Science.gov

Sample records for il-18 enhances thrombospondin-1

  1. IL-18 enhances thrombospondin-1 production in human gastric cancer via JNK pathway

    SciTech Connect

    Kim, Jihye; Kim, Cherlhyun; Kim, Tae Sung; Bang, Sa Ik; Yang, Young; Park, Hyunjeong; Cho, Daeho . E-mail: cdhkor@sookmyung.ac.kr

    2006-06-16

    IL-18 is a pleiotropic cytokine that is produced by many cancer cells. A recent report suggested that IL-18 plays a key role in regulating the immune escape of melanoma and gastric cancer cells. Thrombospondin (TSP-1) is known to inhibit angiogenesis in several cancers but some studies have reported that it stimulates angiogenesis in some cancers such as gastric cancer. IL-18 and TSP-1 are related to tumor proliferation and metastasis. This study investigated the relationship between IL-18 and TSP-1 in gastric cancer. RT-PCR and ELISA showed that after the cells had been treated with IL-18, the level of TSP-1 mRNA expression and TSP-1 protein production by IL-18 increased in both a dose- and time-dependent manner. The cells were next treated with specific inhibitors in order to determine the signal pathway involved in IL-18-enhanced TSP-1 production. IL-18-enhanced TSP-1 expression was blocked by SP600125, a c-Jun N-terminal kinase (JNK) specific inhibitor. In addition, Western blot showed that IL-18 enhanced the expression of phosphorylated JNK. Overall, these results suggest that IL-18 plays a key role in TSP-1 expression involving JNK.

  2. Blockade of IL-18 signaling diminished neuropathic pain and enhanced the efficacy of morphine and buprenorphine.

    PubMed

    Pilat, Dominika; Piotrowska, Anna; Rojewska, Ewelina; Jurga, Agnieszka; Ślusarczyk, Joanna; Makuch, Wioletta; Basta-Kaim, Agnieszka; Przewlocka, Barbara; Mika, Joanna

    2016-03-01

    Currently, the low efficacy of antinociceptive drugs for the treatment of neuropathic pain is a major therapeutic problem. Here, we show the potential role of interleukin (IL)-18 signaling in this phenomenon. IL-18 is an important molecule that performs various crucial functions, including the alteration of nociceptive transmission in response to neuropathic pain. We have studied the changes in the mRNA and protein levels (qRT-PCR and Western blot analysis, respectively) of IL-18, IL-18-binding protein (IL-18BP) and the IL-18 receptor (IL-18R) over time in rats following chronic constriction injury (CCI) of the sciatic nerve. Our study demonstrated that the spinal levels of IL-18BP were slightly downregulated at days 7 and 14 in the rats subjected to CCI. In contrast, the IL-18 and IL-18R mRNA expression and protein levels were elevated in the ipsilateral spinal cord on days 2, 7 and 14. Moreover, in rats exposed to a single intrathecal administration of IL-18BP (50 and 100 ng) 7 or 14 days following CCI, symptoms of neuropathic pain were attenuated, and the analgesia pursuant to morphine and buprenorphine (0.5 and 2.5 μg) was enhanced. In summary, the restoration of the analgesic activity of morphine and buprenorphine via the blockade of IL-18 signaling suggests that increased IL-18 pathway may account for the decreased analgesic efficacy of opioids for neuropathic pain.

  3. The Interaction between IL-18 and IL-18R Limits the Magnitude of Protective Immunity and Enhances Pathogenic Responses Following Infection with Intracellular Bacteria

    PubMed Central

    Ghose, Purnima; Ali, Asim Q; Fang, Rong; Forbes, Digna; Ballard, Billy; Ismail, Nahed

    2011-01-01

    The binding of IL-18 to IL-18Rα induces both pro-inflammatory and protective functions during infection, depending on the context in which it occurs. IL-18 is highly expressed in the liver of wild type (WT) C57BL/6 mice following lethal infection with highly virulent Ixodes Ovatus Ehrlichia (IOE), an obligate intracellular bacterium that causes acute fatal toxic shock-like syndrome. In this study, we found that IOE infection of IL-18Rα-/- mice resulted in significantly less host cell apoptosis, decreased hepatic leukocyte recruitment, enhanced bacterial clearance and prolonged survival compared to infected WT mice, suggesting a pathogenic role of IL-18/IL-18Rα in Ehrlichia-induced toxic shock. Although lack of IL-18R decreases the magnitude of IFN-γ producing type-1 immune response, enhanced resistance of the IL-18Rα-/- mice against Ehrlichia correlated with increased pro-inflammatory cytokines at sites of infection, decreased systemic IL-10 production, increased frequency of protective natural killer T (NKT) cells producing TNF-α and IFN-γ and decreased frequency of pathogenic TNF-α-producing CD8+ T cells. Adoptive transfer of immune wild type CD8+ T cells increased bacterial burden in IL-18Rα-/- mice following IOE infection. Furthermore, rIL-18 treatment of WT mice infected with mildly virulent Ehrlichia muris (EM) impaired bacterial clearance and enhanced liver injury. Finally, lack of IL-18R signal reduced dendritic cells (DCs) maturation and their TNF-α production, suggesting that IL-18 possibly promote the adaptive pathogenic immune responses against Ehrlichia via influencing T cell priming functions of DCs Together, these results suggest that the presence or absence of IL-18R signals governs the pathogenic versus protective immunity in a model of Ehrlichia-induced immunopathology. PMID:21715688

  4. IL-18 enhances immunosuppressive responses by promoting differentiation into monocytic myeloid-derived suppressor cells.

    PubMed

    Lim, Hui Xuan; Hong, Hye-Jin; Cho, Daeho; Kim, Tae Sung

    2014-12-01

    Myeloid-derived suppressor cells (MDSCs) are major immunosuppressive cells that lead to T cell defects in cancer. IL-18 is important in inflammatory and immune responses. IL-18 has been reported to have a dual effect on tumor progression, as it not only stimulates host immune responses, but also exerts procancer effects by inducing immune escape and angiogenesis. In the present study, we investigated the effect of IL-18 on MDSCs and found that IL-18 treatment significantly increased the percentage and the absolute number of monocytic MDSCs (M-MDSCs) via differentiation of CD11b(-) bone marrow progenitor cells. IL-18-induced MDSCs showed enhanced suppression of T cell proliferation and IFN-γ production along with a dramatic increase of M-MDSC suppressive function, including NO production and arginase 1 expression. Although IL-18 decreased the number of granulocytic MDSCs (G-MDSCs) in a concentration-dependent manner, we found that the absolute number of G-MDSCs and their reactive oxygen species production remained unchanged. Additionally, we demonstrated that IL-18-induced M-MDSCs have a more potent suppressive effect on T cell responses with lower IFN-γ production than do G-MDSCs, suggesting that the increased suppressive effect observed in our study resulted from M-MDSCs. Furthermore, in vivo administration of IL-18 significantly increased the accumulation of M-MDSCs in the tumor microenvironment. Taken together, our findings indicate that IL-18 specifically enhances the differentiation and function of M-MDSCs, leading to immunosuppression.

  5. Interleukin (IL)-18, cooperatively with IL-23, induces prominent inflammation and enhances psoriasis-like epidermal hyperplasia.

    PubMed

    Shimoura, Noriko; Nagai, Hiroshi; Fujiwara, Susumu; Jimbo, Haruki; Yoshimoto, Takayuki; Nishigori, Chikako

    2017-05-01

    The interleukin (IL)-23/IL-17 axis is strongly implicated in the pathogenesis of psoriasis. Previous studies showed that IL-18 was elevated in early active and progressive plaque-type psoriatic lesions and that serum or plasma levels of IL-18 correlated with the Psoriasis Area and Severity Index. However, the mechanism whereby IL-18 affects disease severity remains unknown. In this study, we investigated the effects of IL-18 on a psoriasis-like skin inflammation model induced by recombinant mouse IL-23. We found that IL-18, cooperatively with IL-23, induced prominent inflammation and enhanced psoriasis-like epidermal hyperplasia. In the skin of mice treated with IL-23 plus IL-18, the expression of interferon-γ was significantly upregulated and that of chemokine (C-X-C motif) ligand 9 (CXCL9) was synergistically increased. Histologically, strong positive signals of CXCL9 were observed around the infiltrating inflammatory cells. The current results suggest that IL-18 might synergize with IL-23 to induce a T helper 1 immune reaction, without inhibiting the IL-23/IL-17 axis, and thus may aggravate psoriatic inflammation.

  6. Role of IL-18 in atopic asthma is determined by balance of IL-18/IL-18BP/IL-18R.

    PubMed

    Zhang, Huiyun; Wang, Junling; Wang, Ling; Xie, Hua; Chen, Liping; He, Shaoheng

    2017-09-18

    It is recognized that IL-18 is related to development of asthma, but role of IL-18 in asthma remains controversial and confusing. This is largely due to lack of information on expression of IL-18 binding protein (BP) and IL-18 receptor (R) in asthma. In this study, we found that plasma levels of IL-18 and IL-18BP were elevated in asthma. The ratio between plasma concentrations of IL-18 and IL-18BP was 1:12.8 in asthma patients. We demonstrated that 13-fold more monocytes, 17.5-fold more neutrophils and 4.1-fold more B cells express IL-18BP than IL-18 in asthmatic blood, suggesting that there is excessive amount of IL-18BP to abolish actions of IL-18 in asthma. We also discovered that more IL-18R+ monocytes, neutrophils and B cells are located in asthmatic blood. Once injected, IL-18 eliminated IL-18R+ monocytes in blood, but up-regulated expression of IL-18R in lung macrophages of OVA-sensitized mice. Our data clearly indicate that the role of IL-18 in asthma is very likely to be determined by balance of IL-18/IL-18BP/IL-18R expression in inflammatory cells. Therefore, IL-18R blocking or IL-18BP activity enhancing therapies may be useful for treatment of asthma. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Interleukin-18 enhances IL-18R/Nox1 binding, and mediates TRAF3IP2-dependent smooth muscle cell migration. Inhibition by simvastatin

    PubMed Central

    Valente, Anthony J.; Yoshida, Tadashi; Izadpanah, Reza; Delafontaine, Patrice; Siebenlist, Ulrich; Chandrasekar, Bysani

    2013-01-01

    We investigated the role of TRAF3 interacting protein 2 (TRAF3IP2), a redox-sensitive adapter protein and an upstream regulator of IKK and JNK in interleukin (IL)-18 induced smooth muscle cell migration, and the mechanism of its inhibition by simvastatin. The pleiotropic cytokine IL-18 induced human coronary artery SMC migration through the induction of TRAF3IP2. IL-18 induced Nox1-dependent ROS generation, TRAF3IP2 expression, and IKK/NF-κB and JNK/AP-1 activation. IL-18 induced its own expression and that of its receptor subunit IL-18Rα. Using co-IP/IB and GST pull-down assays, we show for the first time that the subunits of the IL-18R heterodimer physically associate with Nox1 under basal conditions, and IL-18 appears to enhance their binding. Importantly, the HMG-coA reductase inhibitor simvastatin attenuated IL-18-induced TRAF3IP2 induction. These inhibitory effects were reversed by mevalonate and geranylgeranylpyrophosphate (GGPP), but not by farnesylpyrophosphate (FPP). Interestingly, simvastatin, GGPP, FPP, or Rac1 inhibition did not modulate ectopically expressed TRAF3IP2. The promigratory effects of IL-18 are mediated through TRAF3IP2 in a redox-sensitive manner, and this may involve IL-18R/Nox1 physical association. Further, Simvastatin inhibits inducible, but not ectopically-expressed TRAF3IP2. Targeting TRAF3IP2 may blunt progression of hyperplastic vascular diseases in vivo. PMID:23541442

  8. IL-18 enhances collagen-induced arthritis by recruiting neutrophils via TNF-alpha and leukotriene B4.

    PubMed

    Canetti, Claudio A; Leung, Bernard P; Culshaw, Shauna; McInnes, Iain B; Cunha, Fernando Q; Liew, Foo Y; Cannetti, Claudio A

    2003-07-15

    IL-18 expression and functional activity have been associated with a range of autoimmune diseases. However, the precise mechanism by which IL-18 induces such pathology remains unclear. In this study we provide direct evidence that IL-18 activates neutrophils via TNF-alpha induction, which drives the production of leukotriene B(4) (LTB(4)), which in turn leads to neutrophil accumulation and subsequent local inflammation. rIL-18 administered i.p. resulted in the local synthesis of LTB(4) and a rapid influx of neutrophils into the peritoneal cavity, which could be effectively blocked by the LTB(4) synthesis inhibitor MK-886 (MK) or its receptor antagonist CP-105,696. IL-18-induced neutrophils recruitment and LTB(4) production could also be blocked by a neutralizing anti-TNF-alpha Ab. In addition, IL-18 failed to induce neutrophil accumulation in vivo in TNFRp55(-/-) mice. In an IL-18-dependent murine collagen-induced arthritis model, administration of MK significantly inhibited disease severity and reduced articular inflammation and joint destruction. Furthermore, MK-886-treated mice also displayed suppressed proinflammatory cytokine production in response to type II collagen in vitro. Finally, we showed that IL-18-activated human peripheral blood neutrophils produced significant amounts of LTB(4) that were effectively blocked by the MK. Together, these findings provide a novel mechanism whereby IL-18 can promote inflammatory diseases.

  9. Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation

    PubMed Central

    Kong, Ping; Gonzalez-Quesada, Carlos; Li, Na; Cavalera, Michele; Lee, Dong-Wook

    2013-01-01

    As a typical matricellular protein, thrombospondin (TSP)-1, binds to the structural matrix and regulates cellular behavior by modulating growth factor and cytokine signaling. Obesity and diabetes are associated with marked upregulation of TSP-1 in adipose tissue. We hypothesized that endogenous TSP-1 may play an important role in the pathogenesis of diet-induced obesity and metabolic dysfunction. Accordingly, we examined the effects of TSP-1 gene disruption on weight gain, adiposity, and adipose tissue inflammation in mice receiving a high-fat diet (HFD: 60% fat, 20% carbohydrate) or a high-carbohydrate low-fat diet (HCLFD: 10% fat, 70% carbohydrate). HFD mice had significantly higher TSP-1 expression in perigonadal adipose tissue; TSP-1 was predominantly localized in the adipose interstitium. TSP-1 loss attenuated weight gain and fat accumulation in HFD and HCLFD groups. Compared with corresponding wild-type animals, TSP-1-null mice had decreased insulin levels but exhibited elevated free fatty acid and triglyceride levels, suggesting impaired fatty acid uptake. TSP-1 loss did not affect adipocyte size and had no effect on adipose vascular density. However, TSP-1-null mice exhibited attenuated tumor necrosis factor-α mRNA expression and reduced macrophage infiltration, suggesting a role for TSP-1 in mediating obesity-associated inflammation. In vitro, TSP-1 enhanced proliferation of 3T3-L1 preadipocytes but did not modulate inflammatory cytokine and chemokine synthesis. In conclusion, TSP-1 upregulation contributes to weight gain, adipose growth, and the pathogenesis of metabolic dysfunction. The effects of TSP-1 may involve stimulation of adipocyte proliferation, activation of inflammatory signaling, and facilitated fatty acid uptake by adipocytes. PMID:23757408

  10. Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide–mediated vascular smooth muscle relaxation

    PubMed Central

    Isenberg, Jeff S.; Hyodo, Fuminori; Matsumoto, Ken-Ichiro; Romeo, Martin J.; Abu-Asab, Mones; Tsokos, Maria; Kuppusamy, Periannan; Wink, David A.; Krishna, Murali C.

    2007-01-01

    The nitric oxide (NO)/cGMP pathway, by relaxing vascular smooth muscle cells, is a major physiologic regulator of tissue perfusion. We now identify thrombospondin-1 as a potent antagonist of NO for regulating F-actin assembly and myosin light chain phosphorylation in vascular smooth muscle cells. Thrombospondin-1 prevents NO-mediated relaxation of precontracted vascular smooth muscle cells in a collagen matrix. Functional magnetic resonance imaging demonstrated that an NO-mediated increase in skeletal muscle perfusion was enhanced in thrombospondin-1–null relative to wild-type mice, implicating endogenous thrombospondin-1 as a physiologic antagonist of NO-mediated vasodilation. Using a random myocutaneous flap model for ischemic injury, tissue survival was significantly enhanced in thrombospondin-1–null mice. Improved flap survival correlated with increased recovery of oxygen levels in the ischemic tissue of thrombospondin-1–null mice as measured by electron paramagnetic resonance oximetry. These findings demonstrate an important antag-onistic relation between NO/cGMP signaling and thrombospondin-1 in vascular smooth muscle cells to regulate vascular tone and tissue perfusion. PMID:17082319

  11. Feline Leukemia Virus DNA Vaccine Efficacy Is Enhanced by Coadministration with Interleukin-12 (IL-12) and IL-18 Expression Vectors

    PubMed Central

    Hanlon, Linda; Argyle, David; Bain, Derek; Nicolson, Lesley; Dunham, Stephen; Golder, Matthew C.; McDonald, Michael; McGillivray, Christine; Jarrett, Oswald; Neil, James C.; Onions, David E.

    2001-01-01

    The expectation that cell-mediated immunity is important in the control of feline leukemia virus (FeLV) infection led us to test a DNA vaccine administered alone or with cytokines that favored the development of a Th1 immune response. The vaccine consisted of two plasmids, one expressing the gag/pol genes and the other expressing the env gene of FeLV-A/Glasgow-1. The genetic adjuvants were plasmids encoding the feline cytokines interleukin-12 (IL-12), IL-18, or gamma interferon (IFN-γ). Kittens were immunized by three intramuscular inoculations of the FeLV DNA vaccine alone or in combination with plasmids expressing IFN-γ, IL-12, or both IL-12 and IL-18. Control kittens were inoculated with empty plasmid. Following immunization, anti-FeLV antibodies were not detected in any kitten. Three weeks after the final immunization, the kittens were challenged by the intraperitoneal inoculation of FeLV-A/Glasgow-1 and were then monitored for a further 15 weeks for the presence of virus in plasma and, at the end of the trial, for latent virus in bone marrow. The vaccine consisting of FeLV DNA with the IL-12 and IL-18 genes conferred significant immunity, protecting completely against transient and persistent viremia, and in five of six kittens protecting against latent infection. None of the other vaccines provided significant protection. PMID:11507187

  12. Pressure overload induces IL-18 and IL-18R expression, but markedly suppresses IL-18BP expression in a rabbit model. IL-18 potentiates TNF-α-induced cardiomyocyte death.

    PubMed

    Yoshida, Tadashi; Friehs, Ingeborg; Mummidi, Srinivas; del Nido, Pedro J; Addulnour-Nakhoul, Solange; Delafontaine, Patrice; Valente, Anthony J; Chandrasekar, Bysani

    2014-10-01

    Recurrent or sustained inflammation plays a causal role in the development and progression of left ventricular hypertrophy (LVH) and its transition to failure. Interleukin (IL)-18 is a potent pro-hypertrophic inflammatory cytokine. We report that induction of pressure overload in the rabbit, by constriction of the descending thoracic aorta induces compensatory hypertrophy at 4weeks (mass/volume ratio: 1.7±0.11) and ventricular dilatation indicative of heart failure at 6weeks (mass/volume ratio: 0.7±0.04). In concordance with this, fractional shortening was preserved at 4weeks, but markedly attenuated at 6weeks. We cloned rabbit IL-18, IL-18Rα, IL-18Rβ, and IL-18 binding protein (IL-18BP) cDNA, and show that pressure overload, while enhancing IL-18 and IL-18R expression in hypertrophied and failing hearts, markedly attenuated the level of expression of the endogenous IL-18 antagonist IL-18BP. Cyclical mechanical stretch (10% cyclic equibiaxial stretch, 1Hz) induced hypertrophy of primary rabbit cardiomyocytes in vitro and enhanced ANP, IL-18, and IL-18Rα expression. Further, treatment with rhIL-18 induced its own expression and that of IL-18Rα via AP-1 activation, and induced cardiomyocyte hypertrophy in part via PI3K/Akt/GATA4 signaling. In contrast, IL-18 potentiated TNF-α-induced cardiomyocyte death, and by itself induced cardiac endothelial cell death. These results demonstrate that pressure overload is associated with enhanced IL-18 and its receptor expression in hypertrophied and failingrabbit hearts. Since IL-18BP expression is markedly inhibited, our results indicate a positive amplification in IL-18 proinflammatory signaling during pressure overload, and suggest IL-18 as a potential therapeutic target in pathological hypertrophy and cardiac failure.

  13. Thrombospondin-1 in von Willebrand factor function.

    PubMed

    Bonnefoy, Arnaud; Hoylaerts, Marc F

    2008-10-01

    Thrombospondin-1 (TSP1), expressed in many cells and tissues is abundantly present in platelet alpha-granules, from where it is released upon platelet activation. Murine Tsp1(-/-) platelet studies have revealed that TSP1 is redundant for platelet aggregation, but that it reinforces platelet aggregate stabilization, especially in a shear field. von Willebrand factor (VWF), synthesized by megakaryocytes and endothelial cells is stored both in platelet alpha-granules and in endothelial Weibel-Palade bodies as ultralarge multimers. When released from endothelial cells, these multimers are temporarily retained on the endothelium, to be cleaved by the plasma protease ADAMTS13 into smaller and hemostatically less reactive multimers, released in plasma. This protease shows partial sequence identity with the type 1 (TSR1) and type 2 (TSR2) repeats of TSP1 and contains 1 TSR1 and 6 TSR2 repeats. TSP1, locally released by platelets, competes with ADAMTS13 during VWF proteolysis and controls the degree of VWF multimer processing. In addition, TSP1 and VWF both interact with the platelet GPIb/V/IX membrane complex, primarily in flow. These interactions control the recruitment of platelets to (sub) endothelial VWF and TSP1, exposed to the circulation, as a consequence of vascular inflammation and endothelial injury. TSP1-VWF interactions do not strictly enhance platelet recruitment and secreted TSP1 even weakly competes with the dynamic platelet rolling and adhesion onto VWF. Hence, TSP1 and VWF show partially related hemostatic functions, the most important one being the TSP1 role in the ADAMTS13 operated VWF multimer processing, in pro-inflammatory and thrombogenic conditions.

  14. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP.

    PubMed

    Fabbi, Marina; Carbotti, Grazia; Ferrini, Silvano

    2015-04-01

    IL-18 is a proinflammatory and immune regulatory cytokine, member of the IL-1 family. IL-18 was initially identified as an IFN-γ-inducing factor in T and NK cells, involved in Th1 responses. IL-18 is produced as an inactive precursor (pro-IL-18) that is enzymatically processed into a mature form by Casp1. Different cells, such as macrophages, DCs, microglial cells, synovial fibroblasts, and epithelial cells, express pro-IL-18, and the production of bioactive IL-18 is mainly regulated at the processing level. PAMP or DAMP molecules activate inflammasomes, which trigger Casp1 activation and IL-18 conversion. The natural inhibitor IL-18BP , whose production is enhanced by IFN-γ and IL-27, further regulates IL-18 activity in the extracellular environment. Inflammasomes and IL-18 represent double-edged swords in cancer, as their activation may promote tumor development and progression or oppositely, enhance anti-tumor immunity and limit tumor growth. IL-18 has shown anti-tumor activity in different preclinical models of cancer immunotherapy through the activation of NK and/or T cell responses and has been tested in clinical studies in cancer patients. However, the dual role of IL-18 in different experimental tumor models and human cancers raises critical issues on its therapeutic use in cancer. This review will summarize the biology of the IL-18/IL-18R/IL-18BP system and will address the role of IL-18 and its inhibitor, IL-18BP, in cancer biology and immunotherapy. © Society for Leukocyte Biology.

  15. IL-18BP is decreased in osteoporotic women: Prevents Inflammasome mediated IL-18 activation and reduces Th17 differentiation

    PubMed Central

    Mansoori, Mohd Nizam; Shukla, Priyanka; Kakaji, Manisha; Tyagi, Abdul M; Srivastava, Kamini; Shukla, Manoj; Dixit, Manisha; Kureel, Jyoti; Gupta, Sushil; Singh, Divya

    2016-01-01

    IL-18BP is a natural antagonist of pro-inflammatory IL-18 cytokine linked to autoimmune disorders like rheumatoid arthritis. However, its role in post menopausal osteoporosis is still unknown. In this study, we investigated the role of IL-18BP on murine osteoblasts, its effect on osteoblasts-CD4+ T cells and osteoblasts-CD11b+ macrophage co-culture. mIL-18BPd enhances osteoblast differentiation and inhibits the activation of NLRP3 inflammasome and caspase-1 which process IL-18 to its active form. Using estrogen deficient mice, we also determined the effect of mIL-18BP on various immune and skeletal parameters. Ovariectomized mice treated with mIL-18BPd exhibited decrease in Th17/Treg ratio and pro-inflammatory cytokines. mIL-18BPd treatment restored trabecular microarchitecture, preserved cortical bone parameters likely attributed to an increased number of bone lining cells and reduced osteoclastogenesis. Importantly, these results were corroborated in female osteoporotic subjects where decreased serum IL-18BP levels and enhanced serum IL-18 levels were observed. Our study forms a strong basis for using humanized IL-18BP towards the treatment of postmenopausal osteoporosis. PMID:27649785

  16. Endogenous thrombospondin-1 regulates leukocyte recruitment and activation and accelerates death from systemic candidiasis.

    PubMed

    Martin-Manso, Gema; Navarathna, Dhammika H M L P; Galli, Susana; Soto-Pantoja, David R; Kuznetsova, Svetlana A; Tsokos, Maria; Roberts, David D

    2012-01-01

    Disseminated Candida albicans infection results in high morbidity and mortality despite treatment with existing antifungal drugs. Recent studies suggest that modulating the host immune response can improve survival, but specific host targets for accomplishing this goal remain to be identified. The extracellular matrix protein thrombospondin-1 is released at sites of tissue injury and modulates several immune functions, but its role in C. albicans pathogenesis has not been investigated. Here, we show that mice lacking thrombospondin-1 have an advantage in surviving disseminated candidiasis and more efficiently clear the initial colonization from kidneys despite exhibiting fewer infiltrating leukocytes. By examining local and systemic cytokine responses to C. albicans and other standard inflammatory stimuli, we identify a crucial function of phagocytes in this enhanced resistance. Subcutaneous air pouch and systemic candidiasis models demonstrated that endogenous thrombospondin-1 enhances the early innate immune response against C. albicans and promotes activation of inflammatory macrophages (inducible nitric oxide synthase⁺, IL-6(high), TNF-α(high), IL-10(low)), release of the chemokines MIP-2, JE, MIP-1α, and RANTES, and CXCR2-driven polymorphonuclear leukocytes recruitment. However, thrombospondin-1 inhibited the phagocytic capacity of inflammatory leukocytes in vivo and in vitro, resulting in increased fungal burden in the kidney and increased mortality in wild type mice. Thus, thrombospondin-1 enhances the pathogenesis of disseminated candidiasis by creating an imbalance in the host immune response that ultimately leads to reduced phagocytic function, impaired fungal clearance, and increased mortality. Conversely, inhibitors of thrombospondin-1 may be useful drugs to improve patient recovery from disseminated candidiasis.

  17. Autocrine stimulation of clear-cell renal carcinoma cell migration in hypoxia via HIF-independent suppression of thrombospondin-1

    PubMed Central

    Bienes-Martínez, Raquel; Ordóñez, Angel; Feijoo-Cuaresma, Mónica; Corral-Escariz, María; Mateo, Gloria; Stenina, Olga; Jiménez, Benilde; Calzada, María J.

    2012-01-01

    Thrombospondin-1 is a matricellular protein with potent antitumour activities, the levels of which determine the fate of many different tumours, including renal carcinomas. However, the factors that regulate this protein remain unclear. In renal carcinomas, hypoxic conditions enhance the expression of angiogenic factors that help adapt tumour cells to their hostile environment. Therefore, we hypothesized that anti-angiogenic factors should correspondingly be dampened. Indeed, we found that hypoxia decreased the thrombospondin-1 protein in several clear cell renal carcinoma cell lines (ccRCC), although no transcriptional regulation was observed. Furthermore, we proved that hypoxia stimulates multiple signals that independently contribute to diminish thrombospondin-1 in ccRCC, which include a decrease in the activity of oxygen-dependent prolylhydroxylases (PHDs) and activation of the PI3K/Akt signalling pathway. In addition, thrombospondin-1 regulation in hypoxia proved to be important for ccRCC cell migration and invasion. PMID:23145312

  18. ApoE−/− PGC-1α−/− Mice Display Reduced IL-18 Levels and Do Not Develop Enhanced Atherosclerosis

    PubMed Central

    Stein, Sokrates; Lohmann, Christine; Handschin, Christoph; Stenfeldt, Elin; Borén, Jan; Lüscher, Thomas F.; Matter, Christian M.

    2010-01-01

    Background Atherosclerosis is a chronic inflammatory disease that evolves from the interaction of activated endothelial cells, macrophages, lymphocytes and modified lipoproteins (LDLs). In the last years many molecules with crucial metabolic functions have been shown to prevent important steps in the progression of atherogenesis, including peroxisome proliferator activated receptors (PPARs) and the class III histone deacetylase (HDAC) SIRT1. The PPARγ coactivator 1 alpha (Ppargc1a or PGC-1α) was identified as an important transcriptional cofactor of PPARγ and is activated by SIRT1. The aim of this study was to analyze total PGC-1α deficiency in an atherosclerotic mouse model. Methodology/Principal Findings To investigate if total PGC-1α deficiency affects atherosclerosis, we compared ApoE−/− PGC-1α−/− and ApoE−/− PGC-1α+/+ mice kept on a high cholesterol diet. Despite having more macrophages and a higher ICAM-1 expression in plaques, ApoE−/− PGC-1α−/− did not display more or larger atherosclerotic plaques than their ApoE−/− PGC-1α+/+ littermates. In line with the previously published phenotype of PGC-1α−/− mice, ApoE−/− PGC-1α−/− mice had marked reduced body, liver and epididymal white adipose tissue (WAT) weight. VLDL/LDL-cholesterol and triglyceride contents were also reduced. Aortic expression of PPARα and PPARγ, two crucial regulators for adipocyte differentitation and glucose and lipid metabolism, as well as the expression of some PPAR target genes was significantly reduced in ApoE−/− PGC-1α−/− mice. Importantly, the epididymal WAT and aortic expression of IL-18 and IL-18 plasma levels, a pro-atherosclerotic cytokine, was markedly reduced in ApoE−/− PGC-1α−/− mice. Conclusions/Significance ApoE−/− PGC-1α−/− mice, similar as PGC-1α−/− mice exhibit markedly reduced total body and visceral fat weight. Since inflammation of visceral fat is a crucial trigger of atherogenesis, decreased

  19. IL-18 and Cutaneous Inflammatory Diseases

    PubMed Central

    Lee, Ji hyun; Cho, Dae Ho; Park, Hyun Jeong

    2015-01-01

    Interleukin (IL)-18, an IL-1 family cytokine, is a pleiotropic immune regulator. IL-18 plays a strong proinflammatory role by inducing interferon (IFN)-γ. Previous studies have implicated IL-18 in the pathogenesis of various diseases. However, it is not well understood biologic activities of IL-18 in the diverse skin diseases. Here, we have reviewed the expression and function of IL-18 in skin diseases including inflammatory diseases. This article provides an evidence-based understanding of the role of IL-18 in skin diseases and its relationship with disease activities. PMID:26690141

  20. Cellular localization of IL-18 and IL-18 receptor in pig anterior pituitary gland.

    PubMed

    Nagai, Yasuhiro; Watanabe, Kouichi; Aso, Hisashi; Ohwada, Shyuichi; Muneta, Yoshihiro; Yamaguchi, Takahiro

    2006-02-01

    Pro-inflammatory cytokine interleukin 18 (IL-18) has been proposed to have a role in modulating immuno-endocrine functions. Our previous study showed that IL-18 and IL-18 receptor (IL-18R) colocalized in somatotrophs of the bovine anterior pituitary gland, and the possibility that IL-18 acts on somatotrophs as an autocrine factor. In the present study, we investigated the localization of IL-18 and IL-18R in the pig anterior pituitary gland. RT-PCR analysis showed the expression of IL-18 and IL-18R mRNAin the pig anterior pituitary gland. Immunohistochemistry of IL-18 and specific hormones revealed the presence of IL-18 in somatotrophs, mammotrophs, thyrotrophs and gonadotrophs. IL-18R was localized in somatotrophs and thyrotrophs. Furthermore, the somatotrophs immunoreactive for IL-18 did not contain IL-18R. Thus, IL-18R and IL-18 were not colocalized in an identical somatotroph. These findings suggest that the localization of IL-18 in pig somatotrophs is different from that in bovine somatotrophs, although IL-18 closely associates with somatotrophs in the anterior pituitary glands in both species.

  1. A novel cancer therapeutic using thrombospondin 1 in dendritic cells.

    PubMed

    Weng, Tzu-Yang; Huang, Shih-Shien; Yen, Meng-Chi; Lin, Chi-Chen; Chen, Yi-Ling; Lin, Chiu-Mei; Chen, Wei-Ching; Wang, Chih-Yang; Chang, Jang-Yang; Lai, Ming-Derg

    2014-02-01

    Induction of thrombospondin 1 (TSP-1) is generally assumed to suppress tumor growth through inhibiting angiogenesis; however, it is less clear how TSP-1 in dendritic cells (DCs) influences tumor progression. We investigated tumor growth and immune mechanism by downregulation of TSP-1 in dendritic cells. Administration of TSP-1 small hairpin RNA (shRNA) through the skin produced anticancer therapeutic effects. Tumor-infiltrating CD4(+) and CD8(+) T cells were increased after the administration of TSP-1 shRNA. The expression of interleukin-12 and interferon-γ in the lymph nodes was enhanced by injection of TSP-1 shRNA. Lymphocytes from the mice injected with TSP-1 shRNA selectively killed the tumor cells, and the cytotoxicity of lymphocytes was abolished by depletion of CD8(+) T cells. Injection of CD11c(+) TSP-1-knockout (TSP-1-KO) bone marrow-derived DCs (BMDCs) delayed tumor growth in tumor-bearing mice. Similarly, antitumor activity induced by TSP-1-KO BMDCs was abrogated by depletion of CD8(+) T cells. In contrast, the administration of shRNAs targeting TSP-2, another TSP family member, did not extend the survival of tumor-bearing mice. Finally, TSP-1 shRNA functioned as an immunotherapeutic adjuvant to augment the therapeutic efficacy of Neu DNA vaccination. Collectively, the downregulation of TSP-1 in DCs produces an effective antitumor response that is opposite to the protumor effects by silencing of TSP-1 within tumor cells.

  2. [Role of thrombospondin-1 in the development of kidney diseases].

    PubMed

    Bigé, Naïke; Boffa, Jean-Jacques; Lepeytre, Fanny; Shweke, Nasim

    2013-12-01

    Thrombospondin-1 (TSP-1) is a 450-kDa matricellar glycoprotein. By its various domains, it can interact with various partners and exhibit anti-angiogenic, pro-apoptotic and immunomodulatory activities. TSP-1 is also a major endogenous activator of the pro-fibrotic growth factor TGF-β. In healthy adult renal parenchyma, TSP-1 expression is very scarce and limited to Bowman's capsule and interstitium. During nephropathies, many cell types can express or secrete TSP-1 (mesangial, endothelial, smooth muscle, tubular cells, podocytes and fibroblasts) depending on the nature of injury and the evolutive stage of the disease. Inhibition of the different domains of TSP-1 using specific antibodies or peptides, blockade of TSP-1 expression by antisense oligonucleotides and use of knock-out mice, allowed to identify the role of TSP-1 in various models of experimental nephropathy. All these studies demonstrated a deleterious effect of TSP-1 on renal repair by inducing TGF-β and fibrosis, decreasing VEGF and capillary density, and enhancing inflammatory cells recruitment. Thus, TSP-1 represents a potential therapeutic target for the management of chronic kidney diseases.

