Science.gov

Sample records for iii-nitride ternary semiconductors

  1. Carrier dynamics in III-nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Liu, Kai

    In the past decade, III-nitride semiconductors had a considerable impact in solid state lighting and high speed high power electronics. As technology develops, high Al content III-nitride semiconductors lead the edge of research. It opens the door to many applications especially portable ones: from homeland security, bio-analytical, medical diagnostic, air and water disinfection, sterilization, chemical sensing systems, non-line-of-sight (NLOS) communications, to high-density optical data storage. In this thesis, we first study GaN epilayers, as well as more complicate high Al content AlGaN/AlGaN MQW structures used as active media for deep UV LEDs. We theoretically study the photoluminescence (PL) dynamics in high quality GaN epilayers by establishing a new decay model. In our model, surface recombination, diffusion, and re-absorption are taken into account. Our model is in excellent agreement with experimental data obtained by time-resolved PL. Our results show that the carrier diffusion and surface recombination play key roles in the PL decay. For high Al content AlGaN/AlGaN MQW structures, we first present the investigation of built-in electric fields in AlxGa1-xN/Al yGa1-yN MQWs embedded into p-i-n structure by using photoluminescence experiments. By comparison of the Stark shifts induced by the p-i-n structure and by photo-excited free carrier screening, we evaluate the intrinsic electric field induced by piezoelectric and spontaneous polarizations. Furthermore we investigate carrier dynamics in sets of identically grown Al0.35Ga0.65N/Al 0.49Ga0.51N MQW structures with well widths varying from 1.65 to 5.0 nm by TR-PL and LITG techniques. We observed screening of the built-in electric field by free non-equilibrium carriers and localization governed PL kinetics at different decay stages. A decrease of carrier lifetime with increasing well width is observed and attributed to the carrier localization occurring due to well width fluctuations of the quantum well

  2. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOEpatents

    Hui, Rongqing; Jiang,Hong-Xing; Lin, Jing-Yu

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  3. Methods for improved growth of group III nitride semiconductor compounds

    DOEpatents

    Melnik, Yuriy; Chen, Lu; Kojiri, Hidehiro

    2015-03-17

    Methods are disclosed for growing group III-nitride semiconductor compounds with advanced buffer layer technique. In an embodiment, a method includes providing a suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. The method includes forming an AlN buffer layer by flowing an ammonia gas into a growth zone of the processing chamber, flowing an aluminum halide containing precursor to the growth zone and at the same time flowing additional hydrogen halide or halogen gas into the growth zone of the processing chamber. The additional hydrogen halide or halogen gas that is flowed into the growth zone during buffer layer deposition suppresses homogeneous AlN particle formation. The hydrogen halide or halogen gas may continue flowing for a time period while the flow of the aluminum halide containing precursor is turned off.

  4. Progress and prospects of group-III nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Mohammad, S. N.; Morkoç, H.

    We review recent progress in the group-III nitride and related materials, and electronic and optical devices based on them. Blue and UV (e.g. ultra violet) emitters and detectors, and high temperature/high power electronics which has long been coveted are beginning to be realized either in the laboratory or in the commercial arena, due in part to the breathtaking progress made in the last few years in the art and science of GaN, InN, AlN and their salloys. With brief references to the historical aspect of the relevant developments, this review concerns itself primarily with the current status of wide bandgap gallium nitride and related semiconductors from both the materials and devices points of view. Following a discussion of the structural properties of these materials, their electrical and optical properties are described in detail. The available data on metal contacts, the properties of which are indeed very conducive for the devices mentioned, from the points of view of ohmic contacts and Schottky barriers, are elaborated on. Recent progress on processing issues such as etching are reviewed. The review then embarks on an indash;depth discussion and analysis of field effect transistors, bipolar transistors, light emitting diodes, laser and photo detectors.

  5. Electronic Biosensors Based on III-Nitride Semiconductors.

    PubMed

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  6. Electronic Biosensors Based on III-Nitride Semiconductors

    NASA Astrophysics Data System (ADS)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-07-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  7. Theoretical investigations of compositional inhomogeneity around threading dislocations in III-nitride semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Ryohei; Akiyama, Toru; Nakamura, Kohji; Ito, Tomonori

    2016-05-01

    The compositional inhomogeneity of group III elements around threading dislocations in III-nitride semiconductors are theoretically investigated using empirical interatomic potentials and Monte Carlo simulations. We find that the calculated atomic arrangements around threading dislocations in Al0.3Ga0.7N and In0.2Ga0.8N depend on the lattice strain around dislocation cores. Consequently, compositional inhomogeneity arises around edge dislocation cores to release the strain induced by dislocation cores. In contrast, the compositional inhomogeneity in screw dislocation is negligible owing to relatively small strain induced by dislocation cores compared with edge dislocation. These results indicate that the strain relief around dislocation cores is decisive in determining the atomic arrangements and resultant compositional inhomogeneity around threading dislocations in III-nitride semiconductor alloys.

  8. Density Functional Theory Modeling of Low-Loss Electron Energy-Loss Spectroscopy in Wurtzite III-Nitride Ternary Alloys.

    PubMed

    Eljarrat, Alberto; Sastre, Xavier; Peiró, Francesca; Estradé, Sónia

    2016-06-01

    In the present work, the dielectric response of III-nitride semiconductors is studied using density functional theory (DFT) band structure calculations. The aim of this study is to improve our understanding of the features in the low-loss electron energy-loss spectra of ternary alloys, but the results are also relevant to optical and UV spectroscopy results. In addition, the dependence of the most remarkable features with composition is tested, i.e. applying Vegard's law to band gap and plasmon energy. For this purpose, three wurtzite ternary alloys, from the combination of binaries AlN, GaN, and InN, were simulated through a wide compositional range (i.e., Al x Ga1-x N, In x Al1-x N, and In x Ga1-x N, with x=[0,1]). For this DFT calculations, the standard tools found in Wien2k software were used. In order to improve the band structure description of these semiconductor compounds, the modified Becke-Johnson exchange-correlation potential was also used. Results from these calculations are presented, including band structure, density of states, and complex dielectric function for the whole compositional range. Larger, closer to experimental values, band gap energies are predicted using the novel potential, when compared with standard generalized gradient approximation. Moreover, a detailed analysis of the collective excitation features in the dielectric response reveals their compositional dependence, which sometimes departs from a linear behavior (bowing). Finally, an advantageous method for measuring the plasmon energy dependence from these calculations is explained.

  9. Strain effect in group-III nitride semiconductors and their alloys

    NASA Astrophysics Data System (ADS)

    Yan, Qimin; Rinke, Patrick; Scheffler, Matthias; van de Walle, Chris

    2009-11-01

    Strain plays a crucial role in group-III nitride semiconductor based devices since it affects the band structure near the valence- and conduction-band edges and thus the optical properties and the device characteristics. However, the deformation potentials that describe the change in band structure under strain have not yet been reliably determined. We present a systematic study of the strain effects in AlN, GaN and InN in the wurtzite phase. We apply density functional theory and hybrid functionals to address the band-gap problem. We observe nonlinearities of transition energies under realistic strain condition that may, in part, explain the appreciable scatter in previous theoretical work on deformation potentials of group-III-nitrides. For the linear regime around the experimental lattice parameters, we present a complete set of deformation potentials. Applying our deformation potentials, we study strain effects in InGaN alloys (including c-, m-, and semi-polar planes) grown on GaN substrates. We make predictions for the transition energies in these systems and their dependence on In composition.

  10. Inductively coupled plasma reactive ion etching of III-nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Shah, A. P.; Laskar, M. R.; Rahman, A. A.; Gokhale, M. R.; Bhattacharya, A.

    2013-02-01

    III-Nitride semiconductor materials are resistant to most wet chemical etch processes, and hence the only viable alternative is to use dry etching for device processing. However, the conventional Reactive Ion Etching (RIE) process results in very slow etch-rates because of low reactive ion density, and larger surface damage due to high energy ion bombardment. Using Inductively Coupled Plasma (ICP) RIE, a very fast etch-rate and smooth morphology is achieved due to independent control of ion density and ion energy. In this paper, we present our results on ICP-RIE of epitaxial III-N materials, namely c-plane and a-plane oriented GaN, AlN, AlxGa1-xN using various chlorine plasma chemistries based on Cl2 and BCl3. We have examined the role of BCl3 deoxidising pre-treatment on the etching of AlGaN alloys.

  11. Group III nitride semiconductors for short wavelength light-emitting devices

    NASA Astrophysics Data System (ADS)

    Orton, J. W.; Foxon, C. T.

    1998-01-01

    The group III nitrides (AlN, GaN and InN) represent an important trio of semiconductors because of their direct band gaps which span the range 1.95-6.2 eV, including the whole of the visible region and extending well out into the ultraviolet (UV) range. They form a complete series of ternary alloys which, in principle, makes available any band gap within this range and the fact that they also generate efficient luminescence has been the main driving force for their recent technological development. High brightness visible light-emitting diodes (LEDs) are now commercially available, a development which has transformed the market for LED-based full colour displays and which has opened the way to many other applications, such as in traffic lights and efficient low voltage, flat panel white light sources. Continuously operating UV laser diodes have also been demonstrated in the laboratory, exciting tremendous interest for high-density optical storage systems, UV lithography and projection displays. In a remarkably short space of time, the nitrides have therefore caught up with and, in some ways, surpassed the wide band gap II-VI compounds (ZnCdSSe) as materials for short wavelength optoelectronic devices. The purpose of this paper is to review these developments and to provide essential background material in the form of the structural, electronic and optical properties of the nitrides, relevant to these applications. We have been guided by the fact that the devices so far available are based on the binary compound GaN (which is relatively well developed at the present time), together with the ternary alloys AlGaN and InGaN, containing modest amounts of Al or In. We therefore concentrate, to a considerable extent, on the properties of GaN, then introduce those of the alloys as appropriate, emphasizing their use in the formation of the heterostructures employed in devices. The nitrides crystallize preferentially in the hexagonal wurtzite structure and devices have so

  12. Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials.

    PubMed

    Tang, Fengzai; Moody, Michael P; Martin, Tomas L; Bagot, Paul A J; Kappers, Menno J; Oliver, Rachel A

    2015-06-01

    Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of implantation damage induced by sample preparation. In the reconstructed InAlN layer Ga implantation was demonstrated for the standard "clean-up" voltage (5 kV), but this was significantly reduced by using a lower voltage (e.g., 1 kV). The characteristics of APT data from the desorption maps to the mass spectra and measured chemical compositions were examined within the GaN buffer layer underlying the InAlN layer in both pulsed laser and pulsed voltage modes. The measured Ga content increased monotonically with increasing laser pulse energy and voltage pulse fraction within the examined ranges. The best results were obtained at very low laser energy, with the Ga content close to the expected stoichiometric value for GaN and the associated desorption map showing a clear crystallographic pole structure.

  13. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays.

    PubMed

    Li, Huijie; Zhao, Guijuan; Kong, Susu; Han, Dongyue; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2015-10-21

    Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy characterization. It was found that the In droplets on top of the InN nanorods play a critical role in controlling the morphology of the nanotubes. By keeping or removing the In droplets, the obtained nanotubes exhibited both ends open or only one end open. And by varying the AlN deposition temperature, the In composition in the nanotubes can be changed from 0 to 0.29. The nanotube synthesis method is simple and can be applied to the formation of other III-nitride ternary (InGaN, and AlGaN) or quaternary (InAlGaN) alloy nanotube arrays.

  14. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Zhao, Guijuan; Kong, Susu; Han, Dongyue; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2015-10-01

    Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy characterization. It was found that the In droplets on top of the InN nanorods play a critical role in controlling the morphology of the nanotubes. By keeping or removing the In droplets, the obtained nanotubes exhibited both ends open or only one end open. And by varying the AlN deposition temperature, the In composition in the nanotubes can be changed from 0 to 0.29. The nanotube synthesis method is simple and can be applied to the formation of other III-nitride ternary (InGaN, and AlGaN) or quaternary (InAlGaN) alloy nanotube arrays.Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy

  15. Rare earth doped III-nitride semiconductors for spintronic and optoelectronic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Palai, Ratnakar

    2016-10-01

    Since last four decades the information and communication technologies are relying on the semiconductor materials. Currently a great deal of attention is being focused on adding spin degree-of-freedom into semiconductor to create a new area of solid-state electronics, called spintronics. In spintronics not only the current but also its spin state is controlled. Such materials need to be good semiconductors for easy integration in typical integrated circuits with high sensitivity to the spin orientation, especially room temperature ferromagnetism being an important desirable property. GaN is considered to be the most important semiconductor after silicon. It is widely used for the production of green, blue, UV, and white LEDs in full color displays, traffic lights, automotive lightings, and general room lighting using white LEDs. GaN-based systems also show promise for microwave and high power electronics intended for radar, satellite, wireless base stations and spintronic applications. Rare earth (Yb, Eu, Er, and Tm) doped GaN shows many interesting optoelectronic and magnetoptic properties e. g. sharp emission from UV through visible to IR, radiation hardness, and ferromagnetism. The talk will be focused on fabrication, optoelectronic (photoluminescence, cathodeluminescence, magnetic, and x-ray photoelectron spectroscopy) properties of some rare earth doped GaN and InGaN semiconductor nanostructures grown by plasma assisted molecular beam epitaxy (MBE) and future applications.

  16. Real-space electron transfer in III-nitride metal-oxide-semiconductor-heterojunction structures

    NASA Astrophysics Data System (ADS)

    Saygi, S.; Koudymov, A.; Adivarahan, V.; Yang, J.; Simin, G.; Khan, M. Asif; Deng, J.; Gaska, R.; Shur, M. S.

    2005-07-01

    The real-space transfer effect in a SiO2/AlGaN /GaN metal-oxide-semiconductor heterostructure (MOSH) from the two-dimensional (2D) electron gas at the heterointerface to the oxide-semiconductor interface has been demonstrated and explained. The effect occurs at high positive gate bias and manifests itself as an additional step in the capacitance-voltage (C-V) characteristic. The real-space transfer effect limits the achievable maximum 2D electron gas density in the device channel. We show that in MOSH structures the maximum electron gas density exceeds up to two times that at the equilibrium (zero bias) condition. Correspondingly, a significant increase in the maximum channel current (up to two times compared to conventional Schottky-gate structures) can be achieved. The real-space charge transfer effect in MOSH structures also opens up a way to design novel devices such as variable capacitors, multistate switches, memory cells, etc.

  17. Terahertz optoelectronic devices based on intersubband transitions in III-nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Sudradjat, Faisal Firmansyah

    The terahertz (THz) spectral region, commonly defined as the frequency (wavelength) range between 0.3 and 10 THz (1 mm and 30 µm) has many important applications in the industrial, biomedical, and military sectors. However, due to a lack of practical semiconductor materials with adequately small bandgap energy, the development of THz light sources and photodetectors has so far been limited. In recent years, devices based on intersubband transitions between discrete energy states in quantum heterostructures have been under intense research and development to address this issue. Of particular promise in the THz range are quantum cascade lasers (QCLs) and quantum well infrared photodetectors (QWIPs), which utilize intersubband transitions in specially designed quantum well (QW) structures to emit light and generate photocurrent, respectively. This research work has focused on the development of THz light sources and photodetectors using intersubband transitions in GaN/AlGaN QWs, whose basic materials properties allow for improved spectral coverage and high-temperature operation compared to existing semiconductor devices. To design the active region of QCLs and QWIPs based on inter-conduction-subband transitions in these materials, the necessary numerical tools have first been developed. Sequential tunneling, the key electronic transport mechanism of intersubband light emitters, has then been demonstrated in GaN/AlGaN QC structures. Furthermore, we have measured promising THz electroluminescence spectra from the same devices through the use of lock-in step-scan Fourier transform infrared spectroscopy. In the area of photodetectors, we have developed a novel double-step QW design in order to overcome the material limitations presented by the intrinsic internal electric fields of GaN/AlGaN QWs. With this design approach, we have experimentally demonstrated the operation of a far infrared QWIP with a peak detection wavelength of 23 µm (13 THz frequency), which is the

  18. Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential

    SciTech Connect

    Araujo, Rafael B. Almeida, J. S. de Ferreira da Silva, A.

    2013-11-14

    In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However, the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.

  19. III-nitride nanowire lasers

    NASA Astrophysics Data System (ADS)

    Wright, Jeremy Benjamin

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key figure of merit that allows for nanowire lasing is the relatively high optical confinement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve single-mode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode operation. The first method involves reducing the diameter of individual nanowires to the cut-off condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter efficiency. Advances in nanowire fabrication, specifically a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip

  20. III-Nitride Nanowire Lasers

    SciTech Connect

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit

  1. High-Resolution Group III Nitride Microdisplays

    DTIC Science & Technology

    2011-12-14

    emissive displays based on gallium nitride micro-size LEDs may be suitable for ultra-portable products such as next- generation handheld projectors...semiconductors. Such devices would benefit from the outstanding physical properties of III- nitrides such as gallium nitride (GaN) and indium gallium ...projected image of a leopard from a green video graphics array indium gallium nitride (InGaN) microdisplay (640 480 pixels, each 12m in size with 15m

  2. III-Nitride full-scale high-resolution microdisplays

    NASA Astrophysics Data System (ADS)

    Day, Jacob; Li, J.; Lie, D. Y. C.; Bradford, Charles; Lin, J. Y.; Jiang, H. X.

    2011-07-01

    We report the realization and properties of a high-resolution solid-state self-emissive microdisplay based on III-nitride semiconductor micro-size light emitting diodes (µLEDs) capable of delivering video graphics images. The luminance level of III-nitride microdisplays is several orders of magnitude higher than those of liquid crystal and organic-LED displays. The pixel emission intensity was almost constant over an operational temperature range from 100 to -100 °C. The outstanding performance is a direct attribute of III-nitride semiconductors. An energy efficient active drive scheme is accomplished by hybrid integration between µLED arrays and Si CMOS (complementary metal-oxide-semiconductor) active matrix integrated circuits. These integrated devices could play important roles in emerging fields such as biophotonics and optogenetics, as well as ultra-portable products such as next generation pico-projectors.

  3. Evidence of type-II band alignment in III-nitride semiconductors: experimental and theoretical investigation for In 0.17 Al 0.83 N/GaN heterostructures.

    PubMed

    Wang, Jiaming; Xu, Fujun; Zhang, Xia; An, Wei; Li, Xin-Zheng; Song, Jie; Ge, Weikun; Tian, Guangshan; Lu, Jing; Wang, Xinqiang; Tang, Ning; Yang, Zhijian; Li, Wei; Wang, Weiying; Jin, Peng; Chen, Yonghai; Shen, Bo

    2014-10-06

    Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelectronic devices and consequently the relevant performance of this material system. Here we show a brandnew type-II band alignment of the lattice-matched In 0.17 Al 0.83 N/GaN heterostructure from the perspective of both experimental observations and first-principle theoretical calculations. The band discontinuity is dominated by the conduction band offset ΔEC, with a small contribution from the valence band offset ΔEV which equals 0.1 eV (with E(AlInN(VBM) being above E(GaN)(VBM)). Our work may open up new prospects to realize high-performance III-Nitrides optoelectronic devices based on type-II energy band engineering.

  4. Evidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures

    PubMed Central

    Wang, Jiaming; Xu, Fujun; Zhang, Xia; An, Wei; Li, Xin-Zheng; Song, Jie; Ge, Weikun; Tian, Guangshan; Lu, Jing; Wang, Xinqiang; Tang, Ning; Yang, Zhijian; Li, Wei; Wang, Weiying; Jin, Peng; Chen, Yonghai; Shen, Bo

    2014-01-01

    Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelectronic devices and consequently the relevant performance of this material system. Here we show a brandnew type-II band alignment of the lattice-matched In0.17Al0.83N/GaN heterostructure from the perspective of both experimental observations and first-principle theoretical calculations. The band discontinuity is dominated by the conduction band offset ΔEC, with a small contribution from the valence band offset ΔEV which equals 0.1 eV (with being above). Our work may open up new prospects to realize high-performance III-Nitrides optoelectronic devices based on type-II energy band engineering. PMID:25283334

  5. III-Nitride nanowire optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  6. Lateral electrochemical etching of III-nitride materials for microfabrication

    DOEpatents

    Han, Jung

    2017-02-28

    Conductivity-selective lateral etching of III-nitride materials is described. Methods and structures for making vertical cavity surface emitting lasers with distributed Bragg reflectors via electrochemical etching are described. Layer-selective, lateral electrochemical etching of multi-layer stacks is employed to form semiconductor/air DBR structures adjacent active multiple quantum well regions of the lasers. The electrochemical etching techniques are suitable for high-volume production of lasers and other III-nitride devices, such as lasers, HEMT transistors, power transistors, MEMs structures, and LEDs.

  7. Intrinsic DX Centers in Ternary Chalcopyrite Semiconductors

    SciTech Connect

    Lany, S.; Zunger, A.

    2008-01-01

    In III-V and II-VI semiconductors, certain nominally electron-donating impurities do not release electrons but instead form deep electron-traps known as 'DX centers.' While in these compounds, such traps occur only after the introduction of foreign impurity atoms, we find from first-principles calculations that in ternary I-III-VI{sub 2} chalcopyrites like CuInSe{sub 2} and CuGaSe{sub 2}, DX-like centers can develop without the presence of any extrinsic impurities. These intrinsic DX centers are suggested as a cause of the difficulties to maintain high efficiencies in CuInSe{sub 2}-based thin-film solar-cells when the band gap is increased by addition of Ga.

  8. III-Nitride UV Devices

    NASA Astrophysics Data System (ADS)

    Asif Khan, M.; Shatalov, M.; Maruska, H. P.; Wang, H. M.; Kuokstis, E.

    2005-10-01

    The need for efficient, compact and robust solid-state UV optical sources and sensors had stimulated the development of optical devices based on III-nitride material system. Rapid progress in material growth, device fabrication and packaging enabled demonstration of high efficiency visible-blind and solar-blind photodetectors, deep-UV light-emitting diodes with emission from 400 to 250 nm, and UV laser diodes with operation wavelengths ranging from 340 to 350 nm. Applications of these UV optical devices include flame sensing; fluorescence-based biochemical sensing; covert communications; air, water and food purification and disinfection; and biomedical instrumentation. This paper provides a review of recent advances in the development of UV optical devices. Performance of state-of-the-art devices as well as future prospects and challenges are discussed.

  9. Wurtzite-derived ternary I-III-O2 semiconductors.

    PubMed

    Omata, Takahisa; Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-04-01

    Ternary zincblende-derived I-III-VI2 chalcogenide and II-IV-V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I-III-O2 oxide semiconductors with a wurtzite-derived β-NaFeO2 structure are limited. Wurtzite-derived β-LiGaO2 and β-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. β-CuGaO2, which has a direct band gap of 1.47 eV, has been proposed for use as a light absorber in thin film solar cells. These ternary oxides may thus allow new applications for oxide semiconductors. However, information about wurtzite-derived ternary I-III-O2 semiconductors is still limited. In this paper we review previous studies on β-LiGaO2, β-AgGaO2 and β-CuGaO2 to determine guiding principles for the development of wurtzite-derived I-III-O2 semiconductors.

  10. Wurtzite-derived ternary I–III–O2 semiconductors

    PubMed Central

    Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-01-01

    Ternary zincblende-derived I–III–VI2 chalcogenide and II–IV–V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I–III–O2 oxide semiconductors with a wurtzite-derived β-NaFeO2 structure are limited. Wurtzite-derived β-LiGaO2 and β-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. β-CuGaO2, which has a direct band gap of 1.47 eV, has been proposed for use as a light absorber in thin film solar cells. These ternary oxides may thus allow new applications for oxide semiconductors. However, information about wurtzite-derived ternary I–III–O2 semiconductors is still limited. In this paper we review previous studies on β-LiGaO2, β-AgGaO2 and β-CuGaO2 to determine guiding principles for the development of wurtzite-derived I–III–O2 semiconductors. PMID:27877769

  11. X-ray diffraction of III-nitrides

    NASA Astrophysics Data System (ADS)

    Moram, M A; Vickers, M E

    2009-03-01

    The III-nitrides include the semiconductors AlN, GaN and InN, which have band gaps spanning the entire UV and visible ranges. Thin films of III-nitrides are used to make UV, violet, blue and green light-emitting diodes and lasers, as well as solar cells, high-electron mobility transistors (HEMTs) and other devices. However, the film growth process gives rise to unusually high strain and high defect densities, which can affect the device performance. X-ray diffraction is a popular, non-destructive technique used to characterize films and device structures, allowing improvements in device efficiencies to be made. It provides information on crystalline lattice parameters (from which strain and composition are determined), misorientation (from which defect types and densities may be deduced), crystallite size and microstrain, wafer bowing, residual stress, alloy ordering, phase separation (if present) along with film thicknesses and superlattice (quantum well) thicknesses, compositions and non-uniformities. These topics are reviewed, along with the basic principles of x-ray diffraction of thin films and areas of special current interest, such as analysis of non-polar, semipolar and cubic III-nitrides. A summary of useful values needed in calculations, including elastic constants and lattice parameters, is also given. Such topics are also likely to be relevant to other highly lattice-mismatched wurtzite-structure materials such as heteroepitaxial ZnO and ZnSe.

  12. Recent Advances in III-Nitride UV Photonics

    NASA Astrophysics Data System (ADS)

    Jiang, Hongxing

    2004-03-01

    There is a great need of solid-state ultraviolet (UV) emitters for chemical and biological agent detections and general lighting. The availability of chip-scale UV light sources may also open up new applications for medical research in areas of early disease detection. Although many of the ideas and potentials of III-nitride devices for UV applications have been identified, a transition from basic research to practical device components has not yet been made due to various technological obstacles. Several key issues must be resolved. For example, highly conductive n-type and p-type AlGaN alloys as well as device quality quantum wells (QWs) based on AlGaN or AlInGaN alloys with high Al-contents are indispensable. This presentation will discuss some of the recent progresses in epitaxial growth and fundamental studies of high Al content III-nitride alloys. Novel techniques for obtaining highly conductive n-type and p-type III-nitride alloys with high Al contents and high quality QWs with deep UV emission will be discussed. Optical properties that are unique to this ultrahigh bandgap semiconductor material system will be highlighted. Innovative approaches for enhancing the extraction efficiencies of UV emitters, including the incorporation of micro-size emitter arrays and submicron/nano-scale photonic crystals into UV emitters, will be presented. Finally, remaining challenges and future prospects of nitride UV photonics and nanophotonics will be discussed.

  13. Design of Integrated III-Nitride/Non-III-Nitride Tandem Photovoltaic Devices

    SciTech Connect

    Toledo, N. G.; Friedman, D..J.; Farrell, R. M.; Perl, E. E.; Lin, C. T.; Bowers, J. E.; Speck, J. S.; Mishra, U. K.

    2012-03-01

    The integration of III-nitride and non-III-nitride materials for tandem solar cell applications can improve the efficiency of the photovoltaic device due to the added power contributed by the III-nitride top cell to that of high-efficiency multi-junction non-III-nitride solar cells if the device components are properly designed and optimized. The proposed tandem solar cell is comprised of a III-nitride top cell bonded to a non-III-nitride, series-constrained, multi-junction subcell. The top cell is electrically isolated, but optically coupled to the underlying subcell. The use of a III-nitride top cell is potentially beneficial when the top junction of a stand-alone non-III-nitride subcell generates more photocurrent than the limiting current of the non-III-nitride subcell. Light producing this excess current can either be redirected to the III-nitride top cell through high energy photon absorption, redirected to the lower junctions through layer thickness optimization, or a combination of both, resulting in improved total efficiency. When the non-III-nitride cell's top junction is the limiting junction, the minimum power conversion efficiency that the III-nitride top cell must contribute should compensate for the spectrum filtered from the multi-junction subcell for this design to be useful. As the III-nitride absorption edge wavelength, {lambda}{sub N}, increases, the performance of the multi-junction subcell decreases due to spectral filtering. In the most common spectra of interest (AM1.5G, AM1.5 D, and AM0), the technology to grow InGaN cells with {lambda}{sub N}<520 nm is found to be sufficient for III-nitride top cell applications. The external quantum efficiency performance, however, of state-of-the-art InGaN solar cells still needs to be improved. The effects of surface/interface reflections are also presented. The management of these reflection issues determines the feasibility of the integrated III-nitride/non-III-nitride design to improve overall cell

  14. Transient Transport in Binary and Ternary Semiconductors.

    DTIC Science & Technology

    1986-02-27

    transport; Semiconductors, Microelectronics, Quantum transport , Boltzmann transport, Drift and diffusion, Gallium arsende, Aluminum gallium arsenide, Indium gallium arsenide, and Transient transport.

  15. Transient photocurrent measurements in alkali chalcogenide ternary compound semiconductors

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Peters, J. A.; Li, H.; Kanatzidis, M. G.; Wessels, B. W.

    2013-01-01

    The charge transport properties of two alkali metal chalcogenide, semiconductor ternary compounds Cs2Cd3Te4 and Cs2Hg6S7, having potential as efficient high-energy radiation detectors, were investigated. A key property that determines the detector performance is the minority carrier lifetime, which was determined by measurement of photocurrent transients using pulsed laser excitation. The alkali metal chalcogenide semiconductor crystals were grown by a modified Bridgman method. The Cs2Cd3Te4 compound has a minority lifetime of 2.45 µs at 295 K, which is comparable to that of cadmium zinc telluride (CZT). The Cs2Hg6S7 showed charge trapping with decay times of 120 µs. The excellent charge transport properties of Cs2Cd3Te4 indicate that this ternary compound semiconductor should be well suited for gamma radiation detector devices that operate at room temperature.

  16. Enhanced thermaly managed packaging for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Kudsieh, Nicolas

    In this Dissertation our work on `enhanced thermally managed packaging of high power semiconductor light sources for solid state lighting (SSL)' is presented. The motivation of this research and development is to design thermally high stable cost-efficient packaging of single and multi-chip arrays of III-nitrides wide bandgap semiconductor light sources through mathematical modeling and simulations. Major issues linked with this technology are device overheating which causes serious degradation in their illumination intensity and decrease in the lifetime. In the introduction the basics of III-nitrides WBG semiconductor light emitters are presented along with necessary thermal management of high power cingulated and multi-chip LEDs and laser diodes. This work starts at chip level followed by its extension to fully packaged lighting modules and devices. Different III-nitride structures of multi-quantum well InGaN/GaN and AlGaN/GaN based LEDs and LDs were analyzed using advanced modeling and simulation for different packaging designs and high thermal conductivity materials. Study started with basic surface mounted devices using conventional packaging strategies and was concluded with the latest thermal management of chip-on-plate (COP) method. Newly discovered high thermal conductivity materials have also been incorporated for this work. Our study also presents the new approach of 2D heat spreaders using such materials for SSL and micro LED array packaging. Most of the work has been presented in international conferences proceedings and peer review journals. Some of the latest work has also been submitted to well reputed international journals which are currently been reviewed for publication. .

  17. High-pressure CVD Growth of InN and Indium-rich Group III-nitride Compound Semiconductors for Novel Mid- and Far-infrared Detectors and Emitters

    DTIC Science & Technology

    2010-02-01

    polarity of Group III-nitride crystals. A higher concentration of indium in InGaN/GaN quantum wells (QW) results in more strain and more polarization36...fluctuation) induced localized states in the InGaN layers play major roles in achieving highly efficient blue and green InGaN multiple quantum wells (MQW...the phase segregation process in dissimilar materials, or  the formation of straight or compositional graded quantum wells . p. 15 Figure 10

  18. Room-temperature ballistic transport in III-nitride heterostructures.

    PubMed

    Matioli, Elison; Palacios, Tomás

    2015-02-11

    Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the short electron mean-free-path at RT requires nanoscale devices for which surface effects are a limitation in these materials. We explore the unique properties of wide band-gap III-nitride semiconductors to demonstrate RT ballistic devices. A theoretical model is proposed to corroborate experimentally their optical phonon energy of 92 meV, which is ∼4× larger than in other III-V semiconductors. This allows RT ballistic devices operating at larger voltages and currents. An additional model is described to determine experimentally a characteristic dimension for ballistic transport of 188 nm. Another remarkable property is their short carrier depletion at device sidewalls, down to 13 nm, which allows top-down nanofabrication of very narrow ballistic devices. These results open a wealth of new systems and basic transport studies possible at RT.

  19. III-nitride-based avalanche photo detectors

    NASA Astrophysics Data System (ADS)

    McClintock, Ryan; Cicek, Erdem; Vashaei, Zahra; Bayram, Can; Razeghi, Manijeh; Ulmer, Melville P.

    2010-08-01

    Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized-GaN APDs operating in Geiger mode can achieve gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs and discuss the critical design choices necessary to achieve high performance Geiger mode devices. Other major technical issues associated with the realization of visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. The photon detection efficiency, dark count rate, and spectral response of or most recent Geiger-mode GaN APDs on free-standing GaN substrates are studied under low photon fluxes, with single photon detection capabilities being demonstrated. We also present our latest results regarding linear mode gain uniformity: the study of gain uniformity helps reveal the spatial origins of gain so that we can better understand the role of defects.

  20. Urbach's tail in III-nitrides under an electric field

    NASA Astrophysics Data System (ADS)

    Rodrigues, Clóves G.; Vasconcellos, Áurea R.; Luzzi, Roberto; Freire, V. N.

    2001-08-01

    We consider electron-hole recombination in wide-gap strong-polar semiconductors of the III-nitride family under high electric fields. The calculated low-energy side of the luminescense spectrum displays the so-called Urbach's tail, which is characterized as resulting from the presence of sidebands in the form of replicas of the main band, corresponding to recombination with accompanying emission of one, two, etc., LO phonons. The influence of the nonequilibrium macroscopic state of hot carriers and phonons on the luminescence spectrum is evidenced. Our results for a 45 kV/cm electric field intensity point to 50, 120, and 220 meV Urbach tail widths in, respectively, wurtzite InN, GaN, and AlN.

  1. Urbach's tail in III-nitrides under an electric field

    SciTech Connect

    Rodrigues, Cloves G.; Vasconcellos, Aurea R.; Luzzi, Roberto; Freire, V. N.

    2001-08-15

    We consider electron-hole recombination in wide-gap strong-polar semiconductors of the III-nitride family under high electric fields. The calculated low-energy side of the luminescense spectrum displays the so-called Urbach's tail, which is characterized as resulting from the presence of sidebands in the form of replicas of the main band, corresponding to recombination with accompanying emission of one, two, etc., LO phonons. The influence of the nonequilibrium macroscopic state of hot carriers and phonons on the luminescence spectrum is evidenced. Our results for a 45 kV/cm electric field intensity point to 50, 120, and 220 meV Urbach tail widths in, respectively, wurtzite InN, GaN, and AlN. {copyright} 2001 American Institute of Physics.

  2. Binary group III-nitride based heterostructures: band offsets and transport properties

    NASA Astrophysics Data System (ADS)

    Roul, Basanta; Kumar, Mahesh; Rajpalke, Mohana K.; Bhat, Thirumaleshwara N.; Krupanidhi, S. B.

    2015-10-01

    In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.

  3. Wide Bandgap III-Nitride Micro- and Nano-Photonics

    DTIC Science & Technology

    2008-05-05

    AND DATES COVERED Final Report 10/2003 – 10/2007 4. TITLE AND SUBTITLE Wide Bandgap III-Nitride Micro - and Nano -Photonics 5. FUNDING NUMBERS...device issues and to explore potential applications of III-nitrides for UV micro - and nano -photonic devices. The KSU team has achieved 1. n-type...Award No: DAAD19-03-1-0337 Project Title: Wide Bandgap III-Nitride Micro - and Nano -Photonics PI Name: Hongxing Jiang & Jingyu Lin PI Address

  4. Wide-bandgap III-Nitride based Second Harmonic Generation

    DTIC Science & Technology

    2014-10-02

    Jun-2014 Approved for Public Release; Distribution Unlimited Final Report: Wide-bandgap III - Nitride based Second Harmonic Generation The views...Report: Wide-bandgap III - Nitride based Second Harmonic Generation Report Title It was demonstrated that GaN, AlGaN and AlN lateral polar structures can...research have been socialized to the III - Nitride Optoelectronics Center of Excellence (ARL SEDD) and to the 2013 ARO Staff Research Symposium and at

  5. Polarization-induced tunnel junctions in III-nitrides for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Grundmann, Michael

    III-nitride semiconductors have the potential for very powerful electrostatic field engineering through the manipulation of polarization charges. This work explores the use of polarization fields for use in tunnel junctions for wide bandgap semiconductors, in particular. These tunnel junctions allowed light emitting diodes with multiple active regions, multiple colors, and eliminated p-type contacts. In addition, since the tunnel junction is formed without space-charge from dopants, this type of tunnel junction enables a single or multiple active region bipolar light emitting diode without any p-type material. These five types of devices were created and the characteristics of each are presented here. The creation of an efficient tunnel junction in the III-nitrides opens multiple future device engineering avenues in both emitters and absorbers; in particular, a stacked Schottky solar cell is proposed to make an ultra-efficient photovoltaic.

  6. Effects of hydrogen on acceptor activation in ternary nitride semiconductors

    DOE PAGES

    Fioretti, Angela N.; Stokes, Adam; Young, Matthew R.; ...

    2017-02-09

    Doping control is necessary to unlock the scientific and technological potential of many materials, including ternary II-IV-nitride semiconductors, which are closely related to binary GaN. In particular, ZnSnN2 has been reported to have degenerate doping density, despite bandgap energies that are well suited for solar energy conversion. Here, we show that annealing Zn-rich Zn1+xSn1-xN2 grown with added hydrogen reduces its free electron density by orders of magnitude, down to 4 x 1016 cm-3. This experimental observation can be explained by hydrogen passivation of acceptors in Zn1+xSn1-xN2 during growth, lowering the driving force for unintentional donor formation. Lastly, these results indicatemore » that the doping control principles used in GaN can be translated to ZnSnN2, suggesting that other strategies used in binary III-Vs can be applied to accelerate the technological development of ternary II-IV-N2 materials.« less

  7. Lattice-matched heteroepitaxy of wide gap ternary compound semiconductors

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.

    1993-01-01

    A variety of applications are identified for heteroepitaxial structures of wide gap I-III-VI(sub 2) and II-IV-V(sub 2) semiconductors, and are assessed in comparison with ternary III-V alloys and other wide gap materials. Non-linear optical applications of the I-III-VI(sub 2) and II-IV-V(sub 2) compound heterostructures are discussed, which require the growth of thick epitaxial layers imposing stringent requirements on the conditions of heteroepitaxy. In particular, recent results concerning the MOCVD growth of ZnSi(x)Ge(1-x)P2 alloys lattice matching Si or GaP substrates are reviewed. Also, heterostructures of Cu(z)Ag(1-z)GaS2 alloys that lattice-match Si, Ge, GaP, or GaAs substrates are considered in the context of optoelectronic devices operating in the blue wavelength regime. Since under the conditions of MOCVD, metastable alloys of the II-IV-V(sub 2) compounds and group IV elements are realized, II-IV-V(sub 2) alloys may also serve as interlayers in the integration of silicon and germanium with exactly lattice-matched tetrahedrally coordinated compound semiconductors, e.g. ZnSi(x)Ge(1-x)P2.

  8. Lattice-matched heteroepitaxy of wide gap ternary compound semiconductors

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.

    1992-01-01

    A variety of applications are identified for heteroepitaxial structures of wide gap I-III-VI2 and II-IV-V2 semiconductors, and are assessed in comparison with ternary III-V alloys and other wide gap materials. Non-linear optical applications of the I-III-VI2 and II-IV-V2 compound heterostructures are discussed, which require the growth of thick epitaxial layers imposing stringent requirements on the conditions of heteroepitaxy. In particular, recent results concerning the MOCVD growth of ZnSi(x)Ge(1-x)P2 alloys lattice-matching Si or GaP substrates are reviewed. Also, heterostructures of Cu(z)Ag(1-z)GaS2 alloys that lattice-match Si, Ge, GaP or GaAs substrates are considered in the context of optoelectronic devices operating in the blue wavelength regime. Since under the conditions of MOCVD, metastable alloys of the II-IV-V2 compounds and group IV elements are realized, II-IV-V2 alloys may also serve as interlayers in the integration of silicon and germanium with exactly lattice-matched tetrahedrally coordinated compound semiconductors, e.g. ZnSi(x)Ge(1-x)P2.

  9. Molten-Salt-Based Growth of Group III Nitrides

    DOEpatents

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  10. Vertical III-nitride thin-film power diode

    DOEpatents

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  11. Fabrication and characterization of III-nitride nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Dahal, Rajendra Prasad

    III-nitride photonic devices such as photodetectors (PDs), light emitting diode (LEDs), solar cells and optical waveguide amplifiers were designed, fabricated and characterized. High quality AlN epilayers were grown on sapphire and n-SiC substrates by metal organic chemical vapor deposition and utilized as active deep UV (DUV) photonic materials for the demonstration of metal-semiconductor-metal (MSM) detectors, Schottky barrier detectors, and avalanche photodetectors (APDs). AlN DUV PDs exhibited peak responsivity at 200 nm with a very sharp cutoff wavelength at 207 nm and extremely low dark current (<10 fA), very high breakdown voltages, high responsivity, and more than four orders of DUV to UV/visible rejection ratio. AlN Schottky PDs grown on n-SiC substrates exhibited high zero bias responsivity and a thermal energy limited detectivity of about 1.0 x 1015 cm Hz 1/2 W-1. The linear mode operation of AlN APDs with the shortest cutoff wavelength (210 nm) and a photocurrent multiplication of 1200 was demonstrated. A linear relationship between device size and breakdown field was observed for AlN APDs. Photovoltaic operation of InGaN solar cells in wavelengths longer than that of previous attainments was demonstrated by utilizing In xGa1-xN/GaN MQWs as the active layer. InxGa1-xN/GaN MQWs solar cells with x =0.3 exhibited open circuit voltage of about 2 V, a fill factor of about 60% and external quantum efficiency of 40% at 420 nm and 10% at 450 nm. The performance of InxGa1-xN/GaN MQWs solar cell was found to be highly correlated with the crystalline quality of the InxGa 1-xN active layer. The possible causes of poorer PV characteristics for higher In content in InGaN active layer were explained. Photoluminescence excitation studies of GaN:Er and In0.06Ga 0.94N:Er epilayers showed that Er emission intensity at 1.54 mum increases significantly as the excitation energy is tuned from below to above the energy bandgap of these epilayers. Current-injected 1.54 mum LEDs

  12. Progress and Prospect of the Growth of Wide-Band-Gap Group III Nitrides: Development of the Growth Method for Single-Crystal Bulk GaN

    NASA Astrophysics Data System (ADS)

    Amano, Hiroshi

    2013-05-01

    Thin films of III-V compound semiconductors such as GaAs and InP can be grown on native substrates, whereas such growth was difficult for group III nitride semiconductors. Despite this drawback, scientists have gradually become able to use the functions of group III nitride semiconductors by growing their thin films on non-native substrates such as sapphire and Si substrates. With the continuously increasing demand for the conservation and generation of energy, bulk substrates of group III nitride semiconductors are highly expected to maximize their potential. In this report, I review the current status of the growth methods for bulk GaN single crystals used for substrates as well as summarize the characteristics of blue light-emitting diodes (LEDs), heterojunction field-effect transistors (HFETs), and photovoltaic cells on GaN substrates.

  13. Making Single-Source Precursors of Ternary Semiconductors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius; Banger, Kulbindre K.

    2007-01-01

    A synthesis route has been developed for the commercial manufacture of single- source precursors of chalcopyrite semiconductor absorber layers of thin-film solar photovoltaic cells. A closely related class of single-source precursors of these semiconductors, and their synthesis routes, were reported in "Improved Single-Source Precursors for Solar-Cell Absorbers" (LEW-17445-1), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 56. The present synthesis route is better suited to commercialization because it is simpler and involves the use of commercially available agents, yet offers the flexibility needed for synthesis of a variety of precursors. A single-source precursor of the type of interest here is denoted by the general formula L2M'(mu-ER)2M(ER)2, where L signifies a Lewis base; M signifies Al, In, or Ga; M' signifies Ag or Cu; R signifies an alkyl, aryl, silyl, or perfluorocarbon group; E signifies O, S, Se, or Te; and mu signifies a bridging ligand. This compound can be synthesized in a "one-pot" procedure from ingredients that are readily available from almost any chemical supplier. In a demonstration, the following synthesis was performed: Under anaerobic conditions, InCl3 was reacted with sodium ethanethiolate in methanol in a 1:4 molar ratio to afford the ionic stable intermediate compound Na+[In(SEt)4]- (where Et signifies ethyl group). After approximately 15 minutes, a heterogeneous solution of CuCl and the Lewis base PPh3 (where Ph signifies phenyl) in a 1:2 ratio in a mixture of CH3CN and CH2Cl2 was added directly to the freshly prepared Na+[In(SEt)4]-. After 24 hours, the reaction was essentially complete. The methanolic solution was concentrated, then the product was extracted with CH2Cl2, then the product was washed with dry ether and pentane. The product in its final form was a creamy white solid. Spectroscopic and elemental analysis confirmed that the product was (PPh3)2Cu(mu-SEt)2In(mu-SEt)2, which is known to be a precursor of the ternary

  14. International Symposium on the Growth of III-Nitrides (ISGN), May 18-22, 2014, Atlanta GA

    DTIC Science & Technology

    2015-03-31

    U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Growth of III-Nitrides, epitaxial growth techniques , ternary and...latest work in the technical areas shown below. ISGN-5 Symposium topics • III-N Bulk growth: AlN, GaN, InN • Epitaxial growth techniques ...Tokuyama Corporation, Japan Yoshinao Kumagai, Tokyo University of Agriculture and Technology, Japan Robert Leute, University of Ulm, Germany Wsevolod

  15. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  16. MOCVD synthesis of group III-nitride heterostructure nanowires for solid-state lighting.

    SciTech Connect

    Wang, George T.; Creighton, James Randall; Talin, Albert Alec

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  17. From single III-nitride nanowires to piezoelectric generators: New route for powering nomad electronics

    NASA Astrophysics Data System (ADS)

    Gogneau, N.; Jamond, N.; Chrétien, P.; Houzé, F.; Lefeuvre, E.; Tchernycheva, M.

    2016-10-01

    Ambient energy harvesting using piezoelectric nanomaterials is today considered as a promising way to supply microelectronic devices. Since the first demonstration of electrical energy generation from piezoelectric semiconductor nanowires in 2006, the piezoelectric response of 1D-nanostructures and the development of nanowire-based piezogenerators have become a hot topic in nanoscience. After several years of intense research on ZnO nanowires, III-nitride nanomaterials have started to be explored thanks to their high piezoelectric coefficients and their strong piezogeneration response. This review describes the present status of the field of piezoelectric energy generation with nitride nanowires. After presenting the main motivation and a general overview of the domain, a short description of the main properties of III-nitride nanomaterials is given. Then we review the piezoelectric responses of III-N nanowires and the specificities of the piezogeneration mechanism in these nanostructures. Finally, the design and performance of the macroscopic piezogenerators based on nitride nanowire arrays are described, showing the promise of III-nitride nanowires for ultra-compact and efficient piezoelectric generators.

  18. Ohmic contacts on binary and ternary III-nitrides

    SciTech Connect

    Ren, F.; Pearton, S.J.; Donovan, S.; Abernathy, C.R.; Cole, M.W.

    1996-12-31

    Tungsten based ohmic contacts on GaN, InN, InAlN, and InN/graded-In{sub x}Al{sub 1{minus}x}N/InAlN were investigated. For GaN, annealing at temperatures between 600 and 800 C exhibited specific contact resistance of 10{sup {minus}5} {Omega}-cm{sup 2} and limited elemental diffusion. For the case of In contained material systems, the contacts are stable up to 500 C and show lower contact resistance (in the range of high 10{sup {minus}6} to low 10{sup {minus}7} {Omega}-cm{sup 2}) due to higher doping level in In contained nitrides.

  19. Polarization Effects in Group III-Nitride Materials and Devices

    NASA Astrophysics Data System (ADS)

    Wei, Qiyuan

    Group III-nitride semiconductors have wide application in optoelectronic devices. Spontaneous and piezoelectric polarization effects have been found to be critical for electric and optical properties of group III-nitrides. In this dissertation, firstly, the crystal orientation dependence of the polarization is calculated and in-plane polarization is revealed. The in-plane polarization is sensitive to the lateral characteristic dimension determined by the microstructure. Specific semi-polar plane growth is suggested for reducing quantum-confined Stark effect. The macroscopic electrostatic field from the polarization discontinuity in the heterostructures is discussed, b ased on that, the band diagram of InGaN/GaN quantum well/barrier and AlGaN/GaN heterojunction is obtained from the self-consistent solution of Schrodinger and Poisson equations. New device design such as triangular quantum well with the quenched polarization field is proposed. Electron holography in the transmission electron microscopy is used to examine the electrostatic potential under polarization effects. The measured potential energy profiles of heterostructure are compared with the band simulation, and evidences of two-dimensional hole gas (2DHG) in a wurtzite AlGaN/ AlN/ GaN superlattice, as well as quasi two-dimensional electron gas (2DEG) in a zinc-blende AlGaN/GaN are found. The large polarization discontinuity of AlN/GaN is the main source of the 2DHG of wurtzite nitrides, while the impurity introduced during the growth of AlGaN layer provides the donor states that to a great extent balance the free electrons in zinc-blende nitrides. It is also found that the quasi-2DEG concentration in zinc-blende AlGaN/GaN is about one order of magnitude lower than the wurtzite AlGaN/GaN, due to the absence of polarization. Finally, the InAlN/GaN lattice-matched epitaxy, which ideally has a zero piezoelectric polarization and strong spontaneous polarization, is experimentally studied. The breakdown in

  20. Progress in periodically oriented III-nitride materials

    NASA Astrophysics Data System (ADS)

    Hite, Jennifer

    2016-12-01

    The ability to grow III-nitride structures with alternating c-plane orientation has garnered interest in using these materials for new application spaces, such as frequency conversion. An overview of recent progress in growing periodically oriented (PO) III-nitrides is discussed, including AlN, AlGaN, and GaN. Successes in fabricating thick PO GaN structures (>500 mm) for uses in frequency conversion are highlighted.

  1. First-principles investigation of CO2 absorption on III-nitride surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chin; Guo, Hong

    2015-03-01

    Photon-induced chemical transformation of CO2 is a very interesting direction of green-house gas reduction. An accurate description of electronic structure at the interface between CO2 and the photocatalytics is important for understanding the process of artificial photosynthesis. In this work we report density functional theory (DFT) and many-body GW calculations to investigate CO2 adsorption on III-nitride semiconductor surface. The adsorption geometry is determined at the DFT level and the electronic structure is investigated at both DFT and GW levels. A detailed illustration of how the molecular orbital is renormalized is addressed.

