Science.gov

Sample records for il-1 receptor antagonism

  1. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus.

  2. Modulation of the IL-1 cytokine network in keratinocytes by intracellular IL-1 alpha and IL-1 receptor antagonist.

    PubMed

    Phillips, W G; Feldmann, M; Breathnach, S M; Brennan, F M

    1995-07-01

    The IL-1 cytokine network in epidermal cells was studied in vitro, using the spontaneously transformed HaCAT human keratinocyte line. Intracellular (ic) IL-1 alpha and IL-1 receptor antagonist protein (IL-1Ra) following cell lysis were readily identified assayed using a capture ELISA; whereas in culture supernatants IL-1Ra was not detected, and IL-1 alpha was present at only very low levels. Confluent cultures of HaCAT cells were shown to provide optimal conditions for the study, since confluence increased the icIL-1Ra:IL-1 alpha ratio to a level as seen in vivo, which was independent of Ca2+ concentration in the culture medium. The IL-1Ra extracted from HaCAT cell lysates was functionally active, as demonstrated in the mouse thymocyte co-proliferation assay which could be blocked using a rabbit anti-IL-1Ra antibody. Transforming growth factor-beta (TGF-beta 1) stimulated a dose-dependent increase in HaCAT cell IL-1 alpha without changing IL-1Ra concentration, with a resultant reduction in the icIL-1Ra: IL-1 alpha ratio from 320:1 to 100:1. Similarly, TGF-alpha, interferon-gamma (IFN-gamma), IL-6, and tumour necrosis factor-alpha (TNF-alpha) substantially increased HaCAT cell IL-1 alpha, but had no effect on the IL-1Ra, with a concomitant reduction in the icIL-1Ra:IL-1 alpha ratio. In contrast to their effects on monocytes, IL-4 and IL-10 at biologically active levels had no effect on IL-1 alpha, IL-1Ra or the icIL-1Ra: IL-1 alpha ratio in confluent HaCAT cells. Hydrocortisone reduced IL-1 alpha to below the limit of sensitivity of the ELISA, and induced a small increase in IL-1Ra of questionable biological significance. Thus, regulation of the IL-1 cytokine network in keratinocytes involves modulation of icIL-1 alpha rather than of icIL-1Ra levels, and is markedly different from that noted in monocytes.

  3. Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1beta on tuberculosis.

    PubMed

    Wilkinson, R J; Patel, P; Llewelyn, M; Hirsch, C S; Pasvol, G; Snounou, G; Davidson, R N; Toossi, Z

    1999-06-21

    Several lines of evidence suggest that host genetic factors controlling the immune response influence infection by Mycobacterium tuberculosis. The proinflammatory cytokine interleukin (IL)-1beta and its antagonist, IL-1Ra (IL-1 receptor agonist), are strongly induced by M. tuberculosis and are encoded by polymorphic genes. The induction of both IL-1Ra mRNA and secreted protein by M. tuberculosis in IL-1Ra allele A2-positive (IL-1Ra A2(+)) healthy subjects was 1.9-fold higher than in IL-1Ra A2(-) subjects. The M. tuberculosis-induced expression of mRNA for IL-1beta was higher in subjects of the IL-1beta (+3953) A1(+) haplotype (P = 0.04). The molar ratio of IL-1Ra/IL-1beta induced by M. tuberculosis was markedly higher in IL-1Ra A2(+) individuals (P < 0.05), with minor overlap between the groups, reflecting linkage between the IL-1Ra A2 and IL-1beta (+3953) A2 alleles. In M. tuberculosis-stimulated peripheral blood mononuclear cells, the addition of IL-4 increased IL-1Ra secretion, whereas interferon gamma increased and IL-10 decreased IL-1beta production, indicative of a differential influence on the IL-1Ra/IL-1beta ratio by cytokines. In a study of 114 healthy purified protein derivative-reactive subjects and 89 patients with tuberculosis, the frequency of allelic variants at two positions (-511 and +3953) in the IL-1beta and IL-1Ra genes did not differ between the groups. However, the proinflammatory IL-1Ra A2(-)/IL-1beta (+3953) A1(+) haplotype was unevenly distributed, being more common in patients with tuberculous pleurisy (92%) in comparison with healthy M. tuberculosis-sensitized control subjects or patients with other disease forms (57%, P = 0.028 and 56%, P = 0. 024, respectively). Furthermore, the IL-1Ra A2(+) haplotype was associated with a reduced Mantoux response to purified protein derivative of M. tuberculosis: 60% of tuberculin-nonreactive patients were of this type. Thus, the polymorphism at the IL-1 locus influences the cytokine response and may

  4. Spontaneous secretion of interleukin 1 receptor antagonist (IL-1ra) by cells isolated from herniated lumbar discal tissue after discectomy.

    PubMed

    Koch, H; Reinecke, J A; Meijer, H; Wehling, P

    1998-09-01

    In the study presented, cells of a herniated lumbar disc were cultivated in vitro and analysed for interleukin 1beta (IL-1beta) and interleukin 1 receptor antagonist (IL-1Ra) production. The objective of this study was the detection of IL-1beta and IL-1Ra secreted by herniated lumbar discal cells after discectomy. The involvement of cytokines in the degeneration of intervertebral discs and in the pathophysiology of radiculopathy is established. Antagonizing proteins, e.g. IL-1Ra are thought to have considerable therapeutic potential. In the present study, a 51-year-old male with massive sequestrated lumbar disc herniation at L5/S1 was treated by microsurgical discectomy. Discal cells were isolated, cultures and culture supernatants immunochemically analysed for IL-1beta and IL-1Ra secretion. Spontaneous secretion of IL-1Ra was found. IL-1beta was not detected. Our findings might contradict recent studies on the role of IL-1beta and IL-1Ra. A possible therapeutic role of exogenous IL-1Ra in disc degeneration needs further research. PMID:9770331

  5. Interleukin 1 (IL-1) and IL-1-receptor antagonist (IL-1-RA) in middle ear cholesteatoma: an analysis of protein production and biological activity.

    PubMed

    Bujía, J; Kim, C; Ostos, P; Sudhoff, H; Kastenbauer, E; Hültner, L

    1996-01-01

    Cytokine networks are now presumed to play an essential role in the pathogenesis of middle ear cholesteatoma. Of the factors identified in cholesteatoma, interleukin-I (IL-1)-alpha appears to be especially important because of its stimulation of keratinocyte proliferation as well induction of bone resorption. To further characterize the possible role of IL-1 in the pathogenesis of cholesteatoma, we quantified the levels of IL-1 and IL-1-receptor antagonist (IL-1-RA) present using the bicinchonic acid protein assay and enzyme-linked immunosorbent assay (ELISA) on tissue extracts from 20 cholesteatoma specimens. The presence of biologically active IL-1 was also analyzed, using the cell line LBRM-33 and an ELISA for the detection of interleukin-2 (IL-2). Human skin obtained from the external ear canal was used as control. The amounts of IL-1-alpha in cholesteatoma (34.9 +/- 19.5) were higher than in human skin (6.7 +/- 2.8). The observed differences were statistically significant by Student's t-test (P < 0.01). Skin samples showed elevated concentrations of IL-1-RA (248.3 +/- 30.2) in comparison to that in the cholesteatoma (80.8 +/- 13.5). This was also statistically significant (P < 0.01). Whereas IL-1 activity was not detected in skin samples, all cholesteatoma specimens studied showed a stimulation effect on the production of IL-2 when incubated with the cell line LBRM-33. The results point to an over-expression of IL-1 concurrent with a decreased secretion of IL-1-RA in middle ear cholesteatoma. Furthermore IL-1-RA production is deficient relative to total IL-1 production, resulting in the presence of active IL-1.

  6. Yersinia pestis activates both IL-1β and IL-1 receptor antagonist to modulate lung inflammation during pneumonic plague.

    PubMed

    Sivaraman, Vijay; Pechous, Roger D; Stasulli, Nikolas M; Eichelberger, Kara R; Miao, Edward A; Goldman, William E

    2015-03-01

    Pneumonic plague is the most rapid and lethal form of Yersinia pestis infection. Increasing evidence suggests that Y. pestis employs multiple levels of innate immune evasion and/or suppression to produce an early "pre-inflammatory" phase of pulmonary infection, after which the disease is highly inflammatory in the lung and 100% fatal. In this study, we show that IL-1β/IL-18 cytokine activation occurs early after bacteria enter the lung, and this activation eventually contributes to pulmonary inflammation and pathology during the later stages of infection. However, the inflammatory effects of IL-1β/IL-1-receptor ligation are not observed during this first stage of pneumonic plague. We show that Y. pestis also activates the induction of IL-1 receptor antagonist (IL-1RA), and this activation likely contributes to the ability of Y. pestis to establish the initial pre-inflammatory phase of disease.

  7. Interleukin (IL)-1 in rat parturition: IL-1 receptors 1 and 2 and accessory proteins abundance in pregnant rat uterus at term - regulation by progesterone.

    PubMed

    Ishiguro, Tomohito; Takeda, Jun; Fang, Xin; Bronson, Heather; Olson, David M

    2016-07-01

    The role of interleukin-1 (IL-1), a pro-inflammatory cytokine, in parturition is typically noted by changes in its concentrations. Studying the expression of its receptor family, IL-1 receptor (IL-1R) 1, IL-1R2, IL-1R accessory protein (IL-1RAcP), and its predominantly brain isoform, IL-1RAcPb, during late gestation in the uterus in the Long-Evans rat is another. We assessed changes in their mRNA and protein relative abundance in the uterus and compared IL-1RAcP and IL-1RAcPb mRNA abundance in uterus, cervix, ovaries, placenta, and whole blood of Long-Evans rats during late gestation or in RU486 and progesterone-treated dams using quantitative real-time PCR and western immunoblotting. IL-1R1, IL-1RAcP, and IL-1RAcPb mRNA abundance significantly increased in the uterus at delivery whereas IL-1R2 mRNA abundance significantly decreased. IL-1R1 protein increased at term and IL-1R2 protein decreased at term compared to nonpregnant uteri. IL1-RAcPb mRNA abundance was less than IL-1RAcP, but in the lower uterine segment it was the highest of all tissues examined. RU486 stimulated preterm delivery and an increase in IL-1R1 mRNA abundance whereas progesterone administration extended pregnancy and suppressed the increase in IL-1R1. These data suggest that changes in uterine sensitivity to IL-1 occur during late gestation and suggest another level of regulation for the control of delivery. The roles for IL-1RAcP and IL-1RAcPb need to be determined, but may relate to different intracellular signaling pathways. PMID:27440742

  8. Interleukin (IL)-1 in rat parturition: IL-1 receptors 1 and 2 and accessory proteins abundance in pregnant rat uterus at term - regulation by progesterone.

    PubMed

    Ishiguro, Tomohito; Takeda, Jun; Fang, Xin; Bronson, Heather; Olson, David M

    2016-07-01

    The role of interleukin-1 (IL-1), a pro-inflammatory cytokine, in parturition is typically noted by changes in its concentrations. Studying the expression of its receptor family, IL-1 receptor (IL-1R) 1, IL-1R2, IL-1R accessory protein (IL-1RAcP), and its predominantly brain isoform, IL-1RAcPb, during late gestation in the uterus in the Long-Evans rat is another. We assessed changes in their mRNA and protein relative abundance in the uterus and compared IL-1RAcP and IL-1RAcPb mRNA abundance in uterus, cervix, ovaries, placenta, and whole blood of Long-Evans rats during late gestation or in RU486 and progesterone-treated dams using quantitative real-time PCR and western immunoblotting. IL-1R1, IL-1RAcP, and IL-1RAcPb mRNA abundance significantly increased in the uterus at delivery whereas IL-1R2 mRNA abundance significantly decreased. IL-1R1 protein increased at term and IL-1R2 protein decreased at term compared to nonpregnant uteri. IL1-RAcPb mRNA abundance was less than IL-1RAcP, but in the lower uterine segment it was the highest of all tissues examined. RU486 stimulated preterm delivery and an increase in IL-1R1 mRNA abundance whereas progesterone administration extended pregnancy and suppressed the increase in IL-1R1. These data suggest that changes in uterine sensitivity to IL-1 occur during late gestation and suggest another level of regulation for the control of delivery. The roles for IL-1RAcP and IL-1RAcPb need to be determined, but may relate to different intracellular signaling pathways.

  9. MyD88-dependent and -independent signaling by IL-1 in neurons probed by bifunctional Toll/IL-1 receptor domain/BB-loop mimetics

    PubMed Central

    Davis, Christopher N.; Mann, Enrique; Behrens, M. Margarita; Gaidarova, Svetlana; Rebek, Mitra; Rebek, Julius; Bartfai, Tamas

    2006-01-01

    Interleukin (IL)-1β is a pluripotent proinflammatory cytokine that signals through the type-I IL-1 receptor (IL-1RI), a member of the Toll-like receptor family. In hypothalamic neurons, binding of IL-1β to IL-1RI mediates transcription-dependent changes that depend on the recruitment of the cytosolic adaptor protein myeloid differentiation primary-response protein 88 (MyD88) to the IL-1RI/IL-1 receptor accessory protein (IL-1RAcP) complex through homomeric Toll/IL-1 receptor (TIR)–TIR interactions. Through design and synthesis of bifunctional TIR mimetics that disrupt the interaction of MyD88 with the IL-1RI/IL-1RAcP complex, we analyzed the involvement of MyD88 in the signaling of IL-1β in anterior hypothalamic neurons. We show here that IL-1β-mediated activation of the protein tyrosine kinase Src depended on a MyD88 interaction with the IL-1RI/IL-1RAcP complex. The activation of the protein kinase Akt/PKB depended on the recruitment of the p85 subunit of PI3K to IL-1RI and independent of MyD88 association with the IL-1RI/IL-1RAcP complex. These bifunctional TIR–TIR mimetics represent a class of low-molecular-weight compounds with both an antiinflammatory and neuroprotective potential. These compounds have the potential to inhibit the MyD88-dependent proinflammatory actions of IL-1β, while permitting the potential neuronal survival supporting actions mediated by the MyD88-independent activation of the protein kinase Akt. PMID:16477040

  10. Molecular and functional characterization of an IL-1β receptor antagonist in grass carp (Ctenopharyngodon idella).

    PubMed

    Yao, Fuli; Yang, Xiao; Wang, Xinyan; Wei, He; Zhang, Anying; Zhou, Hong

    2015-04-01

    In the present study, we discovered a novel IL-1 family member (nIL-1F) from grass carp that possessed the ability to bind with grass carp IL-1β receptor type 1 (gcIL-1R1) and attenuate grass carp IL-1β activity in head kidney leukocytes (HKLs), suggesting that it may function as an IL-1β receptor antagonist. Grass carp nIL-1F transcript was constitutively expressed with the highest levels in some lymphoid organs, including head kidney, spleen and intestine, implying its potential in grass carp immunity. In agreement with this notion, in vitro and in vivo studies showed that nIL-1F mRNA was inductively expressed in grass carp with a rapid kinetics, indicating that it may be an early response gene during immune challenges. In addition, recombinant grass carp IL-1β (rgcIL-1β) induced nIL-1F mRNA expression via NF-κB and MAPK (JNK, p38 and p42/44) signaling pathways in HKLs. Particularly, the orthologs of nIL-1F found in other fish species, including zebrafish, pufferfish and rainbow trout are not homologous to mammalian IL-1β receptor antagonist (IL-1Ra), indicating that fish nIL-1F and mammalian IL-1Ra may not share a common evolutionary ancestor. Taken together, our data suggest the existence of a naturally occurring fish nIL-1F, which may function like mammalian IL-1Ra, being beneficial to understand the auto-regulatory mechanism of IL-1β activity in fish immunity. PMID:25475961

  11. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  12. IL-1 receptor antagonist in metabolic diseases: Dr Jekyll or Mr Hyde?

    PubMed

    Perrier, Stephane; Darakhshan, Froogh; Hajduch, Eric

    2006-11-27

    Interleukin-1 receptor antagonist (IL-1ra) has been shown to play a crucial role in the prevention of various inflammatory diseases. There is also convincing evidence that IL-1ra is able to counteract inflammatory effects of IL-1 members implicated in insulin resistance and diabetes. However, the use of knock-out animal models provides evidence to the contrary and the role of IL-1ra in obesity-linked anomalies remains controversial. This minireview gets an insight into recent findings on the implication of IL-1ra and its gene polymorphism in diabetes and obesity, discusses the potential dual effects of IL-1ra observed in different models, and comments on future directions. PMID:17097645

  13. Effect of the IL-1 Receptor Antagonist Kineret® on Disease Phenotype in mdx Mice

    PubMed Central

    Benny Klimek, Margaret E.; Sali, Arpana; Rayavarapu, Sree; Van der Meulen, Jack H.; Nagaraju, Kanneboyina

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by mutations in the dystrophin gene. The pathology of DMD manifests in patients with progressive muscle weakness, loss of ambulation and ultimately death. One of the characteristics of DMD is muscle inflammation, and dystrophin-deficient skeletal muscles produce higher levels of the pro-inflammatory cytokine interleukin 1β (IL-1β) in response to toll like receptor (TLR) stimulation compared to controls; therefore, blocking the IL-1β pathway could improve the disease phenotype in mdx mice, a mouse model of DMD. Kineret® or IL-1Ra is a recombinant IL-1 receptor antagonist approved by the FDA for treating rheumatoid arthritis. To determine the efficacy of IL-1Ra in a DMD model, we administered subcutaneous injections of saline control or IL-1Ra (25 mg/kg/day) to mdx mice daily for 45 days beginning at 5 weeks of age. Functional and histological parameters were measured at the conclusion of the study. IL-1Ra only partially inhibited this signaling pathway in this study; however, there were still interesting observations to be noted. For example, although not significantly changed, splenocytes from the IL-1Ra-treated group secreted less IL-1β after LPS stimulation compared to control mice indicating a blunted response and incomplete inhibition of the pathway (37% decrease). In addition, normalized forelimb grip strength was significantly increased in IL-1Ra-treated mice. There were no changes in EDL muscle-specific force measurements, histological parameters, or motor coordination assessments in the dystrophic mice after IL-1Ra treatment. There was a significant 27% decrease in the movement time and total distance traveled by the IL-1Ra treated mice, correlating with previous studies examining effects of IL-1 on behavior. Our studies indicate partial blocking of IL-1β with IL-1Ra significantly altered only a few behavioral and strength related disease parameters; however, treatment with

  14. Effect of the IL-1 Receptor Antagonist Kineret® on Disease Phenotype in mdx Mice.

    PubMed

    Benny Klimek, Margaret E; Sali, Arpana; Rayavarapu, Sree; Van der Meulen, Jack H; Nagaraju, Kanneboyina

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by mutations in the dystrophin gene. The pathology of DMD manifests in patients with progressive muscle weakness, loss of ambulation and ultimately death. One of the characteristics of DMD is muscle inflammation, and dystrophin-deficient skeletal muscles produce higher levels of the pro-inflammatory cytokine interleukin 1β (IL-1β) in response to toll like receptor (TLR) stimulation compared to controls; therefore, blocking the IL-1β pathway could improve the disease phenotype in mdx mice, a mouse model of DMD. Kineret® or IL-1Ra is a recombinant IL-1 receptor antagonist approved by the FDA for treating rheumatoid arthritis. To determine the efficacy of IL-1Ra in a DMD model, we administered subcutaneous injections of saline control or IL-1Ra (25 mg/kg/day) to mdx mice daily for 45 days beginning at 5 weeks of age. Functional and histological parameters were measured at the conclusion of the study. IL-1Ra only partially inhibited this signaling pathway in this study; however, there were still interesting observations to be noted. For example, although not significantly changed, splenocytes from the IL-1Ra-treated group secreted less IL-1β after LPS stimulation compared to control mice indicating a blunted response and incomplete inhibition of the pathway (37% decrease). In addition, normalized forelimb grip strength was significantly increased in IL-1Ra-treated mice. There were no changes in EDL muscle-specific force measurements, histological parameters, or motor coordination assessments in the dystrophic mice after IL-1Ra treatment. There was a significant 27% decrease in the movement time and total distance traveled by the IL-1Ra treated mice, correlating with previous studies examining effects of IL-1 on behavior. Our studies indicate partial blocking of IL-1β with IL-1Ra significantly altered only a few behavioral and strength related disease parameters; however, treatment with

  15. Interleukin (IL)-1beta, IL-1 receptor antagonist, IL-6, IL-8, IL-10, and tumor necrosis factor alpha gene polymorphisms in patients with febrile seizures.

    PubMed

    Chou, I-Ching; Lin, Wei-De; Wang, Chung-Hsing; Tsai, Chang-Hai; Li, Tsai-Chung; Tsai, Fuu-Jen

    2010-01-01

    Inflammation and genetics may play a role in the pathogenesis of febrile seizures (FSs). We aimed to test whether interleukin-1beta (IL-1beta), IL-1 receptor antagonist (IL-1 Ra), IL-6 promoter, IL-8, IL-10, or tumor necrosis factor (TNF) gene polymorphisms could be used as markers of susceptibility to FSs. An association study was performed among a cohort of 104 patients with FSs and 143 normal control subjects. There was no significant difference between patients and controls in the distribution of allele frequencies of the IL-1beta promoter, IL-1beta exon 5, IL-6 promoter, IL-8, IL-10, or TNF-alpha gene polymorphisms. In contrast, the IL-1 Ra-I homozygote was more frequent in patients with FSs than in healthy controls (93.2% vs. 83.92%, chi(2)=4.51, P=0.034). In addition, individuals homozygous for the IL-1 Ra-I genotype were more than twice as likely to develop FSs than individuals heterozygous for the IL-1 Ra-I/II genotype (OR, 2.63, 95% CI: 1.08-6.39; chi(2)=4.55, P=0.033). We conclude that the IL-1 Ra gene might be one of the useful markers for predicting susceptibility to FSs.

  16. IL-1beta signals through the EGF receptor and activates Egr-1 through MMP-ADAM.

    PubMed

    Sanchez-Guerrero, Estella; Chen, Elya; Kockx, Maaike; An, Si-Wei; Chong, Beng H; Khachigian, Levon M

    2012-01-01

    The immediate-early gene Egr-1 controls the inducible expression of many genes implicated in the pathogenesis of a range of vascular disorders, yet our understanding of the mechanisms controlling the rapid expression of this prototypic zinc finger transcription factor is poor. Here we show that Egr-1 expression induced by IL-1beta is dependent on metalloproteinases (MMP) and a disintegrin and a metalloproteinase (ADAM). Pharmacologic MMP/ADAM inhibitors and siRNA knockdown prevent IL-1beta induction of Egr-1. Further, IL-1beta activates Egr-1 via the epidermal growth factor receptor (EGFR). This is blocked by EGFR tyrosine kinase inhibition and EGFR knockdown. IL-1beta induction of Egr-1 expression is reduced in murine embryonic fibroblasts (mEFs) deficient in ADAM17 despite unbiased expression of EGFR and IL-1RI in ADAM17-deficient and wild-type mEFs. Finally, we show that IL-1beta-inducible wound repair after mechanical injury requires both EGFR and MMP/ADAM. This study reports for the first time that Egr-1 induction by IL-1beta involves EGFR and MMP/ADAM-dependent EGFR phosphorylation. PMID:22792188

  17. Proinsulin Shares a Motif with Interleukin-1α (IL-1α) and Induces Inflammatory Cytokine via Interleukin-1 Receptor 1*

    PubMed Central

    Lee, Siyoung; Kim, Eunsom; Jhun, Hyunjhung; Hong, Jaewoo; Kwak, Areum; Jo, Seunghyun; Bae, Suyoung; Lee, Jongho; Kim, Busun; Lee, Jungmin; Youn, Sulah; Kim, Somi; Kim, Miyeon; Kim, Hyunwoo; Lee, Youngmin; Choi, Dong-Ki; Kim, Yong-Sung; Kim, Soohyun

    2016-01-01

    Although it has been established that diabetes increases susceptibility to infections, the role of insulin (INS) in the immune response is unknown. Here, we investigated the immunological function of INS. Proinsulin dimer (pINSd) was a potent immune stimulus that induced inflammatory cytokines, but mature INS was unable to induce an immune response. An affinity-purified rabbit polyclonal antibody raised against mature IL-1α recognized IL-1α and pINS but failed to detect mature INS and IL-1β. Analysis of the pINS sequence revealed the existence of an INS/IL-1α motif in the C-peptide of pINS. Surprisingly, the INS/IL-1α motif was recognized by monoclonal antibody raised against IL-1α. Deleting the INS/IL-1α motif in pINSd and IL-1α changed their activities. To investigate the pINSd receptor, the reconstitution of IL-1 receptor 1 (IL-1R1) in Wish cells restored pINSd activity that was reversed by an IL-1R antagonist. These data suggested that pINSd needs IL-1R1 for inflammatory cytokine induction. Mouse embryo fibroblast cells of IL-1R1-deficient mice further confirmed that pINSd promotes immune responses through IL-1R1. PMID:27226621

  18. Endothelin ETA receptor antagonism in cardiovascular disease.

    PubMed

    Nasser, Suzanne A; El-Mas, Mahmoud M

    2014-08-15

    Since the discovery of the endothelin system in 1988, it has been implicated in numerous physiological and pathological phenomena. In the cardiovascular system, endothelin-1 (ET-1) acts through intracellular pathways of two endothelin receptors (ETA and ETB) located mainly on smooth muscle and endothelial cells to regulate vascular tone and provoke mitogenic and proinflammatory reactions. The endothelin ETA receptor is believed to play a pivotal role in the pathogenesis of several cardiovascular disease including systemic hypertension, pulmonary arterial hypertension (PAH), dilated cardiomyopathy, and diabetic microvascular dysfunction. Growing evidence from recent experimental and clinical studies indicates that the blockade of endothelin receptors, particularly the ETA subtype, grasps promise in the treatment of major cardiovascular pathologies. The simultaneous blockade of endothelin ETB receptors might not be advantageous, leading possibly to vasoconstriction and salt and water retentions. This review summarizes the role of ET-1 in cardiovascular modulation and the therapeutic potential of endothelin receptor antagonism.

  19. Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation.

    PubMed

    Maillet, Isabelle; Perche, Olivier; Pâris, Arnaud; Richard, Olivier; Gombault, Aurélie; Herzine, Ameziane; Pichon, Jacques; Huaux, Francois; Mortaud, Stéphane; Ryffel, Bernhard; Quesniaux, Valérie F J; Montécot-Dubourg, Céline

    2016-11-01

    Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice.

  20. Interleukin 1 (IL-1) type I receptors mediate activation of rat hypothalamus-pituitary-adrenal axis and interleukin 6 production as shown by receptor type selective deletion mutants of IL-1beta.

    PubMed

    Van Dam, A M; Malinowsky, D; Lenczowski, M J; Bartfai, T; Tilders, F J

    1998-06-01

    The cytokine interleukin 1 (IL-1) plays an important role in the activation of the hypothalamus-pituary-adrenal (HPA)-axis and interleukin 6 (IL-6) production during infection or inflammation. Which of the interleukin-1 receptor types mediates these effects is not known. To investigate this issue a pharmacological approach was chosen by using recently developed IL-1 receptor type selective ligands. Rats were given one of various doses of recombinant human IL-1beta (rhIL-1beta; 1 and 10 microg/kg) and of several IL-1beta mutants (DeltaSND, DeltaQGE and DeltaI; 1, 10 and 100 microg/kg), that differ in their affinities for the IL-1 type I receptor but have similar affinities for the IL-1 type II receptor. One hour after intravenous administration of rhIL-1beta or IL-1beta mutants, plasma levels of ACTH, corticosterone (cort) and IL-6 were measured. Doses of 1 and 10 microg/kg rhIL-1beta markedly elevated plasma levels of ACTH, cort and IL-6. However, 10-100-fold higher doses of IL-1beta mutants DeltaSND and DeltaQGE and at least 100-fold higher doses of DeltaI have to be administered to increase plasma levels of ACTH, cort and IL-6. The potency differences correlate with their respective affinity for the type I receptor but not with that of the IL-1 type II receptor. It is concluded that IL-1beta induced ACTH, cort and IL-6 production is mediated by interleukin 1 type I receptors.

  1. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist

    PubMed Central

    Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D.; Miyasaka, Masayuki

    2016-01-01

    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4+ T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra−deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. PMID:26951334

  2. PROXIMAL GUT MUCOSAL EPITHELIAL HOMEOSTASIS IN AGED IL-1 TYPE I RECEPTOR KNOCKOUT MICE AFTER STARVATION

    PubMed Central

    Song, Juquan; Wolf, Steven E.; Wu, Xiao-Wu; Finnerty, Celeste C.; Herndon, David N.; Jeschke, Marc G.

    2010-01-01

    Background Previous studies have shown that starvation induces small bowel atrophy, and that atrophy diminishes with aging. In this experiment, we assessed whether starvation-induced atrophy of proximal gut mucosa is associated with the Interleukin-1 receptor (IL-1R) signaling pathway in aged mice. Materials and Methods Thirty 26-month-old IL-1R knockout mice and age-matched wild-type C57BL/6 mice were randomly divided into two groups: ad libitum fed and fasted. Mice were euthanized 12 or 48 hours after starvation. The proximal small bowel was harvested for morphologic analysis. Gut epithelial cell proliferation was detected using immunohistochemical staining for proliferating cell nuclear antigen (PCNA), and apoptosis was identified using terminal deoxyuridine nick-end labeling (TUNEL) staining. Results Aged IL-1R knockout mice were larger than aged-matched wild-type mice (p<0.05). Proximal gut mucosal height and mucosal cell number were not different between aged IL-1R knockout and wild-type groups. The apoptosis index in gut epithelial cells was higher in fed IL-1R knockout versus wild-type mice (p<0.05), while no significant difference in cell proliferation between both groups. Mucosal atrophy was induced in both aged IL-1R knockout and wild-type groups by starvation (p<0.05), however, aged IL-1R knockout mice experienced greater losses in proximal gut weight, mucosal length, and corresponding cell number than did wild-type mice at the 12-hour time point (p<0.05). The apoptosis index in gut epithelial cells significantly increased in both groups after starvation (p<0.05). Starvation decreased cell proliferation in IL-1R knockout mice (p<0.05), but not in wild-type mice. Conclusions The response in aged IL-1R knockout mice differs from wild-type mice in that starvation increases atrophy and is associated with decreased cell proliferation rather than increased apoptosis. PMID:20605606

  3. Association between Interleukin-1 Receptor Antagonist (IL1RN) Variable Number of Tandem Repeats (VNTR) Polymorphism and Pulmonary Tuberculosis.

    PubMed

    Hashemi, Mohammad; Naderi, Mohammad; Ebrahimi, Mahboubeh; Amininia, Shadi; Bahari, Gholamreza; Taheri, Mohsen; Eskandari-Nasab, Ebrahim; Ghavami, Saeid

    2015-02-01

    Macrophages and T-lymphocytes are involved in immune response to Mycobacterium tuberculosis. Macrophage produces interleukin (IL)-1 as an inflammatory mediator. IL-1 receptor antagonist (IL1-Ra) is a natural antagonist of IL-1 receptors. In this study we aimed to examine the possible association between the variable number of tandem repeats (VNTR) of the IL-1 receptor antagonist (IL1RN) gene and pulmonary tuberculosis (TB) in a sample of Iranian population. Our study is a case-control study and we examined the VNTR of the IL1RN gene in 265 PTB and 250 healthy subjects by PCR. Neither the overall chi-square comparison of PTB and control subjects nor the logistic regression analysis indicated any association between VNTR IL1RN polymorphism and PTB. Our data suggest that VNTR IL1RN polymorphism may not be associated with the risk of PTB in a sample of Iranian population. Larger studies with different ethnicities are needed to find out the impact of IL1RN VNTR polymorphism on risk of developing TB.

  4. Glucagon receptor antagonism induces increased cholesterol absorption.

    PubMed

    Guan, Hong-Ping; Yang, Xiaodong; Lu, Ku; Wang, Sheng-Ping; Castro-Perez, Jose M; Previs, Stephen; Wright, Michael; Shah, Vinit; Herath, Kithsiri; Xie, Dan; Szeto, Daphne; Forrest, Gail; Xiao, Jing Chen; Palyha, Oksana; Sun, Li-Ping; Andryuk, Paula J; Engel, Samuel S; Xiong, Yusheng; Lin, Songnian; Kelley, David E; Erion, Mark D; Davis, Harry R; Wang, Liangsu

    2015-11-01

    Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism.

  5. Novel multimeric IL-1 receptor antagonist for the treatment of rheumatoid arthritis.

    PubMed

    Pasi, Shweta; Kant, Ravi; Gupta, Sarika; Surolia, Avadhesha

    2015-02-01

    Protein therapeutics targeting inflammatory mediators have shown great promise for the treatment of autoimmunities such as rheumatoid arthritis (RA). However, a significant challenge in this area has been their low in vivo stability and consequently their severely compromised therapeutic efficacy. One such therapeutic molecule IL-1 receptor antagonist (IL-1ra), used in the treatment of rheumatoid arthritis, has displayed only modest efficacy in human clinical trials owing to its short biological half-life. Herein, we report a novel approach to conglomerate individual protein entities into a drug depot by incorporation of an amyloidogenic motif Lys-Phe-Phe-Glu (KFFE) thereby dramatically improving their systemic persistence and in turn their therapeutic efficacy in a mice model of autoimmune arthritis.

  6. The Inflammasome and the Epidermal Growth Factor Receptor (EGFR) Are Involved in the Staphylococcus aureus-Mediated Induction of IL-1alpha and IL-1beta in Human Keratinocytes

    PubMed Central

    Schröder, Lena; Gläser, Regine; Harder, Jürgen

    2016-01-01

    Staphylococcus (S.) aureus is an important pathogen causing various infections including those of the skin. Keratinocytes are able to sense invading S. aureus and to initiate a fast defense reaction by the rapid release of innate defense mediators such as antimicrobial peptides and cytokines. There is increasing evidence that the cytokines IL-1alpha and IL-1beta, which both signal through the IL-1 receptor, play an important role in cutaneous defense against S. aureus. The aim of this study was to gain more insight into the underlying mechanisms leading to the S. aureus-induced IL-1alpha and IL-1beta expression in keratinocytes. Infection of human primary keratinocytes with S. aureus led to the induction of gene expression and protein secretion of IL-1alpha and IL-1beta. Full S. aureus-induced IL-1 protein release required the inflammasome components caspase-1 and ASC (apoptosis-associated speck-like protein containing a CARD) whereas gene induction of IL-1alpha and IL-beta by S. aureus was not dependent on caspase-1 and ASC. Since patients receiving anti-cancer therapy by inhibition of the epidermal growth factor receptor (EGFR) often suffer from skin infections caused by S. aureus we additionally evaluated whether the EGFR pathway may be involved in the IL-1alpha and IL-1beta induction by S. aureus. Inactivation of the EGFR with a blocking antibody decreased the S. aureus-mediated IL-1alpha and IL-1beta induction in primary keratinocytes. Moreover, the use of siRNA experiments revealed that ADAM17 (A Disintegrin and A Metalloprotease 17), a metalloproteinase known to mediate the shedding and release of EGFR ligands, was required for full induction of IL-1alpha and IL-1beta in keratinocytes infected with S. aureus. A failure of keratinocytes to adequately upregulate IL-1alpha and IL-1beta may promote S. aureus skin infections. PMID:26808616

  7. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  8. Grass carp TGF-β1 impairs IL-1β signaling in the inflammatory responses: Evidence for the potential of TGF-β1 to antagonize inflammation in fish.

    PubMed

    Wang, Xinyan; Yang, Xiao; Wen, Chao; Gao, Yajun; Qin, Lei; Zhang, Shengnan; Zhang, Anying; Yang, Kun; Zhou, Hong

    2016-06-01

    In the present study, effects of TGF-β1 on IL-1β signaling during inflammatory response were examined in grass carp. In grass carp head kidney leukocytes (HKLs), LPS significantly induced the mRNA expression of grass carp TGF-β1 (gcTGF-β1) and IL-1β, indicating the involvement of TGF-β1 and IL-1β in inflammatory process. Using anti-IL-1β antibody to neutralize the endogenous IL-1β, we found that stimulation of IL-1β mRNA expression by LPS was independent on IL-1β itself. Interestingly, recombinant gcTGF-β1 (rgcTGF-β1) suppressed basal and LPS-stimulated IL-1β mRNA expression in spite of immunoneutralizing endogenous IL-1β or not. Given that IL-1β receptor signaling molecule and natural IL-1β inhibitors are the important regulators in IL-1β signaling and activity, the effect of LPS on these molecules' expression was determined in HKLs. Results showed that LPS significantly enhanced the mRNA levels of IL-1 receptor type I (IL-1RI) and II (IL-1RII), IL-1R accessory protein (IL-1Racp) and novel IL-1 family member (nIL-1F). Moreover, the induction of IL-1RII, IL-1Racp and nIL-1F by LPS was IL-1β-dependent since IL-1β immunoneutralization abolished these inductions, implying the involvement of IL-1β auto-induction in these effects. Consistently, TGF-β1 could block basal IL-1RI and nIL-1F mRNA expression, and LPS-induced IL-1RI, IL-1Racp and nIL-1F mRNA expression, suggesting these molecules as the regulatory sites for TGF-β1 to modulate IL-1β signaling. Subsequent in vivo studies showed that bacterial challenge significantly up-regulated IL-1β mRNA expression with a rapid and transient pattern and TGF-β1 mRNA expression with a relatively time-delayed kinetics in head kidney. These expression patterns coincide with their pro-inflammatory and anti-inflammatory roles, respectively. As expected, rgcTGF-β1 could suppress bacterial-induced IL-1β mRNA expression, strengthening the anti-inflammatory role of TGF-β1 in vivo. Taken together, these

  9. Corticotropin releasing factor-1 receptor antagonism alters the biochemical, but not behavioral effects of repeated interleukin-1β administration.

    PubMed

    Wilhelm, Clare J; Murphy-Crews, Aaron; Menasco, Daniel J; Huckans, Marilyn S; Loftis, Jennifer M

    2012-01-01

    Activation of the immune system via administration of cytokines is used for the treatment of chronic viral infections such as hepatitis C and for cancers resistant to radiotherapy. Cytokine-based treatments induce a range of "sickness" behaviors (e.g. depression, anxiety, pain, anorexia, and fatigue). Activation of the hypothalamic pituitary-adrenal axis via the induction of corticotropin releasing factor (CRF) may underlie these unwanted side effects. This study used repeated systemic injections of the pro-inflammatory cytokine interleukin-1β (IL-1β) to model the sickness behaviors and biochemical effects of immune system activation. We assessed the ability of CRF type I receptor (CRF(1)) antagonism to reduce biochemical and behavioral signs of sickness induced by IL-1β treatment. Forty Wistar rats were assigned to one of four groups: 1) saline+vehicle; 2) saline+DMP904 (CRF(1) antagonist); 3) IL-1β+vehicle; 4) IL-1β+DMP904. Rats received intraperitoneal injections of either DMP904 or vehicle and of IL-1β or saline for six days. Sickness behavior was evaluated using body weight assessments and forced swim testing (FST). Blood and brain samples were collected to measure cytokine, p38 mitogen-activated protein kinase (MAPK), and phospho-p38 MAPK levels using multiplex techniques. There were significant reductions in body weights and FST immobility times associated with IL-1β administration. Rats administered IL-1β had significantly higher serum levels of IL-10, but not interferon-γ. Within the hippocampus, IL-1β reduced levels of p38 MAPK, but had no impact on levels of phospho-p38 MAPK except in the presence of DMP904. When administered alone, DMP904 had no significant effect on p38 MAPK or phospho-p38 MAPK in the hippocampus, but when given with IL-1β led to increased phosphorylation of p38 MAPK. IL-1β and DMP904 reduced levels of p38 MAPK within the hypothalamus, while co-administration of IL-1β and DMP904 abolished the effects of either drug alone

  10. Microbial colonization drives expansion of IL-1 receptor 1 expressing, IL-17 producing γ/δ T cells

    PubMed Central

    Duan, Jinyou; Chung, Hachung; Troy, Erin; Kasper, Dennis L.

    2014-01-01

    SUMMARY IL-17 cytokine production by the Th17 T-cell subset is regulated by intestinal commmensals. We show microbial colonization also regulates innate IL-17 production. A population of CD62L− γ/δ T cells, in particular a lineage expressing the IL-1 receptor 1 (IL-1R1), can be quickly activated by microbes to produce IL-17. Antibiotic-treatment and monocolonization of mice suggest specific commensals—but not metronidazole-sensitive anaerobes like Bacteroides species—are required for maintaining IL-1R1+ γ/δ T cells. Signaling through the guanine nucleotide exchange factor VAV1 but not through Toll-like receptors or antigen presentation pathways is essential for inducing IL-1R1+ γ/δ T cells. Furthermore, IL-1R1+ γ/δ T cells are a potential source of IL-17 that can be activated by IL-23 and IL-1 in both infectious and noninfectious settings in vitro and in vivo. Thus, commensals orchestrate the expansion of phenotypically distinct γδ T cells and innate immunity is a three-way interaction between host, pathogens and microbiota. PMID:20159619

  11. Meta-Analysis of Associations of IL1 Receptor Antagonist and Estrogen Receptor Gene Polymorphisms with Systemic Lupus Erythematosus Susceptibility

    PubMed Central

    Xue, Xing-xin; Wang, Zhi-gang; Wang, Jia-jia; Tang, Shai-di; Tang, Shao-wen; Wang, Jie; Zhang, Yun; Xia, Xian

    2014-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that affects a number of different organs and tissues. Interleukin-1 (IL1) and estrogen are considered potential elements in the pathology of SLE. Recently, the variable number of tandem repeats (VNTR) polymorphism in the IL1 receptor antagonist gene (IL1-RN) and PvuII (rs2234693) and XbaI (rs9340799) polymorphisms in the estrogen receptor 1 gene (ESR1) have been associated with a predisposition to SLE. However, the evidence for these associations is inconclusive. We therefore conducted a meta-analysis to validate the roles of these polymorphisms in SLE susceptibility. We searched four databases and identified a total of 17 eligible articles comprising 24 studies. The Newcastle-Ottawa quality assessment scale was used to assess the qualities of the selected studies. We assessed the strengths of the associations using odds ratios (ORs) with 95% confidence intervals (95% CIs). Regarding the IL-1RN VNTR, the 2 allele significantly increased SLE susceptibility (2 vs. L: OR = 1.34, 95% CI = 1.03–1.73, P = 0.03). The ESR1 PvuII CC/CT genotype was also associated with SLE susceptibility (CC/CT vs. TT: OR = 1.25, 95% CI = 1.06–1.47, P = 0.01), and the difference was especially pronounced among Asians (CC/CT vs. TT: OR = 1.33, 95% CI = 1.04–1.69, P = 0.02). No significant association between the ESR1 XbaI polymorphism and SLE susceptibility was observed in the overall analysis. However, a marginally significant association between the GG/GA genotype was found in individuals of Asian descent (GG/GA vs. AA: OR = 1.30, 95% CI = 1.01–1.67, P = 0.04). These results indicate that the IL1-RN VNTR 2 allele, ESR1 PvuII CC/CT genotype and ESR1 XbaI GG/GA genotype may increase SLE susceptibility, especially in Asian individuals. PMID:25286391

  12. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein.

    PubMed

    Järås, Marcus; Johnels, Petra; Hansen, Nils; Agerstam, Helena; Tsapogas, Panagiotis; Rissler, Marianne; Lassen, Carin; Olofsson, Tor; Bjerrum, Ole Weis; Richter, Johan; Fioretos, Thoas

    2010-09-14

    Chronic myeloid leukemia (CML) is genetically characterized by the Philadelphia (Ph) chromosome, formed through a reciprocal translocation between chromosomes 9 and 22 and giving rise to the constitutively active tyrosine kinase P210 BCR/ABL1. Therapeutic strategies aiming for a cure of CML will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test whether IL1RAP expression distinguishes normal (Ph(-)) and leukemic (Ph(+)) cells within the CML CD34(+)CD38(-) cell compartment, we established a unique protocol for conducting FISH on small numbers of sorted cells. By using this method, we sorted cells directly into drops on slides to investigate their Ph-chromosome status. Interestingly, we found that the CML CD34(+)CD38(-)IL1RAP(+) cells were Ph(+), whereas CML CD34(+)CD38(-)IL1RAP(-) cells were almost exclusively Ph(-). By performing long-term culture-initiating cell assays on the two cell populations, we found that Ph(+) and Ph(-) candidate CML stem cells could be prospectively separated. In addition, by generating an anti-IL1RAP antibody, we provide proof of concept that IL1RAP can be used as a target on CML CD34(+)CD38(-) cells to induce antibody-dependent cell-mediated cytotoxicity. This study thus identifies IL1RAP as a unique cell surface biomarker distinguishing Ph(+) from Ph(-) candidate CML stem cells and opens up a previously unexplored avenue for therapy of CML. PMID:20805474

  13. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  14. ANDROGEN RECEPTOR ANTAGONISM BY THE ORGANOPHOSPHATE INSECTICIDE FENITROTHION

    EPA Science Inventory

    Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K. Dorman, D.C., Gray, L.E., and Gaido, K.W. (2000). Toxicol. Sci.

    Organophosphate insecticides represent one of the most widely used classes of pesticide...

  15. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis

    PubMed Central

    Iannitti, Rossana G.; Napolioni, Valerio; Oikonomou, Vasilis; De Luca, Antonella; Galosi, Claudia; Pariano, Marilena; Massi-Benedetti, Cristina; Borghi, Monica; Puccetti, Matteo; Lucidi, Vincenzina; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Cariani, Lisa; Russo, Maria; Porcaro, Luigi; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; De Benedictis, Fernando Maria; Talesa, Vincenzo Nicola; Dinarello, Charles A.; van de Veerdonk, Frank L.; Romani, Luigina

    2016-01-01

    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurrs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF. PMID:26972847

  16. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis.

    PubMed

    Iannitti, Rossana G; Napolioni, Valerio; Oikonomou, Vasilis; De Luca, Antonella; Galosi, Claudia; Pariano, Marilena; Massi-Benedetti, Cristina; Borghi, Monica; Puccetti, Matteo; Lucidi, Vincenzina; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Cariani, Lisa; Russo, Maria; Porcaro, Luigi; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; De Benedictis, Fernando Maria; Talesa, Vincenzo Nicola; Dinarello, Charles A; van de Veerdonk, Frank L; Romani, Luigina

    2016-01-01

    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF.

  17. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis.

    PubMed

    Iannitti, Rossana G; Napolioni, Valerio; Oikonomou, Vasilis; De Luca, Antonella; Galosi, Claudia; Pariano, Marilena; Massi-Benedetti, Cristina; Borghi, Monica; Puccetti, Matteo; Lucidi, Vincenzina; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Cariani, Lisa; Russo, Maria; Porcaro, Luigi; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; De Benedictis, Fernando Maria; Talesa, Vincenzo Nicola; Dinarello, Charles A; van de Veerdonk, Frank L; Romani, Luigina

    2016-01-01

    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF. PMID:26972847

  18. The IL-1β Receptor Antagonist SER140 Postpones the Onset of Diabetes in Female Nonobese Diabetic Mice

    PubMed Central

    Cucak, Helena; Hansen, Gitte; Vrang, Niels; Skarsfeldt, Torben; Steiness, Eva; Jelsing, Jacob

    2016-01-01

    The cytokine interleukin-1β (IL-1β) is known to stimulate proinflammatory immune responses and impair β-cell function and viability, all critical events in the pathogenesis of type 1 diabetes (T1D). Here we evaluate the effect of SER140, a small peptide IL-1β receptor antagonist, on diabetes progression and cellular pancreatic changes in female nonobese diabetic (NOD) mice. Eight weeks of treatment with SER140 reduced the incidence of diabetes by more than 50% compared with vehicle, decreased blood glucose, and increased plasma insulin. Additionally, SER140 changed the endocrine and immune cells dynamics in the NOD mouse pancreas. Together, the data suggest that SER140 treatment postpones the onset of diabetes in female NOD mice by interfering with IL-1β activated pathways. PMID:26953152

  19. Associations between interleukin-1 and IL-1 receptor antagonist polymorphisms and susceptibility to rheumatoid arthritis: A meta-analysis.

    PubMed

    Lee, Y H; Bae, S-C

    2015-12-26

    This study determined whether interleukin-1 (IL-1) polymorphisms are associated with susceptibility to rheumatoid arthritis (RA). A meta-analysis was conducted on the associations between the IL-1A, IL-1B, and IL-1 receptor antagonist (IL-1RN) polymorphisms and RA. A total of 16 studies involving 4,339 RA cases and 3,885 controls were included in the meta-analysis. Meta-analysis of the IL-1B -511 C/T polymorphism revealed an association between the IL-1B -511 T allele and RA in Caucasians (OR = 0.913, 95% CI = 0.840-0.992, p = 0.031), but not in Asians. Ethnicity-specific meta-analysis indicated an association between the TT+TC genotype of the IL-1B 3953 C/T polymorphism and RA in Caucasians (OR = 1.243, 95% CI = 1.008-1.533, p = 0.042) and in Asians (OR = 2.672, 95% CI = 1.662-4.296, p = 4.9x10-6). No association was between RA susceptibility and the IL-1A -889 C/T, IL-1A +4845 G/T, and IL-1RN +2018 C/T polymorphisms. This meta-analysis suggests the IL-1B -511 C/T polymorphism is associated with susceptibility to RA in Caucasians, and that the IL-1B +3953 C/T polymorphism is associated with susceptibility to RA in Caucasians and Asians.

  20. Characterization of interleukin-1β in Helicobacter pylori-induced gastric inflammation and DNA methylation in interleukin-1 receptor type 1 knockout (IL-1R1(-/-)) mice.

    PubMed

    Huang, Fung-Yu; Chan, Annie On-On; Lo, Regina Cheuk-Lam; Rashid, Asif; Wong, Danny Ka-Ho; Cho, Chi-Hin; Lai, Ching-Lung; Yuen, Man-Fung

    2013-08-01

    Helicobacter pylori infection induced interleukin-1β (IL-1β) production and is associated with aberrant DNA methylation and gastric diseases. Here, we investigated the role of IL-1β in H. pylori-induced gastric inflammation and DNA methylation using IL-1 receptor type 1 knockout (IL-1R1(-/-)) mice, and compared the therapeutic efficacy of antimicrobial therapy with IL-1 receptor antagonist (IL-1ra). IL-1R1(-/-) and wild-type (WT) mice were infected with H. pylori for 16, 24 and 32 weeks. Infected WT mice at 24 weeks were given either antimicrobial therapy or IL-1ra. Comparing to the IL-1R1(-/-) mice, infected WT mice with functional IL-1β signaling had higher gastritis scores, higher IL-1β and iNOS mRNA expression, higher nitric oxide (NO) production and increased frequency of E-cadherin (E-cad) methylation at all the time points analyzed. IL-1β release was significantly elevated in infected WT mice than normal controls at 16 weeks post-infection (p<0.005). Treatment of infected mice with antimicrobial therapy and IL-1ra significantly reduced the degree of gastritis (p<0.005; p<0.05, respectively), iNOS expression (p<0.0001; p<0.01, respectively) and NO production (both p<0.001) compared with untreated controls. Mice receiving antimicrobial therapy had significantly lower IL-1β expression than untreated controls (p<0.0001). Both treatments reduced the incidence of E-cad methylation in infected mice compared with controls, however, no statistical significance was observed. There was no significant alteration of total DNA methyltransferase (DNMT) activity. These results demonstrated that IL-1β played a crucial role in H. pylori-induced gastric inflammation and DNA methylation. H. pylori eradication and IL-1ra administration could ameliorate inflammatory stress.

  1. IL-1 binds to high affinity receptors on human osteosarcoma cells and potentiates prostaglandin E2 stimulation of cAMP production

    SciTech Connect

    Rodan, S.B.; Wesolowski, G.; Chin, J.; Limjuco, G.A.; Schmidt, J.A.; Rodan, G.A. )

    1990-08-15

    IL-1 is a potent bone resorbing agent. Its mechanism of action is unknown, but the presence of osteoblasts was shown to be necessary for IL-1 stimulation of bone resorption by isolated osteoclasts. This study examines the presence of IL-1R and IL-1 effects in osteoblastic cells from a clonal human osteosarcoma cell line, Saos-2/B-10. We found that the binding affinity and the number of binding sites increases substantially during the postconfluent stage. Scatchard and curve-fitting analysis revealed one class of high affinity binding sites, with Kd/Ki's of 40 +/- 17 pM (mean +/- SD) for IL-1 alpha (n = 5) and 9 +/- 7 pM for IL-1 beta (n = 5) and 2916 +/- 2438 (n = 6) receptors/cell. Incubation of the cells with 125I-IL-1 alpha (100 pM) at 4 degrees C, followed by incubation at 37 degrees C up to 4 h, revealed internalization of receptor-bound IL-1 alpha. Chemical cross-linking studies showed that the IL-1R in Saos-2/B-10 cells had a molecular mass of approximately 80 kDa. To assess the biologic effect of IL-1 in Saos-2/B-10 cells, we determined PGE2 content and adenylate cyclase activity. Although IL-1 had no effect on PGE2 synthesis, both IL-1 alpha and IL-1 beta enhanced PGE2 stimulation of adenylate cyclase two- to four-fold in a dose-dependent manner. The half-maximal effect for IL-1 alpha was seen at 8 to 10 pM and for IL-1 beta at 0.6 to 1.8 pM. IL-1 did not enhance basal adenylate cyclase or stimulation by parathyroid hormone, isoproterenol, or forskolin. IL-1 enhancement of PGE2-stimulated adenylate cyclase was detected between 1 to 2 h, was maximal at 4 to 5 h, was not prevented by cycloheximide treatment, and was seen in membranes from IL-1 pretreated cells. These data show effects of IL-1 on a human osteoblast-like cell line that are mediated by high affinity receptors. These IL-1 effects could contribute to the biologic action of IL-1 on bone.

  2. CGRP receptor antagonism and migraine therapy.

    PubMed

    Edvinsson, Lars; Warfvinge, Karin

    2013-08-01

    Migraine is the most prevalent of the neurological disorders and can affect the patient throughout the lifetime. Calcitonin gene-related peptide (CGRP) is a neuropeptide that is expressed in the central and peripheral nervous systems. It is now 2 decades since it was proposed to be involved in migraine pathophysiology. The cranial sensory system contains C-fibers storing CGRP and trigeminal nerve activation and acute migraine attacks result in release of CGRP. The CGRP receptor consists of a complex of calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1) and receptor component protein (RCP). At the central synapses in the trigeminal nucleus caudalis, CGRP acts postjunctionally on second-order neurons to transmit pain signals centrally via brainstem and midbrain to thalamus and higher cortical pain regions. CLR and RAMPs are widely expressed throughout the brain, in the trigeminal ganglion and in intracranial arteries. CGRP does not induce neurogenic inflammation or sensitization at peripheral meningeal sites but relays nociceptive information from trigeminal primary afferent neurons to the second-order neurons in the spinal trigeminal nucleus neurons. CGRP receptor antagonists have been developed as novel antimigraine drugs and found to be effective in the treatment of acute migraine attacks. Other ways to stop CGRP activity has been introduced recently through antibodies against CGRP and the CGRP receptor. While the CGRP receptors are expressed both in the CNS and at various places related to the trigeminal system the exact site of action for their therapy effect is still unresolved but the new approaches may resolve this. PMID:23745702

  3. An IL-1 receptor antagonist blocks a morphine-induced attenuation of locomotor recovery after spinal cord injury.

    PubMed

    Hook, Michelle A; Washburn, Stephanie N; Moreno, Georgina; Woller, Sarah A; Puga, Denise; Lee, Kuan H; Grau, James W

    2011-02-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 h later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 μg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 h after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 μg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 μg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  4. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction.

    PubMed

    Nold-Petry, Claudia A; Lo, Camden Y; Rudloff, Ina; Elgass, Kirstin D; Li, Suzhao; Gantier, Michael P; Lotz-Havla, Amelie S; Gersting, Søren W; Cho, Steven X; Lao, Jason C; Ellisdon, Andrew M; Rotter, Björn; Azam, Tania; Mangan, Niamh E; Rossello, Fernando J; Whisstock, James C; Bufler, Philip; Garlanda, Cecilia; Mantovani, Alberto; Dinarello, Charles A; Nold, Marcel F

    2015-04-01

    Interleukin 37 (IL-37) and IL-1R8 (SIGIRR or TIR8) are anti-inflammatory orphan members of the IL-1 ligand family and IL-1 receptor family, respectively. Here we demonstrate formation and function of the endogenous ligand-receptor complex IL-37-IL-1R8-IL-18Rα. The tripartite complex assembled rapidly on the surface of peripheral blood mononuclear cells upon stimulation with lipopolysaccharide. Silencing of IL-1R8 or IL-18Rα impaired the anti-inflammatory activity of IL-37. Whereas mice with transgenic expression of IL-37 (IL-37tg mice) with intact IL-1R8 were protected from endotoxemia, IL-1R8-deficient IL-37tg mice were not. Proteomic and transcriptomic investigations revealed that IL-37 used IL-1R8 to harness the anti-inflammatory properties of the signaling molecules Mer, PTEN, STAT3 and p62(dok) and to inhibit the kinases Fyn and TAK1 and the transcription factor NF-κB, as well as mitogen-activated protein kinases. Furthermore, IL-37-IL-1R8 exerted a pseudo-starvational effect on the metabolic checkpoint kinase mTOR. IL-37 thus bound to IL-18Rα and exploited IL-1R8 to activate a multifaceted intracellular anti-inflammatory program.

  5. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition.

    PubMed

    Hubers, Scott A; Brown, Nancy J

    2016-03-15

    Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension. PMID:26976916

  6. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition.

    PubMed

    Hubers, Scott A; Brown, Nancy J

    2016-03-15

    Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension.

  7. Association study of functional polymorphisms in interleukins and interleukin receptors genes: IL1A, IL1B, IL1RN, IL6, IL6R, IL10, IL10RA and TGFB1 in schizophrenia in Polish population.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Wilkosc, Monika; Frydecka, Dorota; Groszewska, Agata; Narozna, Beata; Dmitrzak-Weglarz, Monika; Czerski, Piotr; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Leszczynska-Rodziewicz, Anna; Slopien, Agnieszka; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2015-12-01

    Schizophrenia has been associated with a large range of autoimmune diseases, with a history of any autoimmune disease being associated with a 45% increase in risk for the illness. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. In particular, increases or imbalance in cytokine before birth or during the early stages of life may affect neurodevelopment and produce vulnerability to the disease. A total of 27 polymorphisms of IL1N gene: rs1800587, rs17561; IL1B gene: rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627; IL1RN gene: rs419598, rs315952, rs9005, rs4251961; IL6 gene: rs1800795, rs1800797; IL6R gene: rs4537545, rs4845617, rs2228145, IL10 gene: rs1800896, rs1800871, rs1800872, rs1800890, rs6676671; IL10RA gene: rs2229113, rs3135932; TGF1B gene: rs1800469, rs1800470; each selected on the basis of molecular evidence for functionality, were investigated in this study. Analysis was performed on a group of 621 patients with diagnosis of schizophrenia and 531 healthy controls in Polish population. An association of rs4848306 in IL1B gene, rs4251961 in IL1RN gene, rs2228145 and rs4537545 in IL6R with schizophrenia have been observed. rs6676671 in IL10 was associated with early age of onset. Strong linkage disequilibrium was observed between analyzed polymorphisms in each gene, except of IL10RA. We observed that haplotypes composed of rs4537545 and rs2228145 in IL6R gene were associated with schizophrenia. Analyses with family history of schizophrenia, other psychiatric disorders and alcohol abuse/dependence did not show any positive findings. Further studies on larger groups along with correlation with circulating protein levels are needed.

  8. Association study of functional polymorphisms in interleukins and interleukin receptors genes: IL1A, IL1B, IL1RN, IL6, IL6R, IL10, IL10RA and TGFB1 in schizophrenia in Polish population.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Wilkosc, Monika; Frydecka, Dorota; Groszewska, Agata; Narozna, Beata; Dmitrzak-Weglarz, Monika; Czerski, Piotr; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Leszczynska-Rodziewicz, Anna; Slopien, Agnieszka; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2015-12-01

    Schizophrenia has been associated with a large range of autoimmune diseases, with a history of any autoimmune disease being associated with a 45% increase in risk for the illness. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. In particular, increases or imbalance in cytokine before birth or during the early stages of life may affect neurodevelopment and produce vulnerability to the disease. A total of 27 polymorphisms of IL1N gene: rs1800587, rs17561; IL1B gene: rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627; IL1RN gene: rs419598, rs315952, rs9005, rs4251961; IL6 gene: rs1800795, rs1800797; IL6R gene: rs4537545, rs4845617, rs2228145, IL10 gene: rs1800896, rs1800871, rs1800872, rs1800890, rs6676671; IL10RA gene: rs2229113, rs3135932; TGF1B gene: rs1800469, rs1800470; each selected on the basis of molecular evidence for functionality, were investigated in this study. Analysis was performed on a group of 621 patients with diagnosis of schizophrenia and 531 healthy controls in Polish population. An association of rs4848306 in IL1B gene, rs4251961 in IL1RN gene, rs2228145 and rs4537545 in IL6R with schizophrenia have been observed. rs6676671 in IL10 was associated with early age of onset. Strong linkage disequilibrium was observed between analyzed polymorphisms in each gene, except of IL10RA. We observed that haplotypes composed of rs4537545 and rs2228145 in IL6R gene were associated with schizophrenia. Analyses with family history of schizophrenia, other psychiatric disorders and alcohol abuse/dependence did not show any positive findings. Further studies on larger groups along with correlation with circulating protein levels are needed. PMID:26481614

  9. Therapeutic potential of endothelin receptor antagonism in kidney disease.

    PubMed

    Czopek, Alicja; Moorhouse, Rebecca; Webb, David J; Dhaun, Neeraj

    2016-03-01

    Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease.

  10. Variable number of tandem repeat polymorphisms of the interleukin-1 receptor antagonist gene IL-1RN: a novel association with the athlete status

    PubMed Central

    2010-01-01

    Background The interleukin-1 (IL-1) family of cytokines is involved in the inflammatory and repair reactions of skeletal muscle during and after exercise. Specifically, plasma levels of the IL-1 receptor antagonist (IL-1ra) increase dramatically after intense exercise, and accumulating evidence points to an effect of genetic polymorphisms on athletic phenotypes. Therefore, the IL-1 family cytokine genes are plausible candidate genes for athleticism. We explored whether IL-1 polymorphisms are associated with athlete status in European subjects. Methods Genomic DNA was obtained from 205 (53 professional and 152 competitive non-professional) Italian athletes and 458 non-athlete controls. Two diallelic polymorphisms in the IL-1β gene (IL-1B) at -511 and +3954 positions, and a variable number tandem repeats (VNTR) in intron 2 of the IL-1ra gene (IL-1RN) were assessed. Results We found a 2-fold higher frequency of the IL-1RN 1/2 genotype in athletes compared to non-athlete controls (OR = 1.93, 95% CI = 1.37-2.74, 41.0% vs. 26.4%), and a lower frequency of the 1/1 genotype (OR = 0.55, 95% CI = 0.40-0.77, 43.9% vs. 58.5%). Frequency of the IL-1RN 2/2 genotype did not differ between groups. No significant differences between athletes and controls were found for either -511 or +3954 IL-1B polymorphisms. However, the haplotype (-511)C-(+3954)T-(VNTR)2 was 3-fold more frequent in athletes than in non-athletes (OR = 3.02, 95% CI = 1.16-7.87). Interestingly, the IL-1RN 1/2 genotype was more frequent in professional than in non-professional athletes (OR = 1.92, 95% CI = 1.02-3.61, 52.8% vs. 36.8%). Conclusions Our study found that variants at the IL-1ra gene associate with athletic status. This confirms the crucial role that cytokine IL-1ra plays in human physical exercise. The VNTR IL-1RN polymorphism may have implications for muscle health, performance, and/or recovery capacities. Further studies are needed to assess these specific issues. As VNTR IL-1RN polymorphism is

  11. IL-1 Receptor Blockade Alleviates Graft-versus-Host Disease through Downregulation of an Interleukin-1β-Dependent Glycolytic Pathway in Th17 Cells

    PubMed Central

    Park, Min-Jung; Lee, Seung Hoon; Lee, Sung-Hee; Lee, Eun-Jung; Kim, Eun-Kyung; Choi, Jong Young; Cho, Mi-La

    2015-01-01

    T helper (Th) 17 cells are a subset of Th cells expressing interleukin- (IL-) 17 and initiating an inflammatory response in autoimmune diseases. Graft-versus-host disease (GVHD) is an immune inflammatory disease caused by interactions between the adaptive immunity of donor and recipient. The Th17 lineage exhibits proinflammatory activity and is believed to be a central player in GVHD. IL-1 performs a key function in immune responses and induces development of Th17 cells. Here, we show that blockade of IL-1 signaling suppresses Th17 cell differentiation and alleviates GVHD severity. We hypothesized that the IL-1 receptor antagonist (IL-1Ra) would suppress Th17 cell differentiation in vitro via inhibition of glycolysis-related genes. Blockade of IL-1 using IL-1Ra downregulated Th17 cell differentiation, an alloreactive T cell response, and expression of genes of the glycolysis pathway. Severity of GVHD was reduced in mice with a transplant of IL-Ra-treated cells, in comparison with control mice. To clarify the mechanisms via which IL-1Ra exerts the therapeutic effect, we demonstrated in vivo that IL-1Ra decreased the proportion of Th17 cells, increased the proportion of FoxP3-expressing T regulatory (Treg) cells, and inhibited expression of glycolysis-related genes and suppressed Th17 cell development and B-cell activation. These results suggest that blockade of IL-1 signaling ameliorates GVHD via suppression of excessive T cell-related inflammation. PMID:26798206

  12. IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase δ.

    PubMed

    Yoshida, Tomoyuki; Yasumura, Misato; Uemura, Takeshi; Lee, Sung-Jin; Ra, Moonjin; Taguchi, Ryo; Iwakura, Yoichiro; Mishina, Masayoshi

    2011-09-21

    Mental retardation (MR) and autism are highly heterogeneous neurodevelopmental disorders. IL-1-receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic MR and is associated with autism. Thus, the elucidation of the functional role of IL1RAPL1 will contribute to our understanding of the pathogenesis of these mental disorders. Here, we showed that knockdown of endogenous IL1RAPL1 in cultured cortical neurons suppressed the accumulation of punctate staining signals for active zone protein Bassoon and decreased the number of dendritic protrusions. Consistently, the expression of IL1RAPL1 in cultured neurons stimulated the accumulation of Bassoon and spinogenesis. The extracellular domain (ECD) of IL1RAPL1 was required and sufficient for the presynaptic differentiation-inducing activity, while both the ECD and cytoplasmic domain were essential for the spinogenic activity. Notably, the synaptogenic activity of IL1RAPL1 was specific for excitatory synapses. Furthermore, we identified presynaptic protein tyrosine phosphatase (PTP) δ as a major IL1RAPL1-ECD interacting protein by affinity chromatography. IL1RAPL1 interacted selectively with certain forms of PTPδ splice variants carrying mini-exon peptides in Ig-like domains. The synaptogenic activity of IL1RAPL1 was abolished in primary neurons from PTPδ knock-out mice. IL1RAPL1 showed robust synaptogenic activity in vivo when transfected into the cortical neurons of wild-type mice but not in PTPδ knock-out mice. These results suggest that IL1RAPL1 mediates synapse formation through trans-synaptic interaction with PTPδ. Our findings raise an intriguing possibility that the impairment of synapse formation may underlie certain forms of MR and autism as a common pathogenic pathway shared by these mental disorders.

  13. Chemodetection in fluctuating environments: receptor coupling, buffering, and antagonism.

    PubMed

    Lalanne, Jean-Benoît; François, Paul

    2015-02-10

    Variability in the chemical composition of the extracellular environment can significantly degrade the ability of cells to detect rare cognate ligands. Using concepts from statistical detection theory, we formalize the generic problem of detection of small concentrations of ligands in a fluctuating background of biochemically similar ligands binding to the same receptors. We discover that in contrast with expectations arising from considerations of signal amplification, inhibitory interactions between receptors can improve detection performance in the presence of substantial environmental variability, providing an adaptive interpretation to the phenomenon of ligand antagonism. Our results suggest that the structure of signaling pathways responsible for chemodetection in fluctuating and heterogeneous environments might be optimized with respect to the statistics and dynamics of environmental composition. The developed formalism stresses the importance of characterizing nonspecific interactions to understand function in signaling pathways. PMID:25624502

  14. Chemodetection in fluctuating environments: Receptor coupling, buffering, and antagonism

    PubMed Central

    Lalanne, Jean-Benoît; François, Paul

    2015-01-01

    Variability in the chemical composition of the extracellular environment can significantly degrade the ability of cells to detect rare cognate ligands. Using concepts from statistical detection theory, we formalize the generic problem of detection of small concentrations of ligands in a fluctuating background of biochemically similar ligands binding to the same receptors. We discover that in contrast with expectations arising from considerations of signal amplification, inhibitory interactions between receptors can improve detection performance in the presence of substantial environmental variability, providing an adaptive interpretation to the phenomenon of ligand antagonism. Our results suggest that the structure of signaling pathways responsible for chemodetection in fluctuating and heterogeneous environments might be optimized with respect to the statistics and dynamics of environmental composition. The developed formalism stresses the importance of characterizing nonspecific interactions to understand function in signaling pathways. PMID:25624502

  15. Aryl hydrocarbon receptor antagonism and its role in rheumatoid arthritis

    PubMed Central

    Nguyen, Nam Trung; Nakahama, Taisuke; Nguyen, Chi Hung; Tran, Trang Thu; Le, Van Son; Chu, Hoang Ha; Kishimoto, Tadamitsu

    2015-01-01

    Although rheumatoid arthritis (RA) is the most common autoimmune disease, affecting approximately 1% of the population worldwide, its pathogenic mechanisms are poorly understood. Tobacco smoke, an environmental risk factor for RA, contains several ligands of aryl hydrocarbon receptor (Ahr), also known as dioxin receptor. Ahr plays critical roles in the immune system. We previously demonstrated that Ahr in helper T-cells contributes to development of collagen-induced arthritis, a mouse model of RA. Other studies have shown that cigarette smoke condensate and pure Ahr ligands exacerbate RA by altering bone metabolism and inducing proinflammatory responses in fibroblast-like synoviocytes. Consistent with these findings, several Ahr antagonists such as α-naphthoflavone, resveratrol, and GNF351 reverse the effect of Ahr ligands in RA pathogenesis. In this review, we summarize the current knowledge of Ahr function in the immune system and the potential clinical benefits of Ahr antagonism in treating RA. PMID:27186143

  16. Receptor antagonism/agonism can be uncoupled from pharmacoperone activity.

    PubMed

    Janovick, Jo Ann; Spicer, Timothy P; Smith, Emery; Bannister, Thomas D; Kenakin, Terry; Scampavia, Louis; Conn, P Michael

    2016-10-15

    Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist. PMID:27389877

  17. Structural Basis for Simvastatin Competitive Antagonism of Complement Receptor 3.

    PubMed

    Jensen, Maria Risager; Bajic, Goran; Zhang, Xianwei; Laustsen, Anne Kjær; Koldsø, Heidi; Skeby, Katrine Kirkeby; Schiøtt, Birgit; Andersen, Gregers R; Vorup-Jensen, Thomas

    2016-08-12

    The complement system is an important part of the innate immune response to infection but may also cause severe complications during inflammation. Small molecule antagonists to complement receptor 3 (CR3) have been widely sought, but a structural basis for their mode of action is not available. We report here on the structure of the human CR3 ligand-binding I domain in complex with simvastatin. Simvastatin targets the metal ion-dependent adhesion site of the open, ligand-binding conformation of the CR3 I domain by direct contact with the chelated Mg(2+) ion. Simvastatin antagonizes I domain binding to the complement fragments iC3b and C3d but not to intercellular adhesion molecule-1. By virtue of the I domain's wide distribution in binding kinetics to ligands, it was possible to identify ligand binding kinetics as discriminator for simvastatin antagonism. In static cellular experiments, 15-25 μm simvastatin reduced adhesion by K562 cells expressing recombinant CR3 and by primary human monocytes, with an endogenous expression of this receptor. Application of force to adhering monocytes potentiated the effects of simvastatin where only a 50-100 nm concentration of the drug reduced the adhesion by 20-40% compared with untreated cells. The ability of simvastatin to target CR3 in its ligand binding-activated conformation is a novel mechanism to explain the known anti-inflammatory effects of this compound, in particular because this CR3 conformation is found in pro-inflammatory environments. Our report points to new designs of CR3 antagonists and opens new perspectives and identifies druggable receptors from characterization of the ligand binding kinetics in the presence of antagonists.