  3. Interleukin-18 may lead to benign prostatic hyperplasia via thrombospondin-1 production in prostatic smooth muscle cells.

    PubMed

    Hamakawa, Takashi; Sasaki, Shoichi; Shibata, Yasuhiro; Imura, Makoto; Kubota, Yasue; Kojima, Yoshiyuki; Kohri, Kenjiro

    2014-05-01

    Although inflammation plays an important role in the development of benign prostatic hyperplasia (BPH), little is known about the exact mechanism underlying this pathogenesis. Here, we investigated the relationship between the inflammatory reaction and BPH. cDNA microarray analysis was used to identify changes in inflammation-related gene expression in a recently established rat model that mimics human BPH. To investigate the genes identified in the analysis, quantitative (q)RT-PCR, Western blotting, immunostaining, and a cell proliferation assay were conducted using BPH model tissues, human prostate tissues, and normal human prostate cultured cells. Of the 31,100 genes identified in the cDNA analysis, seven inflammatory-response-related genes were expressed at a >2-fold higher level in rat BPH tissues than in normal rat prostate tissues. The levels of the most commonly expressed pro-inflammatory cytokine, IL-18, significantly increased in rat BPH tissues. In humans, IL-18 was localized in the epithelial and stromal components, while its receptor was strongly localized in smooth muscle cells. Furthermore, in human prostate smooth muscle cell line (PrSMC), IL-18 effected dose-dependent increases in the phosphorylated Akt and thrombospondin-1 (TSP-1) levels. TSP-1 promoted proliferation of the human prostate stromal cells (PrSC). IL-18 may act directly in BPH pathogenesis by inducing TSP-1 production in prostatic smooth muscle cells via Akt phosphorylation. © 2014 Wiley Periodicals, Inc.

  4. Increased adipose tissue expression of IL-18R and its ligand IL-18 associates with inflammation and insulin resistance in obesity.

    PubMed

    Ahmad, Rasheed; Thomas, Reeby; Kochumon, Shihab; Sindhu, Sardar

    2017-09-01

    The proinflammatory cytokine IL-18 is involved in the pathogenesis of metabolic syndrome. While the changes in IL-18 are known, IL-18R expression and relationship with IL-18 and other inflammatory markers in the adipose tissue in obesity/type-2 diabetes (T2D) remain unclear. We, therefore, determined the adipose tissue expression of IL-18R and IL-18 mRNA/protein in lean, overweight, and obese individuals with and without T2D, 15 each, using qRT-PCR, immunohistochemistry, and confocal microscopy. Data (mean ± SEM) were analyzed using unpaired t-test and Pearson's correlation (r); all P values ≤0.05 were considered statistically significant. We found the upregulated gene/protein expression of IL-18R and IL-18 in non-diabetic obese/overweight as compared with lean individuals (P < 0.05). BMI correlated positively (P < 0.05) with the adipose tissue expression of IL-18R (mRNA: r = 0.90 protein: r = 0.84) and IL-18 (mRNA: r = 0.84 protein: r = 0.80). Similarly, in T2D individuals, gene and protein expression of IL-18R/IL-18 was significantly higher in obese as compared with overweight/lean individuals. The BMI was associated with the changes in both IL-18R (mRNA: r = 0.55 protein: r = 0.50) and IL-18 (mRNA: r = 0.53 protein: r = 0.57) expression. IL-18R/IL-18 gene expression in the adipose tissue was positively associated (P < 0.05) with local gene expression of other inflammatory markers including CD11c, CD86, CD68, CD163, TNF-α, and CCL5. Homeostatic model assessment of insulin resistance (HOMA-IR) was higher in diabetic/non-diabetic obese and it correlated with BMI (P < 0.05). IL-18R and IL-18 mRNA/protein expression in obesity was associated with HOMA-IR only in non-diabetics. The adipose tissue IL-18R/IL-18 expression is enhanced in obesity which associates with proinflammatory gene signature and insulin resistance in these individuals. © 2017 The Authors. Immunity, Inflammation and Disease Published by John

  5. Interleukin (IL)-18 Binding Protein Deficiency Disrupts Natural Killer Cell Maturation and Diminishes Circulating IL-18.

    PubMed

    Harms, Robert Z; Creer, Austin J; Lorenzo-Arteaga, Kristina M; Ostlund, Katie R; Sarvetnick, Nora E

    2017-01-01

    The cytokine interleukin (IL)-18 is a crucial amplifier of natural killer (NK) cell function. IL-18 signaling is regulated by the inhibitory effects of IL-18 binding protein (IL-18BP). Using mice deficient in IL-18BP (IL-18BPKO), we investigated the impact of mismanaged IL-18 signaling on NK cells. We found an overall reduced abundance of splenic NK cells in the absence of IL-18BP. Closer examination of NK cell subsets in spleen and bone marrow using CD27 and CD11b expression revealed that immature NK cells were increased in abundance, while the mature population of NK cells was reduced. Also, NK cells were polarized to greater production of TNF-α, while dedicated IFN-γ producers were reduced. A novel subset of IL-18 receptor α(-) NK cells contributed to the expansion of immature NK cells in IL-18BPKO mice. Splenocytes cultured with IL-18 resulted in alterations similar to those observed in IL-18BP deficiency. NK cell changes were associated with significantly reduced levels of circulating plasma IL-18. However, IL-18BPKO mice exhibited normal weight gain and responded to LPS challenge with a >10-fold increase in IFN-γ compared to wild type. Finally, we identified that the source of splenic IL-18BP was among dendritic cells/macrophage localized to the T cell-rich regions of the spleen. Our results demonstrate that IL-18BP is required for normal NK cell abundance and function and also contributes to maintaining steady-state levels of circulating IL-18. Thus, IL-18BP appears to have functions suggestive of a carrier protein, not just an inhibitor.

  6. Interleukin (IL)-18 Binding Protein Deficiency Disrupts Natural Killer Cell Maturation and Diminishes Circulating IL-18

    PubMed Central

    Harms, Robert Z.; Creer, Austin J.; Lorenzo-Arteaga, Kristina M.; Ostlund, Katie R.; Sarvetnick, Nora E.

    2017-01-01

    The cytokine interleukin (IL)-18 is a crucial amplifier of natural killer (NK) cell function. IL-18 signaling is regulated by the inhibitory effects of IL-18 binding protein (IL-18BP). Using mice deficient in IL-18BP (IL-18BPKO), we investigated the impact of mismanaged IL-18 signaling on NK cells. We found an overall reduced abundance of splenic NK cells in the absence of IL-18BP. Closer examination of NK cell subsets in spleen and bone marrow using CD27 and CD11b expression revealed that immature NK cells were increased in abundance, while the mature population of NK cells was reduced. Also, NK cells were polarized to greater production of TNF-α, while dedicated IFN-γ producers were reduced. A novel subset of IL-18 receptor α− NK cells contributed to the expansion of immature NK cells in IL-18BPKO mice. Splenocytes cultured with IL-18 resulted in alterations similar to those observed in IL-18BP deficiency. NK cell changes were associated with significantly reduced levels of circulating plasma IL-18. However, IL-18BPKO mice exhibited normal weight gain and responded to LPS challenge with a >10-fold increase in IFN-γ compared to wild type. Finally, we identified that the source of splenic IL-18BP was among dendritic cells/macrophage localized to the T cell-rich regions of the spleen. Our results demonstrate that IL-18BP is required for normal NK cell abundance and function and also contributes to maintaining steady-state levels of circulating IL-18. Thus, IL-18BP appears to have functions suggestive of a carrier protein, not just an inhibitor. PMID:28900426

  7. Variola Virus IL-18 Binding Protein Interacts with Three Human IL-18 Residues That Are Part of a Binding Site for Human IL-18 Receptor Alpha Subunit

    PubMed Central

    Meng, Xiangzhi; Leman, Michael; Xiang, Yan

    2007-01-01

    Interleukin-18 (IL-18) plays an important role in host defense against microbial pathogens. Many poxviruses encode homologous IL-18 binding proteins (IL-18BP) that neutralize IL-18 activity. Here, we examined whether IL-18BP neutralizes IL-18 activity by binding to the same region of IL-18 where IL-18 receptor (IL-18R) binds. We introduced alanine substitutions to known receptor binding sites of human IL18, and found that only the substitution of Leu5 reduced the binding affinity of IL-18 with IL-18BP of variola virus (varvIL-18BP) by more than 4-fold. The substitutions of Lys53 and Ser55, which were not previously known to be part of the receptor binding site but that are spatially adjacent to Leu5, reduced the binding affinity to varvIL-18BP by approximately 100- and 7-fold, respectively. These two substitutions also reduced the binding affinity with human IL-18R alpha subunit (hIL-18Rα) by 4- and 2-fold, respectively. Altogether, our data shows that varvIL-18BP prevents IL-18 from binding to IL-18R by interacting with three residues that are part of the binding site for hIL-18Rα. PMID:16979683

  8. Dendritic spine pathology and thrombospondin-1 deficits in Down syndrome.

    PubMed

    Torres, Maria D; Garcia, Octavio; Tang, Cindy; Busciglio, Jorge

    2017-09-28

    Abnormal dendritic spine structure and function is one of the most prominent features associated with neurodevelopmental disorders including Down syndrome (DS). Defects in both spine morphology and spine density may underlie alterations in neuronal and synaptic plasticity, ultimately affecting cognitive ability. Here we briefly examine the role of astrocytes in spine alterations and more specifically the involvement of astrocyte-secreted thrombospondin 1 (TSP-1) deficits in spine and synaptic pathology in DS. Copyright © 2017. Published by Elsevier Inc.

  9. Elevated levels of circulating IL-18BP and perturbed regulation of IL-18 in schizophrenia

    PubMed Central

    2012-01-01

    Background The pleiotropic pro-inflammatory cytokine Interleukin (IL)-18 has been proposed to play a role in schizophrenia, since elevated circulating levels of its protein and altered frequencies of genetic variants in its molecular system are reported in schizophrenic patients. Methods We analyzed 77 patients with schizophrenia diagnosis (SCZ) and 77 healthy control subjects (HC) for serum concentration of both IL-18 and its natural inhibitor, the IL-18 binding protein (IL-18BP). Results We confirmed that serum levels of total IL-18 are significantly increased in SCZ, as compared to HC. However, due to a highly significant increase in levels of circulating IL-18BP in SCZ, as compared to HC, the levels of free, bioactive IL-18 are not significantly different between the two groups. In addition, the relationships between the levels of IL-18 and its inhibitor, as well as between the two molecules and age appear dissimilar for SCZ and HC. In particular, the elevated levels of IL-18BP, likely a consequence of the body’s attempt to counteract the early prominent inflammation which characterizes schizophrenia, are maintained in earlier and later stages of the disease. However, the IL-18BP elevation appears ineffective to balance the IL-18 system in younger SCZ patients, while in older patients the levels of circulating bioactive IL-18 are comparable to those of HC, if not lower. Conclusions In conclusion, these findings indicate that the IL-18 system is perturbed in schizophrenia, supporting the idea that this pro-inflammatory cytokine might be part of a pathway of genetic and environmental components for vulnerability to the disease. PMID:22913567

  10. Molecular and Functional Differences Induced in Thrombospondin-1 by the Single Nucleotide Polymorphism Associated with the Risk of Premature, Familial Myocardial Infarction*

    PubMed Central

    Narizhneva, Natalya V.; Byers-Ward, Vicky J.; Quinn, Martin J.; Zidar, Frank J.; Plow, Edward F.; Topol, Eric J.; Byzova, Tatiana V.

    2006-01-01

    A serine (Ser-700) amino acid rather than an asparagine (Asn-700) at residue 700 of thrombospondin-1 has been linked to an increased risk for development of premature, familial heart attacks. We now have identified both functional and structural differences between the Ser-700 and Asn-700 thrombospondin-1 variants. The Ser-700 variant increased the rate and extent of platelet aggregation and showed increased surface expression on platelets compared with the Asn-700 variant. These differences could be ascribed to an enhanced interaction of the Ser-700 variant with fibrinogen on the platelet surface and are consistent with a prothrombotic phenotype in Ser-700 individuals. The Ser-700 variant thrombospondin-1 was conformationally more labile than the Asn-700 variant as demonstrated by increased susceptibility to proteolytic digestion and enhanced susceptibility to unfolding by denaturants. These data suggest a potential molecular and cellular basis for a genetic risk factor associated with early onset myocar-dial infarction. PMID:15007078

  11. IL-1β and IL-18 inhibition of HIV-1 replication in Jurkat cells and PBMCs.

    PubMed

    Wang, Xue; Mbondji-Wonje, Christelle; Zhao, Jiangqin; Hewlett, Indira

    2016-05-13

    HIV-1 infection-induced apoptosis is able to ensure viral replication. The death of some CD4+ T cells residing in lymphoid tissues can be induced by HIV-1 infection through caspase-1 driven pyroptosis with release of cytokine of IL-1β and IL-18. It is not well known whether IL-1β and IL-18 affect HIV-1 replication in lymphocytic cells. Using susceptible lymphocytic cell line, Jurkat cells, and primary peripheral blood mononuclear cells (PBMCs), we studied the effects of IL-1β and IL-18 on HIV-1 replication. We found that treatment with exogenous IL-1β protein (rIL-1β) and IL-18 protein (rIL-18), or expression of IL-1β and IL-18 significantly reduced HIV-1 replication. HIV-1 infection enhanced caspase-3 expression and its activation, and had no effects on caspase-1 activity. Treatment with rIL-1β and rIL-18 dramatically lowered caspase-3 activity. IL-1β and IL-18 also played roles in diminishing reactivation of viral replication from latency in J1.1 cells. These results indicate that IL-1β and IL-18 are able to inhibit HIV-1 replication, and their effects may be due to signaling through apoptosis involved in inactivation of caspase-3 activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. [Elevated IL-18, IL-18 binding protein and IL-18 receptor in eosinophil-enriched blood cells in patients with asthma].

    PubMed

    Yuan, Leilei; Lu, Sijing; Zhang, Huiyun; Wang, Junling; Hu, Yalin; Wang, Ling; He, Shaoheng

    2017-04-01

    Objective To investigate the changes of interleukin-18 (IL-18), interleukin 18 binding protein (IL-18BP) and interleukin 18 receptor (IL-18R) expressions in eosinophil-enriched cells from asthmatic patients, and study the correlations among them. Methods Peripheral venous blood from asthmatic patients and normal subjects were collected and stimulated with the extracts of Artemisia pollen, dust mite, and Platanus pollen. The expressions of IL-18, IL-18BP and IL-18R in eosinophil-enriched blood cells were detected by flow cytometry, and the correlations among them were analyzed. Results The proportion of IL-18(+) cells in eosinophil-enriched cells from asthmatic patients increased 15-fold compared with normal subjects. The proportion of IL-18(+) cells increased about 1.3-fold and 1.5-fold in eosinophil-enriched cells from asthmatic patients whose blood was stimulated with dust mite and Platanus pollen extracts, respectively. The average fluorescence intensity (MFI) of IL-18BP(+) cells increased about 1.5-fold and the proportion of IL-18R(+) cells increased about 2-fold in eosinophil-enriched cells from asthmatic patients' blood stimulated with Platanus pollen extracts. In addition, the expressions of IL-18BP(+) cells and IL-18R(+) cells showed a positive correlation (r=0.639) in eosinophil-enriched cells from asthmatic patients stimulated with allergens. However, the expressions of IL-18, IL-18BP and IL-18R in eosinophil-enriched cells did not obviously change in normal subjects. Conclusion IL-18, IL-18R and IL-18BP expressed in eosinophils may be involved in the inflammatory reaction of asthma.

  13. Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1.

    PubMed

    Volpert, Olga V; Pili, Roberto; Sikder, Hashmat A; Nelius, Thomas; Zaichuk, Tetiana; Morris, Chad; Shiflett, Clinton B; Devlin, Meghann K; Conant, Katherine; Alani, Rhoda M

    2002-12-01

    Id proteins are helix-loop-helix transcription factors that regulate tumor angiogenesis. In order to identify downstream effectors of Id1 involved in the regulation of angiogenesis, we performed PCR-select subtractive hybridization on wild-type and Id1 knockout mouse embryo fibroblasts (MEFs). Here we demonstrate that thrombospondin-1 (TSP-1), a potent inhibitor of angiogenesis, is a target of transcriptional repression by Id1. We also show that Id1-null MEFs secrete an inhibitor of endothelial cell migration, which is completely inactivated by depletion of TSP-1. Furthermore, in vivo studies revealed decreased neovascularization in matrigel assays in Id1-null mice compared to their wild-type littermates. This decrease was completely reversed by a TSP-1 neutralizing antibody. We conclude that TSP-1 is a major target for Id1 effects on angiogenesis.

  14. Characterization of IL-18 expression and release in the pathogenesis of chronic rhinosinusitis.

    PubMed

    Okano, Mitsuhiro; Fujiwara, Tazuko; Makihara, Seiichiro; Fujiwara, Rumi; Higaki, Takaya; Kariya, Shin; Noda, Yohei; Haruna, Takenori; Nishizaki, Kazunori

    2013-01-01

    Interleukin-18 (IL-18) is a member of the IL-1 cytokine family that affects chronic inflammation. We sought to characterize IL-18 expression and investigate its release during chronic rhinosinusitis (CRS). The expression of IL-18 in nasal polyps (NPs) and uncinate tissues (UTs) from both CRS and non-CRS patients was examined via immunohistochemistry. After culturing dispersed NP cells (DNPCs) with or without various stimulations, IL-18 levels were measured in the culture supernatants. Furthermore, the effect of IL-18 neutralization on staphylococcus enterotoxin B (SEB)-induced cytokine production was also examined. Similar expression of IL-18 in the epithelial layers was observed between the NPs and UTs. However, there was a significantly higher number of IL-18(+) cells in the lamina propria from NPs compared to UTs without CRS. This increased number was significantly correlated with the radiological severity of sinusitis and local eosinophilia. After the dispersion, IL-18 was spontaneously released by NP cells in a phase-dependent manner. While SEB, fungal antigens, and TLR agonists did not enhance the release, exposure to protease or one cycle of a freeze-and-thaw treatment did induce release of IL-18 from rested DNPCs. In addition, neutralization of IL-18 significantly suppressed SEB-induced IL-5, IL-13, and IFN-γ, but not IL-17A production. These results suggest that the pro-inflammatory effect of IL-18 released by danger signals may be involved in the pathogenesis of CRS, which includes eosinophilic inflammation and NP formation, via the augmentation of both Th2- and Th1-associated cytokine production. Copyright © 2012 S. Karger AG, Basel.

  15. Thrombospondin-1 is a Central Regulator of Nitric Oxide Signaling in Vascular Physiology

    PubMed Central

    Isenberg, Jeff S.; Frazier, William A.; Roberts, David D.

    2008-01-01

    Thrombospondin-1 is secreted protein that modulates vascular cell behavior via several cell surface receptors. In vitro, nanomolar concentrations of thrombospondin-1 are required to alter endothelial and vascular smooth muscle cell adhesion, proliferation, motility, and survival. Yet, much lower levels of thrombospondin-1 are clearly functional in vivo. This discrepancy was explained with the discovery that the potency of thrombospondin-1 increases more than 100-fold in the presence of physiological levels of NO. Thrombospondin-1 binding to CD47 inhibits NO signaling by preventing cGMP synthesis and activation of its target cGMP-dependent protein kinase. This potent antagonism of NO signaling allows thrombospondin-1 to acutely constrict blood vessels, accelerate platelet aggregation and, if sustained, inhibit angiogenic responses. Acute antagonism of NO signaling by thrombospondin-1 is important for hemostasis but becomes detrimental for tissue survival of ischemic injuries. New therapeutic approaches targeting thrombospondin-1 or CD47 can improve recovery from ischemic injuries and overcome a deficit in NO-responsiveness in aging. PMID:18193160

  16. Age-dependent regulation of skeletal muscle mitochondria by the thrombospondin-1 receptor CD47.

    PubMed

    Frazier, Elfaridah P; Isenberg, Jeff S; Shiva, Sruti; Zhao, Lei; Schlesinger, Paul; Dimitry, Julie; Abu-Asab, Mones S; Tsokos, Maria; Roberts, David D; Frazier, William A

    2011-03-01

    CD47, a receptor for thrombospondin-1, limits two important regulatory axes: nitric oxide-cGMP signaling and cAMP signaling, both of which can promote mitochondrial biogenesis. Electron microscopy revealed increased mitochondrial densities in skeletal muscle from both CD47 null and thrombospondin-1 null mice. We further assessed the mitochondria status of CD47-null vs WT mice. Quantitative RT-PCR of RNA extracted from tissues of 3 month old mice revealed dramatically elevated expression of mRNAs encoding mitochondrial proteins and PGC-1α in both fast and slow-twitch skeletal muscle from CD47-null mice, but modest to no elevation in other tissues. These observations were confirmed by Western blotting of mitochondrial proteins. Relative amounts of electron transport enzymes and ATP/O(2) ratios of isolated mitochondria were not different between mitochondria from CD47-null and WT cells. Young CD47-null mice displayed enhanced treadmill endurance relative to WTs and CD47-null gastrocnemius had undergone fiber type switching to a slow-twitch pattern of myoglobin and myosin heavy chain expression. In 12 month old mice, both skeletal muscle mitochondrial volume density and endurance had decreased to wild type levels. Expression of myosin heavy chain isoforms and myoglobin also reverted to a fast twitch pattern in gastrocnemius. Both CD47 and TSP1 null mice are leaner than WTs, use less oxygen and produce less heat than WT mice. CD47-null cells produce substantially less reactive oxygen species than WT cells. These data indicate that loss of signaling from the TSP1-CD47 system promotes accumulation of normally functioning mitochondria in a tissue-specific and age-dependent fashion leading to enhanced physical performance, lower reactive oxygen species production and more efficient metabolism. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Thrombospondin-1 and VEGF in inflammatory bowel disease

    PubMed Central

    Alkim, Canan; Sakiz, Damlanur; Alkim, Huseyin; Livaoglu, Ayten; Kendir, Tulin; Demirsoy, Huseyin; Erdem, Levent; Akbayir, Nihat; Sokmen, Mehmet

    2012-01-01

    Background and aim Angiogenesis is an important process in the pathogenesis of chronic inflammation. We aimed to study the angiogeneic balance in inflammatory bowel disease (IBD) by evaluating the expression of vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) on colonic epithelial cells, together with the expression of inducible nitric oxide synthase (iNOS). Methods Twenty-one ulcerative colitis (UC), 14 Crohn's disease (CD), 11 colorectal cancer patients, and 11 healthy controls colonic biopsy samples were evaluated immunohistochemically. Results The expressions of TSP-1, VEGF, and iNOS in UC and CD groups were higher than expression in healthy control group, all with statistical significance. However, in colorectal cancer group, VEGF and iNOS expressions were increased importantly, but TSP-1 expression was not statistically different from healthy control group's expression. Both TSP-1 and VEGF expressions were correlated with iNOS expression distinctly but did not correlate with each other. Conclusions Both pro-angiogeneic VEGF and antiangiogeneic TSP-1 expressions were found increased in our IBD groups, but in colorectal cancer group, only VEGF expression was increased. TSP-1 increases in IBD patients as a response to inflammatory condition, but this increase was not enough to suppress pathologic angiogenesis and inflammation in IBD. PMID:22299021

  18. Thrombospondin 1 synthesis and function in wound repair.

    PubMed Central

    DiPietro, L. A.; Nissen, N. N.; Gamelli, R. L.; Koch, A. E.; Pyle, J. M.; Polverini, P. J.

    1996-01-01

    Thrombospondin 1 (TSP1) is a multifunctional extracellular matrix molecule that belongs to a family of homologous glycoproteins. TSP1 can be produced by many cell types that are involved in wound repair, including keratinocytes, fibroblasts, endothelial cells, and macrophages. To investigate the kinetics of TSP1 synthesis in wounds, mRNA from murine full thickness excisional dermal wounds was analyzed. TSP1 mRNA was undetectable in normal skin but was present in early wounds. After day 1, TSP1 mRNA levels within wounds slowly decreased, returning to undectable day 10. In situ hybridization revealed that the primary source of the TSP1 mRNA within wounds was macrophage-like cells in the inflammatory infiltrate. To explore the function of TSP1 production in sites of injury, wounds were treated with antisense TSP1 oligomers. Antisense-treated wounds contained 55 to 66% less TSP1-positive macrophages than control and exhibited a marked delay in repair. This delay included a decreased rate of re-epithelialization as well as a delay in dermal reorganization. The results suggest that TSP1 production by macrophages facilitates the repair process and provide evidence that TSP1 production is an important component of optimal wound healing. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 PMID:8669471

  19. Circulating IL-18 Binding Protein (IL-18BP) and IL-18 as Dual Biomarkers of Total-Body Irradiation in Mice.

    PubMed

    Ha, Cam T; Li, XiangHong; Fu, Dadin; Xiao, Mang

    2016-04-01

    We have previously reported that circulating interleukin-18 (IL-18) can be used as a radiation biomarker in mice, minipigs and nonhuman primates. In this study, we further determined the serum levels of IL-18 binding protein (IL-18BP), a natural endogenous antagonist of IL-18, in CD2F1 mice 1-13 days after total-body gamma irradiation (TBI) with different doses (5-10 Gy). We compared the changes in blood lymphocyte, neutrophil and platelet counts as well as the activation of the proapoptotic executioner caspase-3 and caspase-7, and the expression of the inflammatory factor cyclooxygenase 2 (COX-2) in spleen cells, with the changes of IL-18BP and IL-18 in mouse serum. We also evaluated the significance, sensitivity and specificity of alterations in radiation-induced IL-18BP. IL-18 increased from day 1-13 after TBI in a dose-dependent manner that was paralleled with an increase in IL-18 receptor alpha (IL-18Rα) in irradiated mouse spleen cells. IL-18BP rapidly increased (25-63 fold) in mouse serum on day 1 after different doses of TBI. However, it returned to baseline within 3 days after 5-7 Gy doses and within 7 days after 8 Gy dose, and was unaltered thereafter. In contrast, high doses of radiation (9 and 10 Gy) significantly sustained a higher level of IL-18BP in mouse serum and later induced a second phase of increase in IL-18BP on day 9-13 after irradiation, which coincided with the onset of animal mortality. Consistent with this observation, highly activated caspase-3 and -7 in 8-10 Gy irradiated mouse spleen cells exhibited reduced or no activity 24 h after 5 Gy, although radiation induced an inflammatory response, as shown by COX-2 expression in all irradiated cells. Our data suggest that the radiation-induced differential elevation of IL-18 and IL-18BP in animal serum is a dynamic and discriminative indicator of the severity of injury after exposure to ionizing radiation. These findings support the inclusion of the dual biomarkers IL-18BP and IL-18 in the

  20. Construction of an expression system for bioactive IL-18 and generation of recombinant canine distemper virus expressing IL-18.

    PubMed

    Liu, Yuxiu; Sato, Hiroki; Hamana, Masahiro; Moonan, Navita Anisia; Yoneda, Misako; Xia, Xianzhu; Kai, Chieko

    2014-09-01

    Interleukin 18 (IL-18) plays an important role in the T-helper-cell type 1 immune response against intracellular parasites, bacteria and viral infections. It has been widely used as an adjuvant for vaccines and as an anticancer agent. However, IL-18 protein lacks a typical signal sequence and requires cleavage into its mature active form by caspase 1. In this study, we constructed mammalian expression vectors carrying cDNA encoding mature canine IL-18 (cIL-18) or mouse IL-18 (mIL-18) fused to the human IL-2 (hIL-2) signal sequence. The expressed proIL-18 proteins were processed to their mature forms in the cells. The supernatants of cells transfected with these plasmids induced high interferon-γ production in canine peripheral blood mononuclear cells or mouse splenocytes, respectively, indicating the secretion of bioactive IL-18. Using reverse genetics, we also generated a recombinant canine distemper virus that expresses cIL-18 or mIL-18 fused to the hIL-2 signal sequence. As expected, both recombinant viruses produced mature IL-18 in the infected cells, which secreted bioactive IL-18. These results indicate that the signal sequence from hIL-2 is suitable for the secretion of mature IL-18. These recombinant viruses can also potentially be used as immunoadjuvants and agents for anticancer therapies in vivo.

  1. Human macrophages produce dimeric forms of IL-18 which can be detected with monoclonal antibodies specific for inactive IL-18.

    PubMed

    Kikkawa, S; Matsumoto, M; Shida, K; Fukumori, Y; Toyoshima, K; Seya, T

    2001-02-23

    We established two monoclonal antibodies (mAbs) which specifically recognize human 'functionally inactive' recombinant IL-18, and IL-18 protein polymorphism was examined using human monocytes and macrophages (M phi). In 6 day GM-CSF-treated M phi, an 'inactive' IL-18-recognizing mAb 21 detected the IL-18 proform (24 kDa) and a 48-kDa protein, which were gradually increased concomitant with maturation stage. Majority of the 24- and 48-kDa forms were barely detectable with other mAbs recognizing 'active' IL-18. No reagents including Toll stimulators up-regulated these IL-18 populations in M phi. The 21-recognizable IL-18 species were separated using an anion-exchanger column and their IFN gamma-inducing activity was assessed with human lymphocytes plus IL-12. Virtually no as yet known activity was detected with these IL-18 species. After processed with M phi proteases, an 18-kDa form was generated to express the IFN gamma-inducing activity, although the activity was far weaker than that of control 'active' IL-18. These observations suggested that large amounts of various IL-18 species are produced with monocyte-M phi differentiation and most of these IL-18 species are functionally 'inactive' in terms of the reported IL-18 function even after proteolytic 18-kDa conversion.

  2. Thrombospondin-1 Is a Transcriptional Repression Target of PRMT6*

    PubMed Central

    Michaud-Levesque, Jonathan; Richard, Stéphane

    2009-01-01

    Protein arginine methyltransferase 6 (PRMT6) is known to catalyze the generation of asymmetric dimethylarginine in polypeptides. Although the cellular role of PRMT6 is not well understood, it has been implicated in human immunodeficiency virus pathogenesis, DNA repair, and transcriptional regulation. PRMT6 is known to methylate histone H3 Arg-2 (H3R2), and this negatively regulates the lysine methylation of H3K4 resulting in gene repression. To identify in a nonbiased manner genes regulated by PRMT6 expression, we performed a microarray analysis on U2OS osteosarcoma cells transfected with control and PRMT6 small interfering RNAs. We identified thrombospondin-1 (TSP-1), a potent natural inhibitor of angiogenesis, as a transcriptional repression target of PRMT6. Moreover, we show that PRMT6-deficient U2OS cells exhibited cell migration defects that were rescued by blocking the secreted TSP-1 with a neutralizing peptide or blocking α-TSP-1 antibody. PRMT6 associates with the TSP-1 promoter and regulates the balance of methylation of H3R2 and H3K4, such that in PRMT6-deficient cells H3R2 was hypomethylated and H3K4 was trimethylated at the TSP-1 promoter. Using a TSP-1 promoter reporter gene, we further show that PRMT6 directly regulates the TSP-1 promoter activity. These findings show that TSP-1 is a transcriptional repression target of PRMT6 and suggest that neutralizing the activity of PRMT6 could inhibit tumor progression and therefore may be of cancer therapeutic significance. PMID:19509293

  3. Role of Thrombospondin-1 in Repair of Penetrating Corneal Wounds

    PubMed Central

    Blanco-Mezquita, José Tomás; Hutcheon, Audrey E. K.; Zieske, James D.

    2013-01-01

    Purpose. Thrombospondin-1 (THBS1) has been suggested as a corneal wound-healing modulator. Therefore, we compromised the integrity of the cornea to elucidate the role of THBS1. Methods. Full-thickness penetrating corneal incisions (1.5 mm) were created in wild type (WT, 129S2/SvPas) and THBS1-deficient mice (Thbs1−/−, 129S2/SvPas-Thbs1tm1Hyn/Thbs1tm1Hyn), and allowed to heal up to 1 month, while being monitored by slit-lamp and intravital corneal examinations. Corneas also were examined by transmission electron microscopy and indirect immunofluorescence. To determine how THBS1 was involved in the healing process, we examined THBS1 and α-smooth muscle actin (SMA), a marker of myofibroblasts and myoepithelial cells. Results. In WT mice by 1 month, corneas appeared transparent with a thin scar, and endothelium and Descemet's membrane (DM) were restored. In contrast, Thbs1−/− corneas exhibited chronic edema and persistent opacity after wounding. The DM and endothelium were not restored, and wound contraction was impaired. The THBS1 was localized in epithelial cells at early stages of the healing process, and in the stroma and endothelial cells during later stages. The SMA-positive epithelial cells and myofibroblasts were observed within the healing area at day 4, peaked at day 14, and disappeared at day 30. The SMA-positive cells were reduced greatly in Thbs1−/− mice. Conclusions. In the current study, we demonstrated that corneal restoration is strikingly compromised by a penetrating incision in Thbs1−/− mice. The wound results in persistent edema and wound gaping. This appears to be the result of the lack of endothelial migration and DM restoration. In addition, myofibroblast formation is compromised, resulting in the lack of wound contraction. PMID:23963165

  4. Thrombospondin-1 restrains neutrophil granule serine protease function and regulates the innate immune response during Klebsiella pneumoniae infection

    PubMed Central

    Zhao, Yani; Olonisakin, Tolani F.; Xiong, Zeyu; Hulver, Mei; Sayeed, Sameera; Yu, Min Ting; Gregory, Alyssa D.; Kochman, Elizabeth J.; Chen, Bill B.; Mallampalli, Rama K.; Sun, Ming; Silverstein, Roy L.; Stolz, Donna B.; Shapiro, Steve D.; Ray, Anuradha; Ray, Prabir; Lee, Janet S.