  2. III-Nitride Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Leonard, John T.

    Vertical-cavity surface-emitting lasers (VCSELs) have a long history of development in GaAs-based and InP-based systems, however III-nitride VCSELs research is still in its infancy. Yet, over the past several years we have made dramatic improvements in the lasing characteristics of these highly complex devices. Specifically, we have reduced the threshold current density from ˜100 kA/cm2 to ˜3 kA/cm2, while simultaneously increasing the output power from ˜10 muW to ˜550 muW. These developments have primarily come about by focusing on the aperture design and intracavity contact design for flip-chip dual dielectric DBR III-nitride VCSELs. We have carried out a number of studies developing an Al ion implanted aperture (IIA) and photoelectrochemically etched aperture (PECA), while simultaneously improving the quality of tin-doped indium oxide (ITO) intracavity contacts, and demonstrating the first III-nitride VCSEL with an n-GaN tunnel junction intracavity contact. Beyond these most notable research fronts, we have analyzed numerous other parameters, including epitaxial growth, flip-chip bonding, substrate removal, and more, bringing further improvement to III-nitride VCSEL performance and yield. This thesis aims to give a comprehensive discussion of the relevant underlying concepts for nonpolar VCSELs, while detailing our specific experimental advances. In Section 1, we give an overview of the applications of VCSELs generally, before describing some of the potential applications for III-nitride VCSELs. This is followed by a summary of the different material systems used to fabricate VCSELs, before going into detail on the basic design principles for developing III-nitride VCSELs. In Section 2, we outline the basic process and geometry for fabricating flip-chip nonpolar VCSELs with different aperture and intracavity contact designs. Finally, in Section 3 and 4, we delve into the experimental results achieved in the last several years, beginning with a discussion on

  3. First-principles investigations of III-nitride bulk and surface properties

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus Eduard

    The III-nitride semiconductors, including AlN, InN, GaN, and BN have been demonstrated as technologically exciting materials for a wide range of device applications. With band gaps that span the visible range, GaN, InN, and InGaN alloys are used for high efficiency light emitting diodes for general lighting, as well as laser diodes for optical storage. The wide gaps, large band offsets, and polarization fields in AlN, GaN, and AlGaN alloys are promising for high-frequency, high-power transistors with applications in power conversion and radio frequency amplifiers. Despite the plethora of attractive material parameters of the III-nitride materials there are several issues that significantly limit the efficiency of devices and range of possible applications. In this study, we use first-principles electronic structure calculations to explore several of these properties relevant to understanding growth, processing, and device design. Arguably the most detrimental issue in this material system is the lack of widely available, cost-effective substrates for the growth of films and devices. Heteroepitaxy, as well as the lattice mismatch between the layers of different III-nitride alloys in heterostructures, results in residual stresses in films and devices. Such stress will alter the electronic structure of the materials, so it is necessary for device design to be able to quantify these effects. We explore the influence of strain on the effective mass of carriers in GaN and AlN, a parameter that is tied to the conductivity. In addition, films under tensile strain can crack if the strain energy is sufficient. We explore the propensity for AlN, GaN, and AlGaN to crack on different crystallographic planes. There has been significant work done to overcome the issue of residual strains in III-nitride films, both through the growth of bulk crystals for substrates, and the growth of structures such as nanowires that avoid many of the thickness and alloy-content limitations of

  4. III-nitride nanowires : growth, properties, and applications.

    SciTech Connect

    Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong; Huang, Jian Yu

    2010-06-01

    Nanowires based on the III nitride materials system have attracted attention as potential nanoscale building blocks in optoelectronics, sensing, and electronics. However, before such applications can be realized, several challenges exist in the areas of controlled and ordered nanowire synthesis, fabrication of advanced nanowire heterostructures, and understanding and controlling the nanowire electrical and optical properties. Here, recent work is presented involving the aligned growth of GaN and III-nitride core-shell nanowires, along with extensive results providing insights into the nanowire properties obtained using advanced electrical, optical and structural characterization techniques.

  5. Nanowire-templated lateral epitaxial growth of non-polar group III nitrides

    DOEpatents

    Wang, George T.; Li, Qiming; Creighton, J. Randall

    2010-03-02

    A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.

  6. Presence and origin of interface charges at atomic-layer deposited Al2O3/III-nitride heterojunctions

    NASA Astrophysics Data System (ADS)

    Ganguly, Satyaki; Verma, Jai; Li, Guowang; Zimmermann, Tom; Xing, Huili; Jena, Debdeep

    2011-11-01

    Unlike silicon and traditional III-V semiconductors, the III-nitrides exhibit high spontaneous and piezoelectric polarization charges at epitaxial polar heterojunctions. In the process of investigating scaling properties of gate-stacks consisting atomic-layer deposited Al2O3/III-Nitride heterojunctions, we find interface charges that appear closely linked to the polarization charges of the underlying nitride substrate. Through capacitance-voltage measurement on a series of samples of varying dielectric thicknesses, we find the presence and propose an origin of benign donor-type interface charges (Qit ˜6 × 1013 cm-2) at the AlN/Al2O3 junction. This interface charge is almost equal to the net polarization charge in AlN. The polarization-related dielectric/AlN interface charge and the role of oxygen in the dielectric as a possible modulation dopant potentially offer opportunities for various device applications.

  7. Critical thickness for the formation of misfit dislocations originating from prismatic slip in semipolar and nonpolar III-nitride heterostructures

    NASA Astrophysics Data System (ADS)

    Smirnov, A. M.; Young, E. C.; Bougrov, V. E.; Speck, J. S.; Romanov, A. E.

    2016-01-01

    We calculate the critical thickness for misfit dislocation (MD) formation in lattice mismatched semipolar and nonpolar III-nitride wurtzite semiconductor layers for the case of MDs originated from prismatic slip (PSMDs). It has been shown that there is a switch of stress relaxation modes from generation of basal slip originated MDs to PSMDs after the angle between c-axis in wurtzite crystal structure and the direction of semipolar growth reaches a particular value, e.g., ˜70° for Al0.13Ga0.87N/GaN ( h 0 h ¯ 1 ) semipolar heterostructures. This means that for some semipolar growth orientations of III-nitride heterostructures biaxial relaxation of misfit stress can be realized. The results of modeling are compared to experimental data on the onset of plastic relaxation in AlxGa1-xN/GaN heterostructures.

  8. Theory of gain in group-III nitride lasers

    SciTech Connect

    Chow, W.W.; Wright, A.F.; Girndt, A.

    1997-06-01

    A microscopic theory of gain in a group-III nitride quantum well laser is presented. The approach, which treats carrier correlations at the level of quantum kinetic theory, gives a consistent account of plasma and excitonic effects in an inhomogeneously broadened system.

  9. Methods for improved growth of group III nitride buffer layers

    DOEpatents

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  10. Optical dispersion of ternary II-VI semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Liu, Xinyu; Furdyna, J. K.

    2004-06-01

    The wavelength dependence of the refractive indices n of a series of II-VI ternary alloys—ZnCdSe, ZnBeSe, ZnMgSe, ZnMnSe, ZnCdTe, ZnMnTe, ZnMgSe, and ZnSeTe—were measured at frequencies below their respective energy gaps using the combined techniques of optical reflectivity and the prism coupler method. To facilitate the analysis of the results—including those obtained in the wavelength region near the fundamental energy gap—we have modified the semiempirical single-effective-oscillator (SEO) model of n by introducing an additional term that explicitly accounts for interband transitions at the fundamental gap. Using the SEO model modified in this manner to fit the wavelength dependence of n, a set of semiempirical parameters was established for the above ternary II-VI-based alloys, where the fitting parameters for each alloy family are themselves expressed as functions of the alloy composition. The availability of these parameters makes it possible to calculate the index of refraction of any given II-VI ternary alloy for any composition and at any wavelength. Furthermore, these parameters provide valuable physical insights, such as the relationship between the covalency (or ionicity) of the material and its refractive index. In addition to its fundamental usefulness, this approach can—by appropriate extrapolation—also be used for obtaining the dispersion properties for "hypothetical" zinc blende compounds that do not form under equilibrium crystal growth conditions (such as MnTe, MnSe, or BeSe).

  11. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  12. Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Oh, Munsik; Jin, Won-Yong; Jun Jeong, Hyeon; Jeong, Mun Seok; Kang, Jae-Wook; Kim, Hyunsoo

    2015-09-01

    Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.7 Ω/sq were demonstrated as TCEs in inorganic III-nitride LEDs. The transmission line model applied to the AgNW contact to p-GaN showed that near ohmic contact with a specific contact resistance of ~10-3 Ωcm2 was obtained. The contact resistance had a strong bias-voltage (or current-density) dependence: namely, field-enhanced ohmic contact. LEDs fabricated with AgNW electrodes exhibited a 56% reduction in series resistance, 56.5% brighter output power, a 67.5% reduction in efficiency droop, and a approximately 30% longer current spreading length compared to LEDs fabricated with reference TCEs. In addition to the cost reduction, the observed improvements in device performance suggest that the AgNWs are promising for application as next-generation TCEs, to realise brighter, larger-area, cost-competitive inorganic III-nitride light emitters.

  13. Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes.

    PubMed

    Oh, Munsik; Jin, Won-Yong; Jeong, Hyeon Jun; Jeong, Mun Seok; Kang, Jae-Wook; Kim, Hyunsoo

    2015-09-03

    Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.7 Ω/sq were demonstrated as TCEs in inorganic III-nitride LEDs. The transmission line model applied to the AgNW contact to p-GaN showed that near ohmic contact with a specific contact resistance of ~10(-3) Ωcm(2) was obtained. The contact resistance had a strong bias-voltage (or current-density) dependence: namely, field-enhanced ohmic contact. LEDs fabricated with AgNW electrodes exhibited a 56% reduction in series resistance, 56.5% brighter output power, a 67.5% reduction in efficiency droop, and a approximately 30% longer current spreading length compared to LEDs fabricated with reference TCEs. In addition to the cost reduction, the observed improvements in device performance suggest that the AgNWs are promising for application as next-generation TCEs, to realise brighter, larger-area, cost-competitive inorganic III-nitride light emitters.

  14. Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes

    PubMed Central

    Oh, Munsik; Jin, Won-Yong; Jun Jeong, Hyeon; Jeong, Mun Seok; Kang, Jae-Wook; Kim, Hyunsoo

    2015-01-01

    Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.7 Ω/sq were demonstrated as TCEs in inorganic III-nitride LEDs. The transmission line model applied to the AgNW contact to p-GaN showed that near ohmic contact with a specific contact resistance of ~10−3 Ωcm2 was obtained. The contact resistance had a strong bias-voltage (or current-density) dependence: namely, field-enhanced ohmic contact. LEDs fabricated with AgNW electrodes exhibited a 56% reduction in series resistance, 56.5% brighter output power, a 67.5% reduction in efficiency droop, and a approximately 30% longer current spreading length compared to LEDs fabricated with reference TCEs. In addition to the cost reduction, the observed improvements in device performance suggest that the AgNWs are promising for application as next-generation TCEs, to realise brighter, larger-area, cost-competitive inorganic III-nitride light emitters. PMID:26333768

  15. Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic <111> direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.

  16. Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

    SciTech Connect

    Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J.; Allerman, Andrew A.; Wendt, Joel R.; Brener, Igal

    2014-08-25

    We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a new class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.

  17. Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

    DOE PAGES

    Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; ...

    2014-08-25

    We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a newmore » class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.« less

  18. Far-infrared intersubband photodetectors based on double-step III-nitride quantum wells

    NASA Astrophysics Data System (ADS)

    Sudradjat, Faisal F.; Zhang, Wei; Woodward, Jeffrey; Durmaz, Habibe; Moustakas, Theodore D.; Paiella, Roberto

    2012-06-01

    Far-infrared photoconductive detectors based on intersubband transitions in III-nitride semiconductor quantum wells are demonstrated. The device active material is based on a double-step quantum-well design, where two different (Al)GaN compositions are used both in the wells and in the barriers. With this approach, one can create a virtually flat multiple-quantum-well potential energy profile, where the deleterious effects of the intrinsic spontaneous and piezoelectric fields of nitride heterostructures are almost completely eliminated. Photocurrent spectra centered at a wavelength of 23 μm (13 THz frequency) are resolved up to 50 K, with responsivity of approximately 7 mA/W.

  19. Contact mechanisms and design principles for Schottky contacts to group-III nitrides

    NASA Astrophysics Data System (ADS)

    Mohammad, S. Noor

    2005-03-01

    Contact mechanisms and design principles for Schottky contacts to group-III nitrides have been studied. These contacts, made generally by using simple principles and past experiences, suffer from serious drawbacks. The importance of various parameters such as surface morphology, surface treatment, metal/semiconductor interactions at the interface, thermal stability, minimization of doping by metal deposition and etching, elimination of edge electric field, etc., for them has been thoroughly investigated. Several design principles have been proposed. Both theoretical and experimental data have been presented to justify the validity of the proposed contact mechanisms and design principles. While theoretical calculations provide fundamental physics underlying heavy doping, leakage, etc., the experimental data provide verification of the contact mechanisms and design principles. The proposed principles are general enough to be applicable to most, if not all, Schottky contacts.

  20. III-nitride tunable cup-cavities supporting quasi whispering gallery modes from ultraviolet to infrared

    PubMed Central

    Shubina, T. V.; Pozina, G.; Jmerik, V. N.; Davydov, V. Yu.; Hemmingsson, C.; Andrianov, A. V.; Kazanov, D. R.; Ivanov, S. V.

    2015-01-01

    Rapidly developing nanophotonics needs microresonators for different spectral ranges, formed by chip-compatible technologies. In addition, the tunable ones are much in demand. Here, we present site-controlled III-nitride monocrystal cup-cavities grown by molecular beam epitaxy. The cup-cavities can operate from ultraviolet to near-infrared, supporting quasi whispering gallery modes up to room temperature. Besides, their energies are identical in large ’ripened’ crystals. In these cavities, the refractive index variation near an absorption edge causes the remarkable effect of mode switching, which is accompanied by the spatial redistribution of electric field intensity with concentration of light into a subwavelength volume. Our results shed light on the mode behavior in semiconductor cavities and open the way for single-growth-run manufacturing the devices comprising an active region and a cavity with tunable mode frequencies. PMID:26656267

  1. Photoluminescence changes of III-Nitride lateral polarity structures after chemical functionalization

    NASA Astrophysics Data System (ADS)

    Berg, Nora G.; Franke, Alexander; Kirste, Ronny; Collazo, Ramon; Ivanisevic, Albena

    2016-12-01

    The photoluminescence changes of a III-Nitride semiconductor with various surface topographies were studied after chemical functionalization. Al x Ga1-x N with a composition of 70% aluminum was used and the surfaces were functionalized with a fluorophore dye-terminated peptide using a linker molecule. The stability of the wafers in water was studied using inductively coupled plasma mass spectrometry prior to modifying the material. The leaching data demonstrated that the AlGaN material in highly stable in biological conditions over 7 d. The attachment of the dye to the wafer was investigated using x-ray photoelectron spectroscopy and photoluminescence spectroscopy (PL). The PL spectrum showed a clear signature of the dye with a pronounced emission peak at approximately 260 nm, indicating a successful attachment to the surface.

  2. III-nitride tunable cup-cavities supporting quasi whispering gallery modes from ultraviolet to infrared.

    PubMed

    Shubina, T V; Pozina, G; Jmerik, V N; Davydov, V Yu; Hemmingsson, C; Andrianov, A V; Kazanov, D R; Ivanov, S V

    2015-12-11

    Rapidly developing nanophotonics needs microresonators for different spectral ranges, formed by chip-compatible technologies. In addition, the tunable ones are much in demand. Here, we present site-controlled III-nitride monocrystal cup-cavities grown by molecular beam epitaxy. The cup-cavities can operate from ultraviolet to near-infrared, supporting quasi whispering gallery modes up to room temperature. Besides, their energies are identical in large 'ripened' crystals. In these cavities, the refractive index variation near an absorption edge causes the remarkable effect of mode switching, which is accompanied by the spatial redistribution of electric field intensity with concentration of light into a subwavelength volume. Our results shed light on the mode behavior in semiconductor cavities and open the way for single-growth-run manufacturing the devices comprising an active region and a cavity with tunable mode frequencies.

  3. III-nitride tunable cup-cavities supporting quasi whispering gallery modes from ultraviolet to infrared

    NASA Astrophysics Data System (ADS)

    Shubina, T. V.; Pozina, G.; Jmerik, V. N.; Davydov, V. Yu.; Hemmingsson, C.; Andrianov, A. V.; Kazanov, D. R.; Ivanov, S. V.

    2015-12-01

    Rapidly developing nanophotonics needs microresonators for different spectral ranges, formed by chip-compatible technologies. In addition, the tunable ones are much in demand. Here, we present site-controlled III-nitride monocrystal cup-cavities grown by molecular beam epitaxy. The cup-cavities can operate from ultraviolet to near-infrared, supporting quasi whispering gallery modes up to room temperature. Besides, their energies are identical in large ’ripened’ crystals. In these cavities, the refractive index variation near an absorption edge causes the remarkable effect of mode switching, which is accompanied by the spatial redistribution of electric field intensity with concentration of light into a subwavelength volume. Our results shed light on the mode behavior in semiconductor cavities and open the way for single-growth-run manufacturing the devices comprising an active region and a cavity with tunable mode frequencies.

  4. Design of III-Nitride Hot Electron Transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Geetak

    III-Nitride based devices have made great progress over the past few decades in electronics and photonics applications. As the technology and theoretical understanding of the III-N system matures, the limitations on further development are based on very basic electronic properties of the material, one of which is electron scattering (or ballistic electron effects). This thesis explores the design space of III-N based ballistic electron transistors using novel design, growth and process techniques. The hot electron transistor (HET) is a unipolar vertical device that operates on the principle of injecting electrons over a high-energy barrier (φBE) called the emitter into an n-doped region called base and finally collecting the high energy electrons (hot electrons) over another barrier (φBC) called the collector barrier. The injected electrons traverse the base in a quasi-ballistic manner. Electrons that get scattered in the base contribute to base current. High gain in the HET is thus achieved by enabling ballistic transport of electrons in the base. In addition, low leakage across the collector barrier (I BCleak) and low base resistance (RB) are needed to achieve high performance. Because of device attributes such as vertical structure, ballistic transport and low-resistance n-type base, the HET has the potential of operating at very high frequencies. Electrical measurements of a HET structure can be used to understand high-energy electron physics and extract information like mean free path in semiconductors. The III-Nitride material system is particularly suited for HETs as it offers a wide range of DeltaEcs and polarization charges which can be engineered to obtain barriers which can inject hot-electrons and have low leakage at room temperature. In addition, polarization charges in the III-N system can be engineered to obtain a high-density and high-mobility 2DEG in the base, which can be used to reduce base resistance and allow vertical scaling. With these

  5. Copper-based ternary and quaternary semiconductor nanoplates: templated synthesis, characterization, and photoelectrochemical properties.

    PubMed

    Wu, Xue-Jun; Huang, Xiao; Qi, Xiaoying; Li, Hai; Li, Bing; Zhang, Hua

    2014-08-18

    Two-dimensional (2D) copper-based ternary and quaternary semiconductors are promising building blocks for the construction of efficient solution-processed photovoltaic devices at low cost. However, the facile synthesis of such 2D nanoplates with well-defined shape and uniform size remains a challenge. Reported herein is a universal template-mediated method for preparing copper-based ternary and quaternary chalcogenide nanoplates, that is, CuInS2, CuIn(x)Ga(1-x)S2, and Cu2ZnSnS4, by using a pre-synthesized CuS nanoplate as the starting template. The various synthesized nanoplates are monophasic with uniform thickness and lateral size. As a proof of concept, the Cu2ZnSnS4 nanoplates were immobilized on a Mo/glass substrate and used as semiconductor photoelectrode, thus showing stable photoelectrochemical response. The method is general and provides future opportunities for fabrication of cost-effective photovoltaic devices based on 2D semiconductors.

  6. Fabrication and Optical Recombination in III-Nitride Microstructures and Devices

    DTIC Science & Technology

    2003-10-01

    Fabrication and optical investigations of III-nitride microstructures Our group has pioneered the fabrication of micro - and nano -size photonic... pumped individual III-nitride micro -size LEDs and micro -LED arrays and observed enhanced quantum efficiencies. The micro -size LEDs were fabricated...quality III-nitride QWs, heterostructures, microstructures, and micro -devices and to study their optical and optoeletronic properties. By optimizing

  7. The anharmonic phonon decay rate in group-III nitrides

    NASA Astrophysics Data System (ADS)

    Srivastava, G. P.

    2009-04-01

    Measured lifetimes of hot phonons in group-III nitrides have been explained theoretically by considering three-phonon anharmonic interaction processes. The basic ingredients of the theory include full phonon dispersion relations obtained from the application of an adiabatic bond charge model and crystal anharmonic potential within the isotropic elastic continuum model. The role of various decay routes, such as Klemens, Ridley, Vallée-Bogani and Barman-Srivastava channels, in determining the lifetimes of the Raman active zone-centre longitudinal optical (LO) modes in BN (zincblende structure) and A1(LO) modes in AlN, GaN and InN (wurtzite structure) has been quantified.

  8. Ultrathin ternary semiconductor TlGaSe2 phototransistors with broad-spectral response

    NASA Astrophysics Data System (ADS)

    Yang, Shengxue; Wu, Minghui; Wang, Hui; Cai, Hui; Huang, Li; Jiang, Chengbao; Tongay, Sefaattin

    2017-09-01

    Ternary layered III-III-VI2-type metal chalcogenides are a comparatively new group of semiconductors and have attracted strong interest due to their distinct optical and electrical properties in view of potential applications in nonlinear optical, acousto-optical and optoelectronic devices. Here, we report on the fabrication of two-terminal phototransistors based on ultrathin direct-bandgap TlGaSe2 sheets for the first time. Devices exhibit typical p-type conducting behaviors with current on/off ratio of ~102 and gate-tunable transport characteristics. The photocurrent presents stable and reproducible response for various wavelengths of light from ultraviolet (UV) to near-infrared region, confirming the broadband photodetection capability. Photoresponsive behavior of ultrathin TlGaSe2 phototransistors can be modulated by the incident optical power density or wavelength, as well as bias or back-gate voltages. Owing to the presence of direct bandgap, devices possess high photoresponsivity (270 mA W-1) under white light in vacuum, and it is higher than that of single-layer MoS2 phototransistor and graphene photodetectors, accompanying by a fast response time of ~0.2 s. Our studies introduce ternary alloy monochalcogenides phototransistors, and expand the library of ultrathin flexible semiconductors.

  9. Structural and electronic properties of the ordered ternary 3-5 semiconductors

    NASA Astrophysics Data System (ADS)

    Teng, Dan

    1990-09-01

    Modern-growth techniques have allowed control of deposition down to the monolayer level. Under certain experimental conditions, some materials spontaneously form ordered structures. These new ordered ternary compounds have recently attracted widespread attention. Five forms of ordered ternary III-V semiconductors are investigated. Three aspects of these semiconductors are investigated: (1) the determination of the locations of atoms in the crystal; (2) the electric band structure; and (3) the behaviors of the interband optical transition. To focus on trends and characteristic features of these new materials, phenomenological models are used. A Keating-type model is employed to calculate the structural properties. In this model, strain energy comes from the changes of the bond lengths and the bond angles from their equilibrium positions and follows Hooke's Law. For band-structure calculations, two empirical theories are employed: a simple tight-binding theory and a valence-force field model. Strain-included tetragonal and internal distortions as well as the spin-orbit interaction cause a splitting of the top of valence band. Trends in this splitting and the band gap variation are studied for the 18 combinations of III-V elements. The Hopfield quasicubic crystal-field model is found to accurately describe this splitting for all chalcopyrite compounds. But Hopfield's model is found to fail for several (0,0,1) and (1,1,1) superlattice compounds containing large strain distortions. It is also confirmed that band-gap narrowing is the result of noncubic crystal-field splitting, strain effects, and the chemical difference between different anions or cations of a ternary compound. As an application of these studies, the imaginary part of the dielectric constant of a realistic material, the GaP(sub 1)/InP(sub 1) (1,1,1) superlattice are calculated.

  10. Prospects of III-nitride optoelectronics grown on Si

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Wallis, D. J.; Humphreys, C. J.

    2013-10-01

    The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al2O3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures.

  11. Prospects of III-nitride optoelectronics grown on Si.

    PubMed

    Zhu, D; Wallis, D J; Humphreys, C J

    2013-10-01

    The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al2O3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures.

  12. Anisotropy of the nitrogen conduction states in the group III nitrides studied by polarized x-ray absorption

    SciTech Connect

    Lawniczak-Jablonska, K. |; Liliental-Weber, Z.; Gullikson, E.M.

    1997-04-01

    Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction band structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties.

  13. Fabrication of Si-As-Te ternary amorphous semiconductor in the microgravity environment (M-13)

    NASA Technical Reports Server (NTRS)

    Hamakawa, Yoshihiro

    1993-01-01

    Ternary chalcogenide Si-As-Te system is an interesting semiconductor from the aspect of both basic physics and technological applications. Since a Si-As-Te system consists of a IV-III-II hedral bonding network, it has a very large glass forming region with a wide physical constant controllability. For example, its energy gap can be controlled in a range from 0.6 eV to 2.5 eV, which corresponds to the classical semiconductor Ge (0.66 eV), Si (1.10 eV), GaAs (1.43 eV), and GaP (2.25 eV). This fact indicates that it would be a suitable system to investigate the compositional dependence of the atomic and electronic properties in the random network of solids. In spite of these significant advantages in the Si-As-Te amorphous system, a big barrier impending the wide utilization of this material is the huge difficulty encountered in the material preparation which results from large differences in the weight density, melting point, and vapor pressure of individual elements used for the alloying composition. The objective of the FMPT/M13 experiment is to fabricate homogeneous multi-component amorphous semiconductors in the microgravity environment of space, and to make a series of comparative characterizations of the amorphous structures and their basic physical constants on the materials prepared both in space and in normal terrestrial gravity.

  14. III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet

    NASA Astrophysics Data System (ADS)

    Sellés, J.; Crepel, V.; Roland, I.; El Kurdi, M.; Checoury, X.; Boucaud, P.; Mexis, M.; Leroux, M.; Damilano, B.; Rennesson, S.; Semond, F.; Gayral, B.; Brimont, C.; Guillet, T.

    2016-12-01

    We present a series of microdisk lasers realized within the same GaN-on-Si photonic platform scheme, and operating at room temperature under pulsed optical pumping over a broad spectral range extending over λ = 275 nm-470 nm. The III-nitride microdisks embed either binary GaN/AlN multiple quantum wells (MQWs) for UV operation, or ternary InGaN/GaN MQWs for violet and blue operation. This demonstrates the versatility of this nitride-on-silicon platform, and the realization on this platform of efficient active layers for lasing action over a 200 nm broad UV to visible spectral range. We probe the lasing threshold carrier density over the whole spectral range and found that it is similar whatever the emission wavelength for these Q > 1000 microdisk resonators with a constant material quality until quantum confined Stark effect takes over. The threshold is also found independent of microdisk diameters from 3 to 12 μm, with a β factor intermediate between the one of vertical cavity lasers and the one of small modal volume "thresholdless" lasers.

  15. Propagating Polaritons in III-Nitride Slab Waveguides

    NASA Astrophysics Data System (ADS)

    Ciers, J.; Roch, J. G.; Carlin, J.-F.; Jacopin, G.; Butté, R.; Grandjean, N.

    2017-03-01

    We report on III-nitride waveguides with c -plane GaN /(Al ,Ga )N quantum wells in the strong light-matter coupling regime supporting propagating polaritons. They feature a normal-mode splitting as large as 60 meV at low temperatures thanks to the large overlap between the optical mode and the active region, a polariton decay length up to 100 μ m for photonlike polaritons and a lifetime of 1 to 2 ps, with the latter values being essentially limited by residual absorption occurring in the waveguide. The fully lattice-matched nature of the structure allows for very low disorder and high in-plane homogeneity, which is an important asset for the realization of polaritonic integrated circuits that could support nonlinear polariton wave packets up to room temperature thanks to the large exciton binding energy of 40 meV.

  16. Spatial signal correlation from an III-nitride synaptic device

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Zhu, Bingcheng; Shi, Zheng; Yuan, Jialei; Jiang, Yuan; Shen, Xiangfei; Cai, Wei; Yang, Yongchao; Wang, Yongjin

    2017-10-01

    The mechanism by which the external environment affects the internal nervous system is investigated via the spatial correlation of an III-nitride synaptic device, which combines in-plane and out-of-plane illumination. The InGaN/GaN multiple-quantum-well collector (MQW-collector) demonstrates a simultaneous light emission and light detection mode due to the unique property of the MQW-diode. The MQW-collector absorbs the internal incoming light and the external illumination at the same time to generate an integration of the excitatory postsynaptic voltages (EPSVs). Signal cognition can be distinctly decoded from the integrated EPSVs because the signal differences are maintained, which is in good agreement with the simulation results. These results suggest that the nervous system can simultaneously amplify the EPSV amplitude and achieve signal cognition by spatial EPSV summation, which can be further optimized to explore the connections between the internal nervous system and the external environment.

  17. Role of defects in III-nitride based electronics

    SciTech Connect

    HAN,JUNG; MYERS JR.,SAMUEL M.; FOLLSTAEDT,DAVID M.; WRIGHT,ALAN F.; CRAWFORD,MARY H.; LEE,STEPHEN R.; SEAGER,CARLETON H.; SHUL,RANDY J.; BACA,ALBERT G.

    2000-01-01

    The LDRD entitled ``Role of Defects in III-Nitride Based Devices'' is aimed to place Sandia National Laboratory at the forefront of the field of GaN materials and devices by establishing a scientific foundation in areas such as material growth, defect characterization/modeling, and processing (metalization and etching) chemistry. In this SAND report the authors summarize their studies such as (1) the MOCVD growth and doping of GaN and AlGaN, (2) the characterization and modeling of hydrogen in GaN, including its bonding, diffusion, and activation behaviors, (3) the calculation of energetic of various defects including planar stacking faults, threading dislocations, and point defects in GaN, and (4) dry etching (plasma etching) of GaN (n- and p-types) and AlGaN. The result of the first AlGaN/GaN heterojunction bipolar transistor is also presented.

  18. Electrical properties of dislocations in III-Nitrides

    SciTech Connect

    Cavalcoli, D.; Minj, A.; Pandey, S.; Cavallini, A.

    2014-02-21

    Research on GaN, AlN, InN (III-N) and their alloys is achieving new heights due their high potential applications in photonics and electronics. III-N semiconductors are mostly grown epitaxially on sapphire, and due to the large lattice mismatch and the differences in the thermal expansion coefficients, the structures usually contain many threading dislocations (TDs). While their structural properties have been widely investigated, their electrical characteristics and their role in the transport properties of the devices are still debated. In the present contribution we will show conductive AFM studies of TDs in GaN and Al/In GaN ternary alloys to evidence the role of strain, different surface polarity and composition on their electrical properties. Local I-V curves measured at TDs allowed us to clarify their role in the macroscopic electrical properties (leakage current, mobilities) of III-N based devices. Samples obtained by different growers (AIXTRON, III-V Lab) were studied. The comparison between the results obtained in the different alloys allowed us to understand the role of In and Al on the TDs electrical properties.

  19. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Burger, A.; Dudley, M.; Matyi, R.; Ramachandran, N.; Sha, Yi-Gao; Volz, M.; Shih, Hung-Dah

    1999-01-01

    Complete and systematic ground-based experimental and theoretical analyses on the Physical Vapor Transport (PVT) of ZnSe and related ternary compound semiconductors have been performed. The analyses included thermodynamics, mass flux, heat treatment of starting material, crystal growth, partial pressure measurements, optical interferometry, chemical analyses, photoluminescence, microscopy, x-ray diffraction and topography as well as theoretical, analytical and numerical analyses. The experimental results showed the influence of gravity orientation on the characteristics of: (1) the morphology of the as-grown crystals as well as the as-grown surface morphology of ZnSe and Cr doped ZnSe crystals; (2) the distribution of impurities and defects in ZnSe grown crystals; and (3) the axial segregation in ZnSeTe grown crystals.

  20. Electronic and total energy properties of ternary and quaternary semiconductor compounds, alloys and superlattices

    NASA Technical Reports Server (NTRS)

    Lambrecht, Walter R. L.

    1992-01-01

    This proposal was mainly concerned with the theoretical study of semiconductor compounds, alloys, and superlattices of interest for photovoltaic applications. In the last year (1991) a study was devoted to metal/graphite bonding in relation to use of graphite fiber reinforcement of Cu for high thermal conductivity applications. The main research topics addressed during the full period of the grant are briefly described: studies of the In-Ga-As ternary system; band-offsets at common anion and InAs/GaSb/AlSb heterojunctions; alloy theory (cluster variation method); and Cu/graphite bonding. Most of the work was described more extensively in previous yearly reports and renewal applications and in publications. The last topic is described more fully in a separate report attached. A list of publications resulting directly from this grant or from other grants but related to this work and of conference presentations is given at the end.

  1. Improvements to III-nitride light-emitting diodes through characterization and material growth

    NASA Astrophysics Data System (ADS)

    Getty, Amorette Rose Klug

    A variety of experiments were conducted to improve or aid the improvement of the efficiency of III-nitride light-emitting diodes (LEDs), which are a critical area of research for multiple applications, including high-efficiency solid state lighting. To enhance the light extraction in ultraviolet LEDs grown on SiC substrates, a distributed Bragg reflector (DBR) optimized for operation in the range from 250 to 280 nm has been developed using MBE growth techniques. The best devices had a peak reflectivity of 80% with 19.5 periods, which is acceptable for the intended application. DBR surfaces were sufficiently smooth for subsequent epitaxy of the LED device. During the course of this work, pros and cons of AlGaN growth techniques, including analog versus digital alloying, were examined. This work highlighted a need for more accurate values of the refractive index of high-Al-content AlxGa1-xNin the UV wavelength range. We present refractive index results for a wide variety of materials pertinent to the fabrication of optical III-nitride devices. Characterization was done using Variable-Angle Spectroscopic Ellipsometry. The three binary nitrides, and all three ternaries, have been characterized to a greater or lesser extent depending on material compositions available. Semi-transparent p-contact materials and other thin metals for reflecting contacts have been examined to allow optimization of deposition conditions and to allow highly accurate modeling of the behavior of light within these devices. Standard substrate materials have also been characterized for completeness and as an indicator of the accuracy of our modeling technique. We have demonstrated a new technique for estimating the internal quantum efficiency (IQE) of nitride light-emitting diodes. This method is advantageous over the standard low-temperature photoluminescence-based method of estimating IQE, as the new method is conducted under the same conditions as normal device operation. We have developed

  2. Surface properties and photocatalytic activity of KTaO3, CdS, MoS2 semiconductors and their binary and ternary semiconductor composites.

    PubMed

    Bajorowicz, Beata; Cybula, Anna; Winiarski, Michał J; Klimczuk, Tomasz; Zaleska, Adriana

    2014-09-24

    Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting photoactive materials. We presented different binary and ternary combinations of the above semiconductors for phenol and toluene photocatalytic degradation and characterized by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area and porosity. The results showed that loading MoS2 onto CdS as well as loading CdS onto KTaO3 significantly enhanced absorption properties as compared with single semiconductors. The highest photocatalytic activity in phenol degradation reaction under both UV-Vis and visible light irradiation and very good stability in toluene removal was observed for ternary hybrid obtained by calcination of KTaO3, CdS, MoS2 powders at the 10:5:1 molar ratio. Enhanced photoactivity could be related to the two-photon excitation in KTaO3-CdS-MoS2 composite under UV-Vis and/or to additional presence of CdMoO4 working as co-catalyst.

  3. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, Robert F.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah

    2000-01-01

    Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths. In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors. With an energy gap of 2.7 eV at room temperature, and an efficient band- to-band transition, ZnSe has been studied extensively as the primary candidate for a blue light emitting diode for optical displays, high density recording, and military communications. By employing a ternary or quaternary system, the energy band gap of II-VI materials can be tuned to a specific range. While issues related to the compositional inhomogeneity and defect incorporation are still to be fully resolved, ZnSe bulk crystals and ZnSe-based heterostructures such as ZnSe/ZnSeS, ZnSe/ZnCdSe and ZnCdSe/ZnSeS have showed photopumped lasing capability in the blue-green region at a low threshold power and high temperatures. The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk H-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology.

  4. Thermodynamic considerations of the vapor phase reactions in III-nitride metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji

    2017-04-01

    We analyzed the metal organic vapor phase epitaxial growth mechanism of the III-nitride semiconductors GaN, AlN, and InN by first-principles calculations and thermodynamic analyses. In these analyses, we investigated the decomposition processes of the group III source gases X(CH3)3 (X = Ga, Al, In) at finite temperatures and determined whether the (CH3)2GaNH2 adduct can be formed or not. The results of our calculations show that the (CH3)2GaNH2 adduct cannot be formed in the gas phase in GaN metal organic vapor phase epitaxy (MOVPE), whereas, in AlN MOVPE, the formation of the (CH3)2AlNH2 adduct in the gas phase is exclusive. In the case of GaN MOVPE, trimethylgallium (TMG, [Ga(CH3)3]) decomposition into Ga gas on the growth surface with the assistance of H2 carrier gas, instead of the formation of the (CH3)2GaNH2 adduct, occurs almost exclusively. Moreover, in the case of InN MOVPE, the formation of the (CH3)2InNH2 adduct does not occur and it is relatively easy to produce In gas even without H2 in the carrier gas.

  5. III-nitride ultraviolet emitters produced by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Anirban

    In this dissertation, the growth of III-Nitride based ultraviolet (UV) emitters by molecular beam epitaxy has been addressed. These devices can find applications in optical data storage, solid-state lighting, and in biological detection. A significant part of the research involved materials development, as there are several major scientific and technological hurdles that must be overcome in order to produce commercially viable devices. For emission in the wavelength region 330 nm to 350 nm, the devices were designed as electrically-injected light emitting diodes (LEDs). Each layer of this structure was individually optimized to improve the materials properties. To overcome the difficulties in p-type doping, a new growth regime has been explored which led to films with hole concentrations of up to 2 x 10 18/cm3. Multiple quantum wells (MQWs) were grown along polar and non-polar directions to understand the effects of the presence of built-in polarization fields. It was found that these detrimental effects are minimized for ultra thin wells. Use of an Indium flux as a surfactant was found to substantially improve the luminescence properties of bulk Aluminum Gallium Nitride (AlGaN) alloys and MQWs. UV-LEDs grown under these optimized conditions show an optical power output of 0.75 mW at 340 nm and 4.5 mW at 350nm. For emission in the wavelength region below 270 nm, due to the difficulty of doping AlGaN alloys with high Aluminum Nitride (AlN) mole fraction, edge or vertical emitting electron beam-pumped laser structures have been developed. Since it is difficult to cleave III-Nitrides deposited onto C-plane sapphire, edge emitting laser structures using a Graded-Index Separate Confinement Heterostructure (GRINSCH) based geometry have been deposited onto A-plane sapphire using a novel AlN buffer layer. An AlGaN bulk film or a set of AlN/AlGaN MQWs is used as the active region. For use in these devices, the growth of high Al content AlGaN was optimized to reduce the deep

  6. Theoretical Study of Material and Device Properties of Group-III Nitrides

    NASA Astrophysics Data System (ADS)

    Yan, Qimin

    Group-III nitride semiconductors, including AlN, GaN, InN, and their alloys, are ideal materials for solid state lighting applications. Current research focuses on improving the efficiency by improvements in materials quality and novel device designs, for instance based on nonpolar and semipolar growth. The motivation for our work is to assist and guide the experimental development of high-performance solid state optoelectronic devices by performing computational studies. Our investigations range from basic structural and electronic properties of nitrides to the effects of device design on efficiency of light emission. In the area of fundamental properties, we performed a systematic study of strain effects on the electronic band structures of the group-III-nitrides (AlN, GaN and InN) using density-functional theory with an advanced hybrid functional as well as using the quasiparticle GW method. We present a complete set of deformation potentials that allows us to predict the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic strain conditions. We then employed the resulting first-principles deformation potentials to predict the effects of strain on transition energies and valence-band structures of c-plane, nonpolar, and semipolar InGaN alloy layers grown on GaN substrates, with particular attention to the role of strain in the polarized light emission. We also investigated the role of native defects in the optical properties of GaN and AlN, again using hybrid density-functional calculations. We established that complexes between Mg and nitrogen vacancies lead to the broad red luminescence that has often been observed in GaN. We find that isolated nitrogen vacancies can give rise to broad emission peaked at 2.18 eV. We show that isolated aluminum vacancies lead to an absorption peak at 3.43 eV and an emission peak at 2.73 eV. We also find that the complexes can give rise to absorption peaked at 3.97 eV and

  7. Impurity-induced disorder in III-nitride materials and devices

    DOEpatents

    Wierer, Jr., Jonathan J; Allerman, Andrew A

    2014-11-25

    A method for impurity-induced disordering in III-nitride materials comprises growing a III-nitride heterostructure at a growth temperature and doping the heterostructure layers with a dopant during or after the growth of the heterostructure and post-growth annealing of the heterostructure. The post-growth annealing temperature can be sufficiently high to induce disorder of the heterostructure layer interfaces.

  8. Prediction of positron-annihilation parameters for vacancy-type defects in ternary alloy semiconductors by data-scientific approach

    NASA Astrophysics Data System (ADS)

    Ishibashi, Shoji; Kino, Hiori; Uedono, Akira; Miyake, Takashi; Terakura, Kiyoyuki

    2017-01-01

    We calculated positron annihilation parameters for mono- and di-vacancies in ternary semiconductors Al0.5Ga0.5N and In0.5Ga0.5N. It has been found that the obtained annihilation parameters are well correlated with structural parameters. By constructing multiple linear regression models using selected (about 1/4 of the total) datasets as training sets in order to reduce computational cost, we could predict annihilation parameters for the rest.

  9. Group III-nitride based hetero and quantum structures

    NASA Astrophysics Data System (ADS)

    Monemar, B.; Pozina, G.

    2000-11-01

    The present paper attempts an overview of a presently very active research field: the III-nitrides and their interesting possibilities for a range of device applications employing heterostructures and low-dimensional quantum structures. The family of materials containing AlN, GaN, InN and the alloys between them span a range of direct bandgaps between 6.2 and 1.9 eV, with very large band offsets in type I heterojunctions, which is very favourable for a number of interesting device concepts. A very important feature of these materials is the dominant influence of strong polarisation fields (spontaneous as well as piezo-electric) on the physical properties of multilayer structures, as well as on devices. Exciton binding energies are large, and excitonic effects are therefore important at room temperature. Many alloy systems, in particular InGaN, have a high miscibility gap, leading to a strong tendency for phase separation and consequently to many novel physical properties which yet have to be explored in detail. Localization effects for carriers and excitons are very important in quantum structures based on these alloys. Devices based on III-N heterostructures cover a wide range, from optical devices (violet lasers, LEDs covering a range from UV to red, white LEDs, photodetectors, UV cameras) to high-frequency power devices, both unipolar transistors (AlGaN/GaN HEMTs) and bipolar HBTs.

  10. III-nitride core–shell nanowire arrayed solar cells.

    PubMed

    Wierer, Jonathan J; Li, Qiming; Koleske, Daniel D; Lee, Stephen R; Wang, George T

    2012-05-17

    A solar cell based on a hybrid nanowire–film architecture consisting of a vertically aligned array of InGaN/GaN multi-quantum well core–shell nanowires which are electrically connected by a coalesced p-InGaN canopy layer is demonstrated. This unique hybrid structure allows for standard planar device processing, solving a key challenge with nanowire device integration, while enabling various advantages by the nanowire absorbing region such as higher indium composition InGaN layers by elastic strain relief, more efficient carrier collection in thinner layers, and enhanced light trapping from nano-scale optical index changes. This hybrid structure is fabricated into working solar cells exhibiting photoresponse out to 2.1 eV and short-circuit current densities of ~1 mA cm(-2) under 1 sun AM1.5G. This proof-of-concept nanowire-based device demonstrates a route forward for high-efficiency III-nitride solar cells.

  11. High-Modulation-Speed LEDs Based on III-Nitride

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.

  12. Low damage dry etch for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.

    2015-08-01

    We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.

  13. III-nitride monolithic LED covering full RGB color gamut

    NASA Astrophysics Data System (ADS)

    El-Ghoroury, Hussein S.; Chuang, Chih-Li; Kisin, Mikhail V.

    2016-03-01

    We present numerical simulation of III-nitride monolithic multi-color LED covering full red-green-blue (RGB) color gamut. The RGB LED structure was grown at Ostendo Technologies Inc. and has been used in Ostendo proprietary Quantum Photonic Imager (QPI) device. Active region of our RGB LED incorporates specially designed intermediate carrier blocking layers (ICBLs) controlling transport of each type of carriers and subsequent carrier injection redistribution among the optically active quantum wells (QWs) with different emission wavelengths. ICBLs are proved to be essential elements of multi-color LED active region design requiring optimization both in material composition and doping level. Strong interdependence between ICBL parameters and active QW characteristics presents additional challenge to multi-color LED design. Combination of several effects was crucial for adequate simulation of RGB LED color control features. Standard drift-diffusion transport model has been appended with rate equations for dynamic QW-confined carrier populations which appear severely off-balanced from corresponding mobile carrier subsystems. QW overshoot and Auger-assisted QW depopulation were also included into the carrier kinetic model thus enhancing the non-equilibrium character of QW confined populations and supporting the mobile carrier transport across the MQW active region. For device simulation we use COMSOL-based program suit developed at Ostendo Technologies Inc.

  14. Synthesis and characterization of thermally evaporated Cu2SnSe3 ternary semiconductor

    NASA Astrophysics Data System (ADS)

    Hamdani, K.; Chaouche, M.; Benabdeslem, M.; Bechiri, L.; Benslim, N.; Amara, A.; Portier, X.; Bououdina, M.; Otmani, A.; Marie, P.

    2014-11-01

    Copper Tin Selenide (CuSnSe) powder was mechanically alloyed by high energy planetary ball milling, starting from elemental powders. Synthesis time and velocity have been optimized to produce Cu2SnSe3 materials. Thin films were prepared by thermal evaporation on Corning glass substrate at Ts = 300 °C. The structural, compositional, morphological and optical properties of the synthesized semiconductor have been analyzed by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy. The analyzed powder exhibited a cubic crystal structure, with the presence of Cu2Se as a secondary phase. On the other hand, the deposited films showed a cubic Cu2SnSe3 ternary phase and extra peaks belonging to some binary compounds. Furthermore, optical measurements showed that the deposited layers have a relatively high absorption coefficient of 105 cm-1 and present a band gap of 0.94 eV.

  15. Semiconductor heterostructure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold John (Inventor); Woodall, Jerry MacPherson (Inventor)

    1978-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  16. Semiconductor structure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold J. (Inventor); Woodall, Jerry M. (Inventor)

    1979-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  17. Modeling of III-nitride light-emitting diodes: progress, problems, and perspectives

    NASA Astrophysics Data System (ADS)

    Karpov, Sergey Yu.

    2011-02-01

    Recent progress in III-nitride LED modeling is reviewed with the focus on physical models that provide a better understanding of such hot issues, as factors limiting the internal quantum efficiency of light emission and high-current efficiency droop, polarization doping in graded-composition III-nitride alloys and its utilization in LEDs, current crowding in LED dice and its impact on the light extraction efficiency, and optimal light conversion in white LED lamps. Specific features of III-nitride materials, their impact on the LED operation, and models accounting for these features are considered. Insufficient understanding of transport mechanisms of non-equilibrium electrons and holes and their localization in InGaN inhomogeneous active regions are discussed along with other still unsolved problems. Influence of technological factors on LED heterostructures and their operation is argued in the context of further model developments.

  18. III-nitrides on oxygen- and zinc-face ZnO substrates

    SciTech Connect

    Namkoong, Gon; Burnham, Shawn; Lee, Kyoung-Keun; Trybus, Elaissa; Doolittle, W. Alan; Losurdo, Maria; Capezzuto, Pio; Bruno, Giovanni; Nemeth, Bill; Nause, Jeff

    2005-10-31

    The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to {approx}10{sup 8} cm{sup -2}, while a dislocation density of {approx}10{sup 10} cm{sup -2} was obtained on the on-axis ZnO substrates.

  19. Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shakya, J.; Kim, K. H.; Lin, J. Y.; Jiang, H. X.

    2004-07-01

    III-nitride photonic crystal (PC) ultraviolet (UV) light-emitting diodes (LEDs) were fabricated. Triangular arrays of the PCs with different diameters/periodicities were patterned using electron-beam lithography and inductively coupled plasma dry etching. The optical power output of LEDs was enhanced by a factor of 2.5 due to PC formation. It was observed that the optical enhancement factor depends strongly on the lattice constant and hole size of the PCs. The achievement of nitride PCs is expected to benefit many applications of III-nitride optoelectronics, particularly for the improvement of extraction efficiency in III-nitride deep-UV emitters (λ <340nm), which are crucial for many important applications, but presently have a very low quantum efficiency.

  20. Extreme Band Engineering of III-Nitride Nanowire Heterostructures for Electronic and Photonic Application

    NASA Astrophysics Data System (ADS)

    Sarwar, ATM Golam

    Bottom-up nanowires are attractive for realizing semiconductor devices with extreme heterostructures because strain relaxation through the nanowire sidewalls allows the combination of highly lattice mismatched materials without creating dislocations. The resulting nanowires are used to fabricate light-emitting diodes (LEDs), lasers, solar cells, and sensors. The aim of this work is to investigate extreme heterostructures, which are impossible or very hard to realize in conventional planar films, exploiting the strain accommodation property of nanowires and engineer their band structure for novel electronic and photonic applications. To this end, in this thesis, III-Nitride semiconductor nanowires are investigated. In the first part of this work, a complete growth phase diagram of InN nanowires on silicon using plasma assisted molecular beam epitaxy is developed, and structural and optical characteristics are mapped as a function of growth parameters. Next, a novel up-side down pendeoepitaxial growth of InN forming mushroom-like microstructures is demonstrated and detail structural and optical characterizations are performed. Based on this, a method to grow strain-free large area single crystalline InN or thin film is proposed and the growth of InN on patterned GaN is investigated. The optimized growth conditions developed for InN are further used to grow InGaN nanowires graded over the whole composition range. Numerical energy band simulation is performed to better understand the effect of polarization charge on photo-carrier transport in these extremely graded nanowires. A novel photodetector device with negative differential photocurrent is demonstrated using the graded InGaN nanowires. In the second part of this thesis, polarization-induced nanowire light emitting diodes (PINLEDs) are investigated. The electrical and optical properties of the nanowire heterostructure are engineered and optimized for ultraviolet and deep ultraviolet applications. The electrical

  1. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael

    2013-12-01

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  2. Transfer matrix method solving interface optical phonons in wurtzite core-multishell nanowires of III-nitrides

    NASA Astrophysics Data System (ADS)

    Xue, Z. X.; Qu, Y.; Xie, H.; Ban, S. L.

