbers from 1.50 to 4.60.

  16. Smithornis broadbills produce loud wing song by aeroelastic flutter of medial primary wing feathers.

    PubMed

    Clark, Christopher J; Kirschel, Alexander N G; Hadjioannou, Louis; Prum, Richard O

    2016-04-01

    Broadbills in the genus Smithornis produce a loud brreeeeet during a distinctive flight display. It has been posited that this klaxon-like sound is generated non-vocally with the outer wing feathers (P9, P10), but no scientific studies have previously addressed this hypothesis. Although most birds that make non-vocal communication sounds have feathers with a shape distinctively modified for sound production, Smithornis broadbills do not. We investigated whether this song is produced vocally or with the wings in rufous-sided broadbill (S. rufolateralis) and African broad bill (S. capensis). In support of the wing song hypothesis, synchronized high-speed video and sound recordings of displays demonstrated that sound pulses were produced during the downstroke, subtle gaps sometimes appeared between the outer primary feathers P6-P10, and wing tip speed reached 16 m s(-1) Tests of a spread wing in a wind tunnel demonstrated that at a specific orientation, P6 and P7 flutter and produce sound. Wind tunnel tests on individual feathers P5-P10 from a male of each species revealed that while all of these feathers can produce sound via aeroelastic flutter, P6 and P7 produce the loudest sounds, which are similar in frequency to the wing song, at airspeeds achievable by the wing tip during display flight. Consistent with the wind tunnel experiments, field manipulations of P6, P7 and P8 changed the timbre of the wing song, and reduced its tonality, demonstrating that P6 and P7 are together the sound source, and not P9 or P10. The resultant wing song appears to have functionally replaced vocal song.

  17. Hybrid Wing Body Configuration System Studies

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; McCullers, Arnie

    2009-01-01

    The objective of this study was to develop a hybrid wing body (HWB) sizing and analysis capability, apply that capability to estimate the fuel burn potential for an HWB concept, and identify associated technology requirements. An advanced tube with wings concept was also developed for comparison purposes. NASA s Flight Optimization System (FLOPS) conceptual aircraft sizing and synthesis software was modified to enable the sizing and analysis of HWB concepts. The noncircular pressurized centerbody of the HWB concept was modeled, and several options were created for defining the outboard wing sections. Weight and drag estimation routines were modified to accommodate the unique aspects of an HWB configuration. The resulting capability was then utilized to model a proprietary Boeing blended wing body (BWB) concept for comparison purposes. FLOPS predicted approximately a 15 percent greater drag, mainly caused by differences in compressibility drag estimation, and approximately a 5 percent greater takeoff gross weight, mainly caused by the additional fuel required, as compared with the Boeing data. Next, a 777-like reference vehicle was modeled in FLOPS and calibrated to published Boeing performance data; the same mission definition was used to size an HWB in FLOPS. Advanced airframe and propulsion technology assumptions were applied to the HWB to develop an estimate for potential fuel burn savings from such a concept. The same technology assumptions, where applicable, were then applied to an advanced tube-with-wings concept. The HWB concept had a 39 percent lower block fuel burn than the reference vehicle and a 12 percent lower block fuel burn than the advanced tube-with-wings configuration. However, this fuel burn advantage is partially derived from assuming the high-risk technology of embedded engines with boundary-layer-ingesting inlets. The HWB concept does have the potential for significantly reduced noise as a result of the shielding advantages that are inherent

  18. Description of metastable states in the asymptotic line shape theory

    NASA Astrophysics Data System (ADS)

    Klimeshina, Tatyana E.; Rodimova, Olga B.

    2014-11-01

    A line-by-line calculation of the continuum absorption coefficient in the 1600 and 3600 cm-1 water vapor bands with the line wing shape corresponding to asymptotic line shape theory is presented. The calculation results agree closely with quasi-bound dimer absorption estimates made in the context of a dimer hypothesis. An examination of the classical part of the problem at hand enables the fraction of the quasi-bound dimers to be estimated.

  19. Tables for the Rapid Estimation of Downwash and Sidewash Behind Wings Performing Various Motions at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.

    1959-01-01

    Equations for the downwash and sidewash due to supersonic yawed and unswept horseshoe vortices have been utilized in formulating tables and charts to permit a rapid estimation of the flow velocities behind wings performing various steady motions. Tabulations are presented of the downwash and sidewash in the wing vertical plane of symmetry due to a unit-strength yawed horseshoe vortex located at 20 equally spaced spanwise positions along lifting lines of various sweeps. (The bound portion of the yawed vortex is coincident with the lifting line.) Charts are presented for the purpose of estimating the spanwise variations of the flow-field velocities and give longitudinal variations of the downwash and sidewash at a nuMber of vertical and spanwise locations due to a unit-strength unswept horseshoe vortex. Use of the tables and charts to calculate wing downwash or sidewash requires a knowledge of the wing spanwise distribution of circulation. Sample computations for the rolling sidewash and angle-of-attack downwash behind a typical swept wing are presented to demonstrate the use of the tables and charts.

  20. Conical Euler simulation of wing rock for a delta wing planform

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1991-01-01

    Unsteady, vortex-dominated flowfields are presently studied by using the conical Euler equations as an efficient first step toward investigation of the full three-dimensional problem, under the assumption that the supersonic flow about a delta wing is conical and therefore allows the three-dimensional problem to be reduced to a two-dimensional one. Attention is given to the case of a delta wing undergoing wing-rock motion. The code developed has also been modified to allow treatment of the 'free-to-roll' case.