    2014-01-01

    Neutrophil elastase (NE) and cathepsin G (CG) contribute to intracellular microbial killing but, if left unchecked and released extracellularly, promotes tissue damage. Conversely, mechanisms that constrain neutrophil serine protease activity protect against tissue damage but may have the untoward effect of disabling the microbial killing arsenal. The host elaborates thrombospondin-1 (TSP-1), a matricellular protein released during inflammation, but its role during neutrophil activation following microbial pathogen challenge remains uncertain. Mice deficient in thrombospondin-1 (thbs1−/−) showed enhanced lung bacterial clearance, reduced splenic dissemination, and increased survival compared with WT controls during intrapulmonary Klebsiella pneumoniae infection. More effective pathogen containment was associated with reduced burden of inflammation in thbs1−/− mouse lungs compared with WT controls. Lung NE activity was increased in thbs1−/− mice following Klebsiella pneumoniae challenge, and thbs1−/− neutrophils showed enhanced intracellular microbial killing that was abrogated with recombinant TSP-1 administration or WT serum. Thbs1−/− neutrophils exhibited enhanced NE and CG enzymatic activity and a peptide corresponding to amino acid residues 793–801 within the type 3 repeats domain of TSP-1 bridled neutrophil proteolytic function and microbial killing in vitro. Thus, TSP-1 restrains proteolytic action during neutrophilic inflammation elicited by Klebsiella pneumoniae, providing a mechanism that may regulate the microbial killing arsenal. PMID:25492474

  5. Determination of the CD148-Interacting Region in Thrombospondin-1

    PubMed Central

    Jiang, Rosie; Brantley-Sieders, Dana M.; Chen, Jin; Mernaugh, Raymond L.; Takahashi, Takamune

    2016-01-01

    CD148 is a transmembrane protein tyrosine phosphatase that is expressed in multiple cell types, including vascular endothelial cells and duct epithelial cells. Previous studies have shown a prominent role of CD148 to reduce growth factor signals and suppress cell proliferation and transformation. Further, we have recently shown that thrombospondin-1 (TSP1) serves as a functionally important ligand for CD148. TSP1 has multiple structural elements and interacts with various cell surface receptors that exhibit differing effects. In order to create the CD148-specific TSP1 fragment, here we investigated the CD148-interacting region in TSP1 using a series of TSP1 fragments and biochemical and biological assays. Our results demonstrate that: 1) CD148 binds to the 1st type 1 repeat in TSP1; 2) Trimeric TSP1 fragments that contain the 1st type repeat inhibit cell proliferation in A431D cells that stably express wild-type CD148 (A431D/CD148wt cells), while they show no effects in A431D cells that lack CD148 or express a catalytically inactive form of CD148. The anti-proliferative effect of the TSP1 fragment in A431D/CD148wt cells was largely abolished by CD148 knockdown and antagonized by the 1st, but not the 2nd and 3rd, type 1 repeat fragment. Furthermore, the trimeric TSP1 fragments containing the 1st type repeat increased the catalytic activity of CD148 and reduced phospho-tyrosine contents of EGFR and ERK1/2, defined CD148 substrates. These effects were not observed in the TSP1 fragments that lack the 1st type 1 repeat. Last, we demonstrate that the trimeric TSP1 fragment containing the 1st type 1 repeat inhibits endothelial cell proliferation in culture and angiogenesis in vivo. These effects were largely abolished by CD148 knockdown or deficiency. Collectively, these findings indicate that the 1st type 1 repeat interacts with CD148, reducing growth factor signals and inhibiting epithelial or endothelial cell proliferation and angiogenesis. PMID:27149518

  6. Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rβ2 or IL-18

    PubMed Central

    Choi, I-K; Lee, J-S; Zhang, S-N; Park, J; Lee, K-M; Sonn, C H; Yun, C-O

    2011-01-01

    The oncolytic adenovirus (Ad) is currently being advanced as a promising antitumor remedy as it selectively replicates in tumor cells and can transfer and amplify therapeutic genes. Interleukin (IL)-12 induces a potent antitumor effect by promoting natural killer (NK) cell and cytotoxic T cell activities. IL-18 also augments cytotoxicity of NK cells and proliferation of T cells. This effect further enhances the function of IL-12 in a synergistic manner. Therefore, we investigated for the first time an effective cancer immunogene therapy of syngeneic tumors via intratumoral administration of oncolytic Ad co-expressing IL-12 and IL-18, RdB/IL-12/IL-18. Intratumoral administration of RdB/IL-12/IL-18 improved antitumor effects, as well as increased survival, in B16-F10 murine melanoma model. The ratio of T-helper type 1/2 cytokine as well as the levels of IL-12, IL-18, interferon-γ and granulocyte–macrophage colony-stimulating factor was markedly elevated in RdB/IL-12/IL-18-treated tumors. Mice injected with RdB/IL-12/IL-18 also showed enhanced cytotoxicity of tumor-specific immune cells. Consistent with these results, immense necrosis and infiltration of NK cells, as well as CD4+ and CD8+ T cells, were observed in RdB/IL-12/IL-18-treated tumor tissues. Importantly, tumors treated with RdB/IL-12/IL-18 showed an elevated number of T cells expressing IL-12Rβ2 or IL-18Rα. These results provide a new insight into therapeutic mechanisms of IL-12 plus IL-18 and provide a potential clinical cancer immunotherapeutic agent for improved antitumor immunity. PMID:21451575

  7. Elevated IL-37, IL-18 and IL-18BP serum concentrations in patients with primary Sjögren's syndrome.

    PubMed

    Liuqing, Wang; Liping, Xia; Hui, Shen; Jing, Lu

    2017-03-01

    The objectives of this study were to examine the serum levels of interleukin (IL)-37 and its clinical association in patients with primary Sjögren's syndrome (pSS) and to investigate whether or not IL-37 participates in the regulation of the pathogenesis of pSS. ELISA was used to analyse the serum levels of IL-37, total IL-18 and IL-18 binding protein (IL-18BP). The level of free IL-18 was calculated based on the mass action law. The correlations between the IL-37 serum levels with the laboratory values and the total IL-18 and IL-18BP serum levels were analyzed by a Spearman's correlation test. The serum levels of IL-37 in the patients with pSS were significantly increased compared with the healthy controls (HCs). The levels were especially elevated in the patients with pSS with positive anti-Ro/SSA and/or anti-La/SSB antibodies. Furthermore, the patients with pSS showed high serum levels of total IL-18, free IL-18 and IL-18BP compared with the HCs. Strikingly, the IL-37 levels were significantly positively correlated with the antibody levels in the patients with pSS, including rheumatoid factor, anti-Ro/SSA, and anti-La/SSB and the total IL-18 and IL-18BP serum levels. The serum levels of IL-37, which were correlated with antibody production and the serum levels of total IL-18 and IL-18BP, were elevated in the patients with pSS. IL-37, an important anti-inflammatory cytokine, may participate in the regulation of the pathogenesis of pSS. Copyright © 2017 American Federation for Medical Research.

  8. A proinflammatory role for IL-18 in rheumatoid arthritis

    PubMed Central

    Gracie, J. Alastair; Forsey, Rosalyn J.; Chan, Woon Ling; Gilmour, Ashley; Leung, Bernard P.; Greer, Morag R.; Kennedy, Kristy; Carter, Robert; Wei, Xiao-Qing; Xu, Damo; Field, Max; Foulis, Alan; Liew, Foo Y.; McInnes, Iain B.

    1999-01-01

    IL-18 is a novel cytokine with pleiotropic activities critical to the development of T-helper 1 (Th1) responses. We detected IL-18 mRNA and protein within rheumatoid arthritis (RA) synovial tissues in significantly higher levels than in osteoarthritis controls. Similarly, IL-18 receptor expression was detected on synovial lymphocytes and macrophages. Together with IL-12 or IL-15, IL-18 induced significant IFN-γ production by synovial tissues in vitro. IL-18 independently promoted GM-CSF and nitric oxide production, and it induced significant TNF-α synthesis by CD14+ macrophages in synovial cultures; the latter effect was potentiated by IL-12 or IL-15. TNF-α and IFN-γ synthesis was suppressed by IL-10 and TGF-β. IL-18 production in primary synovial cultures and purified synovial fibroblasts was, in turn, upregulated by TNF-α and IL-1β, suggesting that monokine expression can feed back to promote Th1 cell development in synovial membrane. Finally, IL-18 administration to collagen/incomplete Freund’s adjuvant–immunized DBA/1 mice facilitated the development of an erosive, inflammatory arthritis, suggesting that IL-18 can be proinflammatory in vivo. Together, these data indicate that synergistic combinations of IL-18, IL-12, and IL-15 may be of importance in sustaining both Th1 responses and monokine production in RA. J. Clin. Invest. 104:1393–1401 (1999). PMID:10562301

  9. IL-18; a cytokine translates a stress into medical science.

    PubMed

    Sekiyama, Atsuo; Ueda, Haruyasu; Kashiwamura, Shin-ichiro; Nishida, Kensei; Kawai, Kaori; Teshima-kondo, Shigetada; Rokutan, Kazuhito; Okamura, Haruki

    2005-11-01

    Psychological/physical stresses have been reported to exacerbate auto-immune and inflammatory diseases. To clarify a mechanism by which non-inflammatory stresses disrupt host defenses, responses to immobilization stress in mice were investigated, focusing on the role of a multifunctional cytokine, interleukin-18 (IL-18). In the adrenal cortex, the stress induced IL-18 precursor proteins (pro-IL-18) via ACTH and a superoxide-mediated caspase-1 activation pathway, resulting in conversion of pro-IL-18 to the mature form which was released into plasma. Inhibitors of caspase-1, reactive oxygen species and P38 MAPK prevented stress-induced accumulation of plasma IL-18. These inhibitors also blocked stress-induced IL-6 expression. This, together with the observation that IL-6 was not induced in stressed-IL-18 deficient mice, showed that IL-6 induction by stress is dependent on IL-18. In stressed organisms, IL-18 may influence pathological and physiological processes. Controlling the caspase-1 activating pathway to suppress IL-18 levels may provide preventative means against stress-related disruption of host defenses.

  10. Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis

    PubMed Central

    Zaslavsky, Alexander; Baek, Kwan-Hyuck; Lynch, Ryan C.; Short, Sarah; Grillo, Jenny; Folkman, Judah; Italiano, Joseph E.

    2010-01-01

    The sequential events leading to tumor progression include a switch to the angiogenic phenotype, dependent on a shift in the balance between positive and negative angiogenic regulators produced by tumor and stromal cells. Although the biologic properties of many angiogenesis regulatory proteins have been studied in detail, the mechanisms of their transport and delivery in vivo during pathologic angiogenesis are not well understood. Here, we demonstrate that expression of one of the most potent angiogenesis inhibitors, thrombospondin-1, is up-regulated in the platelets of tumor-bearing mice. We establish that this up-regulation is a consequence of both increased levels of thrombospondin-1 mRNA in megakaryocytes, as well as increased numbers of megakaryocytes in the bone marrow of tumor-bearing mice. Through the use of mouse tumor models and bone marrow transplantations, we show that platelet-derived thrombospondin-1 is a critical negative regulator during the early stages of tumor angiogenesis. Collectively, our data suggest that the production and delivery of the endogenous angiogenesis inhibitor thrombospondin-1 by platelets may be a critical host response to suppress tumor growth through inhibiting tumor angiogenesis. Further, this work implicates the use of thrombospondin-1 levels in platelets as an indicator of tumor growth and regression. PMID:20086246

  11. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults.

    PubMed

    Szpakowski, Piotr; Biet, Franck; Locht, Camille; Paszkiewicz, Małgorzata; Rudnicka, Wiesława; Druszczyńska, Magdalena; Allain, Fabrice; Fol, Marek; Pestel, Joël; Kowalewicz-Kulbat, Magdalena

    2015-01-01

    Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG), the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18) and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4(+) T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs.

  12. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults

    PubMed Central

    Biet, Franck; Rudnicka, Wiesława; Druszczyńska, Magdalena; Fol, Marek; Pestel, Joël

    2015-01-01

    Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG), the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18) and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4+ T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs. PMID:26339658

  13. Functional IL18 polymorphism and susceptibility to Chronic Chagas Disease.

    PubMed

    Nogueira, Luciana Gabriel; Frade, Amanda Farage; Ianni, Barbara Maria; Laugier, Laurie; Pissetti, Cristina Wide; Cabantous, Sandrine; Baron, Monique; Peixoto, Gisele de Lima; Borges, Ariana de Melo; Donadi, Eduardo; Marin-Neto, José A; Schmidt, André; Dias, Fabrício; Saba, Bruno; Wang, Hui-Tzu Lin; Fragata, Abilio; Sampaio, Marcelo; Hirata, Mario Hiroyuki; Buck, Paula; Mady, Charles; Martinelli, Martino; Lensi, Mariana; Siqueira, Sergio Freitas; Pereira, Alexandre Costa; Rodrigues, Virmondes; Kalil, Jorge; Chevillard, Christophe; Cunha-Neto, Edecio

    2015-05-01

    Chronic Chagas Disease cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi, the rest of the infected subjects remaining asymptomatic (ASY). The Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis. Local expression of IL-18 in CCC myocardial tissue has recently been described. IL-18 could potentially amplify the process by inducing increased expression of IFN-γ which in turn can increase the production of IL-18, thereby creating a positive feedback mechanism. In order to assess the contribution of the IL-18 to susceptibility to Chronic Chagas Disease, we investigated the association between a single nucleotide polymorphism (SNP) located in the IL-18 gene with the risk of developing Chagas cardiomyopathy. We analyzed the rs2043055 marker in the IL18 gene in a cohort of Chagas disease cardiomyopathy patients (n=849) and asymptomatic subjects (n=202). We found a significant difference in genotype frequencies among moderate and severe CCC patients with ventricular dysfunction. Our analysis suggests that the IL18 rs2043055 polymorphism- or a SNP in tight linkage disequilibrium with it- may contribute to modulating the Chagas cardiomyopathy outcome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Protein polymorphism of human IL-18 identified by monoclonal antibodies.

    PubMed

    Seya, T; Matsumoto, M; Shiratori, I; Fukumori, Y; Toyoshima, K

    2001-11-01

    Six mAbs were raised against human "functionally inactive" recombinant IL-18, ELISA for determination of "functionally inactive" forms of IL-18 were established using two of these mAbs (#21 and #132), and inactive species of IL-18 protein were examined with human blood plasma and macrophages (Mp). In 6-day GM-CSF-treated monocytes, namely Mp, the mAb #21 recognized the IL-18 proform (24 kDa) and a 48 kDa dimer by immunoblotting. In contrast, only the 24 kDa species was detected as a relatively faint band with a commercial mAb against "active" IL-18. No IL-18 species was detected in premature monocytes. Thus, the dimeric IL-18 was produced in Mp and detectable with the mAb we established. In blood plasma of normal subjects and patients, the #21-recognizable IL-18 was also detected by ELISA, the levels of which were not consistent with those obtained with the commercially available kit for determination of "functionally active" IL-18. We designated the former as type 2 and the latter as type 1. Strikingly, IL-18 type 1 was detected in all volunteers while type 2 was detected in approximately 30% of healthy subjects, and the levels of type 2 were high (10-100 ng/ml) compared to those of type 1 (0.02-0.55 ng/ml) in their blood plasma. In patients with atopic dermatitis, the mean value of type 1 was high (200 ng/ml) compared to those of normal subjects (0.122 ng/ml) and patients with lung cancer (0.113 ng/ml). Production of high type 1 may be associated with an immunomodulatory state in atopic dermatitis. The levels and frequencies of IL-18 type 2 were not significantly changed among these populations. Hence, large amounts of type 2 species are produced in monocyte-Mp differentiation, and their levels and frequencies are unchanged in blood plasma irrespective of the levels of type 1.

  15. Elevated Plasma IL-37, IL-18, and IL-18BP Concentrations in Patients with Acute Coronary Syndrome

    PubMed Central

    Ji, Qingwei; Zeng, Qiutang; Huang, Ying; Shi, Ying; Lin, Yingzhong; Lu, Zhengde; Meng, Kai; Wu, Bangwei; Yu, Kunwu; Chai, Meng; Liu, Yuyang

    2014-01-01

    Objective. More recently, evidence showed that the novel anti-inflammatory cytokine interleukin- (IL-) 37 was expressed in the foam-like cells of atherosclerotic coronary and carotid artery plaques, suggesting that IL-37 is involved in atherosclerosis-related diseases. However, the plasma levels of IL-37 in patients with acute coronary syndrome (ACS, including unstable angina pectoris and acute myocardial infarction) have yet to be investigated. Methods. Plasma IL-37, IL-18, and IL-18BP levels were measured in 50 patients with stable angina pectoris (SAP), 75 patients with unstable angina pectoris (UAP), 67 patients with acute myocardial infarction (AMI), and 65 control patients. Results. The plasma IL-37, IL-18, and IL-18BP levels were significantly increased in ACS patients compared to SAP and control patients. A correlation analysis showed that the plasma biomarker levels were positively correlated with each other and with the levels of C-reactive protein (CRP), N-terminal probrain natriuretic peptide (NT-proBNP), and left ventricular end-diastolic dimension (LVEDD) but negatively correlated with left ventricular ejection fraction (LVEF). Furthermore, the plasma IL-37, IL-18, and IL-18BP had no correlation with the severity of the coronary artery stenosis. Conclusions. The results indicate that the plasma IL-37 levels are associated with the onset of ACS. PMID:24733959

  16. Elevated plasma IL-37, IL-18, and IL-18BP concentrations in patients with acute coronary syndrome.

    PubMed

    Ji, Qingwei; Zeng, Qiutang; Huang, Ying; Shi, Ying; Lin, Yingzhong; Lu, Zhengde; Meng, Kai; Wu, Bangwei; Yu, Kunwu; Chai, Meng; Liu, Yuyang; Zhou, Yujie

    2014-01-01

    More recently, evidence showed that the novel anti-inflammatory cytokine interleukin- (IL-) 37 was expressed in the foam-like cells of atherosclerotic coronary and carotid artery plaques, suggesting that IL-37 is involved in atherosclerosis-related diseases. However, the plasma levels of IL-37 in patients with acute coronary syndrome (ACS, including unstable angina pectoris and acute myocardial infarction) have yet to be investigated. Plasma IL-37, IL-18, and IL-18BP levels were measured in 50 patients with stable angina pectoris (SAP), 75 patients with unstable angina pectoris (UAP), 67 patients with acute myocardial infarction (AMI), and 65 control patients. The plasma IL-37, IL-18, and IL-18BP levels were significantly increased in ACS patients compared to SAP and control patients. A correlation analysis showed that the plasma biomarker levels were positively correlated with each other and with the levels of C-reactive protein (CRP), N-terminal probrain natriuretic peptide (NT-proBNP), and left ventricular end-diastolic dimension (LVEDD) but negatively correlated with left ventricular ejection fraction (LVEF). Furthermore, the plasma IL-37, IL-18, and IL-18BP had no correlation with the severity of the coronary artery stenosis. The results indicate that the plasma IL-37 levels are associated with the onset of ACS.

  17. Thrombospondin-1 and CD47 signaling regulate healing of thermal injury in mice.

    PubMed

    Soto-Pantoja, David R; Shih, Hubert B; Maxhimer, Justin B; Cook, Katherine L; Ghosh, Arunima; Isenberg, Jeffrey S; Roberts, David D

    2014-07-01

    More than 2.5 million Americans suffer from burn injuries annually, and burn management is a major public health problem. Treatments have been developed to manage wound injuries employing skin grafts, various dressings and topical and systemic agents. However, these often achieve limited degrees of success. We previously reported that targeting the interaction of thrombospondin-1 with its signaling receptor CD47 or deletion of the genes encoding either of these proteins in mice improves recovery from soft tissue ischemic injuries as well as tissue injuries caused by ionizing radiation. We now demonstrate that the absence of CD47 improves the rate of wound closure for a focal dermal second-degree thermal injury, whereas lack of thrombospondin-1 initially delays wound closure compared to healing in wild type mice. Doppler analysis of the wounded area showed increased blood flow in both CD47 and thrombospondin-1 null mice. Accelerated wound closure in the CD47 null mice was associated with increased fibrosis as demonstrated by a 4-fold increase in collagen fraction. Wound tissue of CD47 null mice showed increased thrombospondin-1 mRNA and protein expression and TGF-β1 mRNA levels. Activation of latent TGF-β1 was increased in thermally injured CD47-null tissue as assessed by phosphorylation of the TGF-β1 receptor-regulated transcription factors SMAD-2 and -3. Overall these results indicate that targeting CD47 may improve the speed of healing thermal injuries, but some level of CD47 expression may be required to limit the long term TGF-β1-dependent fibrosis of these wounds. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Thrombospondin-1 contributes to slower aortic aneurysm growth by inhibiting maladaptive remodeling of extracellular matrix.

    PubMed

    Satoh, Mamoru; Nasu, Takahito; Osaki, Takuya; Hitomi, Sho

    2017-06-01

    In this issue of Clinical Science, Krishna and colleagues describe recent work on thrombospondin-1 (TSP-1) maturation and its association with slower growth of aortic aneurysm in TSP-1 knockdown mouse models. The authors conclude that TSP-1 deficiency promotes maladaptive remodeling of the extracellular matrix (ECM) leading to accelerated aortic aneurysm progression. We comment on a causal relation between TSP-1 and the progression of aortic aneurysm. © 2017 The Author(s).

  19. IL18 Gene Variants Influence the Susceptibility to Chagas Disease.

    PubMed

    Leon Rodriguez, Daniel A; Carmona, F David; Echeverría, Luis Eduardo; González, Clara Isabel; Martin, Javier

    2016-03-01

    Chagas disease is a parasitic disorder caused by the infection with the flagellated protozoan Trypanosoma cruzi. According to the World Health Organization, more than six million people are currently infected in endemic regions. Genetic factors have been proposed to influence predisposition to infection and development of severe clinical phenotypes like chronic Chagas cardiomyopathy (CCC). Interleukin 18 (IL18) encodes a proinflammatory cytokine that has been proposed to be involved in controlling T. cruzi infection. In this study, we analyzed the possible role of six IL18 gene variants (rs5744258, rs360722, rs2043055, rs187238, rs1946518 and rs360719), which cover most of the variation within the locus, in the susceptibility to infection by T. cruzi and/or CCC. In total, 1,171 individuals from a Colombian region endemic for Chagas disease, classified as seronegative (n = 595), seropositive asymptomatic (n = 175) and CCC (n = 401), were genotyped using TaqMan probes. Significant associations with T. cruzi infection were observed when comparing seronegative and seropositive individuals for rs187238 (P = 2.18E-03, OR = 0.77), rs360719 (P = 1.49E-03, OR = 0.76), rs2043055 (P = 2.52E-03, OR = 1.29), and rs1946518 (P = 0.0162, OR = 1.22). However, dependence analyses suggested that the association was mainly driven by the polymorphism rs360719. This variant is located within the promoter region of the IL18 gene, and it has been described that it creates a binding site for the transcription factor OCT-1 affecting IL-18 expression levels. In addition, no evidence of association was observed between any of the analyzed IL18 gene polymorphisms and the development of CCC. In summary, our data suggest that genetic variation within the promoter region of IL18 is directly involved in the susceptibility to infection by T. cruzi, which provides novel insight into disease pathophysiology and adds new perspectives to achieve a more effective disease control.

  20. Construction and immunogenicity of a DNA vaccine containing clumping factor A of Staphylococcus aureus and bovine IL18.

    PubMed

    Yin, Rong-Lan; Li, Chang; Yang, Zheng-Tao; Zhang, Yan-Jing; Bai, Wen-Lin; Li, Xiao; Yin, Rong-Huan; Liu, Hui; Liu, Shan; Yang, Qi; Cao, Yong-Guo; Zhang, Nai-Sheng

    2009-12-15

    Selection of potent cytokine adjuvants is important for the development of Staphylococcus aureus DNA vaccines. Several potential cytokines have been proven to induce enhanced immune responses in animal models and clinical tests. There is still no reported use of IL18 as an adjuvant to design DNA vaccines against S. aureus. In this study, we cloned the main fibronectin binding protein gene (a fragment from clumping factor A, ClfA(221-550)) of S. aureus and bovine interleukin 18 (bIL18). Then recombinant plasmids were constructed based on the eukaryotic expression vector pVAX1 with or without bIL18. Indirect immunofluorescence assays in transfected HeLa cells indicated that the recombinant DNAs (rDNAs) could be expressed correctly and had antigenicity. BALB/c mice were used as experimental models to examine the immunogenicity of rDNAs in vivo. The ClfA(221-550) rDNA provoked antibody production. The bIL18 rDNA induced production of the Th1 type cytokines IL2 and IFNgamma, and ClfA(221-550) and bIL18 synergistically stimulated T-lymphocyte proliferation. The data demonstrated that bIL18 is a potent adjuvant that could be used to enhance cellular immunity.

  1. Dietary fat overcomes the protective activity of thrombospondin-1 signaling in the ApcMin/+ model of colon cancer

    PubMed Central

    Soto-Pantoja, D R; Sipes, J M; Martin-Manso, G; Westwood, B; Morris, N L; Ghosh, A; Emenaker, N J; Roberts, D D

    2016-01-01

    Thrombospondin 1 is a glycoprotein that regulates cellular phenotype through interactions with its cellular receptors and extracellular matrix-binding partners. Thrombospondin 1 locally regulates angiogenesis and inflammatory responses that contribute to colorectal carcinogenesis in ApcMin/+ mice. The ability of thrombospondin 1 to regulate responses of cells and tissues to a variety of stresses suggested that loss of thrombospondin 1 may also have broader systemic effects on metabolism to modulate carcinogenesis. ApcMin/+:Thbs1−/− mice exhibited decreased survival and higher tumor multiplicities in the small and large intestine relative to ApcMin/+ mice when fed a low (5%) fat western diet. However, the protective effect of endogenous thrombospondin 1 was lost when the mice were fed a western diet containing 21% fat. Biochemical profiles of liver tissue identified systemic metabolic changes accompanying the effects of thrombospondin 1 and dietary lipid intake on tumorigenesis. A high-fat western diet differentially regulated elements of amino acid, energy and lipid metabolism in ApcMin/+:Thbs1−/− mice relative to ApcMin/+:Thbs1+/+mice. Metabolic changes in ketone body and tricarboxylic acid cycle intermediates indicate functional interactions between Apc and thrombospondin 1 signaling that control mitochondrial function. The cumulative diet-dependent differential changes observed in ApcMin/+:Thbs1−/− versus ApcMin/+ mice include altered amino acid and lipid metabolism, mitochondrial dysfunction, eicosanoids and ketone body formation. This metabolic profile suggests that the protective role of thrombospondin 1 to decrease adenoma formation in ApcMin/+ mice results in part from improved mitochondrial function. PMID:27239962

  2. Dietary fat overcomes the protective activity of thrombospondin-1 signaling in the Apc(Min/+) model of colon cancer.

    PubMed

    Soto-Pantoja, D R; Sipes, J M; Martin-Manso, G; Westwood, B; Morris, N L; Ghosh, A; Emenaker, N J; Roberts, D D

    2016-05-30

    Thrombospondin 1 is a glycoprotein that regulates cellular phenotype through interactions with its cellular receptors and extracellular matrix-binding partners. Thrombospondin 1 locally regulates angiogenesis and inflammatory responses that contribute to colorectal carcinogenesis in Apc(Min/+) mice. The ability of thrombospondin 1 to regulate responses of cells and tissues to a variety of stresses suggested that loss of thrombospondin 1 may also have broader systemic effects on metabolism to modulate carcinogenesis. Apc(Min/+):Thbs1(-/-) mice exhibited decreased survival and higher tumor multiplicities in the small and large intestine relative to Apc(Min/+) mice when fed a low (5%) fat western diet. However, the protective effect of endogenous thrombospondin 1 was lost when the mice were fed a western diet containing 21% fat. Biochemical profiles of liver tissue identified systemic metabolic changes accompanying the effects of thrombospondin 1 and dietary lipid intake on tumorigenesis. A high-fat western diet differentially regulated elements of amino acid, energy and lipid metabolism in Apc(Min/+):Thbs1(-/-) mice relative to Apc(Min/+):Thbs1(+/+)mice. Metabolic changes in ketone body and tricarboxylic acid cycle intermediates indicate functional interactions between Apc and thrombospondin 1 signaling that control mitochondrial function. The cumulative diet-dependent differential changes observed in Apc(Min/+):Thbs1(-/-) versus Apc(Min/+) mice include altered amino acid and lipid metabolism, mitochondrial dysfunction, eicosanoids and ketone body formation. This metabolic profile suggests that the protective role of thrombospondin 1 to decrease adenoma formation in Apc(Min/+) mice results in part from improved mitochondrial function.

  3. Adjuvant effects of recombinant giant panda (Ailuropoda melanoleuca) IL-18 on the canine distemper disease vaccine in mice

    PubMed Central

    YAN, Yue; NIU, Lili; DENG, Jiabo; WANG, Qiang; YU, Jianqiu; ZHANG, Yizheng; WANG, Jianxi; CHEN, Jiao; WEI, Changhe; TAN, Xuemei

    2014-01-01

    Canine distemper virus (CDV) is a morbillivirus known to cause morbidity and mortality in a broad range of animals. Giant pandas (Ailuropoda melanoleuca), especially captive ones, are susceptible to natural infection with CDV. Interleukin-18 (IL-18) is a powerful adjuvant molecule that can enhance the development of antigen-specific immunity and vaccine efficacy. In this study, a giant panda IL-18 gene eukaryotic expression plasmid (pcAmIL-18) was constructed. Female BALB/c mice were muscularly inoculated with the plasmids pcAmIL-18, pcDNA3.1 and PBS, respectively. They were subsequently injected with an attenuated CDV vaccine for dogs, and the induced humoral and cellular responses were evaluated. The results showed that pcAmIL-18 remarkably improved the level of specific antibody, IFN-γ and IL-2 in mice sera, the T lymphocyte proliferation index and the percentage of CD4+ and CD8+ cells. These data indicated that pcAmIL-18 is a potential adjuvant that promotes specific immunity. PMID:25399820

  4. Adjuvant effects of recombinant giant panda (Ailuropoda melanoleuca) IL-18 on the canine distemper disease vaccine in mice.

    PubMed

    Yan, Yue; Niu, Lili; Deng, Jiabo; Wang, Qiang; Yu, Jianqiu; Zhang, Yizheng; Wang, Jianxi; Chen, Jiao; Wei, Changhe; Tan, Xuemei

    2015-02-01

    Canine distemper virus (CDV) is a morbillivirus known to cause morbidity and mortality in a broad range of animals. Giant pandas (Ailuropoda melanoleuca), especially captive ones, are susceptible to natural infection with CDV. Interleukin-18 (IL-18) is a powerful adjuvant molecule that can enhance the development of antigen-specific immunity and vaccine efficacy. In this study, a giant panda IL-18 gene eukaryotic expression plasmid (pcAmIL-18) was constructed. Female BALB/c mice were muscularly inoculated with the plasmids pcAmIL-18, pcDNA3.1 and PBS, respectively. They were subsequently injected with an attenuated CDV vaccine for dogs, and the induced humoral and cellular responses were evaluated. The results showed that pcAmIL-18 remarkably improved the level of specific antibody, IFN-γ and IL-2 in mice sera, the T lymphocyte proliferation index and the percentage of CD4(+) and CD8(+) cells. These data indicated that pcAmIL-18 is a potential adjuvant that promotes specific immunity.

  5. Constitutive expression of IL-18 and IL-18R in differentiated IEC-6 cells: effect of TNF-alpha and IFN-gamma treatment.

    PubMed

    Kolinska, Jirina; Lisa, Vera; Clark, Jessica A; Kozakova, Hana; Zakostelecka, Marie; Khailova, Ludmila; Sinkora, Marek; Kitanovicova, Andrea; Dvorak, Bohuslav

    2008-05-01

    The multifunctional cytokine interleukin-18 (IL-18) is an important mediator in intestinal inflammatory processes. The aim of this study was to evaluate the constitutive expression of IL-18 and its receptors (IL-18Ralpha and IL-18Rbeta) in intestinal epithelial cells (IEC) stimulated by tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). In addition, cellular proliferation and evaluation of brush border enzymes as differentiation markers were studied. Nontransformed rat intestinal epithelial IEC-6 cells were grown on an extracellular matrix (ECM) in medium with or without TNF-alpha, IFN-gamma, or a combination of both. Gene expression of IL-18, its receptors and apoptotic markers was evaluated using real-time PCR. Expression of IL-18Ralpha protein was demonstrated by flow cytometry and Western blot. Enzymatic activities of brush border enzymes and caspase-1 were determined. The constitutive expression of IL-18, IL-18Ralpha and IL-18Rbeta mRNAs and proteins were detected in IEC-6 cells. The biologically active form of IL-18 was released in response to TNF-alpha and IFN-gamma treatment. Exogenous IL-18 had no effect on cellular proliferation, brush border enzyme activities, and gene expression of apoptotic markers. However, the addition of IL-18 stimulated production and release of the chemokine IL-8. These data suggest that IEC-6 cells may be not only a source of IL-18 but also a target for its action.

  6. IL18 Gene Variants Influence the Susceptibility to Chagas Disease

    PubMed Central

    Leon Rodriguez, Daniel A; Carmona, F. David; Echeverría, Luis Eduardo; González, Clara Isabel; Martin, Javier

    2016-01-01

    Chagas disease is a parasitic disorder caused by the infection with the flagellated protozoan Trypanosoma cruzi. According to the World Health Organization, more than six million people are currently infected in endemic regions. Genetic factors have been proposed to influence predisposition to infection and development of severe clinical phenotypes like chronic Chagas cardiomyopathy (CCC). Interleukin 18 (IL18) encodes a proinflammatory cytokine that has been proposed to be involved in controlling T. cruzi infection. In this study, we analyzed the possible role of six IL18 gene variants (rs5744258, rs360722, rs2043055, rs187238, rs1946518 and rs360719), which cover most of the variation within the locus, in the susceptibility to infection by T. cruzi and/or CCC. In total, 1,171 individuals from a Colombian region endemic for Chagas disease, classified as seronegative (n = 595), seropositive asymptomatic (n = 175) and CCC (n = 401), were genotyped using TaqMan probes. Significant associations with T. cruzi infection were observed when comparing seronegative and seropositive individuals for rs187238 (P = 2.18E-03, OR = 0.77), rs360719 (P = 1.49E-03, OR = 0.76), rs2043055 (P = 2.52E-03, OR = 1.29), and rs1946518 (P = 0.0162, OR = 1.22). However, dependence analyses suggested that the association was mainly driven by the polymorphism rs360719. This variant is located within the promoter region of the IL18 gene, and it has been described that it creates a binding site for the transcription factor OCT-1 affecting IL-18 expression levels. In addition, no evidence of association was observed between any of the analyzed IL18 gene polymorphisms and the development of CCC. In summary, our data suggest that genetic variation within the promoter region of IL18 is directly involved in the susceptibility to infection by T. cruzi, which provides novel insight into disease pathophysiology and adds new perspectives to achieve a more effective disease control. PMID:27027876

  7. Cloning and characterization of giant panda (Ailuropoda melanoleuca) IL-18 binding protein.

    PubMed

    Yan, Yue; Deng, Jiabo; Niu, Lili; Wang, Qiang; Yu, Jianqiu; Shao, Huanhuan; Cao, Qinghua; Zhang, Yizheng; Tan, Xuemei

    2016-06-01

    The giant panda (Ailuropoda melanoleuca) is an endangered species. Interleukin-18 (IL-18) plays an important role in the innate and adaptive immune responses by inducing IFN-γ. IL-18 has been implicated in the pathogenesis of various diseases. IL-18 binding protein (IL-18BP) is an intrinsic inhibitor of IL-18 that possesses higher affinity to IL-18. In this study, we cloned and characterized IL-18BP in giant panda (AmIL-18BP) from the spleen. The amino acid sequence of giant panda IL-18BP ORF shared about 65% identities with other species. To evaluate the effects of AmIL-18BP on the immune responses, we expressed the recombinant AmIL-18BP in Escherichia coli BL21 (DE3).The fusing protein PET-AmIL-18BP was purified by nickel affinity column chromatography. The biological function of purified PET-AmIL-18BP was determined on mice splenocyte by qRT-PCR. The results showed that AmIL-18BP was functional and could significantly reduce IFN-γ production in murine splenocytes. These results will facilitate the study of protecting giant panda on etiology and immunology.

  8. The role of IL18-607C>A and IL18-137G>C promoter polymorphisms in antidepressant treatment phenotypes: A preliminary report.

    PubMed

    Santos, Marlene; Carvalho, Serafim; Lima, Luís; Mota-Pereira, Jorge; Pimentel, Paulo; Maia, Dulce; Correia, Diana; Gomes, Sofia; Cruz, Agostinho; Medeiros, Rui

    2016-05-27

    Recent studies suggest that immune activation and cytokines, such as IL-18, are involved in depression. IL-18 is expressed in brain and is increased in patients with moderate to severe depression. In this study we aim to evaluate the role of IL18-607C>A and IL18-137G>C promoter polymorphisms in antidepressant treatment phenotypes, specifically relapse and treatment resistant depression (TRD). We genotyped the referred polymorphisms in a subset of 80 MDD patients followed at Hospital Magalhães Lemos, Portugal, within a period of 27 months. Patients carrying IL18-607 CA or AA genotypes were significantly more prone to relapse after AD treatment and present a significantly lower time to relapse than patients carrying CC genotype. Similarly, patients carrying IL18-137 GC or CC genotypes have a significantly higher risk of relapse and display relapse significantly earlier than the ones carrying GG genotype. Due to the low number of IL18-607 CC and IL18-137 GG in the relapse subgroup (n=3 and n=5, respectively), results were validated by bootstrapping analysis, and remained significant. No association was found between the evaluated genetic polymorphisms and TRD. IL18 peripheral mRNA levels were upregulated in IL18-607 CA or AA carriers. This preliminary report indicates that IL18-607C>A and IL18-137G>C genetic polymorphisms seem to influence depression relapse after antidepressant treatment in our subset of depressed patients, and may possibly contribute to the disregulated IL-18 levels found in patients with depression.