  18. Structural Basis for Simvastatin Competitive Antagonism of Complement Receptor 3.

    PubMed

    Jensen, Maria Risager; Bajic, Goran; Zhang, Xianwei; Laustsen, Anne Kjær; Koldsø, Heidi; Skeby, Katrine Kirkeby; Schiøtt, Birgit; Andersen, Gregers R; Vorup-Jensen, Thomas

    2016-08-12

    The complement system is an important part of the innate immune response to infection but may also cause severe complications during inflammation. Small molecule antagonists to complement receptor 3 (CR3) have been widely sought, but a structural basis for their mode of action is not available. We report here on the structure of the human CR3 ligand-binding I domain in complex with simvastatin. Simvastatin targets the metal ion-dependent adhesion site of the open, ligand-binding conformation of the CR3 I domain by direct contact with the chelated Mg(2+) ion. Simvastatin antagonizes I domain binding to the complement fragments iC3b and C3d but not to intercellular adhesion molecule-1. By virtue of the I domain's wide distribution in binding kinetics to ligands, it was possible to identify ligand binding kinetics as discriminator for simvastatin antagonism. In static cellular experiments, 15-25 μm simvastatin reduced adhesion by K562 cells expressing recombinant CR3 and by primary human monocytes, with an endogenous expression of this receptor. Application of force to adhering monocytes potentiated the effects of simvastatin where only a 50-100 nm concentration of the drug reduced the adhesion by 20-40% compared with untreated cells. The ability of simvastatin to target CR3 in its ligand binding-activated conformation is a novel mechanism to explain the known anti-inflammatory effects of this compound, in particular because this CR3 conformation is found in pro-inflammatory environments. Our report points to new designs of CR3 antagonists and opens new perspectives and identifies druggable receptors from characterization of the ligand binding kinetics in the presence of antagonists. PMID:27339893

  19. Binding kinetics differentiates functional antagonism of orexin-2 receptor ligands

    PubMed Central

    Mould, R; Brown, J; Marshall, FH; Langmead, CJ

    2014-01-01

    Orexin receptor antagonism represents a novel approach for the treatment of insomnia that directly targets sleep/wake regulation. Several such compounds have entered into clinical development, including the dual orexin receptor antagonists, suvorexant and almorexant. In this study, we have used equilibrium and kinetic binding studies with the orexin-2 (OX2) selective antagonist radioligand, [3H]-EMPA, to profile several orexin receptor antagonists. Furthermore, selected compounds were studied in cell-based assays of inositol phosphate accumulation and ERK-1/2 phosphorylation in CHO cells stably expressing the OX2 receptor that employ different agonist incubation times (30 and 5 min, respectively). EMPA, suvorexant, almorexant and TCS-OX-29 all bind to the OX2 receptor with moderate to high affinity (pKI values ≥ 7.5), whereas the primarily OX1 selective antagonists SB-334867 and SB-408124 displayed low affinity (pKI values ca. 6). Competition kinetic analysis showed that the compounds displayed a range of dissociation rates from very fast (TCS-OX2-29, koff = 0.22 min−1) to very slow (almorexant, koff = 0.005 min−1). Notably, there was a clear correlation between association rate and affinity. In the cell-based assays, fast-offset antagonists EMPA and TCS-OX2-29 displayed surmountable antagonism of orexin-A agonist activity. However, both suvorexant and particularly almorexant cause concentration-dependent depression in the maximal orexin-A response, a profile that is more evident with a shorter agonist incubation time. Analysis according to a hemi-equilibrium model suggests that antagonist dissociation is slower in a cellular system than in membrane binding; under these conditions, almorexant effectively acts as a pseudo-irreversible antagonist. Linked ArticlesThis article is part of a themed section on Orexin Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-2 PMID:23692283

  20. Interleukin-1 (IL-1) receptor antagonist gene polymorphism in normal weight obese syndrome: relationship to body composition and IL-1 alpha and beta plasma levels.

    PubMed

    Di Renzo, Laura; Bigioni, Mario; Del Gobbo, Vera; Premrov, Maria Grazia; Barbini, Ugo; Di Lorenzo, Nicola; De Lorenzo, Antonino

    2007-02-01

    Interleukin-1 receptor antagonist concentration is upregulated in the plasma of patients with obese related disease, and its synthesis is under genetic control. We tested the hypothesis that the polymorphism in the interleukin-1 receptor antagonist gene second intron might be associated with normal weight obese syndrome. The polymorphism of intron 2 in the interleukin-1 receptor antagonist gene, containing a variable numbers of a tandem repeat (VNTR), and interleukin-1alpha and beta plasma levels were evaluated in 110 Caucasian Italian women, divided in three groups: non-obese, normal weight obese and preobese-obese. The allele 1 frequency was not significantly different in the three groups. The alleles 3 and 4 were not observed in any group. The allele 2 frequency in normal weight obese woman (12.5%) and preobese-obese (17.5%) groups were significantly different in comparison with the non-obese group (6.7%). The allele 5 was observed exclusively in non-obese and normal weight obese subjects (13.3 and 7.5%, respectively). In normal weight obese women, plasma concentrations of interleukin-1 alpha and interleukin-1 beta were significantly higher than in non-obese. The allele 2 was observed in normal weight obese as well as a significant association between the increase of interleukin-1 beta plasma amount and the allele 2 carrier. Our findings suggest that the allele 2 might be an important high-risk genetic marker for normal weight obese syndrome and obesity related diseases.

  1. The Use of IL-1 Receptor Antagonist (Anakinra) in Idiopathic Recurrent Pericarditis: A Narrative Review

    PubMed Central

    Baskar, Shankar; Klein, Allan L.; Zeft, Andrew

    2016-01-01

    Recurrent pericarditis is a complication of acute pericarditis in 20–30% of the patients and is usually idiopathic in nature. The underlying pathogenesis of this condition remains unclear, although immune-mediated mechanisms seem likely. A subgroup of these patients with refractory symptoms can be challenging to manage, and multiple immunosuppressive medications have been used without consistent benefit. Anakinra, an interleukin-1 receptor antagonist, has been used in treatment of rheumatoid arthritis and autoinflammatory syndromes. Preliminary evidence suggests that anakinra could be a promising therapy for idiopathic recurrent pericarditis. In this narrative review, we summarize the current understanding of the etiopathogenesis of idiopathic recurrent pericarditis, mechanism of action of anakinra, and the preliminary evidence, supporting the use of anakinra in pericarditis. PMID:26942035

  2. The effect of anakinra, an IL1 receptor antagonist, in patients with sporadic inclusion body myositis (sIBM): a small pilot study.

    PubMed

    Kosmidis, Michalis L; Alexopoulos, Harry; Tzioufas, Athanasios G; Dalakas, Marinos C

    2013-11-15

    In sIBM, an inflammatory process mediated by cytotoxic T cells and cytokines in conjunction with a degenerative process, deposits of beta amyloid and misfolded proteins appear to be the main culprits in disease pathogenesis. IL-1β may play a key role because it is upregulated in sIBM myofibers, co-localizes with Amyloid Precursor Protein (APP) and promotes the production of APP and amyloid deposits. We performed a small, pilot study to examine whether anakinra, an IL1 receptor antagonist could benefit sIBM patients. Four patients with biopsy-proven sIBM received anakinra for a mean period of 7.7 months. No improvement in muscle strength or stabilization was noted in any of the patients based on grip strength and MRC measurements. The treatment failure may be due to insufficiency of anakinra to suppress the intramuscular IL1, the short study period, or the irrelevance of IL1 in the disease process.

  3. Development of a cell-based qualitative assay for detection of neutralizing anti-human interleukin-1 receptor antagonist (hIL-1Ra) antibodies in rats.

    PubMed

    Gao, Jin; Li, Jingjing; Yang, Minmin; Wu, Mingyuan; Tu, Ping; Yu, Yan; Han, Wei

    2015-01-01

    To determine the incidence of the positive neutralizing anti-human interleukin receptor antagonist (anti-IL-1Ra), a novel assay based on the proliferation of human melanoma A375.S2 cells was developed and validated. In the presence of a growth-limiting concentration of IL-1β, A375.S2 cells were able to regain proliferation following the addition of IL-1Ra in a concentration-dependent manner. This dose-response effect enabled the validation of a standard curve for calculation of the concentration of IL-1Ra or, inversely, the concentration of neutralizing anti-IL-1Ra antibodies in cell culture medium or sera. The assay used CCK-8 as an indicator of proliferation. The dose-response relationship between rhIL-1Ra (dose range of 5-75 ng/ml rhIL-1Ra) and A375.S2 cell proliferation was sigmoidal and fitted a four-parameter logistic model. The percent coefficients of variation (%CVs) of quality control samples were 12.5 and 11.9% for intra-assay repeatability and 14.5 and 19.5% for inter-assay repeatability, while the total accuracy was in the range of 97.2-103.6%. For the neutralization assay, the optimal sample dilution factor was found to be 40-fold and the reasonable standard for positive and negative decision was calculated to be 59.4% neutralization rate. The %CVs of quality control samples were 12.7 and 24.0% for intra-assay repeatability and 11.6 and 30.0% for inter-assay repeatability. Analysis using the assay showed that rats could produce neutralizing anti-IL-1Ra antibodies after repeated intramuscular injection with rhIL-1Ra, and this response was not significantly dependent on the dose injected.

  4. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    PubMed Central

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T; van der Horst, Geertje; Hemmer, Daniëlle M; Marijt, Koen A; Hwang, Ming S; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M; Meijer, Onno C; Culig, Zoran; van der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance. In this study, we aim to elucidate the role of the GR in docetaxel-resistant PCa in order to improve the current PCa therapies. GR expression was analyzed in a tissue microarray of primary PCa specimens from chemonaive and docetaxel-treated patients, and in cultured PCa cell lines with an acquired docetaxel resistance (PC3-DR, DU145-DR, and 22Rv1-DR). We found a robust overexpression of the GR in primary PCa from docetaxel-treated patients and enhanced GR levels in cultured docetaxel-resistant human PCa cells, indicating a key role of the GR in docetaxel resistance. The capability of the GR antagonists (RU-486 and cyproterone acetate) to revert docetaxel resistance was investigated and revealed significant resensitization of docetaxel-resistant PCa cells for docetaxel treatment in a dose- and time-dependent manner, in which a complete restoration of docetaxel sensitivity was achieved in both androgen receptor (AR)-negative and AR-positive cell lines. Mechanistically, we demonstrated down-regulation of Bcl-xL and Bcl-2 upon GR antagonism, thereby defining potential treatment targets. In conclusion, we describe the involvement of the GR in the acquisition of docetaxel resistance in human PCa. Therapeutic targeting of the GR effectively resensitizes docetaxel-resistant PCa cells. These findings warrant further investigation of the clinical utility of the GR antagonists in the management of patients with advanced and docetaxel-resistant PCa. PMID:26483423

  5. Experimental transmission of AA amyloidosis by injecting the AA amyloid protein into interleukin-1 receptor antagonist knockout (IL-1raKO) mice.

    PubMed

    Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H

    2015-05-01

    The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis.

  6. Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing.

    PubMed

    Descamps, Delphyne; Le Gars, Mathieu; Balloy, Viviane; Barbier, Diane; Maschalidi, Sophia; Tohme, Mira; Chignard, Michel; Ramphal, Reuben; Manoury, Bénédicte; Sallenave, Jean-Michel

    2012-01-31

    A deficit in early clearance of Pseudomonas aeruginosa (P. aeruginosa) is crucial in nosocomial pneumonia and in chronic lung infections. Few studies have addressed the role of Toll-like receptors (TLRs), which are early pathogen associated molecular pattern receptors, in pathogen uptake and clearance by alveolar macrophages (AMs). Here, we report that TLR5 engagement is crucial for bacterial clearance by AMs in vitro and in vivo because unflagellated P. aeruginosa or different mutants defective in TLR5 activation were resistant to AM phagocytosis and killing. In addition, the clearance of PAK (a wild-type P. aeruginosa strain) by primary AMs was causally associated with increased IL-1β release, which was dramatically reduced with PAK mutants or in WT PAK-infected primary TLR5(-/-) AMs, demonstrating the dependence of IL-1β production on TLR5. We showed that this IL-1β production was important in endosomal pH acidification and in inducing the killing of bacteria by AMs through asparagine endopeptidase (AEP), a key endosomal cysteine protease. In agreement, AMs from IL-1R1(-/-) and AEP(-/-) mice were unable to kill P. aeruginosa. Altogether, these findings demonstrate that TLR5 engagement plays a major role in P. aeruginosa internalization and in triggering IL-1β formation. PMID:22307620

  7. Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing

    PubMed Central

    Descamps, Delphyne; Le Gars, Mathieu; Balloy, Viviane; Barbier, Diane; Maschalidi, Sophia; Tohme, Mira; Chignard, Michel; Ramphal, Reuben; Manoury, Bénédicte; Sallenave, Jean-Michel

    2012-01-01

    A deficit in early clearance of Pseudomonas aeruginosa (P. aeruginosa) is crucial in nosocomial pneumonia and in chronic lung infections. Few studies have addressed the role of Toll-like receptors (TLRs), which are early pathogen associated molecular pattern receptors, in pathogen uptake and clearance by alveolar macrophages (AMs). Here, we report that TLR5 engagement is crucial for bacterial clearance by AMs in vitro and in vivo because unflagellated P. aeruginosa or different mutants defective in TLR5 activation were resistant to AM phagocytosis and killing. In addition, the clearance of PAK (a wild-type P. aeruginosa strain) by primary AMs was causally associated with increased IL-1β release, which was dramatically reduced with PAK mutants or in WT PAK-infected primary TLR5−/− AMs, demonstrating the dependence of IL-1β production on TLR5. We showed that this IL-1β production was important in endosomal pH acidification and in inducing the killing of bacteria by AMs through asparagine endopeptidase (AEP), a key endosomal cysteine protease. In agreement, AMs from IL-1R1−/− and AEP−/− mice were unable to kill P. aeruginosa. Altogether, these findings demonstrate that TLR5 engagement plays a major role in P. aeruginosa internalization and in triggering IL-1β formation. PMID:22307620

  8. Novel Toll/IL-1 Receptor Homologous Region Adaptors Act as Negative Regulators in Amphioxus TLR Signaling.

    PubMed

    Peng, Jian; Tao, Xin; Li, Rui; Hu, Jingru; Ruan, Jie; Wang, Ruihua; Yang, Manyi; Yang, Rirong; Dong, Xiangru; Chen, Shangwu; Xu, Anlong; Yuan, Shaochun

    2015-10-01

    Studies have shown that the basal chordate amphioxus possesses an extraordinarily complex TLR system, including 39 TLRs and at least 40 Toll/IL-1R homologous region (TIR) adaptors. Besides homologs to MyD88 and TIR domain-containing adaptor molecule (TICAM), most amphioxus TIR adaptors exhibit domain architectures that are not observed in other species. To reveal how these novel TIR adaptors function in amphioxus Branchiostoma belcheri tsingtauense (bbt), four representatives, bbtTIRA, bbtTIRB, bbtTIRC, and bbtTIRD, were selected for functional analyses. We found bbtTIRA to show a unique inhibitory role in amphioxus TICAM-mediated pathway by interacting with bbtTICAM and bbt receptor interacting protein 1b, whereas bbtTIRC specifically inhibits the amphioxus MyD88-dependent pathway by interacting with bbtMyD88 and depressing the polyubiquitination of bbt TNFR-associated factor 6. Although both bbtTIRB and bbtTIRD are located on endosomes, the TIR domain of bbtTIRB can interact with bbtMyD88 in the cytosol, whereas the TIR domain of bbtTIRD is enclosed in endosome, suggesting that bbtTIRD may be a redundant gene in amphioxus. This study indicated that most expanded TIR adaptors play nonredundant regulatory roles in amphioxus TLR signaling, adding a new layer to understanding the diversity and complexity of innate immunity at basal chordate.

  9. Novel Toll/IL-1 Receptor Homologous Region Adaptors Act as Negative Regulators in Amphioxus TLR Signaling.

    PubMed

    Peng, Jian; Tao, Xin; Li, Rui; Hu, Jingru; Ruan, Jie; Wang, Ruihua; Yang, Manyi; Yang, Rirong; Dong, Xiangru; Chen, Shangwu; Xu, Anlong; Yuan, Shaochun

    2015-10-01

    Studies have shown that the basal chordate amphioxus possesses an extraordinarily complex TLR system, including 39 TLRs and at least 40 Toll/IL-1R homologous region (TIR) adaptors. Besides homologs to MyD88 and TIR domain-containing adaptor molecule (TICAM), most amphioxus TIR adaptors exhibit domain architectures that are not observed in other species. To reveal how these novel TIR adaptors function in amphioxus Branchiostoma belcheri tsingtauense (bbt), four representatives, bbtTIRA, bbtTIRB, bbtTIRC, and bbtTIRD, were selected for functional analyses. We found bbtTIRA to show a unique inhibitory role in amphioxus TICAM-mediated pathway by interacting with bbtTICAM and bbt receptor interacting protein 1b, whereas bbtTIRC specifically inhibits the amphioxus MyD88-dependent pathway by interacting with bbtMyD88 and depressing the polyubiquitination of bbt TNFR-associated factor 6. Although both bbtTIRB and bbtTIRD are located on endosomes, the TIR domain of bbtTIRB can interact with bbtMyD88 in the cytosol, whereas the TIR domain of bbtTIRD is enclosed in endosome, suggesting that bbtTIRD may be a redundant gene in amphioxus. This study indicated that most expanded TIR adaptors play nonredundant regulatory roles in amphioxus TLR signaling, adding a new layer to understanding the diversity and complexity of innate immunity at basal chordate. PMID:26324776

  10. Association of interleukin 1 receptor antagonist (IL1RN) gene polymorphism with recurrent pregnancy loss risk in the North Indian Population and a meta-analysis.

    PubMed

    Nair, Rohini Ravindran; Khanna, Anuradha; Singh, Kiran

    2014-09-01

    An appropriate ratio of interleukin 1 beta to interleukin 1 receptor antagonist (IL1Ra) is required for successful pregnancy. Our objective was to study the genetic association between IL1RN variable numbers of tandem repeat (VNTR) polymorphism and recurrent pregnancy loss (RPL). To analyze the association between IL1RN VNTR allele and RPL, we investigated the IL1RN VNTR polymorphism in 136 RPL patients and in 200 healthy control women. Meta-analysis on this polymorphism was conducted to support our findings. PCR based approach was used to analyze IL1RN VNTR polymorphism and it was further confirmed by sequencing. Systematic review and meta-analysis was done using electronic database (Pub-Med, Google Scholar and Ovid) up to February 27, 2013. This meta-analysis was assessed by comprehensive meta-analysis software version 2. For meta-analysis 549 cases and 1,450 controls were included. The frequency of IL1RN genotype 2/2 was significantly higher in RPL compared to control group (AORs 3.10, 95 % CI 1.58-6.11, p = 0.001). The presence of rare allele also increased the risk of RPL significantly (ORs 1.63, 95 % CI 1.16-2.29, p = 0.004). The meta-analysis stratified by ethnicity showed that individuals with allele 2 had increased risk of RPL (OR 1.29, 95 % CI 1.04-1.61, p = 0.01), in Asians population by using fixed model. However the data of the present study clearly suggests that IL1RN VNTR polymorphism is a genetic risk factor for pregnancy loss in the study population.

  11. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension

    PubMed Central

    Schroer, Alison K.; Chen, Peter; Ryzhova, Larisa M.; Gladson, Santhi; Shay, Sheila; Hutcheson, Joshua D.; Merryman, W. David

    2016-01-01

    Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice. PMID:26863209

  12. The Use of an IL-1 Receptor Antagonist Peptide to Control Inflammation in the Treatment of Corneal Limbal Epithelial Stem Cell Deficiency

    PubMed Central

    Fok, E.; Guildford, A. L.

    2015-01-01

    Corneal limbal stem cell deficiency (LSCD) may be treated using ex vivo limbal epithelial stem cells (LESCs) derived from cadaveric donor tissue. However, continuing challenges exist around tissue availability, inflammation, and transplant rejection. Lipopolysaccharide (LPS) or recombinant human IL-1β stimulated primary human keratocyte and LESC models were used to investigate the anti-inflammatory properties of a short chain, IL-1 receptor antagonist peptide for use in LESC sheet growth to control inflammation. The peptide was characterized using mass spectroscopy and high performance liquid chromatography. Peptide cytotoxicity, patterns of cell cytokine expression in response to LPS or IL-1β stimulation, and peptide suppression of this response were investigated by MTS/LDH assays, ELISA, and q-PCR. Cell differences in LPS stimulated toll-like receptor 4 expression were investigated using immunocytochemistry. A significant reduction in rIL-1β stimulated inflammatory cytokine production occurred following LESC and keratocyte incubation with anti-inflammatory peptide and in LPS stimulated IL-6 and IL-8 production following keratocyte incubation with peptide (1 mg/mL) (P < 0.05). LESCs produced no cytokine response to LPS stimulation and showed no TLR4 expression. The peptide supported LESC growth when adhered to a silicone hydrogel contact lens indicating potential use in improved LESC grafting through suppression of inflammation. PMID:25705668

  13. IL-4 and IL-13 inhibit IL-1β and TNF-α induced kinin B1 and B2 receptors through a STAT6-dependent mechanism

    PubMed Central

    Souza, PPC; Brechter, AB; Reis, RI; Costa, CAS; Lundberg, P; Lerner, UH

    2013-01-01

    Background and Purpose Bone resorption induced by interleukin-1β (IL-1β) and tumour necrosis factor (TNF-α) is synergistically potentiated by kinins, partially due to enhanced kinin receptor expression. Inflammation-induced bone resorption can be impaired by IL-4 and IL-13. The aim was to investigate if expression of B1 and B2 kinin receptors can be affected by IL-4 and IL-13. Experimental Approach We examined effects in a human osteoblastic cell line (MG-63), primary human gingival fibroblasts and mouse bones by IL-4 and IL-13 on mRNA and protein expression of the B1 and B2 kinin receptors. We also examined the role of STAT6 by RNA interference and using Stat6-/- mice. Key Results IL-4 and IL-13 decreased the mRNA expression of B1 and B2 kinin receptors induced by either IL-1β or TNF-α in MG-63 cells, intact mouse calvarial bones or primary human gingival fibroblasts. The burst of intracellular calcium induced by either bradykinin (B2 agonist) or des-Arg10-Lys-bradykinin (B1 agonist) in gingival fibroblasts pretreated with IL-1β was impaired by IL-4. Similarly, the increased binding of B1 and B2 ligands induced by IL-1β was decreased by IL-4. In calvarial bones from Stat6-deficient mice, and in fibroblasts in which STAT6 was knocked down by siRNA, the effect of IL-4 was decreased. Conclusions and Implications These data show, for the first time, that IL-4 and IL-13 decrease kinin receptors in a STAT6-dependent mechanism, which can be one important mechanism by which these cytokines exert their anti-inflammatory effects and impair bone resorption. PMID:23351078

  14. Strikingly higher interleukin (IL)-1α, IL-1β and soluble interleukin-1 receptor antagonist (sIL-1RA) but similar IL-2, sIL-2R, IL-3, IL-4, IL-6, sIL-6R, IL-10, tumour necrosis factor (TNF)-α, transforming growth factor (TGF)-β2 and interferon IFN-γ urine levels in healthy females compared to healthy males: protection against urinary tract injury?

    PubMed Central

    Sadeghi, M; Daniel, V; Naujokat, C; Weimer, R; Opelz, G

    2005-01-01

    The aim of this prospective study was to examine gender-related differences of cytokines in the plasma and urine of healthy individuals that might provide a clue concerning the lower rate of chronic renal diseases in females. Soluble interleukin-1 receptor antagonist (sIL-1RA), interleukin (IL)-1α, IL-1β, IL-2, sIL-2R, IL-3, IL-4, IL-6, sIL-6R, IL-10, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β2 and interferon (IFN)-γ were determined using standard enzyme-linked immunosorbent assay (ELISA). Cytokine levels were determined in simultaneously obtained plasma and urine samples of 18 male and 28 female healthy members of our laboratory staff. Urine cytokine levels were studied three times at 1-month intervals. All individuals had a negative urine nitrite test and showed no symptoms of urinary tract infection (UTI). Plasma levels of all studied cytokines were similar in males and females (P = n.s.). However, females had significantly higher urine IL-1α (P < 0·0001; P < 0·0001; P < 0·0001) and sIL-1RA (P = 0·0001; P = 0·0003; P = 0·0002) than males at three and higher IL-1β at one of the three investigations (P = 0·098; P = 0·003; P = 0·073). Urine levels of the other cytokines were similar in males and females. Higher urine levels of IL-1α, IL-1β and sIL-1RA in females may result from stimulation of cells in the urinary tract. Increased sIL-1RA might block T lymphocyte activation. The elevated cytokines may play a role in the protection of the female urinary tract from certain renal diseases, such as pyelonephritis and other inflammatory and sclerotic kidney diseases. PMID:16232218

  15. IL-1R signaling in dendritic cells replaces pattern-recognition receptors in promoting CD8⁺ T cell responses to influenza A virus.

    PubMed

    Pang, Iris K; Ichinohe, Takeshi; Iwasaki, Akiko

    2013-03-01

    Immune responses to vaccines require direct recognition of pathogen-associated molecular patterns (PAMPs) through pattern-recognition receptors (PRRs) on dendritic cells (DCs). Unlike vaccination, infection by a live pathogen often impairs DC function and inflicts additional damage on the host. Here we found that after infection with live influenza A virus, signaling through the interleukin 1 receptor (IL-1R) was required for productive priming of CD8(+) T cells, but signaling through the PRRs TLR7 and RIG-I was not. DCs activated by IL-1 in trans were both required and sufficient for the generation of virus-specific CD8(+) T cell immunity. Our data demonstrate a critical role for a bystander cytokine in the priming of CD8(+) T cells during infection with a live virus.

  16. Do Cyclosporine A, an IL-1 Receptor Antagonist, Uridine Triphosphate, Rebamipide, and/or Bimatoprost Regulate Human Meibomian Gland Epithelial Cells?

    PubMed Central

    Kam, Wendy R.; Liu, Yang; Ding, Juan; Sullivan, David A.

    2016-01-01

    Purpose Researchers have hypothesized that treatment with cyclosporine A (CyA), interleukin-1 receptor antagonists (IL-1RA; e.g., anakinra), P2Y2 receptor agonists (e.g., uridine triphosphate; UTP), and rebamipide may alleviate human meibomian gland dysfunction (MGD) and/or dry eye disease. Investigators have also proposed that prostaglandin analogues (e.g., bimatoprost) may induce MGD. Our goal was to determine whether these compounds directly influence human meibomian gland epithelial cell (HMGEC) function. Methods Multiple concentrations of each compound were tested for effects on immortalized (I) HMGEC morphology and survival. Nontoxic dosages were used for our studies. Immortalized HMGEC were cultured in the presence of vehicle, CyA, IL-1RA, UTP, rebamipide, or bimatoprost for up to 6 days in various media. Experiments included positive controls for proliferation (epidermal growth factor and bovine pituitary extract), differentiation (azithromycin), and signaling pathway activation (insulin-like growth factor 1). Cells were analyzed for neutral lipid staining, lysosome accumulation, lipid composition, and phosphatidylinositol-3-kinase/Akt (AKT), phosphorylation. Results Our findings demonstrate that CyA, IL-1RA, UTP, rebamipide, and bimatoprost had no effect on the proliferation; neutral lipid content; lysosome number; or levels of free cholesterol, triglycerides, or phospholipids in IHMGECs. Cylosporine A, IL-1RA, rebamipide, and bimatoprost significantly reduced the phosphorylation of AKT, as compared to control. Of interest, tested doses of CyA above 8 nM killed the IHMGECs. Conclusions Our results show that CyA, IL-1RA, UTP, rebamipide, and bimatoprost do not influence the proliferation or differentiation of IHMGEC. However, with the exception of UTP, these compounds do decrease the activity of the AKT signaling pathway, which is known to promote cell survival. PMID:27552406

  17. Polymorphisms in IL-1β, vitamin D receptor Fok1, and Toll-like receptor 2 are associated with extrapulmonary tuberculosis

    PubMed Central

    2010-01-01

    Background Human genetic variants may affect tuberculosis susceptibility, but the immunologic correlates of the genetic variants identified are often unclear. Methods We conducted a pilot case-control study to identify genetic variants associated with extrapulmonary tuberculosis in patients with previously characterized immune defects: low CD4+ lymphocytes and low unstimulated cytokine production. Two genetic association approaches were used: 1) variants previously associated with tuberculosis risk; 2) single nucleotide polymorphisms (SNPs) in candidate genes involved in tuberculosis pathogenesis. Single locus association tests and multifactor dimensionality reduction (MDR) assessed main effects and multi-locus interactions. Results There were 24 extrapulmonary tuberculosis cases (18 black), 24 pulmonary tuberculosis controls (19 black) and 57 PPD+ controls (49 black). In approach 1, 22 SNPs and 3 microsatellites were assessed. In single locus association tests, interleukin (IL)-1β +3953 C/T was associated with extrapulmonary tuberculosis compared to PPD+ controls (P = 0.049). Among the sub-set of patients who were black, genotype frequencies of the vitamin D receptor (VDR) Fok1 A/G SNP were significantly different in extrapulmonary vs. pulmonary TB patients (P = 0.018). In MDR analysis, the toll-like receptor (TLR) 2 microsatellite had 76% prediction accuracy for extrapulmonary tuberculosis in blacks (P = 0.002). In approach 2, 613 SNPs in 26 genes were assessed. None were associated with extrapulmonary tuberculosis. Conclusions In this pilot study among extrapulmonary tuberculosis patients with well-characterized immune defects, genetic variants in IL-1β, VDR Fok1, and TLR2 were associated with an increased risk of extrapulmonary disease. Additional studies of the underlying mechanism of these genetic variants are warranted. PMID:20196868

  18. Of Inflammasomes and Alarmins: IL-1β and IL-1α in Kidney Disease.

    PubMed

    Anders, Hans-Joachim

    2016-09-01

    Kidney injury implies danger signaling and a response by the immune system. The inflammasome is a central danger recognition platform that triggers local and systemic inflammation. In immune cells, inflammasome activation causes the release of mature IL-1β and of the alarmin IL-1α Dying cells release IL-1α also, independently of the inflammasome. Both IL-1α and IL-1β ligate the same IL-1 receptor (IL-1R) that is present on nearly all cells inside and outside the kidney, further amplifying cytokine and chemokine release. Thus, the inflammasome-IL-1α/IL-β-IL-1R system is a central element of kidney inflammation and the systemic consequences. Seminal discoveries of recent years have expanded this central paradigm of inflammation. This review gives an overview of arising concepts of inflammasome and IL-1α/β regulation in renal cells and in experimental kidney disease models. There is a pipeline of compounds that can interfere with the inflammasome-IL-1α/IL-β-IL-1R system, ranging from recently described small molecule inhibitors of NLRP3, a component of the inflammasome complex, to regulatory agency-approved IL-1-neutralizing biologic drugs. Based on strong theoretic and experimental rationale, the potential therapeutic benefits of using such compounds to block the inflammasome-IL-1α/IL-β-IL-1R system in kidney disease should be further explored. PMID:27516236

  19. ENDOTHELIN-A RECEPTOR ANTAGONISM IN EMBRYO CULTURE: WINDOW OF SENSITIVITY AND TIMING OF DEFECT

    EPA Science Inventory

    BRANNEN, K.C., J.M. ROGERS, and E.S. HUNTER, Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina, and Reproductive Toxicology Division, NHEERL, U.S. EPA, Research Triangle Park, North Carolina. Endothelin-A receptor antagonism in embryo culture: w...

  20. Lack of IL-1 Receptor-Associated Kinase-4 Leads to Defective Th1 Cell Responses and Renders Mice Susceptible to Mycobacterial Infection.

    PubMed

    Marinho, Fábio V; Fahel, Júlia S; Scanga, Charles A; Gomes, Marco Tulio R; Guimarães, Gabriela; Carvalho, Gabrielle R M; Morales, Stefanny V; Báfica, André; Oliveira, Sergio Costa

    2016-09-01

    The Toll-like and IL-1 family receptors play critical roles in innate and adaptive immunity against intracellular pathogens. Although previous data demonstrated the importance of TLRs and IL-1R signaling events for the establishment of an effective immune response to mycobacteria, the possible function of the adaptor molecule IL-1R-associated kinase (IRAK)-4 against this pathogen has not been addressed. In this study, we determined the role of IRAK-4 in signaling pathways responsible for controlling mycobacterial infections. This kinase is important for the production of IL-12 and TNF-α by macrophages and dendritic cells exposed to mycobacteria. Moreover, Mycobacterium bovis-infected IRAK-4-knockout macrophages displayed impaired MAPK and NF-κB activation. IL-1β secretion and caspase-1 activation were also dependent on IRAK-4 signaling. Mice lacking IRAK-4 showed increased M. bovis burden in spleen, liver, and lungs and smaller liver granulomas during 60 d of infection compared with wild-type mice. Furthermore, 80% of IRAK-4(-/-) mice succumbed to virulent M. tuberculosis within 100 d following low-dose infection. This increased susceptibility to mycobacteria correlated with reduced IFN-γ/TNF-α recall responses by splenocytes, as well as fewer IL-12p70-producing APCs. Additionally, we observed that IRAK-4 is also important for the production of IFN-γ by CD4(+) T cells from infected mice. Finally, THP-1 cells treated with an IRAK-4 inhibitor and exposed to M. bovis showed reduced TNF-α and IL-12, suggesting that the results found in mice can be extended to humans. In summary, these data demonstrate that IRAK-4 is essential for innate and adaptive immunity and necessary for efficient control of mycobacterial infections.

  1. Fetal thymus graft prevents age-related hearing loss and up regulation of the IL-1 receptor type II gene in CD4(+) T cells.

    PubMed

    Iwai, Hiroshi; Inaba, Muneo

    2012-09-15

    We found that rejuvenation of the recipient immunity by inoculation of young CD4(+) T cells or a fetal thymus graft led to down regulation of the interleukin 1 receptor type II (IL-1R2) gene in CD4(+) T cells and reduced age-related hearing loss and degeneration of the spiral ganglion in SAMP1 mice, a murine model of human senescence. Our studies on the relationship between age-related systemic immune dysfunctions and neurodegeneration mechanisms open up new avenues of treatment of neurosenescence, including presbycusis, for which there is no effective therapy.

  2. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  3. Androgen Receptor (AR) Promotes Abdominal Aortic Aneurysm (AAA) Development via Modulating Inflammatory IL1α and TGFβ1 Expression

    PubMed Central

    Huang, Chiung-Kuei; Luo, Jie; Lai, Kuo-Pao; Wang, Ronghao; Pang, Haiyan; Chang, Eugene; Yan, Chen; Sparks, Janet; Lee, Soo Ok; Cho, Joshua; Chang, Chawnshang

    2015-01-01

    Gender difference is a risk factor for abdominal aortic aneurism formation yet the reason for male predominance remains unclear. Androgen and the androgen receptor influence the male gender difference, indicating that androgen receptor signaling may affect abdominal aortic aneurism development. Using angiotensin II induced abdominal aortic aneurism in apolipoprotein E null mouse models (82.4% abdominal aortic aneurism incidence), we found that mice lacking androgen receptor failed to develop abdominal aortic aneurism and aorta had dramatically reduced macrophages infiltration and intact elastic fibers. These findings suggested that androgen receptor expression in endothelial cells, macrophages or smooth muscle cells might play a role in abdominal aortic aneurism development. Selective knockout of androgen receptor in each of these cell types further demonstrated that mice lacking androgen receptor in macrophages (20% abdominal aortic aneurism incidence) or smooth muscle cells (12.5% abdominal aortic aneurism incidence), but not in endothelial cells (71.4% abdominal aortic aneurism incidence) had suppressed abdominal aortic aneurism development. Mechanism dissection showed that androgen receptor functioned through modulation of interleukin 1α and transforming growth factor β1 signals and by targeting androgen receptor with androgen receptor degradation enhancer ASC-J9® led to significant suppression of abdominal aortic aneurism development. These results demonstrate the underlying mechanism by which androgen receptor influences abdominal aortic aneurism development through interleukin 1α and transforming growth factor β1, and provides a potential new therapy to suppress/prevent abdominal aortic aneurism by targeting androgen receptor with ASC-J9®. PMID:26324502

  4. Inflammasome activation and IL-1β target IL-1α for secretion as opposed to surface expression

    PubMed Central

    Fettelschoss, Antonia; Kistowska, Magdalena; LeibundGut-Landmann, Salomé; Beer, Hans-Dietmar; Johansen, Pål; Senti, Gabriela; Contassot, Emmanuel; Bachmann, Martin F.; French, Lars E.; Oxenius, Annette; Kündig, Thomas M.

    2011-01-01

    Interleukin-1α (IL-1α) and -β both bind to the same IL-1 receptor (IL-1R) and are potent proinflammatory cytokines. Production of proinflammatory (pro)–IL-1α and pro–IL-1β is induced by Toll-like receptor (TLR)-mediated NF-κB activation. Additional stimulus involving activation of the inflammasome and caspase-1 is required for proteolytic cleavage and secretion of mature IL-1β. The regulation of IL-1α maturation and secretion, however, remains elusive. IL-1α exists as a cell surface-associated form and as a mature secreted form. Here we show that both forms of IL-1α, the surface and secreted form, are differentially regulated. Surface IL-1α requires NF-κB activation only, whereas secretion of mature IL-1α requires additional activation of the inflammasome and caspase-1. Surprisingly, secretion of IL-1α also required the presence of IL-1β, as demonstrated in IL-1β–deficient mice. We further demonstrate that IL-1β directly binds IL-1α, thus identifying IL-1β as a shuttle for another proinflammatory cytokine. These results have direct impact on selective treatment modalities of inflammatory diseases. PMID:22006336

  5. Exploring new scaffolds for angiotensin II receptor antagonism.

    PubMed

    Kritsi, Eftichia; Matsoukas, Minos-Timotheos; Potamitis, Constantinos; Karageorgos, Vlasios; Detsi, Anastasia; Magafa, Vasilliki; Liapakis, George; Mavromoustakos, Thomas; Zoumpoulakis, Panagiotis

    2016-09-15

    Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities. PMID:27480029

  6. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man.

    PubMed

    Gotter, Anthony L; Forman, Mark S; Harrell, Charles M; Stevens, Joanne; Svetnik, Vladimir; Yee, Ka Lai; Li, Xiaodong; Roecker, Anthony J; Fox, Steven V; Tannenbaum, Pamela L; Garson, Susan L; Lepeleire, Inge De; Calder, Nicole; Rosen, Laura; Struyk, Arie; Coleman, Paul J; Herring, W Joseph; Renger, John J; Winrow, Christopher J

    2016-01-01

    Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism. PMID:27256922

  7. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man.

    PubMed

    Gotter, Anthony L; Forman, Mark S; Harrell, Charles M; Stevens, Joanne; Svetnik, Vladimir; Yee, Ka Lai; Li, Xiaodong; Roecker, Anthony J; Fox, Steven V; Tannenbaum, Pamela L; Garson, Susan L; Lepeleire, Inge De; Calder, Nicole; Rosen, Laura; Struyk, Arie; Coleman, Paul J; Herring, W Joseph; Renger, John J; Winrow, Christopher J

    2016-01-01

    Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism.

  8. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man

    PubMed Central

    Gotter, Anthony L.; Forman, Mark S.; Harrell, Charles M.; Stevens, Joanne; Svetnik, Vladimir; Yee, Ka Lai; Li, Xiaodong; Roecker, Anthony J.; Fox, Steven V.; Tannenbaum, Pamela L.; Garson, Susan L.; Lepeleire, Inge De; Calder, Nicole; Rosen, Laura; Struyk, Arie; Coleman, Paul J.; Herring, W. Joseph; Renger, John J.; Winrow, Christopher J.

    2016-01-01

    Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism. PMID:27256922

  9. Il-1β and prostaglandin E2 attenuate the hypercapnic as well as the hypoxic respiratory response via prostaglandin E receptor type 3 in neonatal mice.

    PubMed

    Siljehav, Veronica; Shvarev, Yuri; Herlenius, Eric

    2014-11-01

    Prostaglandin E2 (PGE2) serves as a critical mediator of hypoxia, infection, and apnea in term and preterm babies. We hypothesized that the prostaglandin E receptor type 3 (EP3R) is the receptor responsible for PGE2-induced apneas. Plethysmographic recordings revealed that IL-1β (ip) attenuated the hypercapnic response in C57BL/6J wild-type (WT) but not in neonatal (P9) EP3R(-/-) mice (P < 0.05). The hypercapnic responses in brain stem spinal cord en bloc preparations also differed depending on EP3R expression whereby the response was attenuated in EP3R(-/-) preparations (P < 0.05). After severe hypoxic exposure in vivo, IL-1β prolonged time to autoresuscitation in WT but not in EP3R(-/-) mice. Moreover, during severe hypoxic stress EP3R(-/-) mice had an increased gasping duration (P < 0.01) as well as number of gasps (P < 0.01), irrespective of intraperitoneal treatment, compared with WT mice. Furthermore, EP3R(-/-) mice exhibited longer hyperpneic breathing efforts when exposed to severe hypoxia (P < 0.01). This was then followed by a longer period of secondary apnea before autoresuscitation occurred in EP3R(-/-) mice (P < 0.05). In vitro, EP3R(-/-) brain stem spinal cord preparations had a prolonged respiratory burst activity during severe hypoxia accompanied by a prolonged neuronal arrest during recovery in oxygenated medium (P < 0.05). In conclusion, PGE2 exerts its effects on respiration via EP3R activation that attenuates the respiratory response to hypercapnia as well as severe hypoxia. Modulation of the EP3R may serve as a potential therapeutic target for treatment of inflammatory and hypoxic-induced detrimental apneas and respiratory disorders in neonates.

  10. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    PubMed Central

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  11. Effects of endothelin ETA receptor antagonism on granulocyte and lymphocyte accumulation in LPS-induced inflammation.

    PubMed

    Sampaio, André L F; Rae, Giles A; Henriques, Maria das Graças M O

    2004-07-01

    Endothelin peptides play active roles in different aspects of inflammation. This study investigates the contribution of endogenous endothelins to lipopolysaccharide (LPS) pulmonary inflammation by assessing the influence of ET(A) receptor antagonism on leukocyte accumulation, granulocyte adhesion molecule expression, and chemokine/cytokine modulation. Local pretreatment with BQ-123 or A-127722 (150 pmol), two selective and chemically unrelated endothelin ET(A) receptor antagonists, inhibits neutrophil and eosinophil accumulation in LPS-induced pleurisy at 24 h but not neutrophil migration at 4 h. The effect of endothelin antagonism on neutrophil accumulation at 24 h was concomitant with inhibition of eosinophil and CD4 and CD8 T lymphocyte influx. It is surprising that the ET(A) receptor blockade did not inhibit the accumulation of gammadelta T lymphocytes, cells that are important for granulocyte recruitment in this model. Blockade of ET(A) receptors did not influence the expression of adhesion molecules (CD11b, CD49d) on granulocytes but abrogated the increase in tumor necrosis factor alpha levels 4 h after LPS stimulation and also markedly inhibited increases in levels of interleukin-6 and keratinocyte-derived chemokine/CXC chemokine ligand 1 but not eotaxin/chemokine ligand 11. Thus, acting via ET(A) receptors, endogenous endothelins play an important role in early cytokine/chemokine production and on granulocyte and lymphocyte mobilization in LPS-induced pleurisy.

  12. in Silico investigation of the structural requirements for the AMPA receptor antagonism by quinoxaline derivatives

    PubMed Central

    Azam, Faizul; Abugrain, Ismaiel Mohamed; Sanalla, Mohamed Hussin; Elnaas, Radwan Fatahalla; Rajab, Ibrahim Abdassalam Ibn

    2013-01-01

    Glutamate receptors have been implicated in various neurological disorders and their antagonism offers a suitable approach for the treatment of such disorders. The field of drug design and discovery aims to find best medicines to prevent, treat and cure diseases quickly and efficiently. In this regard, computational tools have helped medicinal chemists modify and optimize molecules to potent drug candidates with better pharmacokinetic profiles, and guiding biologists and pharmacologists to explore new disease genes as well as novel drug targets. In the present study, to understand the structural requirements for AMPA receptor antagonism, molecular docking study was performed on 41 structurally diverse antagonists based on quinoxaline nucleus. Lamarckian genetic algorithm methodology was employed for docking simulations using AutoDock 4.2 program. The results obtained signify that the molecular docking approach is reliable and produces a good correlation coefficient (r2 = 0.6) between experimental and docking predicted AMPA receptor antagonistic activity. The aromatic moiety of quinoxaline core has been proved to be vital for hydrophobic contacts exhibiting - interactions in docked conformations. However, polar moieties such as carboxylic group and 1,2,4-triazole moieties were noted to be sites for hydrophilic interactions in terms of hydrogen bonding with the receptor. These analyses can be exploited to design and develop novel AMPA receptor antagonists for the treatment of different neurological disorders. PMID:24250113

  13. The Effect of Mineralocorticoid and Glucocorticoid Receptor Antagonism on Autobiographical Memory Recall and Amygdala Response to Implicit Emotional Stimuli

    PubMed Central

    Preskorn, Sheldon H.; Victor, Teresa; Misaki, Masaya; Bodurka, Jerzy; Drevets, Wayne C.

    2016-01-01

    Background: Acutely elevated cortisol levels in healthy humans impair autobiographical memory recall and alter hemodynamic responses of the amygdala to emotionally valenced stimuli. It is hypothesized that the effects of the cortisol on cognition are influenced by the ratio of mineralocorticoid receptor to glucocorticoid receptor occupation. The current study examined the effects of acutely blocking mineralocorticoid receptors and glucocorticoid receptors separately on 2 processes known to be affected by altering levels of cortisol: the specificity of autobiographical memory recall, and the amygdala hemodynamic response to sad and happy faces. Methods: We employed a within-subjects design in which 10 healthy male participants received placebo, the mineralocorticoid receptor antagonist spironolactone (600mg) alone, and the glucocorticoid receptor antagonist mifepristone (600mg) alone in a randomized, counter-balanced order separated by 1-week drug-free periods. Results: On autobiographical memory testing, mineralocorticoid receptor antagonism impaired, while glucocorticoid receptor antagonism improved, recall relative to placebo, as evinced by changes in the percent of specific memories recalled. During fMRI, the amygdala hemodynamic response to masked sad faces was greater under both mineralocorticoid receptor and glucocorticoid receptor antagonism relative to placebo, while the response to masked happy faces was attenuated only during mineralocorticoid receptor antagonism relative to placebo. Conclusions: These data suggest both mineralocorticoid receptor and glucocorticoid receptor antagonism (and potentially any deviation from the normal physiological mineralocorticoid receptor/glucocorticoid receptor ratio achieved under the circadian pattern) enhances amygdala-based processing of sad stimuli and may shift the emotional processing bias away from the normative processing bias and towards the negative valence. In contrast, autobiographical memory was enhanced by

  14. Antagonism effects of cypermethrin on interleukin-6-induced androgen receptor activation.

    PubMed

    Wang, Qi; Xu, Li-Fang; Zhou, Ji-Long; Zhou, Xiao-Long; Wang, Hui; Ju, Qiang; Pan, Chen; Zhang, Jin-Peng; Zhang, Mei-Rong; Yu, Hong-Min; Xu, Li-Chun

    2015-07-01

    To identify whether androgen receptor (AR) antagonism by cypermethrin involves interleukin-6 (IL-6)-induced ligand-independent AR signaling, we have developed the AR reporter gene assay. The reporter gene plasmid pMMTV-chloramphenicol transferase (CAT) was transfected into LNCaP cells. IL-6 increased expression of MMTV-CAT significantly (P<0.05). Cypermethrin decreased CAT reporter expression induced by IL-6 (50 ng/ml), and the significant inhibition was detected at 10(-5)M (P<0.05). IL-6 induces ligand-independent activation of AR. Cypermethrin exhibits inhibitory effects on IL-6-induced ligand-independent AR signaling. We provide a novel insight into cypermethrin-mediated antagonism of the IL-6-mediated ligand-independent activation of the AR.

  15. Functional studies but not receptor binding can distinguish surmountable from insurmountable AT1 antagonism.

    PubMed

    Panek, R L; Lu, G H; Overhiser, R W; Major, T C; Hodges, J C; Taylor, D G

    1995-05-01

    Our study demonstrated that inhibition of angiotensin II- (Ang II) mediated contractions of rabbit aorta by structurally diverse nonpeptide AT1 antagonists could distinguish surmountable from insurmountable AT1 antagonism. CI-996, L158809, EXP 3174 and SKF 108834 produced concentration-related rightward shifts in Ang II response curves and reduced the maximal contraction to Ang II, characteristic of insurmountable antagonism. In contrast, DuP 753 and SKF 108566, produced parallel rightward shifts in Ang II contractile curves without affecting the maximal response which is consistent with the definition of surmountable or competitive antagonism. In addition, CI-996 demonstrated potent inhibition of Ang II-stimulated inositol phosphate accumulation in rat aortic smooth muscle cells, behaving as an insurmountable antagonist. However, DuP 753 was a surmountable antagonist of Ang II-stimulated inositol phosphate accumulation. Repeated washing of rabbit aorta preincubated with either CI-996 or EXP 3174 did not restore the blunted Ang II contractions. In contrast, both DuP 753 and the structurally dissimilar SKF 108566 at a concentration of 100 nM showed complete recovery of Ang II responses within 2 hr of repeated washing. Surprisingly, repeated rinsing of rabbit aorta for up to 5 hr after incubation with 1 microM DuP 753 failed to restore responses to Ang II. In addition, Scatchard analysis of [125I] Ang II saturation binding experiments revealed a competitive and rapidly reversible nature of AT1 receptor antagonism for all the AT1 antagonists examined. Taken together, the results of this study provide evidence for a competitive and rapidly reversible binding interaction of structurally diverse non-peptide antagonists at the AT1 receptor.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. A TNFSF15 disease-risk polymorphism increases pattern-recognition receptor-induced signaling through caspase-8-induced IL-1.

    PubMed

    Hedl, Matija; Abraham, Clara

    2014-09-16

    Inflammatory diseases are characterized by dysregulated cytokine production. Altered functions for most risk loci, including the inflammatory bowel disease and leprosy-associated tumor necrosis factor ligand superfamily member 15 (TNFSF15) region, are unclear. Regulation of pattern-recognition-receptor (PRR)-induced signaling and cytokines is crucial for immune homeostasis; TNFSF15:death receptor 3 (DR3) contributions to PRR responses have not been described. We found that human macrophages expressed DR3 and that TNFSF15:DR3 interactions were critical for amplifying PRR-initiated MAPK/NF-κB/PI3K signaling and cytokine secretion in macrophages. Mechanisms mediating TNFSF15:DR3 contributions to PRR outcomes included TACE-induced TNFSF15 cleavage to soluble TNFSF15; soluble TNFSF15 then led to TRADD/FADD/MALT-1- and caspase-8-mediated autocrine IL-1 secretion. Notably, TNFSF15 treatment also induced cytokine secretion through a caspase-8-dependent pathway in intestinal myeloid cells. Importantly, rs6478108 A disease risk-carrier macrophages demonstrated increased TNFSF15 expression and PRR-induced signaling and cytokines. Taken together, TNFSF15:DR3 interactions amplify PRR-induced signaling and cytokines, and the rs6478108 TNFSF15 disease-risk polymorphism results in a gain of function.

  17. Interleukin (IL)-1 gene polymorphisms: relevance of disease severity associated alleles with IL-1beta and IL-1ra production in multiple sclerosis.

    PubMed Central

    Schrijver, Hans M; van As, Jaco; Crusius, J Bart A; Dijkstra, Christien D; Uitdehaag, Bernard M J

    2003-01-01

    BACKGROUND: Multiple sclerosis (MS) is an autoimmune disorder, with a considerable genetic influence on susceptibility and disease course. Cytokines play an important role in MS pathophysiology, and genes encoding various cytokines are logical candidates to assess possible associations with MS susceptibility and disease course. We previously reported an association of a combination of polymorphisms in the interleukin (IL)-1B and IL-1 receptor antagonist (IL-1RN) genes (i.e. IL-1RN allele 2+/IL-1B(+3959)allele 2-) with disease severity in MS. Extending this observation, we investigated whether IL-1beta and IL-1ra production differed depending on carriership of this gene combination. METHODS: Twenty MS patients and 20 controls were selected based upon carriership of the specific combination. In whole blood, in vitro IL-1beta and IL-1ra production was determined by enzyme-linked immunosorbent-assay after 6 and 24 h of stimulation with lipopolysaccharide. RESULTS: Carriers of the specific combination produced more IL-1ra, especially in MS patients, although not significantly. IL-1ra production was significantly higher in individuals homozygous for IL-1RN allele 2. In patients, Il-1ra production was higher and IL-1beta production lower compared with controls. In primary progressive patients, the IL-1beta /IL-1ra ratio was significantly lower than in relapsing-remitting patients. CONCLUSION: Our results suggest higher in vitro IL-1ra production in carriers of IL-1RN allele 2, with an indication of an allelic dose-effect relationship. PMID:12775358

  18. A Toll/interleukin (IL)-1 receptor domain protein from Yersinia pestis interacts with mammalian IL-1/Toll-like receptor pathways but does not play a central role in the virulence of Y. pestis in a mouse model of bubonic plague.

    PubMed

    Spear, Abigail M; Rana, Rohini R; Jenner, Dominic C; Flick-Smith, Helen C; Oyston, Petra C F; Simpson, Peter; Matthews, Stephen J; Byrne, Bernadette; Atkins, Helen S

    2012-06-01

    The Toll/interleukin (IL)-1 receptor (TIR) domain is an essential component of eukaryotic innate immune signalling pathways. Interaction between TIR domains present in Toll-like receptors and associated adaptors initiates and propagates an immune signalling cascade. Proteins containing TIR domains have also been discovered in bacteria. Studies have subsequently shown that these proteins are able to modulate mammalian immune signalling pathways dependent on TIR interactions and that this may represent an evasion strategy for bacterial pathogens. Here, we investigate a TIR domain protein from the highly virulent bacterium Yersinia pestis, the causative agent of plague. When overexpressed in vitro this protein is able to downregulate IL-1β- and LPS-dependent signalling to NFκB and to interact with the TIR adaptor protein MyD88. This interaction is dependent on a single proline residue. However, a Y. pestis knockout mutant lacking the TIR domain protein was not attenuated in virulence in a mouse model of bubonic plague. Minor alterations in the host cytokine response to the mutant were indicated, suggesting a potential subtle role in pathogenesis. The Y. pestis mutant also showed increased auto-aggregation and reduced survival in high-salinity conditions, phenotypes which may contribute to pathogenesis or survival.

  19. Reverse Translation of Clinical Electrophysiological Biomarkers in Behaving Rodents under Acute and Chronic NMDA Receptor Antagonism

    PubMed Central

    Sullivan, Elyse M; Timi, Patricia; Hong, L Elliot; O'Donnell, Patricio

    2015-01-01

    Electroencephalogram (EEG) stands out as a highly translational tool for psychiatric research, yet rodent and human EEG are not typically obtained in the same way. In this study we developed a tool to record skull EEG in awake-behaving rats in a similar manner to how human EEG are obtained and then used this technique to test whether acute NMDA receptor antagonism alters rodent EEG signals in a similar manner as in humans. Acute MK-801 treatment elevated gamma power and reduced beta band power, which closely mirrored EEG data from healthy volunteers receiving acute ketamine. To explore the mechanisms behind these oscillatory changes, we examined the effects of GABA-A receptor blockade, finding that picrotoxin (PTX) recapitulated the decrease in sound-evoked beta oscillations observed with acute MK-801, but did not produce changes in gamma band power. Chronic treatment with either PTX or MK-801 did not affect frequency-specific oscillatory activity when tested 24 h after the last drug injection, but decreased total broadband oscillatory power. Overall, this study validated a novel platform for recording rodent EEG and demonstrated similar oscillatory changes after acute NMDA receptor antagonism in both humans and rodents, suggesting that skull EEG may be a powerful tool for further translational studies. PMID:25176166

  20. Mycoplasma bovis-derived lipid-associated membrane proteins activate IL-1β production through the NF-κB pathway via toll-like receptor 2 and MyD88.

    PubMed

    Wang, Yang; Liu, Suli; Li, Yuan; Wang, Qi; Shao, Jiari; Chen, Ying; Xin, Jiuqing

    2016-02-01

    Mycoplasma bovis causes pneumonia, otitis media, and arthritis in young calves, resulting in economic losses to the cattle industry worldwide. M. bovis pathogenesis results in part from excessive immune responses. Lipid-associated membrane proteins (LAMPs) can potently induce host innate immunity. However, interactions between M. bovis-derived LAMPs and Toll-like receptors (TLRs), or signaling pathways eliciting active inflammation and NF-κB activation, are incompletely understood. Here, we found that IL-1β expression was induced in embryonic bovine lung (EBL) cells stimulated with M. bovis-derived LAMPs. Subcellular-localization analysis revealed nuclear p65 translocation following EBL cell stimulation with M. bovis-derived LAMPs. An NF-κB inhibitor reversed M. bovis-derived LAMP-induced IL-1β expression. TLR2 and myeloid differentiation primary response gene 88 (MyD88) overexpression increased LAMP-dependent IL-1β induction. TLR2-neutralizing antibodies reduced IL-1β expression during LAMP stimulation. LAMPs also inhibited IL-1β expression following overexpression of a dominant-negative MyD88 protein. These results suggested that M. bovis-derived LAMPs activate IL-1β production through the NF-κB pathway via TLR2 and MyD88. PMID:26499291

  1. Mycoplasma bovis-derived lipid-associated membrane proteins activate IL-1β production through the NF-κB pathway via toll-like receptor 2 and MyD88.

    PubMed

    Wang, Yang; Liu, Suli; Li, Yuan; Wang, Qi; Shao, Jiari; Chen, Ying; Xin, Jiuqing

    2016-02-01

    Mycoplasma bovis causes pneumonia, otitis media, and arthritis in young calves, resulting in economic losses to the cattle industry worldwide. M. bovis pathogenesis results in part from excessive immune responses. Lipid-associated membrane proteins (LAMPs) can potently induce host innate immunity. However, interactions between M. bovis-derived LAMPs and Toll-like receptors (TLRs), or signaling pathways eliciting active inflammation and NF-κB activation, are incompletely understood. Here, we found that IL-1β expression was induced in embryonic bovine lung (EBL) cells stimulated with M. bovis-derived LAMPs. Subcellular-localization analysis revealed nuclear p65 translocation following EBL cell stimulation with M. bovis-derived LAMPs. An NF-κB inhibitor reversed M. bovis-derived LAMP-induced IL-1β expression. TLR2 and myeloid differentiation primary response gene 88 (MyD88) overexpression increased LAMP-dependent IL-1β induction. TLR2-neutralizing antibodies reduced IL-1β expression during LAMP stimulation. LAMPs also inhibited IL-1β expression following overexpression of a dominant-negative MyD88 protein. These results suggested that M. bovis-derived LAMPs activate IL-1β production through the NF-κB pathway via TLR2 and MyD88.

  2. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    PubMed Central

    Dugovic, Christine; Shelton, Jonathan E.; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T.; Lovenberg, Timothy W.

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  3. Impact of IL-1 signalling on experimental uveitis and arthritis

    PubMed Central

    Planck, Stephen R; Woods, April; Clowers, Jenna S; Nicklin, Martin J; Rosenbaum, James T; Rosenzweig, Holly L

    2012-01-01

    Background Uveitis, or inflammatory eye disease, is a common extra-articular manifestation of many systemic autoinflammatory diseases involving the joints. Anakinra (recombinant interleukin (IL)-1 receptor antagonist (Ra)) is an effective therapy in several arthritic diseases; yet, few studies have investigated the extent to which IL-1 signalling or IL-1Ra influences the onset and/or severity of uveitis. Objective To seek possible links between arthritis and uveitis pathogenesis related to IL-1 signalling. Methods The eyes of IL-1Ra-deficient BALB/c mice were monitored histologically and by intravital videomicroscopy to determine if uveitis developed along with the expected spontaneous arthritis in ankles and knees. Expression levels of IL-1R and its negative regulators (IL-1Ra, IL-1RII, IL-1RAcP and single Ig IL-1R-related molecule) in eye and joint tissues were compared. Differences in uveitis induced by intraocular injection of lipopolysaccharide (LPS) in mice lacking IL-1R or IL-1Ra were assessed. Results Deficiency in IL-1Ra predisposes to spontaneous arthritis, which is exacerbated by previous systemic LPS exposure. The eye, however, does not develop inflammatory disease despite the progressive arthritis or LPS exposure. Organ-specific expression patterns for IL-1Ra and negative regulators of IL-1 activity were observed that appear to predict predisposition to inflammation in each location in IL-1Ra knockout mice. The eye is extremely sensitive to locally administered LPS, and IL-1Ra deficiency markedly exacerbates the resulting uveitis. Conclusion This study demonstrates that IL-1Ra plays an important role in suppressing local responses in eyes injected with LPS and that there is discordance between murine eyes and joints in the extent to which IL-1Ra protects against spontaneous inflammation. PMID:22267332

  4. Histamine H4 receptor antagonism reduces hapten-induced scratching behaviour but not inflammation.

    PubMed

    Rossbach, Kristine; Wendorff, Stephanie; Sander, Kerstin; Stark, Holger; Gutzmer, Ralf; Werfel, Thomas; Kietzmann, Manfred; Bäumer, Wolfgang

    2009-01-01

    Effects of the histamine H(4) receptor antagonist JNJ 7777120 (1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine) were tested in two models of allergic contact dermatitis. Dermatitis was induced by 2,4-dinitrochlorobenzene and toluene-2,4-diisocyanate, which differ in their Th1-Th2 profile in that way that 2,4-dinitrochlorobenzene is a classical contact allergen with a pronounced Th1-mediated inflammation, while the respiratory chemical allergen toluene-2,4-diisocyanate induces a Th2-dominated inflammation. JNJ 7777120 (15 mg/kg) administered 2 h and 30 min before and 1 h after challenge did not reduce the hapten-induced ear swelling determined 24 h after challenge. This was confirmed by histological evaluation of the ear skin. A repeated administration of the haptens to the rostral part of the back of sensitized animals resulted in a frequent scratching behaviour. An administration of JNJ 7777120 (15 mg/kg) 30 min before challenge reduced this hapten-induced scratching significantly. The H(1) receptor antagonist cetirizine also reduced the scratching bouts in sensitized mice. A combination of H(1) and H(4) receptor antagonists resulted in the strongest inhibition of scratching behaviour associated with allergic dermatitis. These results indicate that H(4) receptor antagonism fails to reduce the allergic inflammatory response but strongly inhibits allergen-induced itch. Thus, a combination of H(4) and H(1) receptor antagonism might be a new strategy to treat pruritus related to allergic diseases like atopic dermatitis.

  5. IL-1 Receptor Regulates microRNA-135b Expression in a Negative Feedback Mechanism during Cigarette Smoke–Induced Inflammation

    PubMed Central

    Nikota, Jake; Wu, Dongmei; Williams, Andrew; Yauk, Carole L.; Stampfli, Martin

    2013-01-01

    Although microRNA-135b (miR-135b) is known to be associated with cancer, with recent work showing that it is massively induced in the pulmonary tissues of mice challenged with nanoparticles suggests a critical role for this microRNA in mediating inflammatory response. In this study, we investigated the expression and function of miR-135b in mice exposed to cigarette smoke or nontypeable Haemophilus influenzae (NTHi). Exposure to both cigarette smoke and NTHi elicited robust lung inflammation, but increased miR-135b expression was observed only in the lungs of cigarette smoke–exposed mice. Using IL-1R 1 knockout mice, we show that miR-135b expression is IL-1R1 dependent. A series of in vitro experiments confirmed the role of IL-1R1 in regulating miR-135b expression. In vitro activation of the IL-1R1 pathway in mouse embryonic fibroblast (NIH3T3) and lung epithelial (FE1) cells resulted in increased miR-135b, which was blocked by IL-1R1 antagonists or small interfering RNA–mediated silencing of IL-1R1 expression. Overexpression of mature miR-135b in NIH3T3 cells (pEGP-mmu-mir-135b) resulted in the suppression of endogenous levels of IL-1R1 expression. pEGP-mmu-miR-135b cells transiently transfected with luciferase reporter vector containing the 3′UTR of mouse IL-1R1 showed reduced luciferase activity. Finally, we demonstrate that miR-135b targets IL-1–stimulated activation of Caspase-1, the IL-1R1 downstream activator of IL-1β leading to suppressed synthesis of the active form of IL-1β protein. These results suggest that miR-135b expression during cigarette smoke–induced inflammation is regulated by IL-1R1 in a regulatory feedback mechanism to resolve inflammation. PMID:23440414

  6. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells.

    PubMed

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  7. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells

    PubMed Central

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  8. Neuromedin B receptor antagonism inhibits migration, invasion, and epithelial-mesenchymal transition of breast cancer cells.

    PubMed

    Park, Hyun-Joo; Kim, Mi-Kyoung; Choi, Kyu-Sil; Jeong, Joo-Won; Bae, Soo-Kyung; Kim, Hyung Joon; Bae, Moon-Kyoung

    2016-09-01

    Neuromedin B (NMB) acts as an autocrine growth factor and a pro-angiogenic factor. Its receptor, NMB receptor (NMB-R), is overexpressed in solid tumors. In the present study, we showed that an NMB-R antagonist, PD168368, suppresses migration and invasion of the human breast cancer cell line MDA-MB-231. In addition, PD168368 reduced epithelial-mesenchymal transition (EMT) of breast cancer cells by E-cadherin upregulation and vimentin downregulation. Moreover, we found that PD168368 potently inhibits in vivo metastasis of breast cancer. Taken together, these findings suggest that NMB-R antagonism may be an alternative approach to prevent breast cancer metastasis, and targeting NMB-R may provide a novel therapeutic strategy for breast cancer treatment. PMID:27571778

  9. Combined mesenchymal stem cell transplantation and interleukin-1 receptor antagonism after partial hepatectomy

    PubMed Central

    Sang, Jian-Feng; Shi, Xiao-Lei; Han, Bing; Huang, Xu; Huang, Tao; Ren, Hao-Zhen; Ding, Yi-Tao

    2016-01-01

    AIM: To study the therapeutic effects of mesenchymal stem cells (MSCs) and an interleukin-1 receptor antagonist (IL-1Ra) in acute liver failure. METHODS: Chinese experimental miniature swine (15 ± 3 kg, 5-8 mo) were obtained from the Laboratory Animal Centre of the Affiliated Drum Tower Hospital of Nanjing University Medical School. Acute liver failure was induced via 85% hepatectomy, and animals were treated by MSC transplantation combined with IL-1Ra injection. Blood samples were collected for hepatic function analysis, and the living conditions and survival time were recorded. Liver injury was histologically analyzed. Hepatic cell regeneration and apoptosis were studied by Ki67 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. The levels of protein kinase B and nuclear factor-κB expression were analyzed by Western blotting. RESULTS: MSCs were infected with a lentivirus for expression of green fluorescent protein (GFP) for subsequent identification; 97.3% of the MSCs were positive for GFP as assessed by flow cytometry. Additional flow cytometric analysis of cell surface marker expression demonstrated that > 90% of GFP-expressing MSCs were also positive for CD29, CD44, and CD90, indicating that most of these cells expressed typical markers of MSCs, and the population of MSCs was almost pure. Transplantation of MSCs in combination with 2 mg/kg IL-1Ra therapy significantly improved survival time compared to the acute liver failure model group (35.3 ± 6.7 d vs 17.3 ± 5.5 d, P < 0.05). Combined therapy also promoted improvement in serum inflammatory cytokines and biochemical conditions. The observed hepatic histopathologic score was significantly lower in the group with combined therapy than in the model group (3.50 ± 0.87 vs 8.17 ± 1.26, P < 0.01). In addition, liver cell apoptosis in the combined therapy group was significantly inhibited (18.1 ± 2.1% vs 70.8 ± 3.7%, P < 0.01), and hepatic cell regeneration

  10. Fasting Induces IL-1 Resistance and Free-Fatty Acid-Mediated Up-Regulation of IL-1R2 and IL-1RA

    PubMed Central

    Joesting, Jennifer J.; Moon, Morgan L.; Gainey, Stephen J.; Tisza, Brittany L.; Blevins, Neil A.; Freund, Gregory G.