    2016-12-01

    Within the framework of dielectric continuum and Loudon's uniaxial crystal models, the transfer matrix method (TMM) is developed to investigate interface optical phonons (IOPs) in cylindrical wurtzite core-multishell nanowires (CMSNWs) consisting of ternary mixed crystals (TMCs). The IOPs in GaN/InxGa1-xN/InyGa1-yN and GaN/InxGa1-xN/InyGa1-yN/InzGa1-zN CMSNWs are calculated as examples. The results show that there may be several types of IOPs existing in certain frequency regions in CMSNWs for a given component due to the phonon dispersion anisotropy in wurtzite nitrides. The IOPs are classified by possible combinations of the interfaces in CMSNWs. Furthermore, the dispersion relations and electro-static potentials of each kind of IOPs are discussed in detail. The dispersion relations of IOPs in CMSNWs is found to be the combination of that in each nearest two layer CSNW. It can explain the fact that the total branch number of IOPs obey the 2n rule. It is also found that the peak positions of electro-static potentials are decided by the layer component order from the inner layer to outside in CMSNWs. The results indicate that TMM for IOPs is available and can be commodiously extended to other cylindrical wurtzite III-nitride CMSNWs. Based on this method, one can further discuss the IOPs related photoelectric properties in nitride CMSNWs consisting of TMCs.

  3. Estimations of the spontaneous polarization of binary and ternary compounds of group III nitrides

    NASA Astrophysics Data System (ADS)

    Davydov, S. Yu.; Posrednik, O. V.

    2016-04-01

    The dependences of spontaneous polarizations P sp of solid solutions of aluminum, gallium, and indium nitrides on the compositions were estimated using the Harrison bond-orbital method. A simple formula was proposed to estimate P sp using only lengths of the interatomic bonds between the nearest neighbor atoms and the angles between these bonds.

  4. Method to grow group III-nitrides on copper using passivation layers

    DOEpatents

    Li, Qiming; Wang, George T; Figiel, Jeffrey T

    2014-06-03

    Group III-nitride epilayers can be grown directly on copper substrates using intermediate passivation layers. For example, single crystalline c-plane GaN can be grown on Cu (110) substrates with MOCVD. The growth relies on a low temperature AlN passivation layer to isolate any alloying reaction between Ga and Cu.

  5. Method for Improving Mg Doping During Group-III Nitride MOCVD

    DOEpatents

    Creighton, J. Randall; Wang, George T.

    2008-11-11

    A method for improving Mg doping of Group III-N materials grown by MOCVD preventing condensation in the gas phase or on reactor surfaces of adducts of magnesocene and ammonia by suitably heating reactor surfaces between the location of mixing of the magnesocene and ammonia reactants and the Group III-nitride surface whereon growth is to occur.

  6. A study on III-nitride recessed-gate field-effect transistors using a remote-oxygen-plasma treatment

    NASA Astrophysics Data System (ADS)

    Lee, Y.-C.; Kao, T.-T.; Shen, S.-C.

    2015-04-01

    We report a comparative study of the device performance of III-nitride (III-N) heterojunction field-effect transistors (HFETs) and metal-insulator-semiconductor field-effect transistors (MISFETs). The influence of a remote-oxygen-plasma treatment was investigated. The plasma-treated recessed-gate HFETs and MISFETs show normally-off characteristics with higher peak transconductance, lower sub-threshold slope, smaller hysteresis. An on-off ratio greater than 2.2E11 with a significant suppression of gate leakage can be achieved in plasma-treated III-N MISFETs. A drain current transient measurement was performed to analyze the traps in these devices and possible origins of these traps are studied. Six traps with characteristic time constants (τ) ranging from 180 s to 3 ms are identified in both HFETs and MISFETs, in addition to a trap which is associated with the ALD-grown gate dielectrics for the MISFETs. The results suggest that improved device performance in these plasma-treated III-N FETs is attributed to the reduced trap states with τ < 400 ms, which are located on III-N surfaces. The slower traps (τ > 2 s) cannot be reduced by the plasma treatment and are related to the oxygen and carbon impurities and the buffer traps in the bulk semiconductors.

  7. Stable Solar-Blind Ultraviolet III-Nitride Photocathode for Astronomy Applications

    NASA Astrophysics Data System (ADS)

    Bell, Lloyd

    In this effort, we propose to develop a new type of cesium-free photocathode using III- nitride materials (GaN, AlN, and their alloys) to achieve highly efficient, solar blind, and stable ultraviolet (UV) response. Currently, detectors used in UV instruments utilize a photocathode to convert UV photons into electrons that are subsequently detected by microchannel plate or CCD. The performance of these detectors critically depends on the efficiency and stability of their photocathodes. In particular, photocathode instability is responsible for many of the fabrication difficulties commonly experienced with this class of detectors. In recent years, III-nitride (in particular GaN) photocathodes have been demonstrated with very high quantum efficiency (>50%) in parts of UV spectral range; however, these photocathodes still rely on cesiation for activation. The proposed photocathode structure will achieve activation through methods for band structure engineering such as delta- doping and polarization field engineering. Compared to the current state-of-the-art in flight-ready microchannel plate/Cs2Te sealed tubes, photocathodes based on III-nitride materials will increase the quantum efficiency by nearly an order of magnitude and significantly enhance both fabrication yield and reliability, since they will not require cesium or other highly reactive materials for activation. This performance will enable a next-generation UV spectroscopic and imaging mission that is of high scientific priority for NASA. This photocathode uses near-surface band-structure engineering to create a permanently activated surface, with high efficiency and air-stable UV response. We will combine this III-nitride structure with our unique III-nitride processing technology to optimize the efficiency and uniformity of the photocathode. In addition, through our design, growth, and processing techniques, we will extend the application of these photocathodes into far UV for both semitransparent and

  8. Growth and characterization of III-nitrides materials system for photonic and electronic devices by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yoo, Dongwon

    A wide variety of group III-Nitride-based photonic and electronic devices have opened a new era in the field of semiconductor research in the past ten years. The direct and large bandgap nature, intrinsic high carrier mobility, and the capability of forming heterostructures allow them to dominate photonic and electronic device market such as light emitters, photodiodes, or high-speed/high-power electronic devices. Avalanche photodiodes (APDs) based on group III-Nitrides materials are of interest due to potential capabilities for low dark current densities, high sensitivities and high optical gains in the ultraviolet (UV) spectral region. Wide-bandgap GaN-based APDs are excellent candidates for short-wavelength photodetectors because they have the capability for cut-off wavelengths in the UV spectral region (lambda < 290 nm). These intrinsically solar-blind UV APDs will not require filters to operate in the solar-blind spectral regime of lambda < 290 nm. For the growth of GaN-based heteroepitaxial layers on lattice-mismatched substrates, a high density of defects is usually introduced during the growth; thereby, causing a device failure by premature microplasma, which has been a major issue for GaN-based APDs. The extensive research on epitaxial growth and optimization of AlxGa 1-xN (0 ≤ x ≤ 1) grown on low dislocation density native bulk III-N substrates have brought UV APDs into realization. GaN and AlGaN UV p-i-n APDs demonstrated first and record-high true avalanche gain of > 10,000 and 50, respectively. The large stable optical gains are attributed to the improved crystalline quality of epitaxial layers grown on low dislocation density bulk substrates. GaN p-i-n rectifiers have brought much research interest due to its superior physical properties. The AIN-free full-vertical GaN p-i-n rectifiers on n-type 6H-SiC substrates by employing a conducting AIGaN:Si buffer layer provides the advantages of the reduction of sidewall damage from plasma etching and

  9. Enhanced non-radiative energy transfer in hybrid III-nitride structures

    SciTech Connect

    Smith, R. M.; Athanasiou, M.; Bai, J.; Liu, B.; Wang, T.

    2015-09-21

    The effect of surface states has been investigated in hybrid organic/inorganic white light emitting structures that employ high efficiency, nearfield non-radiative energy transfer (NRET) coupling. The structures utilize blue emitting InGaN/GaN multiple quantum well (MQW) nanorod arrays to minimize the separation with a yellow emitting F8BT coating. Surface states due to the exposed III-nitride surfaces of the nanostructures are found to reduce the NRET coupling rate. The surface states are passivated by deposition of a silicon nitride layer on the III-nitride nanorod surface leading to reduced surface recombination. A low thickness surface passivation is shown to increase the NRET coupling rate by 4 times compared to an un-passivated hybrid structure. A model is proposed to explain the increased NRET rate for the passivated hybrid structures based on the reduction in surface electron depletion of the passivated InGaN/GaN MQW nanorods surfaces.

  10. Quantum cascade emission in the III-nitride material system designed with effective interface grading

    SciTech Connect

    Song, Alex Y. Huang, Tzu-Yung; Zah, Chung-En; Gmachl, Claire F.; Bhat, Rajaram; Wang, Jie; Allerman, Andrew A.

    2015-09-28

    We report the realization of quantum cascade (QC) light emission in the III-nitride material system, designed with effective interface grading (EIG). EIG induces a continuous transition between wells and barriers in the quantum confinement, which alters the eigenstate system and even delocalizes the states with higher energy. Fully transverse-magnetic spontaneous emission is observed from the fabricated III-nitride QC structure, with a center wavelength of ∼4.9 μm and a full width at half maximum of ∼110 meV, both in excellent agreement with theoretical predictions. A multi-peak photo-response spectrum is also measured from the QC structure, which again agrees well with theoretical calculations and verifies the effects of EIG.

  11. Enhanced non-radiative energy transfer in hybrid III-nitride structures

    NASA Astrophysics Data System (ADS)

    Smith, R. M.; Athanasiou, M.; Bai, J.; Liu, B.; Wang, T.

    2015-09-01

    The effect of surface states has been investigated in hybrid organic/inorganic white light emitting structures that employ high efficiency, nearfield non-radiative energy transfer (NRET) coupling. The structures utilize blue emitting InGaN/GaN multiple quantum well (MQW) nanorod arrays to minimize the separation with a yellow emitting F8BT coating. Surface states due to the exposed III-nitride surfaces of the nanostructures are found to reduce the NRET coupling rate. The surface states are passivated by deposition of a silicon nitride layer on the III-nitride nanorod surface leading to reduced surface recombination. A low thickness surface passivation is shown to increase the NRET coupling rate by 4 times compared to an un-passivated hybrid structure. A model is proposed to explain the increased NRET rate for the passivated hybrid structures based on the reduction in surface electron depletion of the passivated InGaN/GaN MQW nanorods surfaces.

  12. Quantum cascade emission in the III-nitride material system designed with effective interface grading

    NASA Astrophysics Data System (ADS)

    Song, Alex Y.; Bhat, Rajaram; Allerman, Andrew A.; Wang, Jie; Huang, Tzu-Yung; Zah, Chung-En; Gmachl, Claire F.

    2015-09-01

    We report the realization of quantum cascade (QC) light emission in the III-nitride material system, designed with effective interface grading (EIG). EIG induces a continuous transition between wells and barriers in the quantum confinement, which alters the eigenstate system and even delocalizes the states with higher energy. Fully transverse-magnetic spontaneous emission is observed from the fabricated III-nitride QC structure, with a center wavelength of ˜4.9 μm and a full width at half maximum of ˜110 meV, both in excellent agreement with theoretical predictions. A multi-peak photo-response spectrum is also measured from the QC structure, which again agrees well with theoretical calculations and verifies the effects of EIG.

  13. Modeling of Threading Dislocation Density Reduction in Porous III-Nitride Layers

    NASA Astrophysics Data System (ADS)

    Artemiev, Dmitry M.; Orlova, Tatiana S.; Bougrov, Vladislav E.; Odnoblyudov, Maxim A.; Romanov, Alexei E.

    2015-05-01

    In this work, we report on the results of the theoretical analysis of threading dislocation (TD) density reduction in porous III-nitride layers grown in polar orientation. The reaction-kinetics model originally developed for describing TD evolution in growing bulk layers has been expanded to the case of the porous layer. The developed model takes into account TD inclinations under the influence of the pores as well as trapping TDs into the pores. It is demonstrated that both these factors increase the probability of dislocation reactions thus reducing the total density of TDs. The mean pore diameter acts as an effective interaction radius for the reactions among TDs. The model includes the main experimentally observed features of TD evolution in porous III-nitride layers.

  14. Stacking fault domains as sources of a-type threading dislocations in III-nitride heterostructures

    NASA Astrophysics Data System (ADS)

    Smalc-Koziorowska, J.; Bazioti, C.; Albrecht, M.; Dimitrakopulos, G. P.

    2016-02-01

    A mechanism for the nucleation of a-type threading dislocation half-loops from basal stacking faults in wurtzite III-nitride heterostructures is presented. Transmission electron microscopy observations, in conjunction with topological and strain analysis, show that there are two possible configurations of closed domains comprising basal stacking faults of I1 type. It is shown that the lattice dislocation may emanate when the sphalerite structural units of the stacking faults in the closed domain are oriented in a parallel manner. The closed domain configurations do not introduce any shift on the basal planes, resulting in zero defect content along the growth direction. The stacking fault domains are hexagonal, with sides along the ⟨ 10 1 ¯ 0 ⟩ directions, and the threading dislocation half loops nucleate at the line nodes. The mechanism was found to be operational in multiple III-nitride systems.

  15. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  16. Acceptor impurity activation in III-nitride light emitting diodes

    NASA Astrophysics Data System (ADS)

    Römer, Friedhard; Witzigmann, Bernd

    2015-01-01

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  17. Wide bandgap III-nitride nanomembranes for optoelectronic applications.

    PubMed

    Park, Sung Hyun; Yuan, Ge; Chen, Danti; Xiong, Kanglin; Song, Jie; Leung, Benjamin; Han, Jung

    2014-08-13

    Single crystalline nanomembranes (NMs) represent a new embodiment of semiconductors having a two-dimensional flexural character with comparable crystalline perfection and optoelectronic efficacy. In this Letter, we demonstrate the preparation of GaN NMs with a freestanding thickness between 90 to 300 nm. Large-area (>5 × 5 mm(2)) GaN NMs can be routinely obtained using a procedure of conductivity-selective electrochemical etching. GaN NM is atomically flat and possesses an optical quality similar to that from bulk GaN. A light-emitting optical heterostructure NM consisting of p-GaN/InGaN quantum wells/GaN is prepared by epitaxy, undercutting etching, and layer transfer. Bright blue light emission from this heterostructure validates the concept of NM-based optoelectronics and points to potentials in flexible applications and heterogeneous integration.

  18. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-08-01

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (Jth) of ˜3.5 kA/cm2, compared to the ITO VCSEL Jth of 8 kA/cm2. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ˜550 μW, compared to ˜80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  19. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    SciTech Connect

    Leonard, J. T. Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-08-31

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J{sub th}) of ∼3.5 kA/cm{sup 2}, compared to the ITO VCSEL J{sub th} of 8 kA/cm{sup 2}. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  20. Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

    DOE PAGES

    Wolf, Omri; Allerman, Andrew A.; Ma, Xuedan; ...

    2015-10-15

    We use planar metamaterial resonators to enhance, by more than two orders of magnitude, the optical second harmonic generation, in the near infrared, obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators’ cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a new class of sources for quantum photonics related phenomena.

  1. Selective layer disordering in III-nitrides with a capping layer

    DOEpatents

    Wierer, Jr., Jonathan J.; Allerman, Andrew A.

    2016-06-14

    Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

  2. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOEpatents

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  3. Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Romanov, Alexey E.; Young, Erin C.; Wu, Feng; Tyagi, Anurag; Gallinat, Chad S.; Nakamura, Shuji; DenBaars, Steve P.; Speck, James S.

    2011-05-01

    This article presents a theoretical analysis of dislocation behavior and stress relaxation in semipolar III-nitride heteroepitaxy, e.g., for AlxGa1-xN and InyGa1-yN layers grown on {hh2-h-m}- or {h0h-m}-type semipolar planes of GaN substrates. We demonstrate that the shear stresses on the unique inclined basal (0001) plane do not vanish for such growth geometries. This leads to the onset of relaxation processes in semipolar III-nitride heterostructures via dislocation glide in the basal slip systems <1-1-20>(0001) and to the formation of misfit dislocations (MDs) with Burgers vectors of (a /3)<1-1-20>-type at the semipolar heterointerface. Next we calculate the Matthews-Blakeslee critical thickness for MD formation in semipolar III-nitride layers together with the MD equilibrium spacings for complete misfit relaxation. The component of the MD Burgers vector normal to the film/substrate interface will cause a crystal lattice tilt in the epilayer with respect to the GaN substrate. The calculated magnitudes of the tilt angles are 0.62° and 0.67° for AlxGa1-xN and InyGa1-yN alloys with compositions of x = 0.20 and y = 0.07, respectively, grown in the (112-2) semipolar orientation. The modeling results are discussed in light of recent experimental observations [A. Tyagi et al., Appl Phys. Lett. 95, 251905 (2009); E. Young et al., Appl. Phys. Express 3, 011004 (2010); and F. Wu et al., J. Appl. Phys. 109, 033505 (2011)] of MDs and crystal lattice tilt in semipolar III-nitride heteroepitaxial layers.

  4. Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

    SciTech Connect

    Wolf, Omri E-mail: ibrener@sandia.gov; Ma, Xuedan; Brener, Igal E-mail: ibrener@sandia.gov; Allerman, Andrew A.; Wendt, Joel R.; Shaner, Eric A.; Song, Alex Y.

    2015-10-12

    We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.

  5. Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

    NASA Astrophysics Data System (ADS)

    Wolf, Omri; Allerman, Andrew A.; Ma, Xuedan; Wendt, Joel R.; Song, Alex Y.; Shaner, Eric A.; Brener, Igal

    2015-10-01

    We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.

  6. III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGES

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; ...

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  7. III-nitride quantum dots for ultra-efficient solid-state lighting

    SciTech Connect

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; Tsao, Jeffrey Y.

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of higher spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.

  8. III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Lee, Kyoung-Keun; Madison, Shannon M.; Henderson, Walter; Ralph, Stephen E.; Doolittle, W. Alan

    2005-10-01

    Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO3) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000°C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO3, producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN /GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO3 modulators on compact optoelectronic/electronic chips.

  9. III-nitride quantum dots for ultra-efficient solid-state lighting

    SciTech Connect

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; Tsao, Jeffrey Y.

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of higher spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.

  10. III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

    SciTech Connect

    Namkoong, Gon; Lee, Kyoung-Keun; Madison, Shannon M.; Henderson, Walter; Ralph, Stephen E.; Doolittle, W. Alan

    2005-10-24

    Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO{sub 3}) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000 deg. C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO{sub 3}, producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN/GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO{sub 3} modulators on compact optoelectronic/electronic chips.

  11. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Burger, A.; Dudley, M.; Ramachandran, N.

    2003-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions.

  12. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    SciTech Connect

    Frentrup, Martin Wernicke, Tim; Stellmach, Joachim; Kneissl, Michael; Hatui, Nirupam; Bhattacharya, Arnab

    2013-12-07

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances d{sub hkl} is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112{sup ¯}2) Al{sub κ}Ga{sub 1−κ}N epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  13. Novel optical study and application on iii-nitrides

    NASA Astrophysics Data System (ADS)

    Sun, Guan

    GaN and its heterostuctures have been intensively studied for wide applications. For example, InGaN/GaN quantum wells (QWs) have been used as active materials for light emitting diodes (LEDs) and laser diodes (LDs) from blue to green region while GaN/AlGaN QWs have been used for ultraviolet region. Meanwhile, nitrides are also very important materials for power electronic devices since such materials hold various advantage over competing semiconductor materials such as Si, GaAs, etc. Due to the above reasons, we believe GaN and its heterostructures will play crucial role for optics and electronics devices as silicon does for electronics. Thus, it is worthwhile to explore possibility of achieving different kinds of newapplications on GaN. This dissertation is focused on optical study on GaN based materials, including GaN thin film, InGaN/GaN QWs, InGaN dot-in-a-wire nanostructures, GaN/AlN QWs, etc. More specifically, in Chapter 2, we report efficient broadband terahertz (THz) generated in InGaN/GaN heterostructures due to spontaneous dipole radiation utilizing the strong internal field. Considering the normalized power, InGaN/GaN heterostructure is one of the most efficient materials for broadband THz generation. The correlated behavior between THz and photoluminescence (PL) has also been discussed. In Chapter 3, we present the study of PL upconversion from a free standing GaN and the mechanism has been attributed to phonon-assisted anti-Stokes photoluminescence (ASPL) if photon energy of pump laser is in the tail of absorption edge. The potential of laser cooling based on such phenomena has been explored. In Chapter 4, we have present detailed PL studies on different kind of nitrides materials including InGaN/GaN QWs, GaN/AlN QWs, GaN thin film and BN powders. In Chapter 5, we explore the possibility of nonlinear generation on GaN. A GaN/AlGaN multilayer waveguide has been designed to achieve transverse parametric conversion. The objective of this dissertation is

  14. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah

    1998-01-01

    Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths, In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors.The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk II-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology. The electrical and optical properties of semiconductor materials depend on the native point defects, (the deviation from stoichiometry), and the impurity or dopant distribution. To date, the bulk growth of ZnSe substrates has been plagued with problems related to defects such as non-uniform distributions of native defects, impurities and dopants, lattice strain, dislocations, grain boundaries, and second phase inclusions which greatly effect the device performance. In the bulk crystal growth of some technologically important semiconductors, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials.

  15. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. Significant effects of gravity vector orientation on the growth crystal morphology and point defect distribution were observed.

  16. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. Significant effects of gravity vector orientation on the growth crystal morphology and point defect distribution were observed.

  17. Trialkylphosphine-stabilized copper(I) gallium(III) phenylchalcogenolate complexes: crystal structures and generation of ternary semiconductors by thermolysis.

    PubMed

    Kluge, Oliver; Krautscheid, Harald

    2012-06-18

    A series of organometallic trialkylphosphine-stabilized copper gallium phenylchalcogenolate complexes [(R(3)P)(m)Cu(n)Me(2-x)Ga(EPh)(n+x+1)] (R = Me, Et, (i)Pr, (t)Bu; E = S, Se, Te; x = 0, 1) has been prepared and structurally characterized by X-ray diffraction. From their molecular structures three groups of compounds can be distinguished: ionic compounds, ring systems, and cage structures. All these complexes contain one gallium atom bound to one or two methyl groups, whereas the number of copper atoms, and therefore the nuclearity of the complexes, is variable and depends mainly on size and amount of phosphine ligand used in synthesis. The Ga-E bonds are relatively rigid, in contrast to flexible Cu-E bonds. The lengths of the latter are controlled by the coordination number and steric influences. The Ga-E bond lengths depend systematically on the number of methyl groups bound to the gallium atom, with somewhat shorter bonds in monomethyl compounds compared to dimethyl compounds. Quantum chemical computations reproduce this trend and show furthermore that the rotation of one phenyl group around the Ga-E bond is a low energy process with two distinct minima, corresponding to two different conformations found experimentally. Mixtures of different types of chalcogen atoms on molecular scale are possible, and then ligand exchange reactions in solution lead to mixed site occupation. In thermogravimetric studies the complexes were converted into the ternary semiconductors CuGaE(2). The thermolysis reaction is completed at temperatures between 250 and 400 °C, typically with lower temperatures for the heavier chalcogens. Because of significant release of Me(3)Ga during the thermolysis process, and especially in case of copper excess in the precursor complexes, binary copper chalcogenides are obtained as additional thermolysis products. Quaternary semiconductors can be obtained from mixed chalcogen precursors.

  18. Two Dimensional Effective Electron Mass at the Fermi Level in Quantum Wells of III-V, Ternary and Quaternary Semiconductors.

    PubMed

    Chakrabarti, S; Chatterjee, B; Debbarma, S; Ghatak, K P

    2015-09-01

    In this paper we study the influence of strong electric field on the two dimensional (2D)effective electron mass (EEM) at the Fermi level in quantum wells of III-V, ternary and quaternary semiconductors within the framework of k x p formalism by formulating a new 2D electron energy spectrum. It appears taking quantum wells of InSb, InAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x)As(1-y)P(y) lattice matched to InP as examples that the EEM increases with decreasing film thickness, increasing electric field and increases with increasing surface electron concentration exhibiting spikey oscillations because of the crossing over of the Fermi level by the quantized level in quantum wells and the quantized oscillation occurs when the Fermi energy touches the sub-band energy. The electric field makes the mass quantum number dependent and the oscillatory mass introduces quantum number dependent mass anisotropy in addition to energy. The EEM increases with decreasing alloy composition where the variations are totally band structure dependent. Under certain limiting conditions all the results for all the cases get simplified into the well-known parabolic energy bands and thus confirming the compatibility test. The content of this paper finds three applications in the fields of nano-science and technology.

  19. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    DOE PAGES

    Malasi, A.; Taz, H.; Farah, A.; ...

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergentmore » semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.« less

  20. Crystal growth of ZnSe and related ternary compound semiconductors by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    1993-01-01

    The materials to be investigated are ZnSe and related ternary semiconducting alloys (e.g., ZnS(x)Se(1-x), ZnTe(x)Se(1-x), and Zn(1-x)Cd(x)Se). These materials are useful for opto-electronic applications such as high efficient light emitting diodes and low power threshold and high temperature lasers in the blue-green region of the visible spectrum. The recent demonstration of its optical bistable properties also makes ZnSe a possible candidate material for digital optical computers. The investigation consists of an extensive ground-based study followed by flight experimentation, and involves both experimental and theoretical work. The objectives of the ground-based work are to establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low gravity environment and to obtain the experimental data and perform the analyses required to define the optimum parameters for the flight experiments. During the six months of the Preliminary Definition Phase, the research efforts were concentrated on the binary compound ZnSe - the purification of starting materials of Se by zone refining, the synthesis of ZnSe starting materials, the heat treatments of the starting materials, the vapor transport rate measurements, the vapor partial pressure measurements of ZnSe, the crystal growth of ZnSe by physical vapor transport, and various characterization on the grown ZnSe crystals.

  1. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    PubMed Central

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, B.; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-01-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned. PMID:26670421

  2. Search for new topological insulators: ternary Li2AgSb-class semiconductors and related compounds

    NASA Astrophysics Data System (ADS)

    Lin, Hsin; Das, Tanmoy; Wang, Y. J.; Wray, L. A.; Xu, S.-Y.; Hasan, M. Z.; Bansil, Arun

    2012-02-01

    Topological insulators host a rare quantum phase of electrons which is characterized by a topological invariant number of bulk states of combined spin-orbit and time-reversal symmetry origin. Despite recent progress the available classes of topological insulators are still quite limited for use in device applications and experimental exploration of exotic topological phenomena. For this reason, the search for new materials with greater structural flexibility and tunability in various local order broken symmetry phases is continuing worldwide with great intensity. Here we discuss our effort based on first-principles calculations to show that the adiabatic continuation method can provide a very powerful tool for predicting non-trivial topological phases with the example of ternary intermetallic series, Li2M'X (M'=Cu, Ag, Au, and Cd, X=Sb, Bi, and Sn) as well as other compounds with zinc-blende type sublattice. [1-3] Work supported by the Office of Basic Energy Sciences, US DOE.[1] H. Lin, et al. Nature Materials 9, 546 (2010). [2] Y. J. Wang, et al. New J. Phys. 13, 085017 (2011). [3] H. Lin, et al., arXiv:1007.5111.

  3. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    NASA Astrophysics Data System (ADS)

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, B.; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

  4. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    SciTech Connect

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, Benjamin; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

  5. A Stable, Non-Cesiated III-Nitride Photocathode for Ultraviolet Astronomy Application

    NASA Astrophysics Data System (ADS)

    Bell, Lloyd

    In this effort, we propose to develop a new type of cesium-free photocathode using III-nitride (III-N) materials (GaN, AlN, and their alloys) and to achieve highly efficient, solar blind, and stable UV response. Currently, detectors used in UV instruments utilize a photocathode to convert UV photons into electrons that are subsequently detected by microchannel plate or CCD. The performance of these detectors critically depends on the efficiency and stability of their photocathodes. In particular, photocathode instability is responsible for many of the fabrication difficulties commonly experienced with this class of detectors. In recent years, III-N (in particular GaN) photocathodes have been demonstrated with very high QE (>50%) in parts of UV spectral range. Moreover, due to the wide bandgaps of III-nitride materials, photocathode response can be tailored to be intrinsically solar-blind. However, these photocathodes still rely on cesiation for activation, necessitating all-vacuum fabrication and sealed-tube operation. The proposed photocathode structure will achieve activation through methods for band structure engineering such as delta-doping and polarization field engineering. Compared to the current state-of-the-art in flight-ready microchannel plate sealed tubes, photocathodes based on III-N materials will yield high QE and significantly enhance both fabrication yield and reliability, since they do not require cesium or other highly reactive materials for activation. This performance will enable a ~4 meter medium class UV spectroscopic and imaging mission that is of high scientific priority for NASA. This work will build on the success of our previous APRA-funded effort. In that work, we demonstrated III-nitride photocathode operation without the use of cesium and stable response with respect to time. These accomplishments represent major improvements to the state-of-the-art for photocathode technologies. In the proposed effort, we will implement III-nitride

  6. Carrier dynamics and Coulomb-enhanced capture in III-nitride quantum heterostructures

    SciTech Connect

    David, Aurelien Hurni, Christophe A.; Young, Nathan G.; Craven, Michael D.

    2016-07-18

    A detailed study of the small-signal response of III-Nitride quantum well (QW) light-emitting diodes is presented, in which the electrical and optical responses are simultaneously measured. A complete transport-recombination model is introduced to account for measurements. This allows for a proper evaluation of the recombination lifetime and for the accurate quantification of thermionic carrier escape from the QW. Further, a yet-unreported carrier capture mechanism is identified and quantified; it increases with the carrier density in the QW and bears the signature of a Coulomb in-scattering process.

  7. Bias-enhanced optical pH response of group III-nitride nanowires.

    PubMed

    Wallys, Jens; Teubert, Jörg; Furtmayr, Florian; Hofmann, Detlev M; Eickhoff, Martin

    2012-12-12

    We show that the photoluminescence intensity of GaN and InGaN nanowires in electrolytes sensitively responds to variations of the pH value and the applied bias. The realization of an electrochemical working point allows pH detection with a resolution better than 0.05 pH. The observed effects are attributed to bias-dependent nonradiative recombination processes competing with interband transitions. The results show that group III-nitride nanowires are excellently suited as nanophotonic pH sensor elements.

  8. Fabrication defects and grating couplers in III-nitride photonic crystal nanobeam lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rousseau, Ian; Sánchez Arribas, Irene; Carlin, Jean-François; Butté, Raphaël.; Grandjean, Nicolas

    2016-04-01

    We report a numerical and experimental investigation of fabrication tolerances and outcoupling in optically pumped III-nitride nanolasers operating near λ = 460 nm, in which feedback is provided by a one-dimensional photonic crystal nanobeam cavity and gain is supplied by a single InGaN/GaN quantum well. Using this platform, we and others previously demonstrated single-μW lasing thresholds due to the high βQ-product inherent to the nanobeam geometry (β is spontaneous emission coupling fraction into desired mode). In this work, we improved the fraction of emission emitted into our microscope's light cone by combining a redesigned photonic crystal cavity (c.f. [3]) with a cross-grating coupler with period approximately twice the photonic crystal lattice constant. The samples were fabricated in epitaxial III-nitride layers grown on (111) silicon substrates using metal organic vapor phase epitaxy. The photonic crystal and output couplers were patterned using a single electron beam lithography exposure and subsequently transferred to the underlying III-nitride layers using dry etching. The nanobeams were then suspended via vapor phase etching of silicon in XeF2. Scanning electron microscopy cross-sections revealed high-aspect ratio (>5), sub-70 nanometer diameter holes with near-vertical sidewalls. Fabrication-induced geometry errors were characterized by processing scanning electron micrographs with custom critical dimension software. Using UV micro-photoluminescence spectroscopy at room temperature, we measured the nanobeams' emission intensity, far-field profile, and quality factor. By comparing more than ten nominally identical nanobeams for each geometry with finite-difference time-domain simulations taking into account the geometrical deviations measured during fabrication, we characterized the role of fabrication-induced imperfections. Finally, we explored the trade-off between the quality factor and collected signal via lithographic variations of the output

  9. Carrier dynamics and Coulomb-enhanced capture in III-nitride quantum heterostructures

    NASA Astrophysics Data System (ADS)

    David, Aurelien; Hurni, Christophe A.; Young, Nathan G.; Craven, Michael D.

    2016-07-01

    A detailed study of the small-signal response of III-Nitride quantum well (QW) light-emitting diodes is presented, in which the electrical and optical responses are simultaneously measured. A complete transport-recombination model is introduced to account for measurements. This allows for a proper evaluation of the recombination lifetime and for the accurate quantification of thermionic carrier escape from the QW. Further, a yet-unreported carrier capture mechanism is identified and quantified; it increases with the carrier density in the QW and bears the signature of a Coulomb in-scattering process.

  10. Near-infrared III-nitride-on-silicon nanophotonic platform with microdisk resonators.

    PubMed

    Roland, I; Zeng, Y; Checoury, X; El Kurdi, M; Sauvage, S; Brimont, C; Guillet, T; Gayral, B; Gromovyi, M; Duboz, J Y; Semond, F; de Micheli, M P; Boucaud, P

    2016-05-02

    We have developed a nanophotonic platform with microdisks using epitaxial III-nitride materials on silicon. The two-dimensional platform consists of suspended waveguides and mushroom-type microdisks as resonators side-coupled with a bus waveguide. Loaded quality factors up to 80000 have been obtained in the near-infrared spectral range for microdisk diameters between 8 and 15 μm. We analyze the dependence of the quality factors as a function of coupling efficiency. We have performed continuous-wave second harmonic generation experiments in resonance with the whispering gallery modes supported by the microdisks.

  11. Ternary Cd(Se,Te) alloy semiconductors - Synthesis, material characterization, and high-efficiency photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Levy-Clement, C.; Triboulet, R.; Rioux, J.; Etcheberry, A.; Licht, S.

    1985-12-01

    High-quality Cd(Se,Te) in two compositions was synthesized using the modified Bridgman technique. The Se-rich crystals had the hexagonal structure, while the Te-rich phase consisted of crystals with cubic packing. Their quality could be gauged from high-electron mobility and low resistivity, which suited the purpose of their synthesis, i.e., for high-efficiency photoelectrochemical cells. Photoelectrochemical etching was employed, which resulted in a heavily pitted surface with the density of the etch pits exceeding 10 to the 9th/sq cm. Quantum efficiency of the semiconductor/aqueous polysulfide interface increased considerably after photoetching. Solar-to-electrical conversion efficiencies in excess of 12 percent were obtained. Photoluminenscence spectrum was measured for the two crystals prior to and after photoetching. The emission maximum is near the calculated band gap. The decline in the luminescence intensity, after photoetching, is attributed to the corrugation of the surface and the reduced density of the donor state near the semiconductor surface, which increases the thickness of the space-charge layer (dead layer model).

  12. Unintentional Ga incorporation in metalorganic vapor phase epitaxy of In-containing III-nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Hiroki, Masanobu; Oda, Yasuhiro; Watanabe, Noriyuki; Maeda, Narihiko; Yokoyama, Haruki; Kumakura, Kazuhide; Yamamoto, Hideki

    2013-11-01

    We prepared InAlN barrier layer films on GaN buffer layers using the metalorganic vapor phase epitaxy (MOVPE) method and investigated the InAlN/GaN heterointerfaces. Secondary ion spectroscopy experiments revealed that a quaternary alloy of InAlGaN is grown on GaN even when trimethylindium (TMIn) and trimethylaluminum (TMAl) are exclusively supplied as group-III precursors, indicating that Ga is unintentionally incorporated into the InAlN layers. This Ga incorporation is also observed in InGaN/GaN heterostructures. Our systematic investigations of the growth condition dependence, such as the TMIn flow rate, indicate that the Ga is supplied by a transmetalation reaction between TMIn and residual Ga on the flow distributor in the reactor. Here, we show that the Ga incorporation can be eliminated by adopting an elaborate growth sequence, including reactor cleaning and regrowth processes. This study provides guides for designing the MOVPE reactor configuration, as well as the growth sequences, for the growth of device structures with In-containing nitride layers.

  13. Simulation of water photo electrolysis with III-nitride semiconductor nano wires

    NASA Astrophysics Data System (ADS)

    Witzigmann, Bernd; Bettenhausen, Maximilian; Mewes, Marvin; Fülle, Heiko; Römer, Friedhard

    2014-03-01

    Water splitting under illumination with a GaN/InGaN planar and nano wire structure is modeled using a drift diffusion approach. The main features of the experiment such as current density without biasing and current saturation effects are explained by the simulation. The electrolyte where ionic transport occurs is modeled as material with diffusion coefficients matching ionic diffusivity experiments. The simulation allows design and analysis of GaN based nano structures and their water photo electrolysis efficiency.

  14. Study of damage formation and annealing of implanted III-nitride semiconductors for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Faye, D. Nd.; Fialho, M.; Magalhães, S.; Alves, E.; Ben Sedrine, N.; Rodrigues, J.; Correia, M. R.; Monteiro, T.; Boćkowski, M.; Hoffmann, V.; Weyers, M.; Lorenz, K.

    2016-07-01

    An n-GaN/n-AlGaN/p-GaN light emitting diode (LED) structure was implanted with Eu ions. High temperature high pressure annealing at 1400 °C efficiently decreases implantation damage and optically activates the Eu ions. However, the electrical properties of the p-n junction deteriorate possibly due to the formation of conducting paths along dislocations during the extreme annealing conditions.

  15. Band Edge Emission Improvement by Energy Transfer in Hybrid III-Nitride/Organic Semiconductor Nanostructure

    NASA Astrophysics Data System (ADS)

    Jiang, Fu-Long; Liu, Ya-Ying; Li, Yang-Yang; Chen, Peng; Liu, Bin; Xie, Zi-Li; Xiu, Xiang-Qian; Hua, Xue-Mei; Han, Ping; Shi, Yi; Zhang, Rong; Zheng, You-Dou

    2016-10-01

    Not Available Supported by the National Key Technology Research and Development Program under Grant No 2016YFB0400100, the National Basic Research Program of China under Grant No 2012CB619304, the High-Technology Research and Development Program of China under Grant Nos 2014AA032605 and 2015AA033305, the National Natural Science Foundation of China under Grant Nos 61274003, 61422401, 51461135002 and 61334009, the Key Technology Research of Jiangsu Province under Grant No BE2015111, the Solid State Lighting and Energy-Saving Electronics Collaborative Innovation Center, and the Research Funds from NJU-Yangzhou Institute of Opto-electronics.

  16. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, Robert F.; Volz, Martin P.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin P.; Shih, Hung-Dah

    2001-01-01

    Crystal growth by vapor transport has several distinct advantages over melt growth techniques. Among various potential benefits from material processing in reduced gravity the followings two are considered to be related to crystal growth by vapor transport: (1) elimination of the crystal weight and its influence on the defect formation and (2) reduction of natural buoyancy-driven convective flows arising from thermally and/ or solutally induced density gradient in fluids. The previous results on vapor crystal growth of semiconductors showed the improvements in surface morphology, crystalline quality, electrical properties and dopant distribution of the crystals grown in reduced gravity as compared to the crystals grown on Earth. But the mechanisms, which are responsible for the improvements and cause the gravitational effects on the complicated and coupled processes of vapor mass transport and growth kinetics, are not well understood.

  17. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, Robert F.; Volz, Martin P.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin P.; Shih, Hung-Dah

    2001-01-01

    Crystal growth by vapor transport has several distinct advantages over melt growth techniques. Among various potential benefits from material processing in reduced gravity the followings two are considered to be related to crystal growth by vapor transport: (1) elimination of the crystal weight and its influence on the defect formation and (2) reduction of natural buoyancy-driven convective flows arising from thermally and/ or solutally induced density gradient in fluids. The previous results on vapor crystal growth of semiconductors showed the improvements in surface morphology, crystalline quality, electrical properties and dopant distribution of the crystals grown in reduced gravity as compared to the crystals grown on Earth. But the mechanisms, which are responsible for the improvements and cause the gravitational effects on the complicated and coupled processes of vapor mass transport and growth kinetics, are not well understood.

  18. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures

    SciTech Connect

    Verma, Jai Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep

    2014-01-13

    Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365 nm (3.4 eV, the bulk bandgap) to below 240 nm (>5.2 eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

  19. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, C.; Margalith, T.; Ng, T. K.; DenBaars, S. P.; Ooi, B. S.; Speck, J. S.; Nakamura, S.

    2016-02-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with IIInitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 μm aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of ~550 μW with a threshold current density of ~3.5 kA/cm2, while the ITO VCSELs show peak powers of ~80 μW and threshold current densities of ~7 kA/cm2.

  20. Optical and Electrical Properties of III-Nitrides and Related Materials

    SciTech Connect

    Jiang, Hongxing; Lin, Jingyu

    2016-01-22

    Among the members of the III-nitride material system, boron-nitride (BN) is the least studied and understood. Its extraordinary physical properties, such as ultra-high chemical stability, thermal conductivity, electrical resistivity, band gap (Eg ~ 6 eV), and optical absorption near the band gap make hexagonal BN (h-BN) the material of choice for emerging applications such as deep ultraviolet (DUV) optoelectronic devices. Moreover, h-BN has a close lattice match to graphene and is the most suitable substrate and dielectric/separation layer for graphene electronics and optoelectronics. Similar to graphene, low dimensional h-BN is expected to possess rich new physics. Other potential applications include super-capacitors and electron emitters. However, our knowledge concerning the semiconducting properties of h-BN is very scarce. The project aims to extend our studies to the “newest” family member of the III-nitride material system, h-BN, and to address issues that have not yet been explored but are expected to profoundly influence our understanding on its fundamental properties and device applications. During the supporting period, we have improved the growth processes of h-BN epilayers by metal organic chemical vapor deposition (MOCVD), investigated the fundamental material properties, and identified several unique features of h-BN as well as critical issues that remain to be addressed.

  1. Sources of Shockley-Read-Hall recombination in III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus E.; Alkauskas, Audrius; Lyons, John L.; Speck, James S.; van de Walle, Chris G.

    Group-III nitrides are the key materials for high efficiency light-emitting diodes in the blue part of the visible spectrum, and a large research effort is aimed at extending this success to the green and the yellow range, where nitride LEDs are significantly less efficient. Though it has been noted that the efficiency of III-nitride devices may be limited by Shockley-Read-Hall recombination at point defects, the microscopic mechanism and defects responsible are unknown. Based on first-principles calculations of defect formation energies, charge-state transition levels, and nonradiative capture coefficients, we describe a mechanism by which complexes between gallium vacancies and oxygen and/or hydrogen can act as efficient channels for nonradiative recombination in InGaN alloys. The dependence of these quantities on alloy composition is analyzed. We find that modest concentrations of the proposed defect complexes, around 1016cm-3, can give rise to Shockley-Read-Hall coefficients A = (107 -109) s-1. The resulting nonradiative recombination can significantly reduce the internal quantum efficiency of optoelectronic devices. This work was supported by DOE and by EU Marie Sklodowska-Curie Action.

  2. III-Nitride nanowire lasers: fabrication and control of optical properties (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, George T.

    2016-09-01

    III-nitride nanowires have attracted increasing interest as potential ultracompact and low-power nanoscale lasers in the UV-visible wavelengths. In order to maximize the potential of nanowire lasers, a greater understanding and control over their properties, including mode control, polarization control, wavelength tuning, and beam shaping, is necessary. Here, we discuss the fabrication of III-nitride based single nanowire and nanowire photonic crystal lasers using a top-down approach, and present multiple methods for controlling their optical properties. The nanowires were fabricated by a two-step process composed of a lithographic dry etch followed by a selective, wet chemical etch of the nanowire sidewalls. This technique allows for high quality nanowires with straight and smooth nonpolar m-plane sidewalls and with controllable height, pitch and diameter. Precisely engineered axial nanowire heterostructures can be formed from planar heterostructures, while radial nanowire heterostructures can be formed via regrowth on the etched nanowires. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Continuous wave blue lasing in III-nitride nanobeam cavity on silicon.

    PubMed

    Triviño, Noelia Vico; Butté, Raphaël; Carlin, Jean-François; Grandjean, Nicolas

    2015-02-11

    III-V photonics on silicon is an active and promising research area. Here, we demonstrate room-temperature (RT) lasing in short-wavelength III-nitride photonic crystal nanobeam cavities grown on silicon featuring a single InGaN quantum well (QW). In the low-absorption QW region, high quality factors in excess of 10(4) are measured, while RT blue lasing under continuous-wave optical pumping is reported in the high-absorption wavelength range, hence the high QW gain region. Lasing characteristics are well accounted for by the large spontaneous emission coupling factor (β > 0.8) inherent to the nanobeam geometry and the large InGaN QW material gain. Our work illustrates the high potential of III-nitrides on silicon for the realization of low power nanophotonic devices with a reduced footprint that would be of prime interest for fundamental light-matter interaction studies and a variety of lab-on-a-chip applications including biophotonics.

  4. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    NASA Astrophysics Data System (ADS)

    Myzaferi, A.; Reading, A. H.; Cohen, D. A.; Farrell, R. M.; Nakamura, S.; Speck, J. S.; DenBaars, S. P.

    2016-08-01

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a ( 20 2 ¯ 1 ) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  5. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Dudley, M.; Ramachandran, N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. The following are the research progress in the past two years. In-situ monitoring of partial pressure by optical absorption technique and visual observation of the growing crystal were performed during vapor growth of ZnSe. Low-temperature photoluminescence (PL) spectra and glow discharge mass spectroscopy (GDMS) were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during crystal growth process. Optical characterization was performed on wafers sliced from the grown crystals of ZnSe, ZnTe and ZnSe(1-x),Te(x), (0

  6. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Dudley, M.; Ramachandran, N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. The following are the research progress in the past two years. In-situ monitoring of partial pressure by optical absorption technique and visual observation of the growing crystal were performed during vapor growth of ZnSe. Low-temperature photoluminescence (PL) spectra and glow discharge mass spectroscopy (GDMS) were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during crystal growth process. Optical characterization was performed on wafers sliced from the grown crystals of ZnSe, ZnTe and ZnSe(1-x),Te(x), (0

  7. Hetero- and homo-epitaxial growth of III-nitride based junctions and devices by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sampath, Anand Venktesh

    2002-01-01

    The family of III-Nitrides semiconductors (InN, GaN, AlN and their alloys) is an area of intense interest for the development of power electronic, optoelectronic and mico-electromechanical systems (MEMS) based devices due to the unique properties of these materials. Presently, light emitting diodes (LEDs) and lasers emitting in the blue part or the electromagnetic spectrum have become available based on these wide band gap materials. Further interest exists in the development of p-n and Schottky based junctions for application as solar-blind ultraviolet (UV) detector arrays and power rectifiers. Solar blind UV detectors require the growth of high quality AlxGa1-x N alloys containing up to 60% AlN mole fraction. Both devices require the development of high-quality p-type doped material. This dissertation addresses the growth of GaN and AlxGa1-xN alloys by molecular beam epitaxy (MBE) as well as the processing of these materials for the fabrication of optoelectronic and power devices. The growth of III-Nitrides materials by MBE requires the development of an appropriate source of active nitrogen due to the large binding energy of molecular nitrogen (9.5 eV). Two methods for producing active N are the cracking of molecular nitrogen using a plasma source and the catalytic decomposition of ammonia on a heated substrate. The first method is explored using a compact electron cyclotron resonance (ECR) plasma source, and it is found that smooth films are grown by this technique under group-III rich conditions. The second method is explored using ammonia gas that enters the MBE system through an ammonia injector. In contrast to the plasma-assisted technique, smooth films can be grown under N-rich conditions. Due to the lack of native substrates for these materials, these films are generally deposited heteroepitaxially on c-plane sapphire or (0001) Si-face 6H-silicon carbide (SiC) substrates. The polarity of films grown on the former was observed to be dependent on the

  8. Half-metallicity and electronic structures for carbon-doped group III-nitrides: Calculated with a modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Fan, Shuai-wei; Wang, Ri-gao; Xu, Pemg

    2016-09-01

    The electronic structures and magnetism for carbon-doped group III-nitrides are investigated by utilizing the first principle method with the modified Becke-Johnson potential. Calculations show that carbon substituting cations (anions) would induce the group III-nitrides to be paramagnetic metals (half-metallic ferromagnets). Single carbon substituting nitrogen could produce 1.00μB magnetic moment. Electronic structures indicate that the carriers-mediated double-exchange interaction plays a crucial role in forming the ferromagnetism. Based on the mean-field theory, the Curie temperature for carbon-doped group III-nitrides would be above the room temperature. Negative chemical pair interactions imply that carbon dopants tend to form clustering distribution in group III-nitrides. The nitrogen vacancy would make the carbon-doped group III-nitrides lose the half-metallic ferromagnetism.

  9. Lattice Dynamical Properties of Group-III Nitrides AN (A = B, Al, Ga and In) in Zinc-Blende Phase

    NASA Astrophysics Data System (ADS)

    Kushwaha, A. K.

    2016-03-01

    In the present paper, we have calculated the phonon dispersion relations, phonon density of states, Debye characteristic temperature and the zone boundary phonons for group-III nitrides AN (A = B, Al, Ga and In) using eleven-parameter three-body shell model with both the ions being polarizable. Our calculated results are in good agreement with experimental results available in the literature.

  10. Modification of a scanning electron microscope (SEM) for insitu, nanometer size contact, electrical measurements of III-nitride transistors

    NASA Astrophysics Data System (ADS)

    Selcu, Camelia; Yang, Zhichao; Krishnamoorthy, Sriram; Rajan, Siddharth

    As the transistors become smaller and smaller, proximity effects become important, therefore there is a need for characterization instruments. We modified a scanning electron microscope (SEM) by adding the capability to make mechanical contacts to devices for electrical measurements with nanometer precision. We will discuss ongoing work involving III-nitride transistors and nanowires.

  11. Polarization doping and the efficiency of III-nitride optoelectronic devices

    SciTech Connect

    Kivisaari, Pyry; Oksanen, Jani; Tulkki, Jukka

    2013-11-18

    The intrinsic polarization is generally considered a nuisance in III-nitride devices, but recent studies have shown that it can be used to enhance p- and n-type conductivity and even to replace impurity doping. We show by numerical simulations that polarization-doped light-emitting diode (LED) structures have a significant performance advantage over conventional impurity-doped LED structures. Our results indicate that polarization doping decreases electric fields inside the active region and potential barriers in the depletion region, as well as the magnitude of the quantum-confined Stark effect. The simulations also predict at least an order of magnitude increase in the current density corresponding to the maximum efficiency (i.e., smaller droop) as compared to impurity-doped structures. The obtained high doping concentrations could also enable, e.g., fabrication of III-N resonant tunneling diodes and improved ohmic contacts.