  9. IL-18 polymorphisms in hepatitis B virus related liver disease.

    PubMed

    Karra, Vijay Kumar; Gumma, Phani Kumar; Chowdhury, Soumya Jyoti; Ruttala, Rajesh; Polipalli, Sunil Kumar; Chakravarti, Anita; Kar, Premashis

    2015-06-01

    Interleukine-18 (IL-18) was originally called interferon (INF-γ) inducing factor and plays a critical dual role in Th1 polarization and viral clearance. We aimed to explore whether single-nucleotide promoter polymorphisms (SNPs) are associated with the outcome of hepatitis B virus (HBV) infection. 271 HBV infected patients were recruited in this study out of these 109 were spontaneously recovered and 162 were diagnosed to be having persistent HBV infection which includes 48 chronic hepatitis, 84 liver cirrhosis, 30 HCC cases and were compared with 280 healthy controls. IL-18 promoter genotyping was performed with sequence-specific primers. The results demonstrated the significant involvement of genotype AA at position -607 in healthy controls (38.6%) when compared to cases (26.0%) (OR=0.54 (0.385-0.797)) and also associated with spontaneous clearance (37.6%) compared to persistent HBV infections (17.9%) (OR=2.76 (1.582-4.832)). Whereas, genotype CC at position -607 in cases (18.0%) when compared to healthy controls (6.7%) (OR=3.03 (1.734-5.303)) also associated with persistent HBV infections (24.1%) compared to spontaneous clearance (9.2%) (OR=0.31 (0.151-0.67)). And genotype GC at position -137 in cases (49.5%) compared to healthy controls (38.5%) (OR=1.55 (1.11-2.18)). Whereas, genotype GG at position -137 in healthy controls (56.8%) compared to cases (45.4%) (OR=0.63 (0.451-0.885)). No significant difference at position -137 was observed between spontaneous clearance and persistent HBV infections. These polymorphisms of the IL-18 gene promoter region at position -607 and -137 could be associated with different outcomes of HBV infection. The people with allele A at position -607 may be protected against HBV infection; moreover AA genotype is associated with spontaneous clearance.

  10. Thrombospondin-1 (TSP1)-producing B cells restore antigen (Ag)-specific immune tolerance in an allergic environment.

    PubMed

    Yang, Gui; Geng, Xiao-Rui; Liu, Zhi-Qiang; Liu, Jiang-Qi; Liu, Xiao-Yu; Xu, Ling-Zhi; Zhang, Huan-Ping; Sun, Ying-Xue; Liu, Zhi-Gang; Yang, Ping-Chang

    2015-05-15

    Restoration of the antigen (Ag)-specific immune tolerance in an allergic environment is refractory. B cells are involved in immune regulation. Whether B cells facilitate the generation of Ag-specific immune tolerance in an allergic environment requires further investigation. This paper aims to elucidate the mechanism by which B cells restore the Ag-specific immune tolerance in an allergic environment. In this study, a B cell-deficient mouse model was created by injecting an anti-CD20 antibody. The frequency of tolerogenic dendritic cell (TolDC) was assessed by flow cytometry. The levels of cytokines were determined by enzyme-linked immunosorbent assay. The expression of thrombospondin-1 (TSP1) was assessed by quantitative real-time RT-PCR, Western blotting, and methylation-specific PCR. The results showed that B cells were required in the generation of the TGF-β-producing TolDCs in mice. B cell-derived TSP1 converted the latent TGF-β to the active TGF-β in DCs, which generated TGF-β-producing TolDCs. Exposure to IL-13 inhibited the expression of TSP1 in B cells by enhancing the TSP1 gene DNA methylation. Treating food allergy mice with Ag-specific immunotherapy and IL-13 antagonists restored the generation of TolDCs and enhanced the effect of specific immunotherapy. In conclusion, B cells play a critical role in the restoration of specific immune tolerance in an allergic environment. Blocking IL-13 in an allergic environment facilitated the generation of TolDCs and enhanced the therapeutic effect of immunotherapy.

  11. Decorin-inducible Peg3 Evokes Beclin 1-mediated Autophagy and Thrombospondin 1-mediated Angiostasis*

    PubMed Central

    Torres, Annabel; Gubbiotti, Maria A.; Iozzo, Renato V.

    2017-01-01

    We previously discovered that systemic delivery of decorin for treatment of breast carcinoma xenografts induces paternally expressed gene 3 (Peg3), an imprinted gene encoding a zinc finger transcription factor postulated to function as a tumor suppressor. Here we found that de novo expression of Peg3 increased Beclin 1 promoter activity and protein expression. This process required the full-length Peg3 as truncated mutants lacking either the N-terminal SCAN domain or the zinc fingers failed to translocate to the nucleus and promote Beclin 1 transcription. Importantly, overexpression of Peg3 in endothelial cells stimulated autophagy and concurrently inhibited endothelial cell migration and evasion from a 3D matrix. Mechanistically, we found that Peg3 induced the secretion of the powerful angiostatic glycoprotein Thrombospondin 1 independently of Beclin 1 transcriptional induction. Thus, we provide a new mechanism whereby Peg3 can simultaneously evoke autophagy in endothelial cells and attenuate angiogenesis. PMID:28174297

  12. Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms

    PubMed Central

    Sweetwyne, Mariya T.; Murphy-Ullrich, Joanne E.

    2012-01-01

    Thrombospondin 1(TSP1) plays major roles in both physiologic and pathologic tissue repair. TSP1 through its type 1 repeats is a known regulator of latent TGF-β activation and plays a role in wound healing and fibrosis. Binding of the TSP N-terminal domain to cell surface calreticulin in complex with LDL-receptor related protein 1 stimulates intermediate cell adhesion, cell migration, anoikis resistance and collagen expression and matrix deposition in an in vivo model of the foreign body response. There is also emerging evidence that TSP EGF-like repeats alters endothelial cell-cell interactions and stimulate epithelial migration through transactivation of EGF receptors. The mechanisms underlying these functions of TSP1 and the implications for physiologic and pathologic wound repair and fibrosis will be discussed. PMID:22266026

  13. Expression of Pentraxin 3 and Thrombospondin 1 in Gingival Crevicular Fluid during Wound Healing after Gingivectomy in Postorthodontic Patients

    PubMed Central

    Rauten, Anne Marie; Silosi, Isabela; Stratul, Stefan Ioan; Toma, Vasilica

    2016-01-01

    Background. Wound healing is a tissue repair process after an injury, and two of its main components are inflammation and angiogenesis, in which course a cascade of mediators is involved. The aim of this research was to evaluate the involvement of Pentraxin 3 and Thrombospondin 1 in wound healing after periodontal surgery (gingivectomy) for gingival overgrowth during orthodontic treatment with or without magnification devices, by assessing their levels in GCF. Methods. From 19 patients with gingival overgrowth as a result of fixed orthodontic treatment, the overgrown gingiva was removed by gingivectomy, from one half of the mandibular arch without magnification and from the other under magnification. Pentraxin 3 and Thrombospondin 1 were determined from gingival crevicular fluid by ELISA tests. Results. Statistically significant differences (p < 0.05) and correlations between levels of the two biomarkers were analyzed. Statistically significant differences were established between levels of the two biomarkers at different time points, with significant positive correlation at the point of 24 hours. Conclusions. Within the limitations of this study, the results seem to sustain the involvement of Pentraxin 3 and Thrombospondin 1 in the processes of inflammation and angiogenesis in wound healing of patients with postorthodontic gingivectomy. The dynamics of Pentraxin 3 and Thrombospondin 1 levels could suggest a reduced inflammation and a faster angiogenesis using microsurgery. PMID:27403446

  14. Expression of Pentraxin 3 and Thrombospondin 1 in Gingival Crevicular Fluid during Wound Healing after Gingivectomy in Postorthodontic Patients.

    PubMed

    Rauten, Anne Marie; Silosi, Isabela; Stratul, Stefan Ioan; Foia, Liliana; Camen, Adrian; Toma, Vasilica; Cioloca, Daniel; Surlin, Valeriu; Surlin, Petra; Bogdan, Maria

    2016-01-01

    Background. Wound healing is a tissue repair process after an injury, and two of its main components are inflammation and angiogenesis, in which course a cascade of mediators is involved. The aim of this research was to evaluate the involvement of Pentraxin 3 and Thrombospondin 1 in wound healing after periodontal surgery (gingivectomy) for gingival overgrowth during orthodontic treatment with or without magnification devices, by assessing their levels in GCF. Methods. From 19 patients with gingival overgrowth as a result of fixed orthodontic treatment, the overgrown gingiva was removed by gingivectomy, from one half of the mandibular arch without magnification and from the other under magnification. Pentraxin 3 and Thrombospondin 1 were determined from gingival crevicular fluid by ELISA tests. Results. Statistically significant differences (p < 0.05) and correlations between levels of the two biomarkers were analyzed. Statistically significant differences were established between levels of the two biomarkers at different time points, with significant positive correlation at the point of 24 hours. Conclusions. Within the limitations of this study, the results seem to sustain the involvement of Pentraxin 3 and Thrombospondin 1 in the processes of inflammation and angiogenesis in wound healing of patients with postorthodontic gingivectomy. The dynamics of Pentraxin 3 and Thrombospondin 1 levels could suggest a reduced inflammation and a faster angiogenesis using microsurgery.

  15. Immune responses of chickens inoculated with a recombinant fowlpox vaccine coexpressing glycoprotein B of infectious laryngotracheitis virus and chicken IL-18.

    PubMed

    Chen, Hong-Ying; Cui, Pei; Cui, Bao-An; Li, He-Ping; Jiao, Xian-Qin; Zheng, Lan-Lan; Cheng, Guo; Chao, An-Jun

    2011-11-01

    Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes severe and economically significant respiratory disease in poultry worldwide. Herein, the immunogenicity of two recombinant fowlpox viruses (rFPV-gB and rFPV-gB/IL18) containing ILTV glycoprotein B (gB) and chicken interleukin-18 (IL-18) were investigated in a challenge model. One-day-old specific-pathogen-free chickens were vaccinated by wing-web puncture with the two rFPVs and challenged with the virulent ILTV CG strain. There were differences in antibody levels elicited by either rFPV-gB/IL18 or rFPV-gB as determined using ELISA. The ratios of CD4(+) to CD8(+) in chickens immunized with rFPV-gB/IL18 were higher (P < 0.05) than in those immunized with rFPV-gB, and the level of proliferative response of the T cells in the rFPV-gB/IL18-vaccinated group was higher (P < 0.05) than that in the rFPV-gB group. All chickens immunized with rFPV-gB/IL18 were protected (10/10), whereas only eight of 10 of the chickens immunized with the rFPV-gB were protected. The results showed that the protective efficacy of the rFPV-gB vaccine could be enhanced by simultaneous expression of chicken IL-18.

  16. IL-18 receptors, their role in ligand binding and function: anti-IL-1RAcPL antibody, a potent antagonist of IL-18.

    PubMed

    Debets, R; Timans, J C; Churakowa, T; Zurawski, S; de Waal Malefyt, R; Moore, K W; Abrams, J S; O'Garra, A; Bazan, J F; Kastelein, R A

    2000-11-01

    IL-18 is critical in eliciting IFN-gamma production from Th1 cells both in vitro and in vivo. Th1 cells have been implicated in the pathogenesis of autoimmune disorders, making antagonists of IL-18 promising therapeutics. However, specificity and binding characteristics of IL-18R components have only been superficially explored. In this study, we show that IL-1R related protein 1 (IL-1Rrp1) and IL-1R accessory protein-like (IL-1RAcPL) confer responsiveness to IL-18 in a highly specific (no response to other IL-1 ligands) and unique manner (no functional pairing with other IL-1Rs and IL-1R-like molecules). Cotransfection with both receptor components resulted in expression of both low and high affinity binding sites for IL-18 (K:(d) of 11 and 0.4 nM, respectively). We prepared anti-IL-1RAcPL mAb TC30-28E3, which, in contrast to soluble R proteins, effectively inhibited the IL-18-induced activation of NF-kappaB. Quantitative PCR showed that Th1 but not Th2 cells are unique in that they coexpress IL-1Rrp1 and IL-1RAcPL. mAb TC30-28E3 inhibited IL-18-induced production of IFN-gamma by Th1 cells, being at least 10-fold more potent than anti-IL-18 ligand mAb. This study shows that IL-1RAcPL is highly specific to IL-18, is required for high affinity binding of IL-18, and that the anti-IL-1RAcPL mAb TC30-28E3 potently antagonizes IL-18 responses in vitro, providing a rationale for the use of anti-IL-1RAcPL Abs to inhibit Th1-mediated inflammatory pathologies.

  17. Dysfunction of mitochondria and deformed gap junctions in the heart of IL-18-deficient mice.

    PubMed

    Li, Wen; Jin, Denan; Hata, Masaki; Takai, Shinji; Yamanishi, Kyosuke; Shen, Weili; El-Darawish, Yosif; Yamanishi, Hiromichi; Okamura, Haruki

    2016-08-01

    Interleukin-18 (IL-18) was discovered as an interferon-γ-inducing factor and has been regarded as a proinflammatory cytokine. However, IL-18 is ubiquitously expressed both in immune/inflammatory cells and in nonimmune cells, and its biological roles have not been sufficiently elucidated. Here, we demonstrate that IL-18-deficient [IL-18 knockout (KO)] mice have heart abnormalities that may be related to impaired autophagy. In endurance running tests, IL-18KO mice ran significantly shorter distances compared with wild-type (WT) mice. Echocardiographs indicated disability in the systolic and diastolic functions of the IL-18KO mouse heart. Immunostaining of connexin 43 showed heterogeneous localization of gap junctions in the lateral membranes of the IL-18KO cardiac myocytes. Western blotting analysis revealed decreased phosphorylated connexin 43 in the IL-18KO heart. Electron microscopy revealed unusual localization of intercalated disks, swollen or damaged mitochondria, and broad, indistinct Z-lines in the IL-18KO heart. In accordance with the morphological observation, mitochondrial respiratory function, including that of complexes I and IV, was impaired, and production of reactive oxygen species was augmented in IL-18KO hearts. Notably, levels of LC3-II were markedly lower in the IL-18KO hearts than in WT hearts. In the culture of cardiac myocytes of IL-18KO neonates, exogenous IL-18 upregulated LC3-II and increased the number of intact mitochondria with high mitochondrial membrane potential. These results indicated that IL-18 has roles apart from those as a proinflammatory cytokine in cardiac myocytes and suggested that IL-18 contributes to the homeostatic maintenance of mitochondrial function and gap-junction turnover in cardiac myocytes, possibly by upregulating autophagy.

  18. High serum thrombospondin-1 concentration is associated with slower abdominal aortic aneurysm growth and deficiency of thrombospondin-1 promotes angiotensin II induced aortic aneurysm in mice.

    PubMed

    Krishna, Smriti Murali; Seto, Sai Wang; Jose, Roby; Li, Jiaze; Moxon, Joseph; Clancy, Paula; Crossman, David J; Norman, Paul; Emeto, Theophilus I; Golledge, Jonathan

    2017-06-01

    Abdominal aortic aneurysm (AAA) is a common age-related vascular disease characterized by progressive weakening and dilatation of the aortic wall. Thrombospondin-1 (TSP-1; gene Thbs1) is a member of the matricellular protein family important in the control of extracellular matrix (ECM) remodelling. In the present study, the association of serum TSP-1 concentration with AAA progression was assessed in 276 men that underwent repeated ultrasound for a median 5.5 years. AAA growth was negatively correlated with serum TSP-1 concentration (Spearman's rho (-)0.129, P=0.033). Men with TSP-1 in the highest quartile had a reduced likelihood of AAA growth greater than median during follow-up (OR: 0.40; 95% confidence interval (CI): 0.19-0.84, P=0.016, adjusted for other risk factors). Immunohistochemical staining for TSP-1 was reduced in AAA body tissues compared with the relatively normal AAA neck. To further assess the role of TSP-1 in AAA initiation and progression, combined TSP-1 and apolipoprotein deficient (Thbs1(-/-)ApoE(-/-), n=20) and control mice (ApoE(-/-), n=20) were infused subcutaneously with angiotensin II (AngII) for 28 days. Following AngII infusion, Thbs1(-/-) ApoE(-/-) mice had larger AAAs by ultrasound (P=0.024) and ex vivo morphometry measurement (P=0.006). The Thbs1(-/-)ApoE(-/-) mice also showed increased elastin filament degradation along with elevated systemic levels and aortic expression of matrix metalloproteinase (MMP)-9. Suprarenal aortic segments and vascular smooth muscle cells (VSMCs) isolated from Thbs1(-/-)ApoE(-/-) mice showed reduced collagen 3A1 gene expression. Furthermore, Thbs1(-/-)ApoE(-/-) mice had reduced aortic expression of low-density lipoprotein (LDL) receptor-related protein 1. Collectively, findings from the present study suggest that TSP-1 deficiency promotes maladaptive remodelling of the ECM leading to accelerated AAA progression. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Differential synthesis and release of IL-18 and IL-18 Binding Protein from human platelets and their implications for HIV infection.

    PubMed

    Allam, Ossama; Samarani, Suzanne; Jenabian, Mohammad-Ali; Routy, Jean-Pierre; Tremblay, Cecile; Amre, Devendra; Ahmad, Ali

    2017-02-01

    IL-18 is a pro-inflammatory cytokine belonging to the IL-1 family and is produced in the body from macrophages, epithelial and dendritic cells, keratinocytes, adrenal cortex etc. The cytokine is produced as an inactive precursor that is cleaved inside cells into its mature form by activated caspase 1, which exists as an inactive precursor in human cells and requires assembly of an inflammasomes for its activation. We show here for the first time that human platelets contain transcripts for the IL-18 gene. They synthesize the cytokine de novo, process and release it upon activation. The activation also results in the assembly of an inflammasome and activation of caspase-1. Platelets also contain the IL-18 antagonist, the IL-18-Binding Protein (IL-18BP); however, it is not synthesized in them de novo, is present in pre-made form and is released irrespective of platelet activation. IL-18 and IL-18BP co-localize to α granules inside platelets and are secreted out with different kinetics. Platelet activation contributes to plasma concentrations in healthy individuals, as their plasma samples contain abundant IL-18, while their platelet-poor plasma samples contain very little amounts of the cytokine. The plasma and PPP samples from these donors, however, contain comparable amounts of IL-18BP. Unlike healthy individuals, the platelet-poor plasma from HIV-infected individuals contains significant amounts of IL-18. Our findings have important implications for viral infections and other human diseases that are accompanied by platelet activation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Detection of expression of IL-18 and its binding protein in Egyptian pediatric immune thrombocytopenic purpura.

    PubMed

    Shaheen, Iman A; Botros, Shahira K A; Morgan, Dalia S

    2014-01-01

    Immune thrombocytopenic purpura (ITP) is an autoimmune disorder, characterized by dysfunctional cellular immunity including the presence of activated platelet specific autoreactive T cells that recognize and respond to autologous platelet antigens. Autoreactive T cells drive the generation of platelet reactive autoantibodies by B cells as well as T-cytotoxic cell-mediated lysis of platelets. Interleukin-18 (IL-18) is a mediator of T helper type 1 cell responses synergistically with IL-12 that initiate and promote host defense and inflammation. IL-18 has a specific binding protein (IL-18BP) which belongs to the immunoglobulin superfamily. In the present study, serum level and messenger RNA( mRNA) expression of IL-18 as well as IL-18BP mRNA expression were measured in peripheral blood mononuclear cells (PBMNCs) of 100 Egyptian pediatric patients with ITP (70 acute and 30 chronic). In addition to this, we recruited 80 healthy volunteers in order to investigate the possible association between the imbalance of IL-18 and IL-18 BP expressions and the pathogenesis of ITP. IL-18 serum level and mRNA expression were not elevated in cases more than in the control group, but IL-18 mRNA was higher in chronic cases when compared to the acute ones (p=0.031) and there was a good negative correlation between the platelet count and serum IL-18. IL-18 BP m-RNA was slightly elevated in cases more than in the control group (95% Confidence interval=1.15-2.01). Our results were not supportive for previous findings of elevated IL18/BP mRNA ratio in ITP patients. This could be referred to the fact that autoimmune diseases are complex genetic disorders, therefore further studies on polymorphisms affecting IL-18 gene expression as well as kinetics of IL-18 expression are required to evaluate the role of interleukin 18 and its binding protein in the pathogenesis of ITP.

  1. The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta.

    PubMed

    Ribeiro, S M; Poczatek, M; Schultz-Cherry, S; Villain, M; Murphy-Ullrich, J E

    1999-05-07

    One of the primary points of regulation of transforming growth factor-beta (TGF-beta) activity is control of its conversion from the latent precursor to the biologically active form. We have identified thrombospondin-1 as a major physiological regulator of latent TGF-beta activation. Activation is dependent on the interaction of a specific sequence in thrombospondin-1 (K412RFK415) with the latent TGF-beta complex. Platelet thrombospon-din-1 has TGF-beta activity and immunoreactive mature TGF-beta associated with it. We now report that the latency-associated peptide (LAP) of the latent TGF-beta complex also interacts with thrombospondin-1 as part of a biologically active complex. Thrombospondin.LAP complex formation involves the activation sequence of thrombospondin-1 (KRFK) and a sequence (LSKL) near the amino terminus of LAP that is conserved in TGF-beta1-5. The interactions of LAP with thrombospondin-1 through the LSKL and KRFK sequences are important for thrombospondin-mediated activation of latent TGF-beta since LSKL peptides can competitively inhibit latent TGF-beta activation by thrombospondin or KRFK-containing peptides. In addition, the association of LAP with thrombospondin-1 may function to prevent the re-formation of an inactive LAP.TGF-beta complex since thrombospondin-bound LAP no longer confers latency on active TGF-beta. The mechanism of TGF-beta activation by thrombospondin-1 appears to be conserved among TGF-beta isoforms as latent TGF-beta2 can also be activated by thrombospondin-1 or KRFK peptides in a manner that is sensitive to inhibition by LSKL peptides.

  2. Extensible byssus of Pinctada fucata: Ca2+-stabilized nanocavities and a thrombospondin-1 protein

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Li, Shiguo; Huang, Jingliang; Liu, Yangjia; Jia, Ganchu; Xie, Liping; Zhang, Rongqing

    2015-10-01

    The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca2+ by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater.

  3. Global deletion of thrombospondin-1 increases cardiac and skeletal muscle capillarity and exercise capacity in mice.

    PubMed

    Malek, Moh H; Olfert, I Mark

    2009-06-01

    Thrombospondin-1 (TSP-1) is a known inhibitor of angiogenesis; however, a skeletal muscle phenotype of TSP-1 null mice has not been investigated. The purposes of this study were to compare and contrast TSP-1 null and wild-type mice by examining the following: (1) capillarity in the skeletal and cardiac muscles; (2) fibre type composition and oxidative enzyme activity in the hindlimb; and (3) the consequences of TSP-1 gene deletion for exercise capacity. In TSP-1 null mice, maximal running speed was 11% greater and time to exhaustion during submaximal endurance running was 67% greater compared with wild-type mice. Morphometric analyses revealed that TSP-1 null mice had higher (P < 0.05) capillarity in the heart and skeletal muscle than wild-type mice, whereas no differences for fibre type composition or oxidative enzyme activity were present between the two groups. Cardiac function, as measured by transthoracic echocardiography, revealed no difference in myocardial contractility but greater left ventricular end-diastolic and systolic dimensions, corresponding to an elevated heart mass in the TSP-1 null mice. The results of this study indicate that TSP-1 is an important endogenous negative regulator of angiogenesis that prevents excessive capillarization in the heart and skeletal muscles. The increased capillarity alone was sufficient to increase (P < 0.05) exercise capacity. These data demonstrate that the capillary-to-muscle interface is a critical factor that limits oxygen transport during exercise.

  4. The thrombospondin-1 receptor CD36 is an important mediator of ovarian angiogenesis and folliculogenesis

    PubMed Central

    2014-01-01

    Background Ovarian angiogenesis is a complex process that is regulated by a balance between pro- and anti-angiogenic factors. Physiological processes within the ovary, such as folliculogenesis, ovulation, and luteal formation are dependent upon adequate vascularization and anything that disrupts normal angiogenic processes may result in ovarian dysfunction, and possibly infertility. The objective of this study was to evaluate the role of the thrombospondin-1 (TSP-1) receptor CD36 in mediating ovarian angiogenesis and regulating ovarian function. Methods The role of CD36 was evaluated in granulosa cells in vitro and ovarian morphology and protein expression were determined in wild type and CD36 null mice. Results In vitro, CD36 inhibition increased granulosa cell proliferation and decreased apoptosis. Granulosa cells in which CD36 was knocked down also exhibited an increase in expression of survival and angiogenic proteins. Ovaries from CD36 null mice were hypervascularized, with increased expression of pro-angiogenic vascular endothelial growth factor (VEGF) and its receptor VEGFR-2. Ovaries from CD36 null mice contained an increase in the numbers of pre-ovulatory follicles and decreased numbers of corpora lutea. CD36 null mice also had fewer number of offspring compared to wild type controls. Conclusions The results from this study demonstrate that CD36 is integral to the regulation of ovarian angiogenesis by TSP-1 and the expression of these family members may be useful in the control of ovarian vascular disorders. PMID:24628875

  5. Beta1 integrin cytoplasmic variants differentially regulate expression of the antiangiogenic extracellular matrix protein thrombospondin 1.

    PubMed

    Goel, Hira Lal; Moro, Loredana; Murphy-Ullrich, Joanne E; Hsieh, Chung-Cheng; Wu, Chin-Lee; Jiang, Zhong; Languino, Lucia R

    2009-07-01

    Beta(1) integrins play an important role in regulating cell proliferation and survival. Using small interfering RNA or an inhibitory antibody to beta(1), we show here that, in vivo, beta(1) integrins are essential for prostate cancer growth. Among the five known beta(1) integrin cytoplasmic variants, two have been shown to differentially affect prostate cell functions. The beta(1A) variant promotes normal and cancer cell proliferation, whereas the beta(1C) variant, which is down-regulated in prostate cancer, inhibits tumor growth and appears to have a dominant effect on beta(1A). To investigate the mechanism by which beta(1C) inhibits the tumorigenic potential of beta(1A), we analyzed changes in gene expression in cells transfected with either beta(1C) or beta(1A). The results show that beta(1C) expression increases the levels of an extracellular matrix protein, thrombospondin 1 (TSP1), an angiogenesis inhibitor. TSP1 protein levels are increased upon beta(1C) expression in prostate cancer cells as well as in beta(1)-null GD25 cells. We show that TSP1 does not affect proliferation, apoptosis, or anchorage-independent growth of prostate cancer cells. In contrast, the newly synthesized TSP1, secreted by prostate cancer cells expressing beta(1C), prevents proliferation of endothelial cells. In conclusion, our novel findings indicate that expression of the beta(1C) integrin variant in prostate glands prevents cancer progression by up-regulation of TSP1 levels and inhibition of angiogenesis.

  6. Properdistatin inhibits angiogenesis and improves vascular function in human melanoma xenografts with low thrombospondin-1 expression

    PubMed Central

    Gaustad, Jon-Vidar; Simonsen, Trude G.; Andersen, Lise Mari K.; Rofstad, Einar K.

    2016-01-01

    In this study, the effect of properdistatin, a novel peptide derived from the thrombospondin 1 (TSP-1) domain of properdin, was investigated in three melanoma xenograft models with different TSP-1 expression. The tumors were grown in dorsal window chambers and were treated with 80 mg/kg/day properdistatin or vehicle. Morphological parameters of the tumor vasculature were assessed from high resolution transillumination images. Blood supply time (i.e., the time required for arterial blood to flow from a supplying artery to downstream microvessels) and plasma velocities were assessed from first-pass imaging movies recorded after a bolus of fluorescence-labeled dextran had been administered intravenously. Gene and protein expression of TSP-1 were assessed with quantitative PCR and immunohistochemistry, respectively. Properdistatin treatment inhibited angiogenesis in low TSP-1 expressing tumors but did not alter the vasculature in high TSP-1 expressing tumors. In low TSP-1 expressing tumors, properdistatin selectively removed small-diameter capillaries, but did not change the morphology of tumor arterioles or tumor venules. Properdistatin also reduced blood supply times and increased plasma velocities, implying that the treatment reduced the geometric resistance to blood flow and improved vascular function. PMID:27756886

  7. High-glucose environment increased thrombospondin-1 expression in keratinocytes via DNA hypomethylation.

    PubMed

    Lan, Cheng-Che E; Huang, Shu-Mei; Wu, Ching-Shuang; Wu, Chin-Han; Chen, Gwo-Shing

    2016-03-01

    Diabetes is an important health issue because of its increasing prevalence and association with impaired wound healing. Epidermal keratinocytes with overexpressed antiangiogenic molecule thrombospondin-1 (TSP1) have been shown to impair proper wound healing. This study examined the potential involvement of keratinocyte-derived TSP1 on diabetic wound healing. Cultured human keratinocytes and diabetic rat model were used to evaluate the effect of high-glucose environment on TSP1 expression in epidermal keratinocytes, and the molecular mechanisms involved in the process were also studied. We demonstrated that high-glucose environment increased TSP1 expression in keratinocytes. In addition, increased oxidative stress induced DNA hypomethylation at the TSP1 promoter region in keratinocytes exposed to high-glucose environment. Similar findings were found in our diabetic rat model. Early antioxidant administration normalized TSP1 expression and global DNA methylation status in diabetic rat skin and improved wound healing in vivo. Because oxidative stress contributed to TSP1 DNA hypomethylation, early recognition of diabetic condition and timely administration of antioxidant are logical approaches to reduce complications associated with diabetes as alterations in epigenome may not be reversible by controlling glucose levels during the later stages of disease course. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Thrombospondin1 Deficiency Attenuates Obesity-Associated Microvascular Complications in ApoE-/- Mice

    PubMed Central

    Maimaitiyiming, Hasiyeti; Clemons, Kate; Zhou, Qi; Norman, Heather; Wang, Shuxia

    2015-01-01

    Obesity is associated with insulin resistance and the increased development of vascular complications. Previously, we have demonstrated that thrombospondin1 (TSP1) regulates macrophage function and contributes to obesity associated inflammation and insulin resistance. However, the role of TSP1 in the development of obesity associated vascular complications is not clear. Therefore, in the current study, we investigated whether TSP1 deficiency protects mice from obesity associated micro as well as macro-vascular complications in ApoE-/- mice. In this study, male ApoE-/- mice and ApoE-/-TSP1-/- mice were fed with a low-fat (LF) or a high-fat (HF) diet for 16 weeks. We found that body weight and fat mass increased similarly between the ApoE-/-TSP1-/- mice and ApoE-/- mice under HF feeding conditions. However, as compared to obese ApoE-/- mice, obese ApoE-/-TSP1-/- mice had improved glucose tolerance, increased insulin sensitivity, and reduced systemic inflammation. Aortic atherosclerotic lesion formation was similar in these two groups of mice. In contrast, albuminuria was attenuated and kidney fibrosis was reduced in obese ApoE-/-TSP1-/- mice compared to obese ApoE-/- mice. The improved kidney function in obese ApoE-/-TSP1-/- mice was associated with decreased renal lipid accumulation. Together, these data suggest that TSP1 deficiency did not affect the development of obesity associated macro-vascular complication, but attenuated obesity associated micro-vascular complications. PMID:25803585

  9. Thrombospondin1 deficiency attenuates obesity-associated microvascular complications in ApoE-/- mice.

    PubMed

    Maimaitiyiming, Hasiyeti; Clemons, Kate; Zhou, Qi; Norman, Heather; Wang, Shuxia

    2015-01-01

    Obesity is associated with insulin resistance and the increased development of vascular complications. Previously, we have demonstrated that thrombospondin1 (TSP1) regulates macrophage function and contributes to obesity associated inflammation and insulin resistance. However, the role of TSP1 in the development of obesity associated vascular complications is not clear. Therefore, in the current study, we investigated whether TSP1 deficiency protects mice from obesity associated micro as well as macro-vascular complications in ApoE-/- mice. In this study, male ApoE-/- mice and ApoE-/-TSP1-/- mice were fed with a low-fat (LF) or a high-fat (HF) diet for 16 weeks. We found that body weight and fat mass increased similarly between the ApoE-/-TSP1-/- mice and ApoE-/- mice under HF feeding conditions. However, as compared to obese ApoE-/- mice, obese ApoE-/-TSP1-/- mice had improved glucose tolerance, increased insulin sensitivity, and reduced systemic inflammation. Aortic atherosclerotic lesion formation was similar in these two groups of mice. In contrast, albuminuria was attenuated and kidney fibrosis was reduced in obese ApoE-/-TSP1-/- mice compared to obese ApoE-/- mice. The improved kidney function in obese ApoE-/-TSP1-/- mice was associated with decreased renal lipid accumulation. Together, these data suggest that TSP1 deficiency did not affect the development of obesity associated macro-vascular complication, but attenuated obesity associated micro-vascular complications.

  10. Extensible byssus of Pinctada fucata: Ca2+-stabilized nanocavities and a thrombospondin-1 protein

    PubMed Central

    Liu, Chuang; Li, Shiguo; Huang, Jingliang; Liu, Yangjia; Jia, Ganchu; Xie, Liping; Zhang, Rongqing

    2015-01-01

    The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca2+ by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater. PMID:26446436

  11. Thrombospondin-1 Modulates Actin Filament Remodeling and Cell Motility in Mouse Mammary Tumor cells in Vitro.

    PubMed

    Ndishabandi, Dorothy; Duquette, Cameron; Billah, Ghita El-Moatassim; Reyes, Millys; Duquette, Mark; Lawler, Jack; Kazerounian, Shideh

    2014-01-01

    It is well established that the secretion of thrombospondin-1 (TSP-1) by activated stromal cells and its accumulation in the tumor microenvironment during dysplasia inhibits primary tumor growth through inhibition of angiogenesis. This inhibitory function of TSP-1 is actuated either by inhibiting MMP9 activation and the release of VEGF from extracellular matrix or by an interaction with CD36 on the surface of endothelial cells resulting in an increase in apoptosis. In contrast, several published articles have also shown that as tumor cells become more invasive and enter the early stage of carcinoma, they up-regulate TSP-1 expression, which may promote invasion and migration. In our in vivo studies using the polyoma middle T antigen (PyT) transgenic mouse model of breast cancer, we observed that the absence of TSP-1 significantly increased the growth of primary tumors, but delayed metastasis to the lungs. In this study, we propose a mechanism for the promigratory function of TSP-1 in mouse mammary tumor cells in vitro. We demonstrate the correlations between expression of TSP-1 and its receptor integrin α3β1, which is considered a promigratory protein in cancer cells. In addition we propose that binding of TSP-1 to integrin α3β1 is important for mediating actin filament polymerization and therefore, cell motility. These findings can help explain the dual functionality of TSP-1 in cancer progression.