    2014-01-01

    Objective: Weight-loss is a near societal obsession and many diet programs use significant calorie restriction including fasting/short term starvation to generate rapid effects. Fasting is also a well-recognized cause of immunosuppression especially within the innate immune system. In this study, we sought to determine if the IL-1 arm of the neuroimmune system was down-regulated by a 24 h fast and how fasting might generate this effect. Design: Mice were allowed ad libitum access to food or had food withheld for 24 h. Expression of the endogenous IL-1 antagonists, IL-1 receptor type 2 (IL-1R2), and IL-1 receptor antagonist (IL-1RA) was determined as were sickness behaviors before and after IL-1β administration. Results: Fasting markedly increased gene expression of IL-1R2 (83-fold in adipose tissue, 9.5-fold in liver) and IL-1RA (68-fold in liver). Fasted mice were protected from IL-1β-induced weight-loss, hypoglycemia, loss of locomotor, and social anxiety. These protections were coupled to a large positive interaction of fasting and IL-1β on IL-1R2 gene expression in adipose tissue and liver (2.6- and 1.6-fold, respectively). Fasting not only increased IL-1RA and IL-1R2 protein 2.5- and 3.2-fold, respectively, in liver but also increased IL-1R2 1.8-fold in adipose tissue. Fasting, in turn, triggered a 2.4-fold increase in plasma free-fatty acids (FFAs) and a 2.1-fold increase in plasma corticosterone. Inhibition, of glucocorticoid action with mifepristone did not impact fasting-dependent IL-1R2 or IL-1RA gene expression. Administration of the FFA, palmitate, to mice increased liver IL-1R2 and IL-1RA gene expression by 14- and 11-fold, respectively. Conclusion: These findings indicate that fasting augments expression of endogenous IL-1 antagonists inducing IL-1 resistance. Fasting-induced increases in plasma FFAs appears to be a signal that drives immunosuppression during fasting/short term starvation. PMID:25071776

  11. Dopamine D2/3 receptor antagonism reduces activity-based anorexia

    PubMed Central

    Klenotich, S J; Ho, E V; McMurray, M S; Server, C H; Dulawa, S C

    2015-01-01

    Anorexia nervosa (AN) is an eating disorder characterized by severe hypophagia and weight loss, and an intense fear of weight gain. Activity-based anorexia (ABA) refers to the weight loss, hypophagia and paradoxical hyperactivity that develops in rodents exposed to running wheels and restricted food access, and provides a model for aspects of AN. The atypical antipsychotic olanzapine was recently shown to reduce both AN symptoms and ABA. We examined which component of the complex pharmacological profile of olanzapine reduces ABA. Mice received 5-HT2A/2C, 5-HT3, dopamine D1-like, D2, D3 or D2/3 antagonist treatment, and were assessed for food intake, body weight, wheel running and survival in ABA. D2/3 receptor antagonists eticlopride and amisulpride reduced weight loss and hypophagia, and increased survival during ABA. Furthermore, amisulpride produced larger reductions in weight loss and hypophagia than olanzapine. Treatment with either D3 receptor antagonist SB277011A or D2 receptor antagonist L-741,626 also increased survival. All the other treatments either had no effect or worsened ABA. Overall, selective antagonism of D2 and/or D3 receptors robustly reduces ABA. Studies investigating the mechanisms by which D2 and/or D3 receptors regulate ABA, and the efficacy for D2/3 and/or D3 antagonists to treat AN, are warranted. PMID:26241351

  12. Dopamine D2/3 receptor antagonism reduces activity-based anorexia.

    PubMed

    Klenotich, S J; Ho, E V; McMurray, M S; Server, C H; Dulawa, S C

    2015-08-04

    Anorexia nervosa (AN) is an eating disorder characterized by severe hypophagia and weight loss, and an intense fear of weight gain. Activity-based anorexia (ABA) refers to the weight loss, hypophagia and paradoxical hyperactivity that develops in rodents exposed to running wheels and restricted food access, and provides a model for aspects of AN. The atypical antipsychotic olanzapine was recently shown to reduce both AN symptoms and ABA. We examined which component of the complex pharmacological profile of olanzapine reduces ABA. Mice received 5-HT(2A/2C), 5-HT3, dopamine D1-like, D2, D3 or D2/3 antagonist treatment, and were assessed for food intake, body weight, wheel running and survival in ABA. D2/3 receptor antagonists eticlopride and amisulpride reduced weight loss and hypophagia, and increased survival during ABA. Furthermore, amisulpride produced larger reductions in weight loss and hypophagia than olanzapine. Treatment with either D3 receptor antagonist SB277011A or D2 receptor antagonist L-741,626 also increased survival. All the other treatments either had no effect or worsened ABA. Overall, selective antagonism of D2 and/or D3 receptors robustly reduces ABA. Studies investigating the mechanisms by which D2 and/or D3 receptors regulate ABA, and the efficacy for D2/3 and/or D3 antagonists to treat AN, are warranted.

  13. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload.

    PubMed

    West, James D; Voss, Bryan M; Pavliv, Leo; de Caestecker, Mark; Hemnes, Anna R; Carrier, Erica J

    2016-06-01

    Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH) and is a significant cause of morbidity and mortality in other forms of pulmonary hypertension. There are no approved therapies directed at preserving RV function. F-series and E-series isoprostanes are increased in heart failure and PAH, correlate to the severity of disease, and can signal through the thromboxane-prostanoid (TP) receptor, with effects from vasoconstriction to fibrosis. The goal of these studies was to determine whether blockade of the TP receptor with the antagonist CPI211 was beneficial therapeutically in PAH-induced RV dysfunction. Mice with RV dysfunction due to pressure overload by pulmonary artery banding (PAB) were given vehicle or CPI211. Two weeks after PAB, CPI211-treated mice were protected from fibrosis with pressure overload. Gene expression arrays and immunoblotting, quantitative histology and morphometry, and flow cytometric analysis were used to determine the mechanism of CPI211 protection. TP receptor inhibition caused a near normalization of fibrotic area, prevented cellular hypertrophy while allowing increased RV mass, increased expression of antifibrotic thrombospondin-4, and blocked induction of the profibrotic transforming growth factor β (TGF-β) pathway. A thromboxane synthase inhibitor or low-dose aspirin failed to replicate these results, which suggests that a ligand other than thromboxane mediates fibrosis through the TP receptor after pressure overload. This study suggests that TP receptor antagonism may improve RV adaptation in situations of pressure overload by decreasing fibrosis and TGF-β signaling.

  14. Pair Bond Formation is Impaired by VPAC Receptor Antagonism in the Socially Monogamous Zebra Finch

    PubMed Central

    Kingsbury, Marcy A.; Goodson, James L.

    2014-01-01

    A variety of recent data demonstrate that vasoactive intestinal polypeptide (VIP) and VPAC receptors (which bind VIP, and to a lesser extent, pituitary adenylatecyclase activating peptide) are important for numerous social behaviors in songbirds, including grouping and aggression, although VIP relates to these behaviors in a site-specific manner. In order to determine the global effects of central VPAC receptor activation on social behavior, we here infused a VPAC receptor antagonist or vehicle twice daily into the lateral ventricle of colony-housed male and female zebra finches and quantified a wide range of behaviors. Aggressive behaviors were not altered by ventricular infusions, consistent with known opposing, site-specific relationships of VIP innervation to aggression. Courtship and self-maintenance behaviors were likewise not altered. However, VPAC antagonism produced significant deficits in pair bonding. Antagonist subjects took longer to form a pair bond and were paired for significantly fewer observation sessions relative to control subjects (median 1.5 of 6 observation sessions for antagonist subjects versus 4 for control subjects). Antagonist subjects were also significantly less likely to be paired in the final observation session. Based on the known distribution of VPAC receptors in finches and other vertebrates, we propose that VPAC receptors may mediate pair bonding via a variety of brain areas that are known to be important for the establishment of partner preferences in voles, including the lateral septum, ventral tegmental area, nucleus accumbens and ventral pallidum. PMID:25014003

  15. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual.

    PubMed

    Bajayo, Alon; Bar, Arik; Denes, Adam; Bachar, Marilyn; Kram, Vardit; Attar-Namdar, Malka; Zallone, Alberta; Kovács, Krisztina J; Yirmiya, Raz; Bab, Itai

    2012-09-18

    Bone mass accrual is a major determinant of skeletal mass, governed by bone remodeling, which consists of bone resorption by osteoclasts and bone formation by osteoblasts. Bone mass accrual is inhibited by sympathetic signaling centrally regulated through activation of receptors for serotonin, leptin, and ACh. However, skeletal activity of the parasympathetic nervous system (PSNS) has not been reported at the bone level. Here we report skeletal immune-positive fibers for the PSNS marker vesicular ACh transporter (VAChT). Pseudorabies virus inoculated into the distal femoral metaphysis is identifiable in the sacral intermediolateral cell column and central autonomic nucleus, demonstrating PSNS femoral innervation originating in the spinal cord. The PSNS neurotransmitter ACh targets nicotinic (nAChRs), but not muscarinic receptors in bone cells, affecting mainly osteoclasts. nAChR agonists up-regulate osteoclast apoptosis and restrain bone resorption. Mice deficient of the α(2)nAChR subunit have increased bone resorption and low bone mass. Silencing of the IL-1 receptor signaling in the central nervous system by brain-specific overexpression of the human IL-1 receptor antagonist (hIL1ra(Ast)(+/+) mice) leads to very low skeletal VAChT expression and ACh levels. These mice also exhibit increased bone resorption and low bone mass. In WT but not in hIL1ra(Ast)(+/+) mice, the cholinergic ACh esterase inhibitor pyridostigmine increases ACh levels and bone mass apparently by inhibiting bone resorption. Taken together, these results identify a previously unexplored key central IL-1-parasympathetic-bone axis that antagonizes the skeletal sympathetic tone, thus potently favoring bone mass accrual.

  16. Kinin B1 receptor antagonism is equally efficient as angiotensin receptor 1 antagonism in reducing renal fibrosis in experimental obstructive nephropathy, but is not additive

    PubMed Central

    Huart, Antoine; Klein, Julie; Gonzalez, Julien; Buffin-Meyer, Bénédicte; Neau, Eric; Delage, Christine; Calise, Denis; Ribes, David; Schanstra, Joost P.; Bascands, Jean-Loup

    2015-01-01

    Background: Renal tubulointerstitial fibrosis is the pathological hallmark of chronic kidney disease (CKD). Currently, inhibitors of the renin–angiotensin system (RAS) remain the sole therapy in human displaying antifibrotic properties. Further antifibrotic molecules are needed. We have recently reported that the delayed blockade of the bradykinin B1 receptor (B1R) reduced the development of fibrosis in two animal models of renal fibrosis. The usefulness of new drugs also resides in outperforming the gold standards and eventually being additive or complementary to existing therapies. Methods: In this study we compared the efficacy of a B1R antagonist (B1Ra) with that of an angiotensin type 1 receptor antagonist (AT1a) in the unilateral ureteral obstruction (UUO) model of renal fibrosis and determined whether bi-therapy presented higher efficacy than any of the drugs alone. Results: B1R antagonism was as efficient as the gold-standard AT1a treatment. However, bitherapy did not improve the antifibrotic effects at the protein level. We sought for the reason of the absence of this additive effect by studying the expression of a panel of genes involved in the fibrotic process. Interestingly, at the molecular level the different drugs targeted different players of fibrosis that, however, in this severe model did not result in improved reduction of fibrosis at the protein level. Conclusions: As the B1R is induced specifically in the diseased organ and thus potentially displays low side effects it might be an interesting alternative in cases of poor tolerability to RAS inhibitors. PMID:25698969

  17. Heteromerization of the μ- and δ-opioid receptors produces ligand-biased antagonism and alters μ-receptor trafficking.

    PubMed

    Milan-Lobo, Laura; Whistler, Jennifer L

    2011-06-01

    Heteromerization of opioid receptors has been shown to alter opioid receptor pharmacology. However, how receptor heteromerization affects the processes of endocytosis and postendocytic sorting has not been closely examined. This question is of particular relevance for heteromers of the μ-opioid receptor (MOR) and δ-opioid receptor (DOR), because the MOR is recycled primarily after endocytosis and the DOR is degraded in the lysosome. Here, we examined the endocytic and postendocytic fate of MORs, DORs, and DOR/MOR heteromers in human embryonic kidney 293 cells stably expressing each receptor alone or coexpressing both receptors. We found that the clinically relevant MOR agonist methadone promotes endocytosis of MOR but also the DOR/MOR heteromer. Furthermore, we show that DOR/MOR heteromers that are endocytosed in response to methadone are targeted for degradation, whereas MORs in the same cell are significantly more stable. It is noteworthy that we found that the DOR-selective antagonist naltriben mesylate could block both methadone- and [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin-induced endocytosis of the DOR/MOR heteromers but did not block signaling from this heteromer. Together, our results suggest that the MOR adopts novel trafficking properties in the context of the DOR/MOR heteromer. In addition, they suggest that the heteromer shows "biased antagonism," whereby DOR antagonist can inhibit trafficking but not signaling of the DOR/MOR heteromer.

  18. Frondoside A inhibits breast cancer metastasis and antagonizes prostaglandin E receptors EP4 and EP2

    PubMed Central

    Ma, Xinrong; Kundu, Namita; Collin, Peter D; Goloubeva, Olga; Fulton, Amy

    2013-01-01

    Frondoside A, derived from the sea cucumber Cucumaria frondosa has demonstrable anticancer activity in several models, however, the ability of Frondoside A to affect tumor metastasis has not been reported. Using a syngeneic murine model of metastatic breast cancer, we now show that Frondoside A has potent antimetastatic activity. Frondoside A given i.p. to mice bearing mammary gland implanted mammary tumors, inhibits spontaneous tumor metastasis to the lungs. The elevated Cyclooxygenase -2 activity in many malignancies promotes tumor growth and metastasis by producing high levels of PGE2 which acts on the prostaglandin E receptors, chiefly EP4 and EP2. We examined the ability of Frondoside A to modulate the functions of these EP receptors. We now show that Frondoside A antagonizes the prostaglandin E receptors EP2 and EP4. 3H-PGE2 binding to recombinant EP2 or EP4-expressing cells was inhibited by Frondoside A at low μM concentrations. Likewise, EP4 or EP2-linked activation of intracellular cAMP as well as EP4-mediated ERK1/2 activation were also inhibited by Frondoside A. Consistent with the antimetastatic activity observed in vivo, migration of tumor cells in vitro in response to EP4 or EP2 agonists was also inhibited by Frondoside A. These studies identify a new function for an agent with known antitumor activity, and show that the antimetastatic activity may be due in part to a novel mechanism of action. These studies add to the growing body of evidence that Frondoside A may be a promising new agent with potential to treat cancer and may also represent a potential new modality to antagonize EP4. PMID:21761157

  19. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset.

    PubMed

    Cabrera, Susanne M; Wang, Xujing; Chen, Yi-Guang; Jia, Shuang; Kaldunski, Mary L; Greenbaum, Carla J; Mandrup-Poulsen, Thomas; Hessner, Martin J

    2016-04-01

    It was hypothesized that IL-1 antagonism would preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with plasma-induced transcriptional analysis. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the transcriptional signatures from the two trials were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1β additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials. PMID:26692253

  20. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset.

    PubMed

    Cabrera, Susanne M; Wang, Xujing; Chen, Yi-Guang; Jia, Shuang; Kaldunski, Mary L; Greenbaum, Carla J; Mandrup-Poulsen, Thomas; Hessner, Martin J

    2016-04-01

    It was hypothesized that IL-1 antagonism would preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with plasma-induced transcriptional analysis. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the transcriptional signatures from the two trials were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1β additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials.

  1. The lysine deacetylase inhibitor givinostat inhibits β-cell IL-1β induced IL-1β transcription and processing

    PubMed Central

    Dahllöf, Mattias S.; Christensen, Dan P.; Lundh, Morten; Dinarello, Charles A.; Mascagni, Paolo; Grunnet, Lars G.; Mandrup-Poulsen, Thomas

    2012-01-01

    Aims: Pro-inflammatory cytokines and chemokines, in particular IL-1β, IFNγ, and CXCL10, contribute to β-cell failure and loss in DM via IL-1R, IFNγR, and TLR4 signaling. IL-1 signaling deficiency reduces diabetes incidence, islet IL-1β secretion, and hyperglycemia in animal models of diabetes. Further, IL-1R antagonism improves normoglycemia and β-cell function in type 2 diabetic patients. Inhibition of lysine deacetylases (KDACi) counteracts β-cell toxicity induced by the combination of IL-1 and IFNγ and reduces diabetes incidence in non-obese diabetic (NOD) mice. We hypothesized that KDACi breaks an autoinflammatory circuit by differentially preventing β-cell expression of the β-cell toxic inflammatory molecules IL-1β and CXCL10 induced by single cytokines. Results: CXCL10 did not induce transcription of IL-1β mRNA. IL-1β induced β-cell IL-1β mRNA and both IL-1β and IFNγ individually induced Cxcl10 mRNA transcription. Givinostat inhibited IL-1β-induced IL-1β mRNA expression in INS-1 and rat islets and IL-1β processing in INS-1 cells. Givinostat also reduced IFNγ induced Cxcl10 transcription in INS-1 cells but not in rat islets, while IL-1β induced Cxcl10 transcription was unaffected in both. Materials and Methods: INS-1 cells and rat islets of Langerhans were exposed to IL-1β, IFNγ or CXCL10 in the presence or absence of KDACi (givinostat). Cytokine and chemokine mRNA expressions were quantified by real-time qPCR, and IL-1β processing by western blotting of cell lysates. Conclusion/Interpretation: Inhibition of β-cell IL-1β expression and processing and Cxcl10 transcription contributes to the β-cell protective actions of KDACi. In vitro β-cell destructive effects of CXCL10 are not mediated via IL-1β transcription. The differential proinflammatory actions of KDACs may be attractive novel drug targets in DM. PMID:23486342

  2. Endogenous IL-1 in cognitive function and anxiety: a study in IL-1RI-/- mice.

    PubMed

    Murray, Carol L; Obiang, Pauline; Bannerman, David; Cunningham, Colm

    2013-01-01

    Interleukin-1 (IL-1) is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI). IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI(-/-) mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI(-/-) animals. Therefore, in the current study we compared wildtype (WT) mice to IL-1RI(-/-) mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI(-/-) mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI(-/-) mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI(-/-) mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI(-/-) mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI(-/-) mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in hippocampal and limbic

  3. IL-1 Blockade in Autoinflammatory Syndromes1

    PubMed Central

    Jesus, Adriana A.; Goldbach-Mansky, Raphaela

    2014-01-01

    Monogenic autoinflammatory syndromes present with excessive systemic inflammation including fever, rashes, arthritis, and organ-specific inflammation and are caused by defects in single genes encoding proteins that regulate innate inflammatory pathways. Pathogenic variants in two interleukin-1 (IL-1)–regulating genes, NLRP3 and IL1RN, cause two severe and early-onset autoinflammatory syndromes, CAPS (cryopyrin associated periodic syndromes) and DIRA (deficiency of IL-1 receptor antagonist). The discovery of the mutations that cause CAPS and DIRA led to clinical and basic research that uncovered the key role of IL-1 in an extended spectrum of immune dysregulatory conditions. NLRP3 encodes cryopyrin, an intracellular “molecular sensor” that forms a multimolecular platform, the NLRP3 inflammasome, which links “danger recognition” to the activation of the proinflammatory cytokine IL-1β. The success and safety profile of drugs targeting IL-1 in the treatment of CAPS and DIRA have encouraged their wider use in other autoinflammatory syndromes including the classic hereditary periodic fever syndromes (familial Mediterranean fever, TNF receptor–associated periodic syndrome, and hyperimmunoglobulinemia D with periodic fever syndrome) and additional immune dysregulatory conditions that are not genetically well defined, including Still’s, Behcet’s, and Schnitzler diseases. The fact that the accumulation of metabolic substrates such as monosodium urate, ceramide, cholesterol, and glucose can trigger the NLRP3 inflammasome connects metabolic stress to IL-1β-mediated inflammation and provides a rationale for therapeutically targeting IL-1 in prevalent diseases such as gout, diabetes mellitus, and coronary artery disease. PMID:24422572

  4. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer.

    PubMed

    Singhal, Hari; Greene, Marianne E; Tarulli, Gerard; Zarnke, Allison L; Bourgo, Ryan J; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G; Raj, Ganesh V; Hickey, Theresa E; Tilley, Wayne D; Greene, Geoffrey L

    2016-06-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER(+) (estrogen receptor-positive)/PR(+) human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER(+)/PR(+) breast cancers should be explored. PMID:27386569

  5. Transmembrane AMPA receptor regulatory protein regulation of competitive antagonism: a problem of interpretation.

    PubMed

    Maclean, David M; Bowie, Derek

    2011-11-15

    Synaptic AMPA receptors are greatly influenced by a family of transmembrane AMPA receptor regulatory proteins (TARPs) which control trafficking, channel gating and pharmacology. The prototypical TARP, stargazin (or γ2), shifts the blocking ability of several AMPAR-selective compounds including the commonly used quinoxalinedione antagonists, CNQX and NBQX. Stargazin's effect on CNQX is particularly intriguing as it not only apparently lowers the potency of block, as with NBQX, but also renders it a partial agonist. Given this, agonist behaviour by CNQX has been speculated to account for its weaker blocking effect on AMPAR-TARP complexes. Here we show that this is not the case. The apparent effect of stargazin on CNQX antagonism can be almost entirely explained by an increase in the apparent affinity for l-glutamate (l-Glu), a full agonist and neurotransmitter at AMPAR synapses. Partial agonism at best plays a minor role but not through channel gating per se but rather because CNQX elicits AMPAR desensitization. Our study reveals that CNQX is best thought of as a non-competitive antagonist at glutamatergic synapses due to the predominance of non-equilibrium conditions. Consequently, CNQX primarily reports the proportion of AMPARs available for activation but may also impose additional block by receptor desensitization.

  6. Ehrlichia chaffeensis induces monocyte inflammatory responses through MyD88, ERK, and NF-κB but not through TRIF, interleukin-1 receptor 1 (IL-1R1)/IL-18R1, or toll-like receptors.

    PubMed

    Miura, Koshiro; Matsuo, Junji; Rahman, M Akhlakur; Kumagai, Yumi; Li, Xin; Rikihisa, Yasuko

    2011-12-01

    Human monocytic ehrlichiosis, an influenza-like illness accompanied by signs of hepatitis, is caused by infection of monocytes/macrophages with a lipopolysaccharide-deficient bacterium, Ehrlichia chaffeensis. The E. chaffeensis strain Wakulla induces diffuse hepatitis with neutrophil infiltration in mice with severe combined immunodeficiency, which is accompanied by strong CXCL2 (mouse functional homolog of interleukin-8 [IL-8]) and tumor necrosis factor alpha (TNF-α) expression in the liver. In this study, we found that expression of IL-1β, CXCL2, and TNF-α was induced by strain Wakulla in mouse bone marrow-derived macrophages; this expression was dependent on MyD88, but not on TRIF, TLR2/4, IL-1R1/IL-18R1, or endosome acidification. When the human leukemia cell line THP-1 was exposed to E. chaffeensis, significant upregulation of IL-8, IL-1β, and TNF-α mRNA and extracellular regulated kinase 2 (ERK2) activation were detected. U0126 (inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 [MEK1/2] upstream of ERK), manumycin A (Ras inhibitor), BAY43-9006 (Raf-1 inhibitor), and NS-50 (inhibitor of NF-κB nuclear translocation) inhibited the cytokine gene expression. A luciferase reporter assay using HEK293 cells, which lack Toll-like receptors (TLRs), showed activation of both the IL-8 promoter and NF-κB by E. chaffeensis. Activation of the IL-8 promoter in transfected HEK293 cells was inhibited by manumycin A, BAY43-9006, U0126, and transfection with a dominant-negative Ras mutant. These results indicate that the E. chaffeensis Wakulla strain can induce inflammatory responses through MyD88-dependent NF-κB and ERK pathways, without the involvement of TRIF and TLRs.

  7. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload.

    PubMed

    West, James D; Voss, Bryan M; Pavliv, Leo; de Caestecker, Mark; Hemnes, Anna R; Carrier, Erica J

    2016-06-01

    Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH) and is a significant cause of morbidity and mortality in other forms of pulmonary hypertension. There are no approved therapies directed at preserving RV function. F-series and E-series isoprostanes are increased in heart failure and PAH, correlate to the severity of disease, and can signal through the thromboxane-prostanoid (TP) receptor, with effects from vasoconstriction to fibrosis. The goal of these studies was to determine whether blockade of the TP receptor with the antagonist CPI211 was beneficial therapeutically in PAH-induced RV dysfunction. Mice with RV dysfunction due to pressure overload by pulmonary artery banding (PAB) were given vehicle or CPI211. Two weeks after PAB, CPI211-treated mice were protected from fibrosis with pressure overload. Gene expression arrays and immunoblotting, quantitative histology and morphometry, and flow cytometric analysis were used to determine the mechanism of CPI211 protection. TP receptor inhibition caused a near normalization of fibrotic area, prevented cellular hypertrophy while allowing increased RV mass, increased expression of antifibrotic thrombospondin-4, and blocked induction of the profibrotic transforming growth factor β (TGF-β) pathway. A thromboxane synthase inhibitor or low-dose aspirin failed to replicate these results, which suggests that a ligand other than thromboxane mediates fibrosis through the TP receptor after pressure overload. This study suggests that TP receptor antagonism may improve RV adaptation in situations of pressure overload by decreasing fibrosis and TGF-β signaling. PMID:27252848

  8. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload

    PubMed Central

    Voss, Bryan M.; Pavliv, Leo; de Caestecker, Mark; Hemnes, Anna R.; Carrier, Erica J.

    2016-01-01

    Abstract Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH) and is a significant cause of morbidity and mortality in other forms of pulmonary hypertension. There are no approved therapies directed at preserving RV function. F-series and E-series isoprostanes are increased in heart failure and PAH, correlate to the severity of disease, and can signal through the thromboxane-prostanoid (TP) receptor, with effects from vasoconstriction to fibrosis. The goal of these studies was to determine whether blockade of the TP receptor with the antagonist CPI211 was beneficial therapeutically in PAH-induced RV dysfunction. Mice with RV dysfunction due to pressure overload by pulmonary artery banding (PAB) were given vehicle or CPI211. Two weeks after PAB, CPI211-treated mice were protected from fibrosis with pressure overload. Gene expression arrays and immunoblotting, quantitative histology and morphometry, and flow cytometric analysis were used to determine the mechanism of CPI211 protection. TP receptor inhibition caused a near normalization of fibrotic area, prevented cellular hypertrophy while allowing increased RV mass, increased expression of antifibrotic thrombospondin-4, and blocked induction of the profibrotic transforming growth factor β (TGF-β) pathway. A thromboxane synthase inhibitor or low-dose aspirin failed to replicate these results, which suggests that a ligand other than thromboxane mediates fibrosis through the TP receptor after pressure overload. This study suggests that TP receptor antagonism may improve RV adaptation in situations of pressure overload by decreasing fibrosis and TGF-β signaling. PMID:27252848

  9. Histamine receptors on adult rat cardiomyocytes: antagonism of alpha/sub 1/-receptor stimulation of cAMP degradation

    SciTech Connect

    Buxton, I.L.O.; Bowen, S.M.

    1986-03-01

    Incubation of intact cardiomyocytes with the histamine antagonist (/sup 3/H)mepyramine results in rapid reversible binding to a single class of high affinity sites (K/sub D/ = 1.2nM; 50,000 sites/myocyte). In membranes from purified myocytes histamine competition of (/sup 3/H)mepyramine binding (K/sub D/ = 300nM) is not altered by GTP (10..mu..M). Competition of (/sup 3/H)mepyramine binding by H-receptor subtype-selective antagonists suggests the presence of a single class of H/sub 1/-receptors. Incubation of intact myocytes with histamine (luM, H/sub 1/ receptor activation) plus norepinephrine (NE 1uM, alpha/sub 1/ + beta/sub 1/ receptor activation) for 3 min leads to significantly more cAMP accumulation (36.5 pmol/10/sup 6/ myocytes) than NE alone (30 pmol/10/sup 6/ myocytes). Histamine alone does not alter basal cAMP = 10.4 pmol/10/sup 6/ myocytes, or beta/sub 1/ stimulation (isoproternol, 1uM) = 39.6 pmol/10/sup 6/ myocytes. Cyclic AMP accumulation with NE plus prazosin 10nM, (alpha/sub 1/ + beta/sub 1/ + alpha/sub 1/ blockade) is indistinguishable from NE + histamine, (alpha/sub 1/ + beta/sub 1/ + H/sub 1/) stimulation. Histamine competition for (/sup 3/H)prazosin binding suggests that histamine does not block alpha/sub 1/ receptors on the myocyte. These data suggest that H/sub 1/ receptor activation leads to antagonism of the alpha/sub 1/ receptor mediated activation of cAMP phosphodiesterase the authors have recently described.

  10. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  11. A type III effector antagonizes death receptor signalling during bacterial gut infection.

    PubMed

    Pearson, Jaclyn S; Giogha, Cristina; Ong, Sze Ying; Kennedy, Catherine L; Kelly, Michelle; Robinson, Keith S; Lung, Tania Wong Fok; Mansell, Ashley; Riedmaier, Patrice; Oates, Clare V L; Zaid, Ali; Mühlen, Sabrina; Crepin, Valerie F; Marches, Olivier; Ang, Ching-Seng; Williamson, Nicholas A; O'Reilly, Lorraine A; Bankovacki, Aleksandra; Nachbur, Ueli; Infusini, Giuseppe; Webb, Andrew I; Silke, John; Strasser, Andreas; Frankel, Gad; Hartland, Elizabeth L

    2013-09-12

    Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.

  12. Antagonism of the prostaglandin E receptor EP4 inhibits metastasis and enhances NK function.

    PubMed

    Kundu, Namita; Ma, Xinrong; Holt, Dawn; Goloubeva, Olga; Ostrand-Rosenberg, Suzanne; Fulton, Amy M

    2009-09-01

    Cyclooxygenase-2 (COX-2) is associated with aggressive breast cancers. The COX-2 product prostaglandin E(2) (PGE(2)) acts through four G-protein-coupled receptors designated EP1-4. Malignant and immortalized normal mammary epithelial cell lines express all four EP. The EP4 antagonist AH23848 reduced the ability of tumor cells to colonize the lungs or to spontaneously metastasize from the mammary gland. EP4 gene silencing by shRNA also reduced the ability of mammary tumor cells to metastasize. Metastasis inhibition was lost in mice lacking either functional Natural Killer (NK) cells or interferon-gamma. EP4 antagonism inhibited MHC class I expression resulting in enhanced ability of NK cells to lyse mammary tumor target cells. These studies support the hypothesis that EP4 receptor antagonists reduce metastatic potential by facilitating NK-mediated tumor cell killing and that therapeutic targeting of EP4 may be an alternative approach to the use of COX inhibitors to limit metastatic disease.

  13. Hypocretin receptor 2 antagonism dose-dependently reduces escalated heroin self-administration in rats.

    PubMed

    Schmeichel, Brooke E; Barbier, Estelle; Misra, Kaushik K; Contet, Candice; Schlosburg, Joel E; Grigoriadis, Dimitri; Williams, John P; Karlsson, Camilla; Pitcairn, Caleb; Heilig, Markus; Koob, George F; Vendruscolo, Leandro F

    2015-03-13

    The hypocretin/orexin (HCRT) system has been associated with both positive and negative drug reinforcement, implicating HCRT receptor 1 (HCRT-R1) signaling in drug-related behaviors for all major drug classes, including opioids. However, to date there are limited studies investigating the role of HCRT receptor 2 (HCRT-R2) signaling in compulsive-like drug seeking. Escalation of drug intake with extended access has been suggested to model the transition from controlled drug use to compulsive-like drug seeking/taking. The current study examined the effects of a HCRT-R2 antagonist, NBI-80713, on heroin self-administration in rats allowed short- (1 h; ShA) or long- (12 h; LgA) access to intravenous heroin self-administration. Results indicate that systemically administered NBI-80713 dose-dependently decreased heroin self-administration in LgA, but not in ShA, animals. Quantitative PCR analyses showed an increase in Hcrtr2 mRNA levels in the central amygdala, a stress-related brain region, of LgA rats. These observations suggest a functional role for HCRT-R2 signaling in compulsive-like heroin self-administration associated with extended access and indicate HCRT-R2 antagonism as a potential pharmacological target for the treatment of heroin dependence.

  14. Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism

    PubMed Central

    Ross, Nicolette C; Reilley, Kate J; Murray, Thomas F; Aldrich, Jane V; McLaughlin, Jay P

    2012-01-01

    BACKGROUND AND PURPOSE The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. EXPERIMENTAL APPROACH Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). KEY RESULTS The two isomers showed similar affinity and selectivity for κ receptors (Ki 30–35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. CONCLUSIONS AND IMPLICATIONS The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse. PMID

  15. Hyperresponsive febrile reactions to interleukin (IL) 1α and IL-1β, and altered brain cytokine mRNA and serum cytokine levels, in IL-1β-deficient mice

    PubMed Central

    Alheim, Katarina; Chai, Zhen; Fantuzzi, Giamila; Hasanvan, Homa; Malinowsky, David; Di Santo, Elena; Ghezzi, Pietro; Dinarello, Charles A.; Bartfai, Tamas

    1997-01-01

    IL-1β is an endogenous pyrogen that is induced during systemic lipopolysaccharide (LPS)- or IL-1-induced fever. We have examined the fever and cytokine responses following i.p. injection of IL-1 agonists, IL-1α and IL-1β, and compared these with response to LPS (i.p.) in wild-type and IL-1β-deficient mice. The IL-1β deficient mice appear to have elevated body temperature but exhibit a normal circadian temperature cycle. Exogenously injected IL-1β, IL-1α, or LPS induced hyperresponsive fevers in the IL-1β-deficient mice. We also observed phenotypic differences between wild-type and IL-1β-deficient mice in hypothalamic basal mRNA levels for IL-1α and IL-6, but not for IL-1β-converting enzyme or IL-1 receptor type I or type II. The IL-1α mRNA levels were down-regulated, whereas the IL-6 mRNA levels were up-regulated in the hypothalamus of IL-1β-deficient mice as compared with wild-type mice. The IL-1β-deficient mice also responded to LPS challenge with significantly higher serum corticosterone and with lower serum tumor necrosis factor type α levels than the wild-type mice. The data suggest that, in the redundant cascade of proinflammatory cytokines, IL-1β plays an important but not obligatory role in fever induction by LPS or IL-1α, as well as in the induction of serum tumor necrosis factor type α and corticosterone responses either by LPS or by IL-1α or IL-1β. PMID:9122256

  16. Hyperresponsive febrile reactions to interleukin (IL) 1alpha and IL-1beta, and altered brain cytokine mRNA and serum cytokine levels, in IL-1beta-deficient mice.

    PubMed

    Alheim, K; Chai, Z; Fantuzzi, G; Hasanvan, H; Malinowsky, D; Di Santo, E; Ghezzi, P; Dinarello, C A; Bartfai, T

    1997-03-18

    IL-1beta is an endogenous pyrogen that is induced during systemic lipopolysaccharide (LPS)- or IL-1-induced fever. We have examined the fever and cytokine responses following i.p. injection of IL-1 agonists, IL-1alpha and IL-1beta, and compared these with response to LPS (i.p.) in wild-type and IL-1beta-deficient mice. The IL-1beta deficient mice appear to have elevated body temperature but exhibit a normal circadian temperature cycle. Exogenously injected IL-1beta, IL-1alpha, or LPS induced hyperresponsive fevers in the IL-1beta-deficient mice. We also observed phenotypic differences between wild-type and IL-1beta-deficient mice in hypothalamic basal mRNA levels for IL-1alpha and IL-6, but not for IL-1beta-converting enzyme or IL-1 receptor type I or type II. The IL-1alpha mRNA levels were down-regulated, whereas the IL-6 mRNA levels were up-regulated in the hypothalamus of IL-1beta-deficient mice as compared with wild-type mice. The IL-1beta-deficient mice also responded to LPS challenge with significantly higher serum corticosterone and with lower serum tumor necrosis factor type alpha levels than the wild-type mice. The data suggest that, in the redundant cascade of proinflammatory cytokines, IL-1beta plays an important but not obligatory role in fever induction by LPS or IL-1alpha, as well as in the induction of serum tumor necrosis factor type alpha and corticosterone responses either by LPS or by IL-1alpha or IL-1beta.

  17. Lactoferricin mediates Anti-Inflammatory and Anti-Catabolic Effects via Inhibition of IL-1 and LPS Activity in the Intervertebral Disc†

    PubMed Central

    Kim, Jae-Sung; Ellman, Michael B.; Yan, Dongyao; An, Howard S.; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Zabo, Gabriella; Hoskin, David W.; Buechter, D.D.; Van Wijnen, Andre J.; Im, Hee-Jeong

    2013-01-01

    The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. PMID:23460134

  18. Continuous adenosine A2A receptor antagonism after focal cerebral ischemia in spontaneously hypertensive rats.

    PubMed

    Fronz, Ulrike; Deten, Alexander; Baumann, Frank; Kranz, Alexander; Weidlich, Sarah; Härtig, Wolfgang; Nieber, Karen; Boltze, Johannes; Wagner, Daniel-Christoph

    2014-02-01

    Antagonism of the adenosine A2A receptor (A2AR) has been shown to elicit substantial neuroprotective properties when given immediately after cerebral ischemia. We asked whether the continuous application of a selective A2AR antagonist within a clinically relevant time window will be a feasible and effective approach to treat focal cerebral ischemia. To answer this question, we subjected 20 male spontaneously hypertensive rats to permanent middle cerebral artery occlusion and randomized them equally to a verum and a control group. Two hours after stroke onset, the animals received a subcutaneous implantation of an osmotic minipump filled with 5 mg kg(-1) day(-1) 8-(3-chlorostyryl) caffeine (CSC) or vehicle solution. The serum level of CSC was measured twice a day for three consecutive days. The infarct volume was determined at days 1 and 3 using magnetic resonance imaging. We found the serum level of CSC showing a bell-shaped curve with its maximum at 36 h. The infarct volume was not affected by continuous CSC treatment. These results suggest that delayed and continuous CSC application was not sufficient to treat acute ischemic stroke, potentially due to unfavorable hepatic elimination and metabolization of the pharmaceutical. PMID:24170241

  19. Aldosterone receptor antagonism normalizes vascular function in liquorice-induced hypertension.

    PubMed

    Quaschning, T; Ruschitzka, F; Shaw, S; Lüscher, T F

    2001-02-01

    aldosterone receptor antagonism normalizes blood pressure, prevents upregulation of vascular ET-1, restores NO-mediated endothelial dysfunction, and thus, may advance as a novel and specific therapeutic approach in 11beta-HSD2-deficient hypertension.

  20. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice

    PubMed Central

    Roundtree, Harrison M.; Simeone, Timothy A.; Johnson, Chaz; Matthews, Stephanie A.; Samson, Kaeli K.; Simeone, Kristina A.

    2016-01-01

    other epilepsy models. Citation: Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin receptor antagonism improves sleep and reduces seizures in Kcna1-null mice. SLEEP 2016;39(2):357–368. PMID:26446112

  1. In vivo administration of extracellular cGMP normalizes TNF-α and membrane expression of AMPA receptors in hippocampus and spatial reference memory but not IL-1β, NMDA receptors in membrane and working memory in hyperammonemic rats.

    PubMed

    Cabrera-Pastor, Andrea; Hernandez-Rabaza, Vicente; Taoro-Gonzalez, Lucas; Balzano, Tiziano; Llansola, Marta; Felipo, Vicente

    2016-10-01

    Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1β, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors.

  2. Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit

    PubMed Central

    Chen, Sisi; Luetje, Charles W.

    2014-01-01

    Many insect behaviors are driven by olfaction, making insect olfactory receptors (ORs) appealing targets for insect control.  Insect ORs are odorant-gated ion channels, with each receptor thought to be composed of a representative from a large, variable family of odorant binding subunits and a highly conserved co-receptor subunit (Orco), assembled in an unknown stoichiometry.  Synthetic Orco directed agonists and antagonists have recently been identified.  Several Orco antagonists have been shown to act via an allosteric mechanism to inhibit OR activation by odorants.  The high degree of conservation of Orco across insect species results in Orco antagonists having broad activity at ORs from a variety of insect species and suggests that the binding site for Orco ligands may serve as a modulatory site for compounds endogenous to insects or may be a target of exogenous compounds, such as those produced by plants.  To test this idea, we screened a series of biogenic and trace amines, identifying several as Orco antagonists.  Of particular interest were tryptamine, a plant-produced amine, and tyramine, an amine endogenous to the insect nervous system.  Tryptamine was found to be a potent antagonist of Orco, able to block Orco activation by an Orco agonist and to allosterically inhibit activation of ORs by odorants.  Tyramine had effects similar to those of tryptamine, but was less potent.  Importantly, both tryptamine and tyramine displayed broad activity, inhibiting odorant activation of ORs of species from three different insect orders (Diptera, Lepidoptera and Coleoptera), as well as odorant activation of six diverse ORs from a single species (the human malaria vector mosquito, Anopheles gambiae).  Our results suggest that endogenous and exogenous natural compounds serve as Orco ligands modulating insect olfaction and that Orco can be an important target for the development of novel insect repellants. PMID:25075297

  3. Hippocampal distribution of IL-1β and IL-1RI following lithium-pilocarpine-induced status epilepticus in the developing rat.

    PubMed

    Álvarez-Croda, Dulce-Mariely; Santiago-García, Juan; Medel-Matus, Jesús S; Martínez-Quiroz, Joel; Puig-Lagunes, Angel A; Beltrán-Parrazal, Luis; López-Meraz, María-Leonor

    2016-01-01

    The contribution of Interleukin-1β (IL-1β) to neuronal injury induced by status epilepticus (SE) in the immature brain remains unclear. The goal of this study was to determine the hippocampal expression of IL-1β and its type 1 receptor (IL-1RI) following SE induced by the lithium-pilocarpine model in fourteen-days-old rat pups; control animals were given an equal volume of saline instead of the convulsant. IL-1β and IL-1RI mRNA hippocampal levels were assessed by qRT-PCR 6 and 24 h after SE or control conditions. IL-1β and IL-1RI expression was detected in the dorsal hippocampus by immunohistochemical procedures; Fluoro-Jade B staining was carried out in parallel sections in order to detect neuronal cell death. IL-1β mRNA expression was increased 6 h following SE, but not at 24 h; however IL-1RI mRNA expression was unaffected when comparing with the control group. IL-1β and IL-1RI immunoreactivity was not detected in control animals. IL-1β and IL-1RI were expressed in the CA1 pyramidal layer, the dentate gyrus granular layer and the hilus 6 h after SE, whereas injured cells were detected 24 h following seizures. Early expression of IL-1β and IL-1RI in the hippocampus could be associated with SE-induced neuronal cell death mechanisms in the developing rat. PMID:27168372

  4. Agonism, Antagonism, and Inverse Agonism Bias at the Ghrelin Receptor Signaling.

    PubMed

    M'Kadmi, Céline; Leyris, Jean-Philippe; Onfroy, Lauriane; Galés, Céline; Saulière, Aude; Gagne, Didier; Damian, Marjorie; Mary, Sophie; Maingot, Mathieu; Denoyelle, Séverine; Verdié, Pascal; Fehrentz, Jean-Alain; Martinez, Jean; Banères, Jean-Louis; Marie, Jacky

    2015-11-01

    The G protein-coupled receptor GHS-R1a mediates ghrelin-induced growth hormone secretion, food intake, and reward-seeking behaviors. GHS-R1a signals through Gq, Gi/o, G13, and arrestin. Biasing GHS-R1a signaling with specific ligands may lead to the development of more selective drugs to treat obesity or addiction with minimal side effects. To delineate ligand selectivity at GHS-R1a signaling, we analyzed in detail the efficacy of a panel of synthetic ligands activating the different pathways associated with GHS-R1a in HEK293T cells. Besides β-arrestin2 recruitment and ERK1/2 phosphorylation, we monitored activation of a large panel of G protein subtypes using a bioluminescence resonance energy transfer-based assay with G protein-activation biosensors. We first found that unlike full agonists, Gq partial agonists were unable to trigger β-arrestin2 recruitment and ERK1/2 phosphorylation. Using G protein-activation biosensors, we then demonstrated that ghrelin promoted activation of Gq, Gi1, Gi2, Gi3, Goa, Gob, and G13 but not Gs and G12. Besides, we identified some GHS-R1a ligands that preferentially activated Gq and antagonized ghrelin-mediated Gi/Go activation. Finally, we unambiguously demonstrated that in addition to Gq, GHS-R1a also promoted constitutive activation of G13. Importantly, we identified some ligands that were selective inverse agonists toward Gq but not of G13. This demonstrates that bias at GHS-R1a signaling can occur not only with regard to agonism but also to inverse agonism. Our data, combined with other in vivo studies, may facilitate the design of drugs selectively targeting individual signaling pathways to treat only the therapeutically relevant function.

  5. Farnesoid X Receptor Antagonizes JNK Signaling Pathway in Liver Carcinogenesis by Activating SOD3

    PubMed Central

    Li, Cunbao; Guo, Cong; Li, Yanyan; Qi, Hui; Shen, Hailing; Kong, Jing; Long, Xuecheng; Yuan, Frank; Wang, Xichun

    2015-01-01

    The farnesoid X receptor (FXR) is a key metabolic and homeostatic regulator in the liver. In the present work, we identify a novel role of FXR in antagonizing c-Jun N-terminal kinase (JNK) signaling pathway in liver carcinogenesis by activating superoxide dismutase 3 (SOD3) transcription. Compared with wild-type mouse liver, FXR−/− mouse liver showed elevated JNK phosphorylation. JNK1 deletion suppressed the increase of diethylnitrosamine-induced tumor number in FXR−/− mice. These results suggest that JNK1 plays a key role in chemical-induced liver carcinogenesis in FXR−/− mice. We found that ligand-activated FXR was able to alleviate H2O2 or tetradecanoylphorbol acetate-induced JNK phosphorylation in human hepatoblastoma (HepG2) cells or mouse primary hepatocytes. FXR ligand decreased H2O2-induced reactive oxygen species (ROS) levels in wild-type but not FXR−/− mouse hepatocytes. FXR knockdown abolished the inhibition of 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]-Benzoic acid (GW4064) on JNK phosphorylation and ROS production induced by H2O2 in HepG2 cells. The gene expression of SOD3, an antioxidant defense enzyme, was increased by FXR activation in vitro and in vivo. An FXR-responsive element, inverted repeat separated by 1 nucleotide in SOD3 promoter, was identified by a combination of transcriptional reporter assays, EMSAs, and chromatin immunoprecipitation assays, which indicated that SOD3 could be a direct FXR target gene. SOD3 knockdown abolished the inhibition of GW4064 on JNK phosphorylation induced by H2O2 in HepG2 cells. In summary, FXR may regulate SOD3 expression to suppress ROS production, resulting in decreasing JNK activity. These results suggest that FXR, as a novel JNK suppressor, may be an attractive therapeutic target for liver cancer treatment. PMID:25496033

  6. Farnesoid X receptor antagonizes JNK signaling pathway in liver carcinogenesis by activating SOD3.

    PubMed

    Wang, Yan-Dong; Chen, Wei-Dong; Li, Cunbao; Guo, Cong; Li, Yanyan; Qi, Hui; Shen, Hailing; Kong, Jing; Long, Xuecheng; Yuan, Frank; Wang, Xichun; Huang, Wendong

    2015-02-01

    The farnesoid X receptor (FXR) is a key metabolic and homeostatic regulator in the liver. In the present work, we identify a novel role of FXR in antagonizing c-Jun N-terminal kinase (JNK) signaling pathway in liver carcinogenesis by activating superoxide dismutase 3 (SOD3) transcription. Compared with wild-type mouse liver, FXR(-/-) mouse liver showed elevated JNK phosphorylation. JNK1 deletion suppressed the increase of diethylnitrosamine-induced tumor number in FXR(-/-) mice. These results suggest that JNK1 plays a key role in chemical-induced liver carcinogenesis in FXR(-/-) mice. We found that ligand-activated FXR was able to alleviate H₂O₂or tetradecanoylphorbol acetate-induced JNK phosphorylation in human hepatoblastoma (HepG2) cells or mouse primary hepatocytes. FXR ligand decreased H₂O₂-induced reactive oxygen species (ROS) levels in wild-type but not FXR(-/-) mouse hepatocytes. FXR knockdown abolished the inhibition of 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]-Benzoic acid (GW4064) on JNK phosphorylation and ROS production induced by H₂O₂in HepG2 cells. The gene expression of SOD3, an antioxidant defense enzyme, was increased by FXR activation in vitro and in vivo. An FXR-responsive element, inverted repeat separated by 1 nucleotide in SOD3 promoter, was identified by a combination of transcriptional reporter assays, EMSAs, and chromatin immunoprecipitation assays, which indicated that SOD3 could be a direct FXR target gene. SOD3 knockdown abolished the inhibition of GW4064 on JNK phosphorylation induced by H₂O₂in HepG2 cells. In summary, FXR may regulate SOD3 expression to suppress ROS production, resulting in decreasing JNK activity. These results suggest that FXR, as a novel JNK suppressor, may be an attractive therapeutic target for liver cancer treatment.

  7. New functional activity of aripiprazole revealed: Robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling.

    PubMed

    Brust, Tarsis F; Hayes, Michael P; Roman, David L; Watts, Val J

    2015-01-01

    The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, "third generation" antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gβγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gβγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution.

  8. α-Melanocyte-stimulating hormone (α-MSH) reverses impairment of memory reconsolidation induced by interleukin-1 beta (IL-1 beta) hippocampal infusions.

    PubMed

    Machado, Ivana; González, Patricia; Schiöth, Helgi Birgir; Lasaga, Mercedes; Scimonelli, Teresa Nieves

    2010-11-01

    Interleukin-1 beta (IL-1β) significantly influences cognitive processes. Treatments which raise the level of IL-1β in the brain impair memory consolidation in contextual fear conditioning. However, the effect of IL-1β on memory reconsolidation has not yet been established. The melanocortin α-melanocyte-stimulating hormone (α-MSH) exerts potent anti-inflammatory actions by antagonizing the effect of proinflammatory cytokines. Five subtypes of melanocortin receptors (MC1R-MC5R) have been identified, of which MC3R and MC4R are predominant in the central nervous system. The present experiments show that the injection of IL-1β (5 ng/0.25 μl) in dorsal hippocampus up to 30 min after re-exposition to the context decreases freezing during the contextual fear test. Impairment of memory reconsolidation was reversed by treatment with α-MSH (0.05 μg/0.25 μl). Administration of the MC4 receptor antagonist HS014 (0.5 μg/0.25 μl) blocked the effect of α-MSH. These results suggest that IL-1β may influence memory reconsolidation and that activation of central MC4R could lead to improve cognitive performance.

  9. Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: identification of a new aporphine with 5-HT2A antagonist activity

    PubMed Central

    Ponnala, Shashikanth; Gonzales, Junior; Kapadia, Nirav; Navarro, Hernan A.; Harding, Wayne W.

    2014-01-01

    A set of aporphine analogs related to nantenine was evaluated for antagonist activity at 5-HT2A and α1A adrenergic receptors. With regards to 5-HT2A receptor antagonism, a C2 allyl group is detrimental to activity. The chiral center of nantenine is not important for 5-HT2A antagonist activity, however the N6 nitrogen atom is a critical feature for 5-HT2A antagonism. Compound 12b was the most potent 5-HT2A aporphine antagonist identified in this study and has similar potency to previously identified aporphine antagonists 2 and 3. The ring A and N6 modifications examined were detrimental to α1A antagonism. A slight eutomeric preference for the R enantiomer of nantenine was observed in relation to α1A antagonism. PMID:24630561

  10. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat.

    PubMed

    Dugovic, Christine; Shelton, Jonathan E; Aluisio, Leah E; Fraser, Ian C; Jiang, Xiaohui; Sutton, Steven W; Bonaventure, Pascal; Yun, Sujin; Li, Xiaorong; Lord, Brian; Dvorak, Curt A; Carruthers, Nicholas I; Lovenberg, Timothy W

    2009-07-01

    Orexins are peptides produced by lateral hypothalamic neurons that exert a prominent role in the maintenance of wakefulness by activating orexin-1 (OX1R) and orexin-2 (OX2R) receptor located in wake-active structures. Pharmacological blockade of both receptors by the dual OX1/2R antagonist (2R)-2-[(1S)-6,7-dimethoxy-1-{2-[4-(trifluoromethyl)phenyl]ethyl}-3,4-dihydroisoquinolin-2(1H)-yl]-N-methyl-2-phenylethanamide (almorexant) has been shown to promote sleep in animals and humans during their active period. However, the selective distribution of OX1R and OX2R in distinct neuronal circuits may result in a differential impact of these receptors in sleep-wake modulation. The respective role of OX1R and OX2R on sleep in correlation with monoamine release was evaluated in rats treated with selective antagonists alone or in combination. When administered in either phase of the light/dark cycle, the OX2R antagonist 1-(2,4-dibromophenyl)-3-[(4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl]urea (JNJ-10397049) decreased the latency for persistent sleep and increased nonrapid eye movement and rapid eye movement sleep time. Almorexant produced less hypnotic activity, whereas the OX1R antagonist 1-(6,8-difluoro-2-methylquinolin-4-yl)-3-[4-(dimethylamino)phenyl]urea (SB-408124) had no effect. Microdialysis studies showed that either OX2R or OX1/2R antagonism decreased extracellular histamine concentration in the lateral hypothalamus, whereas both OX1R and OX1/2R antagonists increased dopamine release in the prefrontal cortex. Finally, coadministration of the OX1R with the OX2R antagonist greatly attenuated the sleep-promoting effects of the OX2R antagonist. These results indicate that blockade of OX2R is sufficient to initiate and prolong sleep, consistent with the hypothesis of a deactivation of the histaminergic system. In addition, it is suggested that simultaneous inhibition of OX1R attenuates the sleep-promoting effects mediated by selective OX2R blockade, possibly correlated

  11. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine

    PubMed Central

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na+ current (INa), and is known to reduce the Na+-dependent Ca2+ overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na+ channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca2+ calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  12. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine.

    PubMed

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na(+) current (INa), and is known to reduce the Na(+)-dependent Ca(2+) overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na(+) channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca(2+) calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  13. Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor alpha subunit form the strychnine-binding site.

    PubMed Central

    Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R

    1992-01-01

    The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851

  14. Doxazosin inhibits proliferation and migration of human vascular smooth-muscle cells independent of alpha1-adrenergic receptor antagonism.

    PubMed

    Hu, Z W; Shi, X Y; Hoffman, B B

    1998-06-01

    Proliferation and migration of vascular smooth-muscle cells (VSMCs), stimulated by a variety of growth factors, play a critical role in the pathogenesis of vascular diseases. We found unexpectedly that doxazosin, an alpha1-adrenergic-receptor antagonist, inhibits serum-stimulated proliferation of cultured human VSMCs. Subsequent experiments systematically investigated inhibitory effects of doxazosin on mitogenesis stimulated in VSMCs by platelet-derived growth factor (PDGF), epidermal growth factor, and G protein-coupled receptor agonists thrombin and angiotensin II. Doxazosin attenuated the stimulation of DNA synthesis for each of these ligands with median inhibitory concentrations (IC50s) from 0.3 to 1 microM. PDGF-AB (1 nM) increased cell number; doxazosin inhibited this response by 70-80%. Prazosin, a related alpha1-receptor antagonist, had similar but less potent effects on inhibiting mitogenesis in these cells. Doxazosin and prazosin inhibited PDGF-AB-stimulated and insulin-like growth factor (IGF-I)-stimulated migration of VSMCs by approximately 40-50%. These effects of doxazosin were likely unrelated to alpha1-receptor blockade because pretreatment of cells with phenoxybenzamine, an irreversible alpha1 antagonist, did not change the capacity of doxazosin to inhibit of PDGF-stimulated mitogenesis. Also, doxazosin inhibited PDGF-stimulated DNA synthesis in NIH 3T3 cells, which do not express alpha1 receptors. These results suggest that doxazosin is a potent inhibitor of VSMC proliferation and migration through a mechanism unrelated to alpha1-receptor antagonism.

  15. Sedation and histamine H1-receptor antagonism: studies in man with the enantiomers of chlorpheniramine and dimethindene.

    PubMed Central

    Nicholson, A. N.; Pascoe, P. A.; Turner, C.; Ganellin, C. R.; Greengrass, P. M.; Casy, A. F.; Mercer, A. D.

    1991-01-01

    1. The effects of 10 mg (+)- and (-)-chlorpheniramine and 5 mg (+)- and (-)-dimethindene on daytime sleep latencies, digit symbol substitution and subjective assessments of mood and well-being were studied in 6 healthy young adult humans. Each subject also took 5 mg triprolidine hydrochloride as an active control and two placebos. 2. Daytime sleep latencies were reduced with triprolidine, (+)-chlorpheniramine and (-)-dimethindene, and subjects also reported that they felt more sleepy after (+)-chlorpheniramine and (-)-dimethindene. Performance on digit symbol substitution was impaired with (+)-chlorpheniramine. 3. Changes in measures with (-)-chlorpheniramine and (+)-dimethindene were not different from changes with placebo. 4. In the present study, changes in measures of drowsiness and performance were limited to the enantiomers with high affinity for the histamine H1-receptor. These findings strongly suggest that sedation can arise from H1-receptor antagonism alone, and provide further support for the belief that the histaminergic system is concerned with the regulation of alertness in man. PMID:1686208

  16. Unsurmountable antagonism of brain 5-hydroxytryptamine2 receptors by (+)-lysergic acid diethylamide and bromo-lysergic acid diethylamide.

    PubMed

    Burris, K D; Sanders-Bush, E

    1992-11-01

    Lysergic acid diethylamide (LSD) and its structural analogue 2-bromo-lysergic acid diethylamide (BOL) act as unsurmountable antagonists of serotonin-elicited contractions in smooth muscle preparations. Two different models, allosteric and kinetic, have been invoked to explain these findings. The present studies investigate the mechanism of antagonism of brain 5-hydroxytryptamine (5HT)2 receptors, utilizing cells transfected with 5HT2 receptor cDNA cloned from rat brain. A proximal cellular response, phosphoinositide hydrolysis, was examined in order to minimize possible postreceptor effects. Even though LSD behaved as a partial agonist and BOL as a pure antagonist, both drugs blocked the effect of serotonin in an unsurmountable manner, i.e., increasing concentrations of serotonin could not overcome the blocking effect of LSD or BOL. Radioligand binding studies showed that preincubation of membranes with either LSD or BOL reduced the density of [3H]ketanserin binding sites, suggesting that the drugs bind tightly to the 5HT2 receptor and are not displaced during the binding assay. Two additional experiments supported this hypothesis. First, the off-rate of [3H] LSD was slow (20 min), relative to that of [3H]ketanserin (approximately 4 min). Second, when the length of incubation with [3H]ketanserin was increased to 60 min, the LSD-induced decrease in Bmax was essentially eliminated. The possibility that LSD and BOL decrease [3H]ketanserin binding by interacting with an allosteric site was rejected, because neither drug altered the rate of dissociation of [3H]ketanserin. The most parsimonious interpretation of these results is that unsurmountable antagonism reflects prolonged occupancy of the receptor by slowly reversible antagonists.

  17. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology.

    PubMed

    Wilkinson-Berka, Jennifer L; Tan, Genevieve; Jaworski, Kassie; Miller, Antonia G

    2009-01-01

    Blockade of the renin-angiotensin-aldosterone system (RAAS) is being evaluated as a treatment for diabetic retinopathy; however, whether the mineralocorticoid receptor (MR) and aldosterone influence retinal vascular pathology is unknown. We examined the effect of MR antagonism on pathological angiogenesis in rats with oxygen-induced retinopathy (OIR). To determine the mechanisms by which the MR and aldosterone may influence retinal angiogenesis; inflammation and glucose-6-phosphate dehydrogenase (G6PD) were evaluated in OIR and cultured bovine retinal endothelial cells (BRECs) and bovine retinal pericytes (BRPs). In OIR, MR antagonism (spironolactone) was antiangiogenic. Aldosterone may mediate the pathogenic actions of MR in the retina, with 11beta-hydroxysteroid dehydrogenase type 2 mRNA being detected and with aldosterone stimulating proliferation and tubulogenesis in BRECs and exacerbating angiogenesis in OIR, which was attenuated with spironolactone. The MR and aldosterone modulated retinal inflammation, with leukostasis and monocyte chemoattractant protein-1 mRNA and protein in OIR being reduced by spironolactone and increased by aldosterone. A reduction in G6PD may be an early response to aldosterone. In BRECs, BRPs, and early OIR, aldosterone reduced G6PD mRNA, and in late OIR, aldosterone increased mRNA for the NAD(P)H oxidase subunit Nox4. A functional retinal MR-aldosterone system was evident with MR expression, translocation of nuclear MR, and aldosterone synthase expression, which was modulated by RAAS blockade. We make the first report that MR and aldosterone influence retinal vasculopathy, which may involve inflammatory and G6PD mechanisms. MR antagonism may be relevant when developing treatments for retinopathies that target the RAAS.

  18. TLR4-Upregulated IL-1β and IL-1RI Promote Alveolar Macrophage Pyroptosis and Lung Inflammation through an Autocrine Mechanism

    PubMed Central

    He, Xingying; Qian, Yongbing; Li, Zhigang; Fan, Erica K.; Li, Yuehua; Wu, Liang; Billiar, Timothy R.; Wilson, Mark A.; Shi, Xueyin; Fan, Jie

    2016-01-01

    Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome (MODS) following pulmonary infection. Alveolar macrophages (AM) are at the center of the pathogenesis of the development of ALI. Interleukin-1β (IL-1β) is one of the key pro-inflammatory mediators, and its maturation is tightly controlled by the formation and activation of the inflammasome. The biological effects of IL-1β are mediated through IL-1 receptor (IL-1R). In this study, we investigated the influence of LPS-induced IL-1β release and IL-1RI upregulation on the development of lung inflammation. We demonstrated that in AM, LPS-TLR4 signaling not only activates Nlrp3 inflammasome activation and subsequent release of IL-1β, but also up-regulates IL-1RI expression on AM surface through MyD88 and NF-κB dependent signaling. The upregulated IL-1RI, therefore, sensitizes AM to IL-1β and results in pyroptosome formation, which in turn leads to AM pyroptosis, a type of caspase-1-dependent inflammatory cell death. We further showed that AM pyroptosis exaggerates lung inflammation. The present study demonstrates a novel mechanism underlying LPS-induced innate immunity; that is, a secondary upregulation of IL-1β-IL-1RI signaling is responsible for AM pyroptosis and augmented lung injury in response to LPS. PMID:27526865

  19. Design, Synthesis, and Biological Evaluation of Novel Nonsteroidal Farnesoid X Receptor (FXR) Antagonists: Molecular Basis of FXR Antagonism.

    PubMed

    Huang, Huang; Si, Pei; Wang, Lei; Xu, Yong; Xu, Xin; Zhu, Jin; Jiang, Hualiang; Li, Weihua; Chen, Lili; Li, Jian

    2015-07-01

    Farnesoid X receptor (FXR) plays an important role in the regulation of cholesterol, lipid, and glucose metabolism. Recently, several studies on the molecular basis of FXR antagonism have been reported. However, none of these studies employs an FXR antagonist with nonsteroidal scaffold. On the basis of our previously reported FXR antagonist with a trisubstituted isoxazole scaffold, a novel nonsteroidal FXR ligand was designed and used as a lead for structural modification. In total, 39 new trisubstituted isoxazole derivatives were designed and synthesized, which led to pharmacological profiles ranging from agonist to antagonist toward FXR. Notably, compound 5s (4'-[(3-{[3-(2-chlorophenyl)-5-(2-thienyl)isoxazol-4-yl]methoxy}-1H-pyrazol-1-yl)methyl]biphenyl-2-carboxylic acid), containing a thienyl-substituted isoxazole ring, displayed the best antagonistic activity against FXR with good cellular potency (IC50 =12.2 ± 0.2 μM). Eventually, this compound was used as a probe in a molecular dynamics simulation assay. Our results allowed us to propose an essential molecular basis for FXR antagonism, which is consistent with a previously reported antagonistic mechanism; furthermore, E467 on H12 was found to be a hot-spot residue and may be important for the future design of nonsteroidal antagonists of FXR.

  20. IL-1β, in contrast to TNFα, is pivotal in blood-induced cartilage damage and is a potential target for therapy.

    PubMed

    van Vulpen, Lize F D; Schutgens, Roger E G; Coeleveld, Katja; Alsema, Els C; Roosendaal, Goris; Mastbergen, Simon C; Lafeber, Floris P J G

    2015-11-01

    Joint bleeding after (sports) trauma, after major joint surgery, or as seen in hemophilia in general leads to arthropathy. Joint degeneration is considered to result from the direct effects of blood components on cartilage and indirectly from synovial inflammation. Blood-provided proinflammatory cytokines trigger chondrocytes and induce the production of cartilage-degrading proteases. In the presence of erythrocyte-derived iron, cytokines stimulate radical formation in the vicinity of chondrocytes inducing apoptosis. To unravel the role of interleukin (IL) 1β and tumor necrosis factor (TNF) α in the pathogenesis of this blood-induced cartilage damage, the effect of antagonizing these cytokines was examined in human in vitro cultures. Addition of recombinant human IL-1β monoclonal antibody or IL-1 receptor antagonist resulted in a dose- and time-dependent protection of cartilage from blood-induced damage. In higher concentrations, almost complete normalization of cartilage matrix proteoglycan turnover was achieved. This was accompanied by a reduction in IL-1β and IL-6 production in whole blood cultures, whereas TNFα production remained unaffected. Interestingly, addition of a TNFα monoclonal antibody, although demonstrated to inhibit the direct (transient) effects of TNFα on cartilage, exhibited no effect on blood-induced (prolonged) cartilage damage. It is demonstrated that IL-1β is crucial in the development of blood-induced joint damage, whereas TNFα is not. This hierarchical position of IL-1β in blood-induced joint damage warrants studies on targeting IL-1β to potentially prevent joint degeneration after a joint bleed.

  1. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  2. Update on the Mechanism of Action of Aripiprazole: Translational Insights into Antipsychotic Strategies Beyond Dopamine Receptor Antagonism.

    PubMed

    de Bartolomeis, Andrea; Tomasetti, Carmine; Iasevoli, Felice

    2015-09-01

    Dopamine partial agonism and functional selectivity have been innovative strategies in the pharmacological treatment of schizophrenia and mood disorders and have shifted the concept of dopamine modulation beyond the established approach of dopamine D2 receptor (D2R) antagonism. Despite the fact that aripiprazole was introduced in therapy more than 12 years ago, many questions are still unresolved regarding the complexity of the effects of this agent on signal transduction and intracellular pathways, in part linked to its pleiotropic receptor profile. The complexity of the mechanism of action has progressively shifted the conceptualization of this agent from partial agonism to functional selectivity. From the induction of early genes to modulation of scaffolding proteins and activation of transcription factors, aripiprazole has been shown to affect multiple cellular pathways and several cortical and subcortical neurotransmitter circuitries. Growing evidence shows that, beyond the consequences of D2R occupancy, aripiprazole has a unique neurobiology among available antipsychotics. The effect of chronic administration of aripiprazole on D2R affinity state and number has been especially highlighted, with relevant translational implications for long-term treatment of psychosis. The hypothesized effects of aripiprazole on cell-protective mechanisms and neurite growth, as well as the differential effects on intracellular pathways [i.e. extracellular signal-regulated kinase (ERK)] compared with full D2R antagonists, suggest further exploration of these targets by novel and future biased ligand compounds. This review aims to recapitulate the main neurobiological effects of aripiprazole and discuss the potential implications for upcoming improvements in schizophrenia therapy based on dopamine modulation beyond D2R antagonism.

  3. GABAA receptor antagonism at the hypoglossal motor nucleus increases genioglossus muscle activity in NREM but not REM sleep.

    PubMed

    Morrison, Janna L; Sood, Sandeep; Liu, Hattie; Park, Eileen; Nolan, Philip; Horner, Richard L

    2003-04-15

    The pharyngeal muscles, such as the genioglossus (GG) muscle of the tongue, are important for effective lung ventilation since they maintain an open airspace. Rapid-eye-movement (REM) sleep, however, recruits powerful neural mechanisms that can abolish GG activity, even during strong reflex respiratory stimulation by elevated CO2. In vitro studies have demonstrated the presence of GABAA receptors on hypoglossal motoneurons, and these and other data have led to the speculation that GABAA mechanisms may contribute to the suppression of hypoglossal motor outflow to the GG muscle in REM sleep. We have developed an animal model that allows us to chronically manipulate neurotransmission at the hypoglossal motor nucleus using microdialysis across natural sleep-wake states in rats. The present study tests the hypothesis that microdialysis perfusion of the GABAA receptor antagonist bicuculline into the hypoglossal motor nucleus will prevent the suppression of GG muscle activity in REM sleep during both room-air and CO2-stimulated breathing. Ten rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and GG and diaphragm electrodes for respiratory muscle recording. Microdialysis probes were implanted into the hypoglossal motor nucleus for perfusion of artificial cerebrospinal fluid (ACSF) or 100 microM bicuculline during room-air and CO2-stimulated breathing (7 % inspired CO2). GABAA receptor antagonism at the hypoglossal motor nucleus increased respiratory-related GG activity during both room-air (P = 0.01) and CO2-stimulated breathing (P = 0.007), indicating a background inhibitory GABA tone. However, the effects of bicuculline on GG activity depended on the prevailing sleep-wake state (P < 0.005), with bicuculline increasing GG activity in non-REM (NREM) sleep and wakefulness both in room air and hypercapnia (P < 0.01), but GG activity was effectively abolished in those REM periods without phasic twitches in the GG muscle

  4. Alix/AIP1 antagonizes epidermal growth factor receptor downregulation by the Cbl-SETA/CIN85 complex.

    PubMed

    Schmidt, Mirko H H; Hoeller, Daniela; Yu, Jiuhong; Furnari, Frank B; Cavenee, Webster K; Dikic, Ivan; Bögler, Oliver

    2004-10-01

    The assembly of the Cbl-SETA/CIN85-endophilin complex at the C terminus of the epidermal growth factor receptor (EGFR) following ligand activation mediates its internalization and ubiquitination. We found that the SETA/CIN85-interacting protein Alix/AIP1, which also binds endophilins, modulates this complex. Alix was found to associate indirectly with EGFR, regardless of its activation state, and with DeltaEGFR, which signals at low intensity and does not bind Cbls or SETA/CIN85. In agreement with this, Alix interaction did not occur via SETA/CIN85. However, SETA/CIN85 and Alix were capable of mutually promoting their interaction with the EGFR. Increasing the level of Alix weakened the interaction between SETA/CIN85 and Cbl and reduced the tyrosine phosphorylation of c-Cbl and the level of ubiquitination of EGFR, SETA/CIN85, and Cbls. This antagonism of the Cbl-SETA/CIN85 complex by Alix was reflected in its diminution of EGFR internalization. In agreement with this, small interfering RNA-mediated knockdown of Alix promoted EGFR internalization and downregulation. It has been suggested that SETA/CIN85 promotes receptor internalization by recruiting endophilins. However, Alix was also capable of increasing the level of endophilin associated with EGFR, implying that this is not sufficient to promote receptor internalization. We propose that Alix inhibits EGFR internalization by attenuating the interaction between Cbl and SETA/CIN85 and by inhibiting Cbl-mediated ubiquitination of the EGFR.