  12. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-06-21

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.

  13. III-nitride nanowires: novel materials for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Wang, George T.; Li, Qiming; Huang, Jianyu; Talin, A. Alec; Armstrong, Andrew; Upadhya, Prashanth C.; Prasankumar, Rohit P.

    2011-03-01

    Although planar heterostructures dominate current solid-state lighting architectures (SSL), 1D nanowires have distinct and advantageous properties that may eventually enable higher efficiency, longer wavelength, and cheaper devices. However, in order to fully realize the potential of nanowire-based SSL, several challenges exist in the areas of controlled nanowire synthesis, nanowire device integration, and understanding and controlling the nanowire electrical, optical, and thermal properties. Here recent results are reported regarding the aligned growth of GaN and III-nitride core-shell nanowires, along with extensive results providing insights into the nanowire properties obtained using cutting-edge structural, electrical, thermal, and optical nanocharacterization techniques. A new top-down fabrication method for fabricating periodic arrays of GaN nanorods and subsequent nanorod LED fabrication is also presented.

  14. III-nitride core–shell nanorod array on quartz substrates

    PubMed Central

    Bae, Si-Young; Min, Jung-Wook; Hwang, Hyeong-Yong; Lekhal, Kaddour; Lee, Ho-Jun; Jho, Young-Dahl; Lee, Dong-Seon; Lee, Yong-Tak; Ikarashi, Nobuyuki; Honda, Yoshio; Amano, Hiroshi

    2017-01-01

    We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal–organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction. Position-controlled growth of the GaN nanorods was achieved by selective-area growth using MOCVD. Simultaneously, the GaN nanorods were elongated by the pulsed-mode growth. The microstructural and optical properties of both GaN nanorods and InGaN/GaN core–shell nanorods were then investigated. The nanorods were highly crystalline and the core–shell structures exhibited optical emission properties, indicating the feasibility of fabricating III-nitride nano-optoelectronic devices on amorphous substrates. PMID:28345641

  15. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  16. III-nitride core-shell nanorod array on quartz substrates

    NASA Astrophysics Data System (ADS)

    Bae, Si-Young; Min, Jung-Wook; Hwang, Hyeong-Yong; Lekhal, Kaddour; Lee, Ho-Jun; Jho, Young-Dahl; Lee, Dong-Seon; Lee, Yong-Tak; Ikarashi, Nobuyuki; Honda, Yoshio; Amano, Hiroshi

    2017-03-01

    We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal-organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction. Position-controlled growth of the GaN nanorods was achieved by selective-area growth using MOCVD. Simultaneously, the GaN nanorods were elongated by the pulsed-mode growth. The microstructural and optical properties of both GaN nanorods and InGaN/GaN core-shell nanorods were then investigated. The nanorods were highly crystalline and the core-shell structures exhibited optical emission properties, indicating the feasibility of fabricating III-nitride nano-optoelectronic devices on amorphous substrates.

  17. Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides

    DOE PAGES

    Dreyer, Cyrus E.; Janotti, Anderson; Van de Walle, Chris G.; ...

    2016-06-20

    Here, accurate values for polarization discontinuities between pyroelectric materials are critical for understanding and designing the electronic properties of heterostructures. For wurtzite materials, the zincblende structure has been used in the literature as a reference to determine the effective spontaneous polarization constants. We show that, because the zincblende structure has a nonzero formal polarization, this method results in a spurious contribution to the spontaneous polarization differences between materials. In addition, we address the correct choice of "improper" versus "proper" piezoelectric constants. For the technologically important III-nitride materials GaN, AlN, and InN, we determine polarization discontinuities using a consistent reference basedmore » on the layered hexagonal structure and the correct choice of piezoelectric constants, and discuss the results in light of available experimental data.« less

  18. III-nitride core-shell nanorod array on quartz substrates.

    PubMed

    Bae, Si-Young; Min, Jung-Wook; Hwang, Hyeong-Yong; Lekhal, Kaddour; Lee, Ho-Jun; Jho, Young-Dahl; Lee, Dong-Seon; Lee, Yong-Tak; Ikarashi, Nobuyuki; Honda, Yoshio; Amano, Hiroshi

    2017-03-27

    We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal-organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction. Position-controlled growth of the GaN nanorods was achieved by selective-area growth using MOCVD. Simultaneously, the GaN nanorods were elongated by the pulsed-mode growth. The microstructural and optical properties of both GaN nanorods and InGaN/GaN core-shell nanorods were then investigated. The nanorods were highly crystalline and the core-shell structures exhibited optical emission properties, indicating the feasibility of fabricating III-nitride nano-optoelectronic devices on amorphous substrates.

  19. Selective oxidation of AlInN layers for current confinement in III-nitride devices

    NASA Astrophysics Data System (ADS)

    Dorsaz, J.; Bühlmann, H.-J.; Carlin, J.-F.; Grandjean, N.; Ilegems, M.

    2005-08-01

    Highly selective oxidation of an AlInN interlayer buried in a GaN matrix is demonstrated. This technique was successfully applied to form current apertures in III-nitride light-emitting diodes (LEDs). GaN LEDs were grown by metal-organic vapor phase epitaxy with a lattice-matched AlInN layer inserted in the n-doped region of the device. Mesas were etched by Cl2/Ar reactive ion etching to give access to the AlInN sidewalls. The sample was then oxidized anodically in a nitrilotriacetic acid solution. Using this technique, the AlInN layer was oxidized laterally up to 22μm deep while the surrounding GaN layers were kept unaffected. It was subsequently demonstrated that the oxidized AlInN layers are insulating and are therefore suitable for lateral current confinement in optoelectronic devices.

  20. Ordered arrays of bottom-up III-nitride core-shell nanostructures

    NASA Astrophysics Data System (ADS)

    Rishinaramangalam, Ashwin K.; Nami, Mohsen; Bryant, Benjamin N.; Eller, Rhett F.; Shima, Darryl M.; Fairchild, Michael N.; Balakrishnan, Ganesh; Brueck, S. R. J.; Feezell, Daniel F.

    2015-08-01

    The growth of ordered arrays of group III-nitride nanostructures on c-plane gallium nitride (GaN) on sapphire using selective-area metal organic chemical vapor deposition (MOCVD) is presented. The growth of these nanostructures promotes strain relaxation that allows the combination of high indium content active regions with very low dislocation densities and also gives access to nonpolar and semipolar crystallographic orientations of GaN. The influence of the starting template and the growth conditions on the growth rate and morphology is discussed. The growth of indium gallium nitride (InGaN) active region shells on these nanostructures is discussed and the stability of various crystallographic orientations under typical growth conditions is studied. Finally, the effect of the growth conditions on the morphology of pyramidal stripe LEDs is discussed and preliminary results on electrical injection of these LEDs are presented.

  1. Integration of an opto-chemical detector based on group III-nitride nanowire heterostructures.

    PubMed

    Kleindienst, R; Becker, P; Cimalla, V; Grewe, A; Hille, P; Krüger, M; Schörmann, J; Schwarz, U T; Teubert, J; Eickhoff, M; Sinzinger, S

    2015-02-01

    The photoluminescence intensity of group III nitrides, nanowires, and heterostructures (NWHs) strongly depends on the environmental H(2) and O(2) concentration. We used this opto-chemical transducer principle for the realization of a gas detector. To make this technology prospectively available to commercial gas-monitoring applications, a large-scale laboratory setup was miniaturized. To this end the gas-sensitive NWHs were integrated with electro-optical components for optical addressing and read out within a compact and robust sensor system. This paper covers the entire realization process of the device from its conceptual draft and optical design to its fabrication and assembly. The applied approaches are verified with intermediate results of profilometric characterizations and optical performance measurements of subsystems. Finally the gas-sensing capabilities of the integrated detector are experimentally proven and optimized.

  2. Whispering gallery mode lasing in optically isolated III-nitride nanorings.

    PubMed

    Li, K H; Cheung, Y F; Choi, H W

    2015-06-01

    III-nitride nanorings fabricated from a combination of hybrid-nanosphere-lithography and laser lift-off processes is demonstrated. Being formed on an interfacial metallic layer optically coupling between the optical ring and its substrate is eliminated, maximizing optical confinement of whispering gallery resonant mode within the ring cavity. The tapered cross-sectional profile also promotes coupling of emitted light into resonant modes. Optically pumped lasing with a dominant peak at 421.5 nm is observed at room temperature, with threshold energy density of ∼6.5  mJ/cm2. Etch-induced sidewall roughness causes scattering of light at the interface to diminish confinement, and is also responsible for the mode-splitting effect according to finite-difference time-domain simulations.

  3. Improved breakdown characteristics of monolithically integrated III-nitride HEMT-LED devices using carbon doping

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Zhaojun; Huang, Tongde; Ma, Jun; May Lau, Kei

    2015-03-01

    We report selective growth of AlGaN/GaN high electron mobility transistors (HEMTs) on InGaN/GaN light emitting diodes (LEDs) for monolithic integration of III-nitride HEMT and LED devices (HEMT-LED). To improve the breakdown characteristics of the integrated HEMT-LED devices, carbon doping was introduced in the HEMT buffer by controlling the growth pressure and V/III ratio. The breakdown voltage of the fabricated HEMTs grown on LEDs was enhanced, without degradation of the HEMT DC performance. The improved breakdown characteristics can be attributed to better isolation of the HEMT from the underlying conductive p-GaN layer of the LED structure.

  4. Quantification of scattering loss of III-nitride photonic crystal cavities in the blue spectral range

    NASA Astrophysics Data System (ADS)

    Rousseau, Ian; Sánchez-Arribas, Irene; Shojiki, Kanako; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas

    2017-03-01

    The mechanisms contributing to experimental quality factors of short wavelength (λ =440 -480 nm) III-nitride on silicon one-dimensional photonic crystal cavities were quantified. Fluctuations in fundamental and first-order cavity mode wavelength and quality factor were compared over sets of nominally identical cavities. Unlike at λ =1.5 μ m , experimental quality factors were not limited by fabrication disorder modeled as smooth, normally distributed hole size and position variations; after ruling out absorption losses, additional scattering losses were found to predominate at short wavelengths. Experimental quality factors were sensitive to conformal deposition of few nanometer thin films on the photonic crystal surface, suggesting that the additional scattering losses were linked to the surface.

  5. On The Gate Capacitance Of MOS Structures Of n-Channel Inversion Layers On Ternary Semiconductors In The Presence Of A Quantizing Magnetic Field

    NASA Astrophysics Data System (ADS)

    Biswas, S. N.; Ghatak, K. P.

    1987-04-01

    It is well-known that the gate capacitance of MOS strut tures of n-channel inversion layers on small ptap semiconductors is a very important one since the MOS capacitance can be very easily controlled by varying the gate voltage and also since it explores various other fundamental aspects of semiconductor surfaces in MOS structures. However, the gate capacitance of MOS structures on ternary semiconductors has relatively been less investigated in the literature and an attempt is made for the first time to investigate theoretically the above capacitance on ternary compounds by using the three-band Kane model. We have derived an expression of the surface electron statistics without any approximations of low or high electric field limits and taking into account the influence of the Dingle temperature respectively. We have then formulated a model expression of the magneto gate capacitance with the proper use of the electron concentration. We shall also formulate the same capacitance for both the limits excluding he broadening of Landau levels for the purpose of comparison. It is observed, taking n-channel inversion layers on Hg1-x Cdx Te as an example that the gate capacitance exhibits spiky oscillations with " changinp, magnetic field and the oscillatory behaviour is in qualitative agreement with the experimental observation reported in the recent literature for MOS structure of Hg1-x Cdx Te. The corresponding results for n-channel inversion layers on relatively large band-gap semi-conductors both in the presence and absence of magnetic quantization can also obtained from the expressions derived.

  6. Phonon and free-charge carrier properties in group-III nitride heterostructures investigated by spectroscopic ellipsometry and optical Hall effect

    NASA Astrophysics Data System (ADS)

    Schoeche, Stefan

    The material class of group-III nitrides gained tremendous technological importance for optoelectronic and high-power/high-frequency amplification devices. Tunability of the direct band gap from 0.65 eV (InN) to 6.2 eV (AlN) by alloying, high breakthrough voltages and intrinsic mobilities, as well as the formation of highly mobile 2d electron gases (2DEG) at heterointerfaces make these compounds ideal for many applications. GaN and Ga-rich alloys are well studied and current research is mainly device-oriented. For example, choice and quality of the gate dielectric significantly influence device performance in high-electron mobility transistors (HEMT) which utilize highly mobile 2DEGs at heterointerfaces. Experimental access to the 2DEG channel properties without influence from parasitic currents or contact properties are desirable. In- and Al-rich ternary alloys are less explored than Ga-rich compounds. For InN and In-rich alloys, while many material parameters such as stiffness constants or effective mass values are largely unknown, reliable p-type doping is a major challenge, also because p-type conducting channels are buried within highly conductive n-type material formed at the surface and interfaces preventing electrical characterization. For AlN and high-Al content alloys, doping mechanisms are not understood and reliable fabrication of material with high free-charge carrier (FCC) concentrations was achieved just recently. Difficulties to form ohmic contacts impair electrical measurements and optical characterization is impeded by lack of high-energy excitation sources. In this work, spectroscopic ellipsometry over the wide spectral range from the THz to VUV in combination with optical Hall effect (generalized ellipsometry with applied magnetic field) from THz to MIR are applied in order to investigate the phonon modes and FCC properties in group-III nitride heterostructures. Adequate model descriptions and analysis strategies are introduced which allow

  7. III-Nitride Blue Laser Diode with Photoelectrochemically Etched Current Aperture

    NASA Astrophysics Data System (ADS)

    Megalini, Ludovico

    Group III-nitride is a remarkable material system to make highly efficient and high-power optoelectronics and electronic devices because of the unique electrical, physical, chemical and structural properties it offers. In particular, InGaN-based blue Laser Diodes (LDs) have been successfully employed in a variety of applications ranging from biomedical and military devices to scientific instrumentation and consumer electronics. Recently their use in highly efficient Solid State Lighting (SSL) has been proposed because of their superior beam quality and higher efficiency at high input power density. Tremendous advances in research of GaN semi-polar and non-polar crystallographic planes have led both LEDs and LDs grown on these non-basal planes to rival with, and with the promise to outperform, their equivalent c-plane counterparts. However, still many issues need to be addressed, both related to material growth and device fabrication, including a lack of conventional wet etching techniques. GaN and its alloys with InN and AlN have proven resistant essentially to all known standard wet etching techniques, and the predominant etching methods rely on chlorine-based dry etching (RIE). These introduce sub-surface damage which can degrade the electrical properties of the epitaxial structure and reduce the reliability and lifetime of the final device. Such reasons and the limited effectiveness of passivation techniques have so far suggested to etch the LD ridges before the active region, although it is well-known that this can badly affect the device performance, especially in narrow stripe width LDs, because the gain guiding obtained in the planar configuration is weak and the low index step and high lateral current leakage result in devices with threshold current density higher than devices whose ridge is etched beyond the active region. Moreover, undercut etching of III-nitride layers has proven even more challenging, with limitations in control of the lateral etch

  8. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    SciTech Connect

    Shervin, Shahab; Asadirad, Mojtaba; Kim, Seung-Hwan; Ravipati, Srikanth; Lee, Keon-Hwa; Bulashevich, Kirill; Ryou, Jae-Hyun

    2015-11-09

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  9. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    NASA Astrophysics Data System (ADS)

    Shervin, Shahab; Kim, Seung-Hwan; Asadirad, Mojtaba; Ravipati, Srikanth; Lee, Keon-Hwa; Bulashevich, Kirill; Ryou, Jae-Hyun

    2015-11-01

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  10. Design and Development of Stress Engineering Techniques for III-Nitride Epitaxy on Si

    NASA Astrophysics Data System (ADS)

    Leathersich, Jeff

    III-Nitrides have been a heavily researched material system for decades. Their material properties are favorable for a number of applications, most commonly in the optoelectronic and power device industry. Currently a majority of commercialized devices are fabricated on sapphire and SiC substrates but these are expensive and limit the widespread commercialization of the technology. There is substantial ongoing research geared toward the development of GaN on Si substrates because of the significant cost saving that would be realized through the inexpensive, large wafer and maturity of Si fabrication. Significant challenges with the deposition of GaN on Si have, thus far, prevented its wide-spread commercialization specifically the large lattice mismatch and thermal expansion coefficient mismatch. Both of these issues can be overcome by engineering the stress levels in the films. In this thesis work close examination and exploration of the stress formation and evolution in GaN-on-Si is performed. Methods of improving stress levels are developed in addition to providing a deeper understanding of the stress evolution process. A commonly used methodology of engineering stress levels is to use an AlGaN multi-layer stack. The first layer in the stack is an AlN buffer layer. Typical deposition methods for AlN leaves the surface rough and not ideal for subsequent epitaxy. Here, two specific modifications to the conventional deposition process are made which yield dramatic improvement in material quality and stress levels of an overgrown GaN layer. Full width at half maximum measurements from HRXRD rocking curve of GaN grown on the modified buffers show a 2x reduction and ~0.45 GPa greater built-in compressive stress in the films. A semi-empirical model to predict stress evolution in III-Nitrides is established using both fundamentals and experimental data. The model will allow researchers determine the desired stress levels in the films in advance of Epitaxy. This will

  11. N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping

    SciTech Connect

    Verma, Jai; Simon, John; Protasenko, Vladimir; Kosel, Thomas; Xing, Huili Grace; Jena, Debdeep

    2011-10-24

    Nitrogen-polar III-nitride heterostructures present unexplored advantages over Ga(metal)-polar crystals for optoelectronic devices. This work reports N-polar III-nitride quantum-well ultraviolet light-emitting diodes grown by plasma-assisted molecular beam epitaxy that integrate polarization-induced p-type doping by compositional grading from GaN to AlGaN along N-face. The graded AlGaN layer simultaneously acts as an electron blocking layer while facilitating smooth injection of holes into the active region, while the built-in electric field in the barriers improves carrier injection into quantum wells. The enhanced doping, carrier injection, and light extraction indicate that N-polar structures have the potential to exceed the performance of metal-polar ultraviolet light-emitting diodes.

  12. Systematic Study of p-type Doping and Related Defects in III-Nitrides: Pathway toward a Nitride HBT

    DTIC Science & Technology

    2012-11-20

    16 Although beneficial for LEDs, lateral surface segregation of indium is detrimental for nitride solar cells and laser diodes , where recombination...1009 (2007). 44 S. D. Burnham, Improved Understanding and Control of Magnesium-Doped Gallium Nitride by Plasma Assisted Molecular Beam Epitaxy, in...mobility, and strong light absorption.1-3 Together these attributes make III- nitrides suited for light-emitting diodes (LEDs), high electron

  13. Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.

    SciTech Connect

    Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Morales, Eugenia T.; Leonard, Francois Leonard; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong

    2009-09-01

    The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.

  14. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  15. Nanoscale investigation of the piezoelectric properties of perovskite ferroelectrics and III-nitrides

    NASA Astrophysics Data System (ADS)

    Rodriguez, Brian Joseph

    Nanoscale characterization of the piezoelectric and polarization related properties of III-Nitrides by piezoresponse force microscopy (PFM), electrostatic force microscopy (EFM) and scanning Kelvin probe microscopy (SKPM) resulted in the measurement of piezoelectric constants, surface charge and surface potential. Photo-electron emission microscopy (PEEM) was used to determine the local electronic band structure of a GaN-based lateral polarity heterostructure (GaN-LPH). Nanoscale characterization of the imprint and switching behavior of ferroelectric thin films by PFM resulted in the observation of domain pinning, while nanoscale characterization of the spatial variations in the imprint and switching behavior of integrated (111)-oriented PZT-based ferroelectric random access memory (FRAM) capacitors by PFM have revealed a significant difference in imprint and switching behavior between the inner and outer parts of capacitors. The inner regions of the capacitors are typically negatively imprinted and consequently tend to switch back after being poled by a positive bias, while regions at the edge of the capacitors tend to exhibit more symmetric hysteresis behavior. Evidence was obtained indicating that mechanical stress conditions in the central regions of the capacitors can lead to incomplete switching. A combination of vertical and lateral piezoresponse force microscopy (VPFM and LPFM, respectively) has been used to map the out-of-plane and in-plane polarization distribution, respectively, of integrated (111)-oriented PZT-based capacitors, which revealed poled capacitors are in a polydomain state.

  16. Hybrid tunnel junction contacts to III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-02-01

    In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  17. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; Margalith, T.; Lee, S.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-07-01

    We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3 nm quantum well width, 1 nm barriers, a 5 nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406 nm nonpolar VCSEL with a low threshold current density (˜16 kA/cm2), a peak output power of ˜12 μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  18. First-Principles Calculations of Structural, Electronic and Optical Properties of Ternary Semiconductor Alloys ZAs x Sb1-x (Z = B, Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Bounab, S.; Bentabet, A.; Bouhadda, Y.; Belgoumri, Gh.; Fenineche, N.

    2017-03-01

    We have investigated the structural and electronic properties of the BAs x Sb 1-x , AlAs x Sb 1-x , GaAs x Sb 1-x and InAs x Sb 1-x semiconductor alloys using first-principles calculations under the virtual crystal approximation within both the density functional perturbation theory and the pseudopotential approach. In addition the optical properties have been calculated by using empirical methods. The ground state properties such as lattice constants, both bulk modulus and derivative of bulk modulus, energy gap, refractive index and optical dielectric constant have been calculated and discussed. The obtained results are in reasonable agreement with numerous experimental and theoretical data. The compositional dependence of the lattice constant, bulk modulus, energy gap and effective mass of electrons for ternary alloys show deviations from Vegard's law where our results are in agreement with the available data in the literature.

  19. First-Principles Calculations of Structural, Electronic and Optical Properties of Ternary Semiconductor Alloys ZAs x Sb1- x ( Z = B, Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Bounab, S.; Bentabet, A.; Bouhadda, Y.; Belgoumri, Gh.; Fenineche, N.

    2017-08-01

    We have investigated the structural and electronic properties of the BAs x Sb 1- x , AlAs x Sb 1- x , GaAs x Sb 1- x and InAs x Sb 1- x semiconductor alloys using first-principles calculations under the virtual crystal approximation within both the density functional perturbation theory and the pseudopotential approach. In addition the optical properties have been calculated by using empirical methods. The ground state properties such as lattice constants, both bulk modulus and derivative of bulk modulus, energy gap, refractive index and optical dielectric constant have been calculated and discussed. The obtained results are in reasonable agreement with numerous experimental and theoretical data. The compositional dependence of the lattice constant, bulk modulus, energy gap and effective mass of electrons for ternary alloys show deviations from Vegard's law where our results are in agreement with the available data in the literature.

  20. Strain Relaxation in Semipolar III-Nitrides for Light Emitting Diode Applications

    NASA Astrophysics Data System (ADS)

    Koslow, Ingrid Larson

    Light emitting diodes (LEDs) based on the III-nitride material system (Al,In,Ga)N have been utilized in a number of commercial applications, from small Christmas tree lights to high power lightbulbs and streetlamps. Until now, all commercially available GaN-based devices have been based on the conventional c-plane (polar) orientation of the Wurtzite crystal structure, and grown heteroepitaxially on foreign substrates such as sapphire. However, the recent availability of low defect density HVPE-grown GaN substrates have opened up new possibilities to study novel crystal orientations, known as nonpolar and semipolar. The (Al,In,Ga)N material system has bandgaps ranging from 0.7 eV in the infrared out to 6.3 eV in the deep UV---and LEDs with wavelengths from roughly 365 nm (near-UV) to 550 nm (green) are commercially available. However, although blue LEDs typically have an external quantum efficiency (EQE) > 60%, at emission wavelengths beyond 500 nm the EQE drops to ≤ 30%. Similarly, although red-emitting LEDs based on AlInGaP have high efficiency, their EQE is also reduced for yellow wavelengths. This phenomenon is known as the 'Green Gap'. Although there are likely to be numerous factors responsible for this reduction in efficiency with emission wavelength in III-nitrides, a leading candidate is mismatch strain between the active region of the LED---consisting of thin layers of InGaN with at least 30% indium---and the GaN substrate, which have a significant lattice constant mismatch of > 3%. In order to improve the efficiency of green-emitting LEDs, strain relaxation mechanisms on semipolar orientations have been studied. By growing relaxed InGaN buffer layers, it is possible to change the lattice constant from that of the GaN substrates, reducing the mismatch strain in the active region itself. Multiple slip systems have been observed and studied in semipolar nitrides, leading to several sets of misfit dislocations (MDs) that result in relaxation of InGaN layers

  1. Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Holec, David; Fu, Wai Yuen; Humphreys, Colin J.; Moram, Michelle A.

    2013-10-01

    Sc-based III-nitride alloys were studied using density functional theory with special quasi-random structure methodology. ScxAl1-xN and ScxGa1-xN alloys are found to be stable in hexagonal phases up to x ≈ 0.56 and x ≈ 0.66, respectively, above which rock-salt structures are more stable. Epitaxial strain stabilization can prevent spinodal decomposition up to x ≈ 0.4 (ScxAl1-xN on AlN or GaN) and x = 0.27 (ScxGa1-xN on GaN). The increase in Sc content expands the in-plane lattice parameter of ScxAl1-xN and ScxGa1-xN alloys, leads to composition- and strain-tunable band gaps and polarization, and ultimately introduces ferroelectric functionality in ScxGa1-xN at x ≈ 0.625. A modified Becke-Johnson exchange-correlation potential was applied to study the electronic structures, which yielded band gaps comparable to those from hybrid functional calculations, yet in a much shorter computational time. The alloys were found to retain wide band gaps, which stay direct up to x = 0.25 (ScxAl1-xN) and x = 0.5 (ScxGa1-xN). The band gaps decrease with increasing x for ScxAl1-xN, in which the Sc-3d states dominate at the conduction band minimum and lead to flat electron dispersion at the Γ point. Conversely, the band gaps increase with increasing x for ScxGa1-xN (up to x = 0.5), in which Sc-3d states do not contribute to the conduction band minimum at the Γ point.

  2. III-nitride nanopyramid light emitting diodes grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.; Colby, Robert; Ewoldt, David A.; Liang, Zhiwen; Zakharov, Dmitri N.; Zaluzec, Nestor J.; García, R. Edwin; Stach, Eric A.; Sands, Timothy D.

    2010-08-01

    Nanopyramid light emitting diodes (LEDs) have been synthesized by selective area organometallic vapor phase epitaxy. Self-organized porous anodic alumina is used to pattern the dielectric growth templates via reactive ion etching, eliminating the need for lithographic processes. (In,Ga)N quantum well growth occurs primarily on the six {11¯01} semipolar facets of each of the nanopyramids, while coherent (In,Ga)N quantum dots with heights of up to ˜20 nm are incorporated at the apex by controlling growth conditions. Transmission electron microscopy (TEM) indicates that the (In,Ga)N active regions of the nanopyramid heterostructures are completely dislocation-free. Temperature-dependent continuous-wave photoluminescence of nanopyramid heterostructures yields a peak emission wavelength of 617 nm and 605 nm at 300 K and 4 K, respectively. The peak emission energy varies with increasing temperature with a double S-shaped profile, which is attributed to either the presence of two types of InN-rich features within the nanopyramids or a contribution from the commonly observed yellow defect luminescence close to 300 K. TEM cross-sections reveal continuous planar defects in the (In,Ga)N quantum wells and GaN cladding layers grown at 650-780 °C, present in 38% of the nanopyramid heterostructures. Plan-view TEM of the planar defects confirms that these defects do not terminate within the nanopyramids. During the growth of p-GaN, the structure of the nanopyramid LEDs changed from pyramidal to a partially coalesced film as the thickness requirements for an undepleted p-GaN layer result in nanopyramid impingement. Continuous-wave electroluminescence of nanopyramid LEDs reveals a 45 nm redshift in comparison to a thin-film LED, suggesting higher InN incorporation in the nanopyramid LEDs. These results strongly encourage future investigations of III-nitride nanoheteroepitaxy as an approach for creating efficient long wavelength LEDs.

  3. Determination of polarization fields in group III-nitride heterostructures by capacitance-voltage-measurements

    SciTech Connect

    Rychetsky, Monir Avinc, Baran; Wernicke, Tim; Bellmann, Konrad; Sulmoni, Luca; Koslow, Ingrid; Rass, Jens; Kneissl, Michael; Hoffmann, Veit; Weyers, Markus; Wild, Johannes; Zweck, Josef; Witzigmann, Bernd

    2016-03-07

    The polarization fields in wurtzite group III-nitrides strongly influence the optical properties of InAlGaN-based light emitters, e.g., the electron and hole wave function overlap in quantum wells. In this paper, we propose a new approach to determine these fields by capacitance-voltage measurements (CVM). Sheet charges generated by a change of the microscopic polarization at heterointerfaces influence the charge distribution in PIN junctions and therefore the depletion width and the capacitance. We show that it is possible to determine the strength and direction of the internal fields by comparing the depletion widths of two PIN junctions, one influenced by internal polarization fields and one without as a reference. For comparison, we conducted coupled Poisson/carrier transport simulations on the CVM of the polarization-influenced sample. We also demonstrate the feasibility and limits of the method by determining the fields in GaN/InGaN and GaN/AlGaN double heterostructures on (0001) c-plane grown by metal organic vapor phase epitaxy and compare both evaluation methods. The method yields (−0.50 ± 0.07) MV/cm for In{sub 0.08}Ga{sub 0.92}N/GaN, (0.90 ± 0.13) MV/cm for Al{sub 0.18}Ga{sub 0.82}N/GaN, and (2.0 ± 0.3) MV/cm for Al{sub 0.31}Ga{sub 0.69}N/GaN heterostructures.

  4. Neurotypic cell attachment and growth on III-nitride lateral polarity structures.

    PubMed

    Bain, L E; Kirste, R; Johnson, C A; Ghashghaei, H T; Collazo, R; Ivanisevic, A

    2016-01-01

    III-nitride materials have recently received increasing levels of attention for their potential to successfully interface with, and sense biochemical interactions in biological systems. Expanding on available sensing schemes (including transistor-based devices,) a III-N lateral polarity structure capable of introducing quasi-phase matching through a periodic polarity grating presents a novel platform for second harmonic generation. This platform constitutes a non-linear optical phenomenon with exquisite sensitivity to the chemical state of a surface or interface. To characterize the response of a biological system to the nanostructured lateral polarity structures, we cultured neurotypic PC12 cells on AlGaN with varying ratios of Al:Ga - 0, 0.4, 0.6, and 1 - and on surfaces of varying pitch to the III-polar vs. N-polar grating - 5, 10, 20 and 50 μm. While some toxicity associated with increasing Al is observed, we documented and quantified trends in cell responses to the local material polarity and nanoscale roughness. The nitrogen-polar material has a significantly higher nanoscale roughness than III-polar regions, and a 80-200 nm step height difference between the III-polar and N-polar materials in the lateral polarity configuration generates adequate changes in topography to influence cell growth, improves cell adhesion and promotes cell migration along the direction of the features. As the designed material configuration is further explored for biochemical sensing, the lateral polarity scheme may provide a route in assessing the non-specific protein adsorption to this varying nano-topography that drives the subsequent cell response.

  5. Determination of polarization fields in group III-nitride heterostructures by capacitance-voltage-measurements

    NASA Astrophysics Data System (ADS)

    Rychetsky, Monir; Koslow, Ingrid; Avinc, Baran; Rass, Jens; Wernicke, Tim; Bellmann, Konrad; Sulmoni, Luca; Hoffmann, Veit; Weyers, Markus; Wild, Johannes; Zweck, Josef; Witzigmann, Bernd; Kneissl, Michael

    2016-03-01

    The polarization fields in wurtzite group III-nitrides strongly influence the optical properties of InAlGaN-based light emitters, e.g., the electron and hole wave function overlap in quantum wells. In this paper, we propose a new approach to determine these fields by capacitance-voltage measurements (CVM). Sheet charges generated by a change of the microscopic polarization at heterointerfaces influence the charge distribution in PIN junctions and therefore the depletion width and the capacitance. We show that it is possible to determine the strength and direction of the internal fields by comparing the depletion widths of two PIN junctions, one influenced by internal polarization fields and one without as a reference. For comparison, we conducted coupled Poisson/carrier transport simulations on the CVM of the polarization-influenced sample. We also demonstrate the feasibility and limits of the method by determining the fields in GaN/InGaN and GaN/AlGaN double heterostructures on (0001) c-plane grown by metal organic vapor phase epitaxy and compare both evaluation methods. The method yields (-0.50 ± 0.07) MV/cm for In0.08Ga0.92N/GaN, (0.90 ± 0.13) MV/cm for Al0.18Ga0.82N/GaN, and (2.0 ± 0.3) MV/cm for Al0.31Ga0.69N/GaN heterostructures.

  6. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    DOEpatents

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  7. Optimal III-nitride HEMTs: from materials and device design to compact model of the 2DEG charge density

    NASA Astrophysics Data System (ADS)

    Li, Kexin; Rakheja, Shaloo

    2017-02-01

    In this paper, we develop a physically motivated compact model of the charge-voltage (Q-V) characteristics in various III-nitride high-electron mobility transistors (HEMTs) operating under highly non-equilibrium transport conditions, i.e. high drain-source current. By solving the coupled Schrödinger-Poisson equation and incorporating the two-dimensional electrostatics in the channel, we obtain the charge at the top-of-the-barrier for various applied terminal voltages. The Q-V model accounts for cutting off of the negative momenta states from the drain terminal under high drain-source bias and when the transmission in the channel is quasi-ballistic. We specifically focus on AlGaN and AlInN as barrier materials and InGaN and GaN as the channel material in the heterostructure. The Q-V model is verified and calibrated against numerical results using the commercial TCAD simulator Sentaurus from Synopsys for a 20-nm channel length III-nitride HEMT. With 10 fitting parameters, most of which have a physical origin and can easily be obtained from numerical or experimental calibration, the compact Q-V model allows us to study the limits and opportunities of III-nitride technology. We also identify optimal material and geometrical parameters of the device that maximize the carrier concentration in the HEMT channel in order to achieve superior RF performance. Additionally, the compact charge model can be easily integrated in a hierarchical circuit simulator, such as Keysight ADS and CADENCE, to facilitate circuit design and optimization of various technology parameters.

  8. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  9. Epitaxial growth of group III-nitride films by pulsed laser deposition and their use in the development of LED devices

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang; Wang, Wenliang; Yang, Weijia; Wang, Haiyan

    2015-11-01

    Recently, pulsed laser deposition (PLD) technology makes viable the epitaxial growth of group III-nitrides on thermally active substrates at low temperature. The precursors generated from the pulsed laser ablating the target has enough kinetic energy when arriving at substrates, thereby effectively suppressing the interfacial reactions between the epitaxial films and the substrates, and eventually makes the film growth at low temperature possible. So far, high-quality group III-nitride epitaxial films have been successfully grown on a variety of thermally active substrates by PLD. By combining PLD with other technologies such as laser rastering technique, molecular beam epitaxy (MBE), and metal-organic chemical vapor deposition (MOCVD), III-nitride-based light-emitting diode (LED) structures have been realized on different thermally active substrates, with high-performance LED devices being demonstrated. This review focuses on the epitaxial growth of group III-nitrides on thermally active substrates by PLD and their use in the development of LED devices. The surface morphology, interfacial property between film and substrate, and crystalline quality of as-grown group III-nitride films by PLD, are systematically reviewed. The corresponding solutions for film homogeneity on large size substrates, defect control, and InGaN films growth by PLD are also discussed in depth, together with introductions to some newly developed technologies for PLD in order to realize LED structures, which provides great opportunities for commercialization of LEDs on thermally active substrates.

  10. A comparison between HfO2/Al2O3 nano-laminates and ternary HfxAlyO compound as the dielectric material in InGaAs based metal-oxide-semiconductor (MOS) capacitors

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Pokroy, Boaz; Eizenberg, Moshe; Ritter, Dan

    2016-09-01

    We compare the electrical properties of HfO2/Al2O3 nano-laminates with those of the ternary HfxAlyO compound in metal oxide semiconductor (MOS) capacitors. The dielectrics were deposited by atomic layer deposition on InGaAs. Water, ozone, and oxygen plasma were tested as oxygen precursors, and best results were obtained using water. The total dielectric thickness was kept constant in our experiments. It was found that the effective dielectric constant increased and the leakage current decreased with the number of periods. Best results were obtained for the ternary compound. The effect of the sublayer thicknesses on the electrical properties of the interface was carefully investigated, as well as the role of post-metallization annealing. Possible explanations for the observed trends are provided. We conclude that the ternary HfxAlyO compound is more favorable than the nano-laminates approach for InGaAs based MOS transistor applications.

  11. Lattice matched crystalline substrates for cubic nitride semiconductor growth

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2015-02-24

    Disclosed embodiments include methods of fabricating a semiconductor layer or device and devices fabricated thereby. The methods include, but are not limited to, providing a substrate having a cubic crystalline surface with a known lattice parameter and growing a cubic crystalline group III-nitride alloy layer on the cubic crystalline substrate by coincident site lattice matched epitaxy. The cubic crystalline group III-nitride alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter of the substrate (a). The group III-nitride alloy may be a cubic crystalline In.sub.xGa.sub.yAl.sub.1-x-yN alloy. The lattice parameter of the In.sub.xGa.sub.yAl.sub.1-x-yN or other group III-nitride alloy may be related to the substrate lattice parameter by (a')= 2(a) or (a')=(a)/ 2. The semiconductor alloy may be prepared to have a selected band gap.

  12. Growth and characterization of nonpolar and semipolar group-III nitrides-based heterostructures and devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arpan

    measured. In summary, the result of the experiments described in this thesis reveals the potential of nonpolar and semipolar Group-III nitrides based devices, which are free of polarization-induced electric fields.

  13. High-Power, Low-Droop III-Nitrides Based Blue Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Pan, Chih-Chien

    III-Nitrides based light-emitting diodes (LED) have greatly attracted considerable attention due to their use in a range of applications for illumination and are often operated at high drive currents to achieve high emission powers. In order to have enough emission optical powers, LEDs with high internal quantum efficiency (IQE) and light extraction efficiency (LEE) as well as external quantum efficiency (EQE) are required. In this work, first, we explored the optical and material properties of GaN-based polar and semipolar blue LEDs grown on c-plane patterned sapphire substrate (PSS) and free-standing GaN (FS-GaN) substrate, respectively. By analyzing these properties, we were be able to achieve high IQE, LEE, and EQE values using novel designs of the epi structure and LED package. At UCSB, by using a novel vertical transparent ZnO-stand LED (VT-LED) package to reduce the loss of photons in the absorptive materials (p-type GaN, indium-tin oxide, and silver header, etc.), high LEE of 76 and 75% can be achieved for GaN-based LEDs grown on PSS and FS-GaN substrate, respectively. In this study, we also find a close agreement between simulating and experimental results. On the other hand, in order to achieve high IQE and EQE for blue LEDs at high current densities (> 100 A/cm2), low-carrier-density structure design is the key to address efficiency droop (J-droop) and thermal droop (T-droop), in which IQE decreases with increasing the injection current and temperature. A compositionally step-graded (CSG) InGaN quantum barrier (QB) and a single 12-nm-thick quantum well (SQW) structure have been applied in polar (0001) and semipolar (2021) blue LEDs, respectively, to mitigate Shockley-Read-Hall (SRH) and Auger recombination, and carrier leakage by lowering the carrier density in the active region of the LED. As a consequence, high EQE of ˜ 46 and 50% and low thermal droop ratios of ˜ 16 and 10% (when the temperature is elevated from 20 to 100°C) can be achieved for

  14. Red-emitting III-nitride self-assembled quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Frost, Thomas A.

    Visible and ultra-violet light sources have numerous applications in the fields of solid state lighting, optical data storage, plastic fiber communications, heads-up displays in automobiles, and in quantum cryptography and communications. Most research and development into such sources is being done using III-nitride materials where the emission can be tuned from the deep UV in AlN to the near infrared in InN. However due to material limitations including large strain, piezoelectric polarization, and the unavailability of cheap native substrates, most visible devices are restricted to emission near GaN at 365nm up to around 530nm. These dots are formed by the relaxation of strain, and it has been shown both theoretically and experimentally that the piezoelectric field and the resultant quantum confined stark effect are significantly lower than those values reported in comparable QWs. As a result, the radiative carrier lifetimes in such dots are typically around 10-100 times smaller than those in equivalent QWs. Furthermore, the quasi-three dimensional confinement of carriers in the InGaN islands that form the dots can reduce carrier migration to (and therefore recombination at) dislocations and other defects. In the present study, molecular beam epitaxial growth and the properties of InGaN/GaN self-assembled quantum dots have been investigated in detail. The quantum dots, emitting at 630nm, have been studied optically through temperature-dependent, excitation-dependent, and time-resolved photoluminescence. A radiative lifetime of ˜2ns has been measured in these samples. Samples with varying number of dot layers were grown and characterized structurally by atomic force microscopy. The growth conditions of the dots have been optimized including the InGaN and GaN thickness and the nitrogen interruption time. The optimized dots have been incorporated into edge-emitting laser heterostructures. Other optimizations including the novel use of an all In0.18Al0.82N cladding

  15. Development of novel technologies to enhance performance and reliability of III-Nitride avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Suvarna, Puneet Harischandra

    Solar-blind ultraviolet avalanche photodiodes are an enabling technology for applications in the fields of astronomy, communication, missile warning systems, biological agent detection and particle physics research. Avalanche photodiodes (APDs) are capable of detecting low-intensity light with high quantum efficiency and signal-to-noise ratio without the need for external amplification. The properties of III-N materials (GaN and AlGaN) are promising for UV photodetectors that are highly efficient, radiation-hard and capable of visible-blind or solar-blind operation without the need for external filters. However, the realization of reliable and high performance III-N APDs and imaging arrays has several technological challenges. The high price and lack of availability of bulk III-N substrates necessitates the growth of III-Ns on lattice mismatched substrates leading to a high density of dislocations in the material that can cause high leakage currents, noise and premature breakdown in APDs. The etched sidewalls of III-N APDs and high electric fields at contact edges are also detrimental to APD performance and reliability. In this work, novel technologies have been developed and implemented that address the issues of performance and reliability in III-Nitride based APDs. To address the issue of extended defects in the bulk of the material, a novel pulsed MOCVD process was developed for the growth of AlGaN. This process enables growth of high crystal quality AlxGa1-xN with excellent control over composition, doping and thickness. The process has also been adapted for the growth of high quality III-N materials on silicon substrate for devices such as high electron mobility transistors (HEMTs). A novel post-growth defect isolation technique is also discussed that can isolate the impact of conductive defects from devices. A new sidewall passivation technique using atomic layer deposition (ALD) of dielectric materials was developed for III-N APDs that is effective in

  16. Role of interface roughness scattering, temperature, and structural parameters on the performance characteristics of III-nitride quantum cascade detectors

    NASA Astrophysics Data System (ADS)

    Saha, S.; Kumar, J.

    2017-02-01

    A III-nitride quantum cascade detector (QCD) for the fiber optic communication wavelength (˜1.5 μm) has been designed, and the effect of intersubband scattering processes such as longitudinal-optical phonon scattering, ionized impurity scattering, and more importantly interface roughness scattering on responsivity performance has been analyzed. Carrier transport in the detector is modeled using a simplified rate equation approach. It is observed that inclusion of interface roughness scattering in the carrier transport model significantly enhances the responsivity performance of the detector. The effects of roughness conditions for instance mean roughness height and correlation length on responsivity have been examined. The responsivity of the designed detector drops by 2.16 mA/W at 400 K compared to its low temperature value at 50 K and the detection wavelength change with temperature is insignificant, which are very helpful for the stable detection of the radiation for a wide range of operating temperatures and show the thermal stability of III-nitride QCDs. The effects of active well widths, extractor barrier widths, and extractor well widths have been further investigated. A higher responsivity performance is observed for narrower barrier widths. It is noticed that change in the active well width significantly modifies the responsivity of the detector and the wavelength gets red shifted for larger active well widths.

  17. Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate-Ag2S-CdS semiconductors.

    PubMed

    Kornarakis, I; Lykakis, I N; Vordos, N; Armatas, G S

    2014-08-07

    Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster anions with different reduction potentials, such as PW12O40(3-), SiW12O40(4-) and PMo12O40(3-), were employed as electron acceptors in these ternary heterojunction photocatalysts. Characterization by small-angle X-ray scattering, X-ray diffraction, transmission electron microscopy and N2 physisorption measurements showed hexagonal arrays of POM-Ag2S-CdS hybrid nanorods with large internal BET surface areas and uniform mesopores. The Keggin structure of the incorporated POM clusters was also verified by elemental X-ray spectroscopy microanalysis, infrared and diffuse-reflectance ultraviolet-visible spectroscopy. These new porous materials were implemented as visible-light-driven photocatalysts, displaying exceptional high activity in aerobic oxidation of various para-substituted benzyl alcohols to the corresponding carbonyl compounds. Our experiments show that the spatial separation of photogenerated electrons and holes at CdS through the potential gradient along the CdS-Ag2S-POM interfaces is responsible for the increased photocatalytic activity.

  18. Preparation and characterization of Cu2SnS3 ternary semiconductor nanostructures via the spray pyrolysis technique for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Adelifard, Mehdi; Bagheri Mohagheghi, Mohamad Mehdi; Eshghi, Hosein

    2012-03-01

    Thin films of Cu2SnS3 have been deposited by the spray pyrolysis technique. Various Sn/Cu molar ratios (from 0.0 to 1.0) were applied, which allowed the study of the copper tin sulfide phase. Structural, morphological and compositional analyses have been carried out using x-ray diffraction, field emission scanning electron microscopy and energy dispersive spectroscopy. The pure CuS thin film showed the covellite phase with hexagonal crystal structure, and with increasing the Sn/Cu molar ratio, the films grown were crystallized with triclinic Cu2SnS3 ternary phase. Optical measurement analysis showed that the deposited layers have a relatively high absorption coefficient (~105 cm-1) in the visible spectrum, about one order of magnitude higher than in other published reports. Also these layers presented a reduction of about 1 eV in the values of band gap from 2.57 to 1.58 eV with an increment in the Sn/Cu molar ratio from 0.0 to 1.0. The electrical properties studies showed that all these samples are p-type semiconductors and the resistivity decreases with increasing the Sn/Cu molar ratio.

  19. Scattering amplitudes and static atomic correction factors for the composition-sensitive 002 reflection in sphalerite ternary III-V and II-VI semiconductors.

    PubMed

    Schowalter, M; Müller, K; Rosenauer, A

    2012-01-01

    Modified atomic scattering amplitudes (MASAs), taking into account the redistribution of charge due to bonds, and the respective correction factors considering the effect of static atomic displacements were computed for the chemically sensitive 002 reflection for ternary III-V and II-VI semiconductors. MASAs were derived from computations within the density functional theory formalism. Binary eight-atom unit cells were strained according to each strain state s (thin, intermediate, thick and fully relaxed electron microscopic specimen) and each concentration (x = 0, …, 1 in 0.01 steps), where the lattice parameters for composition x in strain state s were calculated using continuum elasticity theory. The concentration dependence was derived by computing MASAs for each of these binary cells. Correction factors for static atomic displacements were computed from relaxed atom positions by generating 50 × 50 × 50 supercells using the lattice parameter of the eight-atom unit cells. Atoms were randomly distributed according to the required composition. Polynomials were fitted to the composition dependence of the MASAs and the correction factors for the different strain states. Fit parameters are given in the paper.

  20. HfxAlyO ternary dielectrics for InGaAs based metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2017-07-01

    The electrical properties of HfxAlyO compound dielectric films and the HfxAlyO/InGaAs interface are reported for various dielectric film compositions. Despite the same trimethylaluminum (TMA) pre-deposition treatment, dispersion in accumulation and capacitance-voltage (C-V) hysteresis increased with hafnium content. Different kinds of border traps were identified as being responsible for the phenomena. After anneal, the density of states in the HfxAlyO/InGaAs interface varied quite weakly with dielectric film composition. The optimal composition for obtaining high inversion charge density in metal oxide semiconductor gate stacks is determined by a tradeoff between leakage and dielectric constant, with the optimum atomic cation ratio ([Hf]/[Al]) of ˜1.

  1. Implementation of Strategies to Improve the Reliability of III-Nitride Photodetectors towards the Realization of Visible and Solar-Blind Imaging Arrays

    NASA Astrophysics Data System (ADS)

    Bulmer, John J.

    Ultraviolet (UV) radiation detectors are being heavily researched for applications in non-line-of-sight (NLOS) communication systems, flame monitoring, biological detection, and astronomical studies. These applications are currently being met by the use of Si-based photomultiplier tubes (PMTs), which are bulky, fragile, expensive and require the use of external filters to achieve true visible-blind and solar-blind operation. GaN and AlxGa1-xN avalanche photodiodes have been of great interest as a replacement for PMT technology. III-Nitride materials are radiation hard and have a wide, tunable bandgap that allows devices to operate in both visible and solar-blind regimes without the use of external filters. The high price and relative unavailability of bulk substrates demands heteroepitaxy of III-Nitride films on lattice-mismatched substrates, which leads to large dark current and premature breakdown in GaN and AlGaN avalanche photodiodes. While significant advances have been made towards the development of III-Nitride UV photodetectors using a variety of device designs, GaN-based avalanche photodiodes typically demonstrate poor device performance, low yield, and breakdown that results in permanent device damage. To address these challenges, a novel implantation technique was used to achieve edge termination and electric field redistribution at the contact edges in GaN and AlGaN p-i-n photodiode structures to enhance reliability. This process was successful at significantly reducing the levels of dark current over two orders of magnitude and resulted in improved device reliability. Further improvement in reliability of III-Nitride devices was also proposed and explored by a technique for isolation of electrically conductive structural defects. The large number of dislocations induced by the lattice and thermal mismatch with the substrate are known to be leakage current pathways and non-radiative recombination centers in III-Nitride films. This process selectively

  2. Looking for Auger signatures in III-nitride light emitters: A full-band Monte Carlo perspective

    SciTech Connect

    Bertazzi, Francesco Goano, Michele; Zhou, Xiangyu; Calciati, Marco; Ghione, Giovanni; Matsubara, Masahiko; Bellotti, Enrico

    2015-02-09

    Recent experiments of electron emission spectroscopy (EES) on III-nitride light-emitting diodes (LEDs) have shown a correlation between droop onset and hot electron emission at the cesiated surface of the LED p-cap. The observed hot electrons have been interpreted as a direct signature of Auger recombination in the LED active region, as highly energetic Auger-excited electrons would be collected in long-lived satellite valleys of the conduction band so that they would not decay on their journey to the surface across the highly doped p-contact layer. We discuss this interpretation by using a full-band Monte Carlo model based on first-principles electronic structure and lattice dynamics calculations. The results of our analysis suggest that Auger-excited electrons cannot be unambiguously detected in the LED structures used in the EES experiments. Additional experimental and simulative work are necessary to unravel the complex physics of GaN cesiated surfaces.