  12. Thrombospondin-1 Modulates Actin Filament Remodeling and Cell Motility in Mouse Mammary Tumor cells in Vitro

    PubMed Central

    Ndishabandi, Dorothy; Duquette, Cameron; Billah, Ghita El-Moatassim; Reyes, Millys; Duquette, Mark; Lawler, Jack; Kazerounian, Shideh

    2015-01-01

    It is well established that the secretion of thrombospondin-1 (TSP-1) by activated stromal cells and its accumulation in the tumor microenvironment during dysplasia inhibits primary tumor growth through inhibition of angiogenesis. This inhibitory function of TSP-1 is actuated either by inhibiting MMP9 activation and the release of VEGF from extracellular matrix or by an interaction with CD36 on the surface of endothelial cells resulting in an increase in apoptosis. In contrast, several published articles have also shown that as tumor cells become more invasive and enter the early stage of carcinoma, they up-regulate TSP-1 expression, which may promote invasion and migration. In our in vivo studies using the polyoma middle T antigen (PyT) transgenic mouse model of breast cancer, we observed that the absence of TSP-1 significantly increased the growth of primary tumors, but delayed metastasis to the lungs. In this study, we propose a mechanism for the promigratory function of TSP-1 in mouse mammary tumor cells in vitro. We demonstrate the correlations between expression of TSP-1 and its receptor integrin α3β1, which is considered a promigratory protein in cancer cells. In addition we propose that binding of TSP-1 to integrin α3β1 is important for mediating actin filament polymerization and therefore, cell motility. These findings can help explain the dual functionality of TSP-1 in cancer progression. PMID:26273699

  13. Transcriptional and Post-Transcriptional Regulation of Thrombospondin-1 Expression: A Computational Model

    PubMed Central

    Isenberg, Jeffrey S.; Popel, Aleksander S.

    2017-01-01

    Hypoxia is an important physiological stress signal that drives angiogenesis, the formation of new blood vessels. Besides an increase in the production of pro-angiogenic signals such as vascular endothelial growth factor (VEGF), hypoxia also stimulates the production of anti-angiogenic signals. Thrombospondin-1 (TSP-1) is one of the anti-angiogenic factors whose synthesis is driven by hypoxia. Cellular synthesis of TSP-1 is tightly regulated by different intermediate biomolecules including proteins that interact with hypoxia-inducible factors (HIFs), transcription factors that are activated by receptor and intracellular signaling, and microRNAs which are small non-coding RNA molecules that function in post-transcriptional modification of gene expression. Here we present a computational model that describes the mechanistic interactions between intracellular biomolecules and cooperation between signaling pathways that together make up the complex network of TSP-1 regulation both at the transcriptional and post-transcriptional level. Assisted by the model, we conduct in silico experiments to compare the efficacy of different therapeutic strategies designed to modulate TSP-1 synthesis in conditions that simulate tumor and peripheral arterial disease microenvironment. We conclude that TSP-1 production in endothelial cells depends on not only the availability of certain growth factors but also the fine-tuned signaling cascades that are initiated by hypoxia. PMID:28045898

  14. Extensible byssus of Pinctada fucata: Ca(2+)-stabilized nanocavities and a thrombospondin-1 protein.

    PubMed

    Liu, Chuang; Li, Shiguo; Huang, Jingliang; Liu, Yangjia; Jia, Ganchu; Xie, Liping; Zhang, Rongqing

    2015-10-08

    The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca(2+) by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater.

  15. [Cloning and sequence analysis of active fragments of human thrombospondin-1].

    PubMed

    Chen, Yao; Zhang, Yizheng

    2003-04-01

    To lay a foundation for researches on the expression of gene engineering anti-tumor drugs. On the basis of mRNA sequence of human thrombospondin-1(TSP-1), two pairs of primers were designed and synthesized. Two active fragments TSP-1, called TSP-1-I and TSP-1-III, were obtained by using reverse transcription-polymerase chain reaction(RT-PCR). The sizes of those two fragments were found to be 728 bp and 257 bp respectively. They were purified and then cloned into pMDT vector after transformation into Escherichia coli with recombined DNAs. Plasmid DNAs were isolated from transformants and digested with restriction enzyme. The results from agarose gel electrophorasis showed that these two fragments had been inserted into vector and their sizes were in accord with the expected values. Sequence analysis demonstrated that TSP-1-I is 728 bp in size and encodes a peptide containing 212 amino acid residues with relative molecular mass of 23.6 x 10(3) and the TSP-I III is 257 bp in size and encodes a peptide containing 86 amino acid residues with relative molecular mass of 9.5 x 10(3). The results from homology analysis indicate that the sequence of these two fragments is identified with that of TSP-1 of Genbank.

  16. Thrombospondin-1 mediates oncogenic Ras–induced senescence in premalignant lung tumors

    PubMed Central

    Baek, Kwan-Hyuck; Bhang, Dongha; Zaslavsky, Alexander; Wang, Liang-Chuan; Vachani, Anil; Kim, Carla F.; Albelda, Steven M.; Evan, Gerard I.; Ryeom, Sandra

    2013-01-01

    Progression of premalignant lesions is restrained by oncogene-induced senescence. Oncogenic Ras triggers senescence in many organs, including the lung, which exhibits high levels of the angiogenesis inhibitor thrombospondin-1 (TSP-1). The contribution of TSP-1 upregulation to the modulation of tumorigenesis in the lung is unclear. Using a mouse model of lung cancer, we have shown that TSP-1 plays a critical and cell-autonomous role in suppressing Kras-induced lung tumorigenesis independent of its antiangiogenic function. Overall survival was decreased in a Kras-driven mouse model of lung cancer on a Tsp-1–/– background. We found that oncogenic Kras–induced TSP-1 upregulation in a p53-dependent manner. TSP-1 functioned in a positive feedback loop to stabilize p53 by interacting directly with activated ERK. TSP-1 tethering of ERK in the cytoplasm promoted a level of MAPK signaling that was sufficient to sustain p53 expression and a senescence response. Our data identify TSP-1 as a p53 target that contributes to maintaining Ras-induced senescence in the lung. PMID:24018559

  17. Targeted inhibition of IL-18 attenuates irinotecaninduced intestinal mucositis in mice

    PubMed Central

    Lima-Júnior, R C P; Freitas, H C; Wong, D V T; Wanderley, C W S; Nunes, L G; Leite, L L; Miranda, S P; Souza, M H L P; Brito, G A C; Magalhães, P J C; Teixeira, M M; Cunha, F Q; Ribeiro, R A

    2014-01-01

    Background and Purpose Intestinal mucositis is a common side-effect of irinotecan-based cancer chemotherapy regimens. This mucositis is associated with cytokine activation and NO synthesis. Production of IL-18 is up-regulated in patients suffering from inflammatory bowel disease. Therefore, we have investigated the role of IL-18 in the pathogenesis of irinotecan-induced intestinal mucositis. Experimental Approach Wild type (WT), IL-18 or caspase-1 knockout mice were treated with either saline or irinotecan (60 mg·kg−1 per 4 days, i.p.) or the IL-18 binding protein (IL-18bp, 10 mg·kg−1) before irinotecan. On day 5, diarrhoea was monitored and proximal intestinal strips were obtained for histopathology, in vitro gut contractility, myeloperoxidase (MPO) and inducible NOS (iNOS) activity, and detection of IL-18 expression. Key Results Irinotecan induced severe diarrhoea accompanied by intestinal injury (villi shortening and increased crypt depth). Additionally, irinotecan treatment increased MPO and iNOS activity, iNOS immunostaining and IL-18 expression in WT mice compared with saline treatment. The IL-18 production was associated with macrophages. In vitro, intestinal smooth muscle strips were hyperresponsive to ACh after irinotecan treatment. Increases in MPO and iNOS activity, intestinal contractility and diarrhoea were prevented in caspase-1 knockout and IL-18 knockout mice, and in IL-18bp-treated WT mice. Furthermore, the Survival of irinotecan-treated mice was increased and iNOS immunoexpression and IL-18 production prevented in IL-18 knockout mice. Conclusions and Implications Targeting IL-18 function may be a promising therapeutic approach to decreasing the severity of intestinal mucositis during irinotecan treatment regimens. PMID:24428790

  18. Immune responses of chickens inoculated with a recombinant fowlpox vaccine coexpressing HA of H9N2 avain influenza virus and chicken IL-18.

    PubMed

    Chen, Hong-Ying; Shang, Yan-Hong; Yao, Hui-Xia; Cui, Bao-An; Zhang, Hong-Ying; Wang, Zi-Xin; Wang, Ya-Dan; Chao, An-Jun; Duan, Ting-Yun

    2011-07-01

    Control of the circulation of H9N2 avian influenza virus (AIV) is a major concern for both animal and public health, and H9N2 AIV poses a major threat to the chicken industry worldwide. Here, we developed a recombinant fowlpox virus (rFPV-HA) expressing the haemagglutinin (HA) gene of the A/CH/JY/1/05 (H9N2) influenza virus and a recombinant fowlpox virus (rFPV-HA/IL18) expressing the HA gene and chicken interleukin-18 (IL-18) gene. Recombinant plasmid pSY-HA/IL18 was constructed by cloning chicken IL-18 expression cassette into recombinant plasmid pSY-HA containing the HA gene. Two rFPVs were generated by transfecting two recombinant plasmids into the chicken embryo fibroblast cells pre-infected with S-FPV-017, and assessed for their immunological efficacy on one-day-old White Leghorn specific-pathogen-free chickens challenged with the A/CH/JY/1/05 (H9N2) strain. There was a significant difference in HI antibody levels (P<0.05) elicited by either rFPV-HA or rFPV-HA/IL18. The level of splenocyte proliferation response in the rFPV-HA/IL18-vaccinated group was significantly higher (P<0.05) than that in the rFPV-HA group. After challenge with 10(6.5)ELD(50) H9N2 AIV 43days after immunization, rFPVs vaccinated groups could prevent virus shedding and replication in multiple organs in response to H9N2 AIV infection, and rFPV-HA/IL18 vaccinated group had better inhibition of viruses than rFPV-HA vaccinated group. Our results show that the protective efficacy of the rFPV-HA vaccine could be enhanced significantly by simultaneous expression of IL-18.

  19. P-selectin can promote thrombus propagation independently of both von Willebrand factor and thrombospondin-1 in mice.

    PubMed

    Prakash, P; Nayak, M K; Chauhan, A K

    2017-02-01

    Essentials The main receptor for platelet glycoprotein (GP) Ibα is von Willebrand factor (VWF). P-selectin and thrombospondin-1 (TSP1) have been suggested as counter receptors for GPIbα. In a laser injury model, P-selectin promotes thrombus propagation independently of VWF and TSP1. In a laser injury model, thrombus persists in interleukin-4 receptor α/GPIbα-transgenic mice.

  20. Thrombospondin-1 expression in melanoma is blocked by methylation and targeted reversal by 5-Aza-deoxycytidine suppresses angiogenesis.

    PubMed

    Lindner, Daniel J; Wu, Yan; Haney, Rebecca; Jacobs, Barbara S; Fruehauf, John P; Tuthill, Ralph; Borden, Ernest C

    2013-03-11

    Reversibility of aberrant methylation via pharmacological means is an attractive target for therapies through epigenetic reprogramming. To establish that pharmacologic reversal of methylation could result in functional inhibition of angiogenesis, we undertook in vitro and in vivo studies of thrombospondin-1 (TSP1), a known inhibitor of angiogenesis. TSP1 is methylated in several malignancies, and can inhibit angiogenesis in melanoma xenografts. We analyzed effects of 5-Aza-deoxycytidine (5-Aza-dC) on melanoma cells in vitro to confirm reversal of promoter hypermethylation and restoration of TSP1 expression. We then investigated the effects of TSP1 expression on new blood vessel formation and tumor growth in vivo. Finally, to determine potential for clinical translation, the methylation status of TSP1 promoter regions of nevi and melanoma tissues was investigated. 5-Aza-dC reduced DNA (cytosine-5)-methyltransferase 1 (DNMT1) protein, reversed promoter hypermethylation, and restored TSP1 expression in five melanoma cell lines, while having no effect on TSP1 protein levels in normal human melanocytes. In in vivo neovascularization studies, mice were implanted with melanoma cells (A375) either untreated or treated with 5Aza-dC. Vessels at tumor sites were counted by an observer blinded to treatments and the number of tumor vessels was significantly decreased at pretreated tumor sites. This difference occurred before a significant difference in tumor volumes was seen, yet in further studies the average tumor volume in mice treated in vivo with 5-Aza-dC was decreased by 55% compared to untreated controls. Knockdown of TSP1 expression with shRNA enhanced tumor-induced angiogenesis by 68%. Analyses of promoter methylation status of TSP1 in tumors derived from untreated and treated mice identified 67% of tumors from untreated and 17% of tumors from treated mice with partial methylation consistent with the methylation specific PCR analysis of A375 cells. Examination of

  1. Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18

    PubMed Central

    Wynn, James Lawrence; Wilson, Chris S.; Hawiger, Jacek; Scumpia, Philip O.; Marshall, Andrew F.; Liu, Jin-Hua; Zharkikh, Irina; Wong, Hector R.; Lahni, Patrick; Benjamin, John T.; Plosa, Erin J.; Weitkamp, Jörn-Hendrik; Sherwood, Edward R.; Moldawer, Lyle L.; Ungaro, Ricardo; Baker, Henry V.; Lopez, M. Cecilia; McElroy, Steven J.; Colliou, Natacha; Mohamadzadeh, Mansour; Moore, Daniel Jensen

    2016-01-01

    Interleukin (IL)-18 is an important effector of innate and adaptive immunity, but its expression must also be tightly regulated because it can potentiate lethal systemic inflammation and death. Healthy and septic human neonates demonstrate elevated serum concentrations of IL-18 compared with adults. Thus, we determined the contribution of IL-18 to lethality and its mechanism in a murine model of neonatal sepsis. We find that IL-18–null neonatal mice are highly protected from polymicrobial sepsis, whereas replenishing IL-18 increased lethality to sepsis or endotoxemia. Increased lethality depended on IL-1 receptor 1 (IL-1R1) signaling but not adaptive immunity. In genome-wide analyses of blood mRNA from septic human neonates, expression of the IL-17 receptor emerged as a critical regulatory node. Indeed, IL-18 administration in sepsis increased IL-17A production by murine intestinal γδT cells as well as Ly6G+ myeloid cells, and blocking IL-17A reduced IL-18–potentiated mortality to both neonatal sepsis and endotoxemia. We conclude that IL-17A is a previously unrecognized effector of IL-18–mediated injury in neonatal sepsis and that disruption of the deleterious and tissue-destructive IL-18/IL-1/IL-17A axis represents a novel therapeutic approach to improve outcomes for human neonates with sepsis. PMID:27114524

  2. Deletion of IL-18 Expression Ameliorates Spontaneous Kidney Failure in MRLlpr Mice

    PubMed Central

    Glage, Silke; Neumann, Detlef

    2015-01-01

    The role of IL-18 in the pathogenesis of systemic lupus erythematosus is still not definitively solved. In this study, we generated MRLlpr mice, which develop a disease resembling systemic lupus erythematosus, genetically devoid of IL-18 expression. These mice in comparison to IL-18-competent MRLlpr mice show reduced signs of renal pathogenesis, while other parameters such as mean survival time, lymphadenopathy, constitutive interferon-γ production, and frequency of CD3+B220+ abnormal T cells were without differences. We conclude that in the systemic lupus erythematosus syndrom IL-18 is involved specifically in the renal pathogenesis. PMID:26465326

  3. Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18.

    PubMed

    Wynn, James Lawrence; Wilson, Chris S; Hawiger, Jacek; Scumpia, Philip O; Marshall, Andrew F; Liu, Jin-Hua; Zharkikh, Irina; Wong, Hector R; Lahni, Patrick; Benjamin, John T; Plosa, Erin J; Weitkamp, Jörn-Hendrik; Sherwood, Edward R; Moldawer, Lyle L; Ungaro, Ricardo; Baker, Henry V; Lopez, M Cecilia; McElroy, Steven J; Colliou, Natacha; Mohamadzadeh, Mansour; Moore, Daniel Jensen

    2016-05-10

    Interleukin (IL)-18 is an important effector of innate and adaptive immunity, but its expression must also be tightly regulated because it can potentiate lethal systemic inflammation and death. Healthy and septic human neonates demonstrate elevated serum concentrations of IL-18 compared with adults. Thus, we determined the contribution of IL-18 to lethality and its mechanism in a murine model of neonatal sepsis. We find that IL-18-null neonatal mice are highly protected from polymicrobial sepsis, whereas replenishing IL-18 increased lethality to sepsis or endotoxemia. Increased lethality depended on IL-1 receptor 1 (IL-1R1) signaling but not adaptive immunity. In genome-wide analyses of blood mRNA from septic human neonates, expression of the IL-17 receptor emerged as a critical regulatory node. Indeed, IL-18 administration in sepsis increased IL-17A production by murine intestinal γδT cells as well as Ly6G(+) myeloid cells, and blocking IL-17A reduced IL-18-potentiated mortality to both neonatal sepsis and endotoxemia. We conclude that IL-17A is a previously unrecognized effector of IL-18-mediated injury in neonatal sepsis and that disruption of the deleterious and tissue-destructive IL-18/IL-1/IL-17A axis represents a novel therapeutic approach to improve outcomes for human neonates with sepsis.

  4. Implication of Interleukin (IL)-18 in the pathogenesis of chronic obstructive pulmonary disease (COPD).

    PubMed

    Dima, Efrossini; Koltsida, Ourania; Katsaounou, Paraskevi; Vakali, Sofia; Koutsoukou, Antonia; Koulouris, Nikolaos G; Rovina, Nikoletta

    2015-08-01

    Interleukin (IL)-18 is a pro-inflammatory cytokine that was firstly described as an interferon (IFN)-γ-inducing factor. Similar to IL-1β, IL-18 is synthesized as an inactive precursor requiring processing by caspase-1 into an active cytokine. The platform for activating caspase-1 is known as the inflammasome, a multiple protein complex. Macrophages and dendritic cells are the primary sources for the release of active IL-18, whereas the inactive precursor remains in the intracellular compartment of mesenchymal cells. Finally, the IL-18 precursor is released from dying cells and processed extracellularly. IL-18 has crucial host defense and antitumor activities, and gene therapy to increase IL-18 levels in tissues protects experimental animals from infection and tumor growth and metastasis. Moreover, multiple studies in experimental animal models have shown that IL-18 over-expression results to emphysematous lesions in mice. The published data prompt to the hypothesis that IL-18 induces a broad spectrum of COPD-like inflammatory and remodeling responses in the murine lung and also induces a mixed type 1, type 2, and type 17 cytokine responses. The majority of studies identify IL-18 as a potential target for future COPD therapeutics to limit both the destructive and remodeling processes occurring in COPD lungs.

  5. Effects of radioiodine administration on serum concentrations of matrix metalloproteinases, adiponectin and thrombospondin-1

    PubMed Central

    2013-01-01

    Background In order to assess safety of radioactive iodine administration in the treatment of thyrotoxicosis, we measured concentrations of matrix metalloproteinase-2 (MMP-2), its main inhibitor – TIMP-2 (tissue inhibitor of MMP-2), matrix metalloproteinase-9 (MMP-9), its main inhibitor – TIMP-1, adiponectin, as well as pro-inflammatory and procancerogenic thrombospondin-1 (TSP-1). Design and patients The study involved 23 patients treated with radioiodine for thyrotoxicosis. Serum concentrations of TSH, free T4, free T3, MMP-2, MMP-9, TIMP-1, TIMP-2, total adiponectin and TSP-1 were measured by immunoassays just before radioiodine administration (visit 1), and subsequently, after 7 days (visit 2), 3 months (visit 3), 6 to 8 months (visit 4) and 15–18 months after radioiodine administration (visit 5). Results There were no acute changes in serum concentrations of MMP-2, MMP-9, TIMP-1, TIMP-2, adiponectin and TSP-1 (visit 1 vs. 2). Subsequently, there was an increase in MMP-2 (from 393±106 ng/ml to 774±424 ng/ml), TIMP-1 (from 177±76 ng/ml to 296±118 ng/ml), and adiponectin (from 16442±9490 ng/ml to 23518±9840 ng/ml), visit 1 to 5, respectively (p < 0.01). Further analysis revealed no significant change in MMP-2/TIMP-2 ratio, but there was a significant decrease in MMP-9/TIMP-1 ratio (p < 0.05), suggestive of possible decrease in free MMP-9 concentrations. Conclusions Our data reveal a significant and sustained increase in serum adiponectin, as well as possible decrease of free MMP-9 concentration after radioiodine administration. In contrast, there was no significant change of TSP-1. This might indicate overall safety of radioiodine treatment of thyrotoxicosis in terms of the risks of subsequent cardiovascular and neoplastic disease. PMID:23919647

  6. Chronic Delivery of a Thrombospondin-1 Mimetic Decreases Skeletal Muscle Capillarity in Mice

    PubMed Central

    Audet, Gerald N.; Fulks, Daniel; Stricker, Janelle C.; Olfert, I. Mark

    2013-01-01

    Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1), a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510), which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose) were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA), 11% decrease in the plantaris (PLT), and a 35% decrease in the soleus (SOL). ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF) in both the GA (−140%) and SOL (−62%); however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density. PMID:23405239

  7. Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice.

    PubMed

    Audet, Gerald N; Fulks, Daniel; Stricker, Janelle C; Olfert, I Mark

    2013-01-01

    Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1), a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510), which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose) were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA), 11% decrease in the plantaris (PLT), and a 35% decrease in the soleus (SOL). ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF) in both the GA (-140%) and SOL (-62%); however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.

  8. Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenesis.

    PubMed Central

    Sheibani, N; Frazier, W A

    1995-01-01

    Murine endothelial cells are readily transformed in a single step by the polyomavirus oncogene encoding middle-sized tumor antigen. These cells (bEND.3) form tumors (hemangiomas) in mice which are lethal in newborn animals. The bEND.3 cells rapidly proliferate in culture and express little or no thrombospondin 1 (TS1). To determine the role of TS1 in regulation of endothelial cell phenotype, we stably transfected bEND.3 cells with a human TS1 expression vector. The cells expressing human TS1 were readily identified by their altered morphology and exhibited a slower growth rate and lower saturation density than the parental bEND.3 cells. The TS1-expressing cells also formed aligned cords of cells instead of clumps or cysts in Matrigel. Moreover, while the bEND.3 cells formed large tumors in nude mice within 48 hr, the TS1-expressing cells failed to form tumors even after 1 month. The TS1-transfected cells expressed transforming growth factor beta mRNA and bioactivity at levels similar to those of the parental or vector-transfected bEND.3 cells, indicating that the effects of TS1 expression are not due to the activation of transforming growth factor beta by TS1. TS1 expression resulted in a > 100-fold decrease in net fibrinolytic (urokinase-type plasminogen activator, uPA) activity due to more plasminogen-activator inhibitor 1 and less uPA secretion. TS1 thus appears to be an important regulator of endothelial cell phenotype required for maintaining the quiescent, differentiated state. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7624320

  9. Loss-of-function thrombospondin-1 mutations in familial pulmonary hypertension

    PubMed Central

    Stearman, Robert S.; Bull, Todd M.; Calabrese, David W.; Tripp-Addison, Megan L.; Wick, Marilee J.; Broeckel, Ulrich; Robbins, Ivan M.; Wheeler, Lisa A.; Cogan, Joy D.; Loyd, James E.

    2012-01-01

    Most patients with familial pulmonary arterial hypertension (FPAH) carry mutations in the bone morphogenic protein receptor 2 gene (BMPR2). Yet carriers have only a 20% risk of disease, suggesting that other factors influence penetrance. Thrombospondin-1 (TSP1) regulates activation of TGF-β and inhibits endothelial and smooth muscle cell proliferation, pathways coincidentally altered in pulmonary arterial hypertension (PAH). To determine whether a subset of FPAH patients also have mutations in the TSP1 gene (THBS1) we resequenced the type I repeats of THBS1 encoding the TGF-β regulation and cell growth inhibition domains in 60 FPAH probands, 70 nonfamilial PAH subjects, and in large control groups. We identified THBS1 mutations in three families: a novel missense mutation in two (Asp362Asn), and an intronic mutation in a third (IVS8+255 G/A). Neither mutation was detected in population controls. Mutant 362Asn TSP1 had less than half of the ability of wild-type TSP1 to activate TGF-β. Mutant 362Asn TSP1 also lost the ability to inhibit growth of pulmonary arterial smooth muscle cells and was over threefold less effective at inhibiting endothelial cell growth. The IVS8+255 G/A mutation decreased and/or eliminated local binding of the transcription factors SP1 and MAZ but did not affect RNA splicing. These novel mutations implicate THBS1 as a modifier gene in FPAH. These THBS1 mutations have implications in the genetic evaluation of FPAH patients. However, since FPAH is rare, these data are most relevant as evidence for the importance of TSP1 in pulmonary vascular homeostasis. Further examination of THBS1 in the pathogenesis of PAH is warranted. PMID:22198906

  10. Inflammatory Cytokine-Mediated Regulation of Thrombospondin-1 and CD36 in Conjunctival Cells

    PubMed Central

    Soriano-Romaní, Laura; Contreras-Ruiz, Laura; García-Posadas, Laura; López-García, Antonio; Masli, Sharmila

    2015-01-01

    Abstract Purpose: Increased expression of transforming growth factor-β2 (TGF-β2) is reported in the conjunctiva of dry eye patients with no increase of anti-inflammatory activity of TGF-β2. Our aim was to compare the expression of molecules involved in TGF-β2 activation, thrombospondin-1 (TSP-1) and CD36, during murine and human conjunctival inflammation. Methods: Human conjunctival tissue from cadaveric donors, human conjunctival epithelial primary cells and fibroblasts, and murine conjunctivas were immunostained for TSP-1, CD36, or TGF-β2. Inflamed conjunctival tissues were obtained from C57BL/6 wild-type (WT) mice induced to develop experimental dry eye (EDE) with 10 days of desiccating conditions and scopolamine injections and TSP-1-deficient (TSP1−/−) mice, which spontaneously develop Sjögren's syndrome-associated conjunctival inflammation with age. Immunostaining intensities were compared using ImageJ software. Cultures of human conjunctival fibroblasts were stimulated with IL-1β and both secreted protein and message levels of TSP-1, CD36, and TGF-β2 were analyzed. Results: TSP-1 and CD36 were detectable in human and murine conjunctival tissues as well as primary conjunctival epithelial cells and fibroblasts. Increased conjunctival immunostaining of TGF-β2 and reduced CD36 were detected in EDE mice compared with WT mice. Interestingly, increased TGF-β2 and CD36 conjunctival immunostaining was detected in TSP1−/− mice. The expression of TSP-1 and CD36 was downregulated in IL-1β-stimulated conjunctival fibroblasts at both the protein and message level, while active TGF-β2 was undetected. Conclusions: The absence or reduced expression of either of the molecules involved in TGF-β2 activation supports proinflammatory conditions in the conjunctiva. Changes in TSP-1 and CD36 may serve as potential biomarkers of conjunctival inflammation. PMID:26154920

  11. Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia.

    PubMed Central

    Lawler, J; Sunday, M; Thibert, V; Duquette, M; George, E L; Rayburn, H; Hynes, R O

    1998-01-01

    The thrombospondins are a family of extracellular calcium-binding proteins that modulate cellular phenotype. Thrombospondin-1 (TSP-1) reportedly regulates cellular attachment, proliferation, migration, and differentiation in vitro. To explore its function in vivo, we have disrupted the TSP-1 gene by homologous recombination in the mouse genome. Platelets from these mice are completely deficient in TSP-1 protein; however, thrombin-induced platelet aggregation is not diminished. TSP-1-deficient mice display a mild and variable lordotic curvature of the spine that is apparent from birth. These mice also display an increase in the number of circulating white blood cells, with monocytes and eosinophils having the largest percent increases. The brain, heart, kidney, spleen, stomach, intestines, aorta, and liver of TSP-1-deficient mice showed no major abnormalities. However, consistent with high levels of expression of TSP-1 in lung, we observe abnormalities in the lungs of mice that lack the protein. Although normal at birth, histopathological analysis of lungs from 4-wk-old TSP-1-deficient mice reveals extensive acute and organizing pneumonia, with neutrophils and macrophages. The macrophages stain for hemosiderin, indicating that diffuse alveolar hemorrhage is occurring. At later times, the number of neutrophils decreases and a striking increase in the number of hemosiderin-containing macrophages is observed associated with multiple-lineage epithelial hyperplasia and the deposition of collagen and elastin. A thickening and ruffling of the epithelium of the airways results from increasing cell proliferation in TSP-1-deficient mice. These results indicate that TSP-1 is involved in normal lung homeostasis. PMID:9486968

  12. Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelium

    PubMed Central

    Narizhneva, Natalya V.; Razorenova, Olga V.; Podrez, Eugene A.; Chen, Juhua; Chandrasekharan, Unni M.; DiCorleto, Paul E.; Plow, Edward F.; Topol, Eric J.; Byzova, Tatiana V.

    2006-01-01

    Expression of cell adhesion molecules (CAM) responsible for leukocyte-endothelium interactions plays a crucial role in inflammation and atherogenesis. Up-regulation of vascular CAM-1 (VCAM-1), intracellular CAM-1 (ICAM-1), and E-selectin expression promotes monocyte recruitment to sites of injury and is considered to be a critical step in atherosclerotic plaque development. Factors that trigger this initial response are not well understood. As platelet activation not only promotes thrombosis but also early stages of atherogenesis, we considered the role of thrombospondin-1 (TSP-1), a matricellular protein released in abundance from activated platelets and accumulated in sites of vascular injury, as a regulator of CAM expression. TSP-1 induced expression of VCAM-1 and ICAM-1 on endothelium of various origins, which in turn, resulted in a significant increase of monocyte attachment. This effect could be mimicked by a peptide derived from the C-terminal domain of TSP-1 and known to interact with CD47 on the cell surface. The essential role of CD47 in the cellular responses to TSP-1 was demonstrated further using inhibitory antibodies and knockdown of CD47 with small interfering RNA. Furthermore, we demonstrated that secretion of endogenous TSP-1 and its interaction with CD47 on the cell surface mediates endothelial response to the major proinflammatory agent, tumor necrosis factor α (TNF-α). Taken together, this study identifies a novel mechanism regulating CAM expression and subsequent monocyte binding to endothelium, which might influence the development of anti-atherosclerosis therapeutic strategies. PMID:15833768

  13. Acute and Chronic Mu Opioids Differentially Regulate Thrombospondins 1 and 2 Isoforms in Astrocytes

    PubMed Central

    2013-01-01

    Chronic opioids induce synaptic plasticity, a major neuronal adaptation. Astrocyte activation in synaptogenesis may play a critical role in opioid tolerance, withdrawal, and dependence. Thrombospondins 1 and 2 (TSP1/2) are astrocyte-secreted matricellular glycoproteins that promote neurite outgrowth as well as dendritic spine and synapse formation, all of which are inhibited by chronic μ opioids. In prior studies, we discovered that the mechanism of TSP1 regulation by μ opioids in astrocytes involves crosstalk between three different classes of receptors, μ opioid receptor, EGFR and TGFβR. Moreover, TGFβ1 stimulated TSP1 expression via EGFR and ERK/MAPK activation, indicating that EGFR is a signaling hub for opioid and TGFβ1 actions. Using various selective antagonists, and inhibitors, here we compared the mechanisms of chronic opioid regulation of TSP1/2 isoform expression in vivo and in immortalized rat cortical astrocytes. TSP1/2 release from astrocytes was also monitored. Acute and chronic μ opioids, morphine, and the prototypic μ ligand, DAMGO, modulated TSP2 protein levels. TSP2 but not TSP1 protein content was up-regulated by acute (3 h) morphine or DAMGO by an ERK/MAPK dependent mechanism. Paradoxically, TSP2 protein levels were altered neither by TGFβ1 nor by astrocytic neurotrophic factors, EGF, CNTF, and BMP4. TSP1/2 immunofluorescence was increased in astrocytes subjected to scratch-wounding, suggesting TSPs may be useful markers for the “reactive” state of these cells and potentially for different types of injury. Previously, we determined that chronic morphine attenuated both neurite outgrowth and synapse formation in cocultures of primary astrocytes and neurons under similar temporal conditions that μ opioids reduced TSP1 protein levels in astrocytes. Here we found that, after the same 8 day treatment, morphine or DAMGO diminished TSP2 protein levels in astrocytes. Therefore, μ opioids may deter synaptogenesis via both TSP1/2 isoforms

  14. Acute and chronic mu opioids differentially regulate thrombospondins 1 and 2 isoforms in astrocytes.

    PubMed

    Phamduong, Ellen; Rathore, Maanjot K; Crews, Nicholas R; D'Angelo, Alexander S; Leinweber, Andrew L; Kappera, Pranay; Krenning, Thomas M; Rendell, Victoria R; Belcheva, Mariana M; Coscia, Carmine J

    2014-02-19

    Chronic opioids induce synaptic plasticity, a major neuronal adaptation. Astrocyte activation in synaptogenesis may play a critical role in opioid tolerance, withdrawal, and dependence. Thrombospondins 1 and 2 (TSP1/2) are astrocyte-secreted matricellular glycoproteins that promote neurite outgrowth as well as dendritic spine and synapse formation, all of which are inhibited by chronic μ opioids. In prior studies, we discovered that the mechanism of TSP1 regulation by μ opioids in astrocytes involves crosstalk between three different classes of receptors, μ opioid receptor, EGFR and TGFβR. Moreover, TGFβ1 stimulated TSP1 expression via EGFR and ERK/MAPK activation, indicating that EGFR is a signaling hub for opioid and TGFβ1 actions. Using various selective antagonists, and inhibitors, here we compared the mechanisms of chronic opioid regulation of TSP1/2 isoform expression in vivo and in immortalized rat cortical astrocytes. TSP1/2 release from astrocytes was also monitored. Acute and chronic μ opioids, morphine, and the prototypic μ ligand, DAMGO, modulated TSP2 protein levels. TSP2 but not TSP1 protein content was up-regulated by acute (3 h) morphine or DAMGO by an ERK/MAPK dependent mechanism. Paradoxically, TSP2 protein levels were altered neither by TGFβ1 nor by astrocytic neurotrophic factors, EGF, CNTF, and BMP4. TSP1/2 immunofluorescence was increased in astrocytes subjected to scratch-wounding, suggesting TSPs may be useful markers for the "reactive" state of these cells and potentially for different types of injury. Previously, we determined that chronic morphine attenuated both neurite outgrowth and synapse formation in cocultures of primary astrocytes and neurons under similar temporal conditions that μ opioids reduced TSP1 protein levels in astrocytes. Here we found that, after the same 8 day treatment, morphine or DAMGO diminished TSP2 protein levels in astrocytes. Therefore, μ opioids may deter synaptogenesis via both TSP1/2 isoforms, but

  15. Physiological levels of thrombospondin-1 decrease NO-dependent vasodilation in coronary microvessels from aged rats.

    PubMed

    Nevitt, Chris; McKenzie, Grant; Christian, Katelyn; Austin, Jeff; Hencke, Sarah; Hoying, James; LeBlanc, Amanda

    2016-06-01

    Aging and cardiovascular disease are associated with the loss of nitric oxide (NO) signaling and a decline in the ability to increase coronary blood flow reserve (CFR). Thrombospondin-1 (Thbs-1), through binding of CD47, has been shown to limit NO-dependent vasodilation in peripheral vascular beds via formation of superoxide (O2 (-)). The present study tests the hypothesis that, similar to the peripheral vasculature, blocking CD47 will improve NO-mediated vasoreactivity in coronary arterioles from aged individuals, resulting in improved CFR. Isolated coronary arterioles from young (4 mo) or old (24 mo) female Fischer 344 rats were challenged with the NO donor, DEA-NONO-ate (1 × 10(-7) to 1 × 10(-4) M), and vessel relaxation and O2 (-) production was measured before and after Thbs-1, αCD47, and/or Tempol and catalase exposure. In vivo CFR was determined in anesthetized rats (1-3% isoflurane-balance O2) via injected microspheres following control IgG or αCD47 treatment (45 min). Isolated coronary arterioles from young and old rats relax similarly to exogenous NO, but addition of 2.2 nM Thbs-1 inhibited NO-mediated vasodilation by 24% in old rats, whereas young vessels were unaffected. Thbs-1 increased O2 (-) production in coronary arterioles from rats of both ages, but this was exaggerated in old rats. The addition of CD47 blocking antibody completely restored NO-dependent vasodilation in isolated arterioles from aged rats and attenuated O2 (-) production. Furthermore, αCD47 treatment increased CFR from 9.6 ± 9.3 (IgG) to 84.0 ± 23% in the left ventricle in intact, aged animals. These findings suggest that the influence of Thbs-1 and CD47 on coronary perfusion increases with aging and may be therapeutically targeted to reverse coronary microvascular dysfunction. Copyright © 2016 the American Physiological Society.