  5. The IL-1 Pathway in Type 2 Diabetes and Cardiovascular Complications.

    PubMed

    Herder, Christian; Dalmas, Elise; Böni-Schnetzler, Marianne; Donath, Marc Y

    2015-10-01

    Patients with type 2 diabetes (T2D) exhibit chronic activation of the innate immune system in pancreatic islets, in insulin-sensitive tissues, and at sites of diabetic complications. This results from a pathological response to overnutrition and physical inactivity seen in genetically predisposed individuals. Processes mediated by the proinflammatory cytokine interleukin-1 (IL-1) link obesity and dyslipidemia and have implicated IL-1β in T2D and related cardiovascular complications. Epidemiological, molecular, and animal studies have now assigned a central role for IL-1β in driving tissue inflammation during metabolic stress. Proof-of-concept clinical studies have validated IL-1β as a target to improve insulin production and action in patients with T2D. Large ongoing clinical trials will address the potential of IL-1 antagonism to prevent cardiovascular and other related complications. PMID:26412156

  6. Structure and function of chicken interleukin-1 beta mutants: uncoupling of receptor binding and in vivo biological activity

    PubMed Central

    Chen, Wen-Ting; Huang, Wen-Yang; Chen, Ting; Salawu, Emmanuel Oluwatobi; Wang, Dongli; Lee, Yi-Zong; Chang, Yuan-Yu; Yang, Lee-Wei; Sue, Shih-Che; Wang, Xinquan; Yin, Hsien-Sheng

    2016-01-01

    Receptor-binding and subsequent signal-activation of interleukin-1 beta (IL-1β) are essential to immune and proinflammatory responses. We mutated 12 residues to identify sites important for biological activity and/or receptor binding. Four of these mutants with mutations in loop 9 (T117A, E118K, E118A, E118R) displayed significantly reduced biological activity. Neither T117A nor E118K mutants substantially affected receptor binding, whereas both mutants lack the IL-1β signaling in vitro but can antagonize wild-type (WT) IL-1β. Crystal structures of T117A, E118A, and E118K revealed that the secondary structure or surface charge of loop 9 is dramatically altered compared with that of wild-type chicken IL-1β. Molecular dynamics simulations of IL-1β bound to its receptor (IL-1RI) and receptor accessory protein (IL-1RAcP) revealed that loop 9 lies in a pocket that is formed at the IL-1RI/IL-1RAcP interface. This pocket is also observed in the human ternary structure. The conformations of above mutants in loop 9 may disrupt structural packing and therefore the stability in a chicken IL-1β/IL-1RI/IL-1RAcP signaling complex. We identify the hot spots in IL-1β that are essential to immune responses and elucidate a mechanism by which IL-1β activity can be inhibited. These findings should aid in the development of new therapeutics that neutralize IL-1 activity. PMID:27278931

  7. A selective sigma-2 receptor ligand antagonizes cocaine-induced hyperlocomotion in mice.

    PubMed

    Lever, John R; Miller, Dennis K; Green, Caroline L; Fergason-Cantrell, Emily A; Watkinson, Lisa D; Carmack, Terry L; Fan, Kuo-Hsien; Lever, Susan Z

    2014-02-01

    Cocaine functions, in part, through agonist actions at sigma-1 (σ1 ) receptors, while roles played by sigma-2 (σ2 ) receptors are less established. Attempts to discriminate σ2 receptor-mediated effects of cocaine in locomotor hyperactivity assays have been hampered by the lack of potent and selective antagonists. Certain tetrahydroisoquinolinyl benzamides display high σ2 receptor affinity, and excellent selectivity for binding to σ2 over σ1 receptors. The behavioral properties of this structural class of σ ligands have not yet been investigated. The present study evaluated 5-bromo-N-[4-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-butyl)]-2,3-dimethoxy-benzamide, 1, a ligand shown by others to bind preferentially to σ2 over σ1 receptors, as well as dopamine D2 and D3 sites. First, we determined binding to monoamine transporters and opioid receptors, and noted 57-fold selectivity for σ2 receptors over the serotonin transporter, and >800-fold selectivity for σ2 receptors over the other sites tested. We then examined 1 in locomotor activity studies using male CD-1® mice, and saw no alteration of basal activity at doses up to 31.6 µmol/kg. Cocaine produced a fivefold increase in locomotor activity, which was attenuated by 66% upon pretreatment of mice with 1 at 31.6 µmol/kg. In vivo radioligand binding studies also were performed, and showed no occupancy of σ1 receptors or the dopamine transporter by 1, or its possible metabolites, at the 31.6 µmol/kg dose. Thus, ligand 1 profiles behaviorally as a σ2 receptor-selective antagonist that is able to counteract cocaine's motor stimulatory effects.

  8. NK1 receptor antagonism lowers occupancy requirement for antidepressant-like effects of SSRIs in the gerbil forced swim test.

    PubMed

    Lelas, Snjezana; Li, Yu-Wen; Wallace-Boone, Tanya L; Taber, Matthew T; Newton, Amy E; Pieschl, Rick L; Davis, Carl D; Molski, Thaddeus F; Newberry, Kimberly S; Parker, Michael F; Gillman, Kevin W; Bronson, Joanne J; Macor, John E; Lodge, Nicholas J

    2013-10-01

    The known interactions between the serotonergic and neurokinin systems suggest that serotonin reuptake inhibitor (SSRIs) efficacy may be improved by neurokinin-1 receptor (NK1R) antagonism. In the current studies combination of a subeffective dose of an SSRI (0.3 mg/kg fluoxetine or 0.03 mg/kg citalopram) with a subeffective dose of an NK1R antagonist (0.3 mg/kg aprepitant or 1 mg/kg CP-122,721) produced efficacy in the gerbil forced swim test (FST). Serotonin transporter (SERT) occupancy produced by 1 mg/kg fluoxetine (lowest efficacious dose) was 52 ± 5% and was reduced to 29 ± 4% at 0.3 mg/kg, a dose that was efficacious in combination with 0.3 mg/kg aprepitant or 1 mg/kg CP-122,721; the corresponding NK1R occupancies were 79 ± 4% and 61 ± 4% for aprepitant and CP-122,721, respectively. For citalopram, SERT occupancy at the lowest efficacious dose (0.1 mg/kg) was 50 ± 4% and was reduced to 20 ± 5% at 0.03 mg/kg, a dose that was efficacious when combined with aprepitant (0.3 mg/kg). Aprepitant (10 mg/kg) augmented the serotonin elevation produced by fluoxetine (1 or 10 mg/kg) in the gerbil prefrontal cortex; i.e. NK1R antagonism can modulate serotonin responses. A novel orally-available dual-acting NK1R antagonist/SERT inhibitor BMS-795176 is described; gerbil Ki = 1.4 and 1 nM at NK1R and SERT, respectively. BMS-795176 was efficacious in the gerbil FST; efficacy was observed with 35 ± 3% SERT occupancy and 73 ± 3% NK1R occupancy. The interaction between NK1R antagonism and SERT inhibition to lower the SERT occupancy required for antidepressant-like efficacy suggests that BMS-795176 has the potential to improve efficacy with a reduction in SSRI-associated side effects. PMID:23770339

  9. NK1 receptor antagonism lowers occupancy requirement for antidepressant-like effects of SSRIs in the gerbil forced swim test.

    PubMed

    Lelas, Snjezana; Li, Yu-Wen; Wallace-Boone, Tanya L; Taber, Matthew T; Newton, Amy E; Pieschl, Rick L; Davis, Carl D; Molski, Thaddeus F; Newberry, Kimberly S; Parker, Michael F; Gillman, Kevin W; Bronson, Joanne J; Macor, John E; Lodge, Nicholas J

    2013-10-01

    The known interactions between the serotonergic and neurokinin systems suggest that serotonin reuptake inhibitor (SSRIs) efficacy may be improved by neurokinin-1 receptor (NK1R) antagonism. In the current studies combination of a subeffective dose of an SSRI (0.3 mg/kg fluoxetine or 0.03 mg/kg citalopram) with a subeffective dose of an NK1R antagonist (0.3 mg/kg aprepitant or 1 mg/kg CP-122,721) produced efficacy in the gerbil forced swim test (FST). Serotonin transporter (SERT) occupancy produced by 1 mg/kg fluoxetine (lowest efficacious dose) was 52 ± 5% and was reduced to 29 ± 4% at 0.3 mg/kg, a dose that was efficacious in combination with 0.3 mg/kg aprepitant or 1 mg/kg CP-122,721; the corresponding NK1R occupancies were 79 ± 4% and 61 ± 4% for aprepitant and CP-122,721, respectively. For citalopram, SERT occupancy at the lowest efficacious dose (0.1 mg/kg) was 50 ± 4% and was reduced to 20 ± 5% at 0.03 mg/kg, a dose that was efficacious when combined with aprepitant (0.3 mg/kg). Aprepitant (10 mg/kg) augmented the serotonin elevation produced by fluoxetine (1 or 10 mg/kg) in the gerbil prefrontal cortex; i.e. NK1R antagonism can modulate serotonin responses. A novel orally-available dual-acting NK1R antagonist/SERT inhibitor BMS-795176 is described; gerbil Ki = 1.4 and 1 nM at NK1R and SERT, respectively. BMS-795176 was efficacious in the gerbil FST; efficacy was observed with 35 ± 3% SERT occupancy and 73 ± 3% NK1R occupancy. The interaction between NK1R antagonism and SERT inhibition to lower the SERT occupancy required for antidepressant-like efficacy suggests that BMS-795176 has the potential to improve efficacy with a reduction in SSRI-associated side effects.

  10. Selective expression of latency-associated peptide (LAP) and IL-1 receptor type I/II (CD121a/CD121b) on activated human FOXP3+ regulatory T cells allows for their purification from expansion cultures

    PubMed Central

    Andersson, John; Hardwick, Donna; Bebris, Lolita; Illei, Gabor G.

    2009-01-01

    Although adoptive transfer of regulatory T cells (Foxp3+ Tregs) has proven to be efficacious in the prevention and treatment of autoimmune diseases and graft-versus-host disease in rodents, a major obstacle for the use of Treg immunotherapy in humans is the difficulty of obtaining a highly purified preparation after ex vivo expansion. We have identified latency-associated peptide (LAP) and IL-1 receptor type I and II (CD121a/CD121b) as unique cell-surface markers that distinguish activated Tregs from activated FOXP3− and FOXP3+ non-Tregs. We show that it is feasible to sort expanded FOXP3+ Tregs from non-Tregs with the use of techniques for magnetic bead cell separation based on expression of these 3 markers. After separation, the final product contains greater than 90% fully functional FOXP3+ Tregs. This novel protocol should facilitate the purification of Tregs for both cell-based therapies as well as detailed studies of human Treg function in health and disease. PMID:19299332

  11. Type 2 Interleukin-4 Receptor Signaling in Neutrophils Antagonizes Their Expansion and Migration during Infection and Inflammation.

    PubMed

    Woytschak, Janine; Keller, Nadia; Krieg, Carsten; Impellizzieri, Daniela; Thompson, Robert W; Wynn, Thomas A; Zinkernagel, Annelies S; Boyman, Onur

    2016-07-19

    Neutrophils are the first immune cells recruited to sites of inflammation and infection. However, patients with allergic disorders such as atopic dermatitis show a paucity of skin neutrophils and are prone to bacterial skin infections, suggesting that allergic inflammation curtails neutrophil responses. Here we have shown that the type 2 cell signature cytokine interleukin-4 (IL-4) hampers neutrophil expansion and migration by antagonizing granulocyte colony-stimulating factor (G-CSF) and chemokine receptor-mediated signals. Cutaneous bacterial infection in mice was exacerbated by IL-4 signaling and improved with IL-4 inhibition, each outcome inversely correlating with neutrophil migration to skin. Likewise, systemic bacterial infection was worsened by heightened IL-4 activity, with IL-4 restricting G-CSF-induced neutrophil expansion and migration to tissues by affecting CXCR2-CXCR4 chemokine signaling in neutrophils. These effects were dependent on IL-4 acting through type 2 IL-4 receptors on neutrophils. Thus, targeting IL-4 might be beneficial in neutropenic conditions with increased susceptibility to bacterial infections. PMID:27438770

  12. Soluble IL-1RII and IL-18 are associated with incipient upper extremity soft tissue disorders.

    PubMed

    Rechardt, Martti; Shiri, Rahman; Matikainen, Sampsa; Viikari-Juntura, Eira; Karppinen, Jaro; Alenius, Harri

    2011-05-01

    Previous studies suggest a role for IL-1β in the pathophysiology of upper extremity soft tissue disorders (UESTDs). We studied the levels of interleukin-1 family members in patients with incipient UESTDs and compared them with healthy controls. In this case control study, we included 163 patients with UESTDs and symptom duration shorter than 1 month and 42 healthy controls matched for age and gender at the group level. Serum levels of cytokines IL-1α, IL-1β, IL-1Ra, IL-6, IL-8, IL-18, IL-33, TNFα and sensitized C-reactive protein as well as IL-1 family soluble receptors sIL-1RII and sST2 were assessed. We used unconditional logistic regression models to study the associations between cytokines and UESTDs. After adjustment for potential confounders, the serum levels of sIL-1RII (p<0.001) and sST2 (p=0.014) were higher in the patients than the controls. The level of IL-18 was lower in the patients than the controls (p=0.005). There were no significant differences between the patients and controls regarding the levels of IL-1α, IL-1β, IL-1Ra, IL-33, IL-6, IL-8, TNFα, or sensitized C-reactive protein. The levels of circulating sIL-1RII and IL-18 are associated with incipient UESTDs, suggesting an important role for these IL-1 family members in the early course of UESTDs. PMID:21371906

  13. Platelet-activating factor receptor antagonism targets neuroinflammation in experimental epilepsy

    PubMed Central

    Musto, Alberto E.; Samii, Mark

    2010-01-01

    Purpose Temporal lobe epilepsy is associated with the inflammatory process related to the basic mechanisms that lead to seizure susceptibility and brain damage. Platelet-activating factor (PAF), a potent, short-lived phospholipid mediator of inflammation participates in physiological signaling in the brain. However, after seizures PAF accumulates in the brain and activates intracellular signaling related with inflammation-mediated excitotoxicity and hippocampal hyperexcitability. The objective of this study is to evaluate the effect of PAF antagonism on hippocampal hyperexcitability, seizure susceptibility and neuroprotection using the kindling paradigm and pilocarpine-induced seizure damage models. Methods The PAF antagonist, LAU-0901 (60 mg/kg, i.p.), or vehicle was administrated each day of kindling or daily during the four weeks after status epilepticus (SE). We analyzed seizure severity, electrical activity, cellular damage and inflammation in the hippocampi of both treated groups. Results LAU-0901 limits the progression of kindling and attenuates seizure susceptibility one week after the kindling procedure. Also, under the seizure-damage conditions studied here, we observed that LAU-0901 induces hippocampal neuroprotection and limits somatostatin interneuronal cell loss and inflammation. Discussion Our results indicate that modulation of PAF over-activity attenuates seizure susceptibility, hippocampal hyperexcitability and neuroinflammation. PMID:21204830

  14. Differential regulation of peripheral IL-1β-induced mechanical allodynia and thermal hyperalgesia in rats.

    PubMed

    Kim, Min J; Lee, Sang Y; Yang, Kui Y; Nam, Soon H; Kim, Hyun J; Kim, Young J; Bae, Yong C; Ahn, Dong K

    2014-04-01

    This study examined the differential mechanisms of mechanical allodynia and thermal hyperalgesia after injection of interleukin (IL) 1β into the orofacial area of male Sprague-Dawley rats. The subcutaneous administration of IL-1β produced both mechanical allodynia and thermal hyperalgesia. Although a pretreatment with iodoresiniferatoxin (IRTX), a transient receptor potential vanilloid 1 (TRPV1) antagonist, did not affect IL-1β-induced mechanical allodynia, it significantly abolished IL-1β-induced thermal hyperalgesia. On the other hand, a pretreatment with D-AP5, an N-methyl-d-aspartate (NMDA) receptor antagonist, and NBQX, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, blocked IL-1β-induced mechanical allodynia. Pretreatment with H89, a protein kinase A (PKA) inhibitor, blocked IL-1β-induced mechanical allodynia but not thermal hyperalgesia. In contrast, pretreatment with chelerythrine, a protein kinase C (PKC) inhibitor, inhibited IL-1β-induced thermal hyperalgesia. Subcutaneous injections of 2% lidocaine, a local anesthetic agent, blocked IL-1β-induced thermal hyperalgesia but not IL-1β-induced mechanical allodynia. In the resiniferatoxin (RTX)-pretreated rats, a subcutaneous injection of IL-1β did not produce thermal hyperalgesia due to the depletion of TRPV1 in the primary afferent fibers. Double immunofluorescence revealed the colocalization of PKA with neurofilament 200 (NF200) and of PKC with the calcitonin gene-related peptide (CGRP) in the trigeminal ganglion. Furthermore, NMDA receptor 1 (NR1) and TRPV1 predominantly colocalize with PKA and PKC, respectively, in the trigeminal ganglion. These results suggest that IL-1β-induced mechanical allodynia is mediated by sensitized peripheral NMDA/AMPA receptors through PKA-mediated signaling in the large-diameter primary afferent nerve fibers, whereas IL-1β-induced thermal hyperalgesia is mediated by sensitized peripheral TRPV1 receptors through PKC

  15. Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling

    PubMed Central

    Beltrami-Moreira, Marina; Vromman, Amélie; Sukhova, Galina K.; Folco, Eduardo J.; Libby, Peter

    2016-01-01

    Aims Mice deficient in IL-1 receptor 1 (hence unresponsive to both IL-1 isoforms α and β) have impaired expansive arterial remodeling due to diminished expression of matrix-degrading enzymes, especially MMP-3. Emergence of IL-1 as a target in cardiovascular disease prompted the investigation of the redundancy of IL-1α and IL-1β in the induction of MMP-3 and other matrix-remodeling enzymes in human cells. Methods and Results Human primary vascular smooth muscle cells (VSMCs) and carotid endarterectomy specimens were stimulated with equimolar concentrations of IL-1α or IL-1β and analyzed protease expression by immunoblot and ELISA. Either IL-1α or IL-1β increased the expression of pro-MMP-3 in VSMCs, facilitated VSMC migration through Matrigel, and induced MMP-3 production in specimens from atheromatous plaques. VSMCs also secreted MMP-1 and Cathepsin S (CatS) upon stimulation with IL-1α or IL-1β. IL-1 isoforms similarly increased MMP-1 and MMP-9 expression in carotid endarterectomy specimens. We examined the expression of MMP-3 and IL-1 isoforms by immunostaining of carotid atheromata, calculated the % positive areas, and tested associations by linear regression. MMP-3 colocalized with IL-1 isoforms in atheromata. MMP-3+ area in plaques positively associated with IL-1α+ (R2 = 0.61, P<0.001) and with IL-1β + areas (R2 = 0.68, P<0.001). MMP-3+ area within atheroma also associated with CD68+ area, but not with α-smooth muscle actin area. Conclusions Either IL-1α or IL-1β can induce the expression of enzymes implicated in remodeling of the arterial extracellular matrix, and facilitate human VSMC migration in vitro. Human atheromata contain both IL-1 isoforms in association with immunoreactive MMP-3. This redundancy of IL-1 isoforms suggests that selective blocking of one IL-1 isoform should not impair expansive arterial remodeling, a finding with important clinical implications for therapeutic targeting of IL-1 in atherosclerosis. PMID:27032103

  16. Endomorphin analogues with mixed μ-opioid (MOP) receptor agonism/δ-opioid (DOP) receptor antagonism and lacking β-arrestin2 recruitment activity.

    PubMed

    Cai, Jun; Song, Bowen; Cai, Yunxin; Ma, Yu; Lam, Ai-Leen; Magiera, Julia; Sekar, Sunder; Wyse, Bruce D; Ambo, Akihiro; Sasaki, Yusuke; Lazarus, Lawrence H; Smith, Maree T; Li, Tingyou

    2014-04-01

    Analogues of endomorphin (Dmt-Pro-Xaa-Xaa-NH2) modified at position 4 or at positions 4 and 3, and tripeptides (Dmt-Pro-Xaa-NH2) modified at position 3, with various phenylalanine analogues (Xaa=Trp, 1-Nal, 2-Nal, Tmp, Dmp, Dmt) were synthesized and their effects on in vitro opioid activity were investigated. Most of the peptides exhibited high μ-opioid (MOP) receptor binding affinity (KiMOP=0.13-0.81nM), modest MOP-selectivity (Kiδ-opioid (DOP)/KiMOP=3.5-316), and potent functional MOP agonism (GPI, IC50=0.274-249nM) without DOP and κ-opioid (KOP) receptor agonism. Among them, compounds 7 (Dmt-Pro-Tmp-Tmp-NH2) and 9 (Dmt-Pro-1-Nal-NH2) were opioids with potent mixed MOP receptor agonism/DOP receptor antagonism and devoid of β-arrestin2 recruitment activity. They may offer a unique template for the discovery of potent analgesics that produce less respiratory depression, less gastrointestinal dysfunction and that have a lower propensity to induce tolerance and dependence compared with morphine.

  17. Differential Modulation of Reinforcement Learning by D2 Dopamine and NMDA Glutamate Receptor Antagonism

    PubMed Central

    Klein, Tilmann A.; Ullsperger, Markus

    2014-01-01

    The firing pattern of midbrain dopamine (DA) neurons is well known to reflect reward prediction errors (PEs), the difference between obtained and expected rewards. The PE is thought to be a crucial signal for instrumental learning, and interference with DA transmission impairs learning. Phasic increases of DA neuron firing during positive PEs are driven by activation of NMDA receptors, whereas phasic suppression of firing during negative PEs is likely mediated by inputs from the lateral habenula. We aimed to determine the contribution of DA D2-class and NMDA receptors to appetitively and aversively motivated reinforcement learning. Healthy human volunteers were scanned with functional magnetic resonance imaging while they performed an instrumental learning task under the influence of either the DA D2 receptor antagonist amisulpride (400 mg), the NMDA receptor antagonist memantine (20 mg), or placebo. Participants quickly learned to select (“approach”) rewarding and to reject (“avoid”) punishing options. Amisulpride impaired both approach and avoidance learning, while memantine mildly attenuated approach learning but had no effect on avoidance learning. These behavioral effects of the antagonists were paralleled by their modulation of striatal PEs. Amisulpride reduced both appetitive and aversive PEs, while memantine diminished appetitive, but not aversive PEs. These data suggest that striatal D2-class receptors contribute to both approach and avoidance learning by detecting both the phasic DA increases and decreases during appetitive and aversive PEs. NMDA receptors on the contrary appear to be required only for approach learning because phasic DA increases during positive PEs are NMDA dependent, whereas phasic decreases during negative PEs are not. PMID:25253860

  18. Evaluation of age-dependent response to NMDA receptor antagonism in zebrafish.

    PubMed

    Menezes, Fabiano Peres; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2015-04-01

    Imbalances in glutamatergic signaling have been proposed as the cause of several neurological disturbances. The use of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, to mimic features of these neurological disorders is effective both in mammals and in fish. However, the variability of the subunits comprising the NMDA receptor during development alters the pharmacokinetic properties of the receptor and leads to different responses to this drug. Here, we evaluated the locomotor response of zebrafish to MK-801 (1, 5, and 20 μM) through the development (30 days postfertilization [dpf] to 2 years postfertilization [ypf]). The NMDA receptor subunit gene expression was also analyzed through the development (7 dpf to 2 ypf). Zebrafish displayed an age-related response to MK-801 with a higher response at 60 and 120 dpf. The magnitude of hyperlocomotion promoted by MK-801 seems to be less powerful for zebrafish in relation to rodents. The verification of expression levels in zebrafish NMDA receptor subunits shows that NR1.1 had a slight reduction throughout the development, while the NR2 subunits, especially NR2A.2 and NR2C.1, vary their expression levels according to the stage of development. The time-specific locomotor response to MK-801 through the development could be a consequence of differential NMDA receptor subunit expression. This result of developmental response to MK-801 is a crucial component in the consolidation of zebrafish as a suitable model to study glutamatergic neurotransmission in early phases.

  19. Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle.

    PubMed

    Li, Aihua; Nattie, Eugene

    2010-08-01

    Central chemoreception, the highly sensitive ventilatory response to small changes in CO(2)/pH, involves many sites. Hypothalamic orexin neurons are CO(2) sensitive in vitro, prepro-orexin knockout mice have a reduced CO(2) response prominently in wakefulness, and focal antagonism of the orexin receptor 1 (OX(1)R) in two central chemoreceptor sites, the retrotrapezoid nucleus (RTN) or the medullary raphé, results in a reduction of the CO(2) response predominately in wakefulness (-30% and -16%, respectively). Here we hypothesize that acute and selective inhibition of both orexin receptors (OX(1)R and OX(2)R) at all central locations by an orally administered dual orexin receptor antagonist, almorexant, will substantially attenuate the CO(2) response in a vigilance-state- and diurnal-cycle-dependent manner. We found that almorexant attenuated the CO(2) response by 26% only in wakefulness during the dark period of the diurnal cycle to a level observed during NREM sleep in the light period in controls suggesting that the sleep-wake difference in the CO(2) response can be in large part attributed to orexin. Almorexant also decreased wakefulness and increased NREM and REM sleep during the dark period, as previously reported, and unexpectedly decreased the number of sighs and post-sigh apnoeas during wakefulness in both the light and the dark period and during both wakefulness and NREM sleep in the dark period. The results support our hypothesis that the orexin system participates importantly in central chemoreception in a vigilance-state- and diurnal-cycle-dependent manner and indicate a role for orexin in the important process of sighing.

  20. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism

    PubMed Central

    Kiselycznyk, Carly; Jury, Nicholas; Halladay, Lindsay; Nakazawa, Kazu; Mishina, Masayoshi; Sprengel, Rolf; Grant, Seth G.N.; Svenningsson, Per; Holmes, Andrew

    2015-01-01

    Drugs targeting the glutamate N-methyl-D-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR. PMID:25800971

  1. Dorsal versus ventral hippocampal contributions to trace and contextual conditioning: differential effects of regionally selective NMDA receptor antagonism on acquisition and expression.

    PubMed

    Czerniawski, Jennifer; Ree, Fredrick; Chia, Chester; Otto, Tim

    2012-07-01

    The dorsal and ventral subregions of the hippocampus likely play dissociable roles in some forms of learning. For example, we have previously demonstrated that temporary inactivation of ventral, but not dorsal, hippocampus dramatically impaired the acquisition of trace fear conditioning, while temporary inactivation of dorsal, but not ventral, hippocampus impaired spatially guided reinforced alternation (Czerniawski et al. (2009) Hippocampus 19:20-32). Importantly, emerging data suggest that lesions, temporary inactivation, and NMDA receptor antagonism within these subregions can produce quite different patterns of behavioral effects when administered into the same region. Specifically, while neither lesions nor temporary inactivation of dorsal hippocampus impair the acquisition of trace fear conditioning, learning in this paradigm is severely impaired by pre-training administration of the NMDA receptor antagonist dl-2-phosphonovaleric acid (APV) in dorsal hippocampus; the effect of NMDA receptor antagonism within ventral hippocampus on the acquisition and expression of trace conditioning, or on learning in general, has not yet been systematically explored. The present study extends our previous work examining the differential effect of lesions or inactivation of the dorsal and ventral hippocampal subregions by systematically examining the effect of regionally selective pre-training or pre-testing administration of APV on the acquisition and expression of trace and contextual fear conditioning. The results of these studies demonstrate that while pre-training NMDA receptor antagonism within either the dorsal or ventral subregion of the hippocampus impaired the acquisition of both trace and contextual conditioning, pre-testing NMDA receptor antagonism within ventral, but not dorsal, hippocampus impaired the expression of previously-acquired trace and contextual fear conditioning. These data suggest that selectively manipulating the integrity of individual subregions

  2. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Ballerini, C; Aldinucci, A; Luccarini, I; Galante, A; Manuelli, C; Blandina, P; Katebe, M; Chazot, P L; Masini, E; Passani, M B

    2013-01-01

    Background and Purpose The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). Experimental Approach We induced EAE with myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35–55 antibody production, assay of T-cell proliferation by [3H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. Key Results Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35–55 T-cells, anti-MOG35–55 antibody production or mononucleate cell phenotype. Conclusions and Implications H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http

  3. HIV-1 Env gp120 Structural Determinants for Peptide Triazole Dual Receptor Site Antagonism

    PubMed Central

    Tuzer, Ferit; Madani, Navid; Kamanna, Kantharaju; Zentner, Isaac; LaLonde, Judith; Holmes, Andrew; Upton, Elizabeth; Rajagopal, Srivats; McFadden, Karyn; Contarino, Mark; Sodroski, Joseph; Chaiken, Irwin

    2013-01-01

    Despite advances in HIV therapy, viral resistance and side-effects with current drug regimens require targeting new components of the virus. Dual antagonist peptide triazoles (PT) are a novel class of HIV-1 inhibitors that specifically target the gp120 component of the viral spike and inhibit its interaction with both of its cell surface protein ligands, namely the initial receptor CD4 and the co-receptor (CCR5/CXCR4), thus preventing viral entry. Following an initial survey of 19 gp120 alanine mutants by ELISA, we screened 11 mutants for their importance in binding to, and inhibition by the PT KR21 using surface plasmon resonance. Key mutants were purified and tested for their effects on the peptide’s affinity and its ability to inhibit binding of CD4 and the co-receptor surrogate mAb 17b. Effects of the mutations on KR21 viral neutralization were measured by single-round cell infection assays. Two mutations, D474A and T257A, caused large-scale loss of KR21 binding, as well as losses in both CD4/17b and viral inhibition by KR21. A set of other Ala mutants revealed more moderate losses in direct binding affinity and inhibition sensitivity to KR21. The cluster of sensitive residues defines a PT functional epitope. This site is in a conserved region of gp120 that overlaps the CD4 binding site and is distant from the co-receptor/17b binding site, suggesting an allosteric mode of inhibition for the latter. The arrangement and sequence conservation of the residues in the functional epitope explain the breadth of antiviral activity, and improve the potential for rational inhibitor development. PMID:23011758

  4. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism.

    PubMed

    Neill, Joanna C; Barnes, Samuel; Cook, Samantha; Grayson, Ben; Idris, Nagi F; McLean, Samantha L; Snigdha, Shikha; Rajagopal, Lakshmi; Harte, Michael K

    2010-12-01

    Cognitive deficits in schizophrenia remain an unmet clinical need. Improved understanding of the neuro- and psychopathology of these deficits depends on the availability of carefully validated animal models which will assist the development of novel therapies. There is much evidence that at least some of the pathology and symptomatology (particularly cognitive and negative symptoms) of schizophrenia results from a dysfunction of the glutamatergic system which may be modelled in animals through the use of NMDA receptor antagonists. The current review examines the validity of this model in rodents. We review the ability of acute and sub-chronic treatment with three non-competitive NMDA antagonists; phencyclidine (PCP), ketamine and MK801 (dizocilpine) to produce cognitive deficits of relevance to schizophrenia in rodents and their subsequent reversal by first- and second-generation antipsychotic drugs. Effects of NMDA receptor antagonists on the performance of rodents in behavioural tests assessing the various domains of cognition and negative symptoms are examined: novel object recognition for visual memory, reversal learning and attentional set shifting for problem solving and reasoning, 5-Choice Serial Reaction Time for attention and speed of processing; in addition to effects on social behaviour and neuropathology. The evidence strongly supports the use of NMDA receptor antagonists to model cognitive deficit and negative symptoms of schizophrenia as well as certain pathological disturbances seen in the illness. This will facilitate the evaluation of much-needed novel pharmacological agents for improved therapy of cognitive deficits and negative symptoms in schizophrenia.

  5. Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease

    PubMed Central

    Takahashi, Hiroto; Xia, Peng; Cui, Jiankun; Talantova, Maria; Bodhinathan, Karthik; Li, Wenjun; Holland, Emily A.; Tong, Gary; Piña-Crespo, Juan; Zhang, Dongxian; Nakanishi, Nobuki; Larrick, James W.; McKercher, Scott R.; Nakamura, Tomohiro; Wang, Yuqiang; Lipton, Stuart A.

    2015-01-01

    Stroke and vascular dementia are leading causes of morbidity and mortality. Neuroprotective therapies have been proposed but none have proven clinically tolerated and effective. While overstimulation of N-methyl-d-aspartate-type glutamate receptors (NMDARs) is thought to contribute to cerebrovascular insults, the importance of NMDARs in physiological function has made this target, at least in the view of many in ‘Big Pharma,’ ‘undruggable’ for this indication. Here, we describe novel NitroMemantine drugs, comprising an adamantane moiety that binds in the NMDAR-associated ion channel that is used to target a nitro group to redox-mediated regulatory sites on the receptor. The NitroMemantines are both well tolerated and effective against cerebral infarction in rodent models via a dual allosteric mechanism of open-channel block and NO/redox modulation of the receptor. Targeted S-nitrosylation of NMDARs by NitroMemantine is potentiated by hypoxia and thereby directed at ischemic neurons. Allosteric approaches to tune NMDAR activity may hold therapeutic potential for cerebrovascular disorders. PMID:26477507

  6. P2X7 receptor antagonism improves renal blood flow and oxygenation in angiotensin-II infused rats

    PubMed Central

    Menzies, Robert I.; Howarth, Amelia R.; Unwin, Robert J.; Tam, Frederick W.K.; Mullins, John J.; Bailey, Matthew A.

    2015-01-01

    Chronic activation of the renin angiotensin system promotes hypertension, renal microvascular dysfunction, tissue hypoxia and inflammation. We found previously that the injurious response to excess angiotensin II (ANGII) is greater in F344 rats, whereas Lewis rats are renoprotected, despite similar hypertension. We further identified p2rx7, encoding the P2X7 receptor (P2X7R), as a candidate gene for differential susceptibility and here we have tested the hypothesis that activation of P2X7R promotes vascular dysfunction under high ANGII tone. 14-day infusion of ANGII at 30ng/min into F344 rats increased blood pressure by ~15mmHg without inducing fibrosis or albuminuria. In vivo pressure natriuresis was suppressed, medullary perfusion reduced by ~50% and the cortico-medullary oxygenation gradient disrupted. Selective P2X7R antagonism restored pressure natriuresis, promoting a significant leftward shift in the intercept and increasing the slope. Sodium excretion was increased 6 fold and blood pressure normalized. The specific P2X7R antagonist AZ11657312 increased renal medullary perfusion, but only in ANGII-treated rats. Tissue oxygenation was improved by P2X7R blockade, particularly in poorly oxygenated regions of the kidney. Activation of P2X7R induces microvascular dysfunction and regional hypoxia when ANGII is elevated. These pro-inflammatory effects may contribute to progression of renal injury induced by chronic ANGII. PMID:26108066

  7. Antagonism of N-methyl-D-aspartate receptors reduces the vulnerability of the immune system to stress after chronic morphine.

    PubMed

    Alonzo, Norma C; Bayer, Barbara M

    2003-11-01

    It has been shown that morphine-tolerant animals have an altered immunological sensitivity to stress. Although the glutamatergic system has been implicated in the neuroadaptive process underlying this tolerant state, its potential role in development of the altered immunological sensitivity consequent to chronic morphine treatment is not known. To determine this, a morphine-tolerant state was induced by 10-day administration of an escalating dose of morphine from 10 to 40 mg/kg (s.c., b.i.d.), and lymphocyte proliferative response to a T-cell mitogen was measured. Morphine challenge (10 mg/kg s.c.) after days of treatment was gradually less immunosuppressive, and this tolerance progression was delayed by concurrent administration of the N-methyl-D-aspartate (NMDA) receptor antagonist (-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) (0.1 mg/kg s.c.) with chronic morphine. The effect was independent of glucocorticoid level changes and was not a result of an acute interaction of the drugs or the prolonged presence of the antagonist alone. Subsequent to chronic treatment, animals were subjected to opioid withdrawal and water stress. Both stressors induced 50% immunosuppression in morphine-tolerant animals compared with saline-treated controls. Increased immunological sensitivity to these stressors was attenuated when MK-801 was administered with chronic morphine as demonstrated by an accelerated recovery rate and lack of immunosuppression from opioid withdrawal and water stress, respectively. Together, these findings provide the first evidence that the neuroadapted state of the immune response after chronic morphine can be modified by NMDA receptor antagonism, as illustrated by a temporal deceleration of the development of immunological tolerance during chronic treatment that is associated with an attenuation of the immunological vulnerability of morphine-tolerant animals to stress. PMID:12966157

  8. Glucocorticoids antagonize cAMP-induced Star transcription in Leydig cells through the orphan nuclear receptor NR4A1.

    PubMed

    Martin, Luc J; Tremblay, Jacques J

    2008-09-01

    It is well established that stress, either physical or psychosocial, causes a decrease in testosterone production by Leydig cells. Glucocorticoids (Gc) are the main mediators of stress response and they convey their repressive effect on Leydig cells through the glucocorticoid receptor (GR). So far, various mechanisms have been proposed to explain the mechanism of action of Gc on Leydig cell steroidogenesis including repression of genes involved in testosterone biosynthesis. Several steroidogenic genes, including steroidogenic acute regulatory (STAR) protein, have been shown to be repressed by Gc in a GR-dependent manner but the underlying mechanisms remain to be fully elucidated. Here, we found that dexamethasone (Dex), a potent synthetic Gc, partly antagonizes the cAMP-dependent stimulation of the mouse Star promoter in MA-10 Leydig cells as revealed by transient transfection assays. This repression requires an element located at -95 bp previously implicated in the activation of the Star promoter by the nuclear receptors, NR4A1 and NR5A1. Dex was found to inhibit NR4A1-dependent transactivation of the Star promoter in Leydig cells by decreasing NR4A1, but not NR5A1, recruitment to the proximal Star promoter as determined by chromatin immunoprecipitation assay. Western blots revealed that Dex did not affect NR4A1 or NR5A1 expression in response to cAMP. These data suggest that NR4A1 would be associated with the GR in a transcriptionally inactive complex as previously demonstrated in pituitary corticotrope cells. Thus, our data provide new molecular insights into the stress-mediated suppression of testosterone production in testicular Leydig cells.

  9. Growth hormone receptor antagonism suppresses tumour regrowth after radiotherapy in an endometrial cancer xenograft model.

    PubMed

    Evans, Angharad; Jamieson, Stephen M F; Liu, Dong-Xu; Wilson, William R; Perry, Jo K

    2016-08-28

    Human GH expression is associated with poor survival outcomes for endometrial cancer patients, enhanced oncogenicity of endometrial cancer cells and reduced sensitivity to ionising radiation in vitro, suggesting that GH is a potential target for anticancer therapy. However, whether GH receptor inhibition sensitises to radiotherapy in vivo has not been tested. In the current study, we evaluated whether the GH receptor antagonist, pegvisomant (Pfizer), sensitises to radiotherapy in vivo in an endometrial tumour xenograft model. Subcutaneous administration of pegvisomant (20 or 100 mg/kg/day, s.c.) reduced serum IGF1 levels by 23% and 68%, respectively, compared to vehicle treated controls. RL95-2 xenografts grown in immunodeficient NIH-III mice were treated with vehicle or pegvisomant (100 mg/kg/day), with or without fractionated gamma radiation (10 × 2.5 Gy over 5 days). When combined with radiation, pegvisomant significantly increased the median time tumours took to reach 3× the pre-radiation treatment volume (49 days versus 72 days; p = 0.001). Immunohistochemistry studies demonstrated that 100 mg/kg pegvisomant every second day was sufficient to abrogate MAP Kinase signalling throughout the tumour. In addition, treatment with pegvisomant increased hypoxic regions in irradiated tumours, as determined by immunohistochemical detection of pimonidazole adducts, and decreased the area of CD31 labelling in unirradiated tumours, suggesting an anti-vascular effect. Pegvisomant did not affect intratumoral staining for HIF1α, VEGF-A, CD11b, or phospho-EGFR. Our results suggest that blockade of the human GH receptor may improve the response of GH and/or IGF1-responsive endometrial tumours to radiation.

  10. Antagonism of Human Formyl Peptide Receptor 1 (FPR1) by Chromones and Related Isoflavones

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Cheng, Ni; Ye, Richard D.; Quinn, Mark T.

    2014-01-01

    Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. Because FPRs play an important role in the regulation of inflammatory reactions implicated in disease pathogenesis, FPR antagonists may represent novel therapeutics for modulating innate immunity. Previously, 4H-chromones were reported to be potent and competitive FPR1 antagonists. In the present studies, 96 additional chromone analogs, including related synthetic and natural isoflavones were evaluated for FPR1 antagonist activity. We identified a number of novel competitive FPR1 antagonists that inhibited fMLF-induced intracellular Ca2+ mobilization in FPR1-HL60 cells and effectively competed with WKYMVm-FITC for binding to FPR1 in FPR1-HL60 and FPR1-RBL cells. Compound 10 (6-hexyl-2-methyl-3-(1-methyl-1H-benzimidazol-2-yl)-4-oxo-4H-chromen-7-yl acetate) was found to be the most potent FPR1-specific antagonist, with binding affinity Ki~100 nM. These chromones inhibited Ca2+ flux and chemotaxis in human neutrophils with nanomolar-micromolar IC50 values. In addition, the most potent novel FPR1 antagonists inhibited fMLF-induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in FPR1-RBL cells. These antagonists were specific for FPR1 and did not inhibit WKYMVM/WKYMVm-induced intracellular Ca2+ mobilization in FPR2-HL60 cells, FPR3-HL60 cells, RBL cells transfected with murine Fpr1, or interleukin 8-induced Ca2+ flux in human neutrophils and RBL cells transfected with CXC chemokine receptor 1 (CXCR1). Moreover, pharmacophore modeling showed that the active chromones had a significantly higher degree of similarity with the pharmacophore template as compared to inactive analogs. Thus, the chromone/isoflavone scaffold represents a relevant backbone for development of novel FPR1 antagonists. PMID:25450672

  11. Endothelin-a receptor antagonism after renal angioplasty enhances renal recovery in renovascular disease.

    PubMed

    Chade, Alejandro R; Tullos, Nathan; Stewart, Nicholas J; Surles, Bret

    2015-05-01

    Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD.

  12. Subgingival Plaque in Periodontal Health Antagonizes at Toll-Like Receptor 4 and Inhibits E-Selectin Expression on Endothelial Cells

    PubMed Central

    Gümüş, Pinar; Nizam, Nejat; Buduneli, Nurcan

    2015-01-01

    The ability of the subgingival microbial community to induce an inappropriate inflammatory response ultimately results in the destruction of bone and gingival tissue. In this study, subgingival plaque samples from both healthy and diseased sites in the same individual were obtained from adults with chronic periodontitis and screened for their ability to either activate Toll-like receptor 2 (TLR2) or TLR4 and to antagonize TLR4-specific activation by agonist, Fusobacterium nucleatum LPS. Subgingival plaque from diseased sites strongly activated TLR4, whereas matched plaque samples obtained from healthy sites were significantly more variable, with some samples displaying strong TLR4 antagonism, while others were strong TLR4 agonists when combined with F. nucleatum LPS. Similar results were observed when TLR4 dependent E-selectin expression by endothelial cells was determined. These results are the first to demonstrate TLR4 antagonism from human plaque samples and demonstrate that healthy but not diseased sites display a wide variation in TLR4 agonist and antagonist behavior. The results have identified a novel characteristic of clinically healthy sites and warrant further study on the contribution of TLR4 antagonism in the progression of a healthy periodontal site to a diseased one. PMID:26483407

  13. The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone.

    PubMed

    Horisawa, Tomoko; Nishikawa, Hiroyuki; Toma, Satoko; Ikeda, Atsushi; Horiguchi, Masakuni; Ono, Michiko; Ishiyama, Takeo; Taiji, Mutsuo

    2013-05-01

    Lurasidone is a novel atypical antipsychotic with high affinity for dopamine D2, serotonin 5-HT7 and 5-HT2A receptors. We previously reported that lurasidone and the selective 5-HT7 receptor antagonist, SB-656104-A improved learning and memory deficits induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, in the rat passive avoidance test. In this study, we first examined the role of the 5-HT7 receptor antagonistic activity of lurasidone in its pro-cognitive effect to ameliorate MK-801-induced deficits in the rat passive avoidance test. The 5-HT7 receptor agonist, AS19, (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino) tetralin, (3 mg/kg, s.c.) completely blocked the attenuating effects of lurasidone (3 mg/kg, p.o.), highlighting the importance of 5-HT7 receptor antagonism in the pro-cognitive effect of lurasidone. AS19 (3 mg/kg, s.c.) also blocked the ameliorating effect of SB-656104-A (10 mg/kg, i.p.) in the same experimental paradigm. To further extend our observation, we next tested whether 5-HT7 receptor antagonism still led to the amelioration of MK-801-induced deficits when combined with D2 and 5-HT2A receptor antagonists, and found that SB-656104-A (10 mg/kg, i.p.) significantly ameliorated MK-801-induced deficits even in the presence of the D2 receptor antagonist raclopride (0.1 mg/kg, s.c.) and 5-HT2A receptor antagonist ketanserin (1 mg/kg, s.c.). Taken together, these results suggest that the 5-HT7 receptor antagonistic activity of lurasidone plays an important role in its effectiveness against MK-801-induced deficits, and may contribute to its pharmacological actions in patients with schizophrenia.

  14. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4.

    PubMed

    Griffiths, Katherine; Dolezal, Olan; Cao, Benjamin; Nilsson, Susan K; See, Heng B; Pfleger, Kevin D G; Roche, Michael; Gorry, Paul R; Pow, Andrew; Viduka, Katerina; Lim, Kevin; Lu, Bernadine G C; Chang, Denison H C; Murray-Rust, Thomas; Kvansakul, Marc; Perugini, Matthew A; Dogovski, Con; Doerflinger, Marcel; Zhang, Yuan; Parisi, Kathy; Casey, Joanne L; Nuttall, Stewart D; Foley, Michael

    2016-06-10

    CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor. PMID:27036939

  15. GABAA receptor antagonism ameliorates behavioral and synaptic impairments associated with MeCP2 overexpression.

    PubMed

    Na, Elisa S; Morris, Michael J; Nelson, Erika D; Monteggia, Lisa M

    2014-07-01

    Methyl-CpG-binding protein 2 (MeCP2) is a ubiquitously expressed transcriptional regulator with functional importance in the central nervous system. Loss-of-function mutations in MECP2 results in the neurodevelopmental disorder, Rett syndrome, whereas increased expression levels are associated with the neurological disorder, MECP2 duplication syndrome. Previous characterization of a mouse line overexpressing Mecp2 demonstrated that this model recapitulated key behavioral features of MECP2 duplication syndrome with specific deficits in synaptic plasticity and neurotransmission. Alterations in excitation/inhibition balance have been suggested to underlie neurodevelopmental disorders with recent data suggesting that picrotoxin (PTX), a GABAA receptor antagonist, rescues certain behavioral and synaptic phenotypes in a mouse model of Down syndrome. We therefore examined whether a similar treatment regimen would impact the behavioral and synaptic phenotypes in a mouse model of MECP2 duplication syndrome. We report that chronic treatment with low doses of PTX ameliorates specific behavioral phenotypes, including motor coordination, episodic memory impairments, and synaptic plasticity deficits. These findings suggest that GABAA receptor antagonists may offer a possible therapeutic target for the treatment of MECP2 duplication syndrome.

  16. 5-HT Receptor Antagonism Attenuates the Ischemia-Reperfusion Injury After Rabbit Lung Preservation.

    PubMed

    Arreola-Ramírez, J L; Alquicira-Mireles, J; Morales-Hernández, P E; Vargas, M H; Villalba-Caloca, J; Segura-Medina, P

    2015-01-01

    The success of lung transplantation is threatened by the appearance of ischemia-reperfusion injury, which is characterized by increased vascular permeability. 5-Hydroxytryptamine (5-HT; serotonin) is known to produce microvascular leakage in the systemic circulation, but its possible role in ischemia-reperfusion injury after lung preservation has not been reported. In this work we measured the release of 5-HT during a 24-hour rabbit lung preservation, and the effect of methiothepin (antagonist of the majority of 5-HT receptors) and SB204741 (antagonist of 5-HT2B/2C receptors) on the modified capillary filtration coefficient (mKf,c) was evaluated at the end of this period. Our results showed that the highest release rate of 5-HT occurred during the first 15 minutes after the lung harvesting and progressively decreased in the following time intervals. The baseline mKf,c greatly increased after 24 hours of lung preservation, and this increment was partially reduced by methiothepin and even more by SB204741. We concluded that 5-HT may play an important role in the ischemia-reperfusion process after lung preservation.

  17. GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1β/IL1R1 response

    PubMed Central

    De Marco, Paola; Lappano, Rosamaria; Francesco, Ernestina Marianna De; Cirillo, Francesca; Pupo, Marco; Avino, Silvia; Vivacqua, Adele; Abonante, Sergio; Picard, Didier; Maggiolini, Marcello

    2016-01-01

    Cancer-associated fibroblasts (CAFs) contribute to the malignant aggressiveness through secreted factors like IL1β, which may drive pro-tumorigenic inflammatory phenotypes mainly acting via the cognate receptor named IL1R1. Here, we demonstrate that signalling mediated by the G protein estrogen receptor (GPER) triggers IL1β and IL1R1 expression in CAFs and breast cancer cells, respectively. Thereby, ligand-activation of GPER generates a feedforward loop coupling IL1β induction by CAFs to IL1R1 expression by cancer cells, promoting the up-regulation of IL1β/IL1R1 target genes such as PTGES, COX2, RAGE and ABCG2. This regulatory interaction between the two cell types induces migration and invasive features in breast cancer cells including fibroblastoid cytoarchitecture and F-actin reorganization. A better understanding of the mechanisms involved in the regulation of pro-inflammatory cytokines by GPER-integrated estrogen signals may be useful to target these stroma-cancer interactions. PMID:27072893

  18. Contribution of IL-1 to resistance to Streptococcus pneumoniae infection.

    PubMed

    Kafka, Daniel; Ling, Eduard; Feldman, Galia; Benharroch, Daniel; Voronov, Elena; Givon-Lavi, Noga; Iwakura, Yoichiro; Dagan, Ron; Apte, Ron N; Mizrachi-Nebenzahl, Yaffa

    2008-09-01

    The role of IL-1 in susceptibility to Streptococcus pneumoniae infection was studied in mice deficient in genes of the IL-1 family [i.e. IL-1alpha-/-, IL-1beta-/-, IL-1alpha/beta-/- and IL-1R antagonist (IL-1Ra)-/- mice] following intra-nasal inoculation. Intra-nasal inoculation of S. pneumoniae of IL-1beta-/- and IL-1alpha/beta-/- mice displayed significantly lower survival rates and higher nasopharyngeal and lung bacterial load as compared with control, IL-1alpha-/- and IL-1Ra-/- mice. Treatment of IL-1beta-/- mice with rIL-1beta significantly improved their survival. A significant increase in blood neutrophils was found in control, IL-1alpha-/- and IL-1Ra-/- but not in IL-1beta-/- and IL-1alpha/beta-/- mice. Local infiltrates of neutrophils and relatively preserved organ architecture were observed in the lungs of IL-1alpha-/- and control mice. However, S. pneumoniae-infected IL-1beta-/-, IL-1alpha/beta-/- and IL-1Ra-/- mice demonstrated diffuse pneumonia and tissue damage. Altogether, all three isoforms contribute to protection against S. pneumoniae; our results point to differential role of IL-1alpha and IL-1beta in the pathogenesis and control of S. pneumoniae infection and suggest that IL-1beta has a major role in resistance to primary pneumococcal infection while the role of IL-1alpha is less important.

  19. FGF receptor antagonism does not affect adipose tissue development in nutritionally induced obesity.

    PubMed

    Scroyen, Ilse; Vranckx, Christine; Lijnen, Henri Roger

    2014-01-01

    The fibroblast growth factor (FGF)-FGF receptor (FGFR) system plays a role in angiogenesis and maintenance of vascular integrity, but its potential role in adipose tissue related angiogenesis and development is still unknown. Administration of SSR, a low molecular weight inhibitor of multiple FGFRs, did not significantly affect body weight nor weight of subcutaneous or gonadal (GON) fat, as compared with pair-fed control mice. Adipocyte hypertrophy and reduced adipocyte density were only observed in GON adipose tissues of treated mice. Adipose tissue angiogenesis was not affected by SSR treatment, as normalized blood vessel density was comparable in adipose tissues of both groups. Blocking the FGF-FGFR system in vivo does not markedly affect adipose tissue development in mice with nutritionally induced obesity.

  20. Pharmacologic antagonism of thromboxane A2 receptors by trimetoquinol analogs in vitro and in vivo

    SciTech Connect

    Shin, Y.; Romstedt, K.J.; Doyle, K.; Harrold, M.W.; Gerhardt, M.A.; Miller, D.D.; Patil, P.N.; Feller, D.R. )

    1991-01-01

    Although (-)-(S)-trimetoquinol (1-(3,4,5-trimethoxy-benzyl)- 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; TMQ) is recognized as a potent bronchodilator, (+)-(R)-TMQ is a selective antagonist of human platelet aggregation and serotonin secretion induced by thromboxane A2 (TXA2) agonists. To confirm the pharmacological actions of TMQ analogs, the interaction of the drugs with TXA2 receptors was examined in human platelets and in a mouse sudden death model. The inhibitory potencies of TMQ analogs (pIC50 values) for displacement of (3H)SQ 29,548 binding to platelets showed excellent correlation with the respective pIC50 (-log IC50) values for U46619-induced aggregation (r = 0.99, P less than 0.01) and serotonin secretion (r = 0.99, P less than 0.01) in human platelet-rich plasma and for whole blood aggregation (r = 0.99, P less than 0.01). In each system, the rank order of inhibitory potencies was rac-iodoTMQ greater than or equal to (+)-(R)-TMQ greater than rac-TMQ much greater than (-)-(S)-TMQ. Antithrombotic effects of TMQ analogs were evaluated in a mouse sudden death model. In vivo antithrombotic potencies of these compounds were consistent with the in vitro potencies as TXA2 receptor antagonists in platelet systems. Administration of rac-iodoTMQ, (+)-(R)-TMQ and rac-TMQ 15 min before the injection of U46619 (800 micrograms/kg, iv) protected mice against U46619-induced sudden death. On the other hand, (-)-(S)-TMQ did not protect animals against death. Protection of U46619-induced cardiopulmonary thrombosis by TMQ analogs was seen at doses of 3-100 mg/kg.

  1. Direct influence of C-terminally substituted amino acids in the Dmt-Tic pharmacophore on delta-opioid receptor selectivity and antagonism.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Guerrini, Remo; Negri, Lucia; Giannini, Elisa; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H

    2004-07-29

    A series of 17 analogues were developed on the basis of the general formula H-Dmt-Tic-NH-CH(R)-R' (denotes chirality; R = charged, neutral, or aromatic functional group; R' = -OH or -NH(2)). These compounds were designed to test the following hypothesis: the physicochemical properties of third-residue substitutions C-terminal to Tic in the Dmt-Tic pharmacophore modify delta-opioid receptor selectivity and delta-opioid receptor antagonism through enhanced interactions with the mu-opioid receptor. The data substantiate the following conclusions: (i) all compounds had high receptor affinity [K(i)(delta) = 0.034-1.1 nM], while that for the mu-opioid receptor fluctuated by orders of magnitude [K(i)(mu) = 15.1-3966 nM]; (ii) delta-opioid receptor selectivity [K(i)(mu)/K(i)(delta)] declined 1000-fold from 22,600 to 21; (iii) a C-terminal carboxyl group enhanced selectivity but only as a consequence of the specific residue; (iv) amidated, positive charged residues [Lys-NH(2) (6), Arg-NH(2) (7)], and a negatively charged aromatic residue [Trp-OH (11)] enhanced mu-opioid affinity [K(i)(mu) = 17.0, 15.1, and 15.7 nM, respectively], while Gly-NH(2) (8), Ser-NH(2) (10), and His-OH (12) were nearly one-tenth as active; and (v) D-isomers exhibited mixed effects on mu-opioid receptor affinity (2' < 3' < 4' < 1' < 5') and decreased delta-selectivity in D-Asp-NH(2) (1') and D-Lys(Ac)-OH (5'). The analogues exhibited delta-opioid receptor antagonism (pA(2) = 6.9-10.07) and weak mu-opioid receptor agonism (IC(50) > 1 microM) except H-Dmt-Tic-Glu-NH(2) (3), which was a partial delta-opioid receptor agonist (IC(50) = 2.5 nM). Thus, these C-terminally extended analogues indicated that an amino acid residue containing a single charge, amino or guanidino functionality, or aromatic group substantially altered the delta-opioid receptor activity profile (selectivity and antagonism) of the Dmt-Tic pharmacophore, which suggests that the C-terminal constituent plays a major role in determining

  2. IL-1α Counteract TGF-β Regulated Genes and Pathways in Human Fibroblasts.

    PubMed

    Koskela von Sydow, Anita; Janbaz, Chris; Kardeby, Caroline; Repsilber, Dirk; Ivarsson, Mikael

    2016-07-01

    Dysregulated wound healing is commonly associated with excessive fibrosis. Connective tissue growth factor (CTGF/CCN2) is characteristically overexpressed in fibrotic diseases and stimulated by transforming growth factor-β (TGF-β) in dermal fibroblasts. We previously showed that interleukin-1 (IL-1α) counteracts TGF-β-stimulated CTGF mRNA and protein expression in these cells. The aim of this study was to explore the effects of IL-1α on further genes and pathways in TGF-β regulated fibroblasts. Transcriptional microarray and multiple comparison analysis showed that the antagonizing effects of IL-1α was much more prominent than the synergistic effects, both with respect to number of genes and extent of changes in gene expression. Moreover, comparing canonical pathways by gene set enrichment analysis and the Ingenuity Pathway Analysis tool revealed that IL-1α counteracted TGF-β in the top six most confident pathways regulated by both cytokines. Interferon and IL-1 signaling, as well as two pathways involved in apoptosis signaling were suppressed by TGF-β and activated by IL-1α. Pathways involving actin remodeling and focal adhesion dynamics were activated by TGF-β and suppressed by IL-1α. Analyzing upstream regulators in part corroborate the comparison of canonical pathways and added cell cycle regulators as another functional group regulated by IL-1α. Finally, gene set enrichment analysis of fibrosis-related genes indicated that IL-1 moderately counteracts the collective effect of TGF-β on these genes. Microarray results were validated by qPCR. Taken together, the results indicate prominent antagonistic effects of IL-1α on TGF-β regulated interferon signaling, as well as on a wide variety of other genes and pathways in fibroblasts. J. Cell. Biochem. 117: 1622-1632, 2016. © 2015 Wiley Periodicals, Inc.

  3. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking rather than estrogen receptor antagonism.

    PubMed

    Shim, Joong Sup; Li, Ruo-Jing; Lv, Junfang; Head, Sarah A; Yang, Eun Ju; Liu, Jun O

    2015-06-28

    Selective estrogen receptor modulators (SERM) including tamoxifen are known to inhibit angiogenesis. However, the underlying mechanism, which is independent of their action on the estrogen receptor (ER), has remained largely unknown. In the present study, we found that tamoxifen and other SERM inhibited cholesterol trafficking in endothelial cells, causing a hyper-accumulation of cholesterol in late endosomes/lysosomes. Inhibition of cholesterol trafficking by tamoxifen was accompanied by abnormal subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR2) and inhibition of the terminal glycosylation of the receptor. Tamoxifen also caused perinuclear positioning of lysosomes, which in turn trapped the mammalian target of rapamycin (mTOR) in the perinuclear region of endothelial cells. Abnormal distribution of VEGFR2 and mTOR and inhibition of VEGFR2 and mTOR activities by tamoxifen were significantly reversed by addition of cholesterol-cyclodextrin complex to the culture media of endothelial cells. Moreover, high concentrations of tamoxifen inhibited endothelial and breast cancer cell proliferation in a cholesterol-dependent, but ER-independent, manner. Together, these results unraveled a previously unrecognized mechanism of angiogenesis inhibition by tamoxifen and other SERM, implicating cholesterol trafficking as an attractive therapeutic target for cancer treatment.

  4. Effect of opioid receptor antagonism on proopiomelanocortin peptide levels and gene expression in the hypothalamus.

    PubMed

    Markowitz, C E; Berkowitz, K M; Jaffe, S B; Wardlaw, S L

    1992-06-01

    In order to determine how brain beta-endorphin (beta-EP) and its precursor proopiomelanocortin (POMC) adapt to chronic opioid blockade we have examined the effects of treatment with the opioid receptor antagonist naltrexone (NTX) on POMC gene expression and peptide levels in the hypothalamus. Male rats were treated with NTX by daily injection or constant minipump infusion. RNA was isolated from the medial basal hypothalamus (MBH) after an aliquot was removed for peptide RIA and the amount of POMC mRNA was measured by solution hybridization SI nuclease protection assay. beta-EP and several other POMC-derived peptides including alpha-melanocyte-stimulating hormone (alpha-MSH) and corticotropin-like intermediate lobe peptide (CLIP) or gamma(3)-MSH were measured in the MBH and anterior hypothalamus (AH) by RIA. In an initial experiment POMC peptide levels were measured after 7 days of NTX (4.8 mg/day) infusion. There was a marked fall in the concentrations of beta-EP, alpha-MSH, and CLIP; levels in the MBH declined by more than 60% (P < 0.001). In the next experiment NTX (1 mg) was injected daily and POMC peptides and mRNA were measured after 2 and 5 days of treatment. (beta-EP) and alpha-MSH levels fell progressively in the MBH and AH and were significantly less than those of the controls by 5 days of treatment (P < 0.02). POMC mRNA levels, however, did not change after 2 or 5 days. When NTX was infused for 3 weeks there was a decrease in the concentrations of beta-EP, alpha-MSH, and gamma(3)-MSH in the MBH (P < 0.001). The concentration of POMC mRNA in the MBH, however, was significantly higher in the NTX-treated animals, 0.99 +/- 0.06 pg/mug RNA vs 0.81 +/- 0.05 pg/mug RNA (P < 0.05). Since NTX can affect LH and testosterone release, the study was repeated in castrated rats. POMC peptide levels again fell after 3 weeks of NTX. POMC mRNA levels were higher in the castrated rats than in the intact rats, 1.14 +/- 0.06 pg/mug RNA vs 0.85 +/- 0.09 pg/mug RNA (P < 0

  5. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs.

    PubMed

    Pradelli, Emmanuelle; Karimdjee-Soilihi, Babou; Michiels, Jean-François; Ricci, Jean-Ehrland; Millet, Marie-Ange; Vandenbos, Fanny; Sullivan, Timothy J; Collins, Tassie L; Johnson, Michael G; Medina, Julio C; Kleinerman, Eugenie S; Schmid-Alliana, Annie; Schmid-Antomarchi, Heidy

    2009-12-01

    Metastasis continues to be the leading cause of mortality for patients with cancer. Several years ago, it became clear that chemokines and their receptors could control the tumor progress. CXCR3 has now been identified in many cancers including osteosarcoma and CXCR3 ligands were expressed by lungs that are the primary sites to which this tumor metastasize. This study tested the hypothesis that disruption of the CXCR3/CXCR3 ligands complexes could lead to a decrease in lungs metastasis. The experimental design involved the use of the CXCR3 antagonist, AMG487 and 2 murine models of osteosarcoma lung metastases. After tail vein injection of osteosarcoma cells, mice that were systematically treated with AMG487 according to preventive or curative protocols had a significant reduction in metastatic disease. Treatment of osteosarcoma cells in vitro with AMG487 led to decreased migration, decreased matrix metalloproteinase activity, decreased proliferation/survival and increased caspase-independent death. Taken together, our results support the hypothesis that CXCR3 and their ligands intervene in the initial dissemination of the osteosarcoma cells to the lungs and stimulate the growth and expansion of the metastatic foci in later stages. Moreover, these studies indicate that targeting CXCR3 may specifically inhibit tumor metastasis without adversely affecting antitumoral host response. PMID:19544560

  6. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs

    PubMed Central

    Pradelli, Emmanuelle; Karimdjee-Soilihi, Babou; Michiels, Jean-François; Ricci, Jean-Ehrland; Millet, Marie-Ange; Vandenbos, Fanny; Sullivan, Timothy J.; Collins, Tassie L.; Johnson, Michael G.; Medina, Julio C.; Kleinerman, Eugenie S.; Schmid-Alliana, Annie; Schmid-Antomarchi, Heidy

    2009-01-01

    Metastasis continues to be the leading cause of mortality for patients with cancer. Several years ago, it became clear that chemokines and their receptors could control the tumor progress. CXCR3 has now been identified in many cancers including osteosarcoma and CXCR3 ligands were expressed by lungs that are the primary sites to which this tumor metastasize. This study tested the hypothesis that disruption of the CXCR3/CXCR3 ligands complexes could lead to a decrease in lungs metastasis. The experimental design involved the use of the CXCR3 antagonist, AMG487 and 2 murine models of osteosarcoma lung metastases. After tail vein injection of osteosarcoma cells, mice that were systematically treated with AMG487 according to preventive or curative protocols had a significant reduction in metastatic disease. Treatment of osteosarcoma cells in vitro with AMG487 led to decreased migration, decreased matrix metalloproteinase activity, decreased proliferation/survival and increased caspase-independent death. Taken together, our results support the hypothesis that CXCR3 and their ligands intervene in the initial dissemination of the osteosarcoma cells to the lungs and stimulate the growth and expansion of the metastatic foci in later stages. Moreover, these studies indicate that targeting CXCR3 may specifically inhibit tumor metastasis without adversely affecting antitumoral host response. PMID:19544560

  7. The Halicylindramides, Farnesoid X Receptor Antagonizing Depsipeptides from a Petrosia sp. Marine Sponge Collected in Korea.

    PubMed

    Hahn, Dongyup; Kim, Hiyoung; Yang, Inho; Chin, Jungwook; Hwang, Hoosang; Won, Dong Hwan; Lee, Byoungchan; Nam, Sang-Jip; Ekins, Merrick; Choi, Hyukjae; Kang, Heonjoong

    2016-03-25

    Three new structurally related depsipeptides, halicylindramides F-H (1-3), and two known halicylindramides were isolated from a Petrosia sp. marine sponge collected off the shore of Youngdeok-Gun, East Sea, Republic of Korea. Their planar structures were elucidated by extensive spectroscopic data analyses including 1D and 2D NMR data as well as MS data. The absolute configurations of halicylindramides F-H (1-3) were determined by Marfey's method in combination with Edman degradation. The absolute configurations at C-4 of the dioxyindolyl alanine (Dioia) residues of halicylindramides G (2) and H (3) were determined as 4S and 4R, respectively, based on ECD spectroscopy. The C-2 configurations of Dioia in 2 and 3 were speculated to both be 2R based on the shared biogenesis of the halicylindramides. Halicylindramides F (1), A (4), and C (5) showed human farnesoid X receptor (hFXR) antagonistic activities, but did not bind directly to hFXR. PMID:26821210

  8. Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial

    PubMed Central

    Boada, R; Hutaff-Lee, C; Schrader, A; Weitzenkamp, D; Benke, T A; Goldson, E J; Costa, A C S

    2012-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability. The N-methyl-D-aspartate (NMDA) receptor uncompetitive antagonist, memantine hydrochloride (memantine), has been shown to improve learning/memory and rescue one form of hippocampus synaptic plasticity dysfunction in the best-studied mouse model of DS available, the Ts65Dn mouse. Given the status of memantine as a treatment for Alzheimer's disease (AD) approved by the Food and Drug Administration, the preclinical evidence of potential efficacy in Ts65Dn mice, and the favorable safety profile of memantine, we designed a study to investigate whether the findings in the mouse model could be translated to individuals with DS. In this pilot, proof-of-principle study we hypothesized that memantine therapy would improve test scores of young adults with DS on measures of episodic and spatial memory, which are generally considered to be hippocampus dependent. Accordingly, in this randomized, double-blind, placebo-controlled trial, we compared the effect of 16-week treatment with either memantine or placebo on cognitive and adaptive functions of 40 young adults with DS using a carefully selected set of neuropsychological outcome measures. Safety and tolerability were also monitored. Although no significant differences were observed between the memantine and placebo groups on the two primary outcome measures, we found a significant improvement in the memantine group in one of the secondary measures associated with the primary hypothesis. Only infrequent and mild adverse events were noted. PMID:22806212

  9. Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial.

    PubMed

    Boada, R; Hutaff-Lee, C; Schrader, A; Weitzenkamp, D; Benke, T A; Goldson, E J; Costa, A C S

    2012-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability. The N-methyl-D-aspartate (NMDA) receptor uncompetitive antagonist, memantine hydrochloride (memantine), has been shown to improve learning/memory and rescue one form of hippocampus synaptic plasticity dysfunction in the best-studied mouse model of DS available, the Ts65Dn mouse. Given the status of memantine as a treatment for Alzheimer's disease (AD) approved by the Food and Drug Administration, the preclinical evidence of potential efficacy in Ts65Dn mice, and the favorable safety profile of memantine, we designed a study to investigate whether the findings in the mouse model could be translated to individuals with DS. In this pilot, proof-of-principle study we hypothesized that memantine therapy would improve test scores of young adults with DS on measures of episodic and spatial memory, which are generally considered to be hippocampus dependent. Accordingly, in this randomized, double-blind, placebo-controlled trial, we compared the effect of 16-week treatment with either memantine or placebo on cognitive and adaptive functions of 40 young adults with DS using a carefully selected set of neuropsychological outcome measures. Safety and tolerability were also monitored. Although no significant differences were observed between the memantine and placebo groups on the two primary outcome measures, we found a significant improvement in the memantine group in one of the secondary measures associated with the primary hypothesis. Only infrequent and mild adverse events were noted. PMID:22806212

  10. Kappa-opioid receptor antagonism improves recovery from myocardial stunning in chronically instrumented dogs.

    PubMed

    Grosse Hartlage, Maike A; Theisen, Marc M; Monteiro de Oliveira, Nelson P; Van Aken, Hugo; Fobker, Manfred; Weber, Thomas P

    2006-10-01

    We tested the hypothesis that the selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) improves recovery from myocardial stunning. Ten dogs were chronically instrumented for measurement of heart rate, left atrial, aortic and left ventricular pressure (LVP), and the maximum rate of LVP increase (LV dP/dt(max)) and decrease (LV dP/dt(max)), coronary blood flow velocity and myocardial wall-thickening fraction. Regional myocardial blood flow was determined with fluorescent microspheres. Catecholamine plasma levels were measured by high-performance liquid chromatography, and beta-endorphin and dynorphin plasma levels by radioimmunoassay. An occluder around the left anterior descending artery (LAD) allowed induction of a reversible LAD-ischemia. Animals underwent two experiments in a randomized crossover fashion on separate days: (a) 10 min LAD-occlusion (control experiment), (b) second ischemic episode 24 h after nor-BNI (2.5 mg/kg IV) (intervention). Dogs receiving nor-BNI showed an increase in wall-thickening fraction, LV dP/dt(max) and LV dP/dt(min) before ischemia and during the whole reperfusion (P < 0.05 versus control experiment). After nor-BNI pretreatment, dynorphin levels increased after induction of ischemia to a peak level of 15.1 +/- 3.6 pg/mL (P < 0.05 versus control experiment). The increase in plasma beta-endorphin during ischemia and early reperfusion was attenuated after nor-BNI. Compared with the control experiment, nor-BNI left global hemodynamics, regional myocardial blood flow, and catecholamine levels unchanged. In conclusion, nor-BNI improves recovery from myocardial stunning after regional myocardial ischemia in chronically instrumented dogs.