  3. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot.

    PubMed

    Holmes, Mark J; Choi, Kihyun; Kako, Satoshi; Arita, Munetaka; Arakawa, Yasuhiko

    2014-02-12

    We demonstrate triggered single photon emission at room temperature from a site-controlled III-nitride quantum dot embedded in a nanowire. Moreover, we reveal a remarkable temperature insensitivity of the single photon statistics, and a g((2))[0] value at 300 K of just 0.13. The combination of using high-quality, small, site-controlled quantum dots with a wide-bandgap material system is crucial for providing both sufficient exciton confinement and an emission spectrum with minimal contamination in order to enable room temperature operation. Arrays of such single photon emitters will be useful for room-temperature quantum information processing applications such as on-chip quantum communication.

  4. III-nitride disk-in-nanowire 1.2 μm monolithic diode laser on (001)silicon

    NASA Astrophysics Data System (ADS)

    Hazari, Arnab; Aiello, Anthony; Ng, Tien-Khee; Ooi, Boon S.; Bhattacharya, Pallab

    2015-11-01

    III-nitride nanowire diode heterostructures with multiple In0.85Ga0.15N disks and graded InGaN mode confining regions were grown by molecular beam epitaxy on (001)Si substrates. The aerial density of the 60 nm nanowires is ˜3 × 1010 cm-2. A radiative recombination lifetime of 1.84 ns in the disks is measured by time-resolved luminescence measurements. Edge-emitting nanowire lasers have been fabricated and characterized. Measured values of Jth, T0, and dg/dn in these devices are 1.24 kA/cm2, 242 K, and 5.6 × 10-17 cm2, respectively. The peak emission is observed at ˜1.2 μm.

  5. Demonstration of a III-nitride edge-emitting laser diode utilizing a GaN tunnel junction contact.

    PubMed

    Yonkee, Benjamin P; Young, Erin C; Lee, Changmin; Leonard, John T; DenBaars, Steven P; Speck, James S; Nakamura, Shuji

    2016-04-04

    We demonstrate a III-nitride edge emitting laser diode (EELD) grown on a (2021) bulk GaN substrate with a GaN tunnel junction contact for hole injection. The tunnel junction was grown using a combination of metal-organic chemical-vapor deposition (MOCVD) and ammonia-based molecular-beam epitaxy (MBE) which allowed to be regrown over activated p-GaN. For a laser bar with dimensions of 1800 µm x 2.5 µm, without facet coatings, the threshold current was 284 mA (6.3 kA/cm2) and the single facet slope efficiency was 0.33 W/A (12% differential efficiency). A differential resistivity at high current density of 2.3 × 10-4 Ω cm2 was measured.

  6. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    SciTech Connect

    Leonard, J. T. Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Speck, J. S.; Lee, S.; DenBaars, S. P.; Nakamura, S.

    2016-01-18

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ∼22 kA/cm{sup 2} (25 mA), with a peak output power of ∼180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP{sub 12,1}), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  7. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Lee, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2016-01-01

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ˜22 kA/cm2 (25 mA), with a peak output power of ˜180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP12,1), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  8. Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate-Ag2S-CdS semiconductors

    NASA Astrophysics Data System (ADS)

    Kornarakis, I.; Lykakis, I. N.; Vordos, N.; Armatas, G. S.

    2014-07-01

    Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster anions with different reduction potentials, such as PW12O403-, SiW12O404- and PMo12O403-, were employed as electron acceptors in these ternary heterojunction photocatalysts. Characterization by small-angle X-ray scattering, X-ray diffraction, transmission electron microscopy and N2 physisorption measurements showed hexagonal arrays of POM-Ag2S-CdS hybrid nanorods with large internal BET surface areas and uniform mesopores. The Keggin structure of the incorporated POM clusters was also verified by elemental X-ray spectroscopy microanalysis, infrared and diffuse-reflectance ultraviolet-visible spectroscopy. These new porous materials were implemented as visible-light-driven photocatalysts, displaying exceptional high activity in aerobic oxidation of various para-substituted benzyl alcohols to the corresponding carbonyl compounds. Our experiments show that the spatial separation of photogenerated electrons and holes at CdS through the potential gradient along the CdS-Ag2S-POM interfaces is responsible for the increased photocatalytic activity.Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster

  9. Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fiedler, Gregor; Kratzer, Peter

    2016-08-01

    The ternary semiconductors NiZrSn and CoZrBi with C 1b crystal structure are introduced by calculating their basic structural, electronic, and phononic properties using density functional theory. Both the gradient-corrected PBE functional and the hybrid functional HSE06 are employed. While NiZrSn is found to be a small-band-gap semiconductor (Eg=0.46 eV in PBE and 0.60 eV in HSE06), CoZrBi has a band gap of 1.01 eV in PBE (1.34 eV in HSE06). Moreover, effective masses and deformation potentials are reported. In both materials A B C , the intrinsic point defects introduced by species A (Ni or Co) are calculated. The Co-induced defects in CoZrBi are found to have a higher formation energy compared to Ni-induced defects in NiZrSn. The interstitial Ni atom (Nii) as well as the VNiNii complex introduce defect states in the band gap, whereas the Ni vacancy (VNi) only reduces the size of the band gap. While Nii is electrically active and may act as a donor, the other two types of defects may compensate extrinsic doping. In CoZrBi, only the VCoCoi complex introduces a defect state in the band gap. Motivated by the reported use of NiZrSn for thermoelectric applications, the Seebeck coefficient of both materials, both in the p -type and the n -type regimes, is calculated. We find that CoZrBi displays a rather large thermopower of up to 500 μ V /K when p doped, whereas NiZrSn possesses its maximum thermopower in the n -type regime. The reported difficulties in achieving p -type doping in NiZrSn could be rationalized by the unintended formation of Nii2 + in conjunction with extrinsic acceptors, resulting in their compensation. Moreover, it is found that all types of defects considered, when present in concentrations as large as 3%, tend to reduce the thermopower compared to ideal bulk crystals at T =600 K. For NiZrSn, the calculated thermodynamic data suggest that additional Ni impurities could be removed by annealing, leading to precipitation of a metallic Ni2ZrSn phase.

  10. Thermoelectric Effects on the Boundary of Solid and Liquid Phases of Ternary Semiconductors and Alloys of the A-12B-IVC-V13 Type,

    DTIC Science & Technology

    THERMOELECTRICITY, *SEMICONDUCTORS), (* SEEBECK EFFECT , SEMICONDUCTORS), LIQUIDS, PHASE STUDIES, COPPER COMPOUNDS, GERMANIUM COMPOUNDS, TELLURIDES, SELENIDES, TIN COMPOUNDS, SILVER COMPOUNDS, THERMAL CONDUCTIVITY, USSR

  11. X-ray Characterization and Defect Control of III-Nitrides

    NASA Astrophysics Data System (ADS)

    Tweedie, James

    A process for controlling point defects in a semiconductor using excess charge carriers was developed in theory and practice. A theoretical framework based on first principles was developed to model the effect of excess charge carriers on the formation energy and concentration of charged point defects in a semiconductor. The framework was validated for the completely general case of a generic carrier source and a generic point defect in a generic semiconductor, and then refined for the more specific case of a generic carrier source applied during the growth of a doped semiconductor crystal. It was theoretically demonstrated that the process as defined will always reduce the degree of compensation in the semiconductor. The established theoretical framework was applied to the case of above-bandgap illumination on both the MOCVD growth and the post-growth annealing of Mg-doped GaN thin films. It was theoretically demonstrated that UV light will lower the concentration of compensating defects during growth and will facilitate complete activation of the Mg acceptor at lower annealing temperatures. Annealing experiments demonstrated that UV illumination of GaN:Mg thin films during annealing lowers the resistivity of the film at any given temperature below the 650 °C threshold at which complete activation is achieved without illumination. Broad spectrum analysis of the photoluminescence (PL) spectra together with a correlation between the acceptor-bound exciton transition and room temperature resistivity demonstrated that UV light only acts to enhance the activation Mg. Surface chemistry and interface chemistry of AlN and high Al mole fraction AlGaN films were studied using x-ray photoelectron spectroscopy (XPS). It was seen that surfaces readily form stable surface oxides. The Schottky barrier height (SBH) of various metals contacted to these surfaces was using XPS. Finally, an x-ray diffraction method (XRD) was developed to quantify strain and composition of alloy

  12. Photodetectors based on intersubband transitions using III-nitride superlattice structures.

    PubMed

    Hofstetter, Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Théron, Ricardo; Wu, Hong; Schaff, William J; Dawlaty, Jahan; George, Paul A; Eastman, Lester F; Rana, Farhan; Kandaswamy, Prem K; Leconte, Sylvain; Monroy, Eva

    2009-04-29

    We review our recent progress on the fabrication of near-infrared photodetectors based on intersubband transitions in AlN/GaN superlattice structures. Such devices were first demonstrated in 2003, and have since then seen a quite substantial development both in terms of detector responsivity and high speed operation. Nowadays, the most impressive results include characterization up to 3 GHz using a directly modulated semiconductor laser and up to 13.3 GHz using an ultra-short pulse solid state laser.

  13. Raman gain in a Boron based Group-III nitride quantum well

    NASA Astrophysics Data System (ADS)

    Narayana Moorthy, N.; John Peter, A.; Lee, Chang Woo

    2014-06-01

    Electron Raman scattering of a hydrogenic impurity is studied using exact diagonalization method in a BxGa1-xN/BN coupled quantum well. Intersubband scattering rates, in a Boron based wide band gap GaN, are considered. BxGa1-xN semiconductor is taken as inner quantum well and BN material is taken as barrier material. The effect of quantum confinement on the differential cross section of Raman scattering, with and without the impurity, is obtained. The built-in internal electric field is included throughout the calculations. The third order susceptibility with the incident photon energy is calculated with and without doping impurity. The donor hydrogenic binding energy and its low lying excited states are computed taking into account the geometrical confinement. The binding energy is obtained for various impurity position and the Boron alloy content in BxGa1-xN quantum well. It is brought out that the geometrical confinement and built-in internal electric fields have great influence on the optical properties of the semiconductor.

  14. A charge inverter for III-nitride light-emitting diodes

    SciTech Connect

    Zhang, Zi-Hui E-mail: wbi@hebut.edu.cn E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang E-mail: wbi@hebut.edu.cn E-mail: sunxw@sustc.edu.cn; Geng, Chong; Xu, Shu; Demir, Hilmi Volkan E-mail: wbi@hebut.edu.cn E-mail: sunxw@sustc.edu.cn; Sun, Xiao Wei E-mail: wbi@hebut.edu.cn E-mail: sunxw@sustc.edu.cn

    2016-03-28

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO{sub 2} insulator layer on the p{sup +}-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p{sup +}-GaN and SiO{sub 2} insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO{sub 2} layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p{sup +}-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm{sup 2} LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.

  15. A charge inverter for III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Hui; Zhang, Yonghui; Bi, Wengang; Geng, Chong; Xu, Shu; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-03-01

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO2 insulator layer on the p+-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p+-GaN and SiO2 insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO2 layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p+-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm2 LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.

  16. Characterization of capture cross sections of interface states in dielectric/III-nitride heterojunction structures

    NASA Astrophysics Data System (ADS)

    Matys, M.; Stoklas, R.; Kuzmik, J.; Adamowicz, B.; Yatabe, Z.; Hashizume, T.

    2016-05-01

    We performed, for the first time, quantitative characterization of electron capture cross sections σ of the interface states at dielectric/III-N heterojunction interfaces. We developed a new method, which is based on the photo-assisted capacitance-voltage measurements using photon energies below the semiconductor band gap. The analysis was carried out for AlGaN/GaN metal-insulator-semiconductor heterojunction (MISH) structures with Al2O3, SiO2, or SiN films as insulator deposited on the AlGaN layers with Al content (x) varying over a wide range of values. Additionally, we also investigated an Al2O3/InAlN/GaN MISH structure. Prior to insulator deposition, the AlGaN and InAlN surfaces were subjected to different treatments. We found that σ for all these structures lies in the range between 5 × 10 - 19 and 10 - 16 cm2. Furthermore, we revealed that σ for dielectric/AlxGa1-xN interfaces increases with increasing x. We showed that both the multiphonon-emission and cascade processes can explain the obtained results.

  17. Mixed ternary heterojunction solar cell

    DOEpatents

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  18. Time Resolved Spectroscopy of Ternary Semiconductors GALLIUM(X)-INDIUM(1-X) Phosphide and GALLIUM-ARSENIDE(1 - Under Picosecond Laser Pulse Excitation.

    NASA Astrophysics Data System (ADS)

    Zarrabi, Hassan J.

    In the thesis, the ultrafast physics of carriers in two ternary semiconductors GA(,x)In(,1-x)P and GaAs(,1 -x)P(,x) were studied under picosecond Laser Pulse Excitation. The dynamics of hot carriers In Ga(,.5)In(,.5)P, were studied by means of time resolved spectroscopy. The effect of high pump intensity on the temporal behavior of the emission at different wavelengths were investigated. At high excitation power fluence, the temporal profile at short wavelengths (high energy portion of the photoluminescence spectra) were exponential similar to the low excitation power fluence. However the temporal profiles at long wavelengths (low energy portion of the photoluminescence spectra close to band edge) exhibited an unusual and complex profile. The time resolved profiles at long wavelength acquired a district tail as excitation power increased even to the point of developing a second peak. A model is proposed to explain the temporal behavior of the emission at different wavelengths. The rate equations describing the time dependence of dynamical variables (n(,e), T(,c), (phi)((nu))) were solved numerically by computer to simulate the temporal behavior of the emission at different wavelengths under different excitation power fluence. The time resolved photoluminescence spectra in Ga(,.56)In(,.44)P was measured with 10 ps time resolution using the streak camera as a detection system. From the theoretical fitting of the photoluminescence spectra we have determined the time evolution of carrier density and carrier temperature. We found that the carrier energy loss rate to be slower than predicted from a simple model assuming a Maxwell Boltzmann distribution function. This is attributed to the screening of the hot carrier energy relaxation under high carrier densities. Integro-differential equations describing the time dependence of carrier temperature have been solved and the results are compared with the experimental data. The time resolved photoluminescence kinetics in Ga

  19. High-performance AlGaN-based solar-blind avalanche photodiodes with dual-periodic III-nitride distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Yao, Chujun; Ye, Xuanchao; Sun, Rui; Yang, Guofeng; Wang, Jin; Lu, Yanan; Yan, Pengfei; Cao, Jintao; Gao, Shumei

    2017-03-01

    Separate absorption and multiplication AlGaN solar-blind avalanche photodiodes with dual-periodic III-nitride distributed Bragg reflectors (DBRs) are numerically demonstrated. The designed devices exhibit an improved solar-blind characteristic with a maximum spectral responsivity of 0.184 A/W at λ = 284 nm owing to the optimized optical properties of the dual-periodic III-nitride DBRs. Compared with their conventional counterparts, an increased multiplication gain and a reduced breakdown voltage are achieved by using p-type Al0.15Ga0.85N layers with a lower Al content and multiplication layers. These improvements are attributed to the high p-doping efficiency and large hole ionization coefficient.

  20. Strong coupling in non-polar GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Tao, Renchun; Arita, Munetaka; Kako, Satoshi; Kamide, Kenji; Arakawa, Yasuhiko

    2015-09-01

    Strong coupling between excitons and photons is experimentally demonstrated in m-plane GaN/AlGaN microcavities (MCs) with air/AlGaN distributed Bragg reflectors (DBRs) at room temperature. Strong coupling is confirmed by momentum space spectroscopy, and a Rabi splitting (Ω) of 84 meV is estimated. A Rabi splitting of 84 meV is the largest value reported in a III-nitride DBR MC to date and is mainly attributed to the shortened effective cavity length resulting from the high index contrast in the air-gap DBRs used here. These results show that III-nitride air-gap DBR MCs have a high potential for realizing high Ω / κ systems (where κ is the cavity loss).

  1. Strain relief and dislocation motion in III-nitride films grown on stepped and step-free 4H-SiC mesas

    NASA Astrophysics Data System (ADS)

    Twigg, M. E.; Bassim, N. D.; Mastro, M. A.; Eddy, C. R.; Henry, R. L.; Culbertson, J. C.; Holm, R. T.; Neudeck, P.; Powell, J. A.; Trunek, A. J.

    2007-03-01

    The impetus for dislocation motion in thin films is generally understood in terms of Peach-Koehler forces. For the case of III-nitride films grown on step-free 4H-SiC mesas, however, it is the gradient of the strain energy from the mesa edge that is capable of driving misfit dislocations. Using the strain profile as a function of the distance from the mesa edge and the line tension of the c-plane threading arms, we have calculated the excess stress driving the half loop from the mesa edge into the mesa interior. We have also compared the half-loop excess stress with the excess stress driving the tilt of threading edge dislocations, which has been proposed as one of the principal strain relief mechanisms in III-nitride films. The excess stress driving c-plane half loops ranges from a few 1000MPa at the mesa edge to few 100MPa towards the mesa interior, while the excess stress driving the tilt of threading edge dislocations is in excess of 20000MPa. The greater excess stress driving dislocation tilt, however, does not dominate strain relief for III-nitride films on step-free SiC mesas due to the difficulty in nucleating threading dislocations in the absence of interfacial steps.

  2. Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities

    NASA Astrophysics Data System (ADS)

    Corfdir, P.; Levrat, J.; Rossbach, G.; Butté, R.; Feltin, E.; Carlin, J.-F.; Christmann, G.; Lefebvre, P.; Ganière, J.-D.; Grandjean, N.; Deveaud-Plédran, B.

    2012-06-01

    We report on the direct observation of biexcitons in a III-nitride based multiple quantum well microcavity operating in the strong light-matter coupling regime by means of nonresonant continuous wave and time-resolved photoluminescence at low temperature. First, the biexciton dynamics is investigated for the bare active medium (multiple quantum wells alone) evidencing localization on potential fluctuations due to alloy disorder and thermalization between both localized and free excitonic and biexcitonic populations. Then, the role of biexcitons is considered for the full microcavity: in particular, we observe that for specific detunings the bottom of the lower polariton branch is directly fed by the radiative dissociation of either cavity biexcitons or excitons mediated by one LO-phonon. Accordingly, minimum polariton lasing thresholds are observed, when the bottom of the lower polariton branch corresponds in energy to the exciton or cavity biexciton first LO-phonon replica. This singular observation highlights the role of excitonic molecules in the polariton condensate formation process as being a more efficient relaxation channel when compared to the usually assumed acoustical phonon emission one.

  3. Control of active nitrogen species used for PA-MBE growth of group III nitrides on Si

    NASA Astrophysics Data System (ADS)

    Ohachi, Tadashi; Yamabe, Nobuhiko; Yamamoto, Yuka; Wada, Motoi; Ariyada, Osamu

    2011-03-01

    A new spiral parallel mesh electrode (PME) is presented to control active nitrogen species in plasma-assisted molecular beam epitaxial (PA-MBE) growth of group III nitrides and their alloys. Direct flux of active nitrogen from radio frequency inductive coupled plasma (rf-ICP) discharge was able to be measured using a mesh electrode for filtering charge particles and electron emission due to the self-ionization of nitrogen atoms on a negatively biased electrode. In situ measurement of direct nitrogen atom fluxes using the spiral PME during PA-MBE growth of GaN and AlN on Si substrates is investigated. A linear rf power dependence of direct flux of active species on atoms such as nitrogen (N+N*), where N and N* were ground and excited atoms, respectively, from a rf-ICP was confirmed by the spiral PME. An indirect flux of nitrogen adsorbed (ADS) atoms (N+N*) during discharge was also monitored by the spiral PME and received influence of the wall surface of the growth chamber. ADS nitrogen atoms are able to be used for nitridation of Si surface to grow a double buffer layer (DBL) AlN/β-Si3N4/Si.

  4. III-nitride disk-in-nanowire 1.2 μm monolithic diode laser on (001)silicon

    SciTech Connect

    Hazari, Arnab; Aiello, Anthony; Bhattacharya, Pallab; Ng, Tien-Khee; Ooi, Boon S.

    2015-11-09

    III-nitride nanowire diode heterostructures with multiple In{sub 0.85}Ga{sub 0.15}N disks and graded InGaN mode confining regions were grown by molecular beam epitaxy on (001)Si substrates. The aerial density of the 60 nm nanowires is ∼3 × 10{sup 10} cm{sup −2}. A radiative recombination lifetime of 1.84 ns in the disks is measured by time-resolved luminescence measurements. Edge-emitting nanowire lasers have been fabricated and characterized. Measured values of J{sub th}, T{sub 0}, and dg/dn in these devices are 1.24 kA/cm{sup 2}, 242 K, and 5.6 × 10{sup −17} cm{sup 2}, respectively. The peak emission is observed at ∼1.2 μm.

  5. Time-resolved electroluminescence studies of III-nitride ultraviolet photonic-crystal light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shakya, J.; Lin, J. Y.; Jiang, H. X.

    2004-09-01

    Transient responses of III-nitride photonic-crystal (PC) ultraviolet (UV) light-emitting diodes (LEDs) were measured by picosecond time-resolved electroluminescence (EL) spectroscopy. Triangular arrays of PCs with different diameters/periodicities were fabricated on 333nmUV LEDs for enhancing light extraction efficiency using electron-beam lithography and inductively coupled-plasma dry etching. With the incorporation of PCs on LEDs, the EL decay time constant τ decreases systematically with the increase of the etched sidewall area indicating the strong effect of the surface recombination. The surface recombination velocities on the p-type epitaxial surface and on the sidewall of etched holes on LEDs were determined to be 1.73×104cm /s and 1.48×105cm/s, respectively. The angular distribution of light emission from LEDs with PCs shows slight narrowing in far-field pattern. Because of the increased transient response along with enhanced light extraction, the incorporation of PCs in UV LEDs provide an effective method to control the modulation speed of UV LEDs, which could be very useful for many applications.

  6. Numerical analysis on current and optical confinement of III-nitride vertical-cavity surface-emitting lasers.

    PubMed

    Lai, Ying-Yu; Huang, Shen-Che; Ho, Tsung-Lin; Lu, Tien-Chang; Wang, Shing-Chung

    2014-04-21

    We report on the numerical analysis of the electrical and optical properties of current-injected III-nitride based vertical-cavity surface-emitting lasers (VCSELs) with three types of current confinement schemes: the conventional planar-indium tin oxide (ITO) type, the AlN-buried type without ITO, and the hybrid type. The proposed hybrid structure, which combines an ITO layer and an intracavity AlN aperture, exhibits not only uniform current distribution but also enhanced lateral optical confinement. Thus, the hybrid type design shows remarkably better performance including lower threshold current and series resistance compared with the planar-ITO type and the AlN-buried type. Furthermore, the multi-transverse mode lasing behavior induced by strong index guiding of the AlN aperture is suppressed to single transverse mode operation by reducing the aperture size. Such design provides a powerful solution for the high performance III-N based VCSELs and is also viable by using current state of the art processing techniques.

  7. Direct electro-optical pumping for hybrid CdSe nanocrystal/III-nitride based nano-light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mikulics, M.; Arango, Y. C.; Winden, A.; Adam, R.; Hardtdegen, A.; Grützmacher, D.; Plinski, E.; Gregušová, D.; Novák, J.; Kordoš, P.; Moonshiram, A.; Marso, M.; Sofer, Z.; Lüth, H.; Hardtdegen, H.

    2016-02-01

    We propose a device concept for a hybrid nanocrystal/III-nitride based nano-LED. Our approach is based on the direct electro-optical pumping of nanocrystals (secondary excitation) by electrically driven InGaN/GaN nano-LEDs as the primary excitation source. To this end, a universal hybrid optoelectronic platform was developed for a large range of optically active nano- and mesoscopic structures. The advantage of the approach is that the emission of the nanocrystals can be electrically induced without the need of contacting them. The proof of principal was demonstrated for the electro-optical pumping of CdSe nanocrystals. The nano-LEDs with a diameter of 100 nm exhibit a very low current of ˜8 nA at 5 V bias which is several orders of magnitude smaller than for those conventionally used. The leakage currents in the device layout were typically in the range of 8 pA to 20 pA/cm2 at 5 V bias. The photon-photon down conversion efficiency was determined to be 27%. Microphotoluminescence and microelectroluminescence characterization demonstrate the potential for future optoelectronics and highly secure "green" information technology applications.

  8. On the origin of interface states at oxide/III-nitride heterojunction interfaces

    NASA Astrophysics Data System (ADS)

    Matys, M.; Adamowicz, B.; Domanowska, A.; Michalewicz, A.; Stoklas, R.; Akazawa, M.; Yatabe, Z.; Hashizume, T.

    2016-12-01

    The energy spectrum of interface state density, Dit(E), was determined at oxide/III-N heterojunction interfaces in the entire band gap, using two complementary photo-electric methods: (i) photo-assisted capacitance-voltage technique for the states distributed near the midgap and the conduction band (CB) and (ii) light intensity dependent photo-capacitance method for the states close to the valence band (VB). In addition, the Auger electron spectroscopy profiling was applied for the characterization of chemical composition of the interface region with the emphasis on carbon impurities, which can be responsible for the interface state creation. The studies were performed for the AlGaN/GaN metal-insulator-semiconductor heterostructures (MISH) with Al2O3 and SiO2 dielectric films and AlxGa1-x layers with x varying from 0.15 to 0.4 as well as for an Al2O3/InAlN/GaN MISH structure. For all structures, it was found that: (i) Dit(E) is an U-shaped continuum increasing from the midgap towards the CB and VB edges and (ii) interface states near the VB exhibit donor-like character. Furthermore, Dit(E) for SiO2/AlxGa1-x/GaN structures increased with rising x. It was also revealed that carbon impurities are not present in the oxide/III-N interface region, which indicates that probably the interface states are not related to carbon, as previously reported. Finally, it was proven that the obtained Dit(E) spectrum can be well fitted using a formula predicted by the disorder induced gap state model. This is an indication that the interface states at oxide/III-N interfaces can originate from the structural disorder of the interfacial region. Furthermore, at the oxide/barrier interface we revealed the presence of the positive fixed charge (QF) which is not related to Dit(E) and which almost compensates the negative polarization charge ( Qp o l - ).

  9. Investigating compositional effects of atomic layer deposition ternary dielectric Ti-Al-O on metal-insulator-semiconductor heterojunction capacitor structure for gate insulation of InAlN/GaN and AlGaN/GaN

    SciTech Connect

    Colon, Albert; Stan, Liliana; Divan, Ralu; Shi, Junxia

    2016-11-01

    Gate insulation/surface passivation in AlGaN/GaN and InAlN/GaN heterojunction field-effect transistors is a major concern for passivation of surface traps and reduction of gate leakage current. However, finding the most appropriate gate dielectric materials is challenging and often involves a compromise of the required properties such as dielectric constant, conduction/valence band-offsets, or thermal stability. Creating a ternary compound such as Ti-Al-O and tailoring its composition may result in a reasonably good gate material in terms of the said properties. To date, there is limited knowledge of the performance of ternary dielectric compounds on AlGaN/GaN and even less on InAlN/GaN. To approach this problem, the authors fabricated metal-insulator-semiconductor heterojunction (MISH) capacitors with ternary dielectrics Ti-Al-O of various compositions, deposited by atomic layer deposition (ALD). The film deposition was achieved by alternating cycles of TiO2 and Al2O3 using different ratios of ALD cycles. TiO2 was also deposited as a reference sample. The electrical characterization of the MISH capacitors shows an overall better performance of ternary compounds compared to the pure TiO2. The gate leakage current density decreases with increasing Al content, being similar to 2-3 orders of magnitude lower for a TiO2:Al2O3 cycle ratio of 2:1. Although the dielectric constant has the highest value of 79 for TiO2 and decreases with increasing the number of Al2O3 cycles, it is maintaining a relatively high value compared to an Al2O3 film. Capacitance voltage sweeps were also measured in order to characterize the interface trap density. A decreasing trend in the interface trap density was found while increasing Al content in the film. In conclusion, our study reveals that the desired high-kappa properties of TiO2 can be adequately maintained while improving other insulator performance factors. The ternary compounds may be an excellent choice as a gate material for both

  10. A nitride based polarization-engineered photocathode for water splitting without a p-type semiconductor.

    PubMed

    Nakamura, Akihiro; Fujii, Katsushi; Sugiyama, Masakazu; Nakano, Yoshiaki

    2014-08-07

    Photoelectrochemical water splitting is a promising way for hydrogen production with low environmental burden. Although III-nitride semiconductors have potentially favorable properties as water splitting photoelectrodes, they have several limitations for practical use currently. In this study, the concept of a polarization-engineered nitride photocathode for water splitting is proposed to overcome this problem. We observed that the proposed GaN/AlN/GaN structure worked as a photocathode even though it consisted of only n-type III-nitride semiconductors. This polarization-engineered photocathode showed a remarkably stable and relatively high photocurrent since it can avoid the causes of problems from which both n-type and p-type conventional GaN photoelectrodes suffer.

  11. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling

    SciTech Connect

    David, Aurelien Hurni, Christophe A.; Young, Nathan G.; Craven, Michael D.

    2016-08-22

    The current-voltage characteristic and ideality factor of III-Nitride quantum well light-emitting diodes (LEDs) grown on bulk GaN substrates are investigated. At operating temperature, these electrical properties exhibit a simple behavior. A model in which only active-region recombinations have a contribution to the LED current is found to account for experimental results. The limit of LED electrical efficiency is discussed based on the model and on thermodynamic arguments, and implications for electroluminescent cooling are examined.

  12. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling

    NASA Astrophysics Data System (ADS)

    David, Aurelien; Hurni, Christophe A.; Young, Nathan G.; Craven, Michael D.

    2016-08-01

    The current-voltage characteristic and ideality factor of III-Nitride quantum well light-emitting diodes (LEDs) grown on bulk GaN substrates are investigated. At operating temperature, these electrical properties exhibit a simple behavior. A model in which only active-region recombinations have a contribution to the LED current is found to account for experimental results. The limit of LED electrical efficiency is discussed based on the model and on thermodynamic arguments, and implications for electroluminescent cooling are examined.

  13. Feasibility study of III-nitride-based transistors grown by ammonia-based metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Billingsley, Daniel D.

    Although commercially available high-electron mobility transistors (HEMTs) based on the III-Nitride material system are available, there still remains areas for further optimization. These transistor devices are currently limited because of current leakage when the devices are operated at increased operating voltages. To reach the full potential of these devices, these leakage mechanisms need to be addressed. The objective of this work is to utilize the highly resistive properties of carbon-doped gallium nitride (GaN) as a low-leakage buffer layer for HEMTs. By increasing the resistivity of the underlying GaN layer, the source-drain current flow will be limited to electrons in the two-dimensional electron gas (2DEG) confined to the interface, reducing leakage paths through the GaN buffer layer, ultimately increasing the power density of the device. These films are deposited via a novel ammonia-based metal-organic molecular beam epitaxy (NH3-MOMBE) system capable of producing unintentionally carbon-doped GaN films with carbon concentrations ([C]) in excess of 10 21 atoms/cm3. These high levels of carbon incorporation lead to highly-resistive GaN buffer layers with a resistivity estimated at ˜10 12 O-cm. In addition, the deposition of aluminum gallium nitride (AlGaN) has been accomplished for the first time in an NH3-MOMBE environment. The AlGaN alloy is necessary for the production of a 2DEG, which is the source of electrons for the operation of the transistor. While providing the ability to produce highly-resistive buffer layers, the carbon which is unintentionally incorporated during the deposition of the films may also become a source of channel depletion if the incorporation levels cannot be controlled. The results of this work demonstrate that carbon-doped NH3-MOMBE thin films are extremely resistive, yet further optimization is necessary for the realization of transistor devices because of the trap states that are produced from the excessive carbon

  14. Arbitrary Multicolor Photodetection by Hetero-integrated Semiconductor Nanostructures

    PubMed Central

    Sang, Liwen; Hu, Junqing; Zou, Rujia; Koide, Yasuo; Liao, Meiyong

    2013-01-01

    The typical photodetectors can only detect one specific optical spectral band, such as InGaAs and graphene-PbS quantum dots for near-infrared (NIR) light detection, CdS and Si for visible light detection, and ZnO and III-nitrides for UV light detection. So far, none of the developed photodetector can achieve the multicolor detection with arbitrary spectral selectivity, high sensitivity, high speed, high signal-to-noise ratio, high stability, and simplicity (called 6S requirements). Here, we propose a universal strategy to develop multicolor photodetectors with arbitrary spectral selectivity by integrating various semiconductor nanostructures on a wide-bandgap semiconductor or an insulator substrate. Because the photoresponse of each spectral band is determined by each semiconductor nanostructure or the semiconductor substrate, multicolor detection satisfying 6S requirements can be readily satisfied by selecting the right semiconductors. PMID:23917790

  15. Arbitrary multicolor photodetection by hetero-integrated semiconductor nanostructures.

    PubMed

    Sang, Liwen; Hu, Junqing; Zou, Rujia; Koide, Yasuo; Liao, Meiyong

    2013-01-01

    The typical photodetectors can only detect one specific optical spectral band, such as InGaAs and graphene-PbS quantum dots for near-infrared (NIR) light detection, CdS and Si for visible light detection, and ZnO and III-nitrides for UV light detection. So far, none of the developed photodetector can achieve the multicolor detection with arbitrary spectral selectivity, high sensitivity, high speed, high signal-to-noise ratio, high stability, and simplicity (called 6S requirements). Here, we propose a universal strategy to develop multicolor photodetectors with arbitrary spectral selectivity by integrating various semiconductor nanostructures on a wide-bandgap semiconductor or an insulator substrate. Because the photoresponse of each spectral band is determined by each semiconductor nanostructure or the semiconductor substrate, multicolor detection satisfying 6S requirements can be readily satisfied by selecting the right semiconductors.

  16. A ternary photocatalyst of graphitic carbon nitride/cadmium sulfide/titania based on the electrostatic assembly using two-dimensional semiconductor nanosheets.

    PubMed

    Zhou, Chenjuan; Qian, Jiajia; Yan, Jing; Dong, Xiaoping; Zhou, Baocheng

    2017-04-01

    Herein, we employed the exfoliated two-dimensional (2D) graphitic carbon nitride nanosheets (CNNS) and titania nanosheets (TNS) as building blocks, and these negatively charged nanosheets were flocculated by Cd(2+) ions with a followed sulfidation treatment to produce a ternary heterostructure photocatalyst of CNNS/CdS/TNS. This novel nanocomposite exhibited outstanding absorption in visible spectral region, and meanwhile its gradient band structure and the closed interface promoted the separation of photo-generated charge. The relative content of CNNS and TNS in the ternary nanocomposite was optimized, and the optimal photocatalyst with a CNNS/TNS mass ratio of 98:2 could rapidly remove 10mgL(-1) rhodamine B (RhB) in 20min under visible light irradiation. The calculated rate constant of CNNS/CdS/TNS was 56.87, 12.18, and 6.67 times higher than those of the restacked CNNS and TNS and the individual CdS, as well as 8.31, 6.22 and 2.57 times higher than those of binary CNNS/TNS, CdS/TNS and CdS/CNNS photocatalysts, respectively. Moreover, this nanocomposite possessed a superior durability and universality for degradation of RhB in different concentration and other organic pollutants, including dyes and colorless compounds. Finally, the possible photocatalytic mechanism was proposed based on the theoretical calculation and the active species quenching experiment.

  17. Relaxation Models of the (110) Zinc-Blende III-V Semiconductor Surfaces: Density Functional Study

    SciTech Connect

    Ye, H.; Chen, G.; Wu, Y.; Zhu, Y.; Wei, S. H.

    2008-11-01

    Clean III-V zinc-blende (110) surfaces are the most extensively studied semiconductor surface. For conventional III-V compounds such as GaAs and InP, the surface relaxation follows a bond rotation relaxation model. However, for III-nitrides recent study indicates that they follow a bond-constricting relaxation model. First-principles atom relaxation calculations are performed to explore the origin of the difference between the two groups of materials. By analyzing the individual shift trends and ionic properties of the top layer anions and cations, we attribute the difference between the conventional and nitride III-V compounds to the strong electronegativity of N, which leads to the s{sup 2}p{sup 3} pyramid bond angle to be larger than the ideal one in bulk (109.5{sup o}). The general trends of the atomic relaxation at the III-nitrides (110) surfaces are explained.

  18. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    DOE PAGES

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less

  19. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    SciTech Connect

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for both LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.

  20. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    DOE PAGES

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; ...

    2017-03-21

    Here, we describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and filmmore » structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.« less

  1. Dynamic characteristics of 410 nm semipolar (20 2 ¯ 1 ¯) III-nitride laser diodes with a modulation bandwidth of over 5 GHz

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Zhang, Chong; Becerra, Daniel L.; Lee, Seunggeun; Forman, Charles A.; Oh, Sang Ho; Farrell, Robert M.; Speck, James S.; Nakamura, Shuji; Bowers, John E.; DenBaars, Steven P.

    2016-09-01

    The dynamic characteristics of III-nitride multi-quantum well laser diodes (LDs) emitting at 410 nm were investigated. LDs were grown on semipolar (20 2 ¯ 1 ¯) bulk GaN substrates and fabricated into devices with cavity lengths ranging from 900 nm to 1800 nm. A 3-dB bandwidth of 5 GHz and 5 Gbit/s direct modulation with on-off keying were demonstrated, which were limited by the bandwidth of the photodetector used for the measurements. The differential gain of the LDs was determined to be 2.5 ± 0.5 × 10-16 cm2 by comparing the slope efficiency for different cavity lengths. Analysis of the frequency response showed that the K-factor, the gain compression factor, and the intrinsic maximum bandwidth were 0.33 ns, 7.4 × 10-17 cm3, and 27 GHz, respectively.

  2. Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells.

    PubMed

    Kowsz, Stacy J; Young, Erin C; Yonkee, Benjamin P; Pynn, Christopher D; Farrell, Robert M; Speck, James S; DenBaars, Steven P; Nakamura, Shuji

    2017-02-20

    We report a device that monolithically integrates optically pumped (20-21) III-nitride quantum wells (QWs) with 560 nm emission on top of electrically injected QWs with 450 nm emission. The higher temperature growth of the blue light-emitting diode (LED) was performed first, which prevented thermal damage to the higher indium content InGaN of the optically pumped QWs. A tunnel junction (TJ) was incorporated between the optically pumped and electrically injected QWs; this TJ enabled current spreading in the buried LED. Metalorganic chemical vapor deposition enabled the growth of InGaN QWs with high radiative efficiency, while molecular beam epitaxy was leveraged to achieve activated buried p-type GaN and the TJ. This initial device exhibited dichromatic optically polarized emission with a polarization ratio of 0.28. Future improvements in spectral distribution should enable phosphor-free polarized white light emission.

  3. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    NASA Astrophysics Data System (ADS)

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  4. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides.

    PubMed

    Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  5. The first quaternary lanthanide(III) nitride iodides: NaM{sub 4}N{sub 2}I{sub 7} (M=La-Nd)

    SciTech Connect

    Schurz, Christian M.; Schleid, Thomas

    2010-10-15

    In attempts to synthesize lanthanide(III) nitride iodides with the formula M{sub 2}NI{sub 3} (M=La-Nd), moisture-sensitive single crystals of the first quaternary sodium lanthanide(III) nitride iodides NaM{sub 4}N{sub 2}I{sub 7} (orthorhombic, Pna2{sub 1}; Z=4; a=1391-1401, b=1086-1094, c=1186-1211 pm) could be obtained. The dominating structural features are {sup 1}{sub {infinity}}{l_brace}[NM{sub 4/2}{sup e}]{sup 3+}{r_brace} chains of trans-edge linked [NM{sub 4}]{sup 9+} tetrahedra, which run parallel to the polar 2{sub 1}-axis [001]. Between the chains, direct bonding via special iodide anions generates cages, in which isolated [NaI{sub 6}]{sup 5-} octahedra are embedded. The IR spectrum of NaLa{sub 4}N{sub 2}I{sub 7} recorded from 100 to 1000 cm{sup -1} shows main bands at {upsilon}=337, 373 and 489 cm{sup -1}. With decreasing radii of the lanthanide trications these bands, which can be assigned as an influence of the vibrations of the condensed [NM{sub 4}]{sup 9+} tetrahedra, are shifted toward higher frequencies for the NaM{sub 4}N{sub 2}I{sub 7} series (M=La-Nd), following the lanthanide contraction. - Abstract: View at the main structural features of the NaM{sub 4}N{sub 2}I{sub 7} series (M=La-Nd): The {sup 1}{sub {infinity}}{l_brace}[NM{sub 4/2}{sup e}]{sup 3+}{r_brace} chains, consisting of trans-edge connected [NM{sub 4}]{sup 9+} tetrahedra, and the special kind of iodide anions, namely (I7){sup -}, form cages, in which isolated [NaI{sub 6}]{sup 5-} octahedra are embedded.

  6. Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-10-01

    We carried out a series of simulations analyzing the dependence of mirror reflectance, threshold current density, and differential efficiency on the scattering loss caused by the roughness of tin-doped indium oxide (ITO) intracavity contacts for 405 nm flip-chip III-nitride vertical-cavity surface-emitting lasers (VCSELs). From these results, we determined that the ITO root-mean-square (RMS) roughness should be <1 nm to minimize scattering losses in VCSELs. Motivated by this requirement, we investigated the surface morphology and optoelectronic properties of electron-beam (e-beam) evaporated ITO films, as a function of substrate temperature and oxygen flow and pressure. The transparency and conductivity were seen to increase with increasing temperature. Decreasing the oxygen flow and pressure resulted in an increase in the transparency and resistivity. Neither the temperature, nor oxygen flow and pressure series on single-layer ITO films resulted in highly transparent and conductive films with <1 nm RMS roughness. To achieve <1 nm RMS roughness with good optoelectronic properties, a multi-layer ITO film was developed, utilizing a two-step temperature scheme. The optimized multi-layer ITO films had an RMS roughness of <1 nm, along with a high transparency (˜90% at 405 nm) and low resistivity (˜2 × 10-4 Ω-cm). This multi-layer ITO e-beam deposition technique is expected to prevent p-GaN plasma damage, typically observed in sputtered ITO films on p-GaN, while simultaneously reducing the threshold current density and increasing the differential efficiency of III-nitride VCSELs.

  7. Mechanisms of Loss in Internal Quantum Efficiency in III-Nitride-based Blue-and Green-Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Huang, Li

    The overarching goals of the research conducted for this dissertation have been to understand the scientific reasons for the losses in the internal quantum efficiency (IQE) in Group III-nitride-based blue and especially green light-emitting diodes (LEDs) containing a multi-quantum well (MQW) active region and to simultaneously develop LED epitaxial structures to ameliorate these losses. The p-type AlGaN EBL was determined to be both mandatory and effective in the prevention of electron overflow from the MQW region into the p-type cladding layer and the resultant lowering of the IQE. The overflow phenomenon was partially due to the low concentration (˜ 5 x 1017 cm-3) and mobility (˜ 10 cm2/(V•s)) of the holes injected into the active region. Electroluminescence (EL) studies of LEDs without an EBL revealed a dominant emission from donor-acceptor pair recombination in the p-type GaN layer. The incorporation of a 90 nm compositionally graded In0-0.1 Ga1-0.9N buffer layer between each MQW and n-GaN cladding layer grown on an Al/SiC substrate resulted in an increase in the luminescence intensity and a blue-shift in the emission wavelength, as observed in photoluminescence (PL) spectra. The graded InGaN buffer layer reduced the stress and thus the piezoelectric field across the MQW; this improved the electron/hole overlap that, in turn, resulted in an enhanced radiative recombination rate and an increase in efficiency. A direct correlation was observed between an increase in the IQE measured in temperature-dependent PL (TDPL) and an increase in the roughness of all the upper InGaN QW/GaN barrier interfaces, as determined using cross-sectional transmission electron microscopy of the MQW. These results agreed in general with the average surface roughness values of the pit-free region on the top GaN barrier determined via atomic force microscopy and the average roughness values of all the interfaces in the MQW calculated from the FWHM of the emission peak in the PL

  8. Adiabatic transformation as a search tool for new topological insulators: Distorted ternary Li2AgSb-class semiconductors and related compounds

    NASA Astrophysics Data System (ADS)

    Lin, Hsin; Das, Tanmoy; Wang, Yung Jui; Wray, L. A.; Xu, S.-Y.; Hasan, M. Z.; Bansil, A.

    2013-03-01

    We demonstrate that the first-principles based adiabatic continuation approach is a very powerful and efficient tool for constructing topological phase diagrams and locating nontrivial topological insulator materials. Using this technique, we predict that the ternary intermetallic series Li2M'X, where M'=Cu, Ag, Au, or Cd and X=Sb, Bi, or Sn, hosts a number of topological insulators with remarkable functional variants and tunability. We also predict that several III-V semimetallic compounds are topologically nontrivial. We construct a topological phase diagram in the parameter space of the atomic numbers of atoms in Li2M'X compounds, which places a large number of topological materials presented in this work as well as in earlier studies within a single unified topological framework. Our results demonstrate the efficacy of adiabatic continuation as a useful tool for exploring topologically nontrivial alloying systems and for identifying new topological insulators even when the underlying lattice does not possess inversion symmetry, and the approaches based on parity analysis are not viable.

  9. Fiscal Year 2011 Director’s Strategic Initiative Final Report Heterogeneous Device Architectures Incorporating Nitride Semiconductors for Enhanced Functionality of Optoelectronic Devices

    DTIC Science & Technology

    2014-03-01

    localized states exist in the bandgap, SFs can give rise to quantum - well -like regions of zincblende-like material embedded in the wurtzite lattice...which illustrates the calculated band structure and carrier wavefunctions in the potential created by the quantum - well - like zincblende inclusions...gallium nitride (InGaN) terahertz sources. Specifically, we demonstrate the efficacy of using III-Nitride semiconductors to improve the quantum

  10. Template-assisted synthesis of III-nitride and metal-oxide nano-heterostructures using low-temperature atomic layer deposition for energy, sensing, and catalysis applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Biyikli, Necmi; Ozgit-Akgun, Cagla; Eren, Hamit; Haider, Ali; Uyar, Tamer; Kayaci, Fatma; Guler, Mustafa Ozgur; Garifullin, Ruslan; Okyay, Ali K.; Ulusoy, Gamze M.; Goldenberg, Eda

    2015-08-01

    Recent experimental research efforts on developing functional nanostructured III-nitride and metal-oxide materials via low-temperature atomic layer deposition (ALD) will be reviewed. Ultimate conformality, a unique propoerty of ALD process, is utilized to fabricate core-shell and hollow tubular nanostructures on various nano-templates including electrospun nanofibrous polymers, self-assembled peptide nanofibers, metallic nanowires, and multi-wall carbon nanotubes (MWCNTs). III-nitride and metal-oxide coatings were deposited on these nano-templates via thermal and plasma-enhanced ALD processes with thickness values ranging from a few mono-layers to 40 nm. Metal-oxide materials studied include ZnO, TiO2, HfO2, ZrO2, and Al2O3. Standard ALD growth recipes were modified so that precursor molecules have enough time to diffuse and penetrate within the layers/pores of the nano-template material. As a result, uniform and conformal coatings on high-surface area nano-templates were demonstrated. Substrate temperatures were kept below 200C and within the self-limiting ALD window, so that temperature-sensitive template materials preserved their integrity III-nitride coatings were applied to similar nano-templates via plasma-enhanced ALD (PEALD) technique. AlN, GaN, and InN thin-film coating recipes were optimized to achieve self-limiting growth with deposition temperatures as low as 100C. BN growth took place only for >350C, in which precursor decomposition occured and therefore growth proceeded in CVD regime. III-nitride core-shell and hollow tubular single and multi-layered nanostructures were fabricated. The resulting metal-oxide and III-nitride core-shell and hollow nano-tubular structures were used for photocatalysis, dye sensitized solar cell (DSSC), energy storage and chemical sensing applications. Significantly enhanced catalysis, solar efficiency, charge capacity and sensitivity performance are reported. Moreover, core-shell metal-oxide and III-nitride materials

  11. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    SciTech Connect

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  12. Alleviation of parasitic reactions for III-nitride epitaxy in MOCVD with a spatial separated source delivery method by controlling the main reaction type

    NASA Astrophysics Data System (ADS)

    Yang, Haojun; Wu, Haiyan; Hu, Wei; Ma, Ziguang; Jiang, Yang; Wang, Wenxin; Jia, Haiqiang; Zhou, Junming; Chen, Hong

    2017-05-01

    A spatial separated source delivery (SSSD) method has been proposed to alleviate parasitic reactions between group III precursors and ammonia (NH3) in gas phase using the MOCVD. AlGaN alloys and GaN films grown on sapphire has been prepared with this method. The influence of parasitic reactions on the qualities and properties of AlGaN and GaN films is investigated in detail. High-resolution X-ray diffraction (HRXRD) measurements show that the aluminum composition in materials rises up close to the ratio of trimethylaluminum (TMAl) supply when the supply ratio of TMAl is 0.2, 0.3 and 0.4 respectively, which demonstrates that the parasitic reactions are suppressed mostly. In-situ monitor reflectometer spectra for GaN show that the growth rate gets a 20% increase in comparison with materials grown without the SSSD method. Subsequently, the relationship between parasitic reactions and other reaction types are elucidated. The effect of the SSSD method on parasitic reactions is also systematically studied. Reactions are controlled to change from combination reactions to pyrolysis reactions and surface reactions with the SSSD method. A 2-inch GaN/AlGaN heterostructure is also prepared to evaluate the uniform electrical properties grown with this method. The result indicates that the SSSD method provides a better way to prepare high-quality III-nitride materials, especially for AlN and related alloys.

  13. Semipolar (202̅1) III-Nitride P-Down LEDs with in situ anneal to reduce the Mg memory effect

    NASA Astrophysics Data System (ADS)

    Forman, C.; Leonard, J.; Yonkee, B.; Pynn, C.; Mates, T.; Cohen, D.; Farrell, R.; Margalith, T.; DenBaars, S.; Speck, J.; Nakamura, S.