  16. Thrombospondin-1 (TSP1) contributes to the development of vascular inflammation by regulating monocytic cell motility in mouse models of abdominal aortic aneurysm.

    PubMed

    Liu, Zhenjie; Morgan, Stephanie; Ren, Jun; Wang, Qiwei; Annis, Douglas S; Mosher, Deane F; Zhang, Jing; Sorenson, Christine M; Sheibani, Nader; Liu, Bo

    2015-07-03

    Histological examination of abdominal aortic aneurysm (AAA) tissues demonstrates extracellular matrix destruction and infiltration of inflammatory cells. Previous work with mouse models of AAA has shown that anti-inflammatory strategies can effectively attenuate aneurysm formation. Thrombospondin-1 is a matricellular protein involved in the maintenance of vascular structure and homeostasis through the regulation of biological functions, such as cell proliferation, apoptosis, and adhesion. Expression levels of thrombospondin-1 correlate with vascular disease conditions. To use thrombospondin-1-deficient (Thbs1(-/-)) mice to test the hypothesis that thrombospondin-1 contributes to pathogenesis of AAAs. Mouse experimental AAA was induced through perivascular treatment with calcium phosphate, intraluminal perfusion with porcine elastase, or systemic administration of angiotensin II. Induction of AAA increased thrombospondin-1 expression in aortas of C57BL/6 or apoE-/- mice. Compared with Thbs1(+/+) mice, Thbs1(-/-) mice developed significantly smaller aortic expansion when subjected to AAA inductions, which was associated with diminished infiltration of macrophages. Thbs1(-/-) monocytic cells had reduced adhesion and migratory capacity in vitro compared with wild-type counterparts. Adoptive transfer of Thbs1(+/+) monocytic cells or bone marrow reconstitution rescued aneurysm development in Thbs1(-/-) mice. Thrombospondin-1 expression plays a significant role in regulation of migration and adhesion of mononuclear cells, contributing to vascular inflammation during AAA development. © 2015 American Heart Association, Inc.

  17. CpG-Induced IFNγ Expands TLR4-specific IL-18 Responses in vivo

    PubMed Central

    Gupta, Sameer; Gould, Meetha P.; DeVecchio, Jennifer; Canaday, David H.; Auletta, Jeffery J.; Heinzel, Frederick P.

    2007-01-01

    Serum IL-18 responses to LPS mice increase after pretreatment with CpG-containing DNA. Compared to saline-pretreated controls, mice pretreated with CpG for two days produced 20-fold more serum IL-18 when challenged with lipopolysaccharide (LPS). In contrast, IFNγ-deficiency or anti-IFNγ pretreatment reduced CpG-expanded IL-18 responses to LPS by 67% and 83%, respectively. Mice pretreated with either IFNγ or CpG comparably increased LPS-inducible serum IL-18 responses. LPS, compared to challenge with other TLR agonists, was best able to trigger high serum IL-18 levels in CpG-pretreated mice and this response were TLR4-dependent. CpG, compared to pretreatment with other TLR agonists, optimally expanded LPS-induced IL-18 responses that correlated with higher levels of circulating IFNγ levels prior to LPS challenge. High-level serum IL-18 responses were caspase-1-dependent and P2X7 receptor-independent. We conclude that CpG promotes high-level IL-18 synthesis by an IFNγ-dependent and IFNγ-sufficient mechanism in vivo that is optimally triggered by LPS. (150 words) PMID:17292338

  18. Overexpression of IL-18 in the Proliferative Phase Endometrium of Patients With Polycystic Ovary Syndrome.

    PubMed

    Long, Xiaoyu; Li, Rong; Yang, Yan; Qiao, Jie

    2017-02-01

    Women with polycystic ovary syndrome (PCOS) exhibit low implantation rate and high abortion rate. To explore the effect of low-grade chronic inflammation on endometrium of women with PCOS, we investigated the expression of interleukin 18 (IL-18) in the endometrium of 23 women with PCOS and 20 healthy women. Endometrial tissue samples were obtained during hysteroscopic surgery. We found that IL-18 was significantly increased in the endometrium of women with PCOS compared with normal groups. In overweight women, IL-18 was obviously overexpressed in the PCOS group compared to the healthy group. However, in normal-weight women, there was no statistically significant difference between the 2 groups, and there was no significant difference in IL-18 expression in patients having PCOS with or without insulin resistance. We conclude that IL-18 protein and messenger RNA levels are increased in the endometrium of patients with PCOS, and this effect is correlated with body mass index.

  19. A major population of mucosal memory CD4+ T cells, coexpressing IL-18Rα and DR3, display innate lymphocyte functionality.

    PubMed

    Holmkvist, P; Roepstorff, K; Uronen-Hansson, H; Sandén, C; Gudjonsson, S; Patschan, O; Grip, O; Marsal, J; Schmidtchen, A; Hornum, L; Erjefält, J S; Håkansson, K; Agace, W W

    2015-05-01

    Mucosal tissues contain large numbers of memory CD4(+) T cells that, through T-cell receptor-dependent interactions with antigen-presenting cells, are believed to have a key role in barrier defense and maintenance of tissue integrity. Here we identify a major subset of memory CD4(+) T cells at barrier surfaces that coexpress interleukin-18 receptor alpha (IL-18Rα) and death receptor-3 (DR3), and display innate lymphocyte functionality. The cytokines IL-15 or the DR3 ligand tumor necrosis factor (TNF)-like cytokine 1A (TL1a) induced memory IL-18Rα(+)DR3(+)CD4(+) T cells to produce interferon-γ, TNF-α, IL-6, IL-5, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-22 in the presence of IL-12/IL-18. TL1a synergized with IL-15 to enhance this response, while suppressing IL-15-induced IL-10 production. TL1a- and IL-15-mediated cytokine induction required the presence of IL-18, whereas induction of IL-5, IL-13, GM-CSF, and IL-22 was IL-12 independent. IL-18Rα(+)DR3(+)CD4(+) T cells with similar functionality were present in human skin, nasal polyps, and, in particular, the intestine, where in chronic inflammation they localized with IL-18-producing cells in lymphoid aggregates. Collectively, these results suggest that human memory IL-18Rα(+)DR3(+) CD4(+) T cells may contribute to antigen-independent innate responses at barrier surfaces.

  20. A major population of mucosal memory CD4+ T cells, coexpressing IL-18Rα and DR3, display innate lymphocyte functionality

    PubMed Central

    Holmkvist, P; Roepstorff, K; Uronen-Hansson, H; Sandén, C; Gudjonsson, S; Patschan, O; Grip, O; Marsal, J; Schmidtchen, A; Hornum, L; Erjefält, J S; Håkansson, K; Agace, W W

    2015-01-01

    Mucosal tissues contain large numbers of memory CD4+ T cells that, through T-cell receptor-dependent interactions with antigen-presenting cells, are believed to have a key role in barrier defense and maintenance of tissue integrity. Here we identify a major subset of memory CD4+ T cells at barrier surfaces that coexpress interleukin-18 receptor alpha (IL-18Rα) and death receptor-3 (DR3), and display innate lymphocyte functionality. The cytokines IL-15 or the DR3 ligand tumor necrosis factor (TNF)-like cytokine 1A (TL1a) induced memory IL-18Rα+DR3+CD4+ T cells to produce interferon-γ, TNF-α, IL-6, IL-5, IL-13, granulocyte–macrophage colony-stimulating factor (GM-CSF), and IL-22 in the presence of IL-12/IL-18. TL1a synergized with IL-15 to enhance this response, while suppressing IL-15-induced IL-10 production. TL1a- and IL-15-mediated cytokine induction required the presence of IL-18, whereas induction of IL-5, IL-13, GM-CSF, and IL-22 was IL-12 independent. IL-18Rα+DR3+CD4+ T cells with similar functionality were present in human skin, nasal polyps, and, in particular, the intestine, where in chronic inflammation they localized with IL-18-producing cells in lymphoid aggregates. Collectively, these results suggest that human memory IL-18Rα+DR3+ CD4+ T cells may contribute to antigen-independent innate responses at barrier surfaces. PMID:25269704

  1. IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness.

    PubMed

    Ziblat, Andrea; Domaica, Carolina I; Spallanzani, Raúl G; Iraolagoitia, Ximena L Raffo; Rossi, Lucas E; Avila, Damián E; Torres, Nicolás I; Fuertes, Mercedes B; Zwirner, Norberto W

    2015-01-01

    IL-27, a member of the IL-12 family of cytokines, is produced by APCs, and displays pro- and anti-inflammatory effects. How IL-27 affects human NK cells still remains unknown. In this study, we observed that mature DCs secreted IL-27 and that blockade of IL-27R (CD130) reduced the amount of IFN-γ produced by NK cells during their coculture, showing the importance of IL-27 during DC-NK-cell crosstalk. Accordingly, human rIL-27 stimulated IFN-γ secretion by NK cells in a STAT1-dependent manner, induced upregulation of CD25 and CD69 on NK cells, and displayed a synergistic effect with IL-18. Preincubation experiments demonstrated that IL-27 primed NK cells for IL-18-induced IFN-γ secretion, which was associated with an IL-27-driven upregulation of T-bet expression. Also, IL-27 triggered NKp46-dependent NK-cell-mediated cytotoxicity against Raji, T-47D, and HCT116 cells, and IL-18 enhanced this cytotoxic response. Such NK-cell-mediated cytotoxicity involved upregulation of perforin, granule exocytosis, and TRAIL-mediated cytotoxicity but not Fas-FasL interaction. Moreover, IL-27 also potentiated Ab-dependent cell-mediated cytotoxicity against mAb-coated target cells. Taken together, IL-27 stimulates NK-cell effector functions, which might be relevant in different physiological and pathological situations.

  2. An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection

    PubMed Central

    Müller, Anna A.; Dolowschiak, Tamas; Sellin, Mikael E.; Felmy, Boas; Verbree, Carolin; Gadient, Sandra; Westermann, Alexander J.; Vogel, Jörg; LeibundGut-Landmann, Salome; Hardt, Wolf-Dietrich

    2016-01-01

    Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and –injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf-/- ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens. PMID:27341123

  3. An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection.

    PubMed

    Müller, Anna A; Dolowschiak, Tamas; Sellin, Mikael E; Felmy, Boas; Verbree, Carolin; Gadient, Sandra; Westermann, Alexander J; Vogel, Jörg; LeibundGut-Landmann, Salome; Hardt, Wolf-Dietrich

    2016-06-01

    Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and -injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf-/- ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens.

  4. Hippocampal volume and depressive symptoms are linked to serum IL-18 in schizophrenia

    PubMed Central

    Piras, Fabrizio; Palladino, Ilaria; Iorio, Mariangela; Salani, Francesca; Ciaramella, Antonio; Chiapponi, Chiara; Caltagirone, Carlo; Spalletta, Gianfranco

    2015-01-01

    Objective: Since schizophrenia (SCZ) is often accompanied by hippocampal abnormalities and dysregulation of cytokine production, this study aimed to investigate the impact of the cytokine interleukin (IL)-18, whose biological system appears to be perturbed in SCZ, on brain structure and clinical severity in patients with chronic SCZ. Methods: The serum levels of IL-18, including its free bioactive form (i.e., the cytokine fraction not bound to its specific endogenous inhibitor IL-18 binding protein), were evaluated in a case-control study involving 71 individuals with SCZ diagnosis and 29 healthy controls. All participants underwent brain MRI automatic evaluation for hippocampal volume estimation. The Positive and Negative Syndrome Scale (PANSS) was administered to measure severity of symptoms in patients with SCZ. Results: Lower amounts of free IL-18 were related to smaller hippocampal volume measures in patients with SCZ. Furthermore, in line with a possible neuroprotective effect of the cytokine, higher levels of free IL-18 corresponded to lower subscores of PANSS depression in patients with SCZ. Conclusions: These findings demonstrate that the levels of circulating bioactive IL-18 are related to both hippocampal volume and severity of psychopathologic symptoms in patients with SCZ, confirming the involvement of the cytokine in SCZ pathophysiology and suggesting hippocampal-dependent and neuroprotective functions of IL-18 in this clinical context. PMID:25977936

  5. Interleukin (Il)-18 Promotes the Development of Chronic Gastrointestinal Helminth Infection by Downregulating IL-13

    PubMed Central

    Helmby, Helena; Takeda, Kiyoshi; Akira, Shizuo; Grencis, Richard K.

    2001-01-01

    Expulsion of the gastrointestinal nematode Trichuris muris is mediated by a T helper (Th) 2 type response involving interleukin (IL)-4 and IL-13. Here we show that Th1 response–associated susceptibility involves prior activation of IL-18 and caspase-1 followed by IL-12 and interferon (IFN)-γ in the intestine. IL-18–deficient mice are highly resistant to chronic T. muris infection and in vivo treatment of normal mice with recombinant (r)IL-18 suppresses IL-13 and IL-4 secretion but does not affect IFN-γ. In vivo treatment of T. muris–infected IFN-γ–deficient mice with rIL-18 demonstrated that the inhibitory effect of IL-18 on IL-13 secretion is independent of IFN-γ. Hence, IL-18 does not function as an IFN-γ–inducing cytokine during chronic T. muris infection but rather as a direct regulator of Th2 cytokines. These results provide the first demonstration of the critical role of IL-18 in regulating Th cell responses during gastrointestinal nematode infection. PMID:11489954

  6. IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG

    PubMed Central

    Amniai, L.; Biet, F.; Marquillies, P.; Locht, C.; Pestel, J.; Tonnel, A.-B.; Duez, C.

    2007-01-01

    Whilst BCG inhibits allergic airway responses in murine models, IL-18 has adversary effects depending on its environment. We therefore constructed a BCG strain producing murine IL-18 (BCG-IL-18) and evaluated its efficiency to prevent an asthma-like reaction in mice. BALB/cByJ mice were sensitized (day (D) 1 and D10) by intraperitoneal injection of ovalbumin (OVA)-alum and primary (D20–22) and secondary (D62, 63) challenged with OVA aerosols. BCG or BCG-IL-18 were intraperitonealy administered 1 hour before each immunization (D1 and D10). BCG-IL-18 and BCG were shown to similarly inhibit the development of AHR, mucus production, eosinophil influx, and local Th2 cytokine production in BAL, both after the primary and secondary challenge. These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation. PMID:18299704

  7. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies.

    PubMed

    Brydges, Susannah D; Broderick, Lori; McGeough, Matthew D; Pena, Carla A; Mueller, James L; Hoffman, Hal M

    2013-11-01

    The inflammasome is a cytoplasmic multiprotein complex that promotes proinflammatory cytokine maturation in response to host- and pathogen-derived signals. Missense mutations in cryopyrin (NLRP3) result in a hyperactive inflammasome that drives overproduction of the proinflammatory cytokines IL-1β and IL-18, leading to the cryopyrin-associated periodic syndromes (CAPS) disease spectrum. Mouse lines harboring CAPS-associated mutations in Nlrp3 have elevated levels of IL-1β and IL-18 and closely mimic human disease. To examine the role of inflammasome-driven IL-18 in murine CAPS, we bred Nlrp3 mutations onto an Il18r-null background. Deletion of Il18r resulted in partial phenotypic rescue that abolished skin and visceral disease in young mice and normalized serum cytokines to a greater extent than breeding to Il1r-null mice. Significant systemic inflammation developed in aging Nlrp3 mutant Il18r-null mice, indicating that IL-1 and IL-18 drive pathology at different stages of the disease process. Ongoing inflammation in double-cytokine knockout CAPS mice implicated a role for caspase-1-mediated pyroptosis and confirmed that CAPS is inflammasome dependent. Our results have important implications for patients with CAPS and residual disease, emphasizing the need to explore other NLRP3-mediated pathways and the potential for inflammasome-targeted therapy.

  8. IL-18 receptor marks functional CD8(+) T cells in non-small cell lung cancer.

    PubMed

    Timperi, Eleonora; Focaccetti, Chiara; Gallerano, Daniela; Panetta, Mariangela; Spada, Sheila; Gallo, Enzo; Visca, Paolo; Venuta, Federico; Diso, Daniele; Prelaj, Arsela; Longo, Flavia; Facciolo, Francesco; Nisticò, Paola; Barnaba, Vincenzo

    2017-01-01

    IL-18 is an inflammasome-related cytokine, member of the IL-1 family, produced by a wide range of cells in response to signals by several pathogen- or damage-associated molecular patterns. It can be highly represented in tumor patients, but its relevance in human cancer development is not clear. In this study, we provide evidence that IL-18 is principally expressed in tumor cells and, in concert with other conventional Th1 cell-driven cytokines, has a pivotal role in establishing a pro-inflammatory milieu in the tumor microenvironment of human non-small cell lung cancer (NSCLC). Interestingly, the analysis of tumor-infiltrating CD8(+) T cell populations showed that (i) the relative IL-18 receptor (IL-18R) is significantly more expressed by the minority of cells with a functional phenotype (T-bet(+)Eomes(+)), than by the majority of those with the dysfunctional phenotype T-bet(-)Eomes(+) generally resident within tumors; (ii) as a consequence, the former are significantly more responsive than the latter to IL-18 stimulus in terms of IFNγ production ex vivo; (iii) PD-1 expression does not discriminate these two populations. These data indicate that IL-18R may represent a biomarker of the minority of functional tumor-infiltrating CD8(+) T cells in adenocarcinoma NSCLC patients. In addition, our results lead to envisage the possible therapeutic usage of IL-18 in NSCLC, even in combination with other checkpoint inhibitor approaches.

  9. Influence of IL-18 and IL-10 Polymorphisms on Tacrolimus Elimination in Chinese Lung Transplant Patients

    PubMed Central

    Zhang, Xiaoqing; Xu, Jiandong; Zhang, Tao; Li, Yuping; Xie, Boxiong; Zhang, Wei; Lin, Shengtao; Ye, Ling; Liu, Yuan

    2017-01-01

    Aims. The influence of interleukin-10 (IL-10) and interleukin-18 (IL-18) polymorphisms on tacrolimus pharmacokinetics had been described in liver and kidney transplantation. The expression of cytokines varied in different kinds of transplantation. The influence of IL-10 and IL-18 genetic polymorphisms on the pharmacokinetic parameters of tacrolimus remains unclear in lung transplantation. Methods. 51 lung transplant patients at Shanghai Pulmonary Hospital were included. IL-18 polymorphisms (rs5744247 and rs1946518), IL-10 polymorphisms (rs1800896, rs1800872, and rs3021097), and CYP3A5 rs776746 were genotyped. Dose-adjusted trough blood concentrations (C/D ratio, mg/kg body weight) in lung transplant patients during the first 4 postoperative weeks were calculated. Results. IL-18 rs5744247 allele C and rs1946518 allele A were associated with fast tacrolimus metabolism. Combined analysis showed that the numbers of low IL-18 mRNA expression alleles had positive correlation with tacrolimus C/D ratios in lung transplant recipients. The influence of IL-18 polymorphisms on tacrolimus C/D ratios was observed in CYP3A5 expresser recipients, but not in CYP3A5 nonexpresser recipients. No clinical significance of tacrolimus C/D ratios difference of IL-10 polymorphisms was found in our data. Conclusions. IL-18 polymorphisms may influence tacrolimus elimination in lung transplantation patients. PMID:28246425

  10. TLR2 limits development of hepatocellular carcinoma by reducing IL18-mediated immunosuppression.

    PubMed

    Li, Shinan; Sun, Rui; Chen, Yongyan; Wei, Haiming; Tian, Zhigang

    2015-03-15

    Immune mechanisms underlying hepatocellular carcinoma (HCC) are not well understood. Here, we show that the Toll-like receptor TLR2 inhibits production of the proinflammatory cytokine IL18 and protects mice from DEN-induced liver carcinogenesis. On this protocol, Tlr2(-/-) mice exhibited more aggressive HCC development associated with impaired CD8(+) T-cell function. Furthermore, Ly6C(high)IL18Rα(+) myeloid-derived suppressor cells (MDSC) were increased in number in the livers of Tlr2(-/-) mice before tumor onset. MDSC in this setting exhibited higher iNOS levels that could inhibit IFNγ production and CD8(+) T-cell proliferation in vitro. Notably, Tlr2(-/-) hepatocytes produced more mature IL18 after DEN treatment that was sufficient to drive MDSC accumulation there. IL18 administration was sufficient to induce accumulation of MDSC, whereas hepatocyte-specific silencing of IL18 in Tlr2(-/-) mice decreased the proportion of MDSC, increased the proportion of functional CD8(+) T cells, and alleviated HCC progression. IL18 production was mediated by caspase-8 insofar as the decrease in its silencing was sufficient to attenuate levels of mature IL18 in Tlr2(-/-) mice. Furthermore, the TLR2 agonist Pam3CSK4 inhibited both caspase-8 and IL18 expression, decreasing MDSC, increasing CD8(+) T-cell function, and promoting HCC regression. Overall, our findings show how TLR2 deficiency accelerates IL18-mediated immunosuppression during liver carcinogenesis, providing new insights into immune control that may assist the design of effective immunotherapies to treat HCC.

  11. Serotype 3 pneumococci sequester platelet-derived human thrombospondin-1 via the adhesin and immune evasion protein Hic.

    PubMed

    Binsker, Ulrike; Kohler, Thomas P; Krauel, Krystin; Kohler, Sylvia; Habermeyer, Johanna; Schwertz, Hansjörg; Hammerschmidt, Sven

    2017-04-07

    Streptococcus pneumoniae serotype 3 strains emerge frequently within clinical isolates of invasive diseases. Bacterial invasion into deeper tissues is associated with colonization and immune evasion mechanisms. Thus, pneumococci express a versatile repertoire of surface proteins sequestering and interacting specifically with components of the human extracellular matrix and serum. Hic, a PspC-like pneumococcal surface protein, possesses vitronectin and factor H binding activity. Here, we show that heterologously expressed Hic domains interact, similar to the classical PspC molecule, with human matricellular thrombospondin-1 (hTSP-1). Binding studies with isolated human thrombospondin-1 and various Hic domains suggest that the interaction between hTSP-1 and Hic differs from binding to vitronectin and factor H. Binding of Hic to hTSP-1 is inhibited by heparin and chondroitin sulfate A, indicating binding to the N-terminal globular domain or type I repeats of hTSP-1. Competitive inhibition experiments with other pneumococcal hTSP-1 adhesins demonstrated that PspC and PspC-like Hic recognize similar domains, whereas PavB and Hic can bind simultaneously to hTSP-1. In conclusion, Hic binds specifically hTSP-1; however, truncation in the N-terminal part of Hic decreases the binding activity, suggesting that the full length of the α-helical regions of Hic is required for an optimal interaction.

  12. Aryl hydrocarbon receptor is activated by glucose and regulates the thrombospondin-1 gene promoter in endothelial cells.

    PubMed

    Dabir, Pankaj; Marinic, Tina E; Krukovets, Irene; Stenina, Olga I

    2008-06-20

    Hyperglycemia is an independent risk factor for development of diabetic vascular complications. The molecular mechanisms that are activated by glucose in vascular cells and could explain the development of vascular complications are still poorly understood. A putative binding site for the transcription factor aryl hydrocarbon receptor (AhR) was identified in the glucose-responsive fragment of the promoter of thrombospondin-1, a potent antiangiogenic and proatherogenic protein involved in development of diabetic vascular complications. AhR was expressed in aortic endothelial cells (ECs), activated, and bound to the promoter in response to high glucose stimulation of ECs. The constitutively active form of AhR induced activation of the thrombospondin-1 gene promoter. In response to high glucose stimulation, AhR was found in complex with Egr-1 and activator protein-2, which are 2 other nuclear transcription factors activated by glucose in ECs that have not been previously detected in complex with AhR. The activity of the DNA-binding complex was regulated by glucose through the activation of hexosamine pathway and intracellular glycosylation. This is the first report of activation of AhR (a receptor for xenobiotic compounds) by a physiological stimulus. This report links the activation of AhR to the pathological effects of hyperglycemia in the vasculature.

  13. Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1alpha-dependent expression of thrombospondin-1.

    PubMed

    Osada-Oka, Mayuko; Ikeda, Takako; Akiba, Satoshi; Sato, Takashi

    2008-08-01

    The migration of vascular smooth muscle cells from the media to intima and their subsequent proliferation are critical causes of arterial wall thickening. In atherosclerotic lesions increases in the thickness of the vascular wall and the impairment of oxygen diffusion capacity result in the development of hypoxic lesions. We investigated the effect of hypoxia on the migration of human coronary artery smooth muscle cells (CASMCs) via HIF-1alpha-dependent expression of thrombospondin-1 (TSP-1). When the cells were cultured under hypoxic conditions, mRNA and protein levels of TSP-1, and mRNA levels of integrin beta(3) were increased with the increase in HIF-1alpha protein. DNA synthesis and migration of the cells were stimulated under the conditions, and a neutralizing anti-TSP-1 antibody apparently suppressed the migration, but not DNA synthesis. The migration was also inhibited by RGD peptide that binds to integrin beta(3). Furthermore, the migration was completely suppressed in HIF-1alpha-knockdown cells exposed to hypoxia, while it was significantly enhanced in HIF-1alpha-overexpressing cells. These results suggest that the hypoxia induces the migration of CASMCs, and that the migration is elicited by TSP-1 of which induction is fully dependent on the stabilization of HIF-1alpha, in autocrine regulation. Thus we suggest that HIF-1alpha plays an important role in the pathogenesis of atherosclerosis.

  14. Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model.

    PubMed

    Lee, Che-Hsin; Wu, Chao-Liang; Shiau, Ai-Li

    2005-02-01

    Some anaerobic and facultative anaerobic bacteria have been used experimentally as anticancer agents because of their selective growth in the hypoxia regions of solid tumors after systemic administration. We have previously shown the feasibility of using attenuated Salmonella choleraesuis as a gene delivery vector. In this study, we exploited S. choleraesuis carrying thrombospondin-1 (TSP-1) gene for treating primary melanoma and experimental pulmonary metastasis in the syngeneic murine B16F10 melanoma model. Systemic administration of S. choleraesuis allowed targeted gene delivery to tumors. The bacteria accumulated preferentially in tumors over livers and spleens at ratios ranging from 1000:1 to 10,000:1. The level of transgene expression via S. choleraesuis-mediated gene transfer in tumors could reach more than 1800-fold higher than in livers and spleens. Notably, bacterial accumulation was also observed in the lungs with metastatic nodules, but not in healthy lungs. When administered into mice bearing subcutaneous or pulmonary metastatic melanomas, S. choleraesuis carrying TSP-1 gene significantly inhibited tumor growth and enhanced survival of the mice. Immunohistochemical studies in the tumors from these mice displayed decreased intratumoral microvessel density. Taken together, these findings suggest that TSP-1 gene therapy delivered by S. choleraesuis may be effective for the treatment of primary as well as metastatic melanomas.

  15. TWEAK Appears as a Modulator of Endometrial IL-18 Related Cytotoxic Activity of Uterine Natural Killers

    PubMed Central

    Petitbarat, Marie; Rahmati, Mona; Sérazin, Valérie; Dubanchet, Sylvie; Morvan, Corinne; Wainer, Robert; de Mazancourt, Philippe; Chaouat, Gérard; Foidart, Jean-Michel; Munaut, Carine; Lédée, Nathalie

    2011-01-01

    Background TWEAK (Tumor necrosis factor like WEAK inducer of apoptosis) is highly expressed by different immune cells and triggers multiple cellular responses, including control of angiogenesis. Our objective was to investigate its role in the human endometrium during the implantation window, using an ex-vivo endometrial microhistoculture model. Indeed, previous results suggested that basic TWEAK expression influences the IL-18 related uNK recruitment and local cytotoxicity. Methodology/Principal Findings Endometrial biopsies were performed 7 to 9 days after the ovulation surge of women in monitored natural cycles. Biopsies were cut in micro-pieces and cultured on collagen sponge with appropriate medium. Morphology, functionality and cell death were analysed at different time of the culture. We used this ex vivo model to study mRNA expressions of NKp46 (a uNK cytotoxic receptor) and TGF-beta1 (protein which regulates uNK cytokine production) after adjunction of excess of recombinant IL-18 and either recombinant TWEAK or its antibody. NKp46 protein expression was also detailed by immunohistochemistry in selected patients with high basic mRNA level of IL-18 and either low or high mRNA level of TWEAK. The NKp46 immunostaining was stronger in patients with an IL-18 over-expression and a low TWEAK expression, when compared with patients with both IL-18 and TWEAK high expressions. We did not observe any difference for TWEAK expression when recombinant protein IL-18 or its antibody was added, or conversely, for IL-18 expression when TWEAK or its antibody was added in the culture medium. In a pro-inflammatory environment (obtained by an excess of IL-18), inhibition of TWEAK was able to increase significantly NKp46 and TGF-beta1 mRNA expressions. Conclusions/Significance TWEAK doesn't act on IL-18 expression but seems to control IL-18 related cytotoxicity on uNK cells when IL-18 is over-expressed. Thus, TWEAK appears as a crucial physiological modulator to prevent

  16. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult.

    PubMed

    Xiao, Han; Li, Hao; Wang, Jing-Jing; Zhang, Jian-Shu; Shen, Jing; An, Xiang-Bo; Zhang, Cong-Cong; Wu, Ji-Min; Song, Yao; Wang, Xin-Yu; Yu, Hai-Yi; Deng, Xiang-Ning; Li, Zi-Jian; Xu, Ming; Lu, Zhi-Zhen; Du, Jie; Gao, Wei; Zhang, Ai-Hua; Feng, Yue; Zhang, You-Yi

    2017-05-26

    Rapid over-activation of β-adrenergic receptor (β-AR) upon stress leads to cardiac inflammation, a prevailing factor that underlies heart injury. However, mechanisms by which acute β-AR stimulation induce cardiac inflammation still remain unknown. Here, we set out to identify the crucial role of inflammasome/interleukin (IL)-18 in initiating and maintaining cardiac inflammatory cascades upon β-AR insult. Male C57BL/6 mice were injected with a single dose of β-AR agonist, isoproterenol (ISO, 5 mg/kg body weight) or saline subcutaneously. Cytokine array profiling demonstrated that chemokines dominated the initial cytokines upregulation specifically within the heart upon β-AR insult, which promoted early macrophage infiltration. Further investigation revealed that the rapid inflammasome-dependent activation of IL-18, but not IL-1β, was the critical up-stream regulator for elevated chemokine expression in the myocardium upon ISO induced β1-AR-ROS signalling. Indeed, a positive correlation was observed between the serum levels of norepinephrine and IL-18 in patients with chest pain. Genetic deletion of IL-18 or the up-stream inflammasome component NLRP3 significantly attenuated ISO-induced chemokine expression and macrophage infiltration. In addition, IL-18 neutralizing antibodies selectively abated ISO-induced chemokines, proinflammatory cytokines and adhesion molecules but not growth factors. Moreover, blocking IL-18 early after ISO treatment effectively attenuated cardiac inflammation and fibrosis. Inflammasome-dependent activation of IL-18 within the myocardium upon acute β-AR over-activation triggers cytokine cascades, macrophage infiltration and pathological cardiac remodelling. Blocking IL-18 at the early stage of β-AR insult can successfully prevent inflammatory responses and cardiac injuries.

  17. IL-18 Production from the NLRP1 Inflammasome Prevents Obesity and Metabolic Syndrome.

    PubMed

    Murphy, Andrew J; Kraakman, Michael J; Kammoun, Helene L; Dragoljevic, Dragana; Lee, Man K S; Lawlor, Kate E; Wentworth, John M; Vasanthakumar, Ajithkumar; Gerlic, Motti; Whitehead, Lachlan W; DiRago, Ladina; Cengia, Louise; Lane, Rachael M; Metcalf, Donald; Vince, James E; Harrison, Leonard C; Kallies, Axel; Kile, Benjamin T; Croker, Ben A; Febbraio, Mark A; Masters, Seth L

    2016-01-12

    Interleukin-18 (IL-18) is activated by Caspase-1 in inflammasome complexes and has anti-obesity effects; however, it is not known which inflammasome regulates this process. We found that mice lacking the NLRP1 inflammasome phenocopy mice lacking IL-18, with spontaneous obesity due to intrinsic lipid accumulation. This is exacerbated when the mice are fed a high-fat diet (HFD) or a high-protein diet, but not when mice are fed a HFD with low energy density (high fiber). Furthermore, mice with an activating mutation in NLRP1, and hence increased IL-18, have decreased adiposity and are resistant to diet-induced metabolic dysfunction. Feeding these mice a HFD further increased plasma IL-18 concentrations and strikingly resulted in loss of adipose tissue mass and fatal cachexia, which could be prevented by genetic deletion of IL-18. Thus, NLRP1 is an innate immune sensor that functions in the context of metabolic stress to produce IL-18, preventing obesity and metabolic syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. IL-12 and IL-18 levels in serum and gingival tissue in aggressive and chronic periodontitis.

    PubMed

    Sánchez-Hernández, P E; Zamora-Perez, A L; Fuentes-Lerma, M; Robles-Gómez, C; Mariaud-Schmidt, R P; Guerrero-Velázquez, C

    2011-07-01

    The aim of this study was to compare the levels of interleukin-12 (IL-12) and IL-18 in gingival tissue and serum between patients with chronic (n = 18) or aggressive periodontitis (n = 12) and healthy subjects (HS) (n = 9). Gingival tissue biopsies and serum were obtained from all study subjects. The tissue was homogenized and cytokines IL-12 and IL-18 were quantified by enzyme-linked immunosorbent assay. Interleukin-12 levels in gingival tissue were significantly higher in aggressive periodontitis patients than in HS; serum IL-12 was significantly elevated in aggressive periodontitis relative to both chronic periodontitis (CP) and HS. IL-18 levels in gingival tissue showed no significant differences between the groups. Patients with CP showed significantly elevated levels of serum IL-18 compared with HS; however, the aggressive periodontitis group showed no significant differences with either the CP group or the HS. Our results showed higher levels of IL-12 in gingival tissue and serum of patients with aggressive periodontitis, and IL-18 was elevated in the serum of CP patients. The patterns of IL-12 and IL-18 are different in chronic and aggressive periodontitis; this finding suggests distinctive mechanisms of immunopathogenesis between these forms of periodontitis. © 2011 John Wiley & Sons A/S.

  19. Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction.