  11. Effects of bradykinin B2 receptor antagonism on the hypotensive effects of ACE inhibition.

    PubMed Central

    Bouaziz, H; Joulin, Y; Safar, M; Benetos, A

    1994-01-01

    1. The aim of this study was to determine the participation of endogenous bradykinin (BK) in the antihypertensive effects of the angiotensin converting enzyme inhibitor (ACEI), perindoprilat, in the spontaneously hypertensive rat (SHR) on different salt diets. 2. Conscious SHRs receiving either a low or a high NaCl diet were used in order to evaluate the respective roles of angiotensin II suppression and bradykinin stimulation in the acute hypotensive effects of perindoprilat. Two different B2 receptor antagonists (B 4146 and Hoe 140) were used after bolus administration of 7 mg kg-1 of the ACEI, perindoprilat. In separate animals, Hoe 140 was administered before the injection of perindoprilat. In other experiments, the effects of Hoe 140 on the hypotensive effects of the calcium antagonist, nicardipine, were tested. 3. The different NaCl diets had no effect on baseline blood pressure. Hoe 140 injection before ACE inhibition did not modify blood pressure. Perindoprilat caused more marked hypotension in the low salt-fed rats than in the high salt animals (P < 0.01). Administration of Hoe 140 or B4146 after perindoprilat significantly reduced the antihypertensive effects of perindoprilat in the different groups, but this effect was more pronounced in high salt-fed rats. However, in SHRs receiving Hoe 140 before perindoprilat, the antihypertensive effect of perindoprilat was completely abolished in both high or low salt diet rats. In separate experiments we confirmed that Hoe 140 did not affect the hypotensive efficacy of the calcium antagonist, nicardipine. 4. Our study shows that inhibition of endogenous bradykinin degradation participates in the acute antihypertensive effects of perindoprilat in SHRs. The role of bradykinin is more pronounced following exposure to a high salt diet i.e., when the renin-angiotensin system is suppressed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7858859

  12. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders

    PubMed Central

    Ford, Anthony P.; Undem, Bradley J.

    2013-01-01

    A sensory role for ATP was proposed long before general acceptance of its extracellular role. ATP activates and sensitizes signal transmission at multiple sites along the sensory axis, across multiple synapses. P2X and P2Y receptors mediate ATP modulation of sensory pathways and participate in dysregulation, where ATP action directly on primary afferent neurons (PANs), linking receptive field to CNS, has received much attention. Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3 knock-out mice and knock-down in rats led to reduced nocifensive activity and visceral reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently, drug-like P2X3 antagonists, active in a many inflammatory and visceral pain models, have emerged. Significantly, these compounds have no overt CNS action and are inactive versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to therapies that block inappropriate chronic signals at their source, decreasing drivers of peripheral and central wind-up, yet leaving defensive nociceptive and brain functions unperturbed. This article reviews this evidence, focusing on how ATP sensitization of PANs in visceral “hollow” organs primes them to chronic discomfort, irritation and pain (symptoms) as well as exacerbated autonomic reflexes (signs), and how the use of isolated organ-nerve preparations has revealed this mechanism. Urinary and airways systems share many features: dependence on continuous afferent traffic to brainstem centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence in functional and sensory disorders; dependence on ATP in mediating sensory responses to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing medicines for pathological conditions. These similarities may also play out in terms of future treatment of signs and symptoms, in the potential for benefit of P2X3 antagonists

  13. Peroxisome Proliferator Activated Receptor-γ Activation Inhibits Tumor Metastasis by Antagonizing Smad3 Mediated Epithelial Mesenchymal Transition

    PubMed Central

    Reka, Ajaya Kumar; Kurapati, Himabindu; Narala, Venkata R; Bommer, Guido; Chen, Jun; Standiford, Theodore J.; Keshamouni, Venkateshwar G.

    2011-01-01

    Epithelial-mesenchymal transition (EMT) was shown to confer tumor cells with abilities essential for metastasis, including migratory phenotype, invasiveness, and resistance to apoptosis, evading immune surveillance and tumor stem cell traits. Therefore, inhibition of EMT can be an important therapeutic strategy to inhibit tumor metastasis. Here we demonstrate that activation of peroxisome proliferator activated receptor (PPAR) -γ inhibits TGF-β-induced EMT in lung cancer cells and prevents metastasis by antagonizing Smad3 function. Activation of PPAR-γ by synthetic ligands (Troglitazone and Rosiglitazone) or by a constitutively-active form of PPAR-γ prevents TGF-β-induced loss of E-cadherin expression and inhibited the induction of mesenchymal markers (vimentin, N-cadherin, fibronectin) and MMPs. Consistently, activation of PPAR-γ also inhibited EMT-induced migration and invasion of lung cancer cells. Furthermore, effects of PPAR-γ ligands were attenuated by siRNA mediated knockdown of PPAR-γ, indicating that the ligand induced responses are PPAR-γ dependent. Selective knockdown of Smad2 and Smad3 by siRNA demonstrated that TGF-β-induced EMT is Smad3 dependent in lung cancer cells. Activation of PPAR-γ inhibits TGF-β-induced Smad transcriptional activity but had no effect on the phosphorylation or nuclear translocation of Smads. Consistently PPAR-γ activation prevented TGF-ß-induced transcriptional repression of E-cadherin promoter and inhibited transcriptional activation of N-cadherin promoter. Finally, treatment of mice with troglitazone or knockdown of Smad3 in tumor cells both significantly inhibited TGF-β-induced experimental metastasis in Scid-Beige mice. Together, with the low toxicity profile of PPAR-γ ligands, our data demonstrates that these ligands may serve as potential therapeutic agents to inhibit metastasis. PMID:21159608

  14. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders.

    PubMed

    Ford, Anthony P; Undem, Bradley J

    2013-01-01

    A sensory role for ATP was proposed long before general acceptance of its extracellular role. ATP activates and sensitizes signal transmission at multiple sites along the sensory axis, across multiple synapses. P2X and P2Y receptors mediate ATP modulation of sensory pathways and participate in dysregulation, where ATP action directly on primary afferent neurons (PANs), linking receptive field to CNS, has received much attention. Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3 knock-out mice and knock-down in rats led to reduced nocifensive activity and visceral reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently, drug-like P2X3 antagonists, active in a many inflammatory and visceral pain models, have emerged. Significantly, these compounds have no overt CNS action and are inactive versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to therapies that block inappropriate chronic signals at their source, decreasing drivers of peripheral and central wind-up, yet leaving defensive nociceptive and brain functions unperturbed. This article reviews this evidence, focusing on how ATP sensitization of PANs in visceral "hollow" organs primes them to chronic discomfort, irritation and pain (symptoms) as well as exacerbated autonomic reflexes (signs), and how the use of isolated organ-nerve preparations has revealed this mechanism. Urinary and airways systems share many features: dependence on continuous afferent traffic to brainstem centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence in functional and sensory disorders; dependence on ATP in mediating sensory responses to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing medicines for pathological conditions. These similarities may also play out in terms of future treatment of signs and symptoms, in the potential for benefit of P2X3 antagonists

  15. IL-1ra delivered from poly(lactic-co-glycolic acid) microspheres attenuates IL-1β-mediated degradation of nucleus pulposus in vitro

    PubMed Central

    2012-01-01

    Introduction Inflammation plays a key role in the progression of intervertebral disc degeneration, a condition strongly implicated as a cause of lower back pain. The objective of this study was to investigate the therapeutic potential of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with interleukin-1 receptor antagonist (IL-1ra) for sustained attenuation of interleukin-1 beta (IL-1β) mediated degradative changes in the nucleus pulposus (NP), using an in vitro model. Methods IL-1ra was encapsulated in PLGA microspheres and release kinetics were determined over 35 days. NP agarose constructs were cultured to functional maturity and treated with combinations of IL-1β and media conditioned with IL-1ra released from microspheres at intervals for up to 20 days. Construct mechanical properties, glycosaminoglycan content, nitrite production and mRNA expression of catabolic mediators were compared to properties for untreated constructs using unpaired Student's t-tests. Results IL-1ra release kinetics were characterized by an initial burst release reducing to a linear release over the first 10 days. IL-1ra released from microspheres attenuated the degradative effects of IL-1β as defined by mechanical properties, glycosaminoglycans (GAG) content, nitric oxide production and mRNA expression of inflammatory mediators for 7 days, and continued to limit functional degradation for up to 20 days. Conclusions In this study, we successfully demonstrated that IL-1ra microspheres can attenuate the degradative effects of IL-1β on the NP for extended periods. This therapeutic strategy may be appropriate for treating early-stage, cytokine-mediated disc degeneration. Ongoing studies are focusing on testing IL-1ra microspheres in an in vivo model of disc degeneration, as a prelude to clinical translation. PMID:22863285

  16. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism.

    PubMed

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-10-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences.

  17. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism

    PubMed Central

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-01-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80–90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine’s acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine’s acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  18. Autophagy and IL-1 Family Cytokines.

    PubMed

    Harris, James

    2013-01-01

    Autophagy is an important intracellular homeostatic mechanism for the targeting of cytosolic constituents, including organelles, for lysosomal degradation. Autophagy plays roles in numerous physiological processes, including immune cell responses to endogenous and exogenous pathogenic stimuli. Moreover, autophagy has a potentially pivotal role to play in the regulation of inflammatory responses. In particular, autophagy regulates endogenous inflammasome activators, as well as inflammasome components and pro-IL-1β. As a result, autophagy acts a key modulator of IL-1β and IL-18, as well as IL-1α, release. This review focuses specifically on the role autophagy plays in regulating the production, processing, and secretion of IL-1 and IL-18 and the consequences of this important function.

  19. Autophagy and IL-1 Family Cytokines

    PubMed Central

    Harris, James

    2013-01-01

    Autophagy is an important intracellular homeostatic mechanism for the targeting of cytosolic constituents, including organelles, for lysosomal degradation. Autophagy plays roles in numerous physiological processes, including immune cell responses to endogenous and exogenous pathogenic stimuli. Moreover, autophagy has a potentially pivotal role to play in the regulation of inflammatory responses. In particular, autophagy regulates endogenous inflammasome activators, as well as inflammasome components and pro-IL-1β. As a result, autophagy acts a key modulator of IL-1β and IL-18, as well as IL-1α, release. This review focuses specifically on the role autophagy plays in regulating the production, processing, and secretion of IL-1 and IL-18 and the consequences of this important function. PMID:23577011

  20. Generation and characterization of ABT-981, a dual variable domain immunoglobulin (DVD-IgTM) molecule that specifically and potently neutralizes both IL-1α and IL-1β

    PubMed Central

    Lacy, Susan E; Wu, Chengbin; Ambrosi, Dominic J; Hsieh, Chung-Ming; Bose, Sahana; Miller, Renee; Conlon, Donna M; Tarcsa, Edit; Chari, Ravi; Ghayur, Tariq; Kamath, Rajesh V

    2015-01-01

    Interleukin-1 (IL-1) cytokines such as IL-1α, IL-1β, and IL-1Ra contribute to immune regulation and inflammatory processes by exerting a wide range of cellular responses, including expression of cytokines and chemokines, matrix metalloproteinases, and nitric oxide synthetase. IL-1α and IL-1β bind to IL-1R1 complexed to the IL-1 receptor accessory protein and induce similar physiological effects. Preclinical and clinical studies provide significant evidence for the role of IL-1 in the pathogenesis of osteoarthritis (OA), including cartilage degradation, bone sclerosis, and synovial proliferation. Here, we describe the generation and characterization of ABT-981, a dual variable domain immunoglobulin (DVD-Ig) of the IgG1/k subtype that specifically and potently neutralizes IL-1α and IL-1β. In ABT-981, the IL-1β variable domain resides in the outer domain of the DVD-Ig, whereas the IL-1α variable domain is located in the inner position. ABT-981 specifically binds to IL-1α and IL-1β, and is physically capable of binding 2 human IL-1α and 2 human IL-1β molecules simultaneously. Single-dose intravenous and subcutaneous pharmacokinetics studies indicate that ABT-981 has a half-life of 8.0 to 10.4 d in cynomolgus monkey and 10.0 to 20.3 d in rodents. ABT-981 exhibits suitable drug-like-properties including affinity, potency, specificity, half-life, and stability for evaluation in human clinical trials. ABT-981 offers an exciting new approach for the treatment of OA, potentially addressing both disease modification and symptom relief as a disease-modifying OA drug. PMID:25764208

  1. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    PubMed Central

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  2. Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: Direct versus astrocyte-mediated mechanisms.

    PubMed

    Acioglu, Cigdem; Mirabelli, Ersilia; Baykal, Ahmet Tarik; Ni, Li; Ratnayake, Ayomi; Heary, Robert F; Elkabes, Stella

    2016-08-01

    Toll like receptors (TLRs) are expressed by cells of the immune system and mediate the host innate immune responses to pathogens. However, increasing evidence indicates that they are important contributors to central nervous system (CNS) function in health and in pathological conditions involving sterile inflammation. In agreement with this idea, we have previously shown that intrathecal administration of a TLR9 antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), ameliorates the outcomes of spinal cord injury (SCI). Although these earlier studies showed a marked effect of CpG ODN 2088 on inflammatory cells, the expression of TLR9 in spinal cord (SC) neurons and astrocytes suggested that the antagonist exerts additional effects through direct actions on these cells. The current study was undertaken to assess the direct effects of CpG ODN 2088 on SC neurons, astrocytes and astrocyte-neuron interactions, in vitro. We report, for the first time, that inhibition of TLR9 in cultured SC neurons alters their function and confers protection against kainic acid (KA)-induced excitotoxic death. Moreover, the TLR9 antagonist attenuated the KA-elicited endoplasmic reticulum (ER) stress response in neurons, in vitro. CpG ODN 2088 also reduced the transcript levels and release of chemokine (C-X-C) motif ligand 1 (CXCL1) and monocyte chemotactic protein 1 (MCP-1) by astrocytes and it diminished interleukin-6 (IL-6) release without affecting transcript levels in vitro. Conditioned medium (CM) of CpG ODN 2088-treated astroglial cultures decreased the viability of SC neurons compared to CM of vehicle-treated astrocytes. However, this toxicity was not observed when astrocytes were co-cultured with neurons. Although CpG ODN 2088 limited the survival-promoting effects of astroglia, it did not reduce neuronal viability compared to controls grown in the absence of astrocytes. We conclude that the TLR9 antagonist acts directly on both SC neurons and astrocytes

  3. Addition of interleukin 1 (IL1) and IL17 soluble receptors to a tumour necrosis factor α soluble receptor more effectively reduces the production of IL6 and macrophage inhibitory protein-3α and increases that of collagen in an in vitro model of rheumatoid synoviocyte activation

    PubMed Central

    Chevrel, G; Garnero, P; Miossec, P

    2002-01-01

    Methods: A simplified model was set up to evaluate the effect of tumour necrosis factor α (TNFα) soluble receptors (sTNFR) used alone and in combination with soluble interleukin 1 receptor (sIL1R) and sIL17R on the production of markers of inflammation (IL6), of migration of dendritic cells (macrophage inhibitory protein-3α (MIP-3α)), and of matrix synthesis (C-propeptide of type 1 collagen (P1CP)). Synoviocytes were stimulated with supernatants of activated peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA). Soluble receptors (sR) were preincubated at 1 γg/ml alone or in combination with the supernatants before addition to RA synoviocytes. IL6, MIP-3α, and P1CP production was measured by enzyme linked immunosorbent assay (ELISA) in 48 hour synoviocyte supernatants. Results: IL6 production decreased by 16% with sTNFR alone compared with no sTNFR (p<0.001) and by 41% with the combination of the three sR (p<0.001). MIP-3α production decreased by 77% with sTNFR alone compared with no sTNFR (p<0.001) and by 98% with the combination of the three sR (p<0.001). In the presence of sTNFR alone, P1CP production increased by 25% compared with no sR (p<0.01). The combination of the three sR increased P1CP production by 48% (p<0.01). Conclusion: The effect of sTNFR on IL6, MIP-3α, and P1CP production by RA synoviocytes stimulated by activated PBMC supernatants was further enhanced when combined with sIL1R and sIL17R. PMID:12117682

  4. Dual ACE-inhibition and angiotensin II AT1 receptor antagonism with curcumin attenuate maladaptive cardiac repair and improve ventricular systolic function after myocardial infarctionin rat heart.

    PubMed

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Ijaz Shah, Ahmed; Garner, Ron; Zhao, Zhi-Qing

    2015-01-01

    Curcumin has been shown to improve cardiac function by reducing degradation of extracellular matrix and inhibiting synthesis of collagen after ischemia. This study tested the hypothesis that attenuation of maladaptive cardiac repair with curcumin is associated with a dual ACE-inhibition and angiotensin II AT1 receptor antagonism after myocardial infarction. Sprague-Dawley rats were subjected to 45min ischemia followed by 7 and 42 days of reperfusion, respectively. Curcumin was fed orally at a dose of 150mg/kg/day only during reperfusion. Relative to the control animals, dietary treatment with curcumin significantly reduced levels of ACE and AT1 receptor protein as determined by Western blot assay, coincident with less locally-expressed ACE and AT1 receptor in myocardium and coronary vessels as identified by immunohistochemistry. Along with this inhibition, curcumin significantly increased protein level of AT2 receptor and its expression compared with the control. As evidenced by less collagen deposition in fibrotic myocardium, curcumin also reduced the extent of collagen-rich scar and increased mass of viable myocardium detected by Masson׳s trichrome staining. Echocardiography showed that the wall thickness of the infarcted anterior septum in the curcumin group was significantly greater than that in the control group. Cardiac contractile function was improved in the curcumin treated animals as measured by fraction shortening and ejection fraction. In cultured cardiac muscle cells, curcumin inhibited oxidant-induced AT1 receptor expression and promoted cell survival. These results suggest that curcumin attenuates maladaptive cardiac repair and enhances cardiac function, primarily mediated by a dual ACE-inhibition and AT1 receptor antagonism after myocardial infarction.

  5. MFGE8 inhibits inflammasome-induced IL-1β production and limits postischemic cerebral injury

    PubMed Central

    Deroide, Nicolas; Li, Xuan; Lerouet, Dominique; Van Vré, Emily; Baker, Lauren; Harrison, James; Poittevin, Marine; Masters, Leanne; Nih, Lina; Margaill, Isabelle; Iwakura, Yoichiro; Ryffel, Bernhard; Pocard, Marc; Tedgui, Alain; Kubis, Nathalie; Mallat, Ziad

    2013-01-01

    Milk fat globule-EGF 8 (MFGE8) plays important, nonredundant roles in several biological processes, including apoptotic cell clearance, angiogenesis, and adaptive immunity. Several recent studies have reported a potential role for MFGE8 in regulation of the innate immune response; however, the precise mechanisms underlying this role are poorly understood. Here, we show that MFGE8 is an endogenous inhibitor of inflammasome-induced IL-1β production. MFGE8 inhibited necrotic cell–induced and ATP-dependent IL-1β production by macrophages through mediation of integrin β3 and P2X7 receptor interactions in primed cells. Itgb3 deficiency in macrophages abrogated the inhibitory effect of MFGE8 on ATP-induced IL-1β production. In a setting of postischemic cerebral injury in mice, MFGE8 deficiency was associated with enhanced IL-1β production and larger infarct size; the latter was abolished after treatment with IL-1 receptor antagonist. MFGE8 supplementation significantly dampened caspase-1 activation and IL-1β production and reduced infarct size in wild-type mice, but did not limit cerebral necrosis in Il1b-, Itgb3-, or P2rx7-deficient animals. In conclusion, we demonstrated that MFGE8 regulates innate immunity through inhibition of inflammasome-induced IL-1β production. PMID:23454767

  6. Immunoreactivities of IL-1β and IL-1R in oviduct of Chinese brown frog (Rana dybowskii) during pre-hibernation and the breeding period.

    PubMed

    Hu, Ruiqi; Liu, Yuning; Deng, Yu; Ma, Sihui; Sheng, Xia; Weng, Qiang; Xu, Meiyu

    2016-03-01

    The Chinese brown frog (Rana dybowskii) has one special physiological phenomenon, which is that its oviduct goes through expansion prior to hibernation instead of during the breeding period. In this study, we investigated the localization and expression level of interleukin-1 (IL-1β) and its functional membrane receptor type I (IL1R1) proteins in the oviduct of R. dybowskii during pre-hibernation and the breeding period. There were significant differences in both oviductal weight and pipe diameter, with values markedly higher in pre-hibernation than in the breeding period. Histologically, epithelium cells, glandular cells and tubule lumen were identified in the oviduct during pre-hibernation and the breeding period, while sizes of both cell types are larger in the pre-hibernation than those of the breeding period. IL-1β was immunolocalized in the cytoplasm of epithelial and glandular cells in both periods, whereas IL-1R1 was observed in the membrane of epithelial and glandular cells in the breeding period, whereas only in epithelial cells during pre-hibernation. Consistently, the protein levels of IL-1β and IL-1R1 were higher in pre-hibernation as compared to the breeding period. These results suggested that IL-1β may play an important autocrine or paracrine role in oviductal cell proliferation and differentiation of R. dybowskii.

  7. Mechanical loading prevents the stimulating effect of IL-1{beta} on osteocyte-modulated osteoclastogenesis

    SciTech Connect

    Kulkarni, Rishikesh N.; Bakker, Astrid D.; Everts, Vincent; Klein-Nulend, Jenneke

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Osteocyte incubation with IL-1{beta} stimulated osteocyte-modulated osteoclastogenesis. Black-Right-Pointing-Pointer Conditioned medium from IL-1{beta}-treated osteocytes increased osteoclastogenesis. Black-Right-Pointing-Pointer IL-1{beta} upregulated RANKL and downregulated OPG gene expression by osteocytes. Black-Right-Pointing-Pointer CYR61 is upregulated in mechanically stimulated osteocytes. Black-Right-Pointing-Pointer Mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis. -- Abstract: Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1{beta} (IL-1{beta}), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1{beta} affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanical loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1{beta} (0.1-1 ng/ml) for 24 h. Cells were either or not subjected to mechanical loading by 1 h pulsating fluid flow (PFF; 0.7 {+-} 0.3 Pa, 5 Hz) in the presence of IL-1{beta} (0.1-1 ng/ml). Conditioned medium was collected after 1 h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1{beta}-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1{beta}-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1{beta}, as well as conditioned medium from static IL-1{beta}-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically loaded IL

  8. Cutting Edge: Nitrogen bisphosphonate-induced inflammation is dependent upon mast cells and IL-1

    PubMed Central

    Norton, John T.; Hayashi, Tomoko; Crain, Brian; Cho, John S.; Miller, Lloyd S.; Corr, Maripat; Carson, Dennis A.

    2012-01-01

    Nitrogen containing bisphosphonates (NBPs) are taken by millions for bone disorders but may cause serious inflammatory reactions. Here, we utilized a murine peritonitis model to characterize the inflammatory mechanisms of these agents. At dosages comparable to those used in humans, injection of NBPs into the peritoneum caused recruitment of neutrophils, followed by an influx of monocytes. These cellular changes corresponded to an initial increase in IL-1α, which preceded a rise in multiple other proinflammatory cytokines. IL-1 receptor, IL-1α, and IL-1β were required for neutrophil recruitment, whereas other MyD88-dependent signaling pathways were needed for the monocyte influx. Mice deficient in mast cells, but not mice lacking lymphocytes, were resistant to NBP-induced inflammation and reconstitution of these mice with mast cells restored sensitivity to NBPs. These results document the critical role of mast cells and IL-1 in NBP mediated inflammatory reactions. PMID:22387558

  9. CARD9 negatively regulates NLRP3-induced IL-1β production on Salmonella infection of macrophages

    PubMed Central

    Pereira, Milton; Tourlomousis, Panagiotis; Wright, John; P. Monie, Tom; Bryant, Clare E.

    2016-01-01

    Interleukin-1β (IL-1β) is a proinflammatory cytokine required for host control of bacterial infections, and its production must be tightly regulated to prevent excessive inflammation. Here we show that caspase recruitment domain-containing protein 9 (CARD9), a protein associated with induction of proinflammatory cytokines by fungi, has a negative role on IL-1β production during bacterial infection. Specifically, in response to activation of the nucleotide oligomerization domain receptor pyrin-domain containing protein 3 (NLRP3) by Salmonella infection, CARD9 negatively regulates IL-1β by fine-tuning pro-IL-1β expression, spleen tyrosine kinase (SYK)-mediated NLRP3 activation and repressing inflammasome-associated caspase-8 activity. CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facilitating increased IL-1β production. CARD9 is, therefore, a central signalling hub that coordinates a pathogen-specific host inflammatory response. PMID:27670879

  10. Antagonism of the neuropeptide S receptor with RTI-118 decreases cocaine self-administration and cocaine-seeking behavior in rats

    PubMed Central

    Schmoutz, Christopher D; Zhang, Yanan; Runyon, Scott P; Goeders, Nicholas E

    2012-01-01

    Neuropeptide S (NPS) is a neuromodulatory peptide, acting via a G-protein-coupled receptor to regulate sleep, anxiety and behavioral arousal. Recent research has found that intracerebroventricular NPS can increase cocaine and alcohol self-administration in rodents, suggesting a key role in reward-related neurocircuitry. It is hypothesized that antagonism of the NPS system might represent a novel strategy for the pharmacological treatment of cocaine abuse. To this end, a small-molecule NPSR antagonist (RTI-118) was developed and tested in animal models of cocaine seeking and cocaine taking. Male Wistar rats (n=54) trained to self-administer cocaine and food under a concurrent alternating FR4 schedule exhibited specific dose-dependent decreases in cocaine intake when administered RTI-118. RTI-118 also decreased the reinstatement of extinguished cocaine-seeking behavior induced by conditioned cues, yohimbine and a priming dose of cocaine. These data support the hypothesis that antagonism of the neuropeptide S receptor may ultimately show efficacy in reducing cocaine use and relapse. PMID:22982682

  11. Chronic Antagonism of the Mineralocorticoid Receptor Ameliorates Hypertension and End Organ Damage in a Rodent Model of Salt-Sensitive Hypertension

    PubMed Central

    Zhou, Xiaoyan; Crook, Martin F; Sharif-Rodriguez, Wanda; Zhu, Yonghua; Ruben, Zadok; Pan, Yi; Urosevic-Price, Olga; Wang, Li; Flattery, Amy M; Forrest, Gail; Szeto, Daphne; Zhao, Huawei; Roy, Sophie; Forrest, Michael J

    2011-01-01

    We investigated the effects of chronic mineralocorticoid receptor blockade with eplerenone on the development and progression of hypertension and end organ damage in Dahl salt-sensitive rats. Eplerenone significantly attenuated the progressive rise in systolic blood pressure (SBP) (204 ± 3 vs. 179±3 mmHg, p < 0.05), reduced proteinuria (605.5 ± 29.6 vs. 479.7 ± 26.1 mg/24h, p < 0.05), improved injury scores of glomeruli, tubules, renal interstitium, and vasculature in Dahl salt-sensitive rats fed a high-salt diet. These results demonstrate that mineralocorticoid receptor antagonism provides target organ protection and attenuates the development of elevated blood pressure (BP) in a model of salt-sensitive hypertension. PMID:21950654

  12. IL-1α mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit

    PubMed Central

    Hill, Alison R.; Donaldson, Jessica E.; Blume, Cornelia; Smithers, Natalie; Tezera, Liku; Tariq, Kamran; Dennison, Patrick; Rupani, Hitasha; Edwards, Matthew J.; Howarth, Peter H.; Grainge, Christopher; Davies, Donna E.; Swindle, Emily J.

    2016-01-01

    ABSTRACT The bronchial epithelium and underlying fibroblasts form an epithelial mesenchymal trophic unit (EMTU) which controls the airway microenvironment. We hypothesized that cell-cell communication within the EMTU propagates and amplifies the innate immune response to respiratory viral infections. EMTU co-culture models incorporating polarized (16HBE14o-) or differentiated primary human bronchial epithelial cells (HBECs) and fibroblasts were challenged with double-stranded RNA (dsRNA) or rhinovirus. In the polarized EMTU model, dsRNA affected ionic but not macromolecular permeability or cell viability. Compared with epithelial monocultures, dsRNA-stimulated pro-inflammatory mediator release was synergistically enhanced in the basolateral compartment of the EMTU model, with the exception of IL-1α which was unaffected by the presence of fibroblasts. Blockade of IL-1 signaling with IL-1 receptor antagonist (IL-1Ra) completely abrogated dsRNA-induced basolateral release of mediators except CXCL10. Fibroblasts were the main responders to epithelial-derived IL-1 since exogenous IL-1α induced pro-inflammatory mediator release from fibroblast but not epithelial monocultures. Our findings were confirmed in a differentiated EMTU model where rhinovirus infection of primary HBECs and fibroblasts resulted in synergistic induction of basolateral IL-6 that was significantly abrogated by IL-1Ra. This study provides the first direct evidence of integrated IL-1 signaling within the EMTU to propagate inflammatory responses to viral infection. PMID:27583193

  13. IL-1Ra and its delivery strategies: inserting the association in perspective.

    PubMed

    Akash, Muhammad Sajid Hamid; Rehman, Kanwal; Chen, Shuqing

    2013-11-01

    Interleukin-1 receptor antagonist (IL-1Ra) is a naturally occurring anti-inflammatory antagonist of interleukin-1 family of pro-inflammatory cytokines. The broad spectrum anti-inflammatory effects of IL-1Ra have been investigated against various auto-immune diseases such as diabetes mellitus, rheumatoid arthritis. Despite of its outstanding broad spectrum anti-inflammatory effects, IL-1Ra has short biological half-life (4-6 h) and to cope with this problem, up till now, many delivery strategies have been applied either to extend the half-life and/or prolong the steady-state sustained release of IL-1Ra from its target site. Here in our present paper, we have provided an overview of all approaches attempted to prolong the duration of therapeutic effects of IL-1Ra either by fusing IL-1Ra using fusion protein technology to extend the half-life and/or development of new dosage forms using various biodegradable polymers to prolong its steady-state sustained release at the site of administration. These approaches have been characterized by their intended impact on either in vitro release characteristics and/or pharmacokinetic and pharmacodynamic parameters of IL-1Ra. We have also compared these delivery strategies with each other on the basis of bioactivity of IL-1Ra after fusion with fusion protein partner and/or encapsulation with biodegradable polymer. PMID:23794040

  14. IL-1α mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit.

    PubMed

    Hill, Alison R; Donaldson, Jessica E; Blume, Cornelia; Smithers, Natalie; Tezera, Liku; Tariq, Kamran; Dennison, Patrick; Rupani, Hitasha; Edwards, Matthew J; Howarth, Peter H; Grainge, Christopher; Davies, Donna E; Swindle, Emily J

    2016-01-01

    The bronchial epithelium and underlying fibroblasts form an epithelial mesenchymal trophic unit (EMTU) which controls the airway microenvironment. We hypothesized that cell-cell communication within the EMTU propagates and amplifies the innate immune response to respiratory viral infections. EMTU co-culture models incorporating polarized (16HBE14o-) or differentiated primary human bronchial epithelial cells (HBECs) and fibroblasts were challenged with double-stranded RNA (dsRNA) or rhinovirus. In the polarized EMTU model, dsRNA affected ionic but not macromolecular permeability or cell viability. Compared with epithelial monocultures, dsRNA-stimulated pro-inflammatory mediator release was synergistically enhanced in the basolateral compartment of the EMTU model, with the exception of IL-1α which was unaffected by the presence of fibroblasts. Blockade of IL-1 signaling with IL-1 receptor antagonist (IL-1Ra) completely abrogated dsRNA-induced basolateral release of mediators except CXCL10. Fibroblasts were the main responders to epithelial-derived IL-1 since exogenous IL-1α induced pro-inflammatory mediator release from fibroblast but not epithelial monocultures. Our findings were confirmed in a differentiated EMTU model where rhinovirus infection of primary HBECs and fibroblasts resulted in synergistic induction of basolateral IL-6 that was significantly abrogated by IL-1Ra. This study provides the first direct evidence of integrated IL-1 signaling within the EMTU to propagate inflammatory responses to viral infection. PMID:27583193

  15. Effects of single or combined histamine H1-receptor and leukotriene CysLT1-receptor antagonism on nasal adenosine monophosphate challenge in persistent allergic rhinitis

    PubMed Central

    Lee, Daniel K C; Jackson, Catherine M; Soutar, Patricia C; Fardon, Thomas C; Lipworth, Brian J

    2004-01-01

    Background The effects of single or combined histamine H1-receptor and leukotriene CysLT1-receptor antagonism on nasal adenosine monophosphate (AMP) challenge in allergic rhinitis are unknown. Objective We elected to study the effects of usual clinically recommended doses of fexofenadine (FEX), montelukast (ML) and FEX + ML combination, compared with placebo (PL), on nasal AMP challenge in patients with persistent allergic rhinitis. Methods Twelve patients with persistent allergic rhinitis (all skin prick positive to house dust mite) were randomized in a double-blind cross-over fashion to receive for 1 week either FEX 180 mg, ML 10 mg, FEX 180 mg +ML 10 mg combination, or PL, with nasal AMP challenge performed 12 h after dosing. There was a 1-week washout period between each randomized treatment. The primary outcome measure was the maximum percentage peak nasal inspiratory flow (PNIF) fall from baseline over a 60-min period after nasal challenge with a single 400 mg ml−1 dose of AMP. The area under the 60-min time–response curve (AUC) and nasal symptoms were measured as secondary outcomes. Results There was significant attenuation (P < 0.05) of the mean maximum percentage PNIF fall from baseline after nasal AMP challenge vs. PL, 48; with FEX, 37; 95% confidence interval for difference 2, 20; ML, 35 (4, 22); and FEX + ML, 32 (7, 24). The AUC (%.min) was also significantly attenuated (P < 0.05) vs. PL, 1893; with FEX, 1306 (30, 1143); ML, 1246 (214, 1078); and FEX + ML, 1153 (251, 1227). There were no significant differences for FEX vs. ML vs. FEX + ML comparing either the maximum or AUC response. The total nasal symptom score (out of 12) was also significantly improved (P < 0.05) vs. PL, 3.3; with FEX, 2.1 (0.3, 2.0); ML, 2.0 (0.5, 1.9); and FEX + ML, 2.5 (0.1, 1.4). Conclusion FEX and ML as monotherapy significantly attenuated the response to nasal AMP challenge and improved nasal symptoms compared with PL, while combination therapy conferred no additional

  16. Complex effects of IL1A polymorphism and calpain inhibitors on interleukin 1 alpha (IL-1 alpha) mRNA levels and secretion of IL-1 alpha protein.

    PubMed

    Lee, S; Temple, S; Roberts, S; Price, P

    2008-07-01

    Alleles of IL1A-889(C>T) and IL1A+4845(G>T) are in linkage disequilibrium. Interleukin 1alpha (IL-1alpha) is produced as a precursor protein and cleaved at positions 117-118 by calpain, generating a mature protein for export. IL1A+4845 affects amino acids expressed at position 114 and hence may modulate calpain-mediated cleavage. We sought evidence for this mechanism in intact cells. Blood leukocytes from heterozygous donors released more IL-1alpha protein than cells from IL1A(1,1) donors, while release from IL1A(2,2) cells was variable. Genotype did not affect levels of IL-1alpha mRNA, so differential cleavage of the precursor is a feasible mechanism. However, genotype also had no effect on inhibition of IL-1alpha release by pretreatment with calpain inhibitors, and calpain inhibitors reduced IL-1alpha and tumor necrosis factor alpha mRNA levels. Hence, calpain inhibitors probably affect inhibition of signal transduction pathway rather than cleavage of IL-1alpha protein. As ratios of mu-calpain/calpastatin were lowest in heterozygous donors, genetically determined IL-1alpha levels may modulate transcription of calpain and calpastatin. This could reduce the impact of IL1A genotype on IL-1alpha secretion and amplify individual variation in levels generated in culture.

  17. Phosphocholine-Modified Macromolecules and Canonical Nicotinic Agonists Inhibit ATP-Induced IL-1β Release.

    PubMed

    Hecker, Andreas; Küllmar, Mira; Wilker, Sigrid; Richter, Katrin; Zakrzewicz, Anna; Atanasova, Srebrena; Mathes, Verena; Timm, Thomas; Lerner, Sabrina; Klein, Jochen; Kaufmann, Andreas; Bauer, Stefan; Padberg, Winfried; Kummer, Wolfgang; Janciauskiene, Sabina; Fronius, Martin; Schweda, Elke K H; Lochnit, Günter; Grau, Veronika

    2015-09-01

    IL-1β is a potent proinflammatory cytokine of the innate immune system that is involved in host defense against infection. However, increased production of IL-1β plays a pathogenic role in various inflammatory diseases, such as rheumatoid arthritis, gout, sepsis, stroke, and transplant rejection. To prevent detrimental collateral damage, IL-1β release is tightly controlled and typically requires two consecutive danger signals. LPS from Gram-negative bacteria is a prototypical first signal inducing pro-IL-1β synthesis, whereas extracellular ATP is a typical second signal sensed by the ATP receptor P2X7 that triggers activation of the NLRP3-containing inflammasome, proteolytic cleavage of pro-IL-1β by caspase-1, and release of mature IL-1β. Mechanisms controlling IL-1β release, even in the presence of both danger signals, are needed to protect from collateral damage and are of therapeutic interest. In this article, we show that acetylcholine, choline, phosphocholine, phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified protein efficiently inhibit ATP-mediated IL-1β release in human and rat monocytes via nicotinic acetylcholine receptors containing subunits α7, α9, and/or α10. Of note, we identify receptors for phosphocholine-modified macromolecules that are synthesized by microbes and eukaryotic parasites and are well-known modulators of the immune system. Our data suggest that an endogenous anti-inflammatory cholinergic control mechanism effectively controls ATP-mediated release of IL-1β and that the same mechanism is used by symbionts and misused by parasites to evade innate immune responses of the host.

  18. Phosphocholine-Modified Macromolecules and Canonical Nicotinic Agonists Inhibit ATP-Induced IL-1β Release.

    PubMed

    Hecker, Andreas; Küllmar, Mira; Wilker, Sigrid; Richter, Katrin; Zakrzewicz, Anna; Atanasova, Srebrena; Mathes, Verena; Timm, Thomas; Lerner, Sabrina; Klein, Jochen; Kaufmann, Andreas; Bauer, Stefan; Padberg, Winfried; Kummer, Wolfgang; Janciauskiene, Sabina; Fronius, Martin; Schweda, Elke K H; Lochnit, Günter; Grau, Veronika

    2015-09-01

    IL-1β is a potent proinflammatory cytokine of the innate immune system that is involved in host defense against infection. However, increased production of IL-1β plays a pathogenic role in various inflammatory diseases, such as rheumatoid arthritis, gout, sepsis, stroke, and transplant rejection. To prevent detrimental collateral damage, IL-1β release is tightly controlled and typically requires two consecutive danger signals. LPS from Gram-negative bacteria is a prototypical first signal inducing pro-IL-1β synthesis, whereas extracellular ATP is a typical second signal sensed by the ATP receptor P2X7 that triggers activation of the NLRP3-containing inflammasome, proteolytic cleavage of pro-IL-1β by caspase-1, and release of mature IL-1β. Mechanisms controlling IL-1β release, even in the presence of both danger signals, are needed to protect from collateral damage and are of therapeutic interest. In this article, we show that acetylcholine, choline, phosphocholine, phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified protein efficiently inhibit ATP-mediated IL-1β release in human and rat monocytes via nicotinic acetylcholine receptors containing subunits α7, α9, and/or α10. Of note, we identify receptors for phosphocholine-modified macromolecules that are synthesized by microbes and eukaryotic parasites and are well-known modulators of the immune system. Our data suggest that an endogenous anti-inflammatory cholinergic control mechanism effectively controls ATP-mediated release of IL-1β and that the same mechanism is used by symbionts and misused by parasites to evade innate immune responses of the host. PMID:26202987

  19. Maternal IL-1β Production Prevents Lung Injury in a Mouse Model of Bronchopulmonary Dysplasia

    PubMed Central

    Bäckström, Erica; Lappalainen, Urpo; Bry, Kristina

    2010-01-01

    Little is known about the influence of maternal inflammation on neonatal outcome. Production of IL-1β in the lungs of newborn infants is associated with bronchopulmonary dysplasia. Using bitransgenic (bi-TG) mice in which human (h) IL-1β is expressed with a doxycycline-inducible system controlled by the Clara cell secretory protein promoter, we have shown that hIL-1β expression causes a bronchopulmonary dysplasia–like illness in infant mice. To study the hypothesis that maternal hIL-1β production modifies the response of the newborn to hIL-1β, doxycycline was administered to bi-TG and control dams from Embryonic Day 0, inducing production of hIL-1β by the bi-TG dams before hIL-1β production started in their bi-TG fetuses, or from Embryonic Day 15, inducing simultaneous production of hIL-1β by both the bi-TG dams and their bi-TG fetuses. In addition to the lungs, hIL-1β was expressed at low levels in the uteri of bi-TG dams. Maternal inflammation preceding fetal inflammation increased the survival and growth of hIL-1β–expressing pups, enhanced alveolarization, and protected the airways against remodeling and goblet cell hyperplasia. Maternal hIL-1β production preceding fetal hIL-1β production caused silencing of several inflammatory genes, including CXC and CC chemokines, murine IL-1β, serum amyloid A3, and Toll-like receptors 2 and 4, and suppressed the expression of chitinase-like lectins Ym1 and Ym2 in the lungs of infant mice. Maternal inflammation protects the newborn against subsequent hIL-1β–induced lung inflammation and injury. In contrast, induction of hIL-1β production simultaneously in bi-TG dams and their fetuses offered no protection against inflammatory lung disease in the neonate. PMID:19411613

  20. IL1RN VNTR Polymorphism in Ischemic Stroke

    PubMed Central

    Worrall, Bradford B.; Brott, Thomas G.; Brown, Robert D.; Brown, W. Mark; Rich, Stephen S.; Arepalli, Sampath; Wavrant-De Vrièze, Fabienne; Duckworth, Jaime; Singleton, Andrew B.; Hardy, John; Meschia, James F.

    2008-01-01

    Background and Purpose Genetic factors influence risk for ischemic stroke and likely do so at multiple steps in the pathogenic process. Variants in genes related to inflammation contribute to risk of stroke. The purpose of this study was to confirm our earlier finding of an association between allele 2 of a variable number tandem repeat of the IL-1 receptor antagonist gene (IL1RN) and cerebrovascular disease. Methods An association study of the variable number tandem repeat genotype with ischemic stroke and stroke subtypes was performed on samples from a North American study of affected sibling pairs concordant for ischemic stroke and 2 North American cohorts of prospectively ascertained ischemic stroke cases and unrelated controls. DNA analysis was performed on cases and controls, stratified by race. Results After adjustment for age, sex, and stroke risk factors, the odds ratio for association of allele 2 and ischemic stroke was 2.80 (95% confidence interval, 1.29 to 6.11; P=0.03) for the white participants. The effect of allele 2 of IL1RN on stroke risk most closely fits a recessive genetic model (P=0.009). For the smaller sample of nonwhite participants, the results were not significant. Conclusions Allele 2 of IL1RN, present in nearly one-quarter of stroke patients, may contribute to genetic risk for ischemic stroke and confirm the previously identified association with cerebrovascular disease. These results are driven by the association in the white participants. Further exploration in a larger nonwhite sample is warranted. PMID:17332449

  1. Influence of the IL-1Ra gene polymorphism on in vivo synthesis of IL-1Ra and IL-1β after live yellow fever vaccination

    PubMed Central

    Hacker, U T; Erhardt, S; Tschöp, K; Jelinek, T; Endres, S

    2001-01-01

    The inflammatory response in infectious and autoimmune diseases is regulated by the balance between pro- and anti-inflammatory cytokines. The IL-1 complex contains polymorphic genes coding for IL-1α, IL-1β and IL-1Ra. The IL-1Ra (variable number of tanden repeat) VNTR polymorphism has been shown to influence the capacity to produce IL-1β and IL-1Ra after in vitro stimulation. Allele 2 of this polymorphism is associated with a number of inflammatory diseases. To determine the impact of the IL-1Ra polymorphism on in vivo human cytokine synthesis, we used a yellow fever vaccination model for the induction of cytokine synthesis in healthy volunteers. Two different yellow fever vaccines were used. After administration of the RKI vaccine (34 volunteers), plasma TNF-α concentration increased from 13·4 ± 0·9 pg/ml to 23·3 ± 1·1 pg/ml (P < 0·001), and plasma IL-1Ra concentration increased from 308 ± 25 pg/ml to 1019 ± 111 pg/ml (P < 0·001), on day 2. Using Stamaril® vaccine, no increase in the plasma concentrations of either TNF-α or IL-1Ra could be detected (n = 17). Only the RKI vaccine induced TNF-α synthesis after in vitro stimulation of MNC. Carriers of allele 2 of the IL-1Ra polymorphism had increased baseline concentrations of IL-1Ra (350 ± 32 pg/ml) compared with non-carriers (222 ± 18 pg/ml, P < 0·001), and decreased concentrations of IL-1β (0·9 ± 0·2 pg/ml for carriers versus 2·8 ± 0·7 pg/ml for non-carriers, P = 0·017). After yellow fever vaccination (RKI vaccine), no significant differences in the increase of IL-1Ra plasma levels were detected between carriers and non-carriers of allele 2 of the IL-1Ra gene polymorphism. This is the first study to examine the influence of this genetic polymorphism on in vivo-induced human IL-1β and IL-1Ra synthesis. Baseline concentrations of IL-1Ra and IL-1β were significantly influenced by the IL-1Ra polymorphism. No influence of the IL-1Ra polymorphism on the in vivo-induced production of IL-1Ra

  2. A unique feature of Toll/IL-1 receptor domain-containing adaptor protein is partially responsible for lipopolysaccharide insensitivity in zebrafish with a highly conserved function of MyD88.

    PubMed

    Liu, Yanhui; Li, Mengzhen; Fan, Shan; Lin, Yiqun; Lin, Bin; Luo, Fang; Zhang, Chenxu; Chen, Shangwu; Li, Yingqiu; Xu, Anlong

    2010-09-15

    MyD88 and Toll/IL-1R domain-containing adaptor protein (TIRAP) are required for the TLR4 response to LPS stimulation in mammals, but the functions of the two adaptors and their involvement in zebrafish insensitivity to LPS remains unknown. We present a functional analysis of zebrafish Myd88 and Tirap and suggest that Myd88 is more important than Tirap for the activation of Tlr-mediated NF-kappaB, which may be a novel mechanism of Myd88-dependent TLR signaling in teleosts. Zebrafish Tirap lacks the phosphatidylinositol 4,5-bisphosphate binding motif required for human TIRAP location and has leucine at position 233 rather than the conserved proline of human TIRAP, as well as 105 additional aa at the N terminus. Overexpression of zebrafish Tirap in HEK293T cells did not activate NF-kappaB and IFN-beta, but slightly activated NF-kappaB in carp leukocyte cells. Zebrafish Myd88 alone strongly induced the activation of NF-kappaB and IFN-beta both in HEK293T and carp leukocyte cells. The function of Myd88 was dependent on its cellular location and the proline in the Toll/IL-1R domain. Although zebrafish Tirap was distributed throughout the cell rather than localized to the cytoplasmic membrane, its impaired ability to activate downstream Tlr molecules was unlikely to be related to its location because chimera TIRAP with a human TIRAP N terminus and membrane-binding domain also did not activate NF-kappaB. However, the mutation of leucine to proline increased the ability of Tirap to activate NF-kappaB. We suggest that the zebrafish Tirap needs a longer N terminus to perform its function and could be partially responsible for the resistance to LPS in zebrafish.

  3. In vitro effects of glutamate and N-methyl-D-aspartate receptor (NMDAR) antagonism on human tendon derived cells.

    PubMed

    Dean, Benjamin John Floyd; Snelling, Sarah J B; Dakin, Stephanie Georgina; Javaid, Muhammad Kassim; Carr, Andrew Jonathan

    2015-10-01

    It is known that extracellular glutamate concentrations are increased in tendinopathy but the effects of glutamate upon human tendon derived cells are unknown. The primary purpose was to investigate the effect of glutamate exposure on human tendon-derived cells in terms of viability, protein, and gene expression. The second purpose was to assess whether NMDAR antagonism would affect the response of tendon-derived cells to glutamate exposure. Human tendon-derived cells were obtained from supraspinatus tendon tissue obtained during rotator cuff repair (tendon tear derived cells) and from healthy hamstring tendon tissue (control cells). The in vitro impact of glutamate exposure and NMDAR antagonism (MK-801) was measured using the Alamar blue cell viability assay, immunocytochemistry, and quantitative real-time PCR. Glutamate reduced cell viability at 24 h in tendon tear derived cells but not in control cells at concentrations of 7.5 mM and above. Cell viability was significantly reduced after 72 h of 1.875 mM glutamate in both cell groups; this deleterious effect was attenuated by NMDAR antagonism with 10 µM MK-801. Both 24 and 72 h of 1.875 mM glutamate exposure reduced Type 1 alpha 1 collagen (COL1A1) and Type 3 alpha 1 collagen (COL3A1) gene expression, but increased Aggrecan gene expression. We propose that these effects of glutamate on tendon derived cells including reduced cell viability and altered matrix gene expression contribute to the pathogenesis of tendinopathy. PMID:26041147

  4. Serum Amyloid A Induces NLRP-3-Mediated IL-1β Secretion in Neutrophils

    PubMed Central

    Migita, Kiyoshi; Izumi, Yasumori; Jiuchi, Yuka; Kozuru, Hideko; Kawahara, Chieko; Nakamura, Minoru; Nakamura, Tadashi; Agematsu, Kazunaga; Masumoto, Junya; Yasunami, Michio; Kawakami, Atsushi; Eguchi, Katsumi

    2014-01-01

    Background/Aims Serum amyloid A (SAA) is an acute phase reactant with significant immunological activities, including effects on cytokine synthesis and neutrophil chemotaxis. Neutrophils can also release cytokines with proinflammatory properties. IL-1β is a key proinflammatory cytokine, the secretion of which is controlled by inflammasome. We investigated the proinflammatory effects of SAA in vitro in relation to the NLRP3 inflammasome in neutrophils. Methodology/Principal Findings Human neutrophils isolated form healthy subjects were stimulated with serum amyloid A (SAA). The cellular supernatants were analyzed by western blot using anti-IL-1β or anti-caspase-1 antibodies. IL-1β or Nod-like receptor family, pyrin domain containing 3 (NLRP3) mRNA expressions were analyzed by real-time PCR or reverse transcription-PCR (RT-PCR) method. SAA stimulation induced pro-IL-1β mRNA expression in neutrophils. Furthermore, SAA engaged the caspase-1-activating inflammasome, resulting in the production of active IL-1β. SAA-induced pro-IL-1β expression was marginally suppressed by the Syk specific inhibitor, R406, and SAA-induced pro-IL-1β processing in neutrophils was prevented by R406. Furthermore, SAA-induced NLRP3 mRNA expression was completely blocked by R406. Analysis of intracellular signaling revealed that SAA stimulation activated the tyrosine kinase Syk and mitogen-activated protein kinase (MAPK). Conclusions/Significance These results demonstrate that the innate neutrophil immune response against SAA involves a two-step activation process: an initial signal promoting expression of pro-IL-1β and a second signal involving Syk-dependent activation of the NLRP3 inflammasome and caspase-1, allowing processing of pro-IL-1β and secretion of mature IL-1β. PMID:24846290

  5. Role of IL-1β in Experimental Cystic Fibrosis upon P. aeruginosa Infection

    PubMed Central

    Palomo, Jennifer; Marchiol, Tiffany; Piotet, Julie; Fauconnier, Louis; Robinet, Marieke; Reverchon, Flora; Le Bert, Marc; Togbe, Dieudonnée; Buijs-Offerman, Ruvalic; Stolarczyk, Marta; Quesniaux, Valérie F. J.; Scholte, Bob J.; Ryffel, Bernhard

    2014-01-01

    Cystic fibrosis is associated with increased inflammatory responses to pathogen challenge. Here we revisited the role of IL-1β in lung pathology using the experimental F508del-CFTR murine model on C57BL/6 genetic background (Cftrtm1eur or d/d), on double deficient for d/d and type 1 interleukin-1 receptor (d/d X IL-1R1−/−), and antibody neutralization. At steady state, young adult d/d mice did not show any signs of spontaneous lung inflammation. However, IL-1R1 deficiency conferred partial protection to repeated P. aeruginosa endotoxins/LPS lung instillation in d/d mice, as 50% of d/d mice succumbed to inflammation, whereas all d/d x IL-1R1−/− double mutants survived with lower initial weight loss and less pulmonary collagen and mucus production, suggesting that the absence of IL-1R1 signaling is protective in d/d mice in LPS-induced lung damage. Using P. aeruginosa acute lung infection we found heightened neutrophil recruitment in d/d mice with higher epithelial damage, increased bacterial load in BALF, and augmented IL-1β and TNF-α in parenchyma as compared to WT mice. Thus, F508del-CFTR mice show enhanced IL-1β signaling in response to P. aeruginosa. IL-1β antibody neutralization had no effect on lung homeostasis in either d/d or WT mice, however P. aeruginosa induced lung inflammation and bacterial load were diminished by IL-1β antibody neutralization. In conclusion, enhanced susceptibility to P. aeruginosa in d/d mice correlates with an excessive inflammation and with increased IL-1β production and reduced bacterial clearance. Further, we show that neutralization of IL-1β in d/d mice through the double mutation d/d x IL-1R1−/− and in WT via antibody neutralization attenuates inflammation. This supports the notion that intervention in the IL-1R1/IL-1β pathway may be detrimental in CF patients. PMID:25500839

  6. Prostamide F2α receptor antagonism combined with inhibition of FAAH may block the pro-inflammatory mediators formed following selective FAAH inhibition

    PubMed Central

    Ligresti, Alessia; Martos, Jose; Wang, Jenny; Guida, Francesca; Allarà, Marco; Palmieri, Vittoria; Luongo, Livio; Woodward, David; Di Marzo, Vincenzo

    2014-01-01

    Background and PurposeProstamides are lipid mediators formed by COX-2-catalysed oxidation of the endocannabinoid anandamide and eliciting effects often opposed to those caused by anandamide. Prostamides may be formed when hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) is physiologically, pathologically or pharmacologically decreased. Thus, therapeutic benefits of FAAH inhibitors might be attenuated by concomitant production of prostamide F2α. This loss of benefit might be minimized by compounds designed to selectively antagonize prostamide receptors and also inhibiting FAAH. Experimental ApproachInhibition of FAAH by a series of selective antagonists of prostamide receptors, including AGN 204396, AGN 211335 and AGN 211336, was assessed using rat, mouse and human FAAH in vitro, together with affinity for human recombinant CB1 and CB2 receptors. Effects in vivo were measured in a model of formalin-induced inflammatory pain in mice. Key ResultsThe prostamide F2α receptor antagonists were active against mouse and rat FAAH in the low μM range and behaved as non-competitive and plasma membrane-permeant inhibitors. AGN 211335, the most potent inhibitor of rat FAAH (IC50 = 1.2 μM), raised exogenous anandamide levels in intact cells and also bound to cannabinoid CB1 receptors. Both AGN 211335 and AGN 211336 (0.25–1 mg·kg−1, i.p.) inhibited the formalin-induced nociceptive response in mice. Conclusions and ImplicationsSynthetic compounds with indirect agonist activity at cannabinoid receptors and antagonist activity at prostamide receptors can be developed. Such compounds could be used as alternatives to selective FAAH inhibitors to prevent the possibility of prostamide F2α-induced inflammation and pain. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24102214

  7. Polymorphisms of IL-1beta, IL-1Ra, and TNF-alpha genes: a nested case-control study of their association with risk for stroke.

    PubMed

    Cvetkovic, Jasmina Trifunovic; Wiklund, Per Gunnar; Ahmed, Ejaz; Weinehall, Lars; Hallmans, Göran; Lefvert, Ann Kari

    2005-01-01

    Certain alleles of cytokine genes interleukin-1 beta (IL-1beta), interleukin-1 receptor antagonist (IL-1Ra), and tumor necrosis factor alpha (TNF-alpha) are correlated with increased production of the proteins. The aim of this study was to investigate polymorphisms of these genes and their possible correlation with the development of stroke. This matched case-control study was nested within the population-based Västerbotten Intervention Program (VIP) cohort and the Northern Sweden World Health Organization MONICA (Multinational Monitoring of Trends and Determinants in Cardiovascular Diseases) cohort, based on individuals who were free from cardiovascular events when the cohorts were established. After an average period of 34.1 months, 113 individuals developed stroke and to each case 2 individuals not suffering from cardiovascular events were matched to serve as controls. Polymerase chain reaction amplification was used to analyze genetic polymorphisms. There was no association between polymorphic sites of the IL-1beta and IL-1Ra genes and stroke. Carriage of haplotype A2+IL-1beta/A2+IL-1Ra was significantly increased in normotensive cases (23.1%) compared with normotensive controls (8.9%) (odds ratio [OR] = 3.07; P = .045). In hypertensive male cases, there was an association between the A1A1 genotype of TNF-alpha and risk of stroke (OR = 2.46; P = .034). Our findings indicate an association between allele A1 of the TNF-alpha NcoI polymorphism and stroke in hypertensive male cases, as well as an association between haplotype A2+IL-1beta/A2+IL-1Ra and stroke in normotensive cases.

  8. Contrasting effects of peroxisome-proliferator-activated receptor (PPAR)γ agonists on membrane-associated prostaglandin E2 synthase-1 in IL-1β-stimulated rat chondrocytes: evidence for PPARγ-independent inhibition by 15-deoxy-Δ12,14prostaglandin J2

    PubMed Central

    Bianchi, Arnaud; Moulin, David; Sebillaud, Sylvie; Koufany, Meriem; Galteau, Marie-Madeleine; Netter, Patrick; Terlain, Bernard; Jouzeau, Jean-Yves

    2005-01-01

    Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1α and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1β, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)γ agonists. Real-time PCR analysis showed that IL-1β induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1α and PGE2 peaked 24 hours after stimulation with IL-1β; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Δ12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 μM), with more potency on PGE2 level than on 6-keto-PGF1α level (-90% versus -66% at 10 μM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 μM. Inhibitory effects of 10 μM 15d-PGJ2 were neither reduced by PPARγ blockade with GW-9662 nor enhanced by PPARγ overexpression, supporting a PPARγ-independent mechanism. EMSA and TransAM® analyses demonstrated that mutated IκBα almost completely suppressed the stimulating effect of IL-1β on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-κB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-κB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARγ through inhibition of

  9. Modulation of IL-1β reprogrammes the tumor microenvironment to interrupt oral carcinogenesis

    PubMed Central

    Wu, Tong; Hong, Yun; Jia, Lihua; Wu, Jie; Xia, Juan; Wang, Juan; Hu, Qinchao; Cheng, Bin

    2016-01-01

    Head and neck squamous cell carcinoma (HNSCC) development is a multistage process includes the normal, dysplasia and squamous cell carcinoma (SCC) stages. Recently, increasing evidence has suggested that the tumor microenvironment (TME) is an integral part of malignant transformation. Exploring certain key node genes in TME for future intervention in dysplasia to interrupt oral carcinogenesis was the primary goal of this research. To achieve this goal, systems biology approaches were first applied to the epithelia and fibroblasts collected at sequential stages in a 4-nitroquinoline-1-oxide (4NQO) - induced rat oral carcinogenesis model. Through bioinformatics network construction, IL-1β was identified as one of the key node genes in TME during carcinogenesis. Immunohistochemical staining of human and rat samples demonstrated that IL-1β expression patterns were parallel to the stages of malignant transformation. Silencing IL-1β with lentivirus-delivered shRNA significantly inhibited oral squamous cell carcinoma cell growth both in vivo and in vitro. Based on these findings, we hypothesized that IL-1β may be a chemoprevention target in TME during oral carcinogenesis. Therefore, we targeted IL-1 in the TME by oral mucosal injection of an IL-1 receptor antagonist in 4NQO rats. The results demonstrated that targeting IL-1 could interrupt oral carcinogenesis by reprogramming the TME. PMID:26831400

  10. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia

    PubMed Central

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-01-01

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities. PMID:27273195

  11. The Role of IL-1β in the Bone Loss during Rheumatic Diseases

    PubMed Central

    Ruscitti, Piero; Cipriani, Paola; Carubbi, Francesco; Liakouli, Vasiliki; Di Benedetto, Paola; Berardicurti, Onorina; Alesse, Edoardo; Giacomelli, Roberto

    2015-01-01

    Several inflammatory diseases have been associated with increased bone resorption and fracture rates and different studies supported the relation between inflammatory cytokines and osteoclast activity. The main factor required for osteoclast activation is the stimulation by receptor activator of nuclear factor kappa-B ligand (RANKL) expressed on osteoblasts. In this context, interleukin- (IL-) 1β, one of the most powerful proinflammatory cytokines, is a strong stimulator of in vitro and in vivo bone resorption via upregulation of RANKL that stimulates the osteoclastogenesis. The resulting effects lead to an imbalance in bone metabolism favouring bone resorption and osteoporosis. In this paper, we review the available literature on the role of IL-1β in the pathogenesis of bone loss. Furthermore, we analysed the role of IL-1β in bone resorption during rheumatic diseases and, when available, we reported the efficacy of anti-IL-1β therapy in this field. PMID:25954061

  12. The effects of fast-off-D2 receptor antagonism on L-DOPA-induced dyskinesia and psychosis in parkinsonian macaques.

    PubMed

    Koprich, James B; Huot, Philippe; Fox, Susan H; Jarvie, Keith; Lang, Anthony E; Seeman, Philip; Brotchie, Jonathan M

    2013-06-01

    3,4-Dihydroxyphenylalanine (L-DOPA) treatment of Parkinson's disease (PD) is compromised by motor side effects, such as dyskinesia and non-motor problems, including psychosis. Because of the marked reduction in brain dopamine in PD and the resultant dopamine D2 receptor supersensitivity, it is impossible to use standard potent dopamine D2 receptor antagonists such as haloperidol to alleviate side effects without compromising the anti-parkinsonian benefits of L-DOPA. Haloperidol antagonizes D2 receptors with high affinity and slowly dissociates from D2 receptors (50% dissociation at 38min). We hypothesized that a rapidly dissociating D2 antagonist might allow some functional dopaminergic transmission and thus have a profile, with respect to reduction of dyskinesia and anti-parkinsonian effects, that was more useful therapeutically. The present study tested the principle of using a fast-off-D2 drug, CLR151 (50% dissociation at 23s) to modify L-DOPA actions in cynomolgus macaques with MPTP-parkinsonism. CLR151 (100mg/kg p.o.) reduced L-DOPA-induced dyskinesia and activity in the parkinsonian macaque by 86% and 52% respectively during peak action. CLR151 (100mg/kg) also reduced psychosis-like behaviour (i.e. reduced apparent visual hallucinations by 78%). Nevertheless, this dose of CLR151 significantly reduced the duration of anti-parkinsonian action of L-DOPA, ON-time (by 90%), and increased parkinsonian disability (by 57%). These data suggest that fast-off-D2 dopamine receptor antagonists, with D2-off-rate values close to those for CLR151, are unlikely to be useful in the treatment of dyskinesia and psychosis in PD. However, fast-off-D2 drugs could provide benefit if new congeners would have an even faster dissociation rate. Such drugs are now becoming available. PMID:23306217

  13. Muscle-Derived IL-6 Is Not Regulated by IL-1 during Exercise. A Double Blind, Placebo-Controlled, Randomized Crossover Study

    PubMed Central

    Cordes, Mareike; Coslovsky, Michael; Hanssen, Henner; Schmidt-Trucksäss, Arno; Donath, Marc Y.

    2015-01-01

    Exercise increases muscle derived Interleukin–6 (IL–6) leading to insulin secretion via glucagon-like peptide–1. IL–1 antagonism improves glycemia and decreases systemic inflammation including IL–6 in patients with type 2 diabetes. However, it is not known whether physiological, exercise-induced muscle-derived IL–6 is also regulated by the IL–1 system. Therefore we conducted a double blind, crossover study in 17 healthy male subjects randomized to receive either the IL–1 receptor antagonist IL-1Ra (anakinra) or placebo prior to an acute treadmill exercise. Muscle activity led to a 2–3 fold increase in serum IL–6 concentrations but anakinra had no effect on this exercise-induced IL–6. Furthermore, the IL–1 responsive inflammatory markers CRP, cortisol and MCP–1 remained largely unaffected by exercise and anakinra. We conclude that the beneficial effect of muscle-induced IL–6 is not meaningfully affected by IL–1 antagonism. Trial Registration ClinicalTrials.gov NCT01771445 PMID:26448147

  14. Evaluation of saccharin intake and expression of fructose-conditioned flavor preferences following opioid receptor antagonism in the medial prefrontal cortex, amygdala or lateral hypothalamus in rats.

    PubMed

    Malkusz, Danielle C; Bernal, Sonia Y; Banakos, Theodore; Malkusz, Gina; Mohamed, Andrew; Vongwattanakit, Tracy; Bodnar, Richard J

    2014-04-01

    In prior studies, systemic opioid receptor antagonism with naltrexone (NTX) failed to block flavor preference conditioning by the sweet taste or post-oral actions of sugar despite reducing overall flavored saccharin intake. Further, NTX microinjections into the nucleus accumbens (NAc) shell or core failed to alter the expression of preferences conditioned by the sweet taste or post-oral actions of sugars. In contrast, fructose-conditioned flavor preferences (CFP) were reduced or eliminated by systemic or intracerebral administration of dopamine (DA) D1 or D2 antagonists in the NAc, medial prefrontal cortex (mPFC), amygdala (AMY) or lateral hypothalamus (LH). The present study examined whether NTX microinjections into the mPFC, AMY or LH would alter expression of fructose-CFP and total flavored saccharin intake. Food-restricted rats with bilateral cannulae aimed at the mPFC, AMY or LH were trained to drink a fructose (8%)+saccharin (0.2%) solution mixed with one flavor (CS+, e.g., cherry) and a 0.2% saccharin solution mixed with another flavor (CS-, e.g., grape) during 10 one-bottle sessions. Two-bottle tests with the cherry and grape flavors in 0.2% saccharin solutions occurred 10min following total bilateral NTX doses of 0, 1, 25 and 50μg administered into the mPFC, AMY or LH. Rats preferred the CS+ over CS- flavor following vehicle and all NTX doses administered into either the mPFC or LH. CS+ intake was significantly greater than CS- intake following vehicle and the low NTX dose in the AMY; however, at the 25 and 50μg AMY NTX doses, CS+ intakes did not significantly exceed CS- intakes. Total flavored saccharin intake was significantly reduced by all three LH NTX doses (20-35%), by the 25 (14%) and 50 (22%)μg AMY NTX doses, but not by mPFC NTX. Thus, opioid antagonism in the AMY, but not the mPFC or LH attenuated, but did not block the expression of fructose-CFP, and LH and AMY, but not mPFC, NTX significantly reduced total saccharin intake. Therefore, whereas

  15. Noradrenergic β-Receptor Antagonism within the Central Nucleus of the Amygdala or Bed Nucleus of the Stria Terminalis Attenuates the Negative/Anxiogenic Effects of Cocaine

    PubMed Central

    Wenzel, Jennifer M.; Cotten, Samuel W.; Dominguez, Hiram M.; Lane, Jennifer E.; Shelton, Kerisa; Su, Zu-In

    2014-01-01

    Cocaine has been shown to produce both initial rewarding and delayed anxiogenic effects. Although the neurobiology of cocaine's rewarding effects has been well studied, the mechanisms underlying its anxiogenic effects remain unclear. We used two behavioral assays to study these opposing actions of cocaine: a runway self-administration test and a modified place conditioning test. In the runway, the positive and negative effects of cocaine are reflected in the frequency of approach-avoidance conflict that animals develop about entering a goal box associated with cocaine delivery. In the place conditioning test, animals develop preferences for environments paired with the immediate/rewarding effects of cocaine, but avoid environments paired with the drug's delayed/anxiogenic actions. In the present study, these two behavioral assays were used to examine the role of norepinephrine (NE) transmission within the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST), each of which has been implicated in drug-withdrawal-induced anxiety and stress-induced response reinstatement. Rats experienced 15 single daily cocaine-reinforced (1.0 mg/kg, i.v.) runway trials 10 min after intracranial injection of the β1 and β2 NE receptor antagonists betaxolol and ICI 118551 or vehicle into the CeA or BNST. NE antagonism of either region dose dependently reduced approach-avoidance conflict behavior compared with that observed in vehicle-treated controls. In addition, NE antagonism selectively interfered with the expression of conditioned place aversions while leaving intact cocaine-induced place preferences. These data suggest a role for NE signaling within the BNST and the CeA in the anxiogenic actions of cocaine. PMID:24599448

  16. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy.

    PubMed

    Johansson, Maja; Agusti, Ana; Llansola, Marta; Montoliu, Carmina; Strömberg, Jessica; Malinina, Evgenya; Ragagnin, Gianna; Doverskog, Magnus; Bäckström, Torbjörn; Felipo, Vicente

    2015-09-01

    Hepatic encephalopathy (HE) is one of the primary complications of liver cirrhosis. Current treatments for HE, mainly directed to reduction of ammonia levels, are not effective enough because they cannot completely eliminate hyperammonemia and inflammation, which induce the neurological alterations. Studies in animal models show that overactivation of GABAA receptors is involved in cognitive and motor impairment in HE and that reducing this activation restores these functions. We have developed a new compound, GR3027, that selectively antagonizes the enhanced activation of GABAA receptors by neurosteroids such as allopregnanolone and 3α,21-dihydroxy-5α-pregnan-20-one (THDOC). This work aimed to assess whether GR3027 improves motor incoordination, spatial learning, and circadian rhythms of activity in rats with HE. GR3027 was administered subcutaneously to two main models of HE: rats with chronic hyperammonemia due to ammonia feeding and rats with portacaval shunts (PCS). Motor coordination was assessed in beam walking and spatial learning and memory in the Morris water maze and the radial maze. Circadian rhythms of ambulatory and vertical activity were also assessed. In both hyperammonemic and PCS rats, GR3027 restores motor coordination, spatial memory in the Morris water maze, and spatial learning in the radial maze. GR3027 also partially restores circadian rhythms of ambulatory and vertical activity in PCS rats. GR3027 is a novel approach to treatment of HE that would normalize neurological functions altered because of enhanced GABAergic tone, affording more complete normalization of cognitive and motor function than current treatments for HE.

  17. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy

    PubMed Central

    Johansson, Maja; Agusti, Ana; Llansola, Marta; Montoliu, Carmina; Strömberg, Jessica; Malinina, Evgenya; Ragagnin, Gianna; Doverskog, Magnus; Bäckström, Torbjörn

    2015-01-01

    Hepatic encephalopathy (HE) is one of the primary complications of liver cirrhosis. Current treatments for HE, mainly directed to reduction of ammonia levels, are not effective enough because they cannot completely eliminate hyperammonemia and inflammation, which induce the neurological alterations. Studies in animal models show that overactivation of GABAA receptors is involved in cognitive and motor impairment in HE and that reducing this activation restores these functions. We have developed a new compound, GR3027, that selectively antagonizes the enhanced activation of GABAA receptors by neurosteroids such as allopregnanolone and 3α,21-dihydroxy-5α-pregnan-20-one (THDOC). This work aimed to assess whether GR3027 improves motor incoordination, spatial learning, and circadian rhythms of activity in rats with HE. GR3027 was administered subcutaneously to two main models of HE: rats with chronic hyperammonemia due to ammonia feeding and rats with portacaval shunts (PCS). Motor coordination was assessed in beam walking and spatial learning and memory in the Morris water maze and the radial maze. Circadian rhythms of ambulatory and vertical activity were also assessed. In both hyperammonemic and PCS rats, GR3027 restores motor coordination, spatial memory in the Morris water maze, and spatial learning in the radial maze. GR3027 also partially restores circadian rhythms of ambulatory and vertical activity in PCS rats. GR3027 is a novel approach to treatment of HE that would normalize neurological functions altered because of enhanced GABAergic tone, affording more complete normalization of cognitive and motor function than current treatments for HE. PMID:26138462

  18. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy.