    2017-04-01

    P-down LEDs (PDLEDs) have the potential to open up new design schemes for III-nitride LEDs compared to conventional n-down LEDs (NDLEDs). For light emitters operating above 480 nm, the PDLED design enables the epitaxial advantages of semipolar (202̅1) and gains the polarization benefits of semipolar (202̅1̅). Here, we investigated semipolar (202̅1) InGaN-based PDLEDs in terms of their photoluminescence (PL) spectra and compositional profile. Despite concerns of the Mg memory effect degrading PDLED performance due to Mg-related non-radiative recombination centers, the PL intensities were nearly identical between the NDLED and PDLEDs, which emitted at wavelengths centered near 500 nm. Secondary ion mass spectrometry revealed that the Mg doping levels in the multiple quantum well (MQW) active region were comparable for each structure, with average values of 2.9×1018 cm-3 for the NDLED and 1.8×1018 cm-3 for the PDLED. Prior to growing the active region MQW, a 700 °C in situ anneal was carried out to reduce the average Mg concentration in the PDLED MQW to 3.7×1017 cm-3. Its hydrogen concentration remained at 5×1019 cm-3 in the p-type GaN region, which suggests that hydrogen passivation occurs during the growth of subsequent epitaxial layers in ammonia.

  14. Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report.

    SciTech Connect

    Shaner, Eric Arthur; Lee, Mark; Averitt, R. D. (Los Alamos National Laboratory); Highstrete, Clark; Taylor, A. J.; Padilla, W. J. (Los Alamos National Laboratory); Reno, John Louis; Wanke, Michael Clement; Allen, S. James (University of California Santa Barbara)

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  15. Improved thermodynamic analysis of gas reactions for compound semiconductor growth by vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Inatomi, Yuya; Kangawa, Yoshihiro; Kakimoto, Koichi; Koukitu, Akinori

    2017-03-01

    An improved thermodynamic analysis method for vapor-phase epitaxy is proposed. In the conventional method, the mass-balance constraint equations are expressed in terms of variations in partial pressure. Although the conventional method is appropriate for gas–solid reactions occurring near the growth surface, it is not suitable for gas reactions that involve changes in the number of gas molecules. We reconsider the constraint equations in order to predict the effect of gas reactions on semiconductor growth processes. To demonstrate the feasibility of the improved method, the growth process of group-III nitrides by metalorganic vapor-phase epitaxy has been investigated.

  16. Ternary Silver Halide Nanocrystals.

    PubMed

    Abeyweera, Sasitha C; Rasamani, Kowsalya D; Sun, Yugang

    2017-07-18

    Nanocrystalline silver halides (AgX) such as AgCl, AgBr, and AgI, a class of semiconductor materials with characteristics of both direct and indirect band gaps, represent the most crucial components in traditional photographic processing. The nanocrystal surfaces provide sensitivity specks that can turn into metallic silver, forming an invisible latent image, upon exposure to light. The photographic processing implies that the AgX nanoparticles possess unique properties. First, pristine AgX nanoparticles absorb light only at low efficiency to convert surface AgX into tiny clusters of silver atoms. Second, AgX nanoparticles represent an excellent class of materials to capture electrons efficiently. Third, small metallic silver clusters can catalyze the reduction of AgX nanoparticles to Ag nanoparticles in the presence of mild reducing reagents, known as self-catalytic reduction. These properties indicate that AgX nanoparticles can be partially converted to metallic silver with high precision, leading to the formation of hybrid AgX/Ag nanoparticles. The nanosized metallic Ag usually exhibit intense absorption bands in the visible spectral region due to their strong surface plasmon resonances, which make the AgX/Ag nanoparticles a class of promising visible-light-driven photocatalysts for environmental remediation and CO2 reduction. Despite the less attention paid to their ability of capturing electrons, AgX nanoparticles might be a class of ideal electron shuttle materials to bridge light absorbers and catalysts on which electrons can drive chemical transformations. In this Account, we focus on ternary silver halide alloy (TSHA) nanoparticles, containing two types of halide ions, which increase the composition complexity of the silver halide nanoparticles. Interdiffusion of halide ions between two types of AgX at elevated temperatures has been developed for fabricating ternary silver halide alloy crystals, such as silver chlorobromide optical fibers for infrared

  17. Microscopic Optical Characterization of Free Standing III-Nitride Substrates, ZnO Bulk Crystals, and III-V Structures for Non-Linear Optics. Part 2

    DTIC Science & Technology

    2010-05-18

    Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39-18 GIR : Materiales semiconductores y nanoestructuras para la optoelectrónica...de la Materia Condensada Edificio de i+d Paseo de Belen 1 47011 Valladolid, Spain GIR : Materiales semiconductores y nanoestructuras para la...380 400 420 440 460 480 500 520 540 560 580 600 620 nm 1 2 3 2 3 1 GIR : Materiales semiconductores y

  18. Demonstration of Complementary Ternary Graphene Field-Effect Transistors

    PubMed Central

    Kim, Yun Ji; Kim, So-Young; Noh, Jinwoo; Shim, Chang Hoo; Jung, Ukjin; Lee, Sang Kyung; Chang, Kyoung Eun; Cho, Chunhum; Lee, Byoung Hun

    2016-01-01

    Strong demand for power reduction in state-of-the-art semiconductor devices calls for novel devices and architectures. Since ternary logic architecture can perform the same function as binary logic architecture with a much lower device density and higher information density, a switch device suitable for the ternary logic has been pursued for several decades. However, a single device that satisfies all the requirements for ternary logic architecture has not been demonstrated. We demonstrated a ternary graphene field-effect transistor (TGFET), showing three discrete current states in one device. The ternary function was achieved by introducing a metal strip to the middle of graphene channel, which created an N-P-N or P-N-P doping pattern depending on the work function of the metal. In addition, a standard ternary inverter working at room temperature has been achieved by modulating the work function of the metal in a graphene channel. The feasibility of a ternary inverter indicates that a general ternary logic architecture can be realized using complementary TGFETs. This breakthrough will provide a key stepping-stone for an extreme-low-power computing technology. PMID:27991594

  19. Demonstration of Complementary Ternary Graphene Field-Effect Transistors.

    PubMed

    Kim, Yun Ji; Kim, So-Young; Noh, Jinwoo; Shim, Chang Hoo; Jung, Ukjin; Lee, Sang Kyung; Chang, Kyoung Eun; Cho, Chunhum; Lee, Byoung Hun

    2016-12-19

    Strong demand for power reduction in state-of-the-art semiconductor devices calls for novel devices and architectures. Since ternary logic architecture can perform the same function as binary logic architecture with a much lower device density and higher information density, a switch device suitable for the ternary logic has been pursued for several decades. However, a single device that satisfies all the requirements for ternary logic architecture has not been demonstrated. We demonstrated a ternary graphene field-effect transistor (TGFET), showing three discrete current states in one device. The ternary function was achieved by introducing a metal strip to the middle of graphene channel, which created an N-P-N or P-N-P doping pattern depending on the work function of the metal. In addition, a standard ternary inverter working at room temperature has been achieved by modulating the work function of the metal in a graphene channel. The feasibility of a ternary inverter indicates that a general ternary logic architecture can be realized using complementary TGFETs. This breakthrough will provide a key stepping-stone for an extreme-low-power computing technology.

  20. Demonstration of Complementary Ternary Graphene Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Kim, Yun Ji; Kim, So-Young; Noh, Jinwoo; Shim, Chang Hoo; Jung, Ukjin; Lee, Sang Kyung; Chang, Kyoung Eun; Cho, Chunhum; Lee, Byoung Hun

    2016-12-01

    Strong demand for power reduction in state-of-the-art semiconductor devices calls for novel devices and architectures. Since ternary logic architecture can perform the same function as binary logic architecture with a much lower device density and higher information density, a switch device suitable for the ternary logic has been pursued for several decades. However, a single device that satisfies all the requirements for ternary logic architecture has not been demonstrated. We demonstrated a ternary graphene field-effect transistor (TGFET), showing three discrete current states in one device. The ternary function was achieved by introducing a metal strip to the middle of graphene channel, which created an N-P-N or P-N-P doping pattern depending on the work function of the metal. In addition, a standard ternary inverter working at room temperature has been achieved by modulating the work function of the metal in a graphene channel. The feasibility of a ternary inverter indicates that a general ternary logic architecture can be realized using complementary TGFETs. This breakthrough will provide a key stepping-stone for an extreme-low-power computing technology.

  1. III-Nitride Based Optoelectronics

    DTIC Science & Technology

    2010-01-01

    order to satisfy the need of high sensitivity ultraviolet ( UV ) detectors for visible- and solar - blind applications. Examples of this research are...quantum dot baed LEDs, hybrid ZnO-InGaN based green LEDs, multi-quantum well detectors that show internal gain, and nano-structured UV detectors with...show single photon detection capabilities.79-80 A wide variety of (Al,Ga)N detector structures have been extensively studied for visible- and solar

  2. Polar semiconductor heterojunction structure energy band diagram considerations

    SciTech Connect

    Lin, Shuxun; Wen, Cheng P. Wang, Maojun; Hao, Yilong

    2016-03-28

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  3. Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K. (Inventor); Hepp, Aloysius F. (Inventor); Harris, Jerry D. (Inventor); Jin, Michael Hyun-Chul (Inventor); Castro, Stephanie L. (Inventor)

    2006-01-01

    A single source precursor for depositing ternary I-III-VI.sub.2 chalcopyrite materials useful as semiconductors. The single source precursor has the I-III-VI.sub.2 stoichiometry built into a single precursor molecular structure which degrades on heating or pyrolysis to yield the desired I-III-VI.sub.2 ternary chalcopyrite. The single source precursors effectively degrade to yield the ternary chalcopyrite at low temperature, e.g. below 500.degree. C., and are useful to deposit thin film ternary chalcopyrite layers via a spray CVD technique. The ternary single source precursors according to the invention can be used to provide nanocrystallite structures useful as quantum dots. A method of making the ternary single source precursors is also provided.

  4. Effect of Temperature on GaGdO/GaN Metal Oxide Semiconductor Field Effect Transistors

    SciTech Connect

    Abernathy, C.R.; Baca, A.; Chu, S.N.G.; Hong, M.; Lothian, J.R.; Marcus, M.A.; Pearton, S.J.; Ren, F.; Schurman, M.J.

    1998-10-14

    GaGdO was deposited on GaN for use as a gate dielectric in order to fabricate a depletion metal oxide semiconductor field effect transistor (MOSFET). This is the fmt demonstration of such a device in the III-Nitride system. Analysis of the effect of temperature on the device shows that gate leakage is significantly reduced at elevated temperature relative to a conventional metal semiconductor field effeet transistor (MESFET) fabricated on the same GaN layer. MOSFET device operation in fact improved upon heating to 400 C. Modeling of the effeet of temperature on contact resistance suggests that the improvement is due to a reduction in the parasitic resistances present in the device.

  5. True ternary fission

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, K. R.; Balasubramaniam, M.; von Oertzen, W.

    2015-04-01

    The study of the ternary fission of nuclei has received new interest recently. It is of general interest for nuclear dynamics, although the process is very rare. In the present work, we discuss the possibilities of true ternary fission (fragment masses A >30 ) in 252Cf for different mass splits. These mass splits are strongly favored in a collinear geometry. Based on the three cluster model (TCM), it is shown that the true ternary fission into fragments with almost equal masses is one of the possible fission modes in 252Cf . For general decays it is shown that the formation of the lightest fragment at the center has the highest probability. Further the formation of tin isotopes and/or other closed shell fragments are favored. For the decay products the presence of closed shell nuclei among the three fragments enhances the decay probabilities.

  6. Phase relations and structural properties of the ternary narrow gap semiconductors Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}({delta}=0.15) and Zn{sub 9}Sb{sub 6}In{sub 2}

    SciTech Connect

    Wu Yang; Tenga, Andreas; Lidin, Sven; Haeussermann, Ulrich

    2010-07-15

    A systematic study of the Zn-rich corner of the ternary system Zn-Sb-In revealed the presence of two ternary compounds: stable Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}({delta}=0.15) and metastable Zn{sub 9}Sb{sub 6}In{sub 2} with closely related crystal structures. Their common motif is a tetragonal basic structure of 3{sup 2}434 nets formed by the Sb atoms. The nets are stacked in antiposition to yield layers of square antiprisms sharing edges plus intervening tetracapped tetrahedra (tetreadersterns). The majority of Zn atoms occupy peripheral tetrahedra of such tetraedersterns, which produces frameworks with a composition 'ZnSb'. These frameworks represent orthorhombic superstructures: (2x1x1) for Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}(Z=4) and (2x3x1) for Zn{sub 9}Sb{sub 6}In{sub 2} (Z=8) with respect to the tetragonal arrangement of Sb atoms. The In and remaining Zn atoms are distributed in the channels formed by the square antiprisms. Phase relations in the Zn-Sb-In system are complex. Crystals of metastable Zn{sub 9}Sb{sub 6}In{sub 2} are regularly intergrown with various amounts of Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}. Additionally, a monoclinic variant to orthorhombic Zn{sub 9}Sb{sub 6}In{sub 2} could be identified. Zn{sub 9}Sb{sub 6}In{sub 2} decomposes exothermically into a mixture of Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}, Zn{sub 4}Sb{sub 3} and elemental Zn at around 480 K. Both Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}and Zn{sub 9}Sb{sub 6}In{sub 2} are poor metals with resistivity values that are characteristic of heavily doped or degenerate semiconductors (0.2-3 m {Omega} cm at room temperature). - Graphical abstract: A metastable intermetallic compound with the composition Zn{sub 9}Sb{sub 6}In{sub 2} has been identified in the ternary system Zn-Sb-In. Its structure relates to tetragonal CuAl{sub 2} in that it contains 3{sup 2}434 nets (formed by the Sb atoms) that are stacked in antiposition orientation.

  7. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes

    PubMed Central

    Ahn, Doyeol; Park, Seoung-Hwan

    2016-01-01

    In group-III nitrides in use for white light-emitting diodes (LEDs), optical gain, measure of luminous efficiency, is very low owing to the built-in electrostatic fields, low exciton binding energy, and high-density misfit dislocations due to lattice-mismatched substrates. Cuprous halides I-VII semiconductors, on the other hand, have negligible built-in field, large exciton binding energies and close lattice matched to silicon substrates. Recent experimental studies have shown that the luminescence of I-VII CuCl grown on Si is three orders larger than that of GaN at room temperature. Here we report yet unexplored potential of cuprous halides systems by investigating the optical gain of CuCl/CuI quantum wells. It is found that the optical gain and the luminescence are much larger than that of group III-nitrides due to large exciton binding energy and vanishing electrostatic fields. We expect that these findings will open up the way toward highly efficient cuprous halides based LEDs compatible to Si technology. PMID:26880097

  8. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors

    NASA Astrophysics Data System (ADS)

    Biyikli, Necmi; Haider, Ali

    2017-09-01

    In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.

  9. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  10. MBE growth of ordered III-nitride nano/microrods: from classical/quantum light sources to nanotransistors and pseudosubstrates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Calleja, Enrique

    2017-02-01

    Selective Area Growth (SAG) by Molecular Beam Epitaxy (MBE) is one of the best approaches to develop a variety of nanostructures on different substrates. Ordered axial InGaN/GaN nanoLED structures were grown on GaN/sapphire templates as well as on GaN buffered Si(111) substrates. Core-shell InGaN/GaN microstructures can also be grown following two approaches: i) from top-down (etched) GaN cores and ii) from bottom-up GaN cores. In both cases a subsequent conformal growth of InGaN layers was achieved. Based on this approach, core-shell nanoLED arrays were successfully fabricated. A basic aspect of SAG refers to the initial stages of nanocrystals nucleation within the nanoholes that lead to their stable hexagonal structure and the efficient filtering of dislocations coming from the substrate, strongly dependent on the nano/microrod geometry. A common observed feature is that In incorporation depends strongly on the crystal plane considered, either m- or r-plane, giving rise to two InGaN related emissions. Exploiting this effect, dot-in-a-wire InGaN structures were grown embedded in ordered GaN nanorods acting as Single Photon Emitters. Nano/microrods can also be used as nanoFET transistors with a semi-cylindrical gate direct contact allowing for a very tight electrostatic control of the channel. SAG is also used to grow ordered nanostructures on semi-polar and non-polar orientations GaN/sapphire templates with the aim to fabricate ternary pseudo-substrates with tailored lattice constant and very high crystal quality.

  11. Measurement and analysis of internal loss and injection efficiency for continuous-wave blue semipolar ( 20 2 ¯ 1 ¯ ) III-nitride laser diodes with chemically assisted ion beam etched facets

    NASA Astrophysics Data System (ADS)

    Becerra, Daniel L.; Kuritzky, Leah Y.; Nedy, Joseph; Saud Abbas, Arwa; Pourhashemi, Arash; Farrell, Robert M.; Cohen, Daniel A.; DenBaars, Steven P.; Speck, James S.; Nakamura, Shuji

    2016-02-01

    Continuous-wave blue semipolar ( 20 2 ¯ 1 ¯ ) III-nitride laser diodes were fabricated with highly vertical, smooth, and uniform mirror facets produced by chemically assisted ion beam etching. Uniform mirror facets are a requirement for accurate experimental determination of internal laser parameters, including internal loss and injection efficiency, which were determined to be 9 cm-1 and 73%, respectively, using the cavity length dependent method. The cavity length of the uncoated devices was varied from 900 μm to 1800 μm, with threshold current densities ranging from 3 kA/cm2 to 9 kA/cm2 and threshold voltages ranging from 5.5 V to 7 V. The experimentally determined internal loss was found to be in good agreement with a calculated value of 9.5 cm-1 using a 1D mode solver. The loss in each layer was calculated and in light of the analysis several modifications to the laser design are proposed.

  12. Efficient III-Nitride MIS-HEMT devices with high-κ gate dielectric for high-power switching boost converter circuits

    NASA Astrophysics Data System (ADS)

    Mohanbabu, A.; Mohankumar, N.; Godwin Raj, D.; Sarkar, Partha; Saha, Samar K.

    2017-03-01

    The paper reports the results of a systematic theoretical study on efficient recessed-gate, double-heterostructure, and normally-OFF metal-insulator-semiconductor high-electron mobility transistors (MIS-HEMTs), HfAlOx/AlGaN on Al2O3 substrate. In device architecture, a thin AlGaN layer is used in the AlGaN graded barrier MIS-HEMTs that offers an excellent enhancement-mode device operation with threshold voltage higher than 5.3 V and drain current above 0.64 A/mm along with high on-current/off-current ratio over 107 and subthreshold slope less than 73 mV/dec. In addition, a high OFF-state breakdown voltage of 1200 V is achieved for a device with a gate-to-drain distance and field-plate length of 15 μm and 5.3 μm, respectively at a drain current of 1 mA/mm with a zero gate bias, and the substrate grounded. The numerical device simulation results show that in comparison to a conventional AlGaN/GaN MIS-HEMT of similar design, a graded barrier MIS-HEMT device exhibits a better interface property, remarkable suppression of leakage current, and a significant improvement of breakdown voltage for HfAlOx gate dielectric. Finally, the benefit of HfAlOx graded-barrier AlGaN MIS-HEMTs based switching devices is evaluated on an ultra-low-loss converter circuit.

  13. New ternary praseodymium germanides

    SciTech Connect

    Fedyna, M.F.; Pecharskii, V.K.; Bodak, O.I.

    1987-09-01

    Using the powder method (DRON-2.0 diffractometer; Fe K/sub ..cap alpha../ radiation; theta/2theta recording method, sin theta/sub max//lambda = 5 nm/sup -1/), the crystal structure of the ternary compounds Pr/sub 1-x/(NiGe)/sub 13/ (x = 0.24), Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 1-x/(CoGe)/sub 13/ (x = 0.31), Pr/sub 2/Co/sub 3/Ge/sub 5/, and PrFe/sub 1-x/Ge/sub 3/ (x = 0.46) were determined. The germanides P/sub 1-x/(NiGe)/sub 13/ and Pr/sub 1-x/(NiGe)/sub 13/ belong to the structural type of CeNi/sub 8.5/Si/sub 4.5/ and the ternary compounds Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 2/Co/sub 3/Ge/sub 5/, and PrFe/sub 1-x/Ge/sub 3/ crystallize in the structural types of U/sub 3/Ni/sub 4/Si/sub 4/, U/sub 2/Co/sub 3/Si/sub 5/, and BaNiSn/sub 3/. During investigations of the equilibrium phase diagrams of the systems Pr-/Fe, Co, Ni/-Ge, new ternary compounds were discovered, viz., Pr/sub 1-x/(NiGe)/sub 13/ (X = 0.24), Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 1-x/(CoGe)/sub 13/ (x = 0.31), Pr/sub 2/Co/sub 3/Ge/sub 5/, PrFe/sub 1-x/Ge/sub 3/ (x = 0.46).

  14. A novel ternary quantum-dot cell for solving majority voter gate problem

    NASA Astrophysics Data System (ADS)

    Tehrani, Mohammad A.; Bahrami, Safura; Navi, Keivan

    2014-03-01

    Since the complementary metal-oxide semiconductor (CMOS) technology has experienced many serious problems in fulfilling the need for more robust and efficient circuits, some emerging nanotechnologies have been introduced as the candidates for replacing CMOS. Quantum-dot cellular automata (QCA) is one of the promising nanotechnology candidates with majority function as its fundamental logic element. It has one implementation in binary QCA and several implantations in ternary QCA, but none of the ternary QCA implementations are as efficient as the binary one. In this paper, a new cell configuration for ternary QCA is proposed which works as well as previous cell configuration. Also, a new design for ternary QCA majority function is proposed which performs faster and occupies less area.

  15. Spin-dependent transport in elemental and compound semiconductors and nanostructures

    NASA Astrophysics Data System (ADS)

    Brandt, M. S.; Goennenwein, S. T. B.; Graf, T.; Huebl, H.; Lauterbach, S.; Stutzmann, M.

    2004-07-01

    The results obtained on spin-dependent processes via electrically detected magnetic resonance (EDMR), capacitance-detected magnetic resonance (CDMR) and noise-detected magnetic resonance (NDMR) in a variety of different semiconductor materials, devices and nanostructures are reviewed. Similar to optically detected magnetic resonance (ODMR), these detection methods are significantly more sensitive for the detection of paramagnetic states and defects than conventional electron spin resonance (ESR) and can be applied also to semiconductors with an indirect band gap. Using GaAs/AlGaAs-heterostructures and thin films of amorphous hydrogenated silicon (a-Si:H) as examples, the physics of spin-dependent recombination and its detection via spin-dependent photoconductivity is briefly recapitulated. EDMR on pn-diodes from GaP, GaAsP and group-III nitrides, resonant spin-spin scattering in strained Si/SiGe heterostructures, new hysteresis effects in the longitudinal magneto-transport through two-dimensional electron gases and edge-magneto plasmons in different III-V heterostructures are discussed. Various aspects of ferromagnetic III-V semiconductors are investigated, including doping of GaN with Mn, inhomogeneous magnetization of GaMnAs and control of ferromagnetism in semiconductors via hydrogen. Finally, preliminary EDMR experiments on the detection of single paramagnetic defects in MOSFETs via random telegraph noise are presented.

  16. Pulsed laser ablation growth and doping of epitaxial compound semiconductor films

    SciTech Connect

    Lowndes, D.H.; Rouleau, C.M.; Geohegan, D.B.; Budai, J.D.; Poker, D.B.; Puretzky, A.A.; Strauss, M.A.; Pedraza, A.J.; Park, J.W.

    1995-12-01

    Pulsed laser ablation (PLA) has several characteristics that are potentially attractive for the growth and doping of chemically complex compound semiconductors including (1) stoichiometric (congruent) transfer of composition from target to film, (2) the use of reactive gases to control film composition and/or doping via energetic-beam-induced reactions, and (3) low-temperature nonequilibrium phase formation in the laser-generated plasma ``plume.`` However, the electrical properties of compound semiconductors are far more sensitive to low concentrations of defects than are the oxide metals/ceramics for which PLA has been so successful. Only recently have doped epitaxial compound semiconductor films been grown by PLA. Fundamental studies are being carried out to relate film electrical and microstructural properties to the energy distribution of ablated species, to the temporal evolution of the ablation pulse in ambient gases, and to beam assisted surface and/or gas-phase reactions. In this paper the authors describe results of ex situ Hall effect, high-resolution x-ray diffraction, transmission electron microscopy, and Rutherford backscattering measurements that are being used in combination with in situ RHEED and time-resolved ion probe measurements to evaluate PLA for growth of doped epitaxial compound semiconductor films and heterostructures. Examples are presented and results analyzed for doped II-VI, I-III-VI, and column-III nitride materials grown recently in this and other laboratories.

  17. Defect identification in semiconductors with positron annihilation: experiment and theory

    NASA Astrophysics Data System (ADS)

    Tuomisto, Filip

    2015-03-01

    Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.

  18. Ternary Fission of CF Isotopes

    NASA Astrophysics Data System (ADS)

    Vermote, S.; Wagemans, C.; Serot, O.; Soldner, T.; Geltenbort, P.; Almahamid, I.; Lukens, W.; Floyd, J.

    2008-04-01

    During the last years, different Cm and Cf isotopes have been studied by our research group in the frame of a systematic investigation of gas emission characteristics in ternary fission. In this paper we report on the energy distribution and the emission probability of 3H, 4He and 6He particles emitted in neutron induced ternary fission of 249Cf and 251Cf. Both measurements were performed at the high flux reactor of the Institute Laue-Langevin (Grenoble, France), using suited ΔE-E telescope detectors, consisting of well-calibrated silicon surface barrier detectors. In this way, the available database can be expanded with new results for Z=98 isotopes, for which the information on neutron induced ternary fission is almost nonexistent. These measurements are important for the systematic investigation of gas emission characteristics in ternary fission.

  19. Ternary complexes in analytical chemistry.

    PubMed

    Babko, A K

    1968-08-01

    Reactions between a complex AB and a third component C do not always proceed by a displacement mechanism governed by the energy difference of the chemical bonds A-B and A-C. The third component often becomes part of the complex, forming a mixed co-ordination sphere or ternary complex. The properties of this ternary complex ABC are not additive functions of the properties of AB and AC. Such reactions are important in many methods in analytical chemistry, particularly in photometric analysis, extractive separation, masking, etc. The general properties of the four basic types of ternary complex are reviewed and examples given. The four types comprise the systems (a) metal ion, electronegative ligand, organic base, (b) one metal ion, two different electronegative ligands, (c) ternary heteropoly acids, and (d) two different metal ions, one ligand.

  20. Ternary boride product and process

    NASA Technical Reports Server (NTRS)

    Clougherty, Edward V. (Inventor)

    1976-01-01

    A hard, tough, strong ceramic body is formed by hot pressing a mixture of a powdered metal and a powdered metal diboride. The metal employed is zirconium, titanium or hafnium and the diboride is the diboride of a different member of the same group of zirconium, titanium or hafnium to form a ternary composition. During hot pressing at temperatures above about 2,000.degree.F., a substantial proportion of acicular ternary monoboride is formed.

  1. Device Processing Improvements in III-Nitrides

    DTIC Science & Technology

    2007-11-02

    Engineering University of Florida Gainesville, FL 32611 [gEGQUAiai’i UtSSWJO&\\ PROGRAM ACCOMPLISHMENTS Etching Wet Etching Only molten salts such as KOH...depleted sample. These results indicate that at temperatures where fast etch rates occur, the electrons in the n-type sample are part of the chemical...plasma composition and ion density in ICl/Ar plasma chemistries. Very fast etch rates were achieved for GaN, InN and InGaN in ICl/Ar chemistries. At

  2. Defects in III-nitride microdisk cavities

    NASA Astrophysics Data System (ADS)

    Ren, C. X.; Puchtler, T. J.; Zhu, T.; Griffiths, J. T.; Oliver, R. A.

    2017-03-01

    Nitride microcavities offer an exceptional platform for the investigation of light-matter interactions as well as the development of devices such as high efficiency light emitting diodes (LEDs) and low-threshold nanolasers. Microdisk geometries in particular are attractive for low-threshold lasing applications due to their ability to support high finesse whispering gallery modes (WGMs) and small modal volumes. In this article we review the effect of defects on the properties of nitride microdisk cavities fabricated using photoelectrochemical etching of an InGaN sacrificial superlattice (SSL). Threading dislocations originating from either the original GaN pseudosubstrate are shown to hinder the undercutting of microdisk cavities during the photoelectric chemical etching process resulting in whiskers of unetched material on the underside of microdisks. The unetched whiskers provide a pathway for light to escape, reducing microdisk Q-factor if located in the region occupied by the WGMs. Additionally, dislocations can affect the spectral stability of quantum dot emitters, thus hindering their effective integration in microdisk cavities. Though dislocations are clearly undesirable, the limiting factor on nitride microdisk Q-factor is expected to be internal absorption, indicating that the further optimisation of nitride microdisk cavities must incorporate both the elimination of dislocations and careful tailoring of the active region emission wavelength and background doping levels.

  3. Group-III Nitride Field Emitters

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak; Berishev, Igor

    2008-01-01

    Field-emission devices (cold cathodes) having low electron affinities can be fabricated through lattice-mismatched epitaxial growth of nitrides of elements from group III of the periodic table. Field emission of electrons from solid surfaces is typically utilized in vacuum microelectronic devices, including some display devices. The present field-emission devices and the method of fabricating them were developed to satisfy needs to reduce the cost of fabricating field emitters, make them compatible with established techniques for deposition of and on silicon, and enable monolithic integration of field emitters with silicon-based driving circuitry. In fabricating a device of this type, one deposits a nitride of one or more group-III elements on a substrate of (111) silicon or other suitable material. One example of a suitable deposition process is chemical vapor deposition in a reactor that contains plasma generated by use of electron cyclotron resonance. Under properly chosen growth conditions, the large mismatch between the crystal lattices of the substrate and the nitride causes strains to accumulate in the growing nitride film, such that the associated stresses cause the film to crack. The cracks lie in planes parallel to the direction of growth, so that the growing nitride film becomes divided into microscopic growing single-crystal columns. The outer ends of the fully-grown columns can serve as field-emission tips. By virtue of their chemical compositions and crystalline structures, the columns have low work functions and high electrical conductivities, both of which are desirable for field emission of electrons. From examination of transmission electron micrographs of a prototype device, the average column width was determined to be about 100 nm and the sharpness of the tips was determined to be characterized by a dimension somewhat less than 100 nm. The areal density of the columns was found to about 5 x 10(exp 9)/sq cm . about 4 to 5 orders of magnitude greater than the areal density of tips in prior field-emission devices. The electric field necessary to turn on the emission current and the current per tip in this device are both lower than in prior field-emission devices, such that it becomes possible to achieve longer operational lifetime. Moreover, notwithstanding the lower current per tip, because of the greater areal density of tips, it becomes possible to achieve greater current density averaged over the cathode area. The thickness of the grown nitride film (equivalently, the length of the columns) could lie between about 0.5 microns and a few microns; in any event, a thickness of about 1 micron is sufficient and costs less than do greater thicknesses. It may be possible to grow nitride emitter columns on glass or other substrate materials that cost less than silicon does. What is important in the choice of substrate material is the difference between the substrate and nitride crystalline structures. Inasmuch as the deposition process is nondestructive, an ability to grow emitter columns on a variety of materials would be advantageous in that it would facilitate the integration of field-emitter structures onto previously processed integrated circuits.

  4. High-Resolution Group III Nitride Microdisplays

    DTIC Science & Technology

    2011-01-01

    gallium nitride ( InGaN ), the tunable emission wavelength of InGaN , and the ability of the LEDs to be integrated with other functional devices. III...Grayscale projected image of a leopard from a green video graphics array indium gallium nitride ( InGaN ) microdisplay (640 480 pixels, each 12m in size...design and fabrication of an active matrix driver integrated circuit. Finally, it required hybrid integration of the InGaN LED array with the

  5. Surface Stability and Growth Kinetics of Compound Semiconductors: An Ab Initio-Based Approach

    PubMed Central

    Kangawa, Yoshihiro; Akiyama, Toru; Ito, Tomonori; Shiraishi, Kenji; Nakayama, Takashi

    2013-01-01

    We review the surface stability and growth kinetics of III-V and III-nitride semiconductors. The theoretical approach used in these studies is based on ab initio calculations and includes gas-phase free energy. With this method, we can investigate the influence of growth conditions, such as partial pressure and temperature, on the surface stability and growth kinetics. First, we examine the feasibility of this approach by comparing calculated surface phase diagrams of GaAs(001) with experimental results. In addition, the Ga diffusion length on GaAs(001) during molecular beam epitaxy is discussed. Next, this approach is systematically applied to the reconstruction, adsorption and incorporation on various nitride semiconductor surfaces. The calculated results for nitride semiconductor surface reconstructions with polar, nonpolar, and semipolar orientations suggest that adlayer reconstructions generally appear on the polar and the semipolar surfaces. However, the stable ideal surface without adsorption is found on the nonpolar surfaces because the ideal surface satisfies the electron counting rule. Finally, the stability of hydrogen and the incorporation mechanisms of Mg and C during metalorganic vapor phase epitaxy are discussed. PMID:28811438

  6. Theoretical Studies of Deep Impurity Levels in Ternary Semiconductor Alloys.

    DTIC Science & Technology

    2014-09-26

    degradation’ We have proposed a mechanism of Ill-V rapid laser degradation (Fig. 3) and a means of inhibiting the mechanism [127]. We have proposed...that dangling bonds form self-reproducing non-radiative killer centers that assist the * "growth of dislocations. The degradation mechanism can be...scattering by defects is not the dominant scattering mechanism , and the central-cell scattering limits the mobility. D. ressure dependence of deep levels

  7. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  8. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  9. Macroporous Semiconductors

    PubMed Central

    Föll, Helmut; Leisner, Malte; Cojocaru, Ala; Carstensen, Jürgen

    2010-01-01

    Pores in single crystalline semiconductors come in many forms (e.g., pore sizes from 2 nm to > 10 µm; morphologies from perfect pore crystal to fractal) and exhibit many unique properties directly or as nanocompounds if the pores are filled. The various kinds of pores obtained in semiconductors like Ge, Si, III-V, and II-VI compound semiconductors are systematically reviewed, emphasizing macropores. Essentials of pore formation mechanisms will be discussed, focusing on differences and some open questions but in particular on common properties. Possible applications of porous semiconductors, including for example high explosives, high efficiency electrodes for Li ion batteries, drug delivery systems, solar cells, thermoelectric elements and many novel electronic, optical or sensor devices, will be introduced and discussed.

  10. Status and prospects for ternary organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Lu, Luyao; Kelly, Mary Allison; You, Wei; Yu, Luping

    2015-08-01

    In the past few years, ternary organic solar cells (OSCs) featuring multiple donor or acceptor materials in the active layer have emerged as a promising structure to simultaneously improve all solar cell parameters compared with traditional binary OSCs. Power conversion efficiencies around 10% have been achieved for conjugated polymers in a ternary structure, showing the great potential of ternary systems. In this review, we summarize progress in developing ternary OSCs and discuss many of the designs, chemistries and mechanisms that have been investigated. We conclude by highlighting the challenges and future directions for further development in the field of ternary blend OSCs.

  11. Reproducible bipolar resistive switching in entire nitride AlN/n-GaN metal-insulator-semiconductor device and its mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Yiren; Song, Hang; Jiang, Hong; Li, Zhiming; Zhang, Zhiwei; Sun, Xiaojuan; Li, Dabing; Miao, Guoqing

    2014-11-01

    Reproducible bipolar resistive switching characteristics are demonstrated in entire nitride AlN/n-GaN metal-insulator-semiconductor devices. The mechanism involved confirms to trap-controlled space charge limited current theory and can be attributed to the nitrogen vacancies of AlN serving as electron traps that form/rupture electron transport channel by trapping/detrapping electrons. This study will lead to the development of in-situ growth of group-III nitrides by metal-organic chemical vapor deposition as a candidate for next-generation nonvolatile memory device. Moreover, it will be benefit to structure monolithic integrated one-transistor-one-resistor memory with nitride high electron mobility transistors.

  12. Reproducible bipolar resistive switching in entire nitride AlN/n-GaN metal-insulator-semiconductor device and its mechanism

    SciTech Connect

    Chen, Yiren; Song, Hang E-mail: lidb@ciomp.ac.cn; Jiang, Hong; Li, Zhiming; Zhang, Zhiwei; Sun, Xiaojuan; Li, Dabing E-mail: lidb@ciomp.ac.cn; Miao, Guoqing

    2014-11-10

    Reproducible bipolar resistive switching characteristics are demonstrated in entire nitride AlN/n-GaN metal-insulator-semiconductor devices. The mechanism involved confirms to trap-controlled space charge limited current theory and can be attributed to the nitrogen vacancies of AlN serving as electron traps that form/rupture electron transport channel by trapping/detrapping electrons. This study will lead to the development of in-situ growth of group-III nitrides by metal-organic chemical vapor deposition as a candidate for next-generation nonvolatile memory device. Moreover, it will be benefit to structure monolithic integrated one-transistor-one-resistor memory with nitride high electron mobility transistors.

  13. Microstructure of nitride semiconductors for ultra-violet light emitters

    NASA Astrophysics Data System (ADS)

    Liu, Rong

    Group III-nitride semiconductors are important materials for the fabrication of light-emitting-diodes (LEDs) and laser diodes operating in the blue-ultraviolet region. While their unique physical properties have made it possible to fabricate high-efficiency blue devices, the ultraviolet (UV) counterparts face many challenges. High-performance, nitride-based UV-LEDs should revolutionize the general lighting technology. In the near future, fluorescent bulbs are expected to be replaced by long-life and compact-size UV-LEDs coated with phosphors. This dissertation addresses the challenges facing the development of such UV-emitting nitride semiconductor materials. Three critical issues need to be resolved in order to fabricate high-performance UV-LEDs based on aluminum gallium nitride (AlGaN) alloys: (a) the growth of crack-free AlGaN films, (b) the elimination of crystalline defects, and (c) control of doping. In order to address these issues, epitaxy on a new substrate, ZrB2, has been studied. This substrate is closely matched to AlGaN and permits minimization of residual strain due to lattice and thermal-expansion mismatch and thus avoids the formation of cracks. The growth of crack-free AlGaN using facet-controlled epitaxial lateral overgrowth has also been studied. Plastic relaxation mechanism of mismatch strain has been understood by detailed characterization of the microstructure. The defect density has been reduced by more than one order of magnitude using these approaches, with a significant improvement in the UV-LEDs' efficiency. Distinct dopant incorporation behavior has been observed in lateral overgrowth. The effects of silicon doping on the optical properties and microstructure of AlGaN/GaN quantum wells have also been investigated. These studies have resulted in significant improvement of UV-LEDs' performance. Finally, recommendations for further work are made.

  14. Lazarevicite-type short-range ordering in ternary III-V nanowires

    NASA Astrophysics Data System (ADS)

    Schnedler, M.; Lefebvre, I.; Xu, T.; Portz, V.; Patriarche, G.; Nys, J.-P.; Plissard, S. R.; Caroff, P.; Berthe, M.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Grandidier, B.

    2016-11-01

    Stabilizing ordering instead of randomness in alloy semiconductor materials is a powerful means to change their physical properties. We used scanning tunneling and transmission electron microscopies to reveal the existence of an unrecognized ordering in ternary III-V materials. The lazarevicite short-range order, found in the shell of InAs1 -xSbx nanowires, is driven by the strong Sb-Sb repulsion along <110 > atomic chains during their incorporation on unreconstructed {110 } sidewalls. Its spontaneous formation under group-III-rich conditions of growth offers the prospect to broaden the limited classes of ordered structures occurring in III-V semiconductor alloys.

  15. A survey of ohmic contacts to III-V compound semiconductors

    SciTech Connect

    Baca, A.G.; Zolper, J.C.; Briggs, R.D.; Ren, F.; Pearton, S.J.

    1997-04-01

    A survey of ohmic contact materials and properties to GaAs, InP, GaN will be presented along with critical issues pertaining to each semiconductor material. Au-based alloys (e.g., GeAuNi for n-type GaAs) are the most commonly used contacts for GaAs and InP materials for both n- and p-type contacts due to the excellent contact resistivity, reliability, and usefulness over a wide range of doping levels. Research into new contacting schemes for these materials has focused on addressing limitations of the conventional Au-alloys in thermal stability, propensity for spiking, poor edge definition, and new approaches for a non-alloyed contact. The alternative contacts to GaAs and InP include alloys with higher temperature stability, contacts based on solid phase regrowth, and contacts that react with the substrate to form lower bandgap semiconductors alloys at the interface. A new area of contact studies is for the wide bandgap group III-Nitride materials. At present, low resistivity ohmic contact to p-type GaN has not been obtained primarily due to the large acceptor ionization energy and the resultant difficulty in achieving high free hole concentrations at room temperature. For n-type GaN, however, significant progress has been reported with reactive Ti-based metalization schemes or the use of graded InGaN layers. The present status of these approaches will be reviewed.

  16. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  17. Bandgap tunable colloidal Cu-based ternary and quaternary chalcogenide nanosheets via partial cation exchange

    NASA Astrophysics Data System (ADS)

    Ramasamy, Parthiban; Kim, Miri; Ra, Hyun-Soo; Kim, Jinkwon; Lee, Jong-Soo

    2016-04-01

    Copper based ternary and quaternary semiconductor nanostructures are of great interest for the fabrication of low cost photovoltaics. Although well-developed syntheses are available for zero dimensional (0D) nanoparticles, colloidal synthesis of two dimensional (2D) nanosheets remains a big challenge. Here we report, for the first time, a simple and reproducible cation exchange approach for 2D colloidal Cu2GeSe3, Cu2ZnGeSe4 and their alloyed Cu2GeSxSe3-x, Cu2ZnGeSxSe4-x nanosheets using pre-synthesized Cu2xSe nanosheets as a template. A mechanism for the formation of Cu2-xSe nanosheets has been studied in detail. In situ oxidation of Cu+ ions to form a CuSe secondary phase facilitates the formation of Cu2-xSe NSs. The obtained ternary and quaternary nanosheets have average lateral size in micrometers and thickness less than 5 nm. This method is general and can be extended to produce other important ternary semiconductor nanosheets such as CuIn1-xGaxSe2. The optical band gap of these nanosheets is tuned from 1 to 1.48 eV, depending on their composition.Copper based ternary and quaternary semiconductor nanostructures are of great interest for the fabrication of low cost photovoltaics. Although well-developed syntheses are available for zero dimensional (0D) nanoparticles, colloidal synthesis of two dimensional (2D) nanosheets remains a big challenge. Here we report, for the first time, a simple and reproducible cation exchange approach for 2D colloidal Cu2GeSe3, Cu2ZnGeSe4 and their alloyed Cu2GeSxSe3-x, Cu2ZnGeSxSe4-x nanosheets using pre-synthesized Cu2xSe nanosheets as a template. A mechanism for the formation of Cu2-xSe nanosheets has been studied in detail. In situ oxidation of Cu+ ions to form a CuSe secondary phase facilitates the formation of Cu2-xSe NSs. The obtained ternary and quaternary nanosheets have average lateral size in micrometers and thickness less than 5 nm. This method is general and can be extended to produce other important ternary

  18. Metal biosorption equilibria in a ternary system

    SciTech Connect

    Chong, K.H.; Volesky, B.

    1996-03-20

    Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data and with conclusions postulated from the three possible binary subsystems.

  19. Thermoelectric materials: ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  20. Thermoelectric materials ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  1. Optical and electronic properties of some semiconductors from energy gaps

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Pattanaik, Anup

    2016-03-01

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap. The proposed empirical relation has also been used to calculate the electronic polarisability of some ternary compounds.

  2. New trends in semiconductor infrared detectors

    SciTech Connect

    Rogalski, A. . Inst. of Technical Physics)

    1994-05-01

    Recent efforts in semiconductor IR detector research have been directed toward improving the performance of single-element devices, large electronically scanned arrays, and higher operation temperature. Another important aim is to make IR detectors cheaper and more convenient to use. New trends in semiconductor IR detector technologies are discussed, including HgCdTe photodiodes, Schottky-barrier photoemissive devices, alternatives to HgCdTe ternary alloys, monolithic lead-chalcogenide photodiodes, GaAs/AlGaAs intersubband quantum well photoconductors, and ways to improve the performance of near-room-temperature detectors. A comparison of different types of detectors with the present stage of HgCdTe technology achievements is undertaken.

  3. Application of quaternary phase diagrams to compound semiconductor processing

    SciTech Connect

    Sinclair, R.

    1994-10-01

    Isobaric, isothermal phase diagrams are a molar representation of condensed phases in equilibrium with each other at a fixed temperature, pressure, and composition. Since three or four elements are usually involved at a fabricated interface in a semiconductor device, knowledge of the appropriate ternary or quaternary phase diagram is important for optimizing the processing parameters and designing long term stability of devices. While the use of phase diagrams is well-established in the fields of metallurgy, ceramics and mineralogy, only recently have phase diagrams been employed to provide a framework for understanding thin film reactions on a substrate, encountered in semiconductor processing. Even though there are many examples of applications of ternary phase diagrams in the semiconductor literature (for instance, metallization of GaAs, the use of refractory metal silicides for metallization layers in VLSI devices and oxidation of III-V compounds), the same is not true for quaternary phase diagrams. To date, the only application is oxidation of mercury cadmium telluride. This lack of examples is not warranted, as four elements are often involved at a critical interface in compound semiconductor processing and devices. This paper reports on the progress made to remedy this situation by considering the application of quaternary phase diagrams to understanding and predicting the behavior of II-VI thin film interfaces in photovoltaic devices under annealing conditions. Moreover, for the first time, solid solubility is taken into account for quaternary phase diagrams of semiconductor systems.

  4. Monolithically Integrated Metal/Semiconductor Tunnel Junction Nanowire Light-Emitting Diodes.

    PubMed

    Sadaf, S M; Ra, Y H; Szkopek, T; Mi, Z

    2016-02-10

    We have demonstrated for the first time an n(++)-GaN/Al/p(++)-GaN backward diode, wherein an epitaxial Al layer serves as the tunnel junction. The resulting p-contact free InGaN/GaN nanowire light-emitting diodes (LEDs) exhibited a low turn-on voltage (∼2.9 V), reduced resistance, and enhanced power, compared to nanowire LEDs without the use of Al tunnel junction or with the incorporation of an n(++)-GaN/p(++)-GaN tunnel junction. This unique Al tunnel junction overcomes some of the critical issues related to conventional GaN-based tunnel junction designs, including stress relaxation, wide depletion region, and light absorption, and holds tremendous promise for realizing low-resistivity, high-brightness III-nitride nanowire LEDs in the visible and deep ultraviolet spectral range. Moreover, the demonstration of monolithic integration of metal and semiconductor nanowire heterojunctions provides a seamless platform for realizing a broad range of multifunctional nanoscale electronic and photonic devices.

  5. Control of single photon emitters in semiconductor nanowires by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Lazić, S.; Hernández-Mínguez, A.; Santos, P. V.

    2017-08-01

    We report on an experimental study into the effects of surface acoustic waves on the optical emission of dot-in-a-nanowire heterostructures in III-V material systems. Under direct optical excitation, the excitonic energy levels in III-nitride dot-in-a-nanowire heterostructures oscillate at the acoustic frequency, producing a characteristic splitting of the emission lines in the time-integrated photoluminescence spectra. This acoustically induced periodic tuning of the excitonic transition energies is combined with spectral detection filtering and employed as a tool to regulate the temporal output of anti-bunched photons emitted from these nanowire quantum dots. In addition, the acoustic transport of electrons and holes along a III-arsenide nanowire injects the electric charges into an ensemble of quantum dot-like recombination centers that are spatially separated from the optical excitation area. The acoustic population and depopulation mechanism determines the number of carrier recombination events taking place simultaneously in the ensemble, thus allowing control of the anti-bunching degree of the emitted photons. The results presented are relevant for the dynamic control of single photon emission in III-V semiconductor heterostructures.

  6. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  7. All-optical symmetric ternary logic gate

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  8. Electrical and magneto resistance studies of bulk Ga 1- xNi xSb ternary alloys

    NASA Astrophysics Data System (ADS)

    Kamilla, S. K.; Hazra, S. K.; Samantaray, B. K.; Basu, S.

    2011-01-01

    Ternary semiconductor alloys of Ga 1- xNi xSb were grown with different Ni concentrations by vertical Bridgman method with well-defined temperature profile for possible applications as Diluted Magnetic Semiconductor (DMS). The electrical properties of the grown samples were studied in the temperature range 78-300 K by Hall effect measurements using van der Pauw configurations. The positive sign of Hall coefficient confirmed p-type conductivity of the grown samples. The results of the measurements at 300 K indicate that resistivity, Hall coefficient and hole mobility decrease while the hole concentration increases with the increasing Ni concentrations from 0.5% to 2.8% in Ga 1- xNi xSb ternary alloys. The magneto resistance studies at different magnetic fields (≤10 kG) and in the temperature range 78-300 K showed positive magneto resistance and the Arrott plots revealed very low Curie temperature of the material ( <78 K).

  9. Rational Development of Ternary Alloy Electrocatalysts

    SciTech Connect

    Wang, Chao; Li, Dongguo; Chi, Miaofang; Pearson, John; Rankin, Rees; Greeley, Jeff; Duan, Zhiyao; Wang, Guofeng; Van der Vliet, Dennis; More, Karren Leslie; Markovic, Nenad; Stamenkovic, Vojislav

    2012-01-01

    Improving the efficiency of electrocatalytic reduction of oxygen represents one of the main challenges for the development of renewable energy technologies. Here, we report the systematic evaluation of Pt-ternary alloys (Pt{sub 3}(MN){sub 1} with M, N = Fe, Co, or Ni) as electrocatalysts for the oxygen reduction reaction (ORR). We first studied the ternary systems on extended surfaces of polycrystalline thin films to establish the trend of electrocatalytic activities and then applied this knowledge to synthesize ternary alloy nanocatalysts by a solvothermal approach. This study demonstrates that the ternary alloy catalysts can be compelling systems for further advancement of ORR electrocatalysis, reaching higher catalytic activities than bimetallic Pt alloys and improvement factors of up to 4 versus monometallic Pt.

  10. Some Geometric Aspects of the Ternary Diagram.

    ERIC Educational Resources Information Center

    Philip, G. M.; Watson, D. F.

    1989-01-01

    Uses the process of normalization in the Cartesian coordinate system which entails radial projection onto a transect to compare different compositions of minerals. Warns that the ternary diagram should not be used as a framework for calculations. (MVL)

  11. Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications.