    PubMed

    Biet, F; Duez, C; Kremer, L; Marquillies, P; Amniai, L; Tonnel, A-B; Locht, C; Pestel, J

    2005-08-01

    Allergic reactions occur through the exacerbated induction of a Th2 cell type expression profile and can be prevented by agents favoring a Th1 profile. Bacillus Calmette-Guérin (BCG) is able to induce high IFN-gamma levels and has been shown to decrease experimentally induced allergy. The induction of IFN-gamma is mediated by interleukin (IL)-12 known to be secreted upon mycobacterial infections and can be enhanced by IL-18 acting in synergy with IL-12. We evaluated the ability of a recombinant BCG strain producing IL-18 (rBCG) to modify the Th2 type responses in a murine model of ovalbumin (OVA)-dependent allergic reaction. Mice were injected intraperitoneally or intranasally with OVA at days 0 and 15 and exposed to an OVA aerosol challenge at days 29, 30, 31 and 34. At days 0 and 15, two additional groups of mice received OVA together with 5 x 10(6) colony forming units of either rBCG or nonrecombinant BCG. A time-course analysis of OVA-specific immunoglobulin (Ig)E, IgG1 and IgG2a levels indicated no significant difference between the three groups of mice. However, following in vitro stimulation with OVA, lymph node cells from rBCG-treated mice produced less IL-5 and more IFN-gamma than those of mice injected with nonrecombinant BCG. In addition, 48 h after the last OVA challenge, a strong reduction of bronchoalveolar eosinophilia was found in the rBCG-injected mice compared to the nontreated or nonrecombinant BCG-treated groups. These results indicate that the production of IL-18 by rBCG may enhance the immunomodulatory properties of BCG that suppress pulmonary Th2 responses and, in particular, decrease airway eosinophilia.

  20. TNF and IL-18 cytokines may regulate liver fat storage under homeostasis conditions.

    PubMed

    Lana, Jaqueline Pereira; Martins, Laís Bhering; Oliveira, Marina Chaves de; Menezes-Garcia, Zélia; Yamada, Letícia Tamie Pavia; Vieira, Leda Quercia; Teixeira, Mauro Martins; Ferreira, Adaliene Versiani Matos

    2016-12-01

    The inflammation induced by obesogenic diets is associated with deposition of fat in the liver. On the other hand, anti-inflammatory and immunosuppressive therapies may impact in body fat storage and in liver lipid dynamics. It is important to study specific inflammatory mediators in this context, since their role on hepatic damage is not fully clarified. This study aimed to evaluate the role of interleukin (IL)-18 and tumor necrosis factor (TNF) receptor in liver dysfunction induced by diet. Male C57BL/6 wild-type (WT), IL-18, and TNF receptor 1 knockout mice (IL-18(-/-) and TNFR1(-/-)) were divided according to the experimental diets: chow diet or a high-refined carbohydrate-containing diet. Alanine aminotransferase was quantified by colorimetric analysis. Total fat content in the liver was determined by Folch methods. Levels of TNF, IL-6, IL-4, and IL-13 in liver samples were measured by ELISA assay. IL-18 and TNFR knockout mice fed with chow diet showed higher liver triglycerides deposition than WT mice fed with the same diet (WT: 131.9 ± 24.5; IL-18(-/-): 239.4 ± 38.12*; TNF(-/-): 179.6 ± 50.45*; *P < 0.01). Furthermore, these animals also showed a worse liver histopathological score and lower levels of TNF, IL-6, IL-4, and IL-13 in the liver. Interestingly, treatment with a high-carbohydrate diet did not exacerbate liver damage in IL-18(-/-) and TNFR1(-/-) mice. Our data suggest that IL-18 and TNF may be involved on hepatic homeostasis mainly in a context of a healthy diet.

  1. Hepatitis C virus (HCV) interaction with astrocytes: nonproductive infection and induction of IL-18.

    PubMed

    Liu, Ziqing; Zhao, Fang; He, Johnny J

    2014-06-01

    Hepatitis C virus (HCV) infection causes the central nervous system (CNS) abnormalities in more than 50 % of chronically infected subjects. However, the underlying mechanisms are largely unknown. In this study, we characterized the HCV interactions with astrocytes, one of the putative HCV target cells in the brain. We demonstrated that primary human astrocytes (PHA) were very inefficiently infected by HCV, either in the cell-free form or through cell-cell contact. We then determined the potential restriction steps of HCV infection and replication in these cells. PHA expressed all known HCV receptors but failed to support HCV entry. HCV IRES-mediated RNA translation was functional in PHA and further enhanced by miR122 expression. Nevertheless, PHA did not support HCV replication regardless of miR122 expression. To our great surprise, we found that HCV exposure induced robust IL-18 expression in PHA and exhibited direct neurotoxicity. Taken together, these results showed that astrocytes did not support productive HCV infection and replication, but HCV interactions with astrocytes and neurons alone might be sufficient to cause CNS dysfunction.

  2. Thrombospondin-1 Mimetic Agonist Peptides Induce Selective Death in Tumor Cells: Design, Synthesis, and Structure-Activity Relationship Studies.

    PubMed

    Denèfle, Thomas; Boullet, Héloise; Herbi, Linda; Newton, Clara; Martinez-Torres, Ana-Carolina; Guez, Alexandre; Pramil, Elodie; Quiney, Claire; Pourcelot, Marilyne; Levasseur, Mikail D; Lardé, Eva; Moumné, Roba; Ogi, François-Xavier; Grondin, Pascal; Merle-Beral, Hélène; Lequin, Olivier; Susin, Santos A; Karoyan, Philippe

    2016-09-22

    Thrombospondin-1 (TSP-1) is a glycoprotein considered as a key actor within the tumor microenvironment. Its binding to CD47, a cell surface receptor, triggers programmed cell death. Previous studies allowed the identification of 4N1K decapeptide derived from the TSP-1/CD47 binding epitope. Here, we demonstrate that this peptide is able to induce selective apoptosis of various cancer cell lines while sparing normal cells. A structure-activity relationship study led to the design of the first serum stable TSP-1 mimetic agonist peptide able to trigger selective programmed cell death (PCD) of at least lung, breast, and colorectal cancer cells. Altogether, these results will be of valuable interest for further investigation in the design of potent CD47 agonist peptides, opening new perspectives for the development of original anticancer therapies.

  3. Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells

    PubMed Central

    Chu, Ling-Yun; Ramakrishnan, Devi Prasadh

    2013-01-01

    Thrombospondin-1 (TSP-1) inhibits growth factor signaling at the receptor level in microvascular endothelial cells (MVEC), and CD36 has been suggested to be involved in this inhibition, but the mechanisms are not known. We hypothesized that CD36-TSP-1 interaction recruits Src homology 2 domain–containing protein tyrosine phosphatase (SHP)-1 to the vascular endothelial growth factor receptor 2 (VEGFR2) signaling complex and attenuates vascular endothelial growth factor (VEGF) signaling. Western blots of anti-CD36 and anti-VEGFR2 immunoprecipitates from VEGF-treated MVEC showed that exposure of the cells to a recombinant protein containing the CD36 binding domain of thrombospondin-1 (known as the TSR domain) induced association of SHP-1 with the VEGFR2/CD36 signaling complex and thereby suppressed VEGFR2 phosphorylation. SHP-1 phosphatase activity was increased in immunoprecipitated VEGFR2 complexes from TSR-treated cells. Silencing CD36 expression in MVEC by small interfering RNA (siRNA) or genetic deletion of cd36 in mice showed that TSR-induced SHP-1/VEGFR2 complex formation required CD36 in vitro and in vivo. Silencing SHP-1 expression in MVEC by siRNA abrogated TSR-mediated inhibition of VEGFR2 phosphorylation as well as TSR-mediated inhibition of VEGF-induced endothelial cell migration and tube formation. These studies reveal a SHP-1–mediated antiangiogenic pathway induced by CD36-TSP-1 interaction that inhibits VEGFR2 signaling and they provide a novel target to modulate angiogenesis therapeutically. PMID:23896411

  4. The IL-23/IL-22/IL-18 axis in murine Campylobacter jejuni infection.

    PubMed

    Heimesaat, Markus M; Grundmann, Ursula; Alutis, Marie E; Fischer, André; Göbel, Ulf B; Bereswill, Stefan

    2016-01-01

    Human Campylobacter jejuni infections are worldwide on the rise. Information about the distinct molecular mechanisms underlying campylobacteriosis, however, are scarce. In the present study we investigated whether cytokines including IL-23, IL-22 and IL-18 sharing pivotal functions in host immunity were involved in mediating immunopathological responses upon C. jejuni infection. To address this, conventionally colonized IL-23p19(-/-), IL-22(-/-) and IL-18(-/-) mice were perorally infected with C. jejuni strain ATCC 43431. Respective gene-deficient, but not wildtype mice were susceptible to C. jejuni infection and could be readily colonized with highest pathogenic loads in the terminal ileum and colon at day 14 postinfection (p.i.). In IL-23p19(-/-), IL-22(-/-) and IL-18(-/-) mice viable C. jejuni were detected in MLNs, but did not translocate to spleen, liver, kidney and blood in the majority of cases. Susceptible IL-22(-/-), but neither IL-23p19(-/-), nor IL-18(-/-) mice harbored higher intestinal commensal E. coli loads when compared to resistant wildtype mice. Alike C. jejuni, commensal E. coli did not translocate from the intestinal to extra-intestinal tissue sites. Despite C. jejuni infection, mice lacking IL-23p19, IL-22 or IL-18 exhibited less apoptotic cells, but higher numbers of proliferating cells in their colonic epithelium as compared to wildtype mice at day 14 p.i. Less pronounced apoptosis was parallelled by lower abundance of neutrophils within the colonic mucosa and lamina propria of infected IL-23p19(-/-) and IL-22(-/-) as compared to wildtype control mice, whereas less distinct colonic TNF secretion could be measured in IL-22(-/-) and IL-18(-/-) than in wildtype mice at day 14 p.i. Notably, in infected IL-22(-/-) mice, colonic IL-23p19 mRNA levels were lower, whereas the other way round, colonic IL-22 expression rates were lower in IL-23p19(-/-) mice as compared to wildtype controls. Moreover, IL-18 mRNA was less distinctly expressed in large

  5. IL-18 promoter -137G/C polymorphism correlates with chronic hepatitis B and affects the expression of interleukins.

    PubMed

    Jiang, H; Cao, H; Liu, G; Huang, Q; Li, Y

    2014-01-01

    The relationship between the interleukin (IL)-18 promoter -137G/C polymorphism and plasma levels of IL-18, IL-12, IL-4, and IFN-γ in chronic hepatitis B (CHB) patients and healthy subjects was investigated. The polymorphism was genotyped by a ligase detection reaction-PCR (LDR-PCR), while the cytokines were assayed by ELISA. Compared with healthy subjects, CHB patients exhibited an increased frequency of the G allele, GG genotype and increased IL-4 levels, but decreased levels of IL-18, IL-12, and IFN-γ. A positive correlation for IL-18 ~ IL-12 ~ IFN-γ and a negative correlation for IL-18 ~ IL-4 were found. We conclude that the IL-18 promoter -137G polymorphisms correlated with CHB infection and influenced the expression of IL-18. The studied interleukins represent an immunomodulatory network that plays important roles in host immune responses to CHB infection.

  6. The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway

    PubMed Central

    Ratsimandresy, Rojo A; Indramohan, Mohanalaxmi; Dorfleutner, Andrea; Stehlik, Christian

    2017-01-01

    Inflammasomes are important for maintaining intestinal homeostasis, and dysbiosis contributes to the pathology of inflammatory bowel disease (IBD) and increases the risk for colorectal cancer. Inflammasome defects contribute to chronic intestinal inflammation and increase the susceptibility to colitis in mice. However, the inflammasome sensor absent in melanoma 2 (AIM2) protects against colorectal cancer in an inflammasome-independent manner through DNA-dependent protein kinase and Akt pathways. Yet, the roles of the AIM2 inflammasome in IBD and the early phases of colorectal cancer remain ill-defined. Here we show that the AIM2 inflammasome has a protective role in the intestine. During steady state, Aim2 deletion results in the loss of IL-18 secretion, suppression of the IL-22 binding protein (IL-22BP) in intestinal epithelial cells and consequent loss of the STAT3-dependent antimicrobial peptides (AMPs) Reg3β and Reg3γ, which promotes dysbiosis-linked colitis. During dextran sulfate sodium-induced colitis, a dysfunctional IL-18/IL-22BP pathway in Aim2−/− mice promotes excessive IL-22 production and elevated STAT3 activation. Aim2−/− mice further exhibit sustained STAT3 and Akt activation during the resolution of colitis fueled by enhanced Reg3b and Reg3g expression. This self-perpetuating mechanism promotes proliferation of intestinal crypt cells and likely contributes to the recently described increase in susceptibility of Aim2−/− mice to colorectal cancer. Collectively, our results demonstrate a central role for the AIM2 inflammasome in preventing dysbiosis and intestinal inflammation through regulation of the IL-18/IL-22BP/IL-22 and STAT3 pathway and expression of select AMPs. PMID:27524110

  7. IL-18 associated with lung lymphoid aggregates drives IFNγ production in severe COPD.

    PubMed

    Briend, Emmanuel; Ferguson, G John; Mori, Michiko; Damera, Gautam; Stephenson, Katherine; Karp, Natasha A; Sethi, Sanjay; Ward, Christine K; Sleeman, Matthew A; Erjefält, Jonas S; Finch, Donna K

    2017-08-22

    Increased interferon gamma (IFNγ) release occurs in Chronic Obstructive Pulmonary Disease (COPD) lungs. IFNγ supports optimal viral clearance, but if dysregulated could increase lung tissue destruction. The present study investigates which mediators most closely correlate with IFNγ in sputum in stable and exacerbating disease, and seeks to shed light on the spatial requirements for innate production of IFNγ, as reported in mouse lymph nodes, to observe whether such microenvironmental cellular organisation is relevant to IFNγ production in COPD lung. We show tertiary follicle formation in severe disease alters the dominant mechanistic drivers of IFNγ production, because cells producing interleukin-18, a key regulator of IFNγ, are highly associated with such structures. Interleukin-1 family cytokines correlated with IFNγ in COPD sputum. We observed that the primary source of IL-18 in COPD lungs was myeloid cells within lymphoid aggregates and IL-18 was increased in severe disease. IL-18 released from infected epithelium or from activated myeloid cells, was more dominant in driving IFNγ when IL-18-producing and responder cells were in close proximity. Unlike tight regulation to control infection spread in lymphoid organs, this local interface between IL-18-expressing and responder cell is increasingly supported in lung as disease progresses, increasing its potential to increase tissue damage via IFNγ.

  8. Acetylsalicylic Acid Inhibits IL-18-Induced Cardiac Fibroblast Migration Through the Induction of RECK

    PubMed Central

    SIDDESHA, JALAHALLI M.; VALENTE, ANTHONY J.; SAKAMURI, SIVA S.V.P.; GARDNER, JASON D.; DELAFONTAINE, PATRICE; NODA, MAKOTO; CHANDRASEKAR, BYSANI

    2015-01-01

    The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18 induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18 induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Spl-mediated RECK suppression, mechanisms that required Nox4-dependent H2O2 generation. Notably, forced expression of RECK attenuated IL-18 induced MMP9 activation and CF migration. Further, therapeutic concentrations of ASA inhibited IL-18 induced H2O2 generation, MMP9 activation, RECK suppression, and CF migration. The salicylic acid moiety of ASA similarly attenuated IL-18 induced CF migration. Thus, ASA may exert potential beneficial effect in cardiac fibrosis through multiple protective mechanisms. PMID:24265116

  9. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    SciTech Connect

    Bujak, Emil; Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah; Neri, Dario

    2014-09-10

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  10. Expression of mRNA and protein of IL-18 and its receptor in human follicular granulosa cells.

    PubMed

    Salmassi, A; Fattahi, A; Nouri, M; Hedderich, J; Schmutzler, A G

    2017-04-01

    There is no information available about the IL-18 receptor in ovarian follicles, so the present study attempts to demonstrate the expression of IL-18 and its receptor in human granulosa cells (GCs). To evaluate the concentration of IL-18 in serum and follicular fluid (FF), we collected serum and FF from 102 women undergoing oocyte retrieval. Also, to detect expression of IL-18 and its receptor by luteinized GCs, these cells were pooled six times from a total of twenty individual patients with 5-16 follicles each. The IL-18 concentration was determined by ELISA and the expression of IL-18 and its receptor by immunocytochemistry and reverse transcription polymerase chain reaction. Our results showed that the median IL-18 concentration in serum, 159.27 pg/ml (IQR 121.41-210.1), was significantly higher than in FF, 142.1 pg/ml (IQR 95.7-176.5), p < 0.001. Moreover, we found that IL-18 and its receptor are expressed by GCs. The presence of IL-18 in FF and the expression of IL-18 and its receptor by GCs suggest an important role for this cytokine in ovarian function.

  11. Thrombospondin 1 acts as a strong promoter of transforming growth factor β effects via two distinct mechanisms in hepatic stellate cells

    PubMed Central

    Breitkopf, K; Sawitza, I; Westhoff, J H; Wickert, L; Dooley, S; Gressner, A M

    2005-01-01

    Background and aims: Thrombospondin 1 (TSP-1) is an important activator of latent transforming growth factor β (TGF-β) but little is known of the expression patterns and functions of TSP-1 in liver cells. We therefore analysed if and how TSP-1 acts on TGF-β during fibrogenesis. Methods and results: Using reverse transcription-polymerase chain reaction, we demonstrated that hepatocytes from normal liver expressed no TSP-1 mRNA whereas Kupffer cells and sinusoidal endothelial cells did. TSP-1 mRNA and protein were detected in quiescent and activated cultured hepatic stellate cells (HSC) and TSP-1 expression was highly inducible by platelet derived growth factor BB (PDGF-BB) and, to a lesser extent, by tumour necrosis factor α in activated HSC. Furthermore, addition of PDGF-BB directly led to enhanced TGF-β mRNA expression and a TSP-1 dependent increase in TGF-β/Smad signalling. Using either a peptide specifically blocking the interaction of TSP-1 with latent TGF-β or antibodies against TSP-1 not only abrogated activation of latent TGF-β but also reduced the effects of the active dimer itself. Conclusions: Our data suggest that TSP-1 expression is important for TGF-β effects and that it is regulated by the profibrogenic mediator PDGF-BB in HSC. Furthermore, the presence of TSP-1 seems to be a prerequisite for effective signal transduction by active TGF-β not only in rat HSC but also in other cell types such as human dermal fibroblasts. PMID:15831915

  12. Decreased serum thrombospondin-1 levels in pancreatic cancer patients up to 24 months prior to clinical diagnosis: association with diabetes mellitus

    PubMed Central

    Oldfield, Lucy; Jenkins, Rosalind E.; O’Brien, Darragh P.; Apostolidou, Sophia; Gentry-Maharaj, Aleksandra; Fourkala, Evangelia-O; Jacobs, Ian J.; Menon, Usha; Cox, Trevor; Campbell, Fiona; Pereira, Stephen P.; Tuveson, David A.; Park, B. Kevin; Greenhalf, William; Sutton, Robert; Timms, John F.; Neoptolemos, John P.; Costello, Eithne

    2015-01-01

    Purpose Identification of serum biomarkers enabling earlier diagnosis of pancreatic ductal adenocarcinoma (PDAC) could improve outcome. Serum protein profiles in patients with pre-clinical disease and at diagnosis were investigated. Experimental Design Serum from cases up to 4 years prior to PDAC diagnosis and controls (UKCTOCS,n=174) were studied, alongside samples from patients diagnosed with PDAC, chronic pancreatitis, benign biliary disease, type 2 diabetes mellitus and healthy subjects (n=298). iTRAQ enabled comparisons of pooled serum from a test set (n=150). Validation was undertaken using MRM and/or western blotting in all 472 human samples and samples from a KPC mouse model. Results iTRAQ identified thrombospondin-1 (TSP-1) as reduced preclinically and in diagnosed samples. MRM confirmed significant reduction in levels of TSP-1 up to 24 months prior to diagnosis. A combination of TSP-1 and CA19-9 gave an AUC of 0.86, significantly outperforming both markers alone (0.69 & 0.77 respectively; P<0.01). TSP-1 was also decreased in PDAC patients compared to healthy controls (P<0.05) and patients with benign biliary obstruction (P<0.01). Low levels of TSP-1 correlated with poorer survival, pre-clinically (P<0.05) and at clinical diagnosis (P<0.02). In PDAC patients, reduced TSP-1 levels were more frequently observed in those with confirmed diabetes mellitus (P<0.01). Significantly lower levels were also observed in PDAC patients with diabetes compared to individuals with type 2 DM (P=0.01). Conclusions Circulating TSP-1 levels decrease up to 24 months prior to diagnosis of PDAC and significantly enhance the diagnostic performance of CA19-9. The influence of diabetes mellitus on biomarker behaviour should be considered in future studies. PMID:26573598

  13. Metronomic Ceramide Analogs Inhibit Angiogenesis in Pancreatic Cancer through Up-regulation of Caveolin-1 and Thrombospondin-1 and Down-regulation of Cyclin D112

    PubMed Central

    Bocci, Guido; Fioravanti, Anna; Orlandi, Paola; Di Desidero, Teresa; Natale, Gianfranco; Fanelli, Giovanni; Viacava, Paolo; Naccarato, Antonio Giuseppe; Francia, Giulio; Danesi, Romano

    2012-01-01

    Aims To evaluate the antitumor and antiangiogenic activity of metronomic ceramide analogs and their relevant molecular mechanisms. Methods Human endothelial cells [human dermal microvascular endothelial cells and human umbilical vascular endothelial cell (HUVEC)] and pancreatic cancer cells (Capan-1 and MIA PaCa-2) were treated with the ceramide analogs (C2, AL6, C6, and C8), at low concentrations for 144 hours to evaluate any antiproliferative and proapoptotic effects and inhibition of migration and to measure the expression of caveolin-1 (CAV-1) and thrombospondin-1 (TSP-1) mRNAs by real-time reverse transcription-polymerase chain reaction. Assessment of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Akt phosphorylation and of CAV-1 and cyclin D1 protein expression was performed by ELISA. Maximum tolerated dose (MTD) gemcitabine was compared against metronomic doses of the ceramide analogs by evaluating the inhibition of MIA PaCa-2 subcutaneous tumor growth in nude mice. Results Metronomic ceramide analogs preferentially inhibited cell proliferation and enhanced apoptosis in endothelial cells. Low concentrations of AL6 and C2 caused a significant inhibition of HUVEC migration. ERK1/2 and Akt phosphorylation were significantly decreased after metronomic ceramide analog treatment. Such treatment caused the overexpression of CAV-1 and TSP-1 mRNAs and proteins in endothelial cells, whereas cyclin D1 protein levels were reduced. The antiangiogenic and antitumor impact in vivo of metronomic C2 and AL6 regimens was similar to that caused by MTD gemcitabine. Conclusions Metronomic C2 and AL6 analogs have antitumor and antiangiogenic activity, determining the up-regulation of CAV-1 and TSP-1 and the suppression of cyclin D1. PMID:23019415

  14. Statin-induced proinflammatory response in mitogen-activated peripheral blood mononuclear cells through the activation of caspase-1 and IL-18 secretion in monocytes.

    PubMed

    Coward, William R; Marei, Ayman; Yang, AiLi; Vasa-Nicotera, Mariuca M; Chow, Sek C

    2006-05-01

    Statins, which inhibit 3-hydroxy-3-methylglutaryl CoA reductase, have been shown recently to promote proinflammatory responses. We show in this study that both atorvastatin and simvastatin induced proinflammatory responses in mitogen-activated PBMCs by increasing the number of T cells secreting IFN-gamma. This is abolished by the presence of mevalonate, suggesting that statins act specifically by blocking the mevalonate pathway for cholesterol synthesis to promote the proinflammatory response. Both statins at low concentrations induced a dose-dependent increase in the number of IFN-gamma-secreting T cells in mitogen-activated PBMCs, whereas at higher concentrations the effect was abolished. The proinflammatory effect of statins was not seen in purified T cells per se activated with mitogen. However, conditioned medium derived from statin-treated PBMCs enhanced the number of IFN-gamma-secreting cells in activated purified T cells. This effect was not blocked by mevalonate, but was abolished by neutralizing Abs to IL-18 and IL-12. Similarly, the up-regulation of IFN-gamma-secreting T cells in PBMCs costimulated with statins and mitogens was blocked by the neutralizing anti-IL-18 and anti-IL-12. We showed that simvastatin stimulates the secretion of IL-18 and IL-1beta in monocytes. Active caspase-1, which is required for the processing and secretion of IL-18 and IL-1beta, was activated in simvastatin-treated monocytes. This was blocked by mevalonate and the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone. Taken together, the proinflammatory response mediated by statins in activated PBMCs is mediated mainly via the activation of caspase-1 and IL-18 secretion in the monocytes and to a lesser extent by IL-12.

  15. Circulating levels of IL-18 are significantly influenced by the IL-18 +183 A/G polymorphism in coronary artery disease patients with diabetes type 2 and the metabolic syndrome: an observational study.

    PubMed

    Opstad, Trine B; Pettersen, Alf Å; Arnesen, Harald; Seljeflot, Ingebjørg

    2011-12-05

    Increased IL-18 serum levels have been associated with diabetes type 2, metabolic syndrome and the severity of atherosclerosis. The present study investigated the presence and influence of IL-18 genetic variants on gene- and protein expression in stable coronary artery disease (CAD) patients. The +183 A/G (rs 5744292), -137 G/C (rs 187238) and -607 C/A (rs 1946518) polymorphisms were determined in 1001 patients with angiographically verified stable CAD, and in 204 healthy controls. IL-18 gene-expression was measured in circulating leukocytes in 240 randomly selected patients. Circulating IL-18 and IL-18 binding protein levels were measured immunologically in all patients. The +183 G-allele associated significantly with lower serum levels of IL-18 (p = 0.002, adjusted for age, glucose, body mass index and gender) and a 1.13- fold higher IL-18 gene-expression (p = 0.010). No influence was observed for the -137 G/C and -607 C/A polymorphisms. The IL-18 binding protein levels were not influenced by IL-18 genotypes. IL-18 levels were significantly higher in men as compared to women, and in patients with diabetes type 2 and metabolic syndrome compared to those without (p ≤ 0.001, all). The reduction in IL-18 levels according to the +183 G-allele was 3-4 fold more pronounced in diabetes and metabolic syndrome as compared to unaffected patients.Finally, the +183 AA genotype was more frequent in patients with hypertension (p = 0.042, adjusted for age, body mass index and gender). The reduction in serum IL-18 levels across increasing numbers of +183 G-alleles was especially apparent in patient with diabetes type 2 and metabolic syndrome, suggesting a beneficial GG genotype in relation to cardiovascular outcome in these patients. ClinicalTrials.gov: NCT00222261.

  16. Association of IL-18 genotype with impaired glucose regulation in Korean women with polycystic ovary syndrome.

    PubMed

    Kim, Ji Won; Lee, Min Ho; Park, Ji Eun; Yoon, Tae Ki; Lee, Woo Sik; Shim, Sung Han

    2012-03-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder among women of reproductive age. The pro-inflammatory cytokine, interleukin (IL)-18, is associated with metabolic syndrome, and elevated serum IL-18 levels are related to obesity and insulin resistance in PCOS patients. However, the role of IL-18 in the PCOS remains unclear. So we examined whether or not two functional polymorphisms in the IL-18 gene, -137G>C and +183A>G, are associated with PCOS itself or glucose intolerance in Korean women with PCOS. The IL-18 genotypes of 126 women with PCOS and 113 controls were determined and their serum levels of lipid and hormone profiles measured. The insulin resistance index was calculated from the glucose and insulin concentrations obtained by oral glucose tolerance tests. There were no statistically significant differences in the distribution of -137 G>C polymorphisms among the women classified according to presence or absence of PCOS and obesity. However, the -137G/G allele was more frequent in the PCOS+impaired glucose regulation (IGR) group than PCOS+normal glucose tolerance group (X(2)=7.637, p(Bonf)=0.022). The PCOS group with only the -137G allele had a significantly increased risk of IGR compared to the PCOS group with the -137C allele (92 vs. 8%, odds ratio=6.325, 95% confidence interval=1.403-28.519). In the PCOS patients, the mean fasting and 2-h post-prandial plasma glucose level of patients with only the -137G allele was significantly higher than those of the patients with the -137C allele (88.87 ± 9.49 vs. 84.37 ± 6.19, p=0.002 and 120.07 ± 34.53 vs. 107.54 ± 27.13, p=0.038). Only one woman was heterozygous for the +183A>G polymorphism and the other 224 subjects were homozygous for the polymorphism (A/A). The IL-18 -137G allele could play a role in the predisposition to glucose intolerance in Korean women with PCOS, and the +183G allele of IL-18 is not associated with the Korean population. Copyright © 2011 Elsevier Ireland Ltd. All

  17. Effect of hydrodynamics-based delivery of IL-18BP fusion gene on rat experimental autoimmune myocarditis.

    PubMed

    Chang, He; Wang, Yan; Li, Gang; Zhang, Le; Zhang, Guang Wei; Liao, Yan Chun; Hanawa, Haruo; Zou, Jun

    2014-11-01

    Interleukin-18 (IL-18) is a powerful and important cytokine in myocarditis. IL-18-binding protein (IL-18BP), a naturally occurring antagonist of IL-18, is presumed to play a vital regulatory function in IL-18-mediated immune responses. The purpose of this study was to evaluate the alterations of IL-18 and its related protein expressions and the effect of hydrodynamics-based delivery of the IL-18BP gene for treatment of rat experimental autoimmune myocarditis (EAM).Rats were immunized on Day 0 and killed on 2, 3 and 4 weeks to determine IL-18 and its related protein expression and target cells in EAM hearts. On Day 6, rats were injected with a recombinant plasmid encoding IL-18BP-Ig or SP-Ig. On Day 17, rats were detected with echocardiography and then be killed. IL-18BP gene therapy was effective in controlling EAM, as monitored by a decreased ratio of heart weight to body weight, reduced myocarditis areas, reduced expression of atrial natriuretic peptide, brain natriuretic peptide, IL-17, IFN-γ, IL-6 and IL-10. Furthermore, the effect of serum containing IL-18BP on the expression of immune-relevant genes in IL-1α-stimulated NC cells and splenocytes cultured from EAM rats was examined. The results showed that IL-18BP significantly suppressed the expression of IL-17 as well as other proinflammatory genes such as transforming growth factor-β, prostaglandin E2 synthase, cyclooxygenase-2 in IL-1α-stimulated NC cells, and IL-18BP also significantly suppressed the expression of IL-17, IL-17R, IL-21 and IL-17-related transcriptional factor retinoic acid-related orphan nuclear receptor, signal transducer and activator of transcription-3 and Foxp3 in IL-1α-stimulated splenocytes cultured from EAM rats. IL-18 and its related protein played an important role on the development of EAM. IL-18BP effectively prevented progression of EAM by blocking IL-17 and related inflammatory genes expression. This might be a possible mechanism of the amelioration of EAM by IL-18BP

  18. Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1.

    PubMed

    Tong, Xin; Mirzoeva, Salida; Veliceasa, Dorina; Bridgeman, Bryan B; Fitchev, Philip; Cornwell, Mona L; Crawford, Susan E; Pelling, Jill C; Volpert, Olga V

    2014-11-30

    Plant flavonoid apigenin prevents and inhibits UVB-induced carcinogenesis in the skin and has strong anti-proliferative and anti-angiogenic properties. Here we identify mechanisms, by which apigenin controls these oncogenic events. We show that apigenin acts, at least in part, via endogenous angiogenesis inhibitor, thrombospondin-1 (TSP1). TSP1 expression by the epidermal keratinocytes is potently inhibited by UVB. It inhibits cutaneous angiogenesis and UVB-induced carcinogenesis. We show that apigenin restores TSP1 in epidermal keratinocytes subjected to UVB and normalizes proliferation and angiogenesis in UVB-exposed skin. Importantly, reconstituting TSP1 anti-angiogenic function in UVB-irradiated skin with a short bioactive peptide mimetic representing exclusively its anti-angiogenic domain reproduced the anti-proliferative and anti-angiogenic effects of apigenin. Cox-2 and HIF-1α are important mediators of angiogenesis. Both apigenin and TSP1 peptide mimetic attenuated their induction by UVB. Finally we identified the molecular mechanism, whereby apigenin did not affect TSP1 mRNA, but increased de novo protein synthesis. Knockdown studies implicated the RNA-binding protein HuR, which controls mRNA stability and translation. Apigenin increased HuR cytoplasmic localization and physical association with TSP1 mRNA causing de novo TSP1 synthesis. HuR cytoplasmic localization was, in turn, dependent on CHK2 kinase. Together, our data provide a new mechanism, by which apigenin controls UVB-induced carcinogenesis.

  19. Thrombospondin 1 mediates high-fat diet-induced muscle fibrosis and insulin resistance in male mice.

    PubMed

    Inoue, Mayumi; Jiang, Yibin; Barnes, Richard H; Tokunaga, Masakuni; Martinez-Santibañez, Gabriel; Geletka, Lynn; Lumeng, Carey N; Buchner, David A; Chun, Tae-Hwa

    2013-12-01

    Thrombospondin 1 (THBS1 or TSP-1) is a circulating glycoprotein highly expressed in hypertrophic visceral adipose tissues of humans and mice. High-fat diet (HFD) feeding induces the robust increase of circulating THBS1 in the early stages of HFD challenge. The loss of Thbs1 protects male mice from diet-induced weight gain and adipocyte hypertrophy. Hyperinsulinemic euglycemic clamp study has demonstrated that Thbs1-null mice are protected from HFD-induced insulin resistance. Tissue-specific glucose uptake study has revealed that the insulin-sensitive phenotype of Thbs1-null mice is mostly mediated by skeletal muscles. Further assessments of the muscle phenotype using RNA sequencing, quantitative PCR, and histological studies have demonstrated that Thbs1-null skeletal muscles are protected from the HFD-dependent induction of Col3a1 and Col6a1, coupled with a new collagen deposition. At the same time, the Thbs1-null mice display a better circadian rhythm and higher amplitude of energy expenditure with a browning phenotype in sc adipose tissues. These results suggest that THBS1, which circulates in response to a HFD, may induce insulin resistance and fibrotic tissue damage in skeletal muscles as well as the de-browning of sc adipose tissues in the early stages of a HFD challenge. Our study may shed new light on the pathogenic role played by a circulating extracellular matrix protein in the cross talk between adipose tissues and skeletal muscles during obesity progression.

  20. Alteration in cellular turnover and progenitor cell population in lacrimal glands from thrombospondin 1(-/-) mice, a model of dry eye.

    PubMed

    Shatos, Marie A; Hodges, Robin R; Morinaga, Masahiro; McNay, David E; Islam, Rakibul; Bhattacharya, Sumit; Li, Dayu; Turpie, Bruce; Makarenkova, Helen P; Masli, Sharmila; Utheim, Tor P; Dartt, Darlene A

    2016-12-01

    The purpose of this study was to investigate the changes that occur in the lacrimal glands (LGs) in female thrombospondin 1 knockout (TSP1(-/-)) mice, a mouse model of the autoimmune disease Sjogren's syndrome. The LGs of 4, 12, and 24 week-old female TSP1(-/-) and C57BL/6J (wild type, WT) mice were used. qPCR was performed to measure cytokine expression. To study the architecture, LG sections were stained with hematoxylin and eosin. Cell proliferation was measured using bromo-deoxyuridine and immunohistochemistry. Amount of CD47 and stem cell markers was analyzed by western blot analysis and location by immunofluorescence microscopy. Expression of stem cell transcription factors was performed using Mouse Stem Cell Transcription Factors RT(2) Profiler PCR Array. Cytokine levels significantly increased in LGs of 24 week-old TSP1(-/-) mice while morphological changes were detected at 12 weeks. Proliferation was decreased in 12 week-old TSP1(-/-) mice. Three transcription factors were overexpressed and eleven underexpressed in TSP1(-/-) compared to WT LGs. The amount of CD47, Musashi1, and Sox2 was decreased while the amount of ABCG2 was increased in 12 week-old TSP1(-/-) mice. We conclude that TSP1 is necessary for maintaining normal LG homeostasis. Absence of TSP1 alters cytokine levels and stem cell transcription factors, LG cellular architecture, decreases cell proliferation, and alters amount of stem cell markers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Glucose Stimulation of Transforming Growth Factor-β Bioactivity in Mesangial Cells Is Mediated by Thrombospondin-1

    PubMed Central

    Poczatek, Maria H.; Hugo, Christian; Darley-Usmar, Victor; Murphy-Ullrich, Joanne E.