    PubMed

    Johansson, Maja; Agusti, Ana; Llansola, Marta; Montoliu, Carmina; Strömberg, Jessica; Malinina, Evgenya; Ragagnin, Gianna; Doverskog, Magnus; Bäckström, Torbjörn; Felipo, Vicente

    2015-09-01

    Hepatic encephalopathy (HE) is one of the primary complications of liver cirrhosis. Current treatments for HE, mainly directed to reduction of ammonia levels, are not effective enough because they cannot completely eliminate hyperammonemia and inflammation, which induce the neurological alterations. Studies in animal models show that overactivation of GABAA receptors is involved in cognitive and motor impairment in HE and that reducing this activation restores these functions. We have developed a new compound, GR3027, that selectively antagonizes the enhanced activation of GABAA receptors by neurosteroids such as allopregnanolone and 3α,21-dihydroxy-5α-pregnan-20-one (THDOC). This work aimed to assess whether GR3027 improves motor incoordination, spatial learning, and circadian rhythms of activity in rats with HE. GR3027 was administered subcutaneously to two main models of HE: rats with chronic hyperammonemia due to ammonia feeding and rats with portacaval shunts (PCS). Motor coordination was assessed in beam walking and spatial learning and memory in the Morris water maze and the radial maze. Circadian rhythms of ambulatory and vertical activity were also assessed. In both hyperammonemic and PCS rats, GR3027 restores motor coordination, spatial memory in the Morris water maze, and spatial learning in the radial maze. GR3027 also partially restores circadian rhythms of ambulatory and vertical activity in PCS rats. GR3027 is a novel approach to treatment of HE that would normalize neurological functions altered because of enhanced GABAergic tone, affording more complete normalization of cognitive and motor function than current treatments for HE. PMID:26138462

  19. Antagonism of κ opioid receptor in the nucleus accumbens prevents the depressive-like behaviors following prolonged morphine abstinence.

    PubMed

    Zan, Gui-Ying; Wang, Qian; Wang, Yu-Jun; Liu, Yao; Hang, Ai; Shu, Xiao-Hong; Liu, Jing-Gen

    2015-09-15

    The association between morphine withdrawal and depressive-like symptoms is well documented, however, the role of dynorphin/κ opioid receptor system and the underlying neural substrates have not been fully understood. In the present study, we found that four weeks morphine abstinence after a chronic escalating morphine regimen significantly induced depressive-like behaviors in mice. Prodynorphin mRNA and protein levels were increased in the nucleus accumbens (NAc) after four weeks of morphine withdrawal. Local injection of κ opioid receptor antagonist nor-Binaltorphimine (norBNI) in the NAc significantly blocked the expression of depressive-like behaviors without influencing general locomotor activity. Thus, the present study extends previous findings by showing that prolonged morphine withdrawal-induced depressive-like behaviors are regulated by dynorphin/κ opioid receptor system, and shed light on the κ opioid receptor antagonists as potential therapeutic agents for the treatment of depressive-like behaviors induced by opiate withdrawal.

  20. NMDA receptor antagonism in the basolateral but not central amygdala blocks the extinction of Pavlovian fear conditioning in rats.

    PubMed

    Zimmerman, Joshua M; Maren, Stephen

    2010-05-01

    Glutamate receptors in the basolateral complex of the amygdala (BLA) are essential for the acquisition, expression and extinction of Pavlovian fear conditioning in rats. Recent work has revealed that glutamate receptors in the central nucleus of the amygdala (CEA) are also involved in the acquisition of conditional fear, but it is not known whether they play a role in fear extinction. Here we examine this issue by infusing glutamate receptor antagonists into the BLA or CEA prior to the extinction of fear to an auditory conditioned stimulus (CS) in rats. Infusion of the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), into either the CEA or BLA impaired the expression of conditioned freezing to the auditory CS, but did not impair the formation of a long-term extinction memory to that CS. In contrast, infusion of the N-methyl-D-aspartate (NMDA) receptor antagonist, D,L-2-amino-5-phosphonopentanoic acid (APV), into the amygdala, spared the expression of fear to the CS during extinction training, but impaired the acquisition of a long-term extinction memory. Importantly, only APV infusions into the BLA impaired extinction memory. These results reveal that AMPA and NMDA receptors within the amygdala make dissociable contributions to the expression and extinction of conditioned fear, respectively. Moreover, they indicate that NMDA receptor-dependent processes involved in extinction learning are localized to the BLA. Together with previous work, these results reveal that NMDA receptors in the CEA have a selective role acquisition of fear memory.

  1. Baseline anandamide levels and body weight impact the weight loss effect of CB1 receptor antagonism in male rats.

    PubMed

    Karlsson, Cecilia; Hjorth, Stephan; Karpefors, Martin; Hansson, Göran I; Carlsson, Björn

    2015-04-01

    The individual weight loss response to obesity treatment is diverse. Here we test the hypothesis that the weight loss response to the CB1 receptor antagonist rimonabant is influenced by endogenous levels of receptor agonists. We show that baseline anandamide levels and body weight independently contribute to predict the treatment response to rimonabant in rodents, demonstrating that addition of biomarkers related to mode of action is relevant for a personalized health care approach to obesity treatment.

  2. Identification of specific ligands for orphan olfactory receptors. G protein-dependent agonism and antagonism of odorants.

    PubMed

    Shirokova, Elena; Schmiedeberg, Kristin; Bedner, Peter; Niessen, Heiner; Willecke, Klaus; Raguse, Jan-Dirk; Meyerhof, Wolfgang; Krautwurst, Dietmar

    2005-03-25

    Olfactory receptors are the largest group of orphan G protein-coupled receptors with an infinitely small number of agonists identified out of thousands of odorants. The de-orphaning of olfactory receptor (OR) is complicated by its combinatorial odorant coding and thus requires large scale odorant and receptor screening and establishing receptor-specific odorant profiles. Here, we report on the stable reconstitution of OR-specific signaling in HeLa/Olf cells via G protein alphaolf and adenylyl cyclase type-III to the Ca2+ influx-mediating olfactory cyclic nucleotide-gated CNGA2 channel. We demonstrate the central role of Galphaolf in odorant-specific signaling out of OR. The employment of the non-typical G protein alpha15 dramatically altered the odorant specificities of 3 of 7 receptors that had been characterized previously by different groups. We further show for two OR that an odorant may be an agonist or antagonist, depending on the G protein used. HeLa/Olf cells proved suitable for high-throughput screening in fluorescence-imaging plate reader experiments, resulting in the de-orphaning of two new OR for the odorant (-)citronellal from an expression library of 93 receptors. To demonstrate the G protein dependence of its odorant response pattern, we screened the most sensitive (-)citronellal receptor Olfr43 versus 94 odorants simultaneously in the presence of Galpha15 or Galphaolf. We finally established an EC50-ranking odorant profile for Olfr43 in HeLa/Olf cells. In summary, we conclude that, in heterologous systems, odorants may function as agonists or antagonists, depending on the G protein used. HeLa/Olf cells provide an olfactory model system for functional expression and de-orphaning of OR.

  3. Prime role of bone IL-1 in mice may lie in emergency Ca(2+)-supply to soft tissues, not in bone-remodeling.

    PubMed

    Deng, Xue; Oguri, Senri; Funayama, Hiromi; Ohtaki, Yuko; Ohsako, Masafumi; Yu, Zhiqian; Sugawara, Shunji; Endo, Yasuo

    2012-12-01

    IL-1 and TNF-α are thought to be important bone-remodeling regulators. However, mice lacking either them or their receptors reportedly grow healthily. Here, we examined the roles of IL-1 and TNF-α in bone. Although a significant IL-1 level was detected in the tibia of non-stimulated wild-type (WT) mice, no significant physicochemical, morphological, or histological defects were detected in the tibias in mice lacking IL-1 (both α and β types) (IL-1KO) or lacking both IL-1 and TNF-α (IL-1/TNF-αKO). Injection of sub-lethal doses of lipopolysaccharide (LPS) into WT mice induced a transient hypocalcemia, increased IL-1 (in the plasma and markedly in the tibia), and increased TNF-α (markedly in the plasma, but only slightly in the tibia). LPS-induced hypocalcemia was modest in IL-1KO mice, and not detected in IL-1/TNFαKO mice. IL-1α (but not TNFα) induced hypocalcemia in both WT and IL-1KO mice. In both WT and IL-1KO mice treated with clodronate (osteoclast inhibitor), the LPS-induced hypocalcemia was markedly augmented. Nifedipine (inhibitor of both voltage-activated and capacitative Ca(2+)-entry) reduced the LPS-induced hypocalcemia. These results suggest that in mice: (i) IL-1 and TNF-α may contribute little to physiological bone-formation, and (ii) a time-lag between IL-1- and TNF-α-stimulated Ca(2+)-entry into cells throughout the body from the circulation and IL-1-stimulated Ca(2+)-release from the bone may cause the observed transient LPS-induced hypocalcemia. Thus, the prime role of bone IL-1 may reside in the supply of Ca(2+) from the bone to cells throughout the body when the need is urgent.

  4. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism.

    PubMed

    Green, Torrian L; Burket, Jessica A; Deutsch, Stephen I

    2016-07-01

    NMDA receptor-mediated neurotransmission is implicated in the regulation of normal sociability in mice. The heterotetrameric NMDA receptor is composed of two obligatory GluN1 and either two "modulatory" GluN2A or GluN2B receptor subunits. GluN2A and GluN2B-containing receptors differ in terms of their developmental expression, distribution between synaptic and extrasynaptic locations, and channel kinetic properties, among other differences. Because age-dependent differences in disruptive effects of GluN2A and GluN2B subtype-selective antagonists on sociability and locomotor activity have been reported in rats, the current investigation explored age-dependent effects of PEAQX, a GluN2A subtype-selective antagonist, on sociability, stereotypic behaviors emerging during social interaction, and spatial working memory in 4- and 8-week old male Swiss Webster mice. The data implicate an age-dependent contribution of GluN2A-containing NMDA receptors to the regulation of normal social interaction in mice. Specifically, at a dose of PEAQX devoid of any effect on locomotor activity and mouse rotarod performance, the social interaction of 8-week old mice was disrupted without any effect on the social salience of a stimulus mouse. Moreover, PEAQX attenuated stereotypic behavior emerging during social interaction in 4- and 8-week old mice. However, PEAQX had no effect on spontaneous alternations, a measure of spatial working memory, suggesting that neural circuits mediating sociability and spatial working memory may be discrete and dissociable from each other. Also, the data suggest that the regulation of stereotypic behaviors and sociability may occur independently of each other. Because expression of GluN2A-containing NMDA receptors occurs at a later developmental stage, they may be more involved in mediating the pathogenesis of ASDs in patients with histories of "regression" after a period of normal development than GluN2B receptors.

  5. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury.

    PubMed

    Salmeron, Kathleen; Aihara, Takuma; Redondo-Castro, Elena; Pinteaux, Emmanuel; Bix, Gregory

    2016-02-01

    Inflammation is a major contributor to neuronal injury and is associated with poor outcome after acute brain injury such as stroke. The pro-inflammatory cytokine interleukin (IL)-1 is a critical regulator of cerebrovascular inflammation after ischemic injury, mainly through action of both of its isoforms, IL-1α and IL-1β, at the brain endothelium. In contrast, the differential action of these ligands on endothelial activation and post-stroke angiogenesis is largely unknown. Here, we demonstrate that IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present during post-stroke angiogenic periods. Furthermore, we demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells in vitro. Using brain endothelial cell lines, we found that IL-1α was significantly more potent than IL-1β at inducing endothelial cell activation, as measured by expression of the pro-angiogenic chemokine CXCL-1. IL-1α also induced strong expression of the angiogenic mediator IL-6 in a concentration-dependent manner. Furthermore, IL-1α induced significant proliferation and migration of endothelial cells, and promoted formation of tube-like structures that are established key hallmarks of angiogenesis in vitro. Finally, all of those responses were blocked by the IL-1 receptor antagonist (IL-1RA). In conclusion, our data highlights a potential new role for IL-1 in brain repair mechanisms and identifies IL-1α as a potential new therapy to promote post-stroke angiogenesis. Inflammation is a major contributor to neuronal injury and is associated with poor outcome after neurotrauma. We demonstrate that cytokine IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present chronically post-stroke. We demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells. Our data highlights a new

  6. IL1RN and KRT13 Expression in Bladder Cancer: Association with Pathologic Characteristics and Smoking Status

    PubMed Central

    Worst, Thomas S.; Reiner, Verena; Gabriel, Ute; Weiß, Christel; Erben, Philipp; Martini, Thomas; Bolenz, Christian

    2014-01-01

    Purpose. To validate microarray data on cytokeratin 13 (KRT13) and interleukin-1 receptor antagonist (IL1RN) expression in urothelial carcinoma of the urinary bladder (UCB) and to correlate our findings with pathologic characteristics and tobacco smoking. Methods. UCB tissue samples (n = 109) and control samples (n = 14) were obtained from transurethral resection and radical cystectomy specimens. Immunohistochemical staining of KRT13 and IL1RN was performed and semiquantitative expression scores were assessed. Smoking status was evaluated using a standardized questionnaire. Expression scores were correlated with pathologic characteristics (tumor stage and grade) and with smoking status. Results. Loss of KRT13 and IL1RN expression was observed in UCB tissue samples when compared to controls (P = 0.007, P = 0.008) in which KRT13 and IL1RN expression were high. IL1RN expression was significantly reduced in muscle-invasive tumors (P = 0.003). In tissue samples of current smokers, a significant downregulation of IL1RN was found when compared to never smokers (P = 0.013). Conclusion. Decreased expressions of KRT13 and IL1RN are common features of UCB and are associated with aggressive disease. Tobacco smoking may enhance the loss of IL1RN, indicating an overweight of proinflammatory mediators involved in UCB progression. Further validation of the influence of smoking on IL1RN expression is warranted. PMID:25114677

  7. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa.

    PubMed

    Altmeier, Simon; Toska, Albulena; Sparber, Florian; Teijeira, Alvaro; Halin, Cornelia; LeibundGut-Landmann, Salomé

    2016-09-01

    Mucosal infections with Candida albicans belong to the most frequent forms of fungal diseases. Host protection is conferred by cellular immunity; however, the induction of antifungal immunity is not well understood. Using a mouse model of oropharyngeal candidiasis (OPC) we show that interleukin-1 receptor (IL-1R) signaling is critical for fungal control at the onset of infection through its impact on neutrophils at two levels. We demonstrate that both the recruitment of circulating neutrophils to the site of infection and the mobilization of newly generated neutrophils from the bone marrow depended on IL-1R. Consistently, IL-1R-deficient mice displayed impaired chemokine production at the site of infection and defective secretion of granulocyte colony-stimulating factor (G-CSF) in the circulation in response to C. albicans. Strikingly, endothelial cells were identified as the primary cellular source of G-CSF during OPC, which responded to IL-1α that was released from keratinocytes in the infected tissue. The IL-1-dependent crosstalk between two different cellular subsets of the nonhematopoietic compartment was confirmed in vitro using a novel murine tongue-derived keratinocyte cell line and an established endothelial cell line. These data establish a new link between IL-1 and granulopoiesis in the context of fungal infection. Together, we identified two complementary mechanisms coordinating the neutrophil response in the oral mucosa, which is critical for preventing fungal growth and dissemination, and thus protects the host from disease. PMID:27632536

  8. Cellular trafficking of the IL-1RI-associated kinase-1 requires intact kinase activity

    SciTech Connect

    Boel, Gaby-Fleur . E-mail: boel@mail.dife.de; Jurrmann, Nadine; Brigelius-Flohe, Regina

    2005-06-24

    Upon stimulation of cells with interleukin-1 (IL-1) the IL-1 receptor type I (IL-1RI) associated kinase-1 (IRAK-1) transiently associates to and dissociates from the IL-1RI and thereafter translocates into the nucleus. Here we show that nuclear translocation of IRAK-1 depends on its kinase activity since translocation was not observed in EL-4 cells overexpressing a kinase negative IRAK-1 mutant (EL-4{sup IRAK-1-K239S}). IRAK-1 itself, an endogenous substrate with an apparent molecular weight of 24 kDa (p24), and exogenous substrates like histone and myelin basic protein are phosphorylated by nuclear located IRAK-1. Phosphorylation of p24 cannot be detected in EL-4{sup IRAK-1-K239S} cells. IL-1-dependent recruitment of IRAK-1 to the IL-1RI and subsequent phosphorylation of IRAK-1 is a prerequisite for nuclear translocation of IRAK-1. It is therefore concluded that intracellular localization of IRAK-1 depends on its kinase activity and that IRAK-1 may also function as a kinase in the nucleus as shown by a new putative endogenous substrate.

  9. IL-15 deficient tax mice reveal a role for IL-1α in tumor immunity.

    PubMed

    Rauch, Daniel A; Harding, John C; Ratner, Lee

    2014-01-01

    IL-15 is recognized as a promising candidate for tumor immunotherapy and has been described as both a promoter of cancer and a promoter of anti-cancer immunity. IL-15 was discovered in cells transformed by HTLV-1, the etiologic agent of adult T cell leukemia/lymphoma (ATL) and the human retrovirus that carries the Tax oncogene. We have developed the TAX-LUC mouse model of ATL in which Tax expression drives both malignant transformation and luciferase expression, enabling non-invasive imaging of tumorigenesis in real time. To identify the role of IL-15 in spontaneous development of lymphoma in vivo, an IL-15(-/-) TAX-LUC strain was developed and examined. The absence of IL-15 resulted in aggressive tumor growth and accelerated mortality and demonstrated that IL-15 was not required for Tax-mediated lymphoma but was essential for anti-tumor immunity. Further analysis revealed a unique transcriptional profile in tumor cells that arise in the absence of IL-15 that included a significant increase in the expression of IL-1α and IL-1α-regulated cytokines. Moreover, anti-IL-1α antibodies and an IL-1 receptor antagonist (Anakinra) were used to interrogate the potential of IL-1α targeted therapies in this model. Taken together, these findings identify IL-15 and IL-1α as therapeutic targets in lymphoma.

  10. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa

    PubMed Central

    Altmeier, Simon; Toska, Albulena; Sparber, Florian; Teijeira, Alvaro; Halin, Cornelia; LeibundGut-Landmann, Salomé

    2016-01-01

    Mucosal infections with Candida albicans belong to the most frequent forms of fungal diseases. Host protection is conferred by cellular immunity; however, the induction of antifungal immunity is not well understood. Using a mouse model of oropharyngeal candidiasis (OPC) we show that interleukin-1 receptor (IL-1R) signaling is critical for fungal control at the onset of infection through its impact on neutrophils at two levels. We demonstrate that both the recruitment of circulating neutrophils to the site of infection and the mobilization of newly generated neutrophils from the bone marrow depended on IL-1R. Consistently, IL-1R-deficient mice displayed impaired chemokine production at the site of infection and defective secretion of granulocyte colony-stimulating factor (G-CSF) in the circulation in response to C. albicans. Strikingly, endothelial cells were identified as the primary cellular source of G-CSF during OPC, which responded to IL-1α that was released from keratinocytes in the infected tissue. The IL-1-dependent crosstalk between two different cellular subsets of the nonhematopoietic compartment was confirmed in vitro using a novel murine tongue-derived keratinocyte cell line and an established endothelial cell line. These data establish a new link between IL-1 and granulopoiesis in the context of fungal infection. Together, we identified two complementary mechanisms coordinating the neutrophil response in the oral mucosa, which is critical for preventing fungal growth and dissemination, and thus protects the host from disease. PMID:27632536

  11. Association of IL1A and IL1B loci with primary open angle glaucoma

    PubMed Central

    2010-01-01

    Background Recent studies suggest that glaucoma is a neurodegenerative disease in which secondary degenerative losses occur after primary insult by raised Intraocular pressure (IOP) or by other associated factors. It has been reported that polymorphisms in the IL1A and IL1B genes are associated with Primary Open Angle Glaucoma (POAG). The purpose of our study was to investigate the role of these polymorphisms in eastern Indian POAG patients. Methods The study involved 315 unrelated POAG patients, consisting of 116 High Tension Glaucoma (HTG) patients with intra ocular pressure (IOP) > 21 mmHg and 199 non-HTG patients (presenting IOP < 20 mmHg), and 301 healthy controls from eastern India. Genotypes were determined by polymerase chain reaction and restriction digestion for three single nucleotide polymorphisms (SNPs): IL1A (-889C/T; rs1800587), IL1B (-511C/T; rs16944) and IL1B (3953C/T; rs1143634). Haplotype frequency was determined by Haploview 4.1 software. The association of individual SNPs and major haplotypes was evaluated using chi-square statistics. The p-value was corrected for multiple tests by Bonferroni method. Results No significant difference was observed in the allele and genotype frequencies for IL1A and IL1B SNPs between total pool of POAG patients and controls. However, on segregating the patient pool to HTG and non-HTG groups, weak association was observed for IL1A polymorphism (-889C/T) where -889C allele was found to portray risk (OR = 1.380; 95% CI = 1.041-1.830; p = 0.025) for non-HTG patients. Similarly, 3953T allele of IL1B polymorphism (+3953C/T) was observed to confer risk to HTG group (OR = 1.561; 95% CI = 1.022-2.385; p = 0.039). On haplotype analysis it was observed that TTC was significantly underrepresented in non-HTG patients (OR = 0.538; 95% CI = 0.356- 0.815; p = 0.003) while TCT haplotype was overrepresented in HTG patients (OR = 1.784; 95% CI = 1.084- 2.937; p = 0.022) compared to control pool. However, after correction for

  12. Antiallodynic effect through spinal endothelin-B receptor antagonism in rat models of complex regional pain syndrome.

    PubMed

    Kim, Yeo Ok; Kim, In Ji; Yoon, Myung Ha

    2015-01-01

    Complex regional pain syndrome (CRPS) is a very complicated chronic pain disorder that has been classified into two types (I and II). Endothelin (ET) receptors are involved in pain conditions at the spinal level. We investigated the role of spinal ET receptors in CRPS. Chronic post-ischemia pain (CPIP) was induced in male Sprague-Dawley rats as a model for CRPS-I by placing a tourniquet (O-ring) at the ankle joint for 3h, and removing it to allow reperfusion. Ligation of L5 and L6 spinal nerves to induce neuropathic pain was performed as a model for CRPS-II. After O-ring application and spinal nerve ligation, the paw withdrawal threshold was significantly decreased at injured sites. Intrathecal administration of the selective ET-B receptor antagonist BQ 788 dose-dependently increased the withdrawal threshold in both CRPS-I and CRPS-II. In contrast, ET-A receptor antagonist BQ 123 did not affect the withdrawal threshold in either CRPS type. The ET-1 levels of plasma and spinal cord increased in both CRPS types. Intrathecal BQ 788 decreased the spinal ET-1 level. These results suggest that ET-1 is involved in the development of mechanical allodynia in CRPS. Furthermore, the ET-B receptor appears to be involved in spinal cord-related CRPS. PMID:25451723

  13. Upregulation of 5-HT2C receptors in hippocampus of pilocarpine-induced epileptic rats: antagonism by Bacopa monnieri.

    PubMed

    Krishnakumar, Amee; Nandhu, M S; Paulose, C S

    2009-10-01

    Emotional disturbances, depressive mood, anxiety, aggressive behavior, and memory impairment are the common psychiatric features associated with temporal lobe epilepsy (TLE). The present study was carried out to investigate the role of Bacopa monnieri extract in hippocampus of pilocarpine-induced temporal lobe epileptic rats through the 5-HT(2C) receptor in relation to depression. Our results showed upregulation of 5-HT(2C) receptors with a decreased affinity in hippocampus of pilocarpine-induced epileptic rats. Also, there was an increase in 5-HT(2C) gene expression and inositol triphosphate content in epileptic hippocampus. Carbamazepine and B. monnieri treatments reversed the alterations in 5-HT(2C) receptor binding, gene expression, and inositol triphosphate content in treated epileptic rats as compared to untreated epileptic rats. The forced swim test confirmed the depressive behavior pattern during epilepsy that was nearly completely reversed by B. monnieri treatment.

  14. Antagonizing amyloid-β/calcium-sensing receptor signaling in human astrocytes and neurons: a key to halt Alzheimer's disease progression?

    PubMed Central

    Dal Prà, Ilaria; Chiarini, Anna; Armato, Ubaldo

    2015-01-01

    Astrocytes’ roles in late-onset Alzheimer's disease (LOAD) promotion are important, since they survive soluble or fibrillar amyloid-β peptides (Aβs) neurotoxic effects, undergo alterations of intracellular and intercellular Ca2+ signaling and gliotransmitters release via the Aβ/α7-nAChR (α7-nicotinic acetylcholine receptor) signaling, and overproduce/oversecrete newly synthesized Aβ42 oligomers, NO, and VEGF-A via the Aβ/CaSR (calcium-sensing receptor) signaling. Recently, it was suggested that the NMDAR (N-methyl-D-aspartate receptor) inhibitor nitromemantine would block the synapse-destroying effects of Aβ/α7-nAChR signaling. Yet, this and the progressive extracellular accrual and spreading of Aβ42 oligomers would be stopped well upstream by NPS 2143, an allosteric CaSR antagonist (calcilytic). PMID:25883618

  15. [Polymorphism of IL1α and IL1β genes and bacterial invasion in patients with chronic generalized periodontitis].

    PubMed

    Tsarev, V N; Nikolaeva, E N

    2010-01-01

    Researchers studied polymorphism of IL-1α and IL-1β genes among patients of different ages with severe chronic generalized periodontitis and people with healthy periodontium. The study demonstrated a correlation between high frequency of genetic polymorphism in IL-1α -899 and IL-1β +3953 loci and development of severe periodontitis among patients less than 35 years of age, as well as markers of P. intermedia, T. denticola, HSV1 and EBV in periodontal pocket.

  16. The Epithelial Danger Signal IL-1α Is a Potent Activator of Fibroblasts and Reactivator of Intestinal Inflammation

    PubMed Central

    Scarpa, Melania; Kessler, Sean; Sadler, Tammy; West, Gail; Homer, Craig; McDonald, Christine; de la Motte, Carol; Fiocchi, Claudio; Stylianou, Eleni

    2016-01-01

    Intestinal epithelial cell (IEC) death is typical of inflammatory bowel disease (IBD). We investigated: i) whether IEC–released necrotic cell products (proinflammatory mediators) amplify mucosal inflammation, ii) the capacity of necrotic cell lysates from HT29 cells or human IECs to induce human intestinal fibroblasts' (HIF) production of IL-6 and IL-8, and iii) whether IL-1α, released by injured colonocytes, exacerbated experimental IBD. Necrotic cell lysates potently induced HIF IL-6 and IL-8 production independent of Toll-like receptors 2 and 4, receptor for advanced glycation end-products, high-mobility group box 1, uric acid, IL-33, or inflammasome activation. IL-1α was the key IEC-derived necrotic cell product involved in HIF cytokine production. IL-1α–positive cells were identified in the epithelium in human IBD and dextran sulfate sodium (DSS)-induced colitis. IL-1α was detected in the stool of colitic mice before IL-1β. IL-1α enemas reactivated inflammation after DSS colitis recovery, induced IL-1 receptor expression in subepithelial fibroblasts, and activated de novo inflammation even in mice without overt colitis, after the administration of low-dose DSS. IL-1α amplifies gut inflammation by inducing cytokine production by mesenchymal cells. IL-1α–mediated IEC–fibroblast interaction may be involved in amplifying and perpetuating inflammation, even without obvious intestinal damage. IL-1α may be a target for treating early IBD or preventing the reactivation of IBD. PMID:25864926

  17. Metabolite Profiling and a Transcriptional Activation Assay Provide Direct Evidence of Androgen Receptor Antagonism by Bisphenol A in Fish.

    EPA Science Inventory

    Widespread environmental contamination by bisphenol A (BPA) has created the need to fully define its potential toxic mechanisms of action (MOA) to properly assess human health and ecological risks from exposure. Although long recognized as an estrogen receptor (ER) agonist, some ...

  18. NMDA receptor antagonism in the basolateral amygdala blocks enhancement of inhibitory avoidance learning in previously trained rats.

    PubMed

    Roesler, R; Vianna, M R; de-Paris, F; Rodrigues, C; Sant'Anna, M K; Quevedo, J; Ferreira, M B

    2000-07-01

    Extensive evidence suggests that N-methyl-D-aspartate (NMDA) glutamate receptor channels in the amygdala are involved in fear-motivated learning, and infusion of NMDA receptor antagonists into the amygdala blocks memory of fear-motivated tasks. Recent studies have shown that previous training can prevent the amnestic effects of NMDA receptor antagonists on spatial learning. In the present study, we evaluated whether infusion of the NMDA antagonist D,L-2-amino-5-phosphonopentanoic acid (AP5) into the basolateral nucleus of the amygdala (BLA) impairs reinforcement of inhibitory avoidance learning in rats given previous training. Adult male Wistar rats (220-310 g) were bilaterally implanted under thionembutal anesthesia (30 mg/kg, i.p.) with 9.0-mm guide cannulae aimed 1.0 mm above the BLA. Infusion of AP5 (5.0 microg) 10 min prior to training in a step-down inhibitory avoidance task (0.4 mA footshock) blocked retention measured 24 h after training. When infused 10 min prior to a second training session in animals given previous training (0.2 mA footshock), AP5 blocked the enhancement of retention induced by the second training. Control experiments showed that the effects were not due to alterations in motor activity or footshock sensitivity. The results suggest that NMDA receptors in the basolateral amygdala are involved in both formation of memory for inhibitory avoidance and enhancement of retention in rats given previous training.

  19. IL-1 interacts with ethanol effects on GABAergic transmission in the mouse central amygdala

    PubMed Central

    Bajo, Michal; Varodayan, Florence P.; Madamba, Samuel G.; Robert, Amanda J.; Casal, Lindsey M.; Oleata, Christopher S.; Siggins, George R.; Roberto, Marisa

    2015-01-01

    Neuroinflammation is hypothesized to enhance alcohol consumption and contribute to the development of alcoholism. GABAergic transmission in the central amygdala (CeA) plays an important role in the transition to alcohol dependence. Therefore, we studied the effects of interleukin-1β (IL-1β), a proinflammatory cytokine mediating ethanol-induced neuroinflammation, and its interaction with ethanol on CeA GABAegic transmission in B6129SF2/J mice. We also assessed ethanol intake in B6129SF2/J mice. Intake with unlimited (24 h) ethanol access was 9.2–12.7 g/kg (3–15% ethanol), while limited (2 h) access produced an intake of 4.1 ± 0.5 g/kg (15% ethanol). In our electrophysiology experiments, we found that recombinant IL-1β (50 and 100 ng/ml) significantly decreased the amplitude of evoked inhibitory postsynaptic potentials (eIPSPs), with no significant effects on paired-pulse facilitation (PPF). IL-1β (50 ng/ml) had dual effects on spontaneous miniature inhibitory postsynaptic currents (mIPSCs): increasing mIPSC frequencies in most CeA neurons, but decreasing both mIPSC frequencies and amplitudes in a few cells. The IL-1β receptor antagonist (IL-1ra; 100 ng/ml) also had dual effects on mIPSCs and prevented the actions of IL-1β on mIPSC frequencies. These results suggest that IL-1β can alter CeA GABAergic transmission at pre- and postsynaptic sites. Ethanol (44 mM) significantly increased eIPSP amplitudes, decreased PPFs, and increased mIPSC frequencies. IL-1β did not alter ethanol’s enhancement of the eIPSP amplitude, but, in IL-1β-responsive neurons, the ethanol effects on mIPSC frequencies were lost. Overall, our data suggest that the IL-1 system is involved in basal GABAergic transmission and that IL-1β interacts with the ethanol-induced facilitation of CeA GABAergic transmission. PMID:25852553

  20. Endothelial PPAR-γ provides vascular protection from IL-1β-induced oxidative stress.

    PubMed

    Mukohda, Masashi; Stump, Madeliene; Ketsawatsomkron, Pimonrat; Hu, Chunyan; Quelle, Frederick W; Sigmund, Curt D

    2016-01-01

    Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1β-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1β dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1β also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1β-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1β increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1β. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1β-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1β increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser(1177))-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1β. We conclude that PPAR-γ protects against IL-1β-mediated endothelial dysfunction through a reduction of oxidative stress

  1. Orexin/Hypocretin-1 Receptor Antagonism Selectively Reduces Cue-Induced Feeding in Sated Rats and Recruits Medial Prefrontal Cortex and Thalamus.

    PubMed

    Cole, Sindy; Mayer, Heather S; Petrovich, Gorica D

    2015-01-01

    The orexin/hypocretin system is important for reward-seeking behaviors, however less is known about its function in non-homeostatic feeding. Environmental influences, particularly cues for food can stimulate feeding in the absence of hunger and lead to maladaptive overeating behavior. The key components of the neural network that mediates this cue-induced overeating in sated rats include lateral hypothalamus, amygdala, and medial prefrontal cortex (mPFC), yet the neuropharmacological mechanisms within this network remain unknown. The current study investigated a causal role for orexin in cue-driven feeding, and examined the neural substrates through which orexin mediates this effect. Systemic administration of the orexin-1 receptor (OX1R) antagonist SB-334867 had no effect on baseline eating, but significantly reduced cue-driven consumption in sated rats. Complementary neural analysis revealed that decreased cue-induced feeding under SB-334867 increased Fos expression in mPFC and paraventricular thalamus. These results demonstrate that OX1R signaling critically regulates cue-induced feeding, and suggest orexin is acting through prefrontal cortical and thalamic sites to drive eating in the absence of hunger. These findings inform our understanding of how food-associated cues override signals from the body to promote overeating, and indicate OX1R antagonism as a potential pharmacologic target for treatment of disordered eating in humans.

  2. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism.

    PubMed

    Watts, Lynnetta M; Manchem, Vara Prasad; Leedom, Thomas A; Rivard, Amber L; McKay, Robert A; Bao, Dingjiu; Neroladakis, Teri; Monia, Brett P; Bodenmiller, Diane M; Cao, Julia Xiao-Chun; Zhang, Hong Yan; Cox, Amy L; Jacobs, Steven J; Michael, M Dodson; Sloop, Kyle W; Bhanot, Sanjay

    2005-06-01

    Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC

  3. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism.

    PubMed

    Watts, Lynnetta M; Manchem, Vara Prasad; Leedom, Thomas A; Rivard, Amber L; McKay, Robert A; Bao, Dingjiu; Neroladakis, Teri; Monia, Brett P; Bodenmiller, Diane M; Cao, Julia Xiao-Chun; Zhang, Hong Yan; Cox, Amy L; Jacobs, Steven J; Michael, M Dodson; Sloop, Kyle W; Bhanot, Sanjay

    2005-06-01

    Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC

  4. Ghrelin receptor (GHS-R1A) antagonism alters preference for ethanol and sucrose in a concentration-dependent manner in prairie voles.

    PubMed

    Stevenson, J R; Francomacaro, L M; Bohidar, A E; Young, K A; Pesarchick, B F; Buirkle, J M; McMahon, E K; O'Bryan, C M

    2016-03-01

    Ghrelin receptor (GHS-R1A) activity has been implicated in reward for preferred foods and drugs; however, a recent study in our laboratory indicated that GHS-R1A antagonism reduces early (after only four exposures) preference for 20% ethanol, but not 10% sucrose in prairie voles, a genetically diverse high alcohol-consuming species. The purpose of the present study was to determine if these effects of GHS-R1A antagonism depend on the concentration of the rewarding solution being consumed. We first characterized preference for varying concentrations of ethanol and sucrose. Two bottle tests of each ethanol concentration versus water indicated that 10% and 20% ethanol are less preferred than 3% ethanol, and a follow-up direct comparison of 10% vs. 20% showed that 10% was preferred over 20%. Direct two-bottle comparisons of 2% vs. 5%, 2% vs. 10%, and 5% vs. 10% sucrose showed that 10% sucrose was most preferred, and 2% sucrose was least preferred. The effects of JMV 2959, a GHS-R1A antagonist, on preference for each concentration of ethanol and sucrose were then tested. In a between groups design prairie voles were given four two-hour drinking sessions in which animals had access to ethanol (3, 10, or 20%) versus water, or sucrose (2, 5, or 10%) versus water every other day. Saline habituation injections were given 30 min before the third drinking session. JMV 2959 (i.p.; 9 mg/kg), a GHS-R1A antagonist, or saline was administered 30 min before the fourth drinking session. JMV 2959 reduced preference for 20% ethanol and 2% sucrose, but had no significant effect on preference for the other ethanol and sucrose concentrations. These data identify constraints on the role of GHS-R1A in early preference for ethanol and sucrose, and the concentration-dependent effects suggest strong preference for a reward may limit the importance of GHS-R1A activity.

  5. The macrocyclic tetrapeptide [D-Trp]CJ-15,208 produces short-acting κ opioid receptor antagonism in the CNS after oral administration

    PubMed Central

    Eans, Shainnel O; Ganno, Michelle L; Reilley, Kate J; Patkar, Kshitij A; Senadheera, Sanjeewa N; Aldrich, Jane V; McLaughlin, Jay P

    2013-01-01

    Background and Purpose Cyclic peptides are resistant to proteolytic cleavage, therefore potentially exhibiting activity after systemic administration. We hypothesized that the macrocyclic κ opioid receptor (KOR)-selective antagonist [D-Trp]CJ-15,208 would demonstrate antagonist activity after systemic, that is, s.c. and oral (per os, p. o.), administration. Experimental Approach C57BL/6J mice were pretreated with [D-Trp]CJ-15,208 s.c. or p.o. before administration of the KOR-selective agonist U50,488 and the determination of antinociception in the warm-water tail-withdrawal assay. The locomotor activity of mice treated with [D-Trp]CJ-15,208 was determined by rotorod testing. Additional mice demonstrating cocaine conditioned place preference and subsequent extinction were pretreated daily with vehicle or [D-Trp]CJ-15,208 and then exposed to repeated forced swim stress or a single additional session of cocaine place conditioning before redetermining place preference. Key Results Pretreatment with [D-Trp]CJ-15,208 administered s.c. or p.o. dose-dependently antagonized the antinociception induced by i.p. administration of U50,488 in mice tested in the warm-water tail-withdrawal assay for less than 12 and 6 h respectively. [D-Trp]CJ-15,208 also produced limited (<25%), short-duration antinociception mediated through KOR agonism. Orally administered [D-Trp]CJ-15,208 dose-dependently antagonized centrally administered U50,488-induced antinociception, and prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine-seeking behaviour, consistent with its KOR antagonist activity, without affecting locomotor activity. Conclusions and Implications The macrocyclic tetrapeptide [D-Trp]CJ-15,208 is a short-duration KOR antagonist with weak KOR agonist activity that is active after oral administration and demonstrates blood–brain barrier permeability. These data validate the use of systemically active peptides such as [D-Trp]CJ-15,208 as potentially useful

  6. Ghrelin receptor (GHS-R1A) antagonism alters preference for ethanol and sucrose in a concentration-dependent manner in prairie voles.

    PubMed

    Stevenson, J R; Francomacaro, L M; Bohidar, A E; Young, K A; Pesarchick, B F; Buirkle, J M; McMahon, E K; O'Bryan, C M

    2016-03-01

    Ghrelin receptor (GHS-R1A) activity has been implicated in reward for preferred foods and drugs; however, a recent study in our laboratory indicated that GHS-R1A antagonism reduces early (after only four exposures) preference for 20% ethanol, but not 10% sucrose in prairie voles, a genetically diverse high alcohol-consuming species. The purpose of the present study was to determine if these effects of GHS-R1A antagonism depend on the concentration of the rewarding solution being consumed. We first characterized preference for varying concentrations of ethanol and sucrose. Two bottle tests of each ethanol concentration versus water indicated that 10% and 20% ethanol are less preferred than 3% ethanol, and a follow-up direct comparison of 10% vs. 20% showed that 10% was preferred over 20%. Direct two-bottle comparisons of 2% vs. 5%, 2% vs. 10%, and 5% vs. 10% sucrose showed that 10% sucrose was most preferred, and 2% sucrose was least preferred. The effects of JMV 2959, a GHS-R1A antagonist, on preference for each concentration of ethanol and sucrose were then tested. In a between groups design prairie voles were given four two-hour drinking sessions in which animals had access to ethanol (3, 10, or 20%) versus water, or sucrose (2, 5, or 10%) versus water every other day. Saline habituation injections were given 30 min before the third drinking session. JMV 2959 (i.p.; 9 mg/kg), a GHS-R1A antagonist, or saline was administered 30 min before the fourth drinking session. JMV 2959 reduced preference for 20% ethanol and 2% sucrose, but had no significant effect on preference for the other ethanol and sucrose concentrations. These data identify constraints on the role of GHS-R1A in early preference for ethanol and sucrose, and the concentration-dependent effects suggest strong preference for a reward may limit the importance of GHS-R1A activity. PMID:26723269

  7. Rectal antinociceptive properties of alverine citrate are linked to antagonism at the 5-HT1A receptor subtype.

    PubMed

    Coelho, A M; Jacob, L; Fioramonti, J; Bueno, L

    2001-10-01

    Serotonin (5-HT) is considered as a major mediator causing hyperalgesia and is involved in inflammatory reactions and irritable bowel syndrome. Alverine citrate may possess visceral antinociceptive properties in a rat model of rectal distension-induced abdominal contractions. This study was designed to evaluate the pharmacological properties of alverine citrate in a rat model of rectal hyperalgesia induced by 5-HTP (5-HT precursor) and by a selective 5-HT1A agonist (8-OH-DPAT) and to compare this activity with a reference 5-HT1A antagonist (WAY 100635). At 4 h after their administration, 5-HTP and 8-OH-DPAT increased the number of abdominal contractions in response to rectal distension at the lowest volume of distension (0.4 mL). When injected intraperitoneally before 8-OH-DPAT and 5-HTP, WAY 100635 (1 mg kg(-1)) blocked their nociceptive effect, but also reduced the response to the highest volume of distension (1.6 mL). Similarly, when injected intraperitoneally, alverine citrate (20 mg kg(-1)) suppressed the effect of 5-HTP, but not that of 8-OH-DPAT. However, when injected intracerebroventricularly (75 microg/rat) alverine citrate reduced 8-OH-DPAT-induced enhancement of rectal distension-induced abdominal contractions. In-vitro binding studies revealed that alverine citrate had a high affinity for 5-HT1A receptors and a weak affinity for 5-HT3 and 5-HT4 subtypes. These results suggest that 5-HTP-induced rectal hypersensitivity involves 5-TH1A receptors and that alverine citrate acts as a selective antagonist at the 5-HT1A receptor subtype to block both 5-HTP and 8-OH-DPAT-induced rectal hypersensitivity. PMID:11697552

  8. Antagonism of orexin receptors in the posterior hypothalamus reduces hypoglossal and cardiorespiratory excitation from the perifornical hypothalamus.

    PubMed

    Stettner, Georg M; Kubin, Leszek

    2013-01-01

    The perifornical (PF) region of the posterior hypothalamus promotes wakefulness and facilitates motor activity. In anesthetized rats, local disinhibition of PF neurons by GABA(A) receptor antagonists activates orexin (OX) neurons and elicits a systemic response, including increases of hypoglossal nerve activity (XIIa), respiratory rate, heart rate, and blood pressure. The increase of XIIa is mediated to hypoglossal (XII) motoneurons by pathways that do not require noradrenergic or serotonergic projections. We hypothesized that the pathway might include OX-dependent activation locally within the PF region or direct projections of OX neurons to the XII nucleus. Adult, male Sprague-Dawley rats were urethane anesthetized, vagotomized, paralyzed, and ventilated. Gabazine (GABA(A) receptor antagonist, 0.18 mM, 20 nl) was injected into the PF region, and ~2 h later, a second gabazine injection was performed preceded by injection of a dual OX1/2 receptor antagonist (almorexant; 90 mM) either into the XII nucleus (40-60 nl at 2-3 rostrocaudal levels; n = 6 rats), or into the PF region (40-60 nl; n = 6 rats). XIIa, respiratory rate, heart rate, and arterial blood pressure were analyzed for 70 min after each gabazine injection. The excitatory effects of PF gabazine on XIIa, respiratory, and heart rates were significantly reduced by up to 44-82% when gabazine injections were preceded by PF almorexant injections, but not when almorexant was injected into the XII nucleus. These data suggest that a significant portion of XII motoneuronal and cardiorespiratory activation evoked by disinhibition of PF neurons is mediated by local OX-dependent mechanisms within the posterior hypothalamus.

  9. Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1

    PubMed Central

    Xia, Chuan; Vijayan, Madhuvanthi; Pritzl, Curtis J.; Fuchs, Serge Y.; McDermott, Adrian B.

    2015-01-01

    ABSTRACT Influenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway. Following infection, the level of IFNAR1 protein, but not mRNA, decreased. Indeed, IFNAR1 was phosphorylated and ubiquitinated by IAV infection, which resulted in IFNAR1 elimination. The transiently overexpressed IFNAR1 displayed antiviral activity by inhibiting virus replication. Importantly, the hemagglutinin (HA) protein of IAV was proved to trigger the ubiquitination of IFNAR1, diminishing the levels of IFNAR1. Further, influenza A viral HA1 subunit, but not HA2 subunit, downregulated IFNAR1. However, viral HA-mediated degradation of IFNAR1 was not caused by the endoplasmic reticulum (ER) stress response. IAV HA robustly reduced cellular sensitivity to type I IFNs, suppressing the activation of STAT1/STAT2 and induction of IFN-stimulated antiviral proteins. Taken together, our findings suggest that IAV HA causes IFNAR1 degradation, which in turn helps the virus escape the powerful innate immune system. Thus, the research elucidated an influenza viral mechanism for eluding the IFNAR signaling pathway, which could provide new insights into the interplay between influenza virus and host innate immunity. IMPORTANCE Influenza A virus (IAV) infection causes significant morbidity and mortality worldwide and remains a major health concern. When triggered by influenza viral infection, host cells produce type I interferon (IFN) to block viral replication. Although IAV was shown to have diverse strategies to evade this powerful, IFN-mediated antiviral response, it is not well-defined if IAV manipulates the IFN receptor-mediated signaling

  10. Beneficial effects of kinin B1 receptor antagonism on plasma fatty acid alterations and obesity in Zucker diabetic fatty rats.

    PubMed

    Talbot, Sébastien; Dias, Jenny Pena; El Midaoui, Adil; Couture, Réjean

    2016-07-01

    Kinins are the endogenous ligands of the constitutive B2 receptor (B2R) and the inducible B1 receptor (B1R). Whereas B2R prevents insulin resistance, B1R is involved in insulin resistance and metabolic syndrome. However, the contribution of B1R in type 2 diabetes associated with obesity remains uncertain. The aim of the present study was to examine the impact of 1-week treatment with a selective B1R antagonist (SSR240612, 10 mg/kg per day, by gavage) on hyperglycemia, hyperinsulinemia, leptinemia, body mass gain, and abnormal plasma fatty acids in obese Zucker diabetic fatty (ZDF) rats. Treatment with SSR240612 abolished the body mass gain and reduced polyphagia, polydipsia, and plasma fatty acid alterations in ZDF rats without affecting hyperglycemia, hyperinsulinemia, and hyperleptinemia. The present study suggests that the upregulated B1R plays a role in body mass gain and circulating fatty acid alterations in ZDF rats. However, mechanisms other than B1R induction would be implicated in glucose metabolism disorder in ZDF rats, based on the finding that SSR240612 did not reverse hyperglycemia and hyperinsulinemia. PMID:27172260

  11. Pro-gliogenic effect of IL-1alpha in the differentiation of embryonic neural precursor cells in vitro.

    PubMed

    Ajmone-Cat, Maria Antonietta; Cacci, Emanuele; Ragazzoni, Ylenia; Minghetti, Luisa; Biagioni, Stefano

    2010-05-01

    Inflammation is regarded as a main obstacle to brain regeneration. Major detrimental effects are attributed to microglial/macrophagic products, such as TNF-alpha and interleukin (IL)-6. The role of cytokines of the IL-1 family, particularly of IL-1alpha, in the modulation of neural precursor cell (NPC) properties is less characterized. IL-1alpha is one of the most abundant cytokines released upon acute stimulation of microglia with lipopolysaccharide and is down-regulated upon chronic stimulation. As we recently demonstrated, acutely activated microglia reduces NPC survival, prevent neuronal differentiation and promote glial differentiation. Chronically activated microglia are instead permissive to NPC survival and neuronal differentiation, and less effective in promoting astrocytic differentiation. We thus investigated whether IL-1alpha could contribute to the effects of acutely activated microglia on NPC. We found that NPC express functional IL-1 receptors and that exposure to recombinant IL-1alpha strongly enhances NPC differentiation into astrocytes, without affecting cell viability and neuronal differentiation. In the same conditions, recombinant IL-1beta has pro-gliogenic effects at concentrations 10-fold higher than those found in activated microglial conditioned media. Interestingly, immunodepletion of IL-1alpha in activated microglial conditioned media fails to revert microglial pro-gliogenic action and slightly enhances neuronal differentiation, revealing that other microglial-derived factors contribute to the modulation of NPC properties. PMID:20236219

  12. Expression and modulation of IL-1 alpha in murine keratinocytes

    SciTech Connect

    Ansel, J.C.; Luger, T.A.; Lowry, D.; Perry, P.; Roop, D.R.; Mountz, J.D.

    1988-04-01

    Murine and human keratinocytes produce an IL-1-like factor that appears to be similar if not identical to monocyte-derived IL-1. IL-1 may be an important mediator in cutaneous inflammatory responses, however, little is currently known concerning factors that may modulate IL-1 expression in keratinocytes. To address this issue we examined the effect of LPS, UV, and the cell differentiation state on murine keratinocyte IL-1 mRNA expression. Our results indicated that as with the murine P388D1 monocyte cell line, PAM 212 keratinocytes constitutively express abundant amounts of IL-1 alpha mRNA. On exposure to LPS (100 micrograms/ml) for 8 h there was more than 10 times the increase in PAM 212 IL-1 alpha mRNA which was accompanied by a sixfold increase in supernatant IL-1 activity. Similarly UV irradiation had a significant effect on keratinocyte IL-1 alpha expression. High dose UV (300 mJ/cm2) inhibited PAM 212 IL-1 alpha expression at 4, 8, 24, 48 h post-UV whereas a lower dose of UV (100 mJ/cm2) inhibited UV at 4 and 8 h post-UV, but induced IL-1 expression at 24 and 48 h post-UV. The expression of IL-1 alpha varied with the differentiation state of the keratinocytes. Freshly removed newborn murine keratinocytes were found to constitutively express IL-1 alpha mRNA. Keratinocytes grown in low (Ca2+) tissue culture media (0.05 mM) for 6 days, functionally and phenotypically become undifferentiated and express increased quantities of IL-1 alpha mRNA, whereas cells grown in high (Ca2+) media (1.2 mM) for 6 days become terminally differentiated and IL-1 expression ceased. Keratinocytes cultured for 3 days in low (Ca2+) conditions expressed an intermediate level of IL-1 alpha. In contrast, little or no IL-1 beta mRNA was detected in either the PAM 212 cells or newborn murine keratinocytes.

  13. Chronic elevation of IL-1β induces diuresis via a cyclooxygenase 2-mediated mechanism.

    PubMed

    Boesen, E I

    2013-07-15

    Chronic renal inflammation is an increasingly recognized phenomenon in multiple disease states, but the impact of specific cytokines on renal function is unclear. Previously, we found that 14-day interleukin-1β (IL-1β) infusion increased urine flow in mice. To determine the mechanism by which this occurs, the current study tested the possible involvement of three classical prodiuretic pathways. Chronic IL-1β infusion significantly increased urine flow (6.5 ± 1 ml/day at day 14 vs. 2.3 ± 0.3 ml/day in vehicle group; P < 0.05) and expression of cyclooxygenase (COX)-2, all three nitric oxide synthase (NOS) isoforms, and endothelin (ET)-1 in the kidney (P < 0.05 in all cases). Urinary prostaglandin E metabolite (PGEM) excretion was also significantly increased at day 14 of IL-1β infusion (1.21 ± 0.26 vs. 0.29 ± 0.06 ng/day in vehicle-infused mice; P = 0.001). The selective COX-2 inhibitor celecoxib markedly attenuated urinary PGEM excretion and abolished the diuretic response to chronic IL-1β infusion. In contrast, deletion of NOS3, or inhibition of NOS1 with L-VNIO, did not blunt the diuretic effect of IL-1β, nor did pharmacological blockade of endothelin ETA and ETB receptors with A-182086. Consistent with a primary effect on water transport, IL-1β infusion markedly reduced inner medullary aquaporin-2 expression (P < 0.05) and did not alter urinary Na⁺ or K⁺ excretion. These data indicate a critical role for COX-2 in mediating the effects of chronic IL-1β elevation on the kidney.

  14. Clozapine, but not olanzapine, disrupts conditioned avoidance response in rats by antagonizing 5-HT2A/2C receptors.

    PubMed

    Li, Ming; Sun, Tao; Mead, Alexa

    2012-04-01

    The present study was designed to assess the role of 5-HT(2A/2C) receptors in the acute and repeated effect of clozapine and olanzapine in a rat conditioned avoidance response model, a validated model of antipsychotic activity. Male Sprague-Dawley rats that were previously treated with either phencyclidine (0.5-2.0 mg/kg, sc), amphetamine (1.25-5.0 mg/kg, sc), or saline and tested in a prepulse inhibition of acoustic startle study were used. They were first trained to acquire avoidance response to a white noise (CS1) and a pure tone (CS2) that differed in their ability to predict the occurrence of footshock. Those who acquired avoidance response were administered with clozapine (10.0 mg/kg, sc) or olanzapine (1.0 mg/kg, sc) together with either saline or 1-2,5-dimethoxy-4-iodo-amphetamine (DOI, a selective 5-HT(2A/2C) agonist, 1.0 or 2.5 mg/kg, sc), and their conditioned avoidance responses were tested for four consecutive days. After two drug-free retraining days, the long-term repeated effect was assessed in a challenge test during which all rats were injected with a low dose of clozapine (5 mg/kg, sc) or olanzapine (0.5 mg/kg). Results show that pretreatment of DOI dose-dependently reversed the acute disruptive effect of clozapine on both CS1 and CS2 avoidance responses, whereas it had little effect in reversing the acute effect of olanzapine. On the challenge test, pretreatment of DOI did not alter the clozapine-induced tolerance or the olanzapine-induced sensitization effect. These results confirmed our previous findings and suggest that clozapine, but not olanzapine, acts on through 5-HT(2A/2C) receptors to achieve its acute avoidance disruptive effect and likely its therapeutic effects. The long-term clozapine tolerance and olanzapine sensitization effects appear to be mediated by non-5-HT(2A/2C) receptors.

  15. Plasma IL-1Ra: linking hyperapoB to risk factors for type 2 diabetes independent of obesity in humans

    PubMed Central

    Bissonnette, S; Saint-Pierre, N; Lamantia, V; Cyr, Y; Wassef, H; Faraj, M

    2015-01-01

    Background/Objective: Plasma apoB predicts the incidence of type 2 diabetes (T2D); however, the link between apoB-linpoproteins and risks for T2D remain unclear. Insulin resistance (IR) and compensatory hyperinsulinemia characterize prediabetes, and the involvement of an activated interleukin-1 (IL-1) family, mainly IL-1β and its receptor antagonist (IL-Ra), is well documented. ApoB-lipoproteins were reported to promote IL-1β secretion in immune cells; however, in vivo evidence is lacking. We hypothesized that obese subjects with hyperapoB have an activated IL-1 system that explains hyperinsulinemia and IR in these subjects. Subjects/Methods: We examined 81 well-characterized normoglycemic men and postmenopausal women (⩾27 kg m−2, 45–74 years, non-smokers, sedentary, free of chronic disease). Insulin secretion and sensitivity were measured by the gold-standard Botnia clamp, which is a combination of a 1-h intravenous glucose tolerance test (IVGTT) followed by 3-h hyperinsulinemic euglycemic clamp. Results: Plasma IL-1β was near detection limit (0.071–0.216 pg ml−1), while IL-1Ra accumulated at 1000-folds higher (77–1068 pg ml−1). Plasma apoB (0.34–1.80 g l−1) associated significantly with hypersinsulinemia (totalIVGTT: C-peptide r=0.27, insulin r=0.22), IR (M/I=−0.29) and plasma IL-1Ra (r=0.26) but not with IL-1β. Plasma IL-1Ra associated with plasma IL-1β (r=0.40), and more strongly with hyperinsulinemia and IR than apoB, while the association of plasma IL-1β was limited to second phase and total insulin secretion (r=0.23). Adjusting the association of plasma apoB to hyperinsulinemia and IR for IL-1Ra eliminated these associations. Furthermore, despite equivalent body composition, subjects with hyperapoB (⩾80th percentile, 1.14 g l−1) had higher C-peptide secretion and lower insulin sensitivity than those with low plasma apoB (⩽20th percentile, 0.78 g l−1). Adjustment for plasma IL-1 Ra eliminated all

  16. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism

    PubMed Central

    Musto, Alberto E.; Rosencrans, Robert F.; Walker, Chelsey P.; Bhattacharjee, Surjyadipta; Raulji, Chittalsinh M.; Belayev, Ludmila; Fang, Zhide; Gordon, William C.; Bazan, Nicolas G.

    2016-01-01

    Temporal lobe epilepsy or limbic epilepsy lacks effective therapies due to a void in understanding the cellular and molecular mechanisms that set in motion aberrant neuronal network formations during the course of limbic epileptogenesis (LE). Here we show in in vivo rodent models of LE that the phospholipid mediator platelet-activating factor (PAF) increases in LE and that PAF receptor (PAF-r) ablation mitigates its progression. Synthetic PAF-r antagonists, when administered intraperitoneally in LE, re-establish hippocampal dendritic spine density and prevent formation of dysmorphic dendritic spines. Concomitantly, hippocampal interictal spikes, aberrant oscillations, and neuronal hyper-excitability, evaluated 15–16 weeks after LE using multi-array silicon probe electrodes implanted in the dorsal hippocampus, are reduced in PAF-r antagonist-treated mice. We suggest that over-activation of PAF-r signaling induces aberrant neuronal plasticity in LE and leads to chronic dysfunctional neuronal circuitry that mediates epilepsy. PMID:27444269

  17. Role of IL-1 beta and prostaglandins in beta 2-microglobulin-induced bone mineral dissolution.

    PubMed

    Moe, S M; Hack, B K; Cummings, S A; Sprague, S M

    1995-02-01

    beta 2-microglobulin (beta 2m) induces an osteoclast-mediated net calcium efflux from neonatal mouse calvariae which occurs only after 48 hours of incubation, suggesting that beta 2m acts via other growth factors. To further test this hypothesis, calvariae were incubated with and without beta 2m in the presence of the prostaglandin inhibitor indomethacin, anti-interleukin-1 beta antibody (anti-IL-1 beta), or interleukin-1 beta receptor antagonist (IL-1 beta RA). The addition of beta 2m to the culture medium stimulated, whereas indomethacin inhibited basal calcium efflux following 48 hours. However, the difference (delta) between the calcium efflux induced in calvariae incubated with and without beta 2m in basal medium and that in calvariae incubated with and without beta 2m in indomethacin supplemented medium was similar, suggesting a prostaglandin independent mechanism. There was a time dependent increase in PGE2 in basal medium which was unaffected by beta 2m. In contrast, pre-incubating calvariae with either anti-IL-1 beta or IL-1 beta RA did not alter basal calcium efflux but completely blocked the beta 2m induced calcium efflux. Anti-IL-1 beta had no effect on the basal release of beta-glucuronidase but partially blocked the beta 2m induced release of beta-glucuronidase. Thus, the beta 2m-induced calcium efflux observed in neonatal mouse calvariae is dependent on interleukin-1 beta but not prostaglandins.

  18. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    PubMed

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol. PMID:26311003

  19. Antagonism of glutamate receptors in the intermediate and caudal NTS of awake rats produced no changes in the hypertensive response to chemoreflex activation.

    PubMed

    Machado, Benedito H; Bonagamba, Leni G H

    2005-01-15

    The role of excitatory amino acid (EAA) receptors in the neurotransmission of the sympathoexcitatory component of the chemoreflex (pressor response) in the intermediate and caudal aspects of the commissural nucleus tractus solitarii (NTS) of awake rats was evaluated. Microinjection of kynurenic acid, a non-selective antagonist of EAA receptors, into the intermediate and caudal commissural NTS produced a large increase in the baseline mean arterial pressure (MAP), which may reduce the magnitude of the pressor response to chemoreflex activation. To avoid this problem sodium nitroprusside (SNP) was infused (i.v.) after microinjections of kynurenic acid (2 nmol/50 nl) into the NTS, in order to normalize the MAP and then the chemoreflex was activated and the magnitude of the pressor response evaluated. Microinjection of kynurenic acid into the intermediate (bilaterally) and caudal (midline) commissural NTS (n=6) produced a significant increase in baseline MAP (103+/-5 vs. 137+/-6 mm Hg) normalized by SNP infusion (107+/-4 mm Hg) and under this experimental condition the pressor response to chemoreflex activation was not statistically different in relation to the control (37+/-7 vs. 44+/-6 mm Hg). Bilateral microinjections of kynurenic acid into the caudal NTS (n=8) also produced a significant increase in baseline MAP (109+/-4 vs. 145+/-6 mm Hg) normalized by SNP infusion (109+/-6 mm Hg). After normalization of MAP, the pressor response to chemoreflex activation at 3 (34+/-6 mm Hg) and 10 min (37+/-6 mm Hg) was also not different in relation to the control (46+/-5 mm Hg). These data indicate that the antagonism of EAA receptors simultaneously in the intermediate (bilateral) and caudal (midline) commissural NTS or only in the caudal commissural NTS (bilateral) of awake rats had no effect on the hypertensive response to chemoreflex activation. We suggest that neurotransmitter other than l-glutamate may take part in the neurotransmission of the sympathoexcitatory component

  20. BOC-CCK-4, CCK(B)receptor agonist, antagonizes anxiolytic-like action of morphine in elevated plus-maze.

    PubMed

    Kõks, S; Soosaar, A; Võikar, V; Bourin, M; Vasar, E

    1999-02-01

    This study investigated a role of cholecystokinin (CCK) in the anxiolytic-like action of morphine, an agonist of mu-opioid receptors, in the rat plus-maze model of anxiety. The acute administration of morphine (1 mg/kg) induced a significant increase of exploratory activity in the plus-maze, but did not affect the locomotor activity in the motility test. The higher dose of morphine (2.5 mg/kg) tended to decrease the locomotor activity and, therefore, did not cause the anxiolytic-like action in the plus-maze. The other drugs (naloxone, BOC-CCK-4, L-365,260) and their combinations with morphine (0.5-1 mg/kg) did not affect the locomotor activity of rats. The opioid antagonist naloxone itself (0.5 mg/kg) did not change the exploratory activity in the plus-maze, but potently antagonized the anxiolytic-like action of morphine (1 mg/kg). An agonist of CCK(B)receptors BOC-CCK-4 (1-50 microgram/kg) induced a dose-dependent anxiogenic-like action in the plus-maze. Nevertheless, only one dose of BOC-CCK-4 (10 microgram/kg) completely reversed the action of morphine. Also, one dose of CCK(B)receptor antagonist L-365,260 (10 microgram/kg) was effective to modify the behaviour of rats in the elevated plus-maze. Namely, this dose of L-365,260 increased the ratio between open and total arm entries, a behavioural measure believed to reflect the anxiolytic-like action in the elevated plus-maze. The combination of L-365,260 (100 microgram/kg) with the sub-effective dose of morphine (0.5 mg/kg) caused the anxiolytic-like action in the plus-maze not seen if the drugs were given alone. In conclusion, morphine induces a potent anxiolytic-like action in the elevated plus-maze and CCK is acting as an endogenous antagonist of this effect of morphine.

  1. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    PubMed

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol.

  2. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABA{sub A} receptors

    SciTech Connect

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-11-15

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA{sub A} receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death

  3. Anti-analgesic effect of the mu/delta opioid receptor heteromer revealed by ligand-biased antagonism.

    PubMed

    Milan-Lobo, Laura; Enquist, Johan; van Rijn, Richard M; Whistler, Jennifer L

    2013-01-01

    Delta (DOR) and mu opioid receptors (MOR) can complex as heteromers, conferring functional properties in agonist binding, signaling and trafficking that can differ markedly from their homomeric counterparts. Because of these differences, DOR/MOR heteromers may be a novel therapeutic target in the treatment of pain. However, there are currently no ligands selective for DOR/MOR heteromers, and, consequently, their role in nociception remains unknown. In this study, we used a pharmacological opioid cocktail that selectively activates and stabilizes the DOR/MOR heteromer at the cell surface by blocking its endocytosis to assess its role in antinociception. We found that mice treated chronically with this drug cocktail showed a significant right shift in the ED50 for opioid-mediated analgesia, while mice treated with a drug that promotes degradation of the heteromer did not. Furthermore, promoting degradation of the DOR/MOR heteromer after the right shift in the ED50 had occurred, or blocking signal transduction from the stabilized DOR/MOR heteromer, shifted the ED50 for analgesia back to the left. Taken together, these data suggest an anti-analgesic role for the DOR/MOR heteromer in pain. In conclusion, antagonists selective for DOR/MOR heteromer could provide an avenue for alleviating reduced analgesic response during chronic pain treatment.

  4. Orexin-1 receptor antagonism does not reduce the rewarding potency of cocaine in Swiss-Webster mice.

    PubMed

    Riday, Thorfinn T; Fish, Eric W; Robinson, J Elliott; Jarrett, Thomas M; McGuigan, Megan M; Malanga, C J

    2012-01-11

    The orexin family of hypothalamic neuropeptides has been implicated in reinforcement mechanisms relevant to both food and drug reward. Previous behavioral studies with antagonists at the orexin A-selective receptor, OX(1), have demonstrated its involvement in behavioral sensitization, conditioned place-preference, and self-administration of drugs of abuse. Adult male Swiss-Webster mice were implanted with stimulating electrodes to the lateral hypothalamus and trained to perform intracranial self-stimulation (ICSS). The effects of the OX(1)-selective antagonist SB 334867 on brain stimulation-reward (BSR) and cocaine potentiation of BSR were measured. SB 334867 (10-30mg/kg, i.p.) alone had no effect on ICSS performance or BSR threshold. Cocaine (1.0-30mg/kgi.p.) dose-dependently potentiated BSR, measured as lowering of BSR threshold. This effect was not blocked by 30mg/kg SB 334867 at any cocaine dose tested. In agreement with previous reports, SB 334867 resulted in a reduction of body weight 24h after acute administration. Based on these data, it is concluded that orexins acting at OX(1) do not contribute to BSR; and are not involved in the reward-potentiating actions of cocaine on BSR. The data are discussed in the context of prior findings of SB 334867 effects on drug-seeking and drug-consuming behaviors.

  5. Corticotropin-Releasing Factor Receptor-1 Antagonism Reduces Oxidative Damage in an Alzheimer’s Disease Transgenic Mouse Model.

    PubMed

    Zhang, Cheng; Kuo, Ching-Chang; Moghadam, Setareh H; Monte, Louise; Rice, Kenner C; Rissman, Robert A

    2015-01-01

    Reports from Alzheimer’s disease (AD) biomarker work have shown a strong link between oxidative stress and AD neuropathology. The nonenzymatic antioxidant, glutathione (GSH), plays a crucial role in defense against reactive oxygen species and maintenance of GSH redox homeostasis. In particular, our previous studies on GSH redox imbalance have implicated oxidative stress induced by excessive reactive oxygen species as a major mediator of AD-like events, with the presence of S- glutathionylated proteins (Pr-SSG) appearing prior to overt AD neuropathology. Furthermore, evidence suggests that oxidative stress may be associated with dysfunction of the hypothalamic-pituitary-adrenal axis, leading to activation of inflammatory pathways and increased production of corticotropin-releasing factor (CRF). Therefore, to investigate whether oxidative insults can be attenuated by reduction of central CRF signaling, we administered the type-1 CRF receptor (CRFR1) selective antagonist, R121919, to AD-transgenic mice beginning in the preclinical/prepathologic period (30-day-old) for 150 days, a time point where behavioral impairments and pathologic progression should be measureable. Our results indicate that R121919 treatment can significantly reduce Pr-SSG levels and increase glutathione peroxide activity, suggesting that interference of CRFR1 signaling may be useful as a preventative therapy for combating oxidative stress in AD. PMID:25649650

  6. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    SciTech Connect

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  7. Biperiden enhances L-DOPA methyl ester and dopamine D(l) receptor agonist SKF-82958 but antagonizes D(2)/D(3) receptor agonist rotigotine antihemiparkinsonian actions.

    PubMed

    Domino, Edward F; Ni, Lisong

    2008-12-01

    The effects of biperiden (0, 100, and 320 microg/kg), a selective muscarinic M(1)/M(4) receptor cholinergic antagonist, were studied alone and in combination with those of L-DOPA methyl ester (16.7 mg/kg), a selective dopamine D(1) receptor agonist SKF-82958 (74.8 microg/kg), or a selective D(2)/D(3) receptor agonist rotigotine (32 microg/kg) on circling behavior in MPTP induced hemiparkinsonian monkeys. The doses selected were given i.m. in approximately equieffective doses to produce contraversive circling. Biperiden alone with 5% dextrose vehicle produced a slight increase in contraversive circling in a dose related manner. When combined with L-DOPA methyl ester, it enhanced contraversive circling and decreased ipsiversive circling. When biperiden was combined with SKF-82958, contraversive circling also was enhanced and ipsiversive circling decreased. Exactly the opposite was observed with the combination of biperiden and rotigotine. The results indicate a dramatic difference in effects of a prototypic muscarinic M(1)/M(4) receptor cholinergic antagonist in combination with prototypic full dopamine D(1) or D(2)/D(3) receptor agonists. Biperiden interactions with L-DOPA methyl ester were more predominantly D(l) than D(2)/D(3) receptor-like in this animal model of hemiparkinsonism.

  8. Sexually dimorphic effects of NMDA receptor antagonism on brain-pituitary-gonad axis development in the platyfish

    NASA Technical Reports Server (NTRS)

    Flynn, Katherine M.; Miller, Shelly A.; Sower, Stacia A.; Schreibman, Martin P.

    2002-01-01

    The N-methyl-D-aspartate glutamate receptor (NMDAR) is found in hypothalamic nuclei involved in the regulation of reproduction in several species of mammals and fishes. NMDAR is believed to affect reproductive development and function by regulating gonadotropin releasing hormone (GnRH)-producing cells. These pathways are likely to be sexually dimorphic, as are several other neurotransmitter systems involved in reproductive function. In this report, male and female platyfish received intraperitoneal injections of 0, 5, 10, 20, 40 or 60 microg/g body wt. of the non-competitive NMDAR antagonist MK-801. Injections began at 6 weeks of age and continued thrice weekly until control animals reached puberty, as evidenced by anal fin maturation. The percent of pubescent animals was significantly affected by sex and treatment, with fewer MK-801-injected females in puberty than control females at each dose (P<0.001), and fewer pubescent females than males at 10, 20 and 40 microg/g (P<0.05). There were no MK-801-related effects in males. Histological analyses revealed typical immature gonads and pituitary glands in treated females, and typical mature morphology in control females and all males. Immunocytochemical distribution of the R1 subunit of the NMDAR within the brain-pituitary-gonad (BPG) axis was limited to GnRH-containing brain cells in all animals; however, NMDAR1 distribution was in an immature pattern in treated females and a mature pattern in all others. Neural concentrations of GnRH were unaffected by MK-801 treatment in both sexes. These data suggest that in the platyfish, NMDAR influence on reproductive development is sexually dimorphic and occurs at, or above, the level of GnRH-containing cells of the BPG axis.