    PubMed

    Knowles, Kathryn E; Hartstein, Kimberly H; Kilburn, Troy B; Marchioro, Arianna; Nelson, Heidi D; Whitham, Patrick J; Gamelin, Daniel R

    2016-09-28

    Copper-doped semiconductors are classic phosphor materials that have been used in a variety of applications for many decades. Colloidal copper-doped semiconductor nanocrystals have recently attracted a great deal of interest because they combine the solution processability and spectral tunability of colloidal nanocrystals with the unique photoluminescence properties of copper-doped semiconductor phosphors. Although ternary and quaternary semiconductors containing copper, such as CuInS2 and Cu2ZnSnS4, have been studied primarily in the context of their photovoltaic applications, when synthesized as colloidal nanocrystals, these materials have photoluminescence properties that are remarkably similar to those of copper-doped semiconductor nanocrystals. This review focuses on the luminescent properties of colloidal copper-doped, copper-based, and related copper-containing semiconductor nanocrystals. Fundamental investigations into the luminescence of copper-containing colloidal nanocrystals are reviewed in the context of the well-established luminescence mechanisms of bulk copper-doped semiconductors and copper(I) molecular coordination complexes. The use of colloidal copper-containing nanocrystals in applications that take advantage of their luminescent properties, such as bioimaging, solid-state lighting, and luminescent solar concentrators, is also discussed.

  12. Synergism among ternary mixtures of fourteen sweeteners.

    PubMed

    Schiffman, S S; Sattely-Miller, E A; Graham, B G; Booth, B J; Gibes, K M

    2000-04-01

    The purpose of the present study was to determine the degree of synergism of sweet taste among ternary mixtures of 14 sweeteners. A trained panel evaluated ternary mixtures of 14 sweeteners varying in chemical structure and type. The ternary mixtures that were tested were limited to those in which the compounds comprising the mixture were synergistic in binary combinations, according to an earlier study. All sweeteners in the ternary mixtures were isointense with 2% sucrose, according to a previously developed formulae. Each self-mixture was also tested (e.g. 2% sucrose + 2% sucrose + 2% sucrose). The triad with the highest mean sweetness intensity rating was alitame-neohesperidin dihydrochalcone-rebaudioside-A (10.8). This represents an increase of 99.4% when compared with the average of the self-mixtures. While this is greater than the maximum of 74% increase found for binary mixtures, more dyadic combinations of sweeteners tested previously exhibited synergism than ternary combinations tested here. However, most ternary mixtures were synergistic (significantly greater than the average of the three self-mixtures) to some degree.

  13. Utilizing Energy Transfer in Binary and Ternary Bulk Heterojunction Organic Solar Cells.

    PubMed

    Feron, Krishna; Cave, James M; Thameel, Mahir N; O'Sullivan, Connor; Kroon, Renee; Andersson, Mats R; Zhou, Xiaojing; Fell, Christopher J; Belcher, Warwick J; Walker, Alison B; Dastoor, Paul C

    2016-08-17

    Energy transfer has been identified as an important process in ternary organic solar cells. Here, we develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine the energy disorder and Förster radii for poly(3-hexylthiophene-2,5-diyl), [6,6]-phenyl-C61-butyric acid methyl ester, 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine (DIBSq), and poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9-dihydrodithieno[3,2-c:3',2'-h][1,5]naphthyridine-5,10-dione). Heterogeneous energy transfer is found to be crucial in the exciton dissociation process of both binary and ternary organic semiconductor systems. Circumstances favoring energy transfer across interfaces allow relaxation of the electronic energy level requirements, meaning that a cascade structure is not required for efficient ternary organic solar cells. We explain how energy transfer can be exploited to eliminate additional energy losses in ternary bulk heterojunction solar cells, thus increasing their open-circuit voltage without loss in short-circuit current. In particular, we show that it is important that the DIBSq is located at the electron donor-acceptor interface; otherwise charge carriers will be trapped in the DIBSq domain or excitons in the DIBSq domains will not be able to dissociate efficiently at an interface. KMC modeling shows that only small amounts of DIBSq (<5% by weight) are needed to achieve substantial performance improvements due to long-range energy transfer.

  14. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVternary or quaternary III-V semiconductor active layers.

  15. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

    1998-06-23

    A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

  16. Review on optical and electrical properties of oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Kim, Dong Lim; Kim, Hyun Jae

    2010-03-01

    Oxide semiconductors became one of the potential elements for large area electronics such as a channel for thin film transistors. Optical and electrical properties were modified by alloying or doping of several oxide materials; In2O3, ZnO, Ga2O3, and SnO2. The excellent properties achieved at the ternary or quaternary alloys could be explained by the role of each materials as a carrier controller, a conduction path, and etc. The metal oxide semiconductors were generally deposited by vacuum process but recently, alternative ways, like a sol-gel or an ink-jet printing, are suggested. In this review, diverse approaches on oxide semiconductors are shown, and an in-depth discussion of the optical and electrical properties alternation in metal oxide alloy fabricated by various methods is given.

  17. Electrical transport properties of (BN)-rich hexagonal (BN)C semiconductor alloys

    SciTech Connect

    Uddin, M. R.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.; Ziemer, K. S.

    2014-08-15

    The layer structured hexagonal boron nitride carbon semiconductor alloys, h-(BN)C, offer the unique abilities of bandgap engineering (from 0 for graphite to ∼6.4 eV for h-BN) and electrical conductivity control (from semi-metal for graphite to insulator for undoped h-BN) through alloying and have the potential to complement III-nitride wide bandgap semiconductors and carbon based nanostructured materials. Epilayers of (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys were synthesized by metal-organic chemical vapor deposition (MOCVD) on (0001) sapphire substrates. Hall-effect measurements revealed that homogeneous (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys are naturally n-type. For alloys with x = 0.032, an electron mobility of about 20 cm{sup 2}/Vs at 650 °K was measured. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition and analyze chemical bonding states. Both composition and chemical bonding analysis confirm the formation of alloys. XPS results indicate that the carbon concentration in the alloys increases almost linearly with the flow rate of the carbon precursor (propane (C{sub 3}H{sub 8})) employed during the epilayer growth. XPS chemical bonding analysis showed that these MOCVD grown alloys possess more C-N bonds than C-B bonds, which possibly renders the undoped h-(BN){sub 1-x}(C{sub 2}){sub x} alloys n-type and corroborates the Hall-effect measurement results.

  18. Wide-Bandgap Compound Semiconductors to Enable Novel Semiconductor Devices

    SciTech Connect

    Crawford, M.H.; Chow, W.W.; Wright, A.F.; Lee, S.R.; Jones, E.D.; Han, J.; Shul, R.J.

    1999-04-01

    This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program that focused on research and development of GaN-based wide bandgap semiconductor materials (referred to as III-N materials). Our theoretical investigations include the determination of fundamental materials parameters from first-principles calculations, the study of gain properties of III-N heterostructures using a microscopic laser theory and density-functional-theory, charge-state calculations to determine the core structure and energy levels of dislocations in III-N materials. Our experimental investigations include time-resolved photoluminescence and magneto-luminescence studies of GaN epilayers and multiquantum well samples as well as x-ray diffraction studies of AlGaN ternary alloys. In addition, we performed a number of experiments to determine how various materials processing steps affect both the optical and electrical properties of GaN-based materials. These studies include photoluminescence studies of GaN epilayers after post-growth rapid thermal annealing, ion implantation to produce n- and p-type material and electrical and optical studies of plasma-etched structures.

  19. Photoelectrosynthesis at semiconductor electrodes

    SciTech Connect

    Nozik, A. J.

    1980-12-01

    The general principles of photoelectrochemistry and photoelectrosynthesis are reviewed and some new developments in photoelectrosynthesis are discussed. Topics include energetics of semiconductor-electrolyte interfaces(band-edge unpinning); hot carrier injection at illuminated semiconductor-electrolyte junctions; derivatized semiconductor electrodes; particulate photoelectrochemical systems; layered compounds and other new materials; and dye sensitization. (WHK)

  20. Semiconductor ohmic contact

    NASA Technical Reports Server (NTRS)

    Hawrylo, F. Z.; Kressel, H.

    1977-01-01

    Contact formed on p-type surface of semiconductor laser has several advantages: highly conductive degenerate region and narrow band gap provides surface for good metal-to-semiconductor contact; lattice parameter of GaAs is 5.6533 A; improved lattice match eases interface strain which reduces interface cracking of semiconductor material.

  1. Optimal Symmetric Ternary Quantum Encryption Schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yu-qi; She, Kun; Huang, Ru-fen; Ouyang, Zhong

    2016-11-01

    In this paper, we present two definitions of the orthogonality and orthogonal rate of an encryption operator, and we provide a verification process for the former. Then, four improved ternary quantum encryption schemes are constructed. Compared with Scheme 1 (see Section 2.3), these four schemes demonstrate significant improvements in term of calculation and execution efficiency. Especially, under the premise of the orthogonal rate ɛ as secure parameter, Scheme 3 (see Section 4.1) shows the highest level of security among them. Through custom interpolation functions, the ternary secret key source, which is composed of the digits 0, 1 and 2, is constructed. Finally, we discuss the security of both the ternary encryption operator and the secret key source, and both of them show a high level of security and high performance in execution efficiency.

  2. Core-shell-structured magnetic ternary nanocubes.

    PubMed

    Wang, Lingyan; Wang, Xin; Luo, Jin; Wanjala, Bridgid N; Wang, Chongmin; Chernova, Natasha A; Engelhard, Mark H; Liu, Yao; Bae, In-Tae; Zhong, Chuan-Jian

    2010-12-22

    We report a novel core-shell-structured ternary nanocube of MnZn ferrite synthesized by controlling the reaction temperature and composition in the absence of conventionally used reducing agents. The highly monodispersed core-shell structure consists of an Fe(3)O(4) core and an MnZn Ferrite shell. The observation of a Moiré pattern indicates that the core and the shell are two highly crystalline materials with slightly different lattice constants that are rotated relative to each other by a small angle. The ternary core-shell nanocubes display magnetic properties regulated by a combination of the core-shell composition and exhibit an increased coercivity and field-cooled/zero-field-cooled characteristics drastically different from those of regular MnZn ferrite nanoparticles. The ability to engineer the spatial nanostructures of ternary magnetic nanoparticles in terms of shape and composition offers atomic-level versatility in fine-tuning the nanoscale magnetic properties.

  3. Organic ternary solar cells: a review.

    PubMed

    Ameri, Tayebeh; Khoram, Parisa; Min, Jie; Brabec, Christoph J

    2013-08-21

    Recently, researchers have paid a great deal of attention to the research and development of organic solar cells, leading to a breakthrough of over 10% power conversion efficiency. Though impressive, further development is required to ensure a bright industrial future for organic photovoltaics. Relatively narrow spectral overlap of organic polymer absorption bands within the solar spectrum is one of the major limitations of organic solar cells. Among different strategies that are in progress to tackle this restriction, the novel concept of ternary organic solar cells is a promising candidate to extend the absorption spectra of large bandgap polymers to the near IR region and to enhance light harvesting in single bulk-heterojunction solar cells. In this contribution, we review the recent developments in organic ternary solar cell research based on various types of sensitizers. In addition, the aspects of miscibility, morphology complexity, charge transfer dynamics as well as carrier transport in ternary organic composites are addressed.

  4. Gain mechanism and carrier transport in high responsivity AlGaN-based solar blind metal semiconductor metal photodetectors

    NASA Astrophysics Data System (ADS)

    Rathkanthiwar, Shashwat; Kalra, Anisha; Solanke, Swanand V.; Mohta, Neha; Muralidharan, Rangarajan; Raghavan, Srinivasan; Nath, Digbijoy N.

    2017-04-01

    We report on the highest responsivity for III-nitride Metal Semiconductor Metal solar-blind photodetectors on sapphire. Devices on unintentionally doped AlGaN epilayers grown by Metal Organic Chemical Vapor Deposition exhibited sharp absorption cut-off in the range of 245-290 nm. Very high responsivity >5 A/W at 10 V bias was achieved with visible rejection exceeding three orders of magnitude for front illumination. Compared to the responsivity values reported in the literature for state-of-the-art solar-blind photodetectors, this work presents the highest values of responsivity at a given bias and up to sub-250 nm detection threshold. The high responsivity is attributed to an internal gain mechanism operating on these devices. The reverse-bias leakage current across these samples was found to be dominated by thermionic field emission at low biases and Poole-Frenkel emission from a deep trap level (0.7 eV from the conduction band-edge for Al0.50Ga0.50 N) at high biases.

  5. Ternary fission of nuclei into comparable fragments

    SciTech Connect

    Karpeshin, F. F.

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  6. Ternary carbon composite films for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Hai; Jeong, Hae Kyung

    2017-09-01

    A simple, binder-free, method of making supercapacitor electrodes is introduced, based on modification of activated carbon with graphite oxide and carbon nanotubes. The three carbon precursors of different morphologies support each other to provide outstanding electrochemical performance, such as high capacitance and high energy density. The ternary carbon composite shows six times higher specific capacitance compared to that of activated carbon itself with high retention. The excellent electrochemical properties of the ternary composite attribute to the high surface area of 1933 m2 g-1 and low equivalent series resistance of 2 Ω, demonstrating that it improve the electrochemical performance for supercapacitor applications.

  7. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  8. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  9. A New Commercializable Route for the Preparation of Single-Source Precursors for Bulk, Thin-Film, and Nanocrystallite I-III-IV Semiconductors

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Jin, Michael H. C.; Harris, Jerry D.; Fanwick, Philip E.; Hepp, Aloysius F.

    2004-01-01

    We report a new simplified synthetic procedure for commercial manufacture of ternary single source precursors (SSP). This new synthetic process has been successfully implemented to fabricate known SSPs on bulk scale and the first liquid SSPs to the semiconductors CuInSe2 and AgIn(x)S(y). Single crystal X-ray determination reveals the first unsolvated ternary AgInS SSP. SSPs prepared via this new route have successfully been used in a spray assisted chemical vapor deposition (CVD) process to deposit polycrystalline thin films, and for preparing ternary nanocrystallites.

  10. Ion Beam Nanostructuring of HgCdTe Ternary Compound

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksey B.; Savkina, Rada K.; Udovytska, Ruslana S.; Gudymenko, Oleksandr I.; Kladko, Vasyl P.; Korchovyi, Andrii A.

    2017-05-01

    Systematic study of mercury cadmium telluride thin films subjected to the ion beam bombardment was carried out. The evolution of surface morphology of (111) Hg1 - x Cd x Te ( x 0.223) epilayers due to 100 keV B+ and Ag+ ion irradiation was studied by AFM and SEM methods. X-ray photoelectron spectroscopy and X-ray diffraction methods were used for the investigation of the chemical compound and structural properties of the surface and subsurface region. It was found that in the range of nanoscale, arrays of holes and mounds on Hg0.777Cd0.223Te (111) surface as well as the polycrystalline Hg1 - x Cd x Te cubic phase with alternative compound ( x 0.20) have been fabricated using 100 keV ion beam irradiation of the basic material. Charge transport investigation with non-stationary impedance spectroscopy method has shown that boron-implanted structures are characterized by capacity-type impedance whereas for silver-implanted structures, an inductive-type impedance (or "negative capacitance") is observed. A hybrid system, which integrates the nanostructured ternary compound (HgCdTe) with metal-oxide (Ag2O) inclusions, was fabricated by Ag+ ion bombardment. The sensitivity of such metal-oxide-semiconductor hybrid structure for sub-THz radiation was detected with NEP 4.5 × 10-8 W/Hz1/2at ν ≈ 140 GHz and 296 K without amplification.

  11. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  12. Growth mechanism of nanowires: binary and ternary chalcogenides

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Coriell, S. R.; Su, Ching Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-05-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acoustooptical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  13. Does Science Also Prefer a Ternary Pattern?

    ERIC Educational Resources Information Center

    Pogliani, L.; Klein, D. J.; Balaban, A. T.

    2006-01-01

    Through the importance of the number three in our culture and the strange preference for a ternary pattern of our nature one can perceive how and why number theory degraded to numerology. The strong preference of our minds for simple patterns can be read as the key to understanding not only the development of numerology, but also why scientists…

  14. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  15. Infrared Plasmonics with Conductive Ternary Nitrides.

    PubMed

    Metaxa, C; Kassavetis, S; Pierson, J F; Gall, D; Patsalas, P

    2017-03-29

    Conductive transition metal nitrides are emerging as promising alternative plasmonic materials that are refractory and CMOS-compatible. In this work, we show that ternary transition metal nitrides of the B1 structure and consisting of a combination of group-IVb transition metal, such as Ti or Zr, and group III (Sc, Y, Al) or group II (Mg, Ca) elements can have tunable plasmonic activity in the infrared range in contrast to Ta-based ternary nitrides, which exhibit plasmonic performance in the visible and UV ranges. We consider the intrinsic quality factors of surface plasmon polariton for the ternary nitrides, and we calculate the dispersion of surface plasmon polariton and the field enhancement at the vicinity of nitride/silica interfaces. Based on these calculations, it is shown that among these nitrides the most promising are TixSc1-xN and TixMg1-xN. In particular, TixSc1-xN can have plasmonic activity in the usual telecom bands at 850, 1300, and 1550 nm. Still, these nitrides exhibit substantial electronic losses mostly due to fine crystalline grains that deteriorate the plasmonic field enhancement. This unequivocally calls for improved growth processes that would enable the fabrication of such ternary nitrides of high crystallinity.

  16. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  17. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  18. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  19. Investigation of structural stability, electronic and mechanical properties of ternary imides Li{sub 2}M(NH){sub 2} (M = Be, Mg)

    SciTech Connect

    Santhosh, M.; Rajeswarapalanichamy, R. Manikandan, M.

    2016-05-06

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of ternary imides Li{sub 2}M(NH){sub 2} (M = Be, Mg) for two different crystal structures, namely α-orthorhombic (Iba{sub 2}) and β-cubic (F-43m). Among the considered structures, orthorhombic (Iba{sub 2}) phase is found to be the most stable phase for these imides at 0K. A pressure induced structural phase transition from α to β phase is observed in all the two ternary imides. The electronic structure reveals that these imides are semiconductors. The calculated elastic constants indicate that these ternary imides are mechanically stable at 0K.

  20. Design of a novel quantum reversible ternary up-counter

    NASA Astrophysics Data System (ADS)

    Houshmand, Pouran; Haghparast, Majid

    2015-08-01

    Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.

  1. III-V semiconductor solid solution single crystal growth

    NASA Technical Reports Server (NTRS)

    Gertner, E. R.

    1982-01-01

    The feasibility and desirability of space growth of bulk IR semiconductor crystals for use as substrates for epitaxial IR detector material were researched. A III-V ternary compound (GaInSb) and a II-VI binary compound were considered. Vapor epitaxy and quaternary epitaxy techniques were found to be sufficient to permit the use of ground based binary III-V crystals for all major device applications. Float zoning of CdTe was found to be a potentially successful approach to obtaining high quality substrate material, but further experiments were required.

  2. Coherent spectroscopy of semiconductors.

    PubMed

    Cundiff, Steven T

    2008-03-31

    The coherent optical response of semiconductors has been the subject of substantial research over the last couple of decades. The interest has been motivated by unique aspects of the interaction between light and semiconductors that are revealed by coherent techniques. The ability to probe the dynamics of charge carriers has been a significant driver. This paper presents a review of selected results in coherent optical spectroscopy of semiconductors.

  3. Semiconductor microcavity lasers

    SciTech Connect

    Gourley, P.L.; Wendt, J.R.; Vawter, G.A.; Warren, M.E.; Brennan, T.M.; Hammons, B.E.

    1994-02-01

    New kinds of semiconductor microcavity lasers are being created by modern semiconductor technologies like molecular beam epitaxy and electron beam lithography. These new microcavities exploit 3-dimensional architectures possible with epitaxial layering and surface patterning. The physical properties of these microcavities are intimately related to the geometry imposed on the semiconductor materials. Among these microcavities are surface-emitting structures which have many useful properties for commercial purposes. This paper reviews the basic physics of these microstructured lasers.

  4. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%

    NASA Astrophysics Data System (ADS)

    Gasparini, Nicola; Jiao, Xuechen; Heumueller, Thomas; Baran, Derya; Matt, Gebhard J.; Fladischer, Stefanie; Spiecker, Erdmann; Ade, Harald; Brabec, Christoph J.; Ameri, Tayebeh

    2016-09-01

    In recent years the concept of ternary blend bulk heterojunction (BHJ) solar cells based on organic semiconductors has been widely used to achieve a better match to the solar irradiance spectrum, and power conversion efficiencies beyond 10% have been reported. However, the fill factor of organic solar cells is still limited by the competition between recombination and extraction of free charges. Here, we design advanced material composites leading to a high fill factor of 77% in ternary blends, thus demonstrating how the recombination thresholds can be overcome. Extending beyond the typical sensitization concept, we add a highly ordered polymer that, in addition to enhanced absorption, overcomes limits predicted by classical recombination models. An effective charge transfer from the disordered host system onto the highly ordered sensitizer effectively avoids traps of the host matrix and features an almost ideal recombination behaviour.

  5. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  6. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  7. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  8. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics.

    PubMed

    Kiefer, David; Yu, Liyang; Fransson, Erik; Gómez, Andrés; Primetzhofer, Daniel; Amassian, Aram; Campoy-Quiles, Mariano; Müller, Christian

    2017-01-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm(-1) and Seebeck coefficient from 100 to 60 μV K(-1) upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m(-1) K(-1) gives rise to a thermoelectric Figure of merit ZT ∼ 10(-4) that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  9. Dynamic thermodiffusion theory for ternary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Eslamian, Morteza; Ziad Saghir, M.

    2010-04-01

    Following the non-equilibrium thermodynamics approach, we develop expressions for the calculation of the thermal diffusion coefficients in a ternary system. On the basis of some physical justifications, we approximate the net heat of transport with the activation energy of viscous flow. In parallel, we revisit the Kempers model and propose new expressions for the estimation of the thermal diffusion factors in a ternary mixture. The proposed expressions are based on a dynamic modeling approach, as they incorporate the activation energy of viscous flow, which is a fluid flow property and contains the effects of some of the parameters that govern thermodiffusion. The proposed expressions, the Kempers and Ghorayeb-Firoozabadi-Shukla models are evaluated against the experimental data. Our expression which was developed on the basis of the Kempers approach has the best performance.

  10. On the capacity of ternary Hebbian networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1991-01-01

    Networks of ternary neurons storing random vectors over the set -1,0,1 by the so-called Hebbian rule are considered. It is shown that the maximal number of stored patterns that are equilibrium states of the network with probability tending to one as N tends to infinity is at least on the order of (N exp 2-1/alpha)/K, where N is the number of neurons, K is the number of nonzero elements in a pattern, and t = alpha x K, alpha between 1/2 and 1, is the threshold in the neuron function. While, for small K, this bound is similar to that obtained for fully connected binary networks, the number of interneural connections required in the ternary case is considerably smaller. Similar bounds, incorporating error probabilities, are shown to guarantee, in the same probabilistic sense, the correction of errors in the nonzero elements and in the location of these elements.

  11. Ternary algebraic approach to extended superconformal algebras

    NASA Astrophysics Data System (ADS)

    Günaydin, Murat; Hyun, Seungjoon

    1992-04-01

    The construction of extended ( N = 2 and N = 4) superconformal algebras (SCA) over very general classes of ternary algebras (triple systems) is given. For N = 2 this construction leads to superconformal algebras corresponding to certain Kählerian coset spaces of Lie groups with non-vanishing torsion. In general, a given Lie group admits more than one coset space of this type. The construction and a complete classification of N = 2 SCAs over Kantor triple system is given. In particular, the division algebras and their tensor products lead to N = 2 superconformal algebras associated with the coset spaces of the groups of the Magic Square. For a very special class of ternary algebras, namely the Freudenthal triple (FT) systems, the N = 2 superconformal algebras can be extended to N = 4 superconformal algebras with the gauge group SU(2)×SU(2)×U(1). The realization and a complete classification of N = 2 and N = 4

  12. Phase behavior of ternary polymer brushes

    DOE PAGES

    Simocko, Chester K.; Frischknecht, Amalie L.; Huber, Dale L.

    2016-01-07

    Ternary polymer brushes consisting of polystyrene, poly(methyl methacrylate), and poly(4-vinylpyridine) have been synthesized. These brushes laterally phase separate into several distinct phases and can be tailored by altering the relative polymer composition. Self-consistent field theory has been used to predict the phase diagram and model both the horizontal and vertical phase behavior of the polymer brushes. As a result, all phase behaviors observed experimentally correlate well with the theoretical model.

  13. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  14. Manipulating the growth of aqueous semiconductor nanocrystals through amine-promoted kinetic process.

    PubMed

    Han, Jishu; Zhang, Hao; Sun, Haizhu; Zhou, Ding; Yang, Bai

    2010-01-14

    In the conventional procedure of the preparation of aqueous semiconductor nanocrystals (NCs), the growth of NCs was mainly through the thermodynamics-favored Ostwald ripening process. It required additional energy to promote NC growth, such as reflux, hydrothermal method, microwave irradiation, and sonochemical synthesis. Energy-promoted growth usually led to the decomposition of mercapto-ligands and therewith decreased the quality of NCs. Consequently, in this study, the growth of aqueous semiconductor NCs was designed through an amine-promoted kinetic process, which efficiently shortened the growth duration and avoided the decomposition of ligands, thus providing a universal method for preparing various aqueous binary and ternary NCs.

  15. More statistics on intermetallic compounds - ternary phases.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-05-01

    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters.

  16. The ternary system uranium-boron-carbon

    NASA Astrophysics Data System (ADS)

    Rogl, Peter; Bauer, Josef; Debuigne, Jean

    1989-04-01

    Phase equilibria in the ternary system U-B-C have been established by means of X-ray, metallographic and melting point analyses in the temperature range from 1000 ° C to melting. Three ternary compounds were found to exist: besides the well known monoboroncarbide UBC two new uranium boroncarbides, UB 2C and "U 5B 2C 7". Ternary phase equilibria are characterized by the incompatibility of uranium metal with boroncarbide B 4C and by the incompatibility of elemental boron and uranium carbides; an isothermal section of the system U-B-C at 1600° C is presented. At high temperatures the crystal structure of UB 2C was found to be isotypic with the homologous compound ThB 2C; at temperatures below (1675 ± 25)°C h-UB 2C transforms into a low temperature modification with a new (unknown) structure type. The crystal structure of "U 5B 2C 7" is closely related to the structure type of Ho 5B 2C 6-7 as a derivative of La 52C 6 Employing the Pirani-technique, congruent melting was revealed for UBC and UB 2C at (2144 ± 25)°C and (2282 ± 30)°C respectively. Using the clear-cross principle in studying possible phase reactions, the thermodynamic stabilities of UBC, UB 2C and U 5B 2C 7 were estimated.

  17. Molecular Semiconductors: An Introduction

    NASA Astrophysics Data System (ADS)

    de Mello, John; Halls, Jonathan James Michael

    2005-10-01

    Introducing the fundamental ideas and concepts behind organic semiconductors, this book provides a clear impression of the broad range of research activities currently underway. Aimed specifically at new entrant doctoral students from a wide variety of backgrounds, including chemistry, physics, electrical engineering and materials science, it also represents an ideal companion text to undergraduate courses in organic semiconductors.

  18. Electrochemical photovoltaic cell having ternary alloy film

    DOEpatents

    Russak, Michael A.

    1984-01-01

    A thin film compound semiconductor electrode comprising CdSe.sub.1-x Te.sub.x (0.ltoreq.x.ltoreq.1) is deposited on a transparent conductive substrate. An electrolyte contacts the film to form a photoactive site. The semiconductor material has a narrow energy bandgap permitting high efficiency for light conversion. The film may be fabricated by: (1) co-evaporation of two II-VI group compounds with a common cation, or (2) evaporation of three elements, concurrenty.

  19. Epitaxy of Polar Oxides and Semiconductors

    NASA Astrophysics Data System (ADS)

    Shelton, Christopher Tyrel

    remarkable surface morphologies. This work represents the first effort to extend SAE and CAE to true bulk single-crystal GaN substrates. By carefully controlling supersaturation during growth it is possible to prepare confined areas with a range of step densities, including surfaces that are entirely step-free. Single terrace GaN mesas up to 100 m in size have been observed, however the potential exists, due to the extremely low dislocation density of the substrate, to further extend the dimensions of these regions. Step-free GaN templates are ideal substrates for rocksalt heteroepitaxy and solve a long-standing challenge related to the integration of cubic and hexagonal materials. It has been previously observed that the origin of the two in-plane orientations in rocksalts grown on III-nitrides is a consequence of the stepped GaN surface. By using a substrate that is effectively step-free across a 100 m region, it is possible to prepare a rocksalt // GaN film with a single in-plane orientation. Heterojunctions of this type are disclination defect free and highly crystalline. The ability to locally prepare a single orientation rocksalt film, coupled with commensurate 2D layer-by-layer growth techniques, allows growth, for the first time, of a truly 'semiconductor-grade' oxide-nitride interface. To study the transport properties of oxide-nitride heterostructures, a series of experiments on standard GaN // sapphire template layers were conducted. Devices that allowed contact to the buried oxide-nitride interface were prepared and characterized using low-temperature Hall measurements. Although a high mobility 2DEG was not observed in these samples, a conduction path at the lattice matched Mg0.52Ca0.48O // GaN interface did appear. If confirmed, this finding could represent the first evidence for interfacial polar coupling between an oxide and a nitride. Overcoming the significant symmetry, chemistry and bonding environment barriers to forming a structurally perfect oxide

  20. Basics of Ternary Algebras and their underlying Nambu Brackets

    NASA Astrophysics Data System (ADS)

    Zachos, Cosmas K.

    2013-12-01

    Ternary algebras amount to closing systems of antisymmetrized trinomials of operators. The Filippov conditions (FI, which are not identities) for ternary algebras are contrasted to Bremner's identities dictated by associativity of operator products, and thus analogous to Jacobi identities. Maps of the known FI-compliant ternary algebras to underlying classical Nambu brackets are constructed, which then explain this compliance: FI-compliant ternary algebras are essentially classical Nambu brackets in disguise. In some cases involving infinite algebras, we show the classical limit may be obtained by a contraction of the quantal ternary algebra, and then explicitly realized through classical Nambu brackets. We illustrate this classical-contraction method on our Virasoro-Witt ternary algebra paradigm. The content of the talk is in the two references.

  1. Failure Mechanisms for III-Nitride HEMT Devices

    DTIC Science & Technology

    2013-11-19

    microscopy methods, in particular high-resolution imaging, nanoscale elemental mapping and off-axis electron holography , were used to investigate...freestanding GaN substrates demonstrated that no threading dislocations had been initiated by the AlN nucleation layer. Detailed electron holography ...nanoscale. Finally, off-axis electron holography is an interferometric TEM technique, made possible using a highly coherent field- emission electron source

  2. III-Nitride Visible- and Solar-Blind Avalanche Photodiodes

    DTIC Science & Technology

    2007-12-01

    Manager: Dr. Donald Silversmith – Air Force Office of Scientific Research Principal Investigator: Professor Manijeh Razeghi Center for...photodiodes K. Minder, J.L. Pau, R. McClintock, P. Kung, C. Bayram, M. Razeghi and D. Silversmith Applied Physics Letters, Vol. 91, No. 7, p. 073513-1...M. Razeghi, E. Muñoz, and D. Silversmith Applied Physics Letters, Vol. 91, No. 04, p. 041104 -1-- July 23, 2007 3. Hole-initiated multiplication

  3. Analysis of Stoichiometry-Related Defects in Group III - Nitrides

    DTIC Science & Technology

    2003-12-31

    defect determination 05 2.1 In-situ Defect Determination: DRS 05 2.2 Overview: Reproducible LT-GaAs growth 08 2.3 Ultrahigh-doped epilayers and their...Low temperature growth of GaAs and defect determination 2.1 In-situ Defect Determination: DRS In an effort to develop the use of common measurement...systems for the evaluation of the defect population in MBE grown III-V epilayers we applied in-situ diffuse reflectance spectroscopy ( DRS ) to monitor

  4. Microstructures of mixed group III-nitride epitaxial layers

    NASA Astrophysics Data System (ADS)

    Westmeyer, Andrew Nathan

    InGaN and AlGaN epitaxial layers were deposited by metalorganic chemical vapor deposition on sapphire substrates with GaN buffer layers. For the growth of InGaN at a given temperature, the trimethylgallium flow rate has the greatest influence on the In incorporation, whereas the trimethylindium flow rate has little influence. These effects are attributed to the suppression of In desorption by increasing the growth rate and the saturation of the surface with In adatoms, respectively. If the growth temperature is increased by 2.4°C, then the In content is lowered by 1% for the investigated temperature range of 785--845°C. For the growth of AlGaN, the solid fraction of Al has a sub-linear dependence on the gas composition. This was attributed to the composition pulling effect, in which incoming species are rejected in order to reduce the strain with the underlying buffer layer. A strain analysis was performed on all samples by X-ray diffraction in order to determine the composition and degree of relaxation. These values were compared to those obtained by Rutherford backscattering spectroscopy. By this method the varied reported values for elastic constants were evaluated to ascertain which set provided the best correlation. Transmission electron microscopy was performed. Plan-view images of InGaN contain domains differing in the direction of the modulations. Zone-axis diffraction patterns reveal sidebands adjacent to several Bragg reflections. These observations can be explained by diffraction effects resulting from periodic composition modulations, which are an intermediate stage in the process of phase separation. Since Young's modulus for the nitrides is isotropic in the (0001) plane, no particular direction is favored for the modulations based on strain energy considerations. In the case of AlGaN, periodic composition modulations are observed not in the growth plane (0001) but in the growth direction [0001]. Satellites in diffraction patterns are aligned in this direction. The films exhibit lateral homogeneity due to the high diffusion rates at the growth temperature, but a vertical periodicity due to competition for incorporation between Al and Ga species. The existence of ordering was investigated by both electron and X-ray diffraction, and was not detected in any sample.

  5. Growth and Fabrication of III-Nitride Deep Ultraviolet Emitters

    NASA Astrophysics Data System (ADS)

    Tahtamouni, T. M. Al

    2005-03-01

    In recent years, there has been a great effort to develop AlGaN based compact deep ultraviolet (UV) light-emitting diodes (LEDs) (λ< 300 nm) for applications such as bio-chemical agent detection and medical research/health care. To obtain deep UV emission with λ< 300 nm, AlGaN quantum well (QW) based LED structures require an active layer with Al composition higher than 40%. As a result, the alloy composition for p- and n-cladding layers should be more than that of the active layer. The high Al composition introduces dislocations and leads to poor p- and n-type conductivity in the cladding layers, which limits current injection. We report here on the epitaxial growth of deep UV LEDs with operating wavelengths ranging from 300 nm to 270 nm by metal-organic chemical vapor deposition (MOCVD). Our UV LED structure was deposited on AlN/sapphire templates. We have achieved deep UV LEDs with an output power of 1.4 mW at 350 mA dc driving at 280 nm. The use of AlN epilayers as templates to reduce the dislocation density and enhance the LED performance will be discussed. Different device architectures for enhanced LED performances will also be presented.

  6. High pressure phase transition in group III nitrides compounds

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Verma, S.; Kaurav, Netram; Choudhary, K. K.

    2016-05-01

    Using an effective interionic interaction potential (EIOP), the pressure induced structural phase transformation from ZnS-type (B3) to NaCl-type (B1) structure in group III Post-Transition Metal Nitrides [TMN; TM=Ga and Tl] were investigated. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  7. Fermi level stabilization energy in group III-nitrides

    SciTech Connect

    Li, S.X.; Yu, K.M.; Wu, J.; Jones, R.E.; Walukiewicz, W.; AgerIII, J.W.; Shan, W.; Haller, E.E.; Lu, Hai; Schaff, William J.

    2005-01-07

    Energetic particle irradiation is used to systematically introduce point defects into In{sub 1-x}Ga{sub x}N alloys over the entire composition range. Three types of energetic particles (electrons, protons, and {sup 4}He{sup +}) are used to produce a displacement damage dose spanning five decades. In InN and In-rich InGaN the free electron concentration increases with increasing irradiation dose but saturates at a sufficiently high dose. The saturation is due to Fermi level pinning at the Fermi Stabilization Energy (E{sub FS}), which is located at 4.9 eV below the vacuum level. Electrochemical capacitance-voltage (ECV) measurements show that the pinning of the surface Fermi energy at E{sub FS} is also responsible for the surface electron accumulation in as-grown InN and In-rich InGaN alloys. The results are in agreement with the amphoteric defect model that predicts that the same type of native defects are responsible for the Fermi level pinning in both cases.

  8. Fabrication and structural studies of opal-III nitride nanocomposites

    NASA Astrophysics Data System (ADS)

    Davydov, V. Yu; Golubev, V. G.; Kartenko, N. F.; Kurdyukov, D. A.; Pevtsov, A. B.; Sharenkova, N. V.; Brogueira, P.; Schwarz, R.

    2000-12-01

    In this paper, regular three-dimensional systems of GaN, InN and InGaN nanoclusters have been fabricated for the first time in a void sublattice of artificial opal. The opal consisted of 220 nm diameter close packed amorphous silica spheres and had a regular sublattice of voids accessible to filling by other substances. GaN, InN and InGaN were synthesized directly in the opal voids from precursors such as metal salts and nitrogen hydrides. The composites' structures have been characterized using x-ray diffraction, Raman spectroscopy, atomic force microscopy and optical measurements.

  9. Wet Chemical Etching Survey of III-Nitrides

    SciTech Connect

    Abernathy, C.R.; Cho, H.; Hays, D.C.; MacKenzie, J.D.; Pearton, S.J.; Ren, F.; Shul, R.J.; Vartuli, C.B.; Zolper, J.C.

    1999-02-04

    Wet chemical etching of GaN, InN, AlN, InAlN and InGaN was investigated in various acid and base solutions at temperatures up to 75 C. Only KOH-based solutions were found to etch AlN and InAlN. No etchants were found for the other nitrides, emphasizing their extreme lack of chemical reactivity. The native oxide on most of the nitrides could be removed in potassium tetraborate at 75 C, or HCl/H{sub 2}O at 25 C.

  10. Cracking of III-nitride layers with strain gradients

    NASA Astrophysics Data System (ADS)

    Romanov, A. E.; Beltz, G. E.; Cantu, P.; Wu, F.; Keller, S.; DenBaars, S. P.; Speck, J. S.

    2006-10-01

    Experimental results are demonstrated for the cracking of nominally compressed AlyGa1-yN layers grown on AlxGa1-xN buffer layers with smaller lattice constants (y

  11. III-Nitride advanced technologies and equipment for microelectronics

    NASA Astrophysics Data System (ADS)

    Petrov, S. I.; Alexeev, A. N.; Mamaev, V. V.; Krasovitsky, D. M.; Chaly, V. P.

    2016-12-01

    Using of complex equipment SemiTEq shown in example of a closed cycle of basic technological operations for production of high-power field microwave transistors based on gallium nitride in the "Svetlana-Rost" JSC. Basic technological operations are shown: MBE growth of heterostructures, metal deposition of contacts using electron-beam evaporation system, thermal annealing of ohmic contacts, meza-isolation plasma-chemical etching and dielectric plasma deposition. The main problems during the technological route as well as ways to solve are discussed. In particular, ways to reduce the dislocation density in the active region of the transistor heterostructures grown on the mismatched substrates are described in detail. Special attention given to the homogeneity and reproducibility both after some manufacturing operations and applied to the end product.

  12. Impact of point defects on III-nitride tunnel devices

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Darshana; Lyons, John; van de Walle, Chris G.

    Heterostructures using GaN and InGaN are being pursued in designs of tunnel field-effect-transistors (TFETs) to enable low-power switching devices. Point defects and impurities in these heterostructures can adversely affect the performance of these devices through Shockley-Read-Hall (SRH) and Trap-Assisted-Tunneling (TAT) processes. Using first-principles calculations based on a hybrid functional, we calculate the thermodynamic and charge-state switching levels as well as nonradiative recombination rates of point defects and impurities in GaN and InGaN. Gallium vacancies and their complexes, in particular, are found to be potentially detrimental centers. We then investigate how these defects can contribute to SRH and TAT processes in a nitride TFET device. This work was supported by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  13. III-Nitride high temperature single-photon sources

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pallab; Deshpande, Saniya; Frost, Thomas; Hazari, Arnab

    2015-03-01

    Nitride based GaN and InGaN quantum dots are excellent single-photon emitters at high temperature owing to their wide bandgap and large exciton binding energy [1-5]. In this work, two different molecular beam epitaxy (MBE) grown nanostructures have been investigated for single-photon emission: InGaN/GaN disk-in-nanowire and InGaN/GaN self-organized quantum dot. Single-photon emission under both optical and electrical excitation has been observed from a single InGaN quantum contained in a GaN nanowire p-n junction. We demonstrate electrically driven single-photon emission, with a g (2)(0) = 0.35, from a single InGaN quantum dot emitting in the green spectral range (λ=520 nm) up to 125 K. Additionally, a self-organized InGaN/GaN single quantum dot diode was grown and fabricated. Emission from a single quantum dot (λ=620 nm) shows single-photon emission with g(2)(0) = 0.29 at room temperature. On-demand single-photon emission by electrical pumping of the quantum dot at an excitation repetition rate of 200 MHz was demonstrated.

  14. Slow Light Semiconductor Laser

    DTIC Science & Technology

    2015-02-02

    we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. The views, opinions and/or findings...we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. Further, the large intracavity field...hybrid Si/III- V platforms Abstract The semiconductor laser is the principal light source powering the world-wide optical fiber network . Ever

  15. Introduction to Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Brennan, Kevin F.

    2005-03-01

    This volume offers a solid foundation for understanding the most important devices used in the hottest areas of electronic engineering today, from semiconductor fundamentals to state-of-the-art semiconductor devices in the telecommunications and computing industries. Kevin Brennan describes future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductor devices. In addition, he covers MODFETs and MOSFETs, short channel effects, and the challenges faced by continuing miniaturization. His book is both an excellent senior/graduate text and a valuable reference for practicing engineers and researchers.

  16. Tube-like ternary α-Fe2O3@SnO2@Cu2O sandwich heterostructures: synthesis and enhanced photocatalytic properties.

    PubMed

    Tian, Qingyong; Wu, Wei; Sun, Lingling; Yang, Shuanglei; Lei, Mei; Zhou, Juan; Liu, Ying; Xiao, Xiangheng; Ren, Feng; Jiang, Changzhong; Roy, Vellaisamy A L

    2014-08-13

    Heterogeneous photocatalysis is of great interest for environmental remediation applications. However, fast recombination of photogenerated electron-hole pair and a low utilization rate of sunlight hinder the commercialization of currently available semiconductor photocatalysts. In this regard, we developed a unique ternary single core-double shell heterostructure that consists of α-Fe2O3@SnO2@Cu2O. This heterostructure exhibits a tube-like morphology possessing broad spectral response for the sunlight due to the combination of narrow bandgap and wide bandgap semiconductors forming a p-n heterojunction. To fabricate such a short nanotube (SNT), we used an anion-assisted hydrothermal route for deposition of α-Fe2O3, a seed-mediated deposition strategy for SnO2, and finally an aging process to deposit a Cu2O layer to complete the tube-like ternary α-Fe2O3@SnO2@Cu2O single core-double shell heterostructures. The morphology, composition, and photocatalytic properties of those ternary core-shell-shell heterostructures were characterized by various analytical techniques. These ternary heterostructures exhibited enhanced photocatalytic properties on the photodegradation of the organic dye of Rhodamine B (RhB) under simulated sunlight irradiation. The origin of enhanced photocatalytic activity is due to the synergistic effect of broad spectral response by combining narrow bandgap and wide bandgap semiconductors and, hence, an efficient charge separation of photogenerated electron-hole pairs facilitated through the p-n heterojunction. Furthermore, our unique structure provides an insight on the fabrication and controlled preparation of multilayer heterostructural photocatalysts that have intriguing properties.

  17. Electronic structure and electrical transport in ternary Al-Mg-B films prepared by magnetron sputtering

    SciTech Connect

    Yan, C.; Qian, J. C.; He, B.; Ng, T. W.; Zhang, W. J.; Bello, I.; Jha, S. K.; Zhou, Z. F.; Li, K. Y.; Klemberg-Sapieha, J. E.; Martinu, L.

    2013-03-25

    Nanostructured ternary Al-Mg-B films possess high hardness and corrosion resistance. In the present work, we study their electronic structure and electrical transport. The films exhibit semiconducting characteristics with an indirect optical-bandgap of 0.50 eV, as deduced from the Tauc plots, and a semiconductor behavior with a Fermi level of {approx}0.24 eV below the conduction band. Four-probe and Hall measurements indicated a high electrical conductivity and p-type carrier mobility, suggesting that the electrical transport is mainly due to hole conduction. Their electrical properties are explained in terms of the film nanocomposite microstructure consisting of an amorphous B-rich matrix containing AlMgB{sub 14} nanoparticles.

  18. Studies on ternary zinc blend based semiconducting quantum dots for hybrid solar cell applications

    NASA Astrophysics Data System (ADS)

    Sharma, Harit Kumar; Pandey, S. K.; Agrawal, S. L.

    2017-05-01

    A systematic study is presented in the present work on the fabrication of hybrid solar cell using doped zinc blend based semiconductor quantum dots (QDs) prepared by a simple wet chemical precipitation method. Formation of quantum dot has been ascertained by X-ray Diffraction (XRD), UV-visible Spectroscopy and Impedance Spectroscopy measurements. XRD studies established the zinc-blende phase in quantum dot regime. UV-visible studies reveal decrement in optical bandgap of the QDs with co-doping of Cd ion in ZnS lattice. Mott-Schottky analysis revealed n-type conductivity with increasein band bending from binary to ternary configuration respectively. Bulk heterojunction hybrid solar cells fabricated in 1cm X 1cm size in conjunction with p type Polypyrroleunder AM 1.5 illumination resulted in highest conversion efficiency of 1.6 %.

  19. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  20. Semiconductor Solar Superabsorbers

    PubMed Central

    Yu, Yiling; Huang, Lujun; Cao, Linyou

    2014-01-01

    Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques. PMID:24531211

  1. Physics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Brütting, Wolfgang

    2005-08-01

    Filling the gap in the literature currently available, this book presents an overview of our knowledge of the physics behind organic semiconductor devices. Contributions from 18 international research groups cover various aspects of this field, ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in such different devices as organic field-effect transistors, photovoltaic cells and organic light-emitting diodes. From the contents: * Excitation Dynamics in Organic Semiconductors * Organic Field-Effect Transistors * Spectroscopy of Organic Semiconductors * Interfaces between Organic Semiconductors and Metals * Analysis and Modeling of Devices * Exciton Formation and Energy Transfer in Organic Light Emitting Diodes * Deposition and Characterization

  2. Neutron Damage and MAX Phase Ternary Compounds

    SciTech Connect

    Barsoum, Michael; Hoffman, Elizabeth; Sindelar, Robert; Garcua-Duaz, Brenda; Kohse, Gordon

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  3. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  4. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, Ian D.; Godshall, Ned A.; Huggins, Robert A.

    1982-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  5. Fabrication of Cu3Zn3Se ternary compounds by AP-MOCVD

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Ming; Lan, Shan-Ming; Uen, Wu-Yih; Yang, Tsun-Neng; Chang, Kuo-Jen; Shen, Chin-Chang; Hsu, Cheng-Fang; Jhao, Jian-Chang

    2013-10-01

    I-II-VI Ternary chalcopyrite semiconductors of Cu1-xZn1-ySe2-δ (Cu3Zn3Se) were successfully fabricated by the atmospheric pressure metal-organic chemical vapor deposition method for the first time. Four major peaks of (112), (220)/(204), (312)/(116), and (400), accompanied by three minor peaks of (103), (211) and (301) were observable in the X-ray diffraction spectra. In particular, the presence of those latter low-intensity peaks featured the formation of the chalcopyrite type Cu3Zn3Se compound. Typical absorption coefficients of the films produced were found to vary from 2.75×10 cm-1 to 5.75×10 cm-1 over all visible light range and from the same optical absorption spectra the energy gap of the material was extracted to be about 2.02 eV. Moreover, the photoluminescence measurement conducted at room temperature also exhibited a strong orange-colored emission line at 1.94 eV, which further confirmed that the Cu3Zn3Se ternary compound has been prepared. In addition, the cross-sectional and top-view scanning electron microscopy images characterized the fabricated Cu3Zn3Se compound as a polycrystalline film of thickness about 1-1.3 μm and consisting of 1-2.5 μm sized grains.

  6. SILICON CARBIDE FOR SEMICONDUCTORS

    DTIC Science & Technology

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  7. Normal state properties of the ternary molybdenum sulfides

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.

    1978-01-01

    By making a large number of normal state and superconducting properties measurements, all on the same ternary molybdenum sulfide samples, we obtain values for Fermi surface and superconducting parameters. From these we conclude that sputtered ternary molybdenum sulfides are not completely in the dirty superconductor limit, and that they are d-band metals with a high electron carrier density.

  8. Normal state properties of the ternary molybdenum sulfides

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.

    1978-01-01

    By making a large number of normal state and superconducting properties measurements, all on the same ternary molybdenum sulfide samples, we obtain values for Fermi surface and superconducting parameters. From these we conclude that sputtered ternary molybdenum sulfides are not completely in the dirty superconductor limit, and that they are d-band metals with a high electron carrier density.

  9. Photoelectrochemical cells based on ternary compounds CuIn{sub 2n+1}Se{sub 3n+2} (n = 3-6)

    SciTech Connect

    Rud, V. Yu. Rud, Yu. V.; Bodnar, I. V.; Gorbachev, D. V.; Ushakova, T. N.

    2009-03-15

    Single crystals of ternary CuIn{sub 2n+1}Se{sub 3n+2} semiconductors with the composition index n = 3, 5, 6 were grown for the first time using the direct crystallization method. It was shown that these crystals have hexagonal symmetry and close unit cell parameters. Photoelectrochemical cells based on CuIn{sub 2n+1}Se{sub 3n+2} and In{sub 2}Se{sub 3} single crystals were fabricated. Their photosensitivity spectra were measured for the first time, which were used to determine the nature of interband transitions and the band gap. The weak dependence of the parameters of the band's spectrum and unit cell of these semiconductors at n {>=} 2 was attributed to the features of the interatomic interaction in such phases. It was concluded that new CuIn{sub 2n+1}Se{sub 3n+2} semiconductors can be used in broadband photoconverters of optical radiations.

  10. Symmetric weak ternary quantum homomorphic encryption schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.

  11. Plasmonic spectral tunability of conductive ternary nitrides

    SciTech Connect

    Kassavetis, S.; Patsalas, P.; Bellas, D. V.; Lidorikis, E.; Abadias, G.

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  12. Equal area rule methods for ternary systems

    SciTech Connect

    Shyu, G.S.; Hanif, N.S.M.; Alvarado, J.F.J.; Hall, K.R.; Eubank, P.T.