  9. Genetic variation in CYP4A11 and blood pressure response to mineralocorticoid receptor antagonism or ENaC inhibition: an exploratory pilot study in African Americans.

    PubMed

    Laffer, Cheryl L; Elijovich, Fernando; Eckert, George J; Tu, Wanzhu; Pratt, J Howard; Brown, Nancy J

    2014-07-01

    An rs3890011 variant of CYP4A11, which is in linkage disequilibrium with the loss-of-function variant rs1126742, is associated with hypertension in humans. In mice, Cyp4a deficiency results in salt-sensitive hypertension through activation of ENaC. We tested the hypothesis that the rs3890011 variant is associated with blood pressure response to drugs acting via the ENaC pathway. African Americans with volume-dependent, resistant hypertension were randomized to treatment with placebo, spironolactone, amiloride, or combination. Blood pressure responses were analyzed by CYP4A11 genotypes. Rs3890011 (GG:GC:CC = 20:35:28) and rs1126742 (TT:TC:CC = 45:31:7) were in linkage disequilibrium (D' = 1, r = 0.561). Expected small number of rs1126742 CC homozygotes precluded analysis of the effect of this genotype on treatment responses. Spironolactone reduced blood pressure in rs3890011 GG and GC individuals, but not in CC homozygotes (P = .002), whereas amiloride reduced blood pressure similarly in all rs3890011 genotypes. The antihypertensive effects of spironolactone and amiloride were comparable in GG and GC participants, but only amiloride reduced pressure in CC homozygotes (-6.3 ± 7.3/-3.2 ± 4.0 vs. +6.8 ± 7.9/+4.8 ± 8.6 mm Hg, P < .01/<.05). The aldosterone response to spironolactone was also blunted in the CC genotype. In individuals homozygous for the CYP4A11 rs3890011 C allele, blood pressure is resistant to mineralocorticoid receptor antagonism, but sensitive to ENaC inhibition, consistent with ENaC activation. Studies in a larger population are needed to replicate these findings. PMID:25064769

  10. Cannabidiol Attenuates Sensorimotor Gating Disruption and Molecular Changes Induced by Chronic Antagonism of NMDA receptors in Mice

    PubMed Central

    Issy, Ana Carolina; Ferreira, Frederico R.; Viveros, Maria-Paz; Del Bel, Elaine A.; Guimarães, Francisco S.

    2015-01-01

    Background: Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Methods: Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. Results: MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were

  11. Alcohol-induced IL-1β in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation

    PubMed Central

    Lippai, Dora; Bala, Shashi; Petrasek, Jan; Csak, Timea; Levin, Ivan; Kurt-Jones, Evelyn A.; Szabo, Gyongyi

    2013-01-01

    Alcohol-induced neuroinflammation is mediated by proinflammatory cytokines, including IL-1β. IL-1β production requires caspase-1 activation by inflammasomes—multiprotein complexes that are assembled in response to danger signals. We hypothesized that alcohol-induced inflammasome activation contributes to increased IL-1β in the brain. WT and TLR4-, NLRP3-, and ASC-deficient (KO) mice received an ethanol-containing or isocaloric control diet for 5 weeks, and some received the rIL-1ra, anakinra, or saline treatment. Inflammasome activation, proinflammatory cytokines, endotoxin, and HMGB1 were measured in the cerebellum. Expression of inflammasome components (NLRP1, NLRP3, ASC) and proinflammatory cytokines (TNF-α, MCP-1) was increased in brains of alcohol-fed compared with control mice. Increased caspase-1 activity and IL-1β protein in ethanol-fed mice indicated inflammasome activation. TLR4 deficiency protected from TNF-α, MCP-1, and attenuated alcohol-induced IL-1β increases. The TLR4 ligand, LPS, was not increased in the cerebellum. However, we found up-regulation of acetylated and phosphorylated HMGB1 and increased expression of the HMGB1 receptors (TLR2, TLR4, TLR9, RAGE) in alcohol-fed mice. NLRP3- or ASC-deficient mice were protected from caspase-1 activation and alcohol-induced IL-1β increase in the brain. Furthermore, in vivo treatment with rIL-1ra prevented alcohol-induced inflammasome activation and IL-1β, TNF-α, and acetylated HMGB1 increases in the cerebellum. Conversely, intracranial IL-1β administration induced TNF-α and MCP-1 in the cerebellum. In conclusion, alcohol up-regulates and activates the NLRP3/ASC inflammasome, leading to caspase-1 activation and IL-1β increase in the cerebellum. IL-1β amplifies neuroinflammation, and disruption of IL-1/IL-1R signaling prevents alcohol-induced inflammasome activation and neuroinflammation. Increased levels of acetylated and phosphorylated HMGB1 may contribute to alcoholic neuroinflammation

  12. Exogenous IL-1Ra attenuates intestinal mucositis induced by oxaliplatin and 5-fluorouracil through suppression of p53-dependent apoptosis.

    PubMed

    Wang, Xia; Gao, Jin; Qian, Lan; Gao, Jing; Zhu, Shunying; Wu, Mingyuan; Zhang, Yang; Guan, Wen; Ye, Hao; Yu, Yan; Han, Wei

    2015-01-01

    Chemotherapy-induced intestinal mucositis (CIM) is a major dose-limiting side effect of many chemoagents, resulting in weight loss, diarrhea, and even death. The current treatments for CIM are palliative and have limited benefit. Interleukin-1 receptor antagonist is a natural antagonist of interleukin-1. Our previous studies showed the protective effect of recombinant human interleukin-1 receptor antagonist (rhIL-1Ra) on the intestine in mice after 5-fluorouracil chemotherapy. In this study, we further evaluated rhIL-1Ra in the treatment of CIM induced by different chemoagents and their combination. Normal as well as tumor-bearing mice were administered oxaliplatin (L-OHP), 5-fluorouracil, or their combination to induce intestinal mucositis and mortality. rhIL-1Ra administered after the chemotherapy, but not after the onset of diarrhea, significantly improved mouse survival, attenuated body weight loss, and reduced the incidence, severity, and duration of diarrhea. Histological examination showed that rhIL-1Ra-treated mice had a relatively intact mucosa structure, more proliferating crypt cells, and higher acid mucin content than the vehicle-treated mice. rhIL-1Ra suppressed crypt apoptosis by reducing the levels of proapoptotic proteins in wild-type, but not in IL-1RI or p53 mice. In addition, rhIL-1Ra was as effective as octreotide acetate in the treatment of chemotherapy-induced diarrhea, but with the advantage of reducing the epithelial apoptosis, the major cause of CIM. Importantly, the tumor sensitivity to chemotherapy was not affected by rhIL-1Ra. Thus, our data strongly suggest that rhIL-1Ra may be useful for the treatment of intestinal mucositis and improving the quality of life for cancer patients on chemotherapy.

  13. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production

    PubMed Central

    Jung, Y; Wen, T; Mingler, MK; Caldwell, JM; Wang, YH; Chaplin, DD; Lee, EH; Jang, MH; Woo, SY; Seoh, JY; Miyasaka, M; Rothenberg, ME

    2014-01-01

    Eosinophils are multifunctional leukocytes that reside in the gastrointestinal (GI) lamina propria, where their basal function remains largely unexplored. In this study, by examining mice with a selective deficiency of systemic eosinophils (by lineage ablation) or GI eosinophils (eotaxin-1/2 double–deficient or CC chemokine receptor 3–deficient), we show that eosinophils support immunoglobulin A (IgA) class switching, maintain intestinal mucus secretions, affect intestinal microbial composition, and promote the development of Peyer’s patches. Eosinophil-deficient mice showed reduced expression of mediators of secretory IgA production, including intestinal interleukin 1β (IL-1β), inducible nitric oxide synthase, lymphotoxin (LT) α, and LT-β, and reduced levels of retinoic acid-related orphan receptor gamma t–positive (ROR-γt+) innate lymphoid cells (ILCs) while maintaining normal levels of APRIL (a proliferation-inducing ligand), BAFF (B cell–activating factor of the tumor necrosis factor family), and TGF-β (transforming growth factor β). GI eosinophils expressed a relatively high level of IL-1β, and IL-1β–deficient mice manifested the altered gene expression profiles observed in eosinophil-deficient mice and decreased levels of IgA+ cells and ROR-γt+ ILCs. On the basis of these collective data, we propose that eosinophils are required for homeostatic intestinal immune responses including IgA production and that their affect is mediated via IL-1β in the small intestine. PMID:25563499

  14. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity.

    PubMed

    Ohne, Yoichiro; Silver, Jonathan S; Thompson-Snipes, LuAnn; Collet, Magalie A; Blanck, Jean Philippe; Cantarel, Brandi L; Copenhaver, Alan M; Humbles, Alison A; Liu, Yong-Jun

    2016-06-01

    Group 2 innate lymphoid cells (ILC2 cells) are important for type 2 immune responses and are activated by the epithelial cytokines interleukin 33 (IL-33), IL-25 and thymic stromal lymphopoietin (TSLP). Here we demonstrated that IL-1β was a critical activator of ILC2 cells, inducing proliferation and cytokine production and regulating the expression of epithelial cytokine receptors. IL-1β also governed ILC2 plasticity by inducing low expression of the transcription factor T-bet and the cytokine receptor chain IL-12Rβ2, which enabled the conversion of these cells into an ILC1 phenotype in response to IL-12. This transition was marked by an atypical chromatin landscape characterized by the simultaneous transcriptional accessibility of the locus encoding interferon-γ (IFN-γ) and the loci encoding IL-5 and IL-13. Finally, IL-1β potentiated ILC2 activation and plasticity in vivo, and IL-12 acted as the switch that determined an ILC2-versus-ILC1 response. Thus, we have identified a previously unknown role for IL-1β in facilitating ILC2 maturation and plasticity. PMID:27111142

  15. IL-1 polymorphism and periimplantitis. A literature review.

    PubMed

    Bormann, Kai-Hendrik; Stühmer, Constantin; Z'Graggen, Marcel; Kokemöller, Horst; Rücker, Martin; Gellrich, Nils-Claudius

    2010-01-01

    The most important factor leading to periimplantitis with bone loss appears to be an inflammatory process due to plaque accumulation. The object of this article was to present a review of the literature on a possible correlation between IL-1 polymorphism and periimplantitis. Research was carried out in the PUBMED and WEB OF KNOWLEDGE literature databases and 27 relevant articles were found. Of these articles, 4 groups of authors came to the conclusion that no correlation exists between IL-1 polymorphism and periimplantitis. In 5 articles by 4 groups of authors, the influence of IL-1 polymorphism on periimplantitis is unclear. 9 studies prove a correlation between IL-1 polymorphism and periimplantitis, and 6 studies also document a direct linkage between gene polymorphism and periimplantitis, if certain cofactors are present. IL-1 polymorphism is frequently connected with "noninfectious periimplant bone loss". Other studies prove that the inflammatory mediators and IL-1beta were significantly elevated in the gingival crevicular fluid (GCF) of infected implants. Many studies document that IL-1 polymorphism alone cannot be considered a risk factor for bone loss, but in combination with smoking, it is closely associated with periimplant bone loss. More studies are needed to discover possible correlations between IL-1 polymorphism and periimplantitis. PMID:20625956

  16. Combined serotonin (5-HT)1A agonism, 5-HT(2A) and dopamine D₂ receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats.

    PubMed

    Oyamada, Yoshihiro; Horiguchi, Masakuni; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-05-15

    Subchronic administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist, e.g. phencyclidine (PCP), produces prolonged impairment of novel object recognition (NOR), suggesting they constitute a hypoglutamate-based model of cognitive impairment in schizophrenia (CIS). Acute administration of atypical, e.g. lurasidone, but not typical antipsychotic drugs (APDs), e.g. haloperidol, are able to restore NOR following PCP (acute reversal model). Furthermore, atypical APDs, when co-administered with PCP, have been shown to prevent development of NOR deficits (prevention model). Most atypical, but not typical APDs, are more potent 5-HT(2A) receptor inverse agonists than dopamine (DA) D2 antagonists, and have been shown to enhance cortical and hippocampal efflux and to be direct or indirect 5-HT(1A) agonists in vivo. To further clarify the importance of these actions to the restoration of NOR by atypical APDs, sub-effective or non-effective doses of combinations of the 5-HT(1A) partial agonist (tandospirone), the 5-HT(2A) inverse agonist (pimavanserin), or the D2 antagonist (haloperidol), as well as the combination of all three agents, were studied in the acute reversal and prevention PCP models of CIS. Only the combination of all three agents restored NOR and prevented the development of PCP-induced deficit. Thus, this triple combination of 5-HT(1A) agonism, 5-HT(2A) antagonism/inverse agonism, and D2 antagonism is able to mimic the ability of atypical APDs to prevent or ameliorate the PCP-induced NOR deficit, possibly by stimulating signaling cascades from D1 and 5-HT(1A) receptor stimulation, modulated by D2 and 5-HT(2A) receptor antagonism. PMID:25448429

  17. Chlamydial infection of monocytes stimulates IL-1beta secretion through activation of the NLRP3 inflammasome.

    PubMed

    Abdul-Sater, Ali A; Saïd-Sadier, Najwane; Padilla, Eduardo V; Ojcius, David M

    2010-08-01

    Chlamydia trachomatis infections represent the leading cause of bacterial sexually-transmitted disease in the United States and can cause serious tissue damage leading to infertility and ectopic pregnancies in women. Inflammation and hence the innate immune response to chlamydial infection contributes significantly to tissue damage, particularly by secreting proinflammatory cytokines such as interleukin (IL)-1beta from monocytes, macrophages and dendritic cells. Here we demonstrate that C. trachomatis or Chlamydia muridarum infection of a monocytic cell line leads to caspase-1 activation and IL-1beta secretion through a process requiring the NLRP3 inflammasome. Thus, secretion of IL-1beta decreased significantly when cells were depleted of NLRP3 or treated with the anti-inflammatory inhibitors parthenolide or Bay 11-7082, which inhibit inflammasomes and the transcription factor NF-kappaB. As for other infections causing NRLP3 inflammasome assembly, caspase-1 activation in monocytes is triggered by potassium efflux and reactive oxygen species production. However, anti-oxidants inhibited IL-1beta secretion only partially. Atypically for a bacterial infection, caspase-1 activation during chlamydial infection also involves partially the spleen tyrosine kinase (Syk), which is usually associated with a pathogen recognition receptor for fungal pathogens. Secretion of IL-1beta during infection by many bacteria requires both microbial products from the pathogen and an exogenous danger signal, but chlamydial infection provides both the pathogen-associated molecular patterns and danger signals necessary for IL-1beta synthesis and its secretion from human monocytes. Use of inhibitors that target the inflammasome in animals should therefore dampen inflammation during chlamydial infection.

  18. Particle size of latex beads dictates IL-1β production mechanism.

    PubMed

    Adachi, Takumi; Takahara, Kazuhiko; Taneo, Jun; Uchiyama, Yasuo; Inaba, Kayo

    2013-01-01

    Macrophages (Mϕ) are well documented to produce IL-1β through various signaling pathways in response to small particles such as silica, asbestos and urea crystals, in the presence of lipopolysaccharide (LPS). However, it has not been clear to what extent particle size affects the response. To investigate this point, we stimulated bone marrow-derived macrophages (BMDM) with size-defined latex beads (LxB). Although both nano-sized (20 nm) and micro-sized (1,000 nm) LxB induced IL-1β production, only the nano-sized particles formed large intracellular vacuoles. In contrast, 100 nm LxB did not induce either of the responses. The same cellular responses were also observed in primary microglia cells. Although K(+) efflux and NLRP3 activation in BMDM were crucial in response to both 20 and 1,000 nm LxB, only IL-1β production by 20 nm LxB was sensitive to cathepsin B and P2X7, a receptor for ATP. The response by 1,000 nm LxB relied on a robust production of reactive oxygen species (ROS), since IL-1β production was remarkably reduced by ROS inhibitors such as diphenylene iodonium (DPI) and N-acetylcysteine (NAC). In contrast, IL-1β production by 20 nm LxB was augmented by NAC and in BMDM deficient in thioredoxin-binding protein-2 (TBP-2), a negative regulator of the ROS scavenger thioredoxin. These results suggest that the cells responded differently in their secretion of IL-1β depending on particle size, and that there is a range within which neither pathway works.

  19. Particle Size of Latex Beads Dictates IL-1β Production Mechanism

    PubMed Central

    Adachi, Takumi; Takahara, Kazuhiko; Taneo, Jun; Uchiyama, Yasuo; Inaba, Kayo

    2013-01-01

    Macrophages (Mϕ) are well documented to produce IL-1β through various signaling pathways in response to small particles such as silica, asbestos and urea crystals, in the presence of lipopolysaccharide (LPS). However, it has not been clear to what extent particle size affects the response. To investigate this point, we stimulated bone marrow-derived macrophages (BMDM) with size-defined latex beads (LxB). Although both nano-sized (20 nm) and micro-sized (1,000 nm) LxB induced IL-1β production, only the nano-sized particles formed large intracellular vacuoles. In contrast, 100 nm LxB did not induce either of the responses. The same cellular responses were also observed in primary microglia cells. Although K+ efflux and NLRP3 activation in BMDM were crucial in response to both 20 and 1,000 nm LxB, only IL-1β production by 20 nm LxB was sensitive to cathepsin B and P2X7, a receptor for ATP. The response by 1,000 nm LxB relied on a robust production of reactive oxygen species (ROS), since IL-1β production was remarkably reduced by ROS inhibitors such as diphenylene iodonium (DPI) and N-acetylcysteine (NAC). In contrast, IL-1β production by 20 nm LxB was augmented by NAC and in BMDM deficient in thioredoxin-binding protein-2 (TBP-2), a negative regulator of the ROS scavenger thioredoxin. These results suggest that the cells responded differently in their secretion of IL-1β depending on particle size, and that there is a range within which neither pathway works. PMID:23874646

  20. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration

    PubMed Central

    Martino, Mikaël M.; Maruyama, Kenta; Kuhn, Gisela A.; Satoh, Takashi; Takeuchi, Osamu; Müller, Ralph; Akira, Shizuo

    2016-01-01

    Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications. PMID:27001940

  1. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration.

    PubMed

    Martino, Mikaël M; Maruyama, Kenta; Kuhn, Gisela A; Satoh, Takashi; Takeuchi, Osamu; Müller, Ralph; Akira, Shizuo

    2016-03-22

    Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications.

  2. Lipopolysaccharide and Raf-1 kinase regulate secretory interleukin-1 receptor antagonist gene expression by mutually antagonistic mechanisms.

    PubMed Central

    Guthridge, C J; Eidlen, D; Arend, W P; Gutierrez-Hartmann, A; Smith, M F

    1997-01-01

    Lipopolysaccharide (LPS) treatment of monocytic cells has been shown to activate the Raf-1/mitogen-activated protein kinase (MAPK) signaling pathway and to increase secretory interleukin-1 receptor antagonist (sIL-1Ra) gene expression. The significance of the activation of the Raf-1/MAPK signaling pathway to LPS regulation of sIL-1Ra gene expression, however, has not been determined. This study addresses the role of the Raf-1/MAPK signaling pathway in regulation of sIL-1Ra gene expression by LPS. Cotransfection of the murine macrophage cell line RAW 264.7 with a 294-bp sIL-1Ra promoter/luciferase construct (pRA-294-luc) and a constitutively active Raf-1 kinase expression vector (pRSV-Raf-BXB) resulted in induction of sIL-1Ra promoter activity, indicating that Raf-1, like LPS, can regulate sIL-1Ra promoter activity. An in vitro MAPK analysis indicated that both LPS treatment and pRSV-Raf-BXB transfection of RAW 264.7 cells increases p42 MAPK activity. An in vitro Raf-1 kinase assay, however, failed to detect LPS-induced Raf-1 kinase activity in RAW 264.7 cells, suggesting that in RAW 264.7 cells, Raf-1 kinase is not an activating component of the LPS signaling pathway regulating MAPK activity or sIL-1Ra promoter activity. This observation was supported by results from transfection studies which demonstrated that expression of a dominant-inhibitory Raf-1 mutant in RAW 264.7 cells does not inhibit LPS-induced MAPK activity or sIL-1Ra promoter activity, indicating that LPS-induced sIL-1Ra promoter activation occurs independent of the Raf-1/MAPK signaling pathway. In additional studies, cotransfection of RAW 264.7 cells with pRA-294-luc and increasing amounts of pRSV-Raf-BXB caused a dose-dependent inhibition of LPS-induced sIL-1Ra promoter activity, indicating that the role of the Raf-1 pathway in the regulation of sIL-1Ra promoter activity by LPS is as an antagonizer. Interestingly, LPS treatment of RAW 264.7 cells, cotransfected with pRA-294-luc and p

  3. Lipopolysaccharide and Raf-1 kinase regulate secretory interleukin-1 receptor antagonist gene expression by mutually antagonistic mechanisms.

    PubMed

    Guthridge, C J; Eidlen, D; Arend, W P; Gutierrez-Hartmann, A; Smith, M F

    1997-03-01

    Lipopolysaccharide (LPS) treatment of monocytic cells has been shown to activate the Raf-1/mitogen-activated protein kinase (MAPK) signaling pathway and to increase secretory interleukin-1 receptor antagonist (sIL-1Ra) gene expression. The significance of the activation of the Raf-1/MAPK signaling pathway to LPS regulation of sIL-1Ra gene expression, however, has not been determined. This study addresses the role of the Raf-1/MAPK signaling pathway in regulation of sIL-1Ra gene expression by LPS. Cotransfection of the murine macrophage cell line RAW 264.7 with a 294-bp sIL-1Ra promoter/luciferase construct (pRA-294-luc) and a constitutively active Raf-1 kinase expression vector (pRSV-Raf-BXB) resulted in induction of sIL-1Ra promoter activity, indicating that Raf-1, like LPS, can regulate sIL-1Ra promoter activity. An in vitro MAPK analysis indicated that both LPS treatment and pRSV-Raf-BXB transfection of RAW 264.7 cells increases p42 MAPK activity. An in vitro Raf-1 kinase assay, however, failed to detect LPS-induced Raf-1 kinase activity in RAW 264.7 cells, suggesting that in RAW 264.7 cells, Raf-1 kinase is not an activating component of the LPS signaling pathway regulating MAPK activity or sIL-1Ra promoter activity. This observation was supported by results from transfection studies which demonstrated that expression of a dominant-inhibitory Raf-1 mutant in RAW 264.7 cells does not inhibit LPS-induced MAPK activity or sIL-1Ra promoter activity, indicating that LPS-induced sIL-1Ra promoter activation occurs independent of the Raf-1/MAPK signaling pathway. In additional studies, cotransfection of RAW 264.7 cells with pRA-294-luc and increasing amounts of pRSV-Raf-BXB caused a dose-dependent inhibition of LPS-induced sIL-1Ra promoter activity, indicating that the role of the Raf-1 pathway in the regulation of sIL-1Ra promoter activity by LPS is as an antagonizer. Interestingly, LPS treatment of RAW 264.7 cells, cotransfected with pRA-294-luc and p

  4. Inhibition of acetylcholinesterase activity by rivastigmine decreases lipopolysaccharide-induced IL-1β expression in the hypothalamus of ewes.

    PubMed

    Herman, A P; Krawczyńska, A; Bochenek, J; Haziak, K; Antushevitch, H; Herman, A; Tomaszewska-Zaremba, D

    2013-04-01

    The present study was designed to determine the effect of subcutaneous rivastigmine treatment on IL-1β expression and IL-1 type I receptor (IL-1R1) gene expression in the hypothalamic structures (preoptic area [POA], anterior hypothalamus [AHA], and medial basal hypothalamus [MBH]) of ewes after lipopolysaccharide (LPS) treatment. Endotoxin treatment increased (P ≤ 0.01) both IL-1β and IL-1R1 gene expression in the POA, AHA, and MBH compared with the control group, whereas concomitant rivastigmine and LPS injection abolished this stimulatory effect. It was also found that LPS elevated (P ≤ 0.01) IL-1β concentration in the hypothalamus (71.0 ± 2.3 pg/mg) compared with controls (16.1 ± 3.6 pg/mg). The simultaneous injection of LPS and rivastigmine did not increase IL-1β concentration in the hypothalamus (24.6 ± 13.0 pg/mg). This central change in IL-1β synthesis seems to be an effect of acetylcholinesterase (AChE) inhibition by rivastigmine, which decreases (P ≤ 0.01) the activity of this enzyme from 78.5 ± 15.0 μmol · min(-1) · g(-1) of total protein in the control and 68.8 ± 9.8 μmol · min(-1) · g(-1) of total protein in LPS-treated animals to 45.2 ± 5.6 μmol · min(-1) · g(-1) of total protein in the rivastigmine and LPS-treated group. Our study showed that rivastigmine could effectively reverse the stimulatory effect of immune stress induced by LPS injection on IL-1β synthesis through a decrease in AChE activity in the hypothalamic area of sheep. Our results also proved that the cholinergic anti-inflammatory pathway could directly modulate the central response to endotoxin.

  5. The NLRP3 Inflammasome and IL-1β Accelerate Immunologically Mediated Pathology in Experimental Viral Fulminant Hepatitis.

    PubMed

    Guo, Sheng; Yang, Chengying; Diao, Bo; Huang, Xiaoyong; Jin, Meihua; Chen, Lili; Yan, Weiming; Ning, Qin; Zheng, Lixin; Wu, Yuzhang; Chen, Yongwen

    2015-09-01

    Viral fulminant hepatitis (FH) is a severe disease with high mortality resulting from excessive inflammation in the infected liver. Clinical interventions have been inefficient due to the lack of knowledge for inflammatory pathogenesis in the virus-infected liver. We show that wild-type mice infected with murine hepatitis virus strain-3 (MHV-3), a model for viral FH, manifest with severe disease and high mortality in association with a significant elevation in IL-1β expression in the serum and liver. Whereas, the viral infection in IL-1β receptor-I deficient (IL-1R1-/-) or IL-1R antagonist (IL-1Ra) treated mice, show reductions in virus replication, disease progress and mortality. IL-1R1 deficiency appears to debilitate the virus-induced fibrinogen-like protein-2 (FGL2) production in macrophages and CD45+Gr-1high neutrophil infiltration in the liver. The quick release of reactive oxygen species (ROS) by the infected macrophages suggests a plausible viral initiation of NLRP3 inflammasome activation. Further experiments show that mice deficient of p47phox, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit that controls acute ROS production, present with reductions in NLRP3 inflammasome activation and subsequent IL-1β secretion during viral infection, which appears to be responsible for acquiring resilience to viral FH. Moreover, viral infected animals in deficiencies of NLRP3 and Caspase-1, two essential components of the inflammasome complex, also have reduced IL-1β induction along with ameliorated hepatitis. Our results demonstrate that the ROS/NLRP3/IL-1β axis institutes an essential signaling pathway, which is over activated and directly causes the severe liver disease during viral infection, which sheds light on development of efficient treatments for human viral FH and other severe inflammatory diseases.

  6. Extract of Kuding Tea Prevents High-Fat Diet-Induced Metabolic Disorders in C57BL/6 Mice via Liver X Receptor (LXR) β Antagonism

    PubMed Central

    Hu, Na; Sun, Qinhu; Ding, Xiaobo; Li, Guowen; Zheng, Bin; Gu, Ming; Huang, Feisi; Sun, Yin-Qiang; Zhou, Zhiqin; Lu, Xiong; Huang, Cheng; Ji, Guang

    2012-01-01

    Objective To investigate the effects of ilex kudingcha C. J. Tseng (kuding tea), a traditional beverage in China, on the metabolic disorders in C57BL/6 mice induced by high-fat diets. Design For the preventive experiment, the female C57BL/6 mice were fed with a standard diet (Chow), high-fat diet (HF), and high-fat diet mixed with 0.05% ethanol extract of kuding tea (EK) for 5 weeks. For the therapeutic experiment, the C57BL/6 mice were fed high-fat diet for 3 months, and then mice were split and EK was given with oral gavages for 2 weeks at 50 mg/day/kg. Body weight and daily food intake amounts were measured. At the end of treatment, the adipocyte images were assayed with a scanning electron microscope, and the fasting blood glucose, glucose tolerance test, serum lipid profile and lipids in the livers were analyzed. A reporter gene assay system was used to test the whether EK could act on nuclear receptor transcription factors, and the gene expression analysis was performed with a quantitative PCR assay. Results In the preventive treatment, EK blocked the body weight gain, reduced the size of the adipocytes, lowered serum triglyceride, cholesterol, LDL-cholesterol, fasting blood glucose levels and glucose tolerance in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, EK reduced the size of the white adipocytes, serum TG and fasting blood glucose levels in obese mice. With the reporter assay, EK inhibited LXRβ transactivity and mRNA expression of LXRβ target genes. Conclusion We observed that EK has both preventive and therapeutic roles in metabolic disorders in mice induced with high-fat diets. The effects appear to be mediated through the antagonism of LXRβ transactivity. Our data indicate that kuding tea is a useful dietary therapy and a potential source for the development of novel anti-obesity and lipid lowering drugs. PMID:23226556

  7. Differential role of p38 in IL-1alpha induction of MMP-9 and MMP-13 in an established liver myofibroblast cell line.

    PubMed

    Lee, Hsuan-Shu; Miau, Luo-Hwa; Chen, Chien-Hung; Chiou, Ling-Ling; Huang, Guan-Tarn; Yang, Pei-Ming; Sheu, Jin-Chuan

    2003-01-01

    Interleukin-1 (IL-1) has been implicated in the regulation of the expression of various matrix metalloproteinases (MMPs) in many mesenchymal cell types, but its role in liver myofibroblasts (MFs) has not been elucidated. A myofibroblast-like cell line, MG2, was derived from an isolate of rat hepatic stellate cells (HSCs). These cells expressed desmin, vimentin, smooth muscle alpha-actin, and fibulin-2. Using a recombinant IL-1alpha at 5 ng/ml, it was shown that IL-1alpha would upregulate, while IL-1Ra, an IL-1 receptor antagonist, would down-regulate the expression of IL-1alpha mRNA in MG2 cells, indicating the presence of an autostimulatory loop of IL-1alpha in these cells. Besides, a paracrine source of IL-1 may be produced from Kupffer cells, as we showed primarily cultured Kupffer cells responded much more remarkably than MG2 cells to lipopolysaccharide stimuli to produce both IL-1alpha and IL-1beta. Recombinant IL-1alpha upregulated the expression of both MMP-9 and -13, and the induction of MMP-13 but not MMP-9 could be inhibited by SB203580, an inhibitor of p38. Similarly, in primarily cultured human liver MFs, upregulation of MMP-1 by IL-1alpha was also shown to be inhibited by SB203580. All of these data suggested that, during liver inflammation, IL-1 produced by an autocrine model from MFs or by a paracrine model from Kupffer cells might play a crucial role in the remodeling of liver fibrosis through an either p38-dependent or p38-independent pathway to regulate the expression of various MMPs by liver MFs.

  8. IL-1 Generated Subsequent to Radiation-Induced Tissue Injury Contributes to the Pathogenesis of Radiodermatitis

    PubMed Central

    Janko, Matthew; Ontiveros, Fernando; Fitzgerald, T. J.; Deng, April; DeCicco, Maria; Rock, Kenneth L.

    2012-01-01

    Radiation injury in the skin causes radiodermatitis, a condition in which the skin becomes inflamed and the epidermis can break down. This condition causes significant morbidity and if severe it can be an independent factor that contributes to radiation mortality. Radiodermatitis is seen in some settings of radiotherapy for cancer and is also of concern as a complication post-radiation exposure from accidents or weapons, such as a “dirty bomb”. The pathogenesis of this condition is incompletely understood. Here we have developed a murine model of radiodermatitis wherein the skin is selectively injured by irradiation with high-energy electrons. Using this model we showed that the interleukin-1 (IL-1) pathway plays a significant role in the development of radiodermatitis. Mice that lack either IL-1 or the IL-1 receptor developed less inflammation and less severe pathological changes in their skin, especially at later time-points. These findings suggest that IL-1 pathway may be a potential therapeutic target for reducing the severity of radiodermatitis. PMID:22856653

  9. Understanding the mechanism of IL-1β secretion

    PubMed Central

    Lopez-Castejon, Gloria; Brough, David

    2011-01-01

    The cytokine interleukin-1β (IL-1β) is a key mediator of the inflammatory response. Essential for the host-response and resistance to pathogens, it also exacerbates damage during chronic disease and acute tissue injury. It is not surprising therefore that there is a huge level of interest in how this protein is produced and exported from cells. However, the mechanism of IL-1β release has proven to be elusive. It does not follow the conventional ER-Golgi route of secretion. A literature full of disparate observations arising from numerous experimental systems, has contributed to a complicated mix of diverse proposals. Here we summarise these observations and propose that secretion of IL-1β occurs on a continuum, dependent upon stimulus strength and the extracellular IL-1β requirement. PMID:22019906

  10. CRH receptor antagonism reverses the effect of social subordination upon central GABAA receptor binding in estradiol-treated ovariectomized female rhesus monkeys.

    PubMed

    Michopoulos, V; Embree, M; Reding, K; Sanchez, M M; Toufexis, D; Votaw, J R; Voll, R J; Goodman, M M; Rivier, J; Wilson, M E; Berga, S L

    2013-10-10

    Persistent exposure to environmental stressors causes dysregulation of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis and alters GABAA receptor (GABAAR) levels throughout the brain. Social subordination in socially housed female rhesus results in distinctive stress-related physiological and behavioral phenotypes that are dependent on the ovarian hormone estradiol (E2). In the present study, we utilized ovariectomized adult female rhesus monkeys undergoing hormone replacement with E2 to test the hypothesis that the chronic psychosocial stress of subordination alters GABAAR binding potential (GABAAR BPND) in limbic regions implicated in emotional processing including the prefrontal cortex, temporal lobe (amygdala and hippocampus), and hypothalamus. Furthermore, we tested the hypothesis that peripheral administration of a corticotropin-releasing hormone (CRH) receptor antagonist (astressin B) would reverse the alterations in GABAAR binding within these regions in subordinate females. After subjects received astressin B or saline for three consecutive days, GABAAR BPND was determined by positron emission tomography (PET) using (18)F-flumazenil as a radioligand. T1-weighted structural magnetic resonance imaging scans were also acquired for PET scan co-registration, in order to perform a region of interest analysis using the pons as a reference region. Compared to socially dominant females, subordinate females exhibited increased GABAAR BPND in the prefrontal cortex but not in the temporal lobe or the hypothalamus. Administration of astressin B eliminated the status difference in GABAAR BPND in the prefrontal cortex, suggesting that the chronic stressor of social subordination modulates GABAergic tone via effects on CRH and the LHPA axis, at least in prefrontal regions.

  11. mGlu2/3 agonist-induced hyperthermia: an in vivo assay for detection of mGlu2/3 receptor antagonism and its relation to antidepressant-like efficacy in mice.

    PubMed

    Gleason, S D; Li, X; Smith, I A; Ephlin, J D; Wang, X-S; Heinz, B A; Carter, J H; Baez, M; Yu, J; Bender, D M; Witkin, J M

    2013-08-01

    An assay to detect the on-target effects of mGlu2/3 receptor antagonists in vivo would be valuable in guiding dosing regimens for the exploration of biological effects of potential therapeutic import. Multiple approaches involving blockade of mGlu2/3 receptor agoinist-driven behavioral effects in mice and rats were investigated. Most of these methods failed to provide a useful method of detection of antagonists in vivo (e.g., locomotor activity). In contrast, the mGlu2/3 receptor agonist LY379268 produced dose-dependent increases in body temperature of mice. The hyperthermic effects of LY379268 was abolished in mGlu2 and in mGlu2/3 receptor null mice but not in mGlu3 null mice. Hyperthermia was not produced by an mGlu8 receptor agonist. Agonist-induced hyperthermia was prevented in a dose-dependent manner by structurally-distinct mGlu2/3 receptor antagonists. The blockade was stereo-specific. Moreover, this biological readout was responsive to both orthosteric and to negative allosteric modulators of mGlu2/3 receptors. Antagonism of agonist-induced hyperthermia predicted antidepressant-like efficacy in the mouse forced swim test. As with the hyperthermic response, the antidepressant-like effects of mGlu2/3 receptor antagonists were shown to be due to mGlu2 and not to mGlu3 or mGlu8 receptors through the use of receptor knock-out mice. The ability to rapidly assess on-target activity of mGlu2/3 receptor antagonists enables determination of parameters for setting efficacy doses in vivo. In turn, efficacy-related data in the preclinical laboratory can help to set expectations of therapeutic potential and dosing in humans. PMID:23574174

  12. Targeting inflammasome/IL-1 pathways for cancer immunotherapy

    PubMed Central

    Guo, Beichu; Fu, Shunjun; Zhang, Jinyu; Liu, Bei; Li, Zihai

    2016-01-01

    The inflammatory microenvironment has been shown to play important roles in various stages of tumor development including initiation, growth, and metastasis. The inflammasome is a critical innate immune pathway for the production of active IL-1β, a potent inflammatory cytokine. Although inflammasomes are essential for host defense against pathogens and contribute to autoimmune diseases, their role in tumor progression remains controversial. Here, our results demonstrate that the inflammasome and IL-1β pathway promoted tumor growth and metastasis in animal and human breast cancer models. We found that tumor progression was associated with the activation of inflammasome and elevated levels of IL-1β at primary and metastatic sites. Mice deficient for inflammasome components exhibited significantly reduced tumor growth and lung metastasis. Furthermore, inflammasome activation promoted the infiltration of myeloid cells such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) into tumor microenvironments. Importantly, blocking IL-1R with IL-1R antagonist (IL-Ra) inhibited tumor growth and metastasis accompanied by decreased myeloid cell accumulation. Our results suggest that targeting the inflammasome/IL-1 pathway in tumor microenvironments may provide a novel approach for the treatment of cancer. PMID:27786298

  13. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β

    PubMed Central

    Pomerantz, Benjamin J.; Reznikov, Leonid L.; Harken, Alden H.; Dinarello, Charles A.

    2001-01-01

    The proinflammatory cytokine IL-18 was investigated for its role in human myocardial function. An ischemia/reperfusion (I/R) model of suprafused human atrial myocardium was used to assess myocardial contractile force. Addition of IL-18 binding protein (IL-18BP), the constitutive inhibitor of IL-18 activity, to the perifusate during and after I/R resulted in improved contractile function after I/R from 35% of control to 76% with IL-18BP. IL-18BP treatment also preserved intracellular tissue creatine kinase levels (by 420%). Steady-state mRNA levels for IL-18 were elevated after I/R, and the concentration of IL-18 in myocardial homogenates was increased (control, 5.8 pg/mg vs. I/R, 26 pg/mg; P < 0.01). Active IL-18 requires cleavage of its precursor form by the IL-1β-converting enzyme (caspase 1); inhibition of caspase 1 also attenuated the depression in contractile force after I/R (from 35% of control to 75.8% in treated atrial muscle; P < 0.01). Because caspase 1 also cleaves the precursor IL-1β, IL-1 receptor blockade was accomplished by using the IL-1 receptor antagonist. IL-1 receptor antagonist added to the perifusate also resulted in a reduction of ischemia-induced contractile dysfunction. These studies demonstrate that endogenous IL-18 and IL-1β play a significant role in I/R-induced human myocardial injury and that inhibition of caspase 1 reduces the processing of endogenous precursors of IL-18 and IL-1β and thereby prevents ischemia-induced myocardial dysfunction. PMID:11226333

  14. Atranorin and lecanoric acid antagonize TCDD-induced xenobiotic response element-driven activity, but not xenobiotic response element-independent activity.

    PubMed

    Nakashima, Ken-Ichi; Tanabe, Hiroki; Fujii-Kuriyama, Yoshiaki; Hayashi, Hidetoshi; Inoue, Makoto

    2016-07-01

    Lichens are symbiotic organisms that consist of fungi and photosynthetic symbionts (algae and/or cyanobacteria). Previous studies of their constituents suggested lichens produce many kinds of aromatic secondary metabolites, such as depsides, quinones, and dibenzofurans. In this study, we evaluated the aryl hydrocarbon receptor (AhR) antagonistic activity of 17 lichen substances and demonstrated that atranorin (1) and lecanoric acid (2), isolated from Parmotrema tinctorum Hale, showed an inhibitory effect on luciferase activity increased by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), using an XRE-driven pX4TK-Luc reporter gene assay. In addition, CYP1A1 mRNA and protein levels increased by TCDD were also suppressed by 1 and 2. Conversely, neither 1 nor 2 antagonized the suppressive effect of TCDD on interleukin (IL)-1β-induced acute-phase response (APR) gene expression. Thus, we concluded that 1 and 2 were selective AhR modulators that antagonize XRE-dependent activity, but not XRE-independent activity. However, 1 has different characteristics to 2 in that 1 alone showed a suppressive effect on IL-1β-induced APR gene expression in a similar fashion to TCDD. PMID:26979434

  15. C/EBPβ regulates multiple IL-1β-induced human astrocyte inflammatory genes

    PubMed Central

    2012-01-01

    Background CCAAT enhancer-binding protein (C/EBP)β regulates gene expression in multiple organ systems and cell types, including astrocytes in the central nervous system (CNS). Inflammatory stimuli, interleukin (IL)-1β, tumor necrosis factor-α, human immunodeficiency virus (HIV)-1 and lipopolysaccharide induce astrocyte C/EBPβ expression. C/EBPβ is detectable in brains of Alzheimer’s disease (AD), Parkinson’s disease (PD) and HIV-1-associated dementia (HAD) patients, yet little is known about how C/EBPβ contributes to astrocyte gene regulation during neuroinflammation. Methods The expression of 92 human inflammation genes was compared between IL-1β-treated primary human astrocytes and astrocytes transfected with C/EBPβ-specific small interfering (si)RNA prior to IL-1β treatment for 12 h. Transcripts altered by > two-fold compared to control were subjected to one-way analysis of variance and Newman-Keuls post-test for multiple comparisons. Expression of two genes, cyclooxygenase-2 (COX-2) and bradykinin receptor B2 (BDKRB2) was further confirmed in additional human astrocyte donors. Astrocytes were treated with mitogen-activated protein kinase-selective inhibitors, then with IL-1β for 12 or 24 h followed by COX-2 and BDKRB2, expression analyses. Results IL-1β altered expression of 29 of 92 human inflammation genes by at least two-fold in primary human astrocytes in 12 h. C/EBPβ knockdown affected expression of 17 out of 29 IL-1β-regulated genes by > 25%. Two genes relevant to neuroinflammation, COX-2 and BDKRB2, were robustly decreased and increased, respectively, in response to C/EBPβ knockdown, and expression was confirmed in two additional donors. COX-2 and BDKRB2 mRNA remained altered in siRNA-transfected astrocytes at 12, 24 or 72 h. Inhibiting p38 kinase (p38K) activation blocked IL-1β-induced astrocyte COX-2 mRNA and protein expression, but not IL-1β-induced astrocyte BDKRB2 expression. Inhibiting extracellular

  16. Antimicrobial peptides initiate IL-1 beta posttranslational processing: a novel role beyond innate immunity.

    PubMed

    Perregaux, David G; Bhavsar, Kanan; Contillo, Len; Shi, Jishu; Gabel, Christopher A

    2002-03-15

    Human monocytes stimulated with LPS produce large quantities of prointerleukin-1beta, but little of this cytokine product is released extracellularly as the mature biologically active species. To demonstrate efficient proteolytic cleavage and export, cytokine-producing cells require a secondary effector stimulus. In an attempt to identify agents that may serve as initiators of IL-1beta posttranslational processing in vivo, LPS-activated human monocytes were treated with several individual antimicrobial peptides. Two peptides derived from porcine neutrophils, protegrin (PTG)-1 and PTG-3, promoted rapid and efficient release of mature IL-1beta. The PTG-mediated response engaged a mechanism similar to that initiated by extracellular ATP acting via the P2X(7) receptor. Thus, both processes were disrupted by a caspase inhibitor, both were sensitive to ethacrynic acid and CP-424,174, two pharmacological agents that suppress posttranslational processing, and both were negated by elevation of extracellular potassium. Moreover, the PTGs, like ATP, promoted a dramatic change in monocyte morphology and a loss of membrane latency. The PTG response was concentration dependent and was influenced profoundly by components within the culture medium. In contrast, porcine neutrophil antimicrobial peptides PR-26 and PR-39 did not initiate IL-1beta posttranslational processing. The human defensin HNP-1 and the frog peptide magainin 1 elicited export of 17-kDa IL-1beta, but these agents were less efficient than PTGs. As a result of this ability to promote release of potent proinflammatory cytokines such as IL-1beta, select antimicrobial peptides may possess important immunomodulatory functions that extend beyond innate immunity.

  17. Release of IL-1 β triggered by Milan summer PM10: molecular pathways involved in the cytokine release.

    PubMed

    Bengalli, Rossella; Molteni, Elisabetta; Longhin, Eleonora; Refsnes, Magne; Camatini, Marina; Gualtieri, Maurizio

    2013-01-01

    Particulate matter (PM) exposure is related to pulmonary and cardiovascular diseases, with increased inflammatory status. The release of the proinflammatory interleukin- (IL-) 1β, is controlled by a dual pathway, the formation of inactive pro-IL-1β, through Toll-like receptors (TLRs) activation, and its cleavage by NLRP3 inflammasome. THP-1-derived macrophages were exposed for 6 h to 2.5  μg/cm(2) of Milan PM10, and the potential to promote IL-1β release by binding TLRs and activating NLRP3 has been examined. Summer PM10, induced a marked IL-1β response in the absence of LPS priming (50-fold increase compared to unexposed cells), which was reduced by caspase-1 inhibition (91% of inhibition respect summer PM10-treated cells) and by TLR-2 and TLR-4 inhibitors (66% and 53% of inhibition, resp.). Furthermore, summer PM10 increased the number of early endosomes, and oxidative stress inhibition nearly abolished PM10-induced IL-1β response (90% of inhibition). These findings suggest that summer PM10 contains constituents both related to the activation of membrane TLRs and activation of the inflammasome NLPR3 and that TLRs activation is of pivotal importance for the magnitude of the response. ROS formation seems important for PM10-induced IL-1β response, but further investigations are needed to elucidate the molecular pathway by which this effect is mediated. PMID:23509682

  18. Postnatal administration of IL-1Ra exerts neuroprotective effects following perinatal inflammation and/or hypoxic-ischemic injuries

    PubMed Central

    Girard, Sylvie; Sébire, Hugues; Brochu, Marie-Elsa; Briota, Sinziana; Sarret, Philippe; Sébire, Guillaume

    2016-01-01

    New therapeutic strategies are needed to protect neonates, especially premature newborns, against brain injury and associated neurobehavioral deficits. The role of pro-inflammatory cytokines, especially IL-1β, in the pathophysiological pathway leading to neonatal brain damage is increasingly recognized and represents an attractive therapeutic target. We investigated the therapeutic potential of postnatal systemic administration of the interleukin (IL)-1 receptor antagonist (IL-1Ra) in an animal model of perinatal brain injury using the insults most common to human neonates, i.e. prenatal exposure to inflammation and/or postnatal hypoxia-ischaemia (HI). We found that postnatal administration of IL-1Ra preserved motor function and exploratory behavior after either prenatal exposure to inflammatory agent lipopolysaccharide (LPS) or postnatal HI insult. The deleterious effect of combined prenatal LPS and postnatal HI on brain development was also alleviated by administration of IL-1Ra, as seen by the protected neural stem cell population, prevention of myelin loss in the internal capsule, decreased gliosis, and decreased neurobehavioral impairment. This study showed the distinct pattern of functional deficits induced by prenatal inflammation as compared to postnatal HI and the therapeutic potential of IL-1Ra administration against neonatal brain injury. Furthermore, our results highlight the potential for postnatal treatment of prenatal inflammatory stressors. PMID:22982341

  19. Uric Acid Induces Trophoblast Il-1β Production Via The Inflammasome: Implications For The Pathogenesis Of Preeclampsia

    PubMed Central

    Mulla, Melissa J.; Myrtolli, Kledia; Potter, Julie; Boeras, Crina; Kavathas, Paula B.; Sfakianaki, Anna K.; Tadesse, Serkelem; Norwitz, Errol R.; Guller, Seth; Abrahams, Vikki M.

    2010-01-01

    Problem Preeclampsia is associated with hyperuricemia, which correlates with the disease severity. Levels of circulating uric acid increase before the clinical manifestations, suggesting they may be causally related. Uric acid, or monosodium urate (MSU), activates the Nod-like receptor, Nalp3, leading to inflammasome activation and IL-1β processing. Since preeclampsia is associated with placental immune/inflammatory dysregulation, we sought to determine in the trophoblast, the presence of the Nalp3 inflammasome, and the effect of MSU on its activation. Method of Study Isolated first and third trimester trophoblast were assessed for expression of the inflammasome components, Nalp1, Nalp3 and ASC. First trimester trophoblast cells were incubated with or without MSU, after which, IL-1β secretion and processing and caspase-1 activation was determined. Results Trophoblast cells expressed Nalp1, Nalp3 and ASC under basal conditions. Following incubation with MSU, first trimester trophoblast IL-1β secretion was upregulated. This correlated with increased expression levels of active IL-1β and active caspase-1. ASC knockdown reduced MSU-induced IL-1β secretion. Conclusion These findings demonstrate that uric acid activates the inflammasome in the trophoblast, leading to IL-1β production. This may provide a novel mechanism for the induction of inflammation at the maternal-fetal interface leading to placental dysfunction and adverse pregnancy outcome, including preeclampsia. PMID:21352397

  20. IL1RL1 asthma risk variants regulate airway type 2 inflammation

    PubMed Central

    Gordon, Erin D.; Palandra, Joe; Wesolowska-Andersen, Agata; Ringel, Lando; Rios, Cydney L.; Lachowicz-Scroggins, Marrah E.; Sharp, Louis Z.; Everman, Jamie L.; MacLeod, Hannah J.; Lee, Jae W.; Mason, Robert J.; Matthay, Michael A.; Sheldon, Richard T.; Peters, Michael C.; Nocka, Karl H.; Fahy, John V.; Seibold, Max A.

    2016-01-01

    Genome-wide association studies of asthma have identified genetic variants in the IL1RL1 gene, but the molecular mechanisms conferring risk are unknown. IL1RL1 encodes the ST2 receptor (ST2L) for IL-33 and an inhibitory decoy receptor (sST2). IL-33 promotes type 2 inflammation, which is present in some but not all asthmatics. We find that two single nucleotide polymorphisms (SNPs) in IL1RL1 — rs1420101 and rs11685480 — are strongly associated with plasma sST2 levels, though neither is an expression quantitative trait locus (eQTL) in whole blood. Rather, rs1420101 and rs11685480 mark eQTLs in airway epithelial cells and distal lung parenchyma, respectively. We find that the genetically determined plasma sST2 reservoir, derived from the lung, neutralizes IL-33 activity, and these eQTL SNPs additively increase the risk of airway type 2 inflammation among asthmatics. These risk variants define a population of asthmatics at risk of IL-33–driven type 2 inflammation. PMID:27699235

  1. IL1RL1 asthma risk variants regulate airway type 2 inflammation

    PubMed Central

    Gordon, Erin D.; Palandra, Joe; Wesolowska-Andersen, Agata; Ringel, Lando; Rios, Cydney L.; Lachowicz-Scroggins, Marrah E.; Sharp, Louis Z.; Everman, Jamie L.; MacLeod, Hannah J.; Lee, Jae W.; Mason, Robert J.; Matthay, Michael A.; Sheldon, Richard T.; Peters, Michael C.; Nocka, Karl H.; Fahy, John V.; Seibold, Max A.

    2016-01-01

    Genome-wide association studies of asthma have identified genetic variants in the IL1RL1 gene, but the molecular mechanisms conferring risk are unknown. IL1RL1 encodes the ST2 receptor (ST2L) for IL-33 and an inhibitory decoy receptor (sST2). IL-33 promotes type 2 inflammation, which is present in some but not all asthmatics. We find that two single nucleotide polymorphisms (SNPs) in IL1RL1 — rs1420101 and rs11685480 — are strongly associated with plasma sST2 levels, though neither is an expression quantitative trait locus (eQTL) in whole blood. Rather, rs1420101 and rs11685480 mark eQTLs in airway epithelial cells and distal lung parenchyma, respectively. We find that the genetically determined plasma sST2 reservoir, derived from the lung, neutralizes IL-33 activity, and these eQTL SNPs additively increase the risk of airway type 2 inflammation among asthmatics. These risk variants define a population of asthmatics at risk of IL-33–driven type 2 inflammation.

  2. TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures.

    PubMed

    Tarantino, Nadine; Tinevez, Jean-Yves; Crowell, Elizabeth Faris; Boisson, Bertrand; Henriques, Ricardo; Mhlanga, Musa; Agou, Fabrice; Israël, Alain; Laplantine, Emmanuel

    2014-01-20

    Nuclear factor κB (NF-κB) essential modulator (NEMO), a regulatory component of the IκB kinase (IKK) complex, controls NF-κB activation through its interaction with ubiquitin chains. We show here that stimulation with interleukin-1 (IL-1) and TNF induces a rapid and transient recruitment of NEMO into punctate structures that are anchored at the cell periphery. These structures are enriched in activated IKK kinases and ubiquitinated NEMO molecules, which suggests that they serve as organizing centers for the activation of NF-κB. These NEMO-containing structures colocalize with activated TNF receptors but not with activated IL-1 receptors. We investigated the involvement of nondegradative ubiquitination in the formation of these structures, using cells deficient in K63 ubiquitin chains or linear ubiquitin chain assembly complex (LUBAC)-mediated linear ubiquitination. Our results indicate that, unlike TNF, IL-1 requires K63-linked and linear ubiquitin chains to recruit NEMO into higher-order complexes. Thus, different mechanisms are involved in the recruitment of NEMO into supramolecular complexes, which appear to be essential for NF-κB activation. PMID:24446482

  3. The type I interleukin-1 receptor mediates fever in the rat as shown by interleukin-1 receptor subtype selective ligands.

    PubMed

    Malinowsky, D; Chai, Z; Bristulf, J; Simoncsits, A; Bartfai, T

    1995-12-01

    The interleukin-1 (IL-1) system possesses two distinct receptors (type I and type II) which, together with the accessory protein, mediate a multitude of responses to IL-1 alpha and IL-1 beta, including fever. So far, no receptor subtype-specific ligands have been described. Since both types of IL-1 receptors occur in the thermoregulatory areas it was unclear which IL-1 receptor type mediates fever. We report here that for a series of deletion mutants of human recombinant IL-1 beta (hrIL-1 beta), the affinity of these ligands for the type I IL-1 receptor correlates with their efficacy to evoke the fever response (hrIL-1 beta > des-SND52-54 > des-QGE48-50 > des-I56). Thus, the results suggest that agonist occupancy of the type I IL-1 receptor is essential for IL-1 beta-mediated fever.

  4. Differential modulation of IL-1-induced endothelial adhesion molecules and transendothelial migration of granulocytes by G-CSF.

    PubMed

    Eissner, G; Lindner, H; Reisbach, G; Klauke, I; Holler, E

    1997-06-01

    Granulocyte colony stimulating factor (G-CSF) is widely used for mobilization of haemopoietic stem cells into the peripheral blood. However, little is known about the mechanisms involved in mobilization and the immune modulatory effects of this growth factor. In this report we show that G-CSF down-regulated intercellular adhesion molecule 1 (ICAM-1) induced by Interleukin-1 (IL-1) on human endothelial cells. Interestingly, the G-CSF-mediated down-modulation of IL-1-induced ICAM-1 appeared to be biphasic. In pharmacological concentrations (> 300 ng/ml), and in dose ranges of plasma G-CSF levels above that of nonfebrile healthy individuals (30 pg/ml), a significant decrease in surface ICAM-1 could be observed. This could be explained, at least in part, by an increased autocrine G-CSF production by endothelial cells in response to IL-1 and exogenous G-CSF. In contrast to ICAM-1, IL-1-triggered VCAM-1 expression was superinduced by G-CSF with the optimal concentration of 30 pg/ml. To evaluate the functional significance of these findings, 51Cr adhesion assays with peripheral blood mononuclear cells (PBMC) or granulocytes known to lack the VCAM-1 counter-receptor very late antigen 4 (VLA-4) and IL-1-stimulated endothelial cells, in the presence or absence of G-CSF, were performed. G-CSF could not inhibit the IL-1-induced adhesion of PBMC to endothelial cells, which may be due to the differential adhesion molecule modulation. In contrast, granulocyte adhesion induced by IL-1 could effectively be blocked by co-incubation with G-CSF. Finally, G-CSF also inhibited transendothelial migration of granulocytes through IL-1-activated endothelial cells in a concentration-dependent manner.

  5. IL-18 regulates IL-1β-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1

    PubMed Central

    Vidal-Vanaclocha, Fernando; Fantuzzi, Giamila; Mendoza, Lorea; Fuentes, Angela M.; Anasagasti, Miren J.; Martín, Javier; Carrascal, Teresa; Walsh, Patrick; Reznikov, Leonid L.; Kim, Soo-Hyun; Novick, Daniela; Rubinstein, Menachem; Dinarello, Charles A.

    2000-01-01

    Proinflammatory cytokines, including IL-1β and tumor necrosis factor-α (TNF-α), promote cancer cell adhesion and liver metastases by up-regulating the expression of vascular cell adhesion molecule-1 (VCAM-1) on hepatic sinusoidal endothelium (HSE). In this study, hepatic metastasis after intrasplenically injected mouse B16 melanoma (B16M) cells was reduced 84–95% in mice with null mutations for either IL-1β or the IL-1β-converting enzyme (ICE, caspase-1) compared with wild-type mice. On day 12, 47% of wild-type mice were dead compared with 19% of either IL-1β or ICE-deficient mice. In vitro, conditioned medium from B16M cells (B16M-CM) induced the release of TNF-α and IL-1β from cultures of primary murine HSE. The effect of B16M-CM on HSE resulted in increased numbers of B16M cells adhering to HSE, which was completely abrogated by a specific inhibitor of ICE, anti-IL-18 or IL-18-binding protein. Exogenous IL-18 added to HSE also increased the number of adhering melanoma cells; however, this was not affected by IL-1 receptor blockade or TNF neutralization but rather by anti-VCAM-1. These results demonstrate a role for IL-1β and IL-18 in the development of hepatic metastases of B16M in vivo. In vitro, soluble products from B16M cells stimulate HSE to sequentially release TNF-α, IL-1β, and IL-18. The IL-18 cytokine increases expression of VCAM-1 and the adherence of melanoma cells. PMID:10639148

  6. Febrile response to tissue inflammation involves both peripheral and brain IL-1 and TNF-alpha in the rat.

    PubMed

    Luheshi, G N; Stefferl, A; Turnbull, A V; Dascombe, M J; Brouwer, S; Hopkins, S J; Rothwell, N J

    1997-03-01

    We investigated the role and interaction between tumor necrosis factor (TNF)-alpha, interleukin (IL)-1, and IL-6 in the development of fever and their involvement in brain and systemic pathways in response to localized tissue inflammation caused by injection of turpentine (TPS) in the rat. Intramuscular injection of 10 microl TPS caused significant increases in body temperature, of up to 2 degrees C, compared with saline-treated animals. Fevers were maximal 7-8 h after injection and were preceded by significant increases in plasma bioactive IL-6. No changes in circulating bioactive IL-1 or TNF-alpha were detected. Systemic injection of IL-1 receptor antagonist (IL-1ra, 2 mg/kg i.p.) or anti-TNF-alpha antiserum (0.4 ml i.v.) almost completely abolished the febrile responses to TPS over 8 h and markedly inhibited the rise in plasma IL-6 bioactivity measured 6 h after TPS. To test the involvement of brain cytokines, anti-TNF-alpha antiserum and IL-1ra were injected intracerebroventricularly. Injections of anti-TNF-alpha antiserum (3 microl/rat i.c.v.) or IL-1ra (400 microg/kg i.c.v.) significantly (P < 0.01 and P < 0.05, respectively) inhibited fever induced by TPS. These data suggest that both localized peripheral and brain IL-1 and TNF-alpha are involved directly in the pyrogenic response to inflammation. The results indicate that, in the periphery, IL-1 and TNF-alpha cause increased production of IL-6, the most likely candidate as a circulating endogenous pyrogen.

  7. From CRP to IL-6 to IL-1: Moving Upstream To Identify Novel Targets for Atheroprotection

    PubMed Central

    Ridker, Paul M

    2016-01-01

    Plasma levels of the inflammatory biomarker high sensitivity C-reactive protein (hsCRP) predict vascular risk with an effect estimate as large as that of total or HDL cholesterol. Further, randomized trial data addressing hsCRP have been central to understanding the anti-inflammatory effects of statin therapy and have consistently demonstrated on-treatment hsCRP levels to be as powerful a predictor of residual cardiovascular risk as on-treatment levels of LDL cholesterol. Yet, while hsCRP is clinically useful as a biomarker for risk prediction, most mechanistic studies suggest that CRP itself is unlikely to be a target for intervention. Moving upstream in the inflammatory cascade from CRP to IL-6 to IL-1 provides novel therapeutic opportunities for atheroprotection that focus on the central IL-6 signaling system and ultimately on inhibition of the IL-1β producing NLRP3 inflammasome. Cholesterol crystals, neutrophil extracellular traps (NETs), atheroprone flow, and local tissue hypoxia activate the NLRP3 inflammasome. As such, a unifying concept of hsCRP as a downstream surrogate biomarker upstream IL-1β activity has emerged. From a therapeutic perspective, small ischemia studies show reductions in acute phase hsCRP production with the IL-1 receptor antagonist anakinra and the IL-6 receptor blocker tocilizumab. A phase IIb study conducted among diabetic patients at high vascular risk indicates that canakinumab, a human monoclonal antibody that targets IL-1β, markedly reduces plasma levels of IL-6, hsCRP, and fibrinogen with no change in atherogenic lipids. Canakinumab in now being tested as a method to prevent recurrent cardiovascular events in a randomized trial of 10,065 post-myocardial infarction patients with elevated hsCRP that is fully enrolled and due to complete in 2017. Clinical trials employing alternative anti-inflammatory agents active against the CRP/IL-6/IL-1 axis including low dose methotrexate and colchicine are being explored. If successful

  8. Inflammation and pyroptosis mediate muscle expansion in an interleukin-1β (IL-1β)-dependent manner.

    PubMed

    Haldar, Subhash; Dru, Christopher; Choudhury, Diptiman; Mishra, Rajeev; Fernandez, Ana; Biondi, Shea; Liu, Zhenqiu; Shimada, Kenichi; Arditi, Moshe; Bhowmick, Neil A

    2015-03-01

    Muscle inflammation is often associated with its expansion. Bladder smooth muscle inflammation-induced cell death is accompanied by hyperplasia and hypertrophy as the primary cause for poor bladder function. In mice, DNA damage initiated by chemotherapeutic drug cyclophosphamide activated caspase 1 through the formation of the NLRP3 complex resulting in detrusor hyperplasia. A cyclophosphamide metabolite, acrolein, caused global DNA methylation and accumulation of DNA damage in a mouse model of bladder inflammation and in cultured bladder muscle cells. In correlation, global DNA methylation and NLRP3 expression was up-regulated in human chronic bladder inflammatory tissues. The epigenetic silencing of DNA damage repair gene, Ogg1, could be reversed by the use of demethylating agents. In mice, demethylating agents reversed cyclophosphamide-induced bladder inflammation and detrusor expansion. The transgenic knock-out of Ogg1 in as few as 10% of the detrusor cells tripled the proliferation of the remaining wild type counterparts in an in vitro co-culture titration experiment. Antagonizing IL-1β with Anakinra, a rheumatoid arthritis therapeutic, prevented detrusor proliferation in conditioned media experiments as well as in a mouse model of bladder inflammation. Radiation treatment validated the role of DNA damage in the NLRP3-associated caspase 1-mediated IL-1β secretory phenotype. A protein array analysis identified IGF1 to be downstream of IL-1β signaling. IL-1β-induced detrusor proliferation and hypertrophy could be reversed with the use of Anakinra as well as an IGF1 neutralizing antibody. IL-1β antagonists in current clinical practice can exploit the revealed mechanism for DNA damage-mediated muscular expansion. PMID:25596528

  9. Modeling IL-1 induced degradation of articular cartilage.

    PubMed

    Kar, Saptarshi; Smith, David W; Gardiner, Bruce S; Li, Yang; Wang, Yang; Grodzinsky, Alan J

    2016-03-15

    In this study, we develop a computational model to simulate the in vitro biochemical degradation of articular cartilage explants sourced from the femoropatellar grooves of bovine calves. Cartilage explants were incubated in culture medium with and without the inflammatory cytokine IL-1α. The spatio-temporal evolution of the cartilage explant's extracellular matrix components is modelled. Key variables in the model include chondrocytes, aggrecan, collagen, aggrecanase, collagenase and IL-1α. The model is first calibrated for aggrecan homeostasis of cartilage in vivo, then for data on (explant) controls, and finally for data on the IL-1α driven proteolysis of aggrecan and collagen over a 4-week period. The model was found to fit the experimental data best when: (i) chondrocytes continue to synthesize aggrecan during the cytokine challenge, (ii) a one to two day delay is introduced between the addition of IL-1α to the culture medium and subsequent aggrecanolysis, (iii) collagen degradation does not commence until the total concentration of aggrecan (i.e. both intact and degraded aggrecan) at any specific location within the explant becomes ≤ 1.5 mg/ml and (iv) degraded aggrecan formed due to the IL-1α induced proteolysis of intact aggrecan protects the collagen network while collagen degrades in a two-step process which, together, significantly modulate the collagen network degradation. Under simulated in vivo conditions, the model predicts increased aggrecan turnover rates in the presence of synovial IL-1α, consistent with experimental observations. Such models may help to infer the course of events in vivo following traumatic joint injury, and may also prove useful in quantitatively evaluating the efficiency of various therapeutic molecules that could be employed to avoid or modify the course of cartilage disease states. PMID:26874194

  10. Production of interleukin-1 (IL-1) and IL-1 inhibitor by human monocytes exposed to dengue virus.

    PubMed

    Chang, D M; Shaio, M F

    1994-10-01

    Dengue hemorrhagic fever-dengue shock syndrome, the most severe manifestation of an acute dengue virus (DV) infection, is endemic in Southeast Asia. Antibody-dependent enhancement of DV growth in mononuclear phagocytes is thought to be the mechanism whereby preexisting dengue antibodies confer excess risk for this outcome. Interleukin-1 (IL-1) may play an important role in the pathogenetic mechanisms that cause dengue fever and shock. It was shown that both IL-1 and tumor necrosis factor-alpha are secreted from monocytes within 4 h after DV infection. However, there was no increase in IL-1 secretion by virus-stimulated monocytes from dengue fever patients compared with healthy controls. Significant amounts of IL-1 were secreted by DV-infected monocytes in the presence of aggregated immunoglobulin or immune complexes. In addition, a new 600-kDa IL-1 inhibitor from the supernatants of DV-infected monocytes was identified. This inhibitor may cause immunosuppression and influence the process of DV infection.

  11. Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages

    PubMed Central

    2012-01-01

    Background Respirable crystalline silica (silicon dioxide; SiO2, quartz) particles are known to induce chronic inflammation and lung disease upon long-term inhalation, whereas non-crystalline (amorphous) SiO2 particles in the submicrometre range are regarded as less harmful. Several reports have demonstrated that crystalline, but also non-crystalline silica particles induce IL-1β release from macrophages via the NALP3-inflammasome complex (caspase-1, ASC and NALP3) in the presence of lipopolysaccharide (LPS) from bacteria. Our aim was to study the potential of different non-crystalline SiO2 particles from the nano- to submicro-sized range to activate IL-1β responses in LPS-primed RAW264.7 macrophages and primary rat lung macrophages. The role of the NALP3-inflammasome and up-stream mechanisms was further explored in RAW264.7 cells. Results In the present study, we have shown that 6 h exposure to non-crystalline SiO2 particles in nano- (SiNPs, 5–20 nm, 50 nm) and submicro-sizes induced strong IL-1β responses in LPS-primed mouse macrophages (RAW264.7) and primary rat lung macrophages. The primary lung macrophages were more sensitive to Si-exposure than the RAW-macrophages, and responded more strongly. In the lung macrophages, crystalline silica (MinUsil 5) induced IL-1β release more potently than the non-crystalline Si50 and Si500, when adjusted to surface area. This difference was much less pronounced versus fumed SiNPs. The caspase-1 inhibitor zYVAD and RNA silencing of the NALP3 receptor reduced the particle-induced IL-1β release in the RAW264.7 macrophages. Furthermore, inhibitors of phagocytosis, endosomal acidification, and cathepsin B activity reduced the IL-1β responses to the different particles to a similar extent. Conclusions In conclusion, non-crystalline silica particles in the nano- and submicro-size ranges seemed to induce IL-1β release from LPS-primed RAW264.7 macrophages via similar mechanisms as crystalline silica, involving particle

  12. The role IL-1 in tumor-mediated angiogenesis

    PubMed Central

    Voronov, Elena; Carmi, Yaron; Apte, Ron N.

    2014-01-01

    Tumor angiogenesis is one of the hallmarks of tumor progression and is essential for invasiveness and metastasis. Myeloid inflammatory cells, such as immature myeloid precursor cells, also termed myeloid-derived suppressor cells (MDSCs), neutrophils, and monocytes/macrophages, are recruited to the tumor microenvironment by factors released by the malignant cells that are subsequently “educated” in situ to acquire a pro-invasive, pro-angiogenic, and immunosuppressive phenotype. The proximity of myeloid cells to endothelial cells (ECs) lining blood vessels suggests that they play an important role in the angiogenic response, possibly by secreting a network of cytokines/chemokines and inflammatory mediators, as well as via activation of ECs for proliferation and secretion of pro-angiogenic factors. Interleukin-1 (IL-1) is an “alarm,” upstream, pro-inflammatory cytokine that is generated primarily by myeloid cells. IL-1 initiates and propagates inflammation, mainly by inducing a local cytokine network and enhancing inflammatory cell infiltration to affected sites and by augmenting adhesion molecule expression on ECs and leukocytes. Pro-inflammatory mediators were recently shown to play an important role in tumor-mediated angiogenesis and blocking their function may suppress tumor progression. In this review, we summarize the interactions between IL-1 and other pro-angiogenic factors during normal and pathological conditions. In addition, the feasibility of IL-1 neutralization approaches for anti-cancer therapy is discussed. PMID:24734023

  13. IL6 and IL1B polymorphisms are associated with fat mass in older men: the MrOS Study Sweden.

    PubMed

    Strandberg, Louise; Mellström, Dan; Ljunggren, Osten; Grundberg, Elin; Karlsson, Magnus K; Holmberg, Anna H; Orwoll, Eric S; Eriksson, Anna L; Svedberg, Johan; Bengtsson, Magnus; Ohlsson, Claes; Jansson, John-Olov

    2008-03-01

    There is growing evidence that immune functions are linked to the regulation of body fat. Our studies of knockout mice indicate that both endogenous interleukin (IL)-6 and IL-1 can suppress mature-onset obesity. We now investigated whether four common polymorphisms of the IL6 and IL1 systems are associated with the fat mass measured with dual-energy X-ray absorptiometry (DXA) in elderly men (n = 3,014). The study subjects were from the Swedish part of the MrOS multicenter population study and 69-81 years of age. The IL6 -174 G>C (Minor allele frequency (MAF) = 48%) gene promoter polymorphism was associated with the primary outcome total fat mass (P = 0.006) and regional fat masses, but not with lean body mass. The IL1B -31T>C (MAF = 34%) polymorphism was also associated with total fat (P = 0.007) and regional fat masses, but not lean body mass. The IL-1 receptor antagonist (IL-1ra) gene (IL1RN) +2018 T>C (MAF = 27%) polymorphism (in linkage disequilibrium (LD) with a well-studied variable number tandem repeat of 86 base pair (bp)) and IL1B +3953 C>T (MAF = 26%) polymorphism were not associated with total fat mass. In conclusion, the IL-1 and IL-6 systems, shown to suppress mature-onset obesity in experimental animals, contain gene polymorphisms that are associated with fat, but not lean, mass in elderly men.