    1995-12-01

    The phase equilibrium behavior of fluid mixtures is an important design consideration for both chemical processes and oil production. Eubank and Hall have recently shown the equal area rule (EAR) applies to the composition derivative of the Gibbs energy of a binary system at fixed pressure and temperature regardless of derivative continuity. A sufficient condition for equilibria, EAR is faster and simpler than either the familiar tangent-line method or the area method of Eubank et al. Here, the authors show that EAR can be extended to ternary systems exhibiting one, two, or three phases at equilibrium. A single directional vector is searched in composition space; at equilibrium, this vector is the familiar tie line. A sensitive criterion for equilibrium under EAR is equality of orthogonal derivatives such as ({partial_derivative}g/{partial_derivative}x{sub 1}){sub x{sub 2}P,T} at the end points ({alpha} and {beta}), where g {equivalent_to} ({Delta}{sub m}G/RT). Repeated use of the binary algorithm published in the first reference allows rapid, simple solution of ternary problems, even with hand-held calculations for cases where the background model is simple (e.g., activity coefficient models) and the derivative continuous.

  13. The ternary system cerium-rhodium-silicon

    SciTech Connect

    Lipatov, Alexey; Gribanov, Alexander; Grytsiv, Andriy; Safronov, Sergey; Rogl, Peter; Rousnyak, Julia; Seropegin, Yurii; Giester, Gerald

    2010-04-15

    Phase relations have been established in the ternary system Ce-Rh-Si for the isothermal section at 800 deg. C based on X-ray powder diffraction and EPMA on about 80 alloys, which were prepared by arc melting under argon or by powder reaction sintering. From the 25 ternary compounds observed at 800 deg. C 13 phases have been reported earlier. Based on XPD Rietveld refinements the crystal structures for 9 new ternary phases were assigned to known structure types. Structural chemistry of these compounds follows the characteristics already outlined for their prototype structures: tau{sub 7}-Ce{sub 3}RhSi{sub 3}, (Ba{sub 3}Al{sub 2}Ge{sub 2}-type), tau{sub 8}-Ce{sub 2}Rh{sub 3-x}Si{sub 3+x} (Ce{sub 2}Rh{sub 1.35}Ge{sub 4.65}-type), tau{sub 10}-Ce{sub 3}Rh{sub 4-x}Si{sub 4+x} (U{sub 3}Ni{sub 4}Si{sub 4}-type), tau{sub 11}-CeRh{sub 6}Si{sub 4} (LiCo{sub 6}P{sub 4}-type), tau{sub 13}-Ce{sub 6}Rh{sub 30}Si{sub 19.3} (U{sub 6}Co{sub 30}Si{sub 19}-type), tau{sub 18}-Ce{sub 4}Rh{sub 4}Si{sub 3} (Sm{sub 4}Pd{sub 4}Si{sub 3}-type), tau{sub 21}-CeRh{sub 2}Si (CeIr{sub 2}Si-type), tau{sub 22}-Ce{sub 2}Rh{sub 3+x}Si{sub 1-x} (Y{sub 2}Rh{sub 3}Ge-type) and tau{sub 24}-Ce{sub 8}(Rh{sub 1-x}Si{sub x}){sub 24}Si (Ce{sub 8}Pd{sub 24}Sb-type). For tau{sub 25}-Ce{sub 4}(Rh{sub 1-x}Si{sub x}){sub 12}Si a novel bcc structure was proposed from Rietveld analysis. Detailed crystal structure data were derived for tau{sub 3}-CeRhSi{sub 2} (CeNiSi{sub 2}-type) and tau{sub 6}-Ce{sub 2}Rh{sub 3}Si{sub 5} (U{sub 2}Co{sub 3}Si{sub 5}-type) by X-ray single crystal experiments, confirming the structure types. The crystal structures of tau{sub 4}-Ce{sub 22}Rh{sub 22}Si{sub 56}, tau{sub 5}-Ce{sub 20}Rh{sub 27}Si{sub 53} and tau{sub 23}-Ce{sub 33.3}Rh{sub 58.2-55.2}Si{sub 8.5-11.5} are unknown. High temperature compounds with compositions Ce{sub 10}Rh{sub 51}Si{sub 33} (U{sub 10}Co{sub 51}Si{sub 33}-type) and CeRhSi (LaIrSi-type) have been observed in as-cast alloys but these phases do not participate in

  14. The superconductivity of certain ternary molybdenum compounds

    NASA Technical Reports Server (NTRS)

    Odermatt, R.

    1978-01-01

    The objectives of this work were to measure the superconductivity and critical fields of (Cu1.5Mo4.5), (SmMo5S6), and (Pb0.9Mo5.1S6) in order to reproduce the published results, and by introduction of magnetic impurities into these semiconductors, observe the compensation effect.

  15. Enhancement of near-field light generated by metal nanodot on semiconductor substrate for heat-assisted magnetic recording heat source

    NASA Astrophysics Data System (ADS)

    Katayama, Ryuichi; Kasuya, Takayuki; Sugiura, Satoshi; Yoshizawa, Katsumi

    2015-09-01

    In the novel device for a heat-assisted magnetic recording heat source where a metal nanodot is formed on a semiconductor substrate, the possibility of enhancing the near-field light by selecting suitable combinations of the materials for the metal nanodot and semiconductor substrate was investigated through a numerical simulation. It was found that the enhancement factor of the light intensity at a certain resonance wavelength for the light polarized perpendicularly to the surface of the substrate can be improved by two methods. One is to use an alloy as the material for the metal nanodot and the other is to use a ternary mixed crystal as the material for the semiconductor substrate. Design examples were shown for both methods. The ratio of each element in the alloy or ternary mixed crystal should be determined considering the balance between the enhancement factor and some other factors such as stability, availability, and convenience.

  16. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  17. Hydrogen in semiconductors

    SciTech Connect

    Haller, E.E. Lawrence Berkeley Lab., CA )

    1990-06-01

    After an incubation'' period in the 1970's and early 80's, during which the first hydrogen related centers were discovered and characterized in ultra-pure germanium, a sharp increase of research activity occurred after the discovery of shallow acceptor passivation in crystalline silicon. The aim of this review is to convey an insight into the rich, multifaceted physics and materials science which has emerged from the vast variety of experimental and theoretical studies of hydrogen in semiconductors. In order to arrive at the current understanding of hydrogen related phenomena in a logical way, each chapter will start with a brief review of the major experimental and theoretical advances of the past few years. Those who are interested to learn more about this fascinating area of semiconductor research are referred to reviews, to a number of conference proceedings volumes, and to an upcoming book which will contain authoritative chapters on most aspects of hydrogen in crystalline semiconductors. Some of the early art of semiconductor device processing can finally be put on a scientific foundation and new ways of arriving at advanced device structures begin to use what we have learned from the basic studies of hydrogen in semiconductors. 92 refs., 8 figs.

  18. The ternary system cerium-rhodium-silicon

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Gribanov, Alexander; Grytsiv, Andriy; Safronov, Sergey; Rogl, Peter; Rousnyak, Julia; Seropegin, Yurii; Giester, Gerald

    2010-04-01

    Phase relations have been established in the ternary system Ce-Rh-Si for the isothermal section at 800 °C based on X-ray powder diffraction and EPMA on about 80 alloys, which were prepared by arc melting under argon or by powder reaction sintering. From the 25 ternary compounds observed at 800 °C 13 phases have been reported earlier. Based on XPD Rietveld refinements the crystal structures for 9 new ternary phases were assigned to known structure types. Structural chemistry of these compounds follows the characteristics already outlined for their prototype structures: τ7—Ce 3RhSi 3, (Ba 3Al 2Ge 2-type), τ8—Ce 2Rh 3-xSi 3+x (Ce 2Rh 1.35Ge 4.65-type), τ10—Ce 3Rh 4-xSi 4+x (U 3Ni 4Si 4-type), τ11—CeRh 6Si 4 (LiCo 6P 4-type), τ13—Ce 6Rh 30Si 19.3 (U 6Co 30Si 19-type), τ18—Ce 4Rh 4Si 3 (Sm 4Pd 4Si 3-type), τ21—CeRh 2Si (CeIr 2Si-type), τ22—Ce 2Rh 3+xSi 1-x (Y 2Rh 3Ge-type) and τ24—Ce 8(Rh 1-xSi x) 24Si (Ce 8Pd 24Sb-type). For τ25—Ce 4(Rh 1-xSi x) 12Si a novel bcc structure was proposed from Rietveld analysis. Detailed crystal structure data were derived for τ3—CeRhSi 2 (CeNiSi 2-type) and τ6—Ce 2Rh 3Si 5 (U 2Co 3Si 5-type) by X-ray single crystal experiments, confirming the structure types. The crystal structures of τ4—Ce 22Rh 22Si 56, τ5—Ce 20Rh 27Si 53 and τ23—Ce 33.3Rh 58.2-55.2Si 8.5-11.5 are unknown. High temperature compounds with compositions Ce 10Rh 51Si 33 (U 10Co 51Si 33-type) and CeRhSi (LaIrSi-type) have been observed in as-cast alloys but these phases do not participate in the phase equilibria at 800 °C.

  19. [Construction of Three-Dimensional Isobologram for Ternary Pollutant Mixtures].

    PubMed

    2015-12-01

    Tongji University, Shanghai 200092, China) Isobolographic analysis was widely used in the interaction assessment of binary mixtures. However, how to construct a three-dimensional (3D) isobologram for the assessment of toxicity interaction within ternary mixtures is still not reported up to date. The main purpose of this paper is to develop a 3D isobologram where the relative concentrations of three components are acted as three coordinate axes in 3D space to examine the toxicity interaction within ternary mixtures. Taking six commonly used pesticides in China, including three herbicides (2, 4-D, desmetryne and simetryn) and three insecticides ( dimethoate, imidacloprid and propoxur) as the mixture components, the uniform design ray procedure (UD-Ray) was used to rationally design the concentration composition of various components in the ternary mixtures so that effectively and comprehensively reflected the variety of actual environmental concentrations. The luminescent inhibition toxicities of single pesticides and their ternary mixtures to Vibrio fischeri at various concentration levels were determined by the microplate toxicity analysis. Selecting concentration addition (CA) as the addition reference, 3D isobolograms were constructed to study the toxicity interactions of various ternary mixtures. The results showed that the 3D isobologram could clearly and directly exhibit the toxicity interactions of ternary mixtures, and extend the use of isobolographic analysis into the ternary mixtures.

  20. Ternary compounds and isothermal section in Lu-Fe-Ga ternary system at 773 K

    NASA Astrophysics Data System (ADS)

    Liu, Fusheng; Ao, Weiqin; Pan, Laicai; Wang, Qibao; Yan, Jialing; Li, Junqin

    2013-06-01

    The isothermal section of the Lu-Fe-Ga ternary system at 773 K was investigated and constructed based on X-ray powder diffraction analysis. Thirteen binary compounds, Lu2Fe17, Lu6Fe23, LuFe2, LuGa3, LuGa2, Lu3Ga5, LuGa, Lu3Ga2, Lu5Ga3, Fe3Ga, Fe6Ga5, Fe3Ga4, FeGa3, nine ternary solid solutions, T1-LuFe2-1.43Ga0-0.57, T2-LuFe1.34-0.92Ga0.68-1.08, T3-LuFe0.52-0.26Ga1.48-1.74, T5-LuFe2.04-1.72Ga0.96-1.28, T6-Lu6Fe23-21.4Ga0-1.6, T7-Lu2Fe17-14.5Ga0-3.5, T8-Lu2Fe12.9-8.1Ga4.1-8.9, T9-LuFe6.8-5.5Ga5.2-6.5, T10-LuFe5.2-4.5Ga6.8-7.5, and two ternary compounds, T4-LuFe2.35Ga0.65 and T11-Lu2FeGa8 have been confirmed. The structures of the five new ternary compounds or solid solution T2, T3, T4, T5 and T8 are determined by Rietveld refinement method.

  1. Determining the Presence of Ordering in Ternary Semiconductor Alloys Grown by Molecular Beam Epitaxy

    DTIC Science & Technology

    2013-01-01

    this will provide a III-V analog to direct bandgap mercury cadmium telluride (HgCdTe), with the benefits of higher quantum efficiencies (QEs) and...ARL U.S. Army Research Laboratory CuPt copper platinum Ga gallium GaInP gallium indium phosphide GaSb gallium antimonide HgCdTe mercury

  2. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Cushman, Paula P.

    1997-01-01

    Preliminary definition of all of the necessary materials, labor, services, and facilities necessary to provide science requirement definition, initiate hardware development activities, and provide an update flight program proposal consistent with the NRA selection letter. The major tasks identified in this SOW are in the general category of science requirements determination, instrument definition, and updated flight program proposal. The Contractor shall define preliminary management, technical and integration requirements for the program, including improved cost/schedule estimates. The Contractor shall identify new technology requirements, define experiment accommodations and operational requirements and negotiate procurement of any long lead items, if required, with the government.

  3. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    1997-01-01

    Preliminary definition of all of the necessary materials, labor, services, and facilities necessary to provide science requirement definition, initiate hardware development activities, and provide an updated flight program proposal consistent with the NRA selection letter. The major tasks identified in this SOW are in the general category of science requirements determination, instrument definition, and updated flight program proposal. The Contractor shall define preliminary management, technical and integration requirements for the program, including improved cost/schedule estimates. The Contractor shall identify new technology requirements, define experiment accommodations and operational requirements and negotiate procurement of any long lead items, if required, with the government.

  4. Influence of sulphide precursor on crystal phase of ternary I-III-VI2 semiconductors

    NASA Astrophysics Data System (ADS)

    Beloš, Milica V.; Abazović, Nadica D.; Jakovljević, Jadranka Kuljanin; Janković, Ivana; Ahrenkiel, Scott P.; Mitrić, Miodrag; Čomor, Mirjana I.

    2013-12-01

    Samples of AgInS2 and CuInS2 nanoparticles were synthesized by hot-injection method at 270 °C using 1-dodecanethiol (DT) and elemental sulphur (S) as sulphide precursors, and oleylamine as reaction medium and surfactant. Composition, crystal structure, and particle size of obtained materials were tracked by XRD and TEM/HRTEM measurements. It was shown that, due to its dual role as sulphur source and surfactant, DT drastically slows formation of desired material. Samples obtained with DT even after 4 h of reaction have traces of intermediary compound (β-In2S3), whereas in samples synthesized with elemental S these traces are less pronounced. The growth mechanism and influence of each reaction step are discussed in detail.

  5. Semiconductor surface protection material

    NASA Technical Reports Server (NTRS)

    Packard, R. D. (Inventor)

    1973-01-01

    A method and a product for protecting semiconductor surfaces is disclosed. The protective coating material is prepared by heating a suitable protective resin with an organic solvent which is solid at room temperature and converting the resulting solution into sheets by a conventional casting operation. Pieces of such sheets of suitable shape and thickness are placed on the semiconductor areas to be coated and heat and vacuum are then applied to melt the sheet and to drive off the solvent and cure the resin. A uniform adherent coating, free of bubbles and other defects, is thus obtained exactly where it is desired.

  6. New unorthodox semiconductor devices

    NASA Astrophysics Data System (ADS)

    Board, K.

    1985-12-01

    A range of new semiconductor devices, including a number of structures which rely entirely upon new phenomena, are discussed. Unipolar two-terminal devices, including impurity-controlled barriers and graded composition barriers, are considered, as are new transistor structures, including the hot-electron camel transistor, the planar-doped barrier transistor, the thermionic emission transistor, and the permeable base transistor. Regenerative switching devices are addressed, including the metal-tunnel insulator-semiconductor switch, the polysilicon switch, MIS, and MISIM switching structures, and the triangular-barrier switch. Heterostructure devices are covered, including the heterojunction bipolar transistor, the selectively doped heterojunction transistor, heterojunction lasers, and quantum-well structures.

  7. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  8. Quantum Transport in Semiconductors

    DTIC Science & Technology

    1991-10-01

    SRS i 91 4. TITLE AND SUBTITLE Quantum Transport in Semiconductors 5. FUNDING NUMBER söMtos-rizk-ooss 6. AUTHOR(S) D. K. Ferry ©fte ELECTE...OF ABSTRACT UL NSN 7540-01-280-5500 O 1 9 Standard Form 298 (Rev. 2-89) Presented by ANSI Std «9-18 298-102 Final Report Quantum Transport in... Quantum Transport in Semiconductor Devices This final report describes a program of research investigating quantum effects which become important in

  9. Designing thin film materials — Ternary borides from first principles

    PubMed Central

    Euchner, H.; Mayrhofer, P.H.

    2015-01-01

    Exploiting the mechanisms responsible for the exceptional properties of aluminum based nitride coatings, we apply ab initio calculations to develop a recipe for designing functional thin film materials based on ternary diborides. The combination of binary diborides, preferring different structure types, results in supersaturated metastable ternary systems with potential for phase transformation induced effects. For the exemplary cases of MxW1 − xB2 (with M = Al, Ti, V) we show by detailed ab initio calculations that the respective ternary solid solutions are likely to be experimentally accessible by modern depositions techniques. PMID:26082562

  10. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  11. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  12. A Three-dimensional Topological Model of Ternary Phase Diagram

    NASA Astrophysics Data System (ADS)

    Mu, Yingxue; Bao, Hong

    2017-01-01

    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested.

  13. Ternary particle yields in 249Cf(nth,f)

    NASA Astrophysics Data System (ADS)

    Tsekhanovich, I.; Büyükmumcu, Z.; Davi, M.; Denschlag, H. O.; Gönnenwein, F.; Boulyga, S. F.

    2003-03-01

    An experiment measuring ternary particle yields in 249Cf(nth,f) was carried out at the high flux reactor of the Institut Laue-Langevin using the Lohengrin recoil mass separator. Parameters of energy distributions were determined for 27 ternary particles up to 30Mg and their yields were calculated. The yields of 17 further ternary particles were estimated on the basis of the systematics developed. The heaviest particles observed in the experiment are 37Si and 37S; their possible origin is discussed.

  14. Photoelectrochemical Characterization of Polycrystalline CdSe, CdTe and CuInSe2 Semiconductor Films

    NASA Astrophysics Data System (ADS)

    Koutsikou, R.; Bouroushian, M.

    2010-01-01

    Useful optical parameters of thin semiconducting films can be determined by electrochemical and electrical techniques. This work is an attempt to characterize cathodically electrodeposited binary cadmium chalcogenide (CdSe, CdTe) and ternary Cu-chalcopyrite (CuInSe2) films by photoelectrochemical techniques. Namely, photovoltammetry, photocurrent spectroscopy and onset potential method. Some fundamentals, regarding the estimation of band gap energy and flat band potential values of these semiconductors, are briefly discussed.

  15. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  16. DFT Studies of Semiconductor and Scintillator Detection Materials

    NASA Astrophysics Data System (ADS)

    Biswas, Koushik

    2013-03-01

    Efficient radiation detection technology is dependent upon the development of new semiconductor and scintillator materials with advanced capabilities. First-principles based approaches can provide vital information about the structural, electrical, optical and defect properties that will help develop new materials. In addition to the predictive power of modern density functional methods, these techniques can be used to establish trends in properties that may lead to identifying new materials with optimum properties. We will discuss the properties of materials that are of current interest both in the field of scintillators and room temperature semiconductor detectors. In case of semiconductors, binary compounds such as TlBr, InI, CdTe and recently developed ternary chalcohalide Tl6SeI4 will be discussed. Tl6SeI4 mixes a halide (TlI) with a chalcogenide (Tl2Se), which results in an intermediate band gap (1.86 eV) between that of TlI (2.75 eV) and Tl2Se (0.6 eV). For scintillators, we will discuss the case of the elpasolite compounds whose rich chemical compositions should enable the fine-tuning of the band gap and band edges to achieve high light yield and fast scintillation response.

  17. Multinary wurtzite-type oxide semiconductors: present status and perspectives

    NASA Astrophysics Data System (ADS)

    Suzuki, Issei; Omata, Takahisa

    2017-01-01

    Oxide-based optoelectronic devices have been limited in applicable wavelength to the near-UV region because there are few viable binary wurtzite-type oxides, but ternary wurtzite-type (β-NaFeO2-type) oxides are promising materials to expand the applicable wavelengths of these devices. In the past decade, many attractive properties of β-NaFeO2-type oxide semiconductors have been revealed, such as the band-engineering of ZnO by alloying with β-LiGaO2 and β-AgGaO2, the photocatalytic activities of β-AgGaO2 and β-AgAlO2, and the discovery that β-CuGaO2 is suitable for thin-film solar-cell absorbers. In this review article, we consider previous studies of β-NaFeO2-type oxide semiconductors—β-LiGaO2, β-AgGaO2, β-AgAlO2, β-CuGaO2—and their alloys with ZnO, and discuss their structural features, optical and electrical properties, and the relationship between their crystal structures and electronic band structures. We describe the outlook of β-NaFeO2-type oxide semiconductors and the remaining issues that hinder the development of optoelectronic devices made from β-NaFeO2-type oxide semiconductors.

  18. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  19. Physics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Brütting, Wolfgang

    2004-05-01

    Organic semiconductors are of steadily growing interest as active components in electronics and optoelectronics. Due to their flexibility, low cost and ease-of-production they represent a valid alternative to conventional inorganic semiconductor technology in a number of applications, such as flat panel displays and illumination, plastic integrated circuits or solar energy conversion. Although first commercial applications of this technology are being realized nowadays, there is still the need for a deeper scientific understanding in order to achieve optimum device performance.This special issue of physica status solidi (a) tries to give an overview of our present-day knowledge of the physics behind organic semiconductor devices. Contributions from 17 international research groups cover various aspects of this field ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in different devices like organic field-effect transistors, photovoltaic cells and organic light-emitting diodes.Putting together such a special issue one soon realizes that it is simply impossible to fully cover the whole area of organic semiconductors. Nevertheless, we hope that the reader will find the collection of topics in this issue useful for getting an up-to-date review of a field which is still developing very dynamically.

  20. Semiconductor Nanocrystal Photonics

    DTIC Science & Technology

    2005-08-31

    Hahn, H. Du, and T. D. Krauss, "Photoluminescence enhancement of colloidal semiconductor quantum dots embedded in a monolithic microcavity," Appl... DBRs ). The colloidal NC suspension was spun-coat into a 95-nm thick layer in the center of the cavity and then the other layers forming the top DBR

  1. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  2. Chemically Derivatized Semiconductor Photoelectrodes.

    ERIC Educational Resources Information Center

    Wrighton, Mark S.

    1983-01-01

    Deliberate modification of semiconductor photoelectrodes to improve durability and enhance rate of desirable interfacial redox processes is discussed for a variety of systems. Modification with molecular-based systems or with metals/metal oxides yields results indicating an important role for surface modification in devices for fundamental study…

  3. The ternary system cerium-palladium-silicon

    SciTech Connect

    Lipatov, Alexey; Gribanov, Alexander; Grytsiv, Andriy; Rogl, Peter; Murashova, Elena; Seropegin, Yurii; Giester, Gerald; Kalmykov, Konstantin

    2009-09-15

    Phase relations in the ternary system Ce-Pd-Si have been established for the isothermal section at 800 deg. C based on X-ray powder diffraction and EMPA techniques on about 130 alloys, which were prepared by arc-melting under argon or powder reaction sintering. Eighteen ternary compounds have been observed to participate in the phase equilibria at 800 deg. C. Atom order was determined by direct methods from X-ray single-crystal counter data for the crystal structures of tau{sub 8}-Ce{sub 3}Pd{sub 4}Si{sub 4} (U{sub 3}Ni{sub 4}Si{sub 4}-type, Immm; a=0.41618(1), b=0.42640(1), c=2.45744(7) nm), tau{sub 16}-Ce{sub 2}Pd{sub 14}Si (own structure type, P4/nmm; a=0.88832(2), c=0.69600(2) nm) and also for tau{sub 18}-CePd{sub 1-x}Si{sub x} (x=0.07; FeB-type, Pnma; a=0.74422(5), b=0.45548(3), c=0.58569(4) nm). Rietveld refinements established the atom arrangement in the structures of tau{sub 5}-Ce{sub 3}PdSi{sub 3} (Ba{sub 3}Al{sub 2}Ge{sub 2}-type, Immm; a=0.41207(1), b=0.43026(1), c=1.84069(4) nm) and tau{sub 13}-Ce{sub 3-x}Pd{sub 20+x}Si{sub 6} (0<=x<=1, Co{sub 20}Al{sub 3}B{sub 6}-type, Fm3-barm; a=1.21527(2) nm). The ternary compound Ce{sub 2}Pd{sub 3}Si{sub 3} (structure-type Ce{sub 2}Rh{sub 1.35}Ge{sub 4.65}, Pmmn; a=0.42040(1), b=0.42247(1), c=1.72444(3) nm) was detected as a high-temperature compound, however, does not participate in the equilibria at 800 deg. C. Phase equilibria in Ce-Pd-Si are characterized by the absence of cerium solubility in palladium silicides. Mutual solubility among cerium silicides and cerium-palladium compounds are significant whereby random substitution of the almost equally sized atom species palladium and silicon is reflected in extended homogeneous regions at constant Ce-content such as for tau{sub 2}-Ce(Pd{sub x}Si{sub 1-x}){sub 2} (AlB{sub 2}-derivative type), tau{sub 6}-Ce(Pd{sub x}Si{sub 1-x}){sub 2} (ThSi{sub 2}-type) and tau{sub 7}-CePd{sub 2-x}Si{sub 2+x}. The crystal structures of compounds tau{sub 4}-Ce{sub a}pprox{sub 8}Pd

  4. Structural evaluation of crystalline ternary γ-cyclodextrin complex.

    PubMed

    Higashi, Kenjirou; Ideura, Saori; Waraya, Haruka; Moribe, Kunikazu; Yamamoto, Keiji

    2011-01-01

    The structure of a crystalline γ-cyclodextrin (γ-CD) ternary complex containing salicylic acid (SA) and flurbiprofen (FBP) prepared by sealed heating was investigated. FBP/γ-CD inclusion complex was prepared by coprecipitation; its molar ratio was determined as 1/1. Powder X-ray diffraction measurements showed that the molecular packing of γ-CD changed from hexagonal to monoclinic columnar form by sealed heating of SA with dried FBP/γ-CD inclusion complex, indicating ternary complex formation. The stoichiometry of SA/FBP/γ-CD was estimated as 2/1/1. Solid-state transformation of γ-CD molecular packing upon water vapor adsorption and desorption was irreversible for this ternary complex, in contrast to the reversible transition for the FBP/γ-CD inclusion complex. The ternary complex contained one FBP molecule in the cavity of γ-CD and two SA molecules in the intermolecular space between neighboring γ-CD column stacks. Infrared and (13) C solid-state NMR spectroscopies revealed that the molecular states of SA and FBP changed upon ternary complex formation. In the complex, dimer FBP molecules were sandwiched between two γ-CD molecules whereas each monomer SA molecule was present in the intermolecular space of γ-CD. Ternary complex formation was also observed for other drug-guest systems using naproxen and ketoprofen. Thus, the complex can be used to formulate variety of drugs.

  5. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    PubMed

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive

  6. Growth and characterization of group III ternary nitrides

    NASA Astrophysics Data System (ADS)

    Shin, Minseub

    This research has been carried out to improve our understanding of the behavior of the III-nitride material system. This research was specifically designed to study the relationship between the material properties and growth conditions. There are two different focal points of this research. The first objective was to explore the possibility of formation of boron containing group III nitrides, and the second one was the study of the relationship between properties of AlGaN and its OMVPE growth condition. The results have been characterized by SIMS, PL, van der Pauw, HRXRD, and AFM. As for the boron containing nitride systems, it has been demonstrated that it is possible to form GaBN and AlBN as an epitaxial single crystal. However, the achievable boron concentration was very limited and the formation of a second phase was unavoidable. In GaBN, single crystalline material could be achieved up to 7% boron at 650sp°C. Above 7% boron content, the growth poisoning was observed due to formation of spsp2 bonded BN phase. Unlike GaBN, in AlBN, the highest achievable boron concentration was 1%. TEM and X-ray diffraction results suggested the presence of a second phase present which was identified as spsp3 bonded wurtzite BN, which had a columnar structure between AlN columns. The growth of the thermodynamically less favorable wurtzite BN was possible because the AlBN islands provided nucleation sites for the wurtzite BN growth. AlGaN growth is in the mass-transfer limited regime and the growth rate and the composition can be controlled by controlling the gas phase concentration. However, the Al source undergoes very severe gas phase reaction in the reactor, and this effect has to be taken into account. The electrical properties of the layer were a very strong function of growth conditions such as growth rate and growth temperature. The structural properties of the layer were also very strongly dependent on the growth conditions, especially the pre-growth steps. The residual

  7. Pattern selection in ternary mushy layers

    NASA Astrophysics Data System (ADS)

    Guba, Peter; Anderson, Daniel

    2015-11-01

    We consider finite-amplitude convection in a mushy layer during the primary solidification of a ternary alloy. A previous linear theory identified, for the case of vanishing latent heat, solute rejection and background solidification, a direct mode of convective instability when all the individual stratifying agencies (thermal and two solutal) were statically stabilizing. The physical mechanism behind this instability was attributed to the local-phase-change effect on the net solute balance through the liquid-phase solutal diffusivity. A weakly nonlinear development of this instability is investigated in detail. We examine the stability of two-dimensional roll, and three-dimensional square and hexagonal convection patterns. The amplitude evolution equations governing roll/square and roll/hexagon competition are derived. We find that any of rolls, squares or hexagons can be nonlinearly stable, depending on the relative importance of a number of physical effects as reflected in the coefficients of the amplitude equations. The results for a special case are found to isolate a purely double-diffusive phase-change mechanism of pattern selection. Subcritical behaviour is identified inside the domain of individual static stability.

  8. Mesoscale inhomogeneities in an aqueous ternary system

    NASA Astrophysics Data System (ADS)

    Subramanian, Deepa; Hayward, Stephen; Altabet, Elia; Collings, Peter; Anisimov, Mikhail

    2012-02-01

    Aqueous solutions of certain low-molecular-weight organic compounds, such as alcohols, amines, or ethers, which are considered macroscopically homogeneous, show the presence of mysterious mesoscale inhomogeneities, order of a hundred nm in size. We have performed static and dynamic light scattering experiments in an aqueous ternary system consisting of tertiary butyl alcohol and propylene oxide. Tertiary butyl alcohol is completely soluble in water and in propylene oxide, and forms strong hydrogen bonds with water molecules. Based on results of the study, we hypothesize that the mesoscale inhomogeneities are akin to a micro phase separation, resulting from a competition between water molecules and propylene oxide molecules, wanting to be adjacent to amphiphilic tertiary butyl alcohol molecules. Coupling between two competing order parameters, super-lattice binary-alloy-like (``antiferromagnetic'' type) and demixing (``ferromagnetic'' type) may explain the formation of these inhomogeneities. Long-term stability investigation of this supramolecular structure has revealed that these inhomogeneities are exceptionally long-lived non-equilibrium structures that persist for weeks or even months.

  9. Lunar granites with unique ternary feldspars

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Stoeser, D. B.; Marvin, U. B.; Bower, J. F.

    1975-01-01

    An unusually high concentration of granitic fragments, with textures ranging from holocrystalline to glassy, occurs throughout Boulder 1, a complex breccia of highland rocks from Apollo 17, Station 2. Among the minerals included in the granites are enigmatic K-Ca-rich feldspars that fall in the forbidden region of the ternary diagram. The great variability in chemistry and texture is probably the result of impact degradation and melting of a granitic source-rock. Studies of the breccia matrix suggest that this original granitic source-rock may have contained more pyroxenes and phosphates than most of the present clasts contain. Petrographic observations on Apollo 15 KREEP basalts indicate that granitic liquids may be produced by differentiation without immiscibility, and the association of the granites with KREEP-rich fragments in the boulder suggests that the granites represent a residual liquid from the plutonic fractional crystallization of a KREEP-rich magma. Boulder 1 is unique among Apollo 17 samples in its silica-KREEP-rich composition. We conclude that the boulder represents a source-rock unlike the bedrock of South Massif.

  10. Light amplification using semiconductors

    SciTech Connect

    Dupuis, R.D.

    1987-06-01

    During the summer of 1953, John von Neumann discussed his ideas concerning light amplification using semiconductors with Edward Teller. In September of that year, von Neumann sent a manuscript containing his ideas and calculations on this subject to Teller for his comments. To the best of our knowledge, von Neumann did not take time to work further on these ideas, and the manuscript remained unpublished. These previously unpublished writings of John von Neumann on the subject of light amplification in semiconductors are printed as a service to the laser community. While von Neumann's original manuscript and his letter to Teller are available to anyone who visits the Library of Congress, it is much more convenient to have this paper appear in an archival journal.

  11. Semiconductor radiation detector

    DOEpatents

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  12. Stretchable Organic Semiconductor Devices.

    PubMed

    Qian, Yan; Zhang, Xinwen; Xie, Linghai; Qi, Dianpeng; Chandran, Bevita K; Chen, Xiaodong; Huang, Wei

    2016-11-01

    Stretchable electronics are essential for the development of intensely packed collapsible and portable electronics, wearable electronics, epidermal and bioimplanted electronics, 3D surface compliable devices, bionics, prosthesis, and robotics. However, most stretchable devices are currently based on inorganic electronics, whose high cost of fabrication and limited processing area make it difficult to produce inexpensive, large-area devices. Therefore, organic stretchable electronics are highly attractive due to many advantages over their inorganic counterparts, such as their light weight, flexibility, low cost and large-area solution-processing, the reproducible semiconductor resources, and the easy tuning of their properties via molecular tailoring. Among them, stretchable organic semiconductor devices have become a hot and fast-growing research field, in which great advances have been made in recent years. These fantastic advances are summarized here, focusing on stretchable organic field-effect transistors, light-emitting devices, solar cells, and memory devices.

  13. Thermosize potentials in semiconductors

    NASA Astrophysics Data System (ADS)

    Karabetoglu, S.; Sisman, A.

    2017-09-01

    A thermosize junction consists of two different sized structures made using the same material. Classical and quantum thermosize effects (CTSEs and QTSEs), which are opposite to each other, induce a thermosize potential in a thermosize junction. A semi-analytical method is proposed to calculate thermosize potentials in wide ranges of degeneracy and confinement by considering both CTSEs and QTSEs in thermosize junctions made using semiconductors. Dependencies of thermosize potential on temperature, size, and degeneracy are examined. It is shown that a potential difference in millivolt scale can be induced as a combined effect of CTS and QTS. The highest potential is obtained in nondegenerate limit where the full analytical solution is obtained. The model can be used to design semiconductor thermosize devices for a possible experimental verification of CTSEs and QTSEs, which may lead to new nano energy conversion devices.

  14. Three dimensional strained semiconductors

    DOEpatents

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  15. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  16. Metal Contacts in Semiconductors.

    DTIC Science & Technology

    1983-11-01

    surfaces, Pnotoelectron spe troscopy, Auger electron spectro- I scopy, Schottky barriers, ohmic contacts, Defects in semiconductors, Cadmium * telluride...Indium phosphide, Gallium arsenide, Gallium Selenide . j 20. ABSTR ACT (roothat ow rees esh " neceay and td..ity by block -. b*w) SThe application of...angstroms. Also, provided one eliminates the systems where cadmium outdiffusion into high work function metals occurs then good agreement between the

  17. Chemically Derivatized Semiconductor Photoelectrodes.

    DTIC Science & Technology

    1983-06-01

    Journal of Chemical Education . l.i LA. Is. KEY WOROS (Coneinuo onm Few*,@*.oldsI noede eeand identify by block number) semiconductors, photoelectrodes...Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Prepared for publication in the Journal of Chemical Education June 1, 1983 Reproduction...use of metals or metal oxides coated onto the photoelectrode surface. [Prepared for publication in the Journal of Chemical Education .

  18. Semiconductor projectile impact detector

    NASA Technical Reports Server (NTRS)

    Shriver, E. L. (Inventor)

    1977-01-01

    A semiconductor projectile impact detector is described for use in determining micrometeorite presence, as well as its flux and energy comprising a photovoltaic cell which generates a voltage according to the light and heat emitted by the micrometeorites upon impact. A counter and peak amplitude measuring device were used to indicate the number of particules which strike the surface of the cell as well as the kinetic energy of each of the particles.

  19. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  20. Semiconductor Properties Near Interfaces.

    DTIC Science & Technology

    1980-07-31

    electron multi- plication with a scintillation counter. This detECtor , described in the appendix, provides very low background without sacrifice of...k ADA095 858 UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES F/G 20/12I SEMICONDUCTOR PROPERTIES NEAR INTERFACES.(U) JUL GO0 DB WITTRY. S Y YIN, F GUO...improvements in the Ion Microprobe Mass Analyzer; in the course of the investioations in improved inn detector was developed and a microcomrnu*e

  1. Semiconductor Diamond Technology

    DTIC Science & Technology

    1991-12-31

    hidrogen at the maximum pressure showed only very faint -second order spots. Annealing of thee samples to 1000*C restored the (2x0) configura.-tion...semiconductor contact also provides a suitable vehicle for electrical characterization of the device material. However, it has been observed that the...nature of the plasma activated diamond deposition processes provides a very useful and flexible vehicle for device fabrication sequences. Other workers

  2. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  3. New Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Balestra, F.

    2008-11-01

    A review of recently emerging semiconductor devices for nanoelectronic applications is given. For the end of the international technology roadmap for semiconductors, very innovative materials, technologies and nanodevice architectures will be needed. Silicon on insulator-based devices seem to be the best candidates for the ultimate integration of integrated circuits on silicon. The flexibility of the silicon on insulator-based structure and the possibility to realize new device architectures allow to obtain optimum electrical properties for low power and high performance circuits. These transistors are also very interesting for high frequency and memory applications. The performance and physical mechanisms are addressed in single- and multi-gate thin film Si, SiGe and Ge metal-oxide-semiconductor field-effect-transistors. The impact of tensile or compressive uniaxial and biaxial strains in the channel, of high k materials and metal gates as well as metallic Schottky source-drain architectures are discussed. Finally, the interest of advanced beyond-CMOS (complementary MOS) nanodevices for long term applications, based on nanowires, carbon electronics or small slope switch structures are presented.

  4. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  5. Photoelectrochemical salt water splitting using ternary silver-tin-selenide photoelectrodes

    NASA Astrophysics Data System (ADS)

    Cheng, Kong-Wei; Wu, Yu-Hsiang; Chiu, Ting-Hsuan

    2016-03-01

    Ternary AgSnSe2 and Ag8SnSe6 semiconductor photoelectrodes are prepared on various substrates via the selenization of thermally evaporation of silver-tin metal precursors. The structural, optical and electrical properties of ternary AgSnSe2 and Ag8SnSe6 samples are investigated as a function of the [Ag]/[Ag + Sn] molar ratio in the metal precursors. X-ray diffraction patterns of samples show that the phases of samples change from cubic AgSnSe2 to cubic Ag8SnSe6 phase at a selenization temperature of 410 °C when the molar ratio of [Ag]/[Ag + Sn] in silver-tin metal precursors increase from 0.51 to 0.68. The images obtained from a field-emission scanning electron microscopy show that the surface microstructures of samples change from plate-like microstructures with some pinholes to polygonal microstructures with increasing [Ag]/[Ag + Sn] molar ratios in samples. The energy bang gaps, carrier concentrations and mobilities of the samples are in the ranges of 0.86-1.19 eV, 1.27 × 1011-2.39 × 1012 cm-3 and 238-655 cm2 V-1 s-1, respectively. The highest photo-enhanced current densities of the samples in aqueous Na2S + K2SO3 and NaCl solutions are 3.34 and 0.61 mA cm-2 at an applied voltage of 0 and + 0.4 V vs. an Ag/AgCl electrode under 100 mW cm-2 light illumination from a Xe lamp source, respectively.

  6. The optical spectrum of ternary alloy BBi1-xAsx

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal G.; Aslan, M.; Ozcan, M. H.; Rahnamaye Aliabad, H. A.

    2016-06-01

    Among the III-V semiconductors, boron BBi and BAs as well as their alloys have attracted both scientific and technological interest in recent years. We present a calculation of the structural, electronic and optical properties of ternary alloy BBi1-xAsx by means of the WIEN2k software package. The exchange-correlation potential is treated by the generalized gradient approximation (GGA) within the schema of Wu and Cohen. Also, we have used the modified Becke-Johnson (mBJ) formalism to improve the band gap results. All the calculations have been performed after geometry optimization. In this study, we have investigated structural properties such as the lattice constant (a0), bulk modulus (B0) and its pressure derivative (B‧), and calculated the electronic band structures of the studied materials. Accurate calculation of linear optical properties, such as real (ɛ 1) and imaginary (ɛ 2) dielectric functions, reflectivity (R), electron energy loss spectrum, absorption coefficient (α), refractive index (n) and sum rule (Neff) are investigated. Our obtained results for studied binary compounds, BBi and BAs, fairly coincide with other theoretical calculations and experimental measurements. According to the best of our knowledge, no experimental or theoretical data are presently available for the studied ternary alloy BBi1-xAsx (0 < x < 1). The role of electronic band structure calculation with regards to the linear optical properties of BBi1-xAsx is discussed. The effect of the spin-orbit interaction (SOI) is also investigated and found to be quite small.

  7. Two-layer synchronized ternary quantum-dot cellular automata wire crossings.

    PubMed

    Bajec, Iztok Lebar; Pečar, Primož

    2012-04-16

    : Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay.

  8. Thin film reactions on alloy semiconductor substrates

    SciTech Connect

    Olson, D.A.

    1990-11-01

    The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

  9. Zone leveling and solution growth of complex compound semiconductors in space

    NASA Technical Reports Server (NTRS)

    Bachmann, K. J.

    1986-01-01

    A research program on complex semiconducting compounds and alloys was completed that addressed the growth of single crystals of CdSe(y)Te(1-y), Zn(x)Cd(1-x)Te, Mn(x)Cd(1-x)Te, InP(y)As(1-y) and CuInSe2 and the measurement of fundamental physico-chemical properties characterizing the above materials. The purpose of this ground based research program was to lay the foundations for further research concerning the growth of complex ternary compound semiconductors in a microgravity environment.

  10. New developments in power semiconductors

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1983-01-01

    This paper represents an overview of some recent power semiconductor developments and spotlights new technologies that may have significant impact for aircraft electric secondary power. Primary emphasis will be on NASA-Lewis-supported developments in transistors, diodes, a new family of semiconductors, and solid-state remote power controllers. Several semiconductor companies that are moving into the power arena with devices rated at 400 V and 50 A and above are listed, with a brief look at a few devices.

  11. Diffuse interface simulation of ternary fluids in contact with solid

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Yu; Ding, Hang; Gao, Peng; Wu, Yan-Ling

    2016-03-01

    In this article we developed a geometrical wetting condition for diffuse-interface simulation of ternary fluid flows with moving contact lines. The wettability of the substrate in the presence of ternary fluid flows is represented by multiple contact angles, corresponding to the different material properties between the respective fluid and the substrate. Displacement of ternary fluid flows on the substrate leads to the occurrence of moving contact point, at which three moving contact lines meet. We proposed a weighted contact angle model, to replace the jump in contact angle at the contact point by a relatively smooth transition of contact angle over a region of 'diffuse contact point' of finite size. Based on this model, we extended the geometrical formulation of wetting condition for two-phase flows with moving contact lines to ternary flows with moving contact lines. Combining this wetting condition, a Navier-Stokes solver and a ternary-fluid model, we simulated two-dimensional spreading of a compound droplet on a substrate, and validated the numerical results of the drop shape at equilibrium by comparing against the analytical solution. We also checked the convergence rate of the simulation by investigating the axisymmetric drop spreading in a capillary tube. Finally, we applied the model to a variety of applications of practical importance, including impact of a circular cylinder into a pool of two layers of different fluids and sliding of a three-dimensional compound droplet in shear flows.

  12. Electrodes for Semiconductor Gas Sensors

    PubMed Central

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  13. Electrodes for Semiconductor Gas Sensors.

    PubMed

    Lee, Sung Pil

    2017-03-25

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode-semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode-semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect.

  14. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  15. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  16. Preparation of ternary Cd1- x Zn x S nanocrystals with tunable ultraviolet absorption by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Huihui; Liu, Limin; Li, Shaohua; Murowchick, James B.; Wisner, Clarissa; Leventis, Nickolas; Peng, Zhonghua; Tan, Guolong

    2015-03-01

    Composition-tunable ternary Cd1- x Zn x S nanocrystals are among the most extensively studied alloyed semiconductor nanocrystals. However, they are almost exclusively prepared by wet chemical routes, which lead to surface-capped nanoparticles. Herein, we present a simple mechanical alloying process to prepare uncapped Zn1- x Cd x S nanocrystals throughout the entire composition range. The resulting nanocrystals have average sizes smaller than 9 nm, are chemically homogenous, and exhibit linear lattice parameter-composition and close-to-linear band-gap-composition relationships. Continuous lattice contraction of the Cd1- x Zn x S nanocrystals with the atomic Zn concentration results in a successional enlargement of their band gap energies expanding from the visible region to the ultraviolet (UV) region, demonstrating the ability for precise control of band gap engineering through composition tuning and mechanical alloying. [Figure not available: see fulltext.

  17. Time-dependent density functional theory calculations for the excitation spectra of III-V ternary alloys

    NASA Astrophysics Data System (ADS)

    Ning, Zhenhua; Liang, Ching-Tarng; Chang, Yia-Chung

    2017-08-01

    We adopted the time-dependent density functional theory (TDDFT) within the linear augmented Slater-type orbitals basis and the cluster averaging method to compute the excitation spectra of III-V ternary alloys with arbitrary concentration x . The TDDFT was carried out with the use of adiabatic meta-generalized gradient approximation (mGGA), which contains the 1 /q2 singularity in the dynamical exchange-correlation kernel [fXC,00(q ) ] as q →0 . We found that, by using wave functions obtained in local density approximation while using mGGA to compute self-energy correction to the band structures, we can get good overall agreement between theoretical results and experimental data for the excitation spectra. Thus, our paper provides some insight into the theoretical calculation of optical spectra of semiconductor alloys.

  18. Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells

    NASA Astrophysics Data System (ADS)

    Lefrançois, Aurélie; Luszczynska, Beata; Pepin-Donat, Brigitte; Lombard, Christian; Bouthinon, Benjamin; Verilhac, Jean-Marie; Gromova, Marina; Faure-Vincent, Jérôme; Pouget, Stéphanie; Chandezon, Frédéric; Sadki, Saïd; Reiss, Peter

    2015-01-01

    Geminate recombination of bound polaron pairs at the donor/acceptor interface is one of the major loss mechanisms in organic bulk heterojunction solar cells. One way to overcome Coulomb attraction between opposite charge carriers and to achieve their full dissociation is the introduction of high dielectric permittivity materials such as nanoparticles of narrow band gap semiconductors. We selected CuInS2 nanocrystals of 7.4 nm size, which present intermediate energy levels with respect to poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM). Efficient charge transfer from P3HT to nanocrystals takes place as evidenced by light-induced electron spin resonance. Charge transfer between nanocrystals and PCBM only occurs after replacing bulky dodecanethiol (DDT) surface ligands with shorter 1,2-ethylhexanethiol (EHT) ligands. Solar cells containing in the active layer a ternary blend of P3HT:PCBM:CuInS2-EHT nanocrystals in 1:1:0.5 mass ratio show strongly improved short circuit current density and a higher fill factor with respect to the P3HT:PCBM reference device. Complementary measurements of the absorption properties, external quantum efficiency and charge carrier mobility indicate that enhanced charge separation in the ternary blend is at the origin of the observed behavior. The same trend is observed for blends using the glassy polymer poly(triarylamine) (PTAA).

  19. Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells

    PubMed Central

    Lefrançois, Aurélie; Luszczynska, Beata; Pepin-Donat, Brigitte; Lombard, Christian; Bouthinon, Benjamin; Verilhac, Jean-Marie; Gromova, Marina; Faure-Vincent, Jérôme; Pouget, Stéphanie; Chandezon, Frédéric; Sadki, Saïd; Reiss, Peter

    2015-01-01

    Geminate recombination of bound polaron pairs at the donor/acceptor interface is one of the major loss mechanisms in organic bulk heterojunction solar cells. One way to overcome Coulomb attraction between opposite charge carriers and to achieve their full dissociation is the introduction of high dielectric permittivity materials such as nanoparticles of narrow band gap semiconductors. We selected CuInS2 nanocrystals of 7.4 nm size, which present intermediate energy levels with respect to poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM). Efficient charge transfer from P3HT to nanocrystals takes place as evidenced by light-induced electron spin resonance. Charge transfer between nanocrystals and PCBM only occurs after replacing bulky dodecanethiol (DDT) surface ligands with shorter 1,2-ethylhexanethiol (EHT) ligands. Solar cells containing in the active layer a ternary blend of P3HT:PCBM:CuInS2-EHT nanocrystals in 1:1:0.5 mass ratio show strongly improved short circuit current density and a higher fill factor with respect to the P3HT:PCBM reference device. Complementary measurements of the absorption properties, external quantum efficiency and charge carrier mobility indicate that enhanced charge separation in the ternary blend is at the origin of the observed behavior. The same trend is observed for blends using the glassy polymer poly(triarylamine) (PTAA). PMID:25588811

  20. Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells.

    PubMed

    Lefrançois, Aurélie; Luszczynska, Beata; Pepin-Donat, Brigitte; Lombard, Christian; Bouthinon, Benjamin; Verilhac, Jean-Marie; Gromova, Marina; Faure-Vincent, Jérôme; Pouget, Stéphanie; Chandezon, Frédéric; Sadki, Saïd; Reiss, Peter

    2015-01-15

    Geminate recombination of bound polaron pairs at the donor/acceptor interface is one of the major loss mechanisms in organic bulk heterojunction solar cells. One way to overcome Coulomb attraction between opposite charge carriers and to achieve their full dissociation is the introduction of high dielectric permittivity materials such as nanoparticles of narrow band gap semiconductors. We selected CuInS2 nanocrystals of 7.4 nm size, which present intermediate energy levels with respect to poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM). Efficient charge transfer from P3HT to nanocrystals takes place as evidenced by light-induced electron spin resonance. Charge transfer between nanocrystals and PCBM only occurs after replacing bulky dodecanethiol (DDT) surface ligands with shorter 1,2-ethylhexanethiol (EHT) ligands. Solar cells containing in the active layer a ternary blend of P3HT:PCBM:CuInS2-EHT nanocrystals in 1:1:0.5 mass ratio show strongly improved short circuit current density and a higher fill factor with respect to the P3HT:PCBM reference device. Complementary measurements of the absorption properties, external quantum efficiency and charge carrier mobility indicate that enhanced charge separation in the ternary blend is at the origin of the observed behavior. The same trend is observed for blends using the glassy polymer poly(triarylamine) (PTAA).