  14. Mutual amplification of HNF4α and IL-1R1 composes an inflammatory circuit in Helicobacter pylori associated gastric carcinogenesis

    PubMed Central

    Ma, Lin; Zeng, Jiping; Guo, Qing; Liang, Xiuming; Shen, Li; Li, Shuyan; Sun, Yundong; Li, Wenjuan; Liu, Shili; Yu, Han; Chen, Chunyan; Jia, Jihui

    2016-01-01

    Helicobacter pylori (Hp) is an environmental inducer of gastritis and gastric cancer (GC). The immune response to Hp and the associated changes in somatic gene expression are key determinants governing the transition from gastritis to GC. We show that hepatocyte nuclear factor 4α (HNF4α) is upregulated by Hp infection via NF-κB signaling and that its protein and mRNA levels are elevated in GC. HNF4α in turn stimulates expression of interleukin-1 receptor 1(IL-1R1), which amplifies the inflammatory response evoked by its ligand IL-1β. IL-1β/IL-1R1 activates NF-κB signaling, thereby increasing HNF4α expression and forming a feedback loop that sustains activation of the NF-κB pathway and drives the inflammation towards GC. Examination of clinical samples revealed that HNF4α and IL-1R1 levels increase with increasing severity of Hp-induced gastritis and reach their highest levels in GC. Co-expression of HNF4α and IL-1R1 was a crucial indicator of malignant transformation from gastritis to GC, and was associated with a poorer prognosis in GC patients. Disruption of the HNF4α/IL-1R1/IL-1β/NF-κB circuit during Hp infection maybe an effective means of preventing the associated GC. PMID:26870992

  15. Ozone-induced IL-17A and neutrophilic airway inflammation is orchestrated by the caspase-1-IL-1 cascade

    PubMed Central

    Che, Luanqing; Jin, Yan; Zhang, Chao; Lai, Tianwen; Zhou, Hongbin; Xia, Lixia; Tian, Baoping; Zhao, Yun; Liu, Juan; Wu, Yinfang; Wu, Yanping; Du, Jie; Li, Wen; Ying, Songmin; Chen, Zhihua; Shen, Huahao

    2016-01-01

    Ozone is a common environmental air pollutant leading to respiratory illness. The mechanisms regulating ozone-induced airway inflammation remain poorly understood. We hypothesize that ozone-triggered inflammasome activation and interleukin (IL)-1 production regulate neutrophilic airway inflammation through IL-17A. Pulmonary neutrophilic inflammation was induced by extended (72 h) low-dose (0.7 ppm) exposure to ozone. IL-1 receptor 1 (Il1r1)−/−, Il17a−/− mice and the caspase-1 inhibitor acetyl-YVAD-chloromethylketone (Ac-YVAD-cmk) were used for in vivo studies. Cellular inflammation and protein levels in bronchial alveolar lavage fluid (BALF), cytokines, and IL-17A-producing γδT-cells, as well as mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) release, and inflammasome activation in lung macrophages were analyzed. Ozone-induced neutrophilic airway inflammation, accompanied an increased production of IL-1β, IL-18, IL-17A, Granulocyte-colony stimulating factor (G-CSF), Interferon-γ inducible protein 10 (IP-10) and BALF protein in the lung. Ozone-induced IL-17A production was predominantly in γδT-cells, and Il17a-knockout mice exhibited reduced airway inflammation. Lung macrophages from ozone-exposed mice exhibited higher levels of mitochondrial ROS, enhanced cytosolic mtDNA, increased caspase-1 activation, and higher production of IL-1β. Il1r1-knockout mice or treatment with Ac-YVAD-cmk decreased the IL-17A production and subsequent airway inflammation. Taken together, we demonstrate that ozone-induced IL-17A and neutrophilic airway inflammation is orchestrated by the caspase-1-IL-1 cascade. PMID:26739627

  16. IL-1β reduces tonic contraction of mesenteric lymphatic muscle cells, with the involvement of cycloxygenase-2 and prostaglandin E2

    PubMed Central

    Al-Kofahi, M; Becker, F; Gavins, F N E; Woolard, M D; Tsunoda, I; Wang, Y; Ostanin, D; Zawieja, D C; Muthuchamy, M; von der Weid, P Y; Alexander, J S

    2015-01-01

    Background and Purpose The lymphatic system maintains tissue homeostasis by unidirectional lymph flow, maintained by tonic and phasic contractions within subunits, ‘lymphangions’. Here we have studied the effects of the inflammatory cytokine IL-1β on tonic contraction of rat mesenteric lymphatic muscle cells (RMLMC). Experimental Approach We measured IL-1β in colon-conditioned media (CM) from acute (AC-CM, dextran sodium sulfate) and chronic (CC-CM, T-cell transfer) colitis-induced mice and corresponding controls (Con-AC/CC-CM). We examined tonic contractility of RMLMC in response to CM, the cytokines h-IL-1β or h-TNF-α (5, 10, 20 ng·mL−1), with or without COX inhibitors [TFAP (10−5 M), diclofenac (0.2 × 10−5 M)], PGE2 (10−5 M)], IL-1-receptor antagonist, Anakinra (5 μg·mL−1), or a selective prostanoid EP4 receptor antagonist, GW627368X (10−6 and 10−7 M). Key Results Tonic contractility of RMLMC was reduced by AC- and CC-CM compared with corresponding control culture media, Con-AC/CC-CM. IL-1β or TNF-α was not found in Con-AC/CC-CM, but detected in AC- and CC-CM. h-IL-1β concentration-dependently decreased RMLMC contractility, whereas h-TNF-α showed no effect. Anakinra blocked h-IL-1β-induced RMLMC relaxation, and with AC-CM, restored contractility to RMLMC. IL-1β increased COX-2 protein and PGE2 production in RMLMC.. PGE2 induced relaxations in RMLMC, comparable to h-IL-1β. Conversely, COX-2 and EP4 receptor inhibition reversed relaxation induced by IL-1β. Conclusions and Implications The IL-1β-induced decrease in RMLMC tonic contraction was COX-2 dependent, and mediated by PGE2. In experimental colitis, IL-1β and tonic lymphatic contractility were causally related, as this cytokine was critical for the relaxation induced by AC-CM and pharmacological blockade of IL-1β restored tonic contraction. PMID:25989136

  17. IL-1 family members in the pathogenesis and treatment of metabolic disease: Focus on adipose tissue inflammation and insulin resistance

    PubMed Central

    Ballak, Dov B; Stienstra, Rinke; Tack, Cees J; Dinarello, Charles A; van Diepen, Janna A

    2015-01-01

    Obesity is characterized by a chronic, low-grade inflammation that contributes to the development of insulin resistance and type 2 diabetes. Cytokines and chemokines produced by immunocompetent cells influence local as well as systemic inflammation and are therefore critical contributors to the pathogenesis of type 2 diabetes. Hence, cytokines that modulate inflammatory responses are emerging as potential targets for intervention and treatment of the metabolic consequences of obesity. The interleukin-1 (IL-1) family of cytokines and receptors are key mediators of innate inflammatory responses and exhibit both pro- and anti-inflammatory functions. During the last decades, mechanistic insights into how the IL-1 family affects the initiation and progression of obesity-induced insulin resistance have increased significantly. Here, we review the current knowledge and understanding, with emphasis on the therapeutic potential of individual members of the IL-1 family of cytokines for improving insulin sensitivity in patients with diabetes. PMID:26194067

  18. Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis

    PubMed Central

    Sakurai, Toshiharu; He, Guobin; Matsuzawa, Atsushi; Yu, Guann-Yi; Maeda, Shin; Hardiman, Gary; Karin, Michael

    2009-01-01

    SUMMARY Hepatocyte IκB kinase β (IKKβ) inhibits hepatocarcinogenesis by suppressing accumulation of reactive oxygen species (ROS) and liver damage, whereas JNK1 activation promotes ROS accumulation, liver damage and carcinogenesis. We examined whether hepatocyte p38α, found to inhibit liver carcinogenesis, acts similarly to IKKβ in control of ROS metabolism and cell death. Hepatocyte-specific p38α ablation enhanced ROS accumulation and liver damage, which were prevented upon administration of an antioxidant. In addition to elevated ROS accumulation, hepatocyte death, augmented by loss of either IKKβ or p38α, was associated with release of IL-1α. Inhibition of IL-1α action or ablation of its receptor inhibited carcinogen-induced compensatory proliferation and liver tumorigenesis. IL-1α release by necrotic hepatocytes is therefore an important mediator of liver tumorigenesis. PMID:18691550

  19. IL-1β/HMGB1 signalling promotes the inflammatory cytokines release via TLR signalling in human intervertebral disc cells

    PubMed Central

    Fang, Fang; Jiang, Dianming

    2016-01-01

    Inflammation and cytokines have been recognized to correlate with intervertebral disc (IVD) degeneration (IDD), via mediating the development of clinical signs and symptoms. However, the regulation mechanism remains unclear. We aimed at investigating the regulatory role of interleukin (IL)β and high mobility group box 1 (HMGB1) in the inflammatory response in human IVD cells, and then explored the signalling pathways mediating such regulatory effect. Firstly, the promotion to inflammatory cytokines in IVD cells was examined with ELISA method. And then western blot and real time quantitative PCR were performed to analyse the expression of toll-like receptors (TLRs), receptors for advanced glycation endproducts (RAGE) and NF-κB signalling markers in the IL-1β- or (and) HMGB1-treated IVD cells. Results demonstrated that either IL-1β or HMGB1 promoted the release of the inflammatory cytokines such as prostaglandin E2 (PGE2), TNF-α, IL-6 and IL-8 in human IVD cells. And the expression of matrix metalloproteinases (MMPs) such as MMP-1, -3 and -9 was also additively up-regulated by IL-1β and HMGB1. We also found such additive promotion to the expression of TLR-2, TLR-4 and RAGE, and the NF-κB signalling in intervertebral disc cells. In summary, our study demonstrated that IL-1β and HMGB1 additively promotes the release of inflammatory cytokines and the expression of MMPs in human IVD cells. The TLRs and RAGE and the NF-κB signalling were also additively promoted by IL-1β and HMGB1. Our study implied that the additive promotion by IL-1β and HMGB1 to inflammatory cytokines and MMPs might aggravate the progression of IDD. PMID:27512095

  20. Interleukin-1 receptor accessory protein interacts with the type II interleukin-1 receptor.

    PubMed

    Malinowsky, D; Lundkvist, J; Layé, S; Bartfai, T

    1998-06-16

    Stably transfected HEK-293 cells express on their surface the murine type II IL-1 receptor (mIL-1RII) as demonstrated by FACS analysis using the mAb 4E2, however binding of [125I]-hrIL-1beta to these cells is nearly absent. Saturable high affinity binding of [125I]-hrIL-1beta is observed when the murine IL-1 receptor accessory protein (mIL-1RAcP) is coexpressed with mIL-1RII. Binding of [125I]-hrIL-1beta to mIL-1RII-mIL-1RAcP complex can be inhibited either with antibodies to mIL-1RII (mAb 4E2), or by antibodies to mIL-1RAcP (mAb 4C5). The number of high affinity binding sites in cells stably transfected with the cDNA for mIL-1RII is dependent on the dose of cDNA for mIL-1RAcP used to transfect the cells. The high affinity complex between mIL-1RII and mIL-1RAcP is not preformed by interaction between the intracellular domains of these two transmembrane proteins, rather it appears to require the extracellular portions of mIL-1RII and mIL-1RAcP and the presence of a ligand. We suggest that in addition to its earlier described decoy receptor role, IL-1RII may modulate the responsiveness of cells to IL-1 by binding the IL-1RAcP in unproductive/non-signalling complexes and thus reducing the number of signalling IL-1RI-IL-1RAcP-agonist complexes when IL-1 is bound.

  1. Comparison of the roles of IL-1, IL-6, and TNFalpha in cell culture and murine models of aseptic loosening.

    PubMed

    Taki, Naoya; Tatro, Joscelyn M; Lowe, Robert; Goldberg, Victor M; Greenfield, Edward M

    2007-05-01

    Pro-inflammatory cytokines, such as IL-1, IL-6, and TNF, are considered to be major mediators of osteolysis and ultimately aseptic loosening. This study demonstrated that synergistic interactions among these cytokines are required for the in vitro stimulation of osteoclast differentiation by titanium particles. In contrast, genetic knock out of these cytokines or their receptors does not protect murine calvaria from osteolysis induced by titanium particles. Thus, the extent of osteolysis was not substantially altered in single knock out mice lacking either the IL-1 receptor or IL-6. Osteolysis also was not substantially altered in double knock out mice lacking both the IL-1 receptor and IL-6 or in double knock out mice lacking both TNF receptor-1 and TNF receptor-2. The differences between the in vivo and the cell culture results make it difficult to conclude whether the pro-inflammatory cytokines contribute to aseptic loosening. One alternative is that in vivo experiments are more physiological and that therefore the current results do not support a role for the pro-inflammatory cytokines in aseptic loosening. We however favor the alternative that, in this case, the cell culture experiments can be more informative. We favor this alternative because the role of the pro-inflammatory cytokines may be obscured in vivo by compensation by other cytokines or by the low signal to noise ratio found in measurements of particle-induced osteolysis.

  2. Molecular mechanisms involved in interleukin 1-beta (IL-1β)-induced memory impairment. Modulation by alpha-melanocyte-stimulating hormone (α-MSH).

    PubMed

    Gonzalez, P; Machado, I; Vilcaes, A; Caruso, C; Roth, G A; Schiöth, H; Lasaga, M; Scimonelli, T

    2013-11-01

    Pro-inflammatory cytokines can affect cognitive processes such as learning and memory. Particularly, interleukin-1β (IL-1β) influences the consolidation of hippocampus-dependent memories. We previously reported that administration of IL-1β in dorsal hippocampus impaired contextual fear memory consolidation. Different mechanisms have been implicated in the action of IL-1β on long-term potentiation (LTP), but the processes by which this inhibition occurs in vivo remain to be elucidated. We herein report that intrahippocampal injection of IL-1β induced a significant increase in p38 phosphorylation after contextual fear conditioning. Also, treatment with SB203580, an inhibitor of p38, reversed impairment induced by IL-1β on conditioned fear behavior, indicating that this MAPK would be involved in the effect of the cytokine. We also showed that IL-1β administration produced a decrease in glutamate release from dorsal hippocampus synaptosomes and that treatment with SB203580 partially reversed this effect. Our results indicated that IL-1β-induced impairment in memory consolidation could be mediated by a decrease in glutamate release. This hypothesis is sustained by the fact that treatment with d-cycloserine (DCS), a partial agonist of the NMDA receptor, reversed the effect of IL-1β on contextual fear memory. Furthermore, we demonstrated that IL-1β produced a temporal delay in ERK phosphorylation and that DCS administration reversed this effect. We also observed that intrahippocampal injection of IL-1β decreased BDNF expression after contextual fear conditioning. We previously demonstrated that α-MSH reversed the detrimental effect of IL-1β on memory consolidation. The present results demonstrate that α-MSH administration did not modify the decrease in glutamate release induced by IL-1β. However, intrahippocampal injection of α-MSH prevented the effect on ERK phosphorylation and BDNF expression induced by IL-1β after contextual fear conditioning

  3. A beneficial role for IL-1 beta in Alzheimer disease?

    PubMed

    Lemere, Cynthia A

    2007-06-01

    While the term neuroinflammation often conjures up images of cellular damage, mounting evidence suggests that certain proinflammatory molecules, such as the cytokine IL-1 beta, may have beneficial and protective effects. In a report in this issue of the JCI, Shaftel and coworkers have generated an elegant mouse model in which local hippocampal overexpression of IL-1 beta in an Alzheimer disease (AD) transgenic mouse model resulted not in the expected exacerbation of the amyloid beta plaque deposition common to AD, but instead in plaque amelioration (see the related article beginning on page 1595). Thus, manipulation of the immune system may be a potential therapeutic approach to protect against AD, although further studies are needed to understand all of the downstream effects of this manipulation.

  4. Inhibition of TNF-α, IL-1α, and IL-1β by Pretreatment of Human Monocyte-Derived Macrophages with Menaquinone-7 and Cell Activation with TLR Agonists In Vitro.

    PubMed

    Pan, Min-Hsiung; Maresz, Katarzyna; Lee, Pei-Sheng; Wu, Jia-Ching; Ho, Chi-Tang; Popko, Janusz; Mehta, Dilip S; Stohs, Sidney J; Badmaev, Vladimir

    2016-07-01

    Circulatory markers of low-grade inflammation such as tumor necrosis factor-alpha (TNF-α), interleukin-1 alpha (IL-1α), and interleukin-1 beta (IL-1β) positively correlate with endothelial damage, atheroma formation, cardiovascular disease, and aging. The natural vitamin K2-menaquinone-7 (MK-7) added to the cell culture of human monocyte-derived macrophages (hMDMs) at the same time as toll-like receptor (TLR) agonists did not influence the production of TNF-α. When the cells were pretreated up to 6 h with MK-7 before treatment with TLR agonists, MK-7 did not inhibit significantly the production of TNF-α after the TLR activation. However, 30 h pretreatment of hMDMs with at least 10 μM of MK-7 effectively and dose dependently inhibited the proinflammatory function of hMDMs. Pretreatment of hMDMs with 10 μM of MK-7 for 30 h resulted in 20% inhibition of TNF-α production after lipopolysaccharide (LPS) activation (P < .05) and 43% inhibition after macrophage-activating lipopeptide (MALP) activation (P < .001). Pathogen-associated molecular pattern (PMPP) activation was inhibited by 20% with MK-7 pretreatment; however, this inhibition was not statistically significant. The 30 h pretreatment of a THP-1-differentiated monocyte cell line with MK-7 resulted in a dose-dependent downregulation of TNFα, IL-1α, and IL-1β gene expression as evaluated by RNA semiquantitative reverse transcription polymerase chain reaction (RT-PCR). MK-7 is able to modulate immune and inflammatory reactions in the dose-response inhibition of TNF-α, IL-1α, and IL-1β gene expression and protein production by the healthy hMDMs in vitro. PMID:27200471

  5. Analysis of IL-1α(−889) and IL-1B(+3953) Gene Polymorphism in Syrian Patients with Aggressive Periodontitis: A Pilot Study

    PubMed Central

    Shibani, Kenan; Shhab, Reem; Khattab, Razan

    2011-01-01

    Polymorphisms in IL-1 gene have been suggested to influence transcription of IL-1α and IL-1B and thereby the pathophysiology of periodontitis. Using genotyping IL-1 test, a pilot study was conducted on 32 Syrian patients with aggressive periodontitis (AgP) and 35 healthy controls to investigate the association between the IL-1α(−889), IL-1B(+3953) gene polymorphisms and AgP among schoolchildren. The results revealed a similar distribution of genotypes between patients and controls, and did not support an association between IL-1 gene polymorphisms and AgP, however, the association was significant in male patients only. To determine and confirm any susceptible or resistant genes for AgP, future studies should use many target genes and well-defined related periodontal outcomes. PMID:22203911

  6. The Nlrp3 inflammasome, IL-1β, and neutrophil recruitment are required for susceptibility to a nonhealing strain of Leishmania major in C57BL/6 mice.

    PubMed

    Charmoy, Melanie; Hurrell, Benjamin P; Romano, Audrey; Lee, Sang Hun; Ribeiro-Gomes, Flavia; Riteau, Nicolas; Mayer-Barber, Katrin; Tacchini-Cottier, Fabienne; Sacks, David L

    2016-04-01

    Infection of C57BL/6 mice with most Leishmania major strains results in a healing lesion and clearance of parasites from the skin. Infection of C57BL/6 mice with the L. major Seidman strain (LmSd), isolated from a patient with chronic lesions, despite eliciting a strong Th1 response, results in a nonhealing lesion, poor parasite clearance, and complete destruction of the ear dermis. We show here that in comparison to a healing strain, LmSd elicited early upregulation of IL-1β mRNA and IL-1β-producing dermal cells and prominent neutrophil recruitment to the infected skin. Mice deficient in Nlrp3, apoptosis-associated speck-like protein containing a caspase recruitment domain, or caspase-1/11, or lacking IL-1β or IL-1 receptor signaling, developed healing lesions and cleared LmSd from the infection site. Mice resistant to LmSd had a stronger antigen-specific Th1 response. The possibility that IL-1β might act through neutrophil recruitment to locally suppress immunity was supported by the healing observed in neutropenic Genista mice. Secretion of mature IL-1β by LmSd-infected macrophages in vitro was dependent on activation of the Nlrp3 inflammasome and caspase-1. These data reveal that Nlrp3 inflammasome-dependent IL-1β, associated with localized neutrophil recruitment, plays a crucial role in the development of a nonhealing form of cutaneous leishmaniasis in conventionally resistant mice.

  7. Age-Associated Increase in Cytokine Production During Systemic Inflammation-II: The Role of IL-1β in Age-Dependent IL-6 Upregulation in Adipose Tissue.

    PubMed

    Starr, Marlene E; Saito, Mizuki; Evers, B Mark; Saito, Hiroshi

    2015-12-01

    Expression of interleukin-6 (IL-6) upon acute inflammatory stress is significantly augmented by aging in adipose tissue, a major source of this cytokine. In the present study, we examined the mechanism of age-dependent IL-6 overproduction using visceral white adipose tissue from C57BL/6 mice. Upon treatment with lipopolysaccharide (LPS) in vitro, IL-6 was produced by adipose tissue explants, and secreted levels were significantly higher in cultures from aged (24 months) mice compared to young (4 months). Interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNFα), two inducers of IL-6, were mainly produced by the lungs and spleen rather than adipose tissue in mice after LPS injection. Treatment of adipose explants with physiological levels of IL-1β induced significant age-dependent secretion of IL-6, while treatment with TNFα had little effect, demonstrating an augmented response of adipose tissues to IL-1β in the aged. In vitro experiments utilizing a neutralizing antibody against IL-1β and in vivo experiments utilizing IL-1-receptor-1 deficient mice, confirmed that IL-6 overproduction in the aged is regulated by autocrine/paracrine action of IL-1β which specifically occurs in aged adipose tissues. These findings indicate an elevated inflammatory potential of adipose tissue in the aged and a unique IL-1β-mediated mechanism for IL-6 overproduction, which may impact age-associated vulnerability to acute inflammatory diseases such as sepsis.

  8. Elevated cysteine-rich protein 61 (CCN1) promotes skin aging via upregulation of IL-1β in chronically sun-exposed human skin.

    PubMed

    Qin, Zhaoping; Okubo, Toru; Voorhees, John J; Fisher, Gary J; Quan, Taihao

    2014-02-01

    Chronic exposure of human skin to solar ultraviolet (UV) irradiation causes premature skin aging, which is characterized by reduced type I collagen production and increased fragmentation of the dermal collagenous extracellular matrix. This imbalance of collagen homeostasis is mediated, in part, by elevated expression of the matricellular protein cysteine-rich protein 61 (CCN1), in dermal fibroblasts, the primary collagen producing cell type in human skin. Here, we report that the actions of CCN1 are mediated by induction of interleukin 1β (IL-1β). CCN1 and IL-1β are strikingly induced by acute UV irradiation, and constitutively elevated in sun-exposed prematurely aged human skin. Elevated CCN1 rapidly induces IL-1β, inhibits type I collagen production, and upregulates matrix metalloproteinase-1, which degrades collagen fibrils. Blockade of IL-1β actions by IL-1 receptor antagonist largely prevents the deleterious effects of CCN1 on collagen homeostasis. Furthermore, knockdown of CCN1 significantly reduces induction of IL-1β by UV irradiation, and thereby partially prevents collagen loss. These data demonstrate that elevated CCN1promotes inflammaging and collagen loss via induction of IL-1β and thereby contributes to the pathophysiology of premature aging in chronically sun-exposed human skin.

  9. [Various aspects of IL-1 biological activity. II. IL-1 beta in diseases and the Central Nervous System].

    PubMed

    Wieczorek, Marek

    2009-01-01

    Precise understanding of the mechanisms of reciprocal relations between the nervous and the immune systems, has been the subject of numerous studies for the recent two decades. These mechanisms are significant, particularly at the stage of early response to bacterial, parasite, or viral infections. They are also essential from the medical point of view, as they may help in the development of the new methods of treatment of infectious diseases, and also may provide better methods to neutralize possible side effects of the therapy. As it is commonly understood, both forms of IL-1 (alpha and beta), play an important role as a signaling molecules in these mechanisms. Regardless of the route of administration, they cause to the activation of the brain neurotransmitters, and the hypothalamo-pituitary-adrenal-axis (HPA). The HPA response induced by activity of the immune system is a normal, physiological phenomenon with essential meaning. It gives the negative feedback where glucocorticoids, released from the adrenal cortex, inhibit activity of the immune system, and by this reduce the probability of the over-stimulation of this system and its self-aggression. Therefore, precise recognition of the mechanism which is the indicator of influence of cytokines on the brain and also leads to initiate that response has a significant scientific and practical meaning. Also, the two mechanisms are probably the most important, and under appropriate conditions could complement each other. These are enzymatic and neural ways by which immune system influences the brain. The former predicts, that Il-1 influences the tissue, stimulating them to the synthesis, via the cyclooxygenases (COX) activation, and release molecules such as prostaglandines (especially PGE2), which have the ability to penetrate the brain barrier. The latter assumes that IL-1, directly or indirectly, can influence the peripheral nerves (the most important is probably the vagus nerve), which afferent sensory endings

  10. Role of IL1A rs1800587, IL1B rs1143627 and IL1RN rs2234677 Genotype Regarding Development of Chronic Lumbar Radicular Pain; a Prospective One-Year Study

    PubMed Central

    Moen, Aurora; Schistad, Elina Iordanova; Rygh, Lars Jørgen; Røe, Cecilie; Gjerstad, Johannes

    2014-01-01

    Previous studies indicate that lumbar radicular pain following disc herniation may be associated with release of several pro-inflammatory mediators, including interleukin-1 (IL1). In the present study, we examined how genetic variability in IL1A (rs1800587 C>T), IL1B (rs1143627 T>C) and IL1RN (rs2234677 G>A) influenced the clinical outcome the first year after disc herniation. Patients (n = 258) with lumbar radicular pain due to disc herniation were recruited from two hospitals in Norway. Pain and disability were measured by visual analogue scale (VAS) and Oswestry Disability Index (ODI) over a 12 month period. The result showed that patients with the IL1A T allele, in combination with the IL1RN A allele had more pain and a slower recovery than other patients (VAS p = 0.049, ODI p = 0.059 rmANOVA; VAS p = 0.003, ODI p = 0.050 one-way ANOVA at 12 months). However, regarding the IL1B/IL1RN genotype, no clear effect on recovery was observed (VAS p = 0.175, ODI p = 0.055 rmANOVA; VAS p = 0.105, ODI p = 0.214 one-way ANOVA at 12 months). The data suggest that the IL1A T/IL1RN A genotype, but not the IL1B T/IL1RN A genotype, may increase the risk of a chronic outcome in patients following disc herniation. PMID:25207923

  11. Functional polymorphism of IL-1 alpha and its potential role in obesity in humans and mice.

    PubMed

    Um, Jae-Young; Rim, Hong-Kun; Kim, Su-Jin; Kim, Hye-Lin; Hong, Seung-Heon

    2011-01-01

    Proinflammatory cytokines secreted from adipose tissue contribute to the morbidity associated with obesity. IL-1α is one of the proinflammatory cytokines; however, it has not been clarified whether IL-1α may also cause obesity. In this study, we investigated whether polymorphisms in IL-1α contribute to human obesity. A total of 260 obese subjects were genotyped for IL-1α C-889T (rs1800587) and IL-1α G+4845T (rs17561). Analyses of genotype distributions revealed that both IL-1α polymorphisms C-889T (rs1800587) and G+4845T (rs17561) were associated with an increase in body mass index in obese healthy women. In addition, the effect of rs1800587 on the transcriptional activity of IL-1α was explored in pre-adipocyte 3T3-L1 cells. Significant difference was found between the rs1800587 polymorphism in the regulatory region of the IL-1α gene and transcriptional activity. We extended these observations in vivo to a high-fat diet-induced obese mouse model and in vitro to pre-adipocyte 3T3-L1 cells. IL-1α levels were dramatically augmented in obese mice, and triglyceride was increased 12 hours after IL-1α injection. Taken together, IL-1α treatment regulated the differentiation of preadipocytes. IL-1α C-889T (rs1800587) is a functional polymorphism of IL-1α associated with obesity. IL-1α may have a critical function in the development of obesity.

  12. Uncoupling of 5-HT1A receptors in the brain by estrogens: regional variations in antagonism by ICI 182,780.

    PubMed

    Mize, A L; Young, L J; Alper, R H

    2003-04-01

    Previously we have shown that 17beta-estradiol (in vivo and in vitro) rapidly decreases the function of serotonin(1A) (5-HT(1A)) receptors, allowing us to hypothesize that 17beta-estradiol accomplished this via activation of a membrane estrogen receptor. Hippocampus and frontal cortex obtained from ovariectomized rats were incubated with 17beta-estradiol or bovine serum albumin (BSA)-estradiol in the presence or absence of the estrogen receptor (ER) antagonist ICI 182,780. Membranes were prepared to measure R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding (a measure of 5-HT(1A) receptor coupling and function). In both hippocampus and frontal cortex, 17beta-estradiol and BSA-estradiol (50 nM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 blocked the effect of both the estrogens in hippocampus, but only the effect of 17beta-estradiol in frontal cortex. Due to the inability of ICI 182,780 to block the effects of BSA-estradiol in frontal cortex, similar experiments were performed using the selective estrogen receptor modulator tamoxifen as the agonist. Tamoxifen (100 nM and 1 microM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 (1 microM) blocked the ability of tamoxifen to decrease 5-HT(1A) receptor coupling in the hippocampus, but not in the frontal cortex. Taken together, these data support the existence of a pharmacologically distinct ER in hippocampus vs. frontal cortex that might be responsible for rapid uncoupling of 5-HT(1A) receptors. PMID:12668044

  13. IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation.

    PubMed

    Joosten, L A; Helsen, M M; Saxne, T; van De Loo, F A; Heinegard, D; van Den Berg, W B

    1999-11-01

    Anti-TNF-alpha treatment of rheumatoid arthritis patients markedly suppresses inflammatory disease activity, but so far no tissue-protective effects have been reported. In contrast, blockade of IL-1 in rheumatoid arthritis patients, by an IL-1 receptor antagonist, was only moderately effective in suppressing inflammatory symptoms but appeared to reduce the rate of progression of joint destruction. We therefore used an established collagen II murine arthritis model (collagen-induced arthritis(CIA)) to study effects on joint structures of neutralization of either TNF-alpha or IL-1. Both soluble TNF binding protein and anti-IL-1 treatment ameliorated disease activity when applied shortly after onset of CIA. Serum analysis revealed that early anti-TNF-alpha treatment of CIA did not decrease the process in the cartilage, as indicated by the elevated COMP levels. In contrast, anti-IL-1 treatment of established CIA normalized COMP levels, apparently alleviating the process in the tissue. Histology of knee and ankle joints corroborated the finding and showed that cartilage and joint destruction was significantly decreased after anti-IL-1 treatment but was hardly affected by anti-TNF-alpha treatment. Radiographic analysis of knee and ankle joints revealed that bone erosions were prevented by anti-IL-1 treatment, whereas the anti-TNF-alpha-treated animals exhibited changes comparable to the controls. In line with these findings, metalloproteinase activity, visualized by VDIPEN production, was almost absent throughout the cartilage layers in anti-IL-1-treated animals, whereas massive VDIPEN appearance was found in control and sTNFbp-treated mice. These results indicate that blocking of IL-1 is a cartilage- and bone-protective therapy in destructive arthritis, whereas the TNF-alpha antagonist has little effect on tissue destruction.

  14. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    SciTech Connect

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2014-10-15

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.

  15. Effect of IL-1β and IL-1RN polymorphisms in carcinogenesis of the gastric mucosa in patients infected with Helicobacter pylori in Algeria

    PubMed Central

    Drici, Amine El-Mokhtar; Moulessehoul, Soraya; Tifrit, Abdelkarim; Diaf, Mustapha; Turki, Douidi Kara; Bachir, Meryem; Tou, Abdenacer

    2016-01-01

    Background Infection with Helicobacter pylori is considered a potential risk of developing gastric cancer in association with contributing host genetic factor. IL-1β and IL-1RN polymorphisms appear to maintain and promote Helicobacter pylori infection and to stimulate neoplastic growth of the gastric mucosa. Objective and methods In order to elucidate the effect of these polymorphisms in combination with gastric cancer in a population from northwestern Algeria, a case-control study was carried out on 79 patients infected with H. pylori with chronic atrophic gastritis and/or gastric carcinoma, and 32 subjects were recruited as case-control. IL-1β-31 bi-allelic and IL-1β-511 bi-allelic polymorphisms and IL-1RN penta-allelic were genotyped. Results IL-1β-31C was associated with an increased risk of developing gastric carcinoma (OR=4.614 [1.43−14.81], p=0.01). However, IL-1RN2 heterozygous allele type was significantly associated with chronic atrophic gastritis (OR=4.2 [1.23−3.61], p=0.022). IL-1β-511T was associated with an increased risk of development of chronic atrophic gastritis (OR=4.286 [1.54−11.89], p=0.005). Conclusion IL-1β and IL-1RN polymorphisms associated with H. pylori infection contribute to the development of chronic atrophic gastritis and gastric carcinomas in an Algerian population. The alleles IL-1β-31C and IL-1RN were associated with an increased risk of developing gastric carcinoma, and IL-1β-511T with an increased risk of developing chronic atrophic gastritis with no significant association of developing gastric carcinoma. PMID:27340011

  16. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and Th1 activation responsive to IL-1 blockade

    PubMed Central

    Stojanov, Silvia; Lapidus, Sivia; Chitkara, Puja; Feder, Henry; Salazar, Juan C.; Fleisher, Thomas A.; Brown, Margaret R.; Edwards, Kathryn M.; Ward, Michael M.; Colbert, Robert A.; Sun, Hong-Wei; Wood, Geryl M.; Barham, Beverly K.; Jones, Anne; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Athreya, Balu; Barron, Karyl S.; Kastner, Daniel L.

    2011-01-01

    The syndrome of periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) is the most common periodic fever disease in children. However, the pathogenesis is unknown. Using a systems biology approach we analyzed blood samples from PFAPA patients whose genetic testing excluded hereditary periodic fevers (HPFs), and from healthy children and pediatric HPF patients. Gene expression profiling could clearly distinguish PFAPA flares from asymptomatic intervals, HPF flares, and healthy controls. During PFAPA attacks, complement (C1QB, C2, SERPING1), IL-1–related (IL-1B, IL-1RN, CASP1, IL18RAP), and IFN-induced (AIM2, IP-10/CXCL10) genes were significantly overexpressed, but T cell-associated transcripts (CD3, CD8B) were down-regulated. On the protein level, PFAPA flares were accompanied by significantly increased serum levels of chemokines for activated T lymphocytes (IP-10/CXCL10, MIG/CXCL9), G-CSF, and proinflammatory cytokines (IL-18, IL-6). PFAPA flares also manifested a relative lymphopenia. Activated CD4+/CD25+ T-lymphocyte counts correlated negatively with serum concentrations of IP-10/CXCL10, whereas CD4+/HLA-DR+ T lymphocyte counts correlated positively with serum concentrations of the counterregulatory IL-1 receptor antagonist. Based on the evidence for IL-1β activation in PFAPA flares, we treated five PFAPA patients with a recombinant IL-1 receptor antagonist. All patients showed a prompt clinical and IP-10/CXCL10 response. Our data suggest an environmentally triggered activation of complement and IL-1β/-18 during PFAPA flares, with induction of Th1-chemokines and subsequent retention of activated T cells in peripheral tissues. IL-1 inhibition may thus be beneficial for treatment of PFAPA attacks, with IP-10/CXCL10 serving as a potential biomarker. PMID:21478439

  17. Concurrent antagonism of NMDA and AMPA receptors in the ventral tegmental area reduces the expression of conditioned approach learning in rats.

    PubMed

    Hachimine, Priscila; Seepersad, Neal; Babic, Sandra; Ranaldi, Robert

    2016-02-01

    Conditioned stimuli (CSs) come to function as CSs by acquiring the capacity to activate the same mesocorticolimbic dopamine (DA) neurons activated by primary rewards, producing conditioned activation of these neurons and their associated motivational states. This model stipulates that CSs activate mesocorticolimbic DA systems through the activation of glutamate receptors on DA neurons in the ventral tegmental area (VTA). We tested the hypothesis that glutamate receptor stimulation in the VTA is necessary for the expression of conditioned approach. Rats were tested in a conditioned approach protocol that consisted of 7 consecutive conditioning sessions (light presentations and food were paired), one session with no light or food and one test session with only light stimulus (CS-only) presentations. The number of head entries during the CS and pre-CS (baseline) periods was used to calculate difference scores. Bilateral VTA microinjections of glutamate receptor antagonists were made prior to the CS-only session. Kynurenic acid (ionotropic glutamate receptor antagonist; 1.125-4.5 μg/0.5 μl) significantly reduced difference scores compared to vehicle (0 μg), whereas MCPG (metabotropic glutamate receptor antagonist; 1.875-7.5 μg), AP-5 (NMDA antagonist; 0.03125-2.0 μg), and NBQX (AMPA antagonist; 0.5-4.0 μg) had no effects. When AP-5 and NBQX were administered simultaneously at doses of 0.25/4.0 and 2.0/4.0 μg, respectively, the combination significantly reduced the difference scores compared to 0/0 μg, indicating a reduction in the expression of conditioned approach. These findings indicate that expression of conditioned approach learning requires NMDA or AMPA receptor stimulation in the VTA. PMID:26542814

  18. PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress

    PubMed Central

    Roman, Carolyn W.; Lezak, Kim R.; Hartsock, Matthew J.; Falls, William A.; Braas, Karen M.; Howard, Alan B.; Hammack, Sayamwong E.; May, Victor

    2015-01-01

    Summary Chronic or repeated stressor exposure can induce a number of maladaptive behavioral and physiological consequences and among limbic structures, the bed nucleus of the stria terminalis (BNST) has been implicated in the integration and interpretation of stress responses. Previous work has demonstrated that chronic variate stress (CVS) exposure in rodents increases BNST pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) and PAC1 receptor (Adcyap1r1) transcript expression, and that acute BNST PACAP injections can stimulate anxiety-like behavior. Here we show that chronic stress increases PACAP expression selectively in the oval nucleus of the dorsolateral BNST in patterns distinct from those for corticotropin releasing hormone (CRH). Among receptor subtypes, BNST PACAP signaling through PAC1 receptors not only heightened anxiety responses as measured by different behavioral parameters but also induced anorexic-like behavior to mimic the consequences of stress. Conversely, chronic inhibition of BNST PACAP signaling by continuous infusion with the PAC1 receptor antagonist PACAP(6-38) during the week of CVS attenuated these stress-induced behavioral responses and changes in weight gain. BNST PACAP signaling stimulated the hypothalamic-pituitary-adrenal (HPA) axis and heightened corticosterone release; further, BNST PACAP(6-38) administration blocked corticosterone release in a sensitized stress model. In aggregate with recent associations of PACAP/PAC1 receptor dysregulation with altered stress responses including post-traumatic stress disorder, these data suggest that BNST PACAP/PAC1 receptor signaling mechanisms may coordinate the behavioral and endocrine consequences of stress. PMID:25001965

  19. Complement activation promotes colitis-associated carcinogenesis through activating intestinal IL-1β/IL-17A axis.

    PubMed

    Ning, C; Li, Y-Y; Wang, Y; Han, G-C; Wang, R-X; Xiao, H; Li, X-Y; Hou, C-M; Ma, Y-F; Sheng, D-S; Shen, B-F; Feng, J-N; Guo, R-F; Li, Y; Chen, G-J

    2015-11-01

    Colitis-associated colorectal cancer (CAC) is the most serious complication of inflammatory bowel disease (IBD). Excessive complement activation has been shown to be involved in the pathogenesis of IBD. However, its role in the development of CAC is largely unknown. Here, using a CAC model induced by combined administration of azoxymethane (AOM) and dextran sulfate sodium (DSS), we demonstrated that complement activation was required for CAC pathogenesis. Deficiency in key components of complement (e.g., C3, C5, or C5a receptor) rendered tumor repression in mice subjected to AOM/DSS. Mechanistic investigation revealed that complement ablation dramatically reduced proinflammatory cytokine interleukin (IL)-1β levels in the colonic tissues that was mainly produced by infiltrating neutrophils. IL-1β promoted colon carcinogenesis by eliciting IL-17 response in intestinal myeloid cells. Furthermore, complement-activation product C5a represented a potent inducer for IL-1β in neutrophil, accounting for downregulation of IL-1β levels in the employed complement-deficient mice. Overall, our study proposes a protumorigenic role of complement in inflammation-related colorectal cancer and that the therapeutic strategies targeting complement may be beneficial for the treatment of CAC in clinic. PMID:25736459

  20. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca2+ release, and activation of protein kinase C

    PubMed Central

    Pandey, Kailash N.

    2014-01-01

    Thus far, three related natriuretic peptides (NPs) and three distinct sub-types of cognate NP receptors have been identified and characterized based on the specific ligand binding affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain natriuretic peptides (ANP and BNP) specifically bind and activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), and C-type natriuretic peptide (CNP) shows specificity to activate guanylyl cyclase/natriuretic peptide receptor-B (GC-B/NPRB). All three NPs bind to natriuretic peptide receptor-C (NPRC), which is also known as clearance or silent receptor. The NPRA is considered the principal biologically active receptor of NP family; however, the molecular signaling mechanisms of NP receptors are not well understood. The activation of NPRA and NPRB produces the intracellular second messenger cGMP, which serves as the major signaling molecule of all three NPs. The activation of NPRB in response to CNP also produces the intracellular cGMP; however, at lower magnitude than that of NPRA, which is activated by ANP and BNP. In addition to enhanced accumulation of intracellular cGMP in response to all three NPs, the levels of cAMP, Ca2+ and inositol triphosphate (IP3) have also been reported to be altered in different cells and tissue types. Interestingly, ANP has been found to lower the concentrations of cAMP, Ca2+, and IP3; however, NPRC has been proposed to increase the levels of these metabolic signaling molecules. The mechanistic studies of decreased and/or increased levels of cAMP, Ca2+, and IP3 in response to NPs and their receptors have not yet been clearly established. This review focuses on the signaling mechanisms of ANP/NPRA and their biological effects involving an increased level of intracellular accumulation of cGMP and a decreased level of cAMP, Ca2+, and IP3 in different cells and tissue systems. PMID:25202235

  1. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  2. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity

    PubMed Central

    Bester, Janette; Pretorius, Etheresia

    2016-01-01

    Complex interactions exist between cytokines, and the interleukin family plays a fundamental role in inflammation. Particularly circulating IL-1β, IL-6 and IL-8 are unregulated in systemic and chronic inflammatory conditions. Hypercoagulability is an important hallmark of inflammation, and these cytokines are critically involved in abnormal clot formation, erythrocyte pathology and platelet hyper-activation, and these three cytokines have known receptors on platelets. Although these cytokines are always unregulated in inflammation, we do not know how the individual cytokines act upon the structure of erythrocytes and platelets, and which of the viscoelastic clot parameters are changed. Here we study the effects of IL-1β, IL-6 and IL-8 at low physiological levels, representative of chronic inflammation, by using scanning electron microscopy and thromboelastography. All three interleukins caused the viscoelastic properties to display an increased hypercoagulability of whole blood and pathology of both erythrocytes and platelets. The most pronounced changes were noted where all three cytokines caused platelet hyper-activation and spreading. Erythrocyte structure was notably affected in the presence of IL-8, where the morphological changes resembled that typically seen in eryptosis (programmed cell death). We suggest that erythrocytes and platelets are particularly sensitive to cytokine presence, and that they are excellent health indicators. PMID:27561337

  3. CEACAM1 negatively regulates IL-1β production in LPS activated neutrophils by recruiting SHP-1 to a SYK-TLR4-CEACAM1 complex.

    PubMed

    Lu, Rongze; Pan, Hao; Shively, John E

    2012-01-01

    LPS-activated neutrophils secrete IL-1β by activation of TLR-4. Based on studies in macrophages, it is likely that ROS and lysosomal destabilization regulated by Syk activation may also be involved. Since neutrophils have abundant expression of the ITIM-containing co-receptor CEACAM1 and Gram-negative bacteria such as Neisseria utilize CEACAM1 as a receptor that inhibits inflammation, we hypothesized that the overall production of IL-1β in LPS treated neutrophils may be negatively regulated by CEACAM1. We found that LPS treated neutrophils induced phosphorylation of Syk resulting in the formation of a complex including TLR4, p-Syk, and p-CEACAM1, which in turn, recruited the inhibitory phosphatase SHP-1. LPS treatment leads to ROS production, lysosomal damage, caspase-1 activation and IL-1β secretion in neutrophils. The absence of this regulation in Ceacam1⁻/⁻ neutrophils led to hyper production of IL-1β in response to LPS. The hyper production of IL-1β was abrogated by in vivo reconstitution of wild type but not ITIM-mutated CEACAM1 bone marrow stem cells. Blocking Syk activation by kinase inhibitors or RNAi reduced Syk phosphorylation, lysosomal destabilization, ROS production, and caspase-1 activation in Ceacam1⁻/⁻ neutrophils. We conclude that LPS treatment of neutrophils triggers formation of a complex of TLR4 with pSyk and pCEACAM1, which upon recruitment of SHP-1 to the ITIMs of pCEACAM1, inhibits IL-1β production by the inflammasome. Thus, CEACAM1 fine-tunes IL-1β production in LPS treated neutrophils, explaining why the additional utilization of CEACAM1 as a pathogen receptor would further inhibit inflammation.

  4. Orexin-1 receptor antagonism fails to reduce anxiety-like behaviour in either plus-maze-naïve or plus-maze-experienced mice.

    PubMed

    Rodgers, R J; Wright, F L; Snow, N F; Taylor, L J

    2013-04-15

    Although several lines of evidence have recently implicated orexins and their receptors in fear and anxiety, there is also a growing number of apparently inconsistent and/or negative findings. In the present study, we have used ethological methods to comprehensively profile the behavioural effects of the orexin-1 receptor antagonist SB-334867 (3-30 mg/kg) in mice exposed to the elevated plus-maze. Two experiments were performed, the first involving test-naïve animals and the second using prior undrugged experience of the maze to induce a qualitatively different emotional response to that seen on first exposure. In Experiment 1, a reference benzodiazepine (chlordiazepoxide, CDP, 15 mg/kg) produced a robust anxioselective profile comprising substantial increases in open arm exploration and reduced risk assessment without any signiifcant change in general activity levels. In contrast, SB-334867 failed to produce any behavioural effects over the dose range tested. In Experiment 2, 5 min undrugged experience of the maze 24h prior to testing increased open arm avoidance and abolished the anxiolytic efficacy of CDP. Despite this altered baseline, SB-334867 again failed to alter plus-maze behaviour. These findings agree with several recent reports that orexin receptor antagonists, such as SB-334867 and almorexant, do not alter basal anxiety levels in rats but markedly contrast with the anxiolytic-like effects of the same agents when anxiety levels have been exacerbated by fear conditioning, drug challenge or hypercapnia. This unique pattern of activity suggests that orexin receptor antagonists may have therapeutic value in those clinical anxiety disorders characterised by intense emotional arousal.

  5. Vitamin D₃ metabolites enhance the NLRP3-dependent secretion of IL-1β from human THP-1 monocytic cells.

    PubMed

    Tulk, Sarah E; Liao, Kuo-Chieh; Muruve, Daniel A; Li, Yan; Beck, Paul L; MacDonald, Justin A

    2015-05-01

    Vitamin D3 has emerged as an important regulator of the immune system. With metabolic enzymes for vitamin D3 activation and vitamin D receptors (VDR) now identified in a variety of immune cells, the active vitamin D3 metabolite 1,25(OH)2D3, is thought to possess immunomodulatory properties. We examined whether 1,25(OH)2D3 might also enhance the NLRP3-dependent release of mature IL-1β from macrophages. PMA-differentiated THP-1 cells were stimulated with vitamin D3 metabolites and assessed for CYP27, CYP24, NLRP3, ASC, pro-caspase-1 expression by western blot and real-time qPCR as well as inflammasome activation with pro-inflammatory cytokine IL-1β release measured by ELISA. Exposure to 1,25(OH)2D3 had no effect on the basal expression levels of VDR; however, CYP27A1 transcript was suppressed and CYP24A1 transcript was substantively elevated. Both 1,25(OH)2D3 - and 25(OH)D3 induced IL-1β release from THP-1 cells, and these effects were blocked with application of the caspase-1 inhibitor YVAD and the NLRP3 inhibitors glyburide and Bay 11-7082. Interestingly, 1,25 (OH)2D3 exposure reduced NLRP3 protein expression but had no effect on ASC or pro-caspase-1 protein levels. The increase in mature IL-1β elicited by 1,25(OH)2D3 was modest compared to that found for ATP or C. difficile toxins. However, co-treatment of THP-1 cells with ATP and 1,25(OH)2D3 resulted in more IL-1β secretion than ATP or 1,25(OH)2D3 alone. PMID:25639477

  6. Vitamin D₃ metabolites enhance the NLRP3-dependent secretion of IL-1β from human THP-1 monocytic cells.

    PubMed

    Tulk, Sarah E; Liao, Kuo-Chieh; Muruve, Daniel A; Li, Yan; Beck, Paul L; MacDonald, Justin A

    2015-05-01

    Vitamin D3 has emerged as an important regulator of the immune system. With metabolic enzymes for vitamin D3 activation and vitamin D receptors (VDR) now identified in a variety of immune cells, the active vitamin D3 metabolite 1,25(OH)2D3, is thought to possess immunomodulatory properties. We examined whether 1,25(OH)2D3 might also enhance the NLRP3-dependent release of mature IL-1β from macrophages. PMA-differentiated THP-1 cells were stimulated with vitamin D3 metabolites and assessed for CYP27, CYP24, NLRP3, ASC, pro-caspase-1 expression by western blot and real-time qPCR as well as inflammasome activation with pro-inflammatory cytokine IL-1β release measured by ELISA. Exposure to 1,25(OH)2D3 had no effect on the basal expression levels of VDR; however, CYP27A1 transcript was suppressed and CYP24A1 transcript was substantively elevated. Both 1,25(OH)2D3 - and 25(OH)D3 induced IL-1β release from THP-1 cells, and these effects were blocked with application of the caspase-1 inhibitor YVAD and the NLRP3 inhibitors glyburide and Bay 11-7082. Interestingly, 1,25 (OH)2D3 exposure reduced NLRP3 protein expression but had no effect on ASC or pro-caspase-1 protein levels. The increase in mature IL-1β elicited by 1,25(OH)2D3 was modest compared to that found for ATP or C. difficile toxins. However, co-treatment of THP-1 cells with ATP and 1,25(OH)2D3 resulted in more IL-1β secretion than ATP or 1,25(OH)2D3 alone.

  7. Interaction of IL1B and IL1RN polymorphisms, smoking habit, gender, and ethnicity with aggressive and chronic periodontitis susceptibility

    PubMed Central

    Ribeiro, Magali Silveira Monteiro; Pacheco, Renata Botelho Antunes; Fischer, Ricardo Guimarães; Macedo, Jacyara Maria Brito

    2016-01-01

    Background: Although the interleukin-1 (IL-1) plays a critical role in the pathogenesis of periodontitis, associations between IL1 gene cluster polymorphisms and the disease remains unclear. Aims: To investigate the importance of IL1B-511C>T (rs16944), IL1B +3954C>T (rs1143634), and IL1RN intron 2 variable number tandem repeat (VNTR) (rs2234663) polymorphisms, individually or in combination, as the risk factors of periodontitis in a Southeastern Brazilian population with a high degree of miscegenation. Subjects and Methods: A total of 145 individuals, with aggressive (aggressive periodontitis [AgP], n = 43) and chronic (chronic periodontitis [CP], n = 52) periodontitis, and controls (n = 50) were genotyped by polymerase chain reaction (PCR) (IL1RN intron 2 VNTR) or PCR-restriction fragment length polymorphism (PCR-RFLP) (IL1B-511 C>T and IL1B + 3954C>T) techniques. Statistical Analysis: The independent t-test, Chi-square, and Fisher's exact tests were used. The SNPStats program was used for haplotype estimation and multiplicative interaction analyses. Results: The IL1B +3954T allele represented risk for CP (odds ratio [OR] = 2.84), particularly in smokers (OR = 4.43) and females (OR = 6.00). The minor alleles IL1RN*2 and *3 increased the risk of AgP (OR = 2.18), especially the IL1RN*2*2 genotype among  white Brazilians (OR = 7.80). Individuals with the combinations of the IL1B + 3954T and IL1RN*2 or *3-containing genotypes were at increased risk of developing CP (OR = 4.50). Considering the three polymorphisms (rs16944, rs1143634, and rs2234663), the haplotypes TC2 and CT1 represented risk for AgP (OR = 3.41) and CP (OR = 6.39), respectively. Conclusions: Our data suggest that the IL1B +3954C>T and IL1RN intron 2 VNTR polymorphisms are potential candidates for genetic biomarkers of periodontitis, particularly in specific groups of individuals. PMID:27630500

  8. Interaction of IL1B and IL1RN polymorphisms, smoking habit, gender, and ethnicity with aggressive and chronic periodontitis susceptibility

    PubMed Central

    Ribeiro, Magali Silveira Monteiro; Pacheco, Renata Botelho Antunes; Fischer, Ricardo Guimarães; Macedo, Jacyara Maria Brito

    2016-01-01

    Background: Although the interleukin-1 (IL-1) plays a critical role in the pathogenesis of periodontitis, associations between IL1 gene cluster polymorphisms and the disease remains unclear. Aims: To investigate the importance of IL1B-511C>T (rs16944), IL1B +3954C>T (rs1143634), and IL1RN intron 2 variable number tandem repeat (VNTR) (rs2234663) polymorphisms, individually or in combination, as the risk factors of periodontitis in a Southeastern Brazilian population with a high degree of miscegenation. Subjects and Methods: A total of 145 individuals, with aggressive (aggressive periodontitis [AgP], n = 43) and chronic (chronic periodontitis [CP], n = 52) periodontitis, and controls (n = 50) were genotyped by polymerase chain reaction (PCR) (IL1RN intron 2 VNTR) or PCR-restriction fragment length polymorphism (PCR-RFLP) (IL1B-511 C>T and IL1B + 3954C>T) techniques. Statistical Analysis: The independent t-test, Chi-square, and Fisher's exact tests were used. The SNPStats program was used for haplotype estimation and multiplicative interaction analyses. Results: The IL1B +3954T allele represented risk for CP (odds ratio [OR] = 2.84), particularly in smokers (OR = 4.43) and females (OR = 6.00). The minor alleles IL1RN*2 and *3 increased the risk of AgP (OR = 2.18), especially the IL1RN*2*2 genotype among  white Brazilians (OR = 7.80). Individuals with the combinations of the IL1B + 3954T and IL1RN*2 or *3-containing genotypes were at increased risk of developing CP (OR = 4.50). Considering the three polymorphisms (rs16944, rs1143634, and rs2234663), the haplotypes TC2 and CT1 represented risk for AgP (OR = 3.41) and CP (OR = 6.39), respectively. Conclusions: Our data suggest that the IL1B +3954C>T and IL1RN intron 2 VNTR polymorphisms are potential candidates for genetic biomarkers of periodontitis, particularly in specific groups of individuals.

  9. Stimulation of Proliferation and Migration of Mouse Macrophages by Type B CpG-ODNs Is F-Spondin and IL-1Ra Dependent

    PubMed Central

    Chen, Tai-An; Liao, Chiao-Chun; Cheng, Yung-Chih; Chen, Yen-Po; Hsu, Yi-Fan; Liang, Chi-Ming; Liang, Shu-Mei

    2015-01-01

    Macrophage proliferation and migration are important for many facets of immune response. Here we showed that stimulation of macrophages with type B CpG oligodeoxynucleotides (CpG-B ODNs) such as CpG-ODN 1668 increased the production of anti-inflammatory cytokine interleukin 1 receptor antagonist (IL-1Ra) in a TLR9- and MyD88-dependent manner. The CpG-B ODNs-induced IL-1Ra increased macrophage migration and promoted macrophage proliferation by down-regulating the expression of a cell cycle negative regulator, p27 to increase cell population in the S phase. The induction of IL-1Ra by CpG-B ODNs was F-spondin dependent. Knockdown of F-spondin and IL-1Ra decreased CpG-B ODNs-induced macrophage migration whereas overexpression of IL-1Ra increased migration of those cells. These findings demonstrated novel roles for F-spondin and IL-1Ra in CpG-B ODNs-mediated cell proliferation and migration of macrophages. PMID:26042735

  10. The novel adipokine progranulin counteracts IL-1 and TLR4-driven inflammatory response in human and murine chondrocytes via TNFR1

    PubMed Central

    Abella, Vanessa; Scotece, Morena; Conde, Javier; López, Verónica; Pirozzi, Claudio; Pino, Jesús; Gómez, Rodolfo; Lago, Francisca; González-Gay, Miguel Ángel; Gualillo, Oreste

    2016-01-01

    Progranulin (PGRN) is a recently identified adipokine that is supposed to have anti-inflammatory actions. The proinflammatory cytokine interleukin-1β (IL1β) stimulates several mediators of cartilage degradation. Toll like receptor-4 (TLR4) can bind to various damage-associated molecular patterns, leading to inflammatory condition. So far, no data exist of PGRN effects in inflammatory conditions induced by IL1β or lipopolysaccharide (LPS). Here, we investigated the anti-inflammatory potential of PGRN in IL1β- or LPS-induced inflammatory responses of chondrocytes. Human osteoarthritic chondrocytes and ATDC-5 cells were treated with PGRN in presence or not of IL1β or LPS. First, we showed that recombinant PGRN had no effects on cell viability. We present evidence that PGRN expression was increased during the differentiation of ATDC-5 cell line. Moreover, PGRN mRNA and protein expression is increased in cartilage, synovial and infrapatellar fat pad tissue samples from OA patients. PGRN mRNA levels are upregulated under TNFα and IL1β stimulation. Our data showed that PGRN is able to significantly counteract the IL1β-induced expression of NOS2, COX2, MMP13 and VCAM-1. LPS-induced expression of NOS2 is also decreased by PGRN. These effects are mediated, at least in part, through TNFR1. Taken together, our results suggest that PGRN has a clear anti-inflammatory function. PMID:26853108

  11. TNF-alpha and IL-1alpha induce apoptosis in subconfluent rat mesangial cells. Evidence for the involvement of hydrogen peroxide and lipid peroxidation as second messengers.

    PubMed

    Böhler, T; Waiser, J; Hepburn, H; Gaedeke, J; Lehmann, C; Hambach, P; Budde, K; Neumayer, H H

    2000-07-01

    Apoptosis of mesangial cells (MC) plays a role in glomerulonephritis (GN). In this study we investigated cytokine-induced apoptosis of cultured rat MC by morphological and biochemical features. TNF-alpha and IL-1alpha induced apoptosis in rat MC in a time- and concentration-dependent fashion. RT-PCR experiments revealed that MC express the TNF-receptor 1 (p60) gene constitutively. TNF-alpha as well as IL-1alpha stimulated the production of reactive oxygen species (ROS) and induced lipid peroxidation. Coincubation with catalase inhibited TNF-alpha and IL-1alpha induced apoptosis as well as lipid peroxidation. TNF-alpha, but not IL-1alpha increased the expression of c-jun. These results provide evidence that TNF-alpha and IL-1alpha induce apoptosis in rat MC with hydrogen peroxide and lipid peroxidation as second messengers. Increased c-jun expression may be a downstream intracellular signal of TNF-alpha-, but not IL-1alpha-induced apoptosis.

  12. Central injection of exogenous IL-1β in the control activities of hypothalamic-pituitary-gonadal axis in anestrous ewes.

    PubMed

    Herman, A P; Misztal, T; Romanowicz, K; Tomaszewska-Zaremba, D

    2012-02-01

    This study was performed to determine the effect of intracerebroventricular (icv) injection of interleukin (IL)-1β on the gene expression, translation and release of gonadotropin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) gene expression in the hypothalamus of anestrous ewes. In the anterior pituitary gland (AP), the expression of genes encoding: GnRHR, β subunits of luteinizing hormone (LH) and folliculotropic hormone (FSH) was determined as well as the effect of IL-1β on pituitary gonadotropins release. The relative mRNA level was determined by real-time PCR, GnRH concentration in the cerebrospinal fluid (CSF) was assayed by ELISA and the plasma concentration of LH and FSH were determined by radioimmunoassay. Our results showed that icv injection of IL-1β (10 or 50 μg/animal) decreased the GnRH mRNA level in the pre-optic area (POA) (35% and 40% respectively; p ≤ 0.01) and median eminence (ME) (75% and 70% respectively; p ≤ 0.01) and GnRHR gene expression in ME (55% and 50% respectively; p ≤ 0.01). A significant decrease in GnRHR mRNA level in the AP in the group treated with the 50 μg (60%; p ≤ 0.01) but not with the 10 μg dose was observed. The centrally administrated IL-1β lowered also GnRH concentration in the CSF (60%; p ≤ 0.01) and reduced the intensity of GnRH translation in the POA (p ≤ 0.01). It was not found any effect of icv IL-1β injection upon the release of LH and FSH. However, the central injection of IL-1β strongly decreased the LHβ mRNA level (41% and 50%; p ≤ 0.01; respectively) and FSHβ mRNA in the case of the 50 μg dose (49%; p ≤ 0.01) in the pituitary of anestrous ewes. These results demonstrate that the central IL-1β is an important modulator of the GnRH biosynthesis and release during immune/inflammatory challenge.

  13. Antagonism of corticotrophin-releasing factor type 1 receptors attenuates caloric intake of free feeding subordinate female rhesus monkeys in a rich dietary environment.

    PubMed

    Moore, C J; Johnson, Z P; Higgins, M; Toufexis, D; Wilson, M E

    2015-01-01

    Social subordination in macaque females is a known chronic stressor and previous studies have shown that socially subordinate female rhesus monkeys consume fewer kilocalories than dominant animals when a typical laboratory chow diet is available. However, in a rich dietary environment that provides access to chow in combination with a more palatable diet (i.e. high in fat and refined sugar), subordinate animals consume significantly more daily kilocalories than dominant conspecifics. Substantial literature is available supporting the role of stress hormone signals in shaping dietary preferences and promoting the consumption of palatable, energy-dense foods. The present study was conducted using stable groups of adult female rhesus monkeys to test the hypothesis that pharmacological treatment with a brain penetrable corticotrophin-releasing factor type 1 receptor (CRF1) antagonist would attenuate the stress-induced consumption of a palatable diet among subordinate animals in a rich dietary environment but would be without effect in dominant females. The results show that administration of the CRF1 receptor antagonist significantly reduced daily caloric intake of both available diets among subordinate females compared to dominant females. Importantly, multiple regression analyses showed that the attenuation in caloric intake in response to Antalarmin (Sigma-Aldrich, St Louis, MO, USA) was significantly predicted by the frequency of submissive and aggressive behaviour emitted by females, independent of social status. Taken together, the findings support the involvement of activation of CRF1 receptors in the stress-induced consumption of excess calories in a rich dietary environment and also support the growing literature concerning the importance of CRF for sustaining emotional feeding.

  14. Antagonism of Corticotrophin-Releasing Factor Type 1 Receptors Attenuates Caloric Intake of Free Feeding Subordinate Female Rhesus Monkeys in a Rich Dietary Environment

    PubMed Central

    Moore, C J; Johnson, Z P; Higgins, M; Toufexis, D; Wilson, M E

    2015-01-01

    Social subordination in macaque females is a known chronic stressor and previous studies have shown that socially subordinate female rhesus monkeys consume fewer kilocalories than dominant animals when a typical laboratory chow diet is available. However, in a rich dietary environment that provides access to chow in combination with a more palatable diet (i.e. high in fat and refined sugar), subordinate animals consume significantly more daily kilocalories than dominant conspecifics. Substantial literature is available supporting the role of stress hormone signals in shaping dietary preferences and promoting the consumption of palatable, energy-dense foods. The present study was conducted using stable groups of adult female rhesus monkeys to test the hypothesis that pharmacological treatment with a brain penetrable corticotrophin-releasing factor type 1 receptor (CRF1) antagonist would attenuate the stress-induced consumption of a palatable diet among subordinate animals in a rich dietary environment but would be without effect in dominant females. The results show that administration of the CRF1 receptor antagonist significantly reduced daily caloric intake of both available diets among subordinate females compared to dominant females. Importantly, multiple regression analyses showed that the attenuation in caloric intake in response to Antalarmin (Sigma-Aldrich, St Louis, MO, USA) was significantly predicted by the frequency of submissive and aggressive behaviour emitted by females, independent of social status. Taken together, the findings support the involvement of activation of CRF1 receptors in the stress-induced consumption of excess calories in a rich dietary environment and also support the growing literature concerning the importance of CRF for sustaining emotional feeding. PMID:25674637

  15. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue.

    PubMed

    Klotz, J L; Aiken, G E; Johnson, J M; Brown, K R; Bush, L P; Strickland, J R

    2013-09-01

    Pharmacologic profiling of serotonin (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline, 5HT, 5HT2A, and 5HT7 agonists. To determine if 5HT receptor activity of tall fescue alkaloids is affected by grazing endophyte-free (EF), wild-type [Kentucky-31 (KY31)], novel endophyte AR542-infected (MAXQ), or novel endophyte AR584-infected (AR584) tall fescue, contractile responses of lateral saphenous veins biopsied from cattle grazing these different fescue-endophyte combinations were evaluated in presence or absence of antagonists for 5HT2A (ketanserin) or 5HT7 (SB-269970) receptors. Biopsies were conducted over 2 yr on 35 mixed-breed steers (361.5 ± 6.3 kg) grazing EF (n = 12), KY31 (n = 12), MAXQ (n = 6), or AR584 (n = 5) pasture treatments (3 ha) between 84 and 98 d (Yr 1) or 108 to 124 d (Yr 2). Segments (2 to 3 cm) of vein were surgically biopsied, sliced into 2- to 3-mm cross-sections, and suspended in a myograph chamber containing 5 mL of oxygenated Krebs-Henseleit buffer (95% O2/5% CO2; pH = 7.4; 37°C). Veins were exposed to increasing concentrations of 5HT, ergovaline, and ergovaline + 1 × 10(-5) M ketanserin or + 1 × 10(-6) M SB-269970 in Yr 1. In Yr 2, ergotamine and ergocornine were evaluated in presence or absence of 1 × 10(-5) M ketanserin. Contractile response data were normalized to a reference addition of 1 × 10(-4) M norepinephrine. In Yr 1, contractile response to 5HT and ergovaline were least (P < 0.05) in KY31 pastures and the presence of ketanserin greatly reduced (P < 0.05) the response to ergovaline in all pastures. However, presence of SB-269970 did not (P = 0.91) alter contractile response to ergovaline. In Yr 2, there was no difference in contractile response to ergotamine (P = 0.13) or ergocornine (P = 0.99) across pasture treatments, but ketanserin reduced (P < 0.05) the contractile response to

  16. Deficiency of autophagy protein Map1-LC3b mediates IL-17-dependent lung pathology during respiratory viral infection via ER stress associated IL-1

    PubMed Central

    Reed, Michelle; Morris, Susan H.; Owczarczyk, Anna B.; Lukacs, Nicholas W.

    2015-01-01

    While recent studies suggest that IL-1β production is modulated by macroautophagy or sensors of ER stress upon pro-inflammatory insult, autophagy and IL-1β production during viral infection has not been fully investigated. This was addressed using respiratory syncytial virus (RSV), which is associated with lung immunopathology, IL-1, and IL-17a secretion in severely infected patients. Mice deficient in the autophagy-associated protein Map1-LC3b (LC3b−/−) developed increased IL-17a-dependent lung pathology upon infection. RSV-infected LC3b−/− DCs fail to upregulate autophagosome formation, secrete IL-1β and IL-6, and elicit IL-17a production from CD4+ T cells. Bone marrow chimeras revealed both structural and hematopoietic LC3b deficiency contribute to the development of IL-17a-dependent lung pathology in vivo. Further investigation revealed airway epithelium as the primary source of IL-1β during infection, while inhibition of the ER-stress sensor IRE-1 in primary airway epithelial cells reduced IL-1β production identifying a primary ER stress pathway. Finally, blockade of IL-1 receptor signaling in RSV-infected LC3b−/− mice abolished IL-17a-dependent lung pathology. These findings provide novel mechanistic insight into the contribution of autophagy- and ER stress-dependent cytokine production that initiate and maintain aberrant Th17 responses, while identifying IL-1 as a potential therapeutic target in the treatment of severe respiratory viral infections. PMID:25669150

  17. Deficiency of autophagy protein Map1-LC3b mediates IL-17-dependent lung pathology during respiratory viral infection via ER stress-associated IL-1.

    PubMed

    Reed, M; Morris, S H; Owczarczyk, A B; Lukacs, N W

    2015-09-01

    While recent studies suggest that interleukin (IL)-1β production is modulated by macroautophagy or sensors of endoplasmic reticulum (ER) stress upon pro-inflammatory insult, autophagy and IL-1β production during viral infection has not been fully investigated. This was addressed using respiratory syncytial virus (RSV), which is associated with lung immunopathology, IL-1, and IL-17a secretion in severely infected patients. Mice deficient in the autophagy-associated protein Map1-LC3b (LC3b(-/-)) developed increased IL-17a-dependent lung pathology upon infection. RSV-infected LC3b(-/-) dendritic cells (DCs) fail to upregulate autophagosome formation, secrete IL-1β and IL-6, and elicit IL-17a production from CD4+ T cells. Bone marrow chimeras revealed that both structural and hematopoietic LC3b deficiency contribute to the development of IL-17a-dependent lung pathology in vivo. Further investigation revealed airway epithelium as the primary source of IL-1β during infection, wh