    2000-01-01

    Glucose is a key factor in the development of diabetic complications, including diabetic nephropathy. The development of diabetic glomerulosclerosis is dependent on the fibrogenic growth factor, transforming growth factor-β (TGF-β). Previously we showed that thrombospondin-1 (TSP-1) activates latent TGF-β both in vitro and in vivo. Activation occurs as the result of specific interactions of latent TGF-β with TSP-1, which potentially alter the conformation of latent TGF-β. As glucose also up-regulates TSP-1 expression, we hypothesized that the increased TGF-β bioactivity observed in rat and human mesangial cells cultured with high glucose concentrations is the result of latent TGF-β activation by autocrine TSP-1. Glucose-induced bioactivity of TGF-β in mesangial cell cultures was reduced to basal levels by peptides from two different sequences that antagonize activation of latent TGF-β by TSP, but not by the plasmin inhibitor, aprotinin. Furthermore, glucose-dependent stimulation of matrix protein synthesis was inhibited by these antagonist peptides. These studies demonstrate that glucose stimulation of TGF-β activity and the resultant matrix protein synthesis are dependent on the action of autocrine TSP-1 to convert latent TGF-β to its biologically active form. These data suggest that antagonists of TSP-dependent TGF-β activation may be the basis of novel therapeutic approaches for ameliorating diabetic renal fibrosis. PMID:11021838

  2. Thrombospondin-1 as a Paradigm for the Development of Antiangiogenic Agents Endowed with Multiple Mechanisms of Action

    PubMed Central

    Rusnati, Marco; Urbinati, Chiara; Bonifacio, Silvia; Presta, Marco; Taraboletti, Giulia

    2010-01-01

    Uncontrolled neovascularization occurs in several angiogenesis-dependent diseases, including cancer. Neovascularization is tightly controlled by the balance between angiogenic growth factors and antiangiogenic agents. The various natural angiogenesis inhibitors identified so far affect neovascularization by different mechanisms of action. Thrombospondin-1 (TSP-1) is a matricellular modular glycoprotein that acts as a powerful endogenous inhibitor of angiogenesis. It acts both indirectly, by sequestering angiogenic growth factors and effectors in the extracellular environment, and directly, by inducing an antiangiogenic program in endothelial cells following engagement of specific receptors including CD36, CD47, integrins and proteoglycans (all involved in angiogenesis ). In view of its central, multifaceted role in angiogenesis, TSP-1 has served as a source of antiangiogenic tools, including TSP-1 fragments, synthetic peptides and peptidomimetics, gene therapy strategies, and agents that up-regulate TSP-1 expression. This review discusses TSP-1-based inhibitors of angiogenesis, their mechanisms of action and therapeutic potential, drawing our experience with angiogenic growth factor-interacting TSP-1 peptides, and the possibility of exploiting them to design novel antiangiogenic agents. PMID:27713299

  3. Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1

    PubMed Central

    Veliceasa, Dorina; Bridgeman, Bryan B.; Fitchev, Philip; Cornwell, Mona L.; Crawford, Susan E.; Pelling, Jill C.; Volpert, Olga V.

    2014-01-01

    Plant flavonoid apigenin prevents and inhibits UVB-induced carcinogenesis in the skin and has strong anti-proliferative and anti-angiogenic properties. Here we identify mechanisms, by which apigenin controls these oncogenic events. We show that apigenin acts, at least in part, via endogenous angiogenesis inhibitor, thrombospondin-1 (TSP1). TSP1 expression by the epidermal keratinocytes is potently inhibited by UVB. It inhibits cutaneous angiogenesis and UVB-induced carcinogenesis. We show that apigenin restores TSP1 in epidermal keratinocytes subjected to UVB and normalizes proliferation and angiogenesis in UVB-exposed skin. Importantly, reconstituting TSP1 anti-angiogenic function in UVB-irradiated skin with a short bioactive peptide mimetic representing exclusively its anti-angiogenic domain reproduced the anti-proliferative and anti-angiogenic effects of apigenin. Cox-2 and HIF-1α are important mediators of angiogenesis. Both apigenin and TSP1 peptide mimetic attenuated their induction by UVB. Finally we identified the molecular mechanism, whereby apigenin did not affect TSP1 mRNA, but increased de novo protein synthesis. Knockdown studies implicated the RNA-binding protein HuR, which controls mRNA stability and translation. Apigenin increased HuR cytoplasmic localization and physical association with TSP1 mRNA causing de novo TSP1 synthesis. HuR cytoplasmic localization was, in turn, dependent on CHK2 kinase. Together, our data provide a new mechanism, by which apigenin controls UVB-induced carcinogenesis. PMID:25526033

  4. TGF-β activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and hypoxia-induced pulmonary hypertension

    PubMed Central

    Kumar, Rahul; Mickael, Claudia; Kassa, Biruk; Gebreab, Liya; Robinson, Jeffrey C.; Koyanagi, Daniel E.; Sanders, Linda; Barthel, Lea; Meadows, Christina; Fox, Daniel; Irwin, David; Li, Min; McKeon, B. Alexandre; Riddle, Suzette; Dale Brown, R.; Morgan, Leslie E.; Evans, Christopher M.; Hernandez-Saavedra, Daniel; Bandeira, Angela; Maloney, James P.; Bull, Todd M.; Janssen, William J.; Stenmark, Kurt R.; Tuder, Rubin M.; Graham, Brian B.

    2017-01-01

    Pulmonary arterial hypertension (PAH) is an obstructive disease of the precapillary pulmonary arteries. Schistosomiasis-associated PAH shares altered vascular TGF-β signalling with idiopathic, heritable and autoimmune-associated etiologies; moreover, TGF-β blockade can prevent experimental pulmonary hypertension (PH) in pre-clinical models. TGF-β is regulated at the level of activation, but how TGF-β is activated in this disease is unknown. Here we show TGF-β activation by thrombospondin-1 (TSP-1) is both required and sufficient for the development of PH in Schistosoma-exposed mice. Following Schistosoma exposure, TSP-1 levels in the lung increase, via recruitment of circulating monocytes, while TSP-1 inhibition or knockout bone marrow prevents TGF-β activation and protects against PH development. TSP-1 blockade also prevents the PH in a second model, chronic hypoxia. Lastly, the plasma concentration of TSP-1 is significantly increased in subjects with scleroderma following PAH development. Targeting TSP-1-dependent activation of TGF-β could thus be a therapeutic approach in TGF-β-dependent vascular diseases. PMID:28555642

  5. Aryl Hydrocarbon Receptor (AhR) is Activated by Glucose and Regulates the Thrombospondin-1 Gene Promoter in Endothelial Cells

    PubMed Central

    Dabir, Pankaj; Marinic, Tina E.; Krukovets, Irene; Stenina, Olga I.

    2009-01-01

    Hyperglycemia is an independent risk-factor for development of diabetic vascular complications. The molecular mechanisms that are activated by glucose in vascular cells and could explain the development of vascular complications are still poorly understood. A putative binding site for the transcription factor Aryl Hydrocarbon Receptor (AhR) was identified in the glucose-responsive fragment of the promoter of thrombospondin-1 (TSP-1), a potent anti-angiogenic and pro-atherogenic protein involved in development of diabetic vascular complications. AhR was expressed in aortic endothelial cells (EC), activated and bound to the promoter in response to high glucose stimulation of EC. The constitutively active form of AhR induced activation of the TSP-1 gene promoter. In response to high glucose stimulation, AhR was found in complex with Egr-1 and AP-2, two other nuclear transcription factors activated by glucose in EC that have not been previously detected in complex with AhR. The activity of the DNA-binding complex was regulated by glucose through the activation of hexosamine pathway and intracellular glycosylation. This is the first report of activation of AhR (a receptor for xenobiotic compounds) by a physiological stimulus. This report links the activation of AhR to the pathological effects of hyperglycemia in the vasculature. PMID:18515748

  6. Thrombospondin-1 might be a therapeutic target to suppress RB cells by regulating the DNA double-strand breaks repair

    PubMed Central

    Zhang, Zhang; Zhang, Ping; Yang, Ying; Wu, Nandan; Xu, Lijun; Zhang, Jing; Ge, Jian; Yu, Keming; Zhuang, Jing

    2016-01-01

    Retinoblastoma (RB) arises from the retina, and its growth usually occurs under the retina and toward the vitreous. Ideal therapy should aim to inhibit the tumor and protect neural cells, increasing the patient's life span and quality of life. Previous studies have demonstrated that Thrombospondin-1 (TSP-1) is associated with neurogenesis, neovascularization and tumorigenesis. However, at present, the bioactivity of TSP-1 in retinoblastoma has not been defined. Herein, we demonstrated that TSP-1 was silenced in RB cell lines and clinical tumor samples. HDAC inhibitor, Trichostatin A (TSA), could notably transcriptionally up-regulate TSP-1 in RB cells, WERI-Rb1 cells and Y79 cells. Moreover, we found human recombinant TSP-1 (hTSP-1) could significantly inhibit the cell viability of RB cells both in vitro and in vivo. Interestingly, hTSP-1 could significantly induce the expression of γ-H2AX, a well-characterized in situ marker of DNA double-strand breaks (DSBs) in RB cells. The DNA NHEJ pathway in WERI-Rb1 cells could be significantly inhibited by hTSP-1. A mutation in Rb1 might be involved in the hTSP-1-medicated γ-H2AX increasing in WERI-Rb1 cells. Furthermore, hTSP-1 could inhibit RB cells while promoting retinal neurocyte survival in the neuronal and retinoblastoma cell co-culture system. As such, TSP-1 may become a therapeutic target for treatment of retinoblastoma. PMID:26756218

  7. Thrombospondin-1 might be a therapeutic target to suppress RB cells by regulating the DNA double-strand breaks repair.

    PubMed

    Chen, Pei; Yu, Na; Zhang, Zhang; Zhang, Ping; Yang, Ying; Wu, Nandan; Xu, Lijun; Zhang, Jing; Ge, Jian; Yu, Keming; Zhuang, Jing

    2016-02-02

    Retinoblastoma (RB) arises from the retina, and its growth usually occurs under the retina and toward the vitreous. Ideal therapy should aim to inhibit the tumor and protect neural cells, increasing the patient's life span and quality of life. Previous studies have demonstrated that Thrombospondin-1 (TSP-1) is associated with neurogenesis, neovascularization and tumorigenesis. However, at present, the bioactivity of TSP-1 in retinoblastoma has not been defined. Herein, we demonstrated that TSP-1 was silenced in RB cell lines and clinical tumor samples. HDAC inhibitor, Trichostatin A (TSA), could notably transcriptionally up-regulate TSP-1 in RB cells, WERI-Rb1 cells and Y79 cells. Moreover, we found human recombinant TSP-1 (hTSP-1) could significantly inhibit the cell viability of RB cells both in vitro and in vivo. Interestingly, hTSP-1 could significantly induce the expression of γ-H2AX, a well-characterized in situ marker of DNA double-strand breaks (DSBs) in RB cells. The DNA NHEJ pathway in WERI-Rb1 cells could be significantly inhibited by hTSP-1. A mutation in Rb1 might be involved in the hTSP-1-medicated γ-H2AX increasing in WERI-Rb1 cells. Furthermore, hTSP-1 could inhibit RB cells while promoting retinal neurocyte survival in the neuronal and retinoblastoma cell co-culture system. As such, TSP-1 may become a therapeutic target for treatment of retinoblastoma.

  8. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-Thrombospondin-1 axis

    PubMed Central

    Lee, Joo-Hyeon; Bhang, Dong Ha; Beede, Alexander; Huang, Tian Lian; Stripp, Barry R.; Bloch, Kenneth D.; Wagers, Amy J.; Tseng, Yu-Hua; Ryeom, Sandra; Kim, Carla F.

    2014-01-01

    SUMMARY Lung stem cells are instructed to produce lineage-specific progeny through unknown factors in their microenvironment. We used clonal three-dimensional (3D) co-cultures of endothelial cells and distal lung stem cells, bronchioalveolar stem cells (BASCs), to probe the instructive mechanisms. Single BASCs had bronchiolar and alveolar differentiation potential in lung endothelial cell co-cultures. Gain and loss of function experiments showed BMP4-Bmpr1a signaling triggers calcineurin/NFATc1-dependent expression of Thrombospondin-1 (Tsp1) in lung endothelial cells to drive alveolar lineage-specific BASC differentiation. Tsp1-null mice exhibited defective alveolar injury repair, confirming a crucial role for the BMP4-NFATc1-TSP1 axis in lung epithelial differentiation and regeneration in vivo. Discovery of this pathway points to methods to direct the derivation of specific lung epithelial lineages from multipotent cells. These findings elucidate a pathway that may be a critical target in lung diseases and provide new tools to understand the mechanisms of respiratory diseases at the single cell level. PMID:24485453

  9. Variable inhibition of thrombospondin 1 against liver and lung metastases through differential activation of metalloproteinase ADAMTS1.

    PubMed

    Lee, Yoon-Jin; Koch, Moritz; Karl, Daniel; Torres-Collado, Antoni X; Fernando, Namali T; Rothrock, Courtney; Kuruppu, Darshini; Ryeom, Sandra; Iruela-Arispe, M Luisa; Yoon, Sam S

    2010-02-01

    Metastasis relies on angiogenesis for tumor expansion. Tumor angiogenesis is restrained by a variety of endogenous inhibitors, including thrombospondin 1 (TSP1). The principal antiangiogenic activity of TSP1 resides in a domain containing three TSP1 repeats (3TSR), and TSP1 cleavage is regulated, in part, by the metalloproteinase ADAMTS1. In this study, we examined the role of TSP1 and ADAMTS1 in controlling metastatic disease in the liver and lung. TSP1 overexpression inhibited metastatic growth of colon or renal carcinoma cells in liver but not lung. Metastatic melanoma in liver grew more rapidly in Tsp1-null mice compared with controls, whereas in lung grew similarly in Tsp1-null mice or controls. Recombinant TSP1 was cleaved more efficiently in lysates from liver than lung. ADAMTS1 inhibition by neutralizing antibody, small interfering RNA, or genetic deletion abrogated cleavage activity. To confirm that lack of cleavage of TSP1 ablated its antiangiogenic function in the lung, we generated colon cancer cells stably secreting only the 3TSR domain and found that they inhibited formation of both liver and lung metastases. Collectively, our results indicate that the antiangiogenic activity of TSP1 is differentially regulated by ADAMTS1 in the liver and lung, emphasizing the concept that regulation of angiogenesis is varied in different tissue environments.

  10. How squalene GLAdly helps generate antigen-specific T cells via antigen-carrying neutrophils and IL-18

    PubMed Central

    Kedl, Justin D.; Kedl, Ross M.

    2015-01-01

    The mechanisms by which squalene, which in oil-and-water emulsions has been shown to be an excellent formulation for TLR agonists, enhances the magnitude and quality of adaptive immune responses are not thoroughly defined. In this issue of the European Journal of Immunology [Eur. J. Immunol. 2015. 45: XXXX-XXXX], Desbien et al. show that a squalene/TLR4-based adjuvant augments antigen-specific Th1 responses in vaccinated mice through a caspase/IL-18-dependent mechanism. This commentary will discuss the authors’ findings in the context of elucidating the mechanism of action of squalene as an adjuvant, and the new questions that the work generates. PMID:25641415

  11. How squalene GLAdly helps generate antigen-specific T cells via antigen-carrying neutrophils and IL-18.

    PubMed

    Kedl, Justin D; Kedl, Ross M

    2015-02-01

    The mechanisms by which squalene, which in oil-and-water emulsions has been shown to be an excellent formulation for TLR agonists, enhances the magnitude and quality of adaptive immune responses are not thoroughly defined. In this issue of the European Journal of Immunology [Eur. J. Immunol. 2015. 45: 407-417], Desbien et al. show that a squalene/TLR4-based adjuvant augments antigen-specific Th1 responses in vaccinated mice through a caspase/IL-18-dependent mechanism. This commentary will discuss the authors' findings in the context of elucidating the mechanism of action of squalene as an adjuvant, and the new questions that the work generates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Alterations in the α2 δ ligand, thrombospondin-1, in a rat model of spontaneous absence epilepsy and in patients with idiopathic/genetic generalized epilepsies.

    PubMed

    Santolini, Ines; Celli, Roberta; Cannella, Milena; Imbriglio, Tiziana; Guiducci, Michela; Parisi, Pasquale; Schubert, Julian; Iacomino, Michele; Zara, Federico; Lerche, Holger; Moyanova, Slavianka; Ngomba, Richard Teke; van Luijtelaar, Gilles; Battaglia, Giuseppe; Bruno, Valeria; Striano, Pasquale; Nicoletti, Ferdinando

    2017-09-15

    Thrombospondins, which are known to interact with the α2 δ subunit of voltage-sensitive calcium channels to stimulate the formation of excitatory synapses, have recently been implicated in the process of epileptogenesis. No studies have been so far performed on thrombospondins in models of absence epilepsy. We examined whether expression of the gene encoding for thrombospondin-1 was altered in the brain of WAG/Rij rats, which model absence epilepsy in humans. In addition, we examined the frequency of genetic variants of THBS1 in a large cohort of children affected by idiopathic/genetic generalized epilepsies (IGE/GGEs). We measured the transcripts of thrombospondin-1 and α2 δ subunit, and protein levels of α2 δ, Rab3A, and the vesicular glutamate transporter, VGLUT1, in the somatosensory cortex and ventrobasal thalamus of presymptomatic and symptomatic WAG/Rij rats and in two control strains by real-time polymerase chain reaction (PCR) and immunoblotting. We examined the genetic variants of THBS1 and CACNA2D1 in two independent cohorts of patients affected by IGE/GGE recruited through the Genetic Commission of the Italian League Against Epilepsy (LICE) and the EuroEPINOMICS-CoGIE Consortium. Thrombospondin-1 messenger RNA (mRNA) levels were largely reduced in the ventrobasal thalamus of both presymptomatic and symptomatic WAG/Rij rats, whereas levels in the somatosensory cortex were unchanged. VGLUT1 protein levels were also reduced in the ventrobasal thalamus of WAG/Rij rats. Genetic variants of THBS1 were significantly more frequent in patients affected by IGE/GGE than in nonepileptic controls, whereas the frequency of CACNA2D1 was unchanged. These findings suggest that thrombospondin-1 may have a role in the pathogenesis of IGE/GGEs. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  13. The role of IL-18 in type 1 diabetic nephropathy: The problem and future treatment.

    PubMed

    Elsherbiny, Nehal M; Al-Gayyar, Mohammed M H

    2016-05-01

    Diabetic vascular complication is a leading cause of diabetic nephropathy, a progressive increase in urinary albumin excretion coupled with elevated blood pressure leading to declined glomerular filtration and eventually end stage renal failure. There is growing evidence that activated inflammation is contributing factor to the pathogenesis of diabetic nephropathy. Meanwhile, IL-18, a member of the IL-1 family of inflammatory cytokines, is involved in the development and progression of diabetic nephropathy. However, the benefits derived from the current therapeutics for diabetic nephropathy strategies still provide imperfect protection against renal progression. This imperfection points to the need for newer therapeutic agents that have potential to affect primary mechanisms contributing to the pathogenesis of diabetic nephropathy. Therefore, the recognition of IL-18 as significant pathogenic mediators in diabetic nephropathy leaves open the possibility of new potential therapeutic targets.

  14. Improving the MVA Vaccine Potential by Deleting the Viral Gene Coding for the IL-18 Binding Protein

    PubMed Central

    Pascutti, María Fernanda; Rodríguez, Ana María; Maeto, Cynthia; Perdiguero, Beatriz; Gómez, Carmen E.; Esteban, Mariano; Calamante, Gabriela; Gherardi, María Magdalena

    2012-01-01

    Background Modified Vaccinia Ankara (MVA) is an attenuated strain of Vaccinia virus (VACV) currently employed in many clinical trials against HIV/AIDS and other diseases. MVA still retains genes involved in host immune response evasion, enabling its optimization by removing some of them. The aim of this study was to evaluate cellular immune responses (CIR) induced by an IL-18 binding protein gene (C12L) deleted vector (MVAΔC12L). Methodology/Principal Findings BALB/c and C57BL/6 mice were immunized with different doses of MVAΔC12L or MVA wild type (MVAwt), then CIR to VACV epitopes in immunogenic proteins were evaluated in spleen and draining lymph nodes at acute and memory phases (7 and 40 days post-immunization respectively). Compared with parental MVAwt, MVAΔC12L immunization induced a significant increase of two to three-fold in CD8+ and CD4+ T-cell responses to different VACV epitopes, with increased percentage of anti-VACV cytotoxic CD8+ T-cells (CD107a/b+) during the acute phase of the response. Importantly, the immunogenicity enhancement was also observed after MVAΔC12L inoculation with different viral doses and by distinct routes (systemic and mucosal). Potentiation of MVA's CIR was also observed during the memory phase, in correlation with a higher protection against an intranasal challenge with VACV WR. Of note, we could also show a significant increase in the CIR against HIV antigens such as Env, Gag, Pol and Nef from different subtypes expressed from two recombinants of MVAΔC12L during heterologous DNA prime/MVA boost vaccination regimens. Conclusions/Significance This study demonstrates the relevance of IL-18 bp contribution in the immune response evasion during MVA infection. Our findings clearly show that the deletion of the viral IL-18 bp gene is an effective approach to increase MVA vaccine efficacy, as immunogenicity improvements were observed against vector antigens and more importantly to HIV antigens. PMID:22384183

  15. Association Between IL-18 and Carotid Intima-Media Thickness in Patients with Type II Diabetic Nephropathy

    PubMed Central

    Zhang, Yuanyuan; Feng, Haomiao; Wei, Zhiyong

    2017-01-01

    Background We specifically designed this study to determine the relationship between levels of IL-8 and carotid intima-media thickness (cIMT) in patients with type 2 diabetes mellitus (T2DM). Material/Methods A total of 149 diabetic patients at different stages of diabetic nephropathy and 72 matched controls were recruited in this study. A wide range of parameters were measured: IL-18 (by ELISA), urinary albumin excretion rates (UAER), and carotid intima-media thickness (cIMT, by pulse wave velocity [PWV]). All the diabetic patients were treated by alprostadil. Results ELISA indicated that the level of IL-18 in the patient group was significantly higher compared with that in the control group. The level of IL-18 apparently increased in the higher cIMT group in T2DM patients. Serum IL-18 levels were positively correlated with cIMT in patients with T2DM, the level of IL-18 was negatively correlated with cIMT, and IL-18 levels were positively correlated to age. Moreover, IMT was positively correlated with hemoglobin A1C (HbA1C) and IL-18 levels were significantly associated with cIMT (all P<0.05). Conclusions IL-18 levels were positively correlated with atherosclerotic burden in patients with T2DM and it may be considered as a significant therapeutic target. PMID:28125566

  16. Cofactor Regulation of C5a Chemotactic Activity in Physiological Fluids. Requirement for the Vitamin D Binding Protein, Thrombospondin-1 and its Receptors

    PubMed Central

    Trujillo, Glenda; Zhang, Jianhua; Habiel, David M.; Ge, Lingyin; Ramadass, Mahalakshmi; Ghebrehiwet, Berhane; Kew, Richard R.

    2011-01-01

    Factors in physiological fluids that regulate the chemotactic activity of complement activation peptides C5a and C5a des Arg are not well understood. The vitamin D binding protein (DBP) has been shown to significantly enhance chemotaxis to C5a/C5a des Arg. More recently, platelet-derived thrombospondin-1 (TSP-1) has been shown to facilitate the augmentation of C5a-induced chemotaxis by DBP. The objective of this study was to better characterize these chemotactic cofactors and investigate the role that cell surface TSP-1 receptors CD36 and CD47 may play in this process. The chemotactic activity in C-activated normal serum, citrated plasma, DBP-depleted serum or C5 depleted serum was determined for both normal human neutrophils and U937 cell line transfected with the C5a receptor (U937-C5aR). In addition, levels of C5a des Arg, DBP and TSP-1 in these fluids were measured by RIA or ELISA. Results show that there is a clear hierarchy with C5a being the essential primary signal (DBP or TSP-1 will not function in the absence of C5a), DBP the necessary cofactor and TSP-1 a dependent tertiary factor, since it cannot function to enhance chemotaxis to C5a without DBP. Measurement of the C5a-induced intracellular calcium flux confirmed the same hierarchy observed with chemotaxis. Moreover, analysis of bronchoalveolar lavage fluid (BALF) from patients with the adult respiratory distress syndrome (ARDS) demonstrated that C5a-dependent chemotactic activity is significantly decreased after anti-DBP treatment. Finally, results show that TSP-1 utilizes cell surface receptors CD36 and CD47 to augment chemotaxis, but DBP does not bind to TSP-1, CD36 or CD47. The results clearly demonstrate that C5a/C5a des Arg needs both DBP and TSP-1 for maximal chemotactic activity and suggest that the regulation of C5a chemotactic activity in physiological fluids is more complex than previously thought. PMID:22014686

  17. Developmental control of the Nlrp6 inflammasome and a substrate, IL-18, in mammalian intestine

    PubMed Central

    Belteki, Gusztav; Forhead, Alison J.; Fowden, Abigail L.; Catalano, Robert D.; Lam, Brian Y.; McFarlane, Ian; Charnock-Jones, D. Stephen; Smith, Gordon C. S.

    2011-01-01

    The inflammasome is a multiprotein complex whose formation is triggered when a NOD-like receptor binds a pathogen ligand, resulting in activated caspase-1, which converts certain interleukins (IL-1β, IL-18, and IL-33) to their active forms. There is currently no information on regulation of this system around the time of birth. We employed transcript profiling of fetal rat intestinal and lung RNA at embryonic days 16 (E16) and 20 (E20) with out-of-sample validation using quantitative RT-PCR. Transcript profiling and quantitative RT-PCR demonstrated that transcripts of core components of the NOD-like receptor Nlrp6 inflammasome (Nlrp6, Pycard, Caspase-1) and one of its substrates, IL-18, were increased at E20 compared with E16 in fetal intestine and not lung. Immunohistochemistry demonstrated increased Pycard in intestinal epithelium. Western blotting demonstrated that IL-18 was undetectable at E16, clearly detectable at E20 in its inactive form, and detectable postnatally in both its inactive and active form. Dramatic upregulation of IL-18 was also observed in the fetal sheep jejunum in late gestation (P = 0.006). Transcription factor binding analysis of the rat array data revealed an overrepresentation of nuclear transcription factor binding sites peroxisome proliferator-activated receptor γ (PPAR-γ) and retinoid X receptor-α and chicken ovalbumin upstream promoter transcription factor 1 in the region 1,000 bp upstream of the transcription start site. Rosiglitazone, a PPAR-γ agonist, more than doubled levels of NLRP6 mRNA in human intestinal epithelial (Caco2) cells. These observations provide the first evidence, to our knowledge, linking activity of PPAR-γ to expression of a NOD-like receptor and adds to a growing body of evidence linking pattern recognition receptors of the innate immune system and intestinal colonization. PMID:21088234

  18. NCTC 2544 and IL-18 production: a tool for the identification of contact allergens.

    PubMed

    Corsini, Emanuela; Galbiati, Valentina; Mitjans, Montserrat; Galli, Corrado L; Marinovich, Marina

    2013-04-01

    Progress in understanding the mechanisms of skin sensitization, provides us with the opportunity to develop in vitro tests as an alternative to in vivo sensitization testing. Keratinocytes play a key role in all phases of skin sensitization. We have recently identified interleukin-18 (IL-18) production in keratinocyte as a potentially useful endpoint for determination of contact sensitization potential of low molecular weight chemicals. The aim of the present article is to further exploit the performance of the NCTC 2544 assay. NCTC 2544 is a commercially available skin epithelial-like cell line originating from normal human skin, which posses a good expression of cytochrome P450-dependent enzymatic activities. Cells were exposed to contact allergens (2-bromo-2-bromomethyl glutaronitrile, cinnamaldehyde, citral, diethylmaleate, dinitrochlorobenzene, glyoxal, 2-mercaptobenzothiazole, nickel sulfate, 4-nitrobenzylbromide, oxazolone, penicillin G, resorcinol, tetramethylthiuram disulfide), to pre- pro-haptens (cinnamyl alcohol, eugenol, isoeugenol, p-phenylediamine), to respiratory allergens (ammonium hexachloroplatinate, diphenylmethane diisocyanate, glutaraldehyde, hexamethylenediisocyanate, maleic anhydride, trimellitic anhydride) and to irritants (benzaldehyde, cholorobenzene, diethylphtalate, hydrobenzoic acid, lactic acid, octanoic acid, phenol, salicylic acid, sodium lauryl sulphate, sulfamic acid). Cell associated IL-18 was evaluated 24 later by ELISA. At not-cytotoxic concentrations (cell viability higher of 80%, as assessed by MTT reduction assay), all contact sensitizers, including pre-pro-haptens, induced a dose-related increase in IL-18, whereas both irritants, with the exception of sulfamic acid, and respiratory allergens failed. A total of 33 chemicals were tested, with an overall accuracy of 97%. Overall, results obtained indicated that cell-associated IL-18 might provide an in vitro tool for identification and discrimination of contact vs. respiratory

  19. Stage-specific requirement of IL-18 for antiviral NK cell expansion

    PubMed Central

    Madera, Sharline; Sun, Joseph C.

    2014-01-01

    Although natural killer (NK) cells are considered part of the innate immune system, recent studies have demonstrated the ability of antigen-experienced NK cells to become long-lived and contribute to potent recall responses similar to T and B cells. The precise signals that promote the generation of a long-lived NK cell response are largely undefined. Here, we demonstrate that NK cells require interleukin (IL)-18 signaling to generate a robust primary response during mouse cytomegalovirus (MCMV) infection, but do not require this signal for memory cell maintenance or recall responses. IL-12 signaling and STAT4 in activated NK cells increased the expression of the adaptor protein MyD88, which mediates signaling downstream of the IL-18 and IL-1 receptors. During MCMV infection, NK cells required MyD88 but not IL-1 receptor for optimal expansion. Thus, an IL-18-MyD88 signaling axis facilitates the prolific expansion of NK cells in response to primary viral infection, but not recall responses. PMID:25589075

  20. Cutting edge: stage-specific requirement of IL-18 for antiviral NK cell expansion.

    PubMed

    Madera, Sharline; Sun, Joseph C

    2015-02-15

    Although NK cells are considered part of the innate immune system, recent studies have demonstrated the ability of Ag-experienced NK cells to become long-lived and contribute to potent recall responses similar to T and B cells. The precise signals that promote the generation of a long-lived NK cell response are largely undefined. In this article, we demonstrate that NK cells require IL-18 signaling to generate a robust primary response during mouse CMV (MCMV) infection but do not require this signal for memory cell maintenance or recall responses. IL-12 signaling and STAT4 in activated NK cells increased the expression of the adaptor protein MyD88, which mediates signaling downstream of the IL-18 and IL-1 receptors. During MCMV infection, NK cells required MyD88, but not IL-1R, for optimal expansion. Thus, an IL-18-MyD88 signaling axis facilitates the prolific expansion of NK cells in response to primary viral infection, but not recall responses. Copyright © 2015 by The American Association of Immunologists, Inc.

  1. NCTC 2544 and IL-18 production: a tool for the in vitro identification of photoallergens.

    PubMed

    Galbiati, Valentina; Bianchi, Sara; Martínez, Verónica; Mitjans, Montserrat; Corsini, Emanuela

    2014-02-01

    Differentiation between photoallergenic and phototoxic reactions induced by low molecular weight compounds represents a current problem. The use of keratinocytes as a potential tool for the detection of photoallergens as opposed to photoirritants is considered an interesting strategy for developing in vitro methods. We have previously shown that IL-18 production in the human keratinocyte cell line NCTC 2455 is a good model for the in vitro identification of contact sensitizers. The purpose of this manuscript is to summarize data obtained in the NCTC 2544 assay as an in vitro model to identify photoallergens and discriminate them from phototoxic chemicals. The effect of UVA radiation (3.5J/cm(2)) over NCTC 2544 cells irradiated and non irradiated, and treated with increasing concentrations of various compounds including negative compounds (irritants and allergens), ibuprofen and acridine (photoirritants); ketoprofen, promethazine and chlorpromazine (photoirritants/photoallergens); benzophenone, 4-tert-butyl-4-methoxy-dibenzoylmethane, 2-ethylexyl-p-methoxycinnamate and 6-methylcumarin (photoallergens) was investigated. Twenty-four hours after exposure, cytotoxicity was evaluated by the MTT assay, while a commercially available ELISA kit was used to assess the intracellular content of IL-18. At no cytotoxic concentrations, allergens and photoallergens induce a dose-related increase in the production of IL-18, whereas irritants and photoirritants failed, indicating the possibility to use the NCTC 2544 assay to identify in vitro photoallergens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Early effects of fluoro-edenite: correlation between IL-18 serum levels and pleural and parenchymal abnormalities.

    PubMed

    Ledda, Caterina; Loreto, Carla; Matera, Serena; Massimino, Nicoletta; Cannizzaro, Emanuele; Musumeci, Andrea; Migliore, Marcello; Fenga, Concettina; Pomara, Cristoforo; Rapisarda, Venerando

    2016-12-01

    Fluoro-edenite (FE) is a natural mineral asbestos-like fibrous species first isolated in Biancavilla, Sicily. In order to clarify potential involvement of IL-18 in the pathogenesis of FE-induced chest abnormalities, we analyzed IL-18 serum levels in FE-exposed workers (FEEW) and correlated them with pleural and parenchymal abnormalities. A total of 21 FEEWs, residing in Biancavilla for >30 years, with a working seniority of 17 ± 6.1 years were examined. High-resolution computed tomography scans revealed low grade of fibrosis in 8 (38%) FEEWs, and pleural plaques (PPs) in 13 (62%) FEEWs. The mean IL-18 level was 203.13 ± 90.43 pg/ml. Pearson correlation showed a significant association (p < 0.0001) between IL-18 and PPs and parenchymal abnormality scores. Data suggest a potential role of IL-18 in the pathogenesis of these diseases.

  3. Tumor-derived IL-18 induces PD-1 expression on immunosuppressive NK cells in triple-negative breast cancer.

    PubMed

    Park, In Hae; Yang, Han Na; Lee, Kyoung Joo; Kim, Tae-Sik; Lee, Eun Sook; Jung, So-Youn; Kwon, Youngmee; Kong, Sun-Young

    2017-05-16

    While the inflammatory cytokine interleukin-18 (IL-18) is known to activate natural killer (NK) cells, its precise role in cancer is controversial. In this study, we investigated the role of tumor-derived IL-18 on peripheral blood NK cells in breast cancer patients. In breast cancer cell lines, IL-18 was expressed and secreted in the triple-negative breast cancer (TNBC) cell lines MDA-MB-231 and HCC-70 but not in MCF-7 cells. The immature and non-cytotoxic CD56dimCD16dim/- NK cell fraction was increased following co-culture with MDA-MB-231 cells, and this increase was not observed with tumor cells transfected with siRNA for IL-18 or in MCF-7 cells. In addition, tumor-derived IL-18 increased PD-1 expression on CD56dimCD16dim/- NK cells, although no effect on PD-L1 expression in tumor cells was observed. Among EBC patients, serum IL-18 levels were significantly increased in those with a TNBC subtype compared to levels from patients with other subtypes, and the IL-18 levels were strongly associated with poor survival. Similarly, serum IL-18 and CD56dimCD16dim/- NK cells were also increased in patients with metastatic TNBC who had progressive disease following cytotoxic chemotherapy. We performed in vitro experiments in breast cancer cell lines, measured cytokine levels by RT-qPCR, western blot, and ELISA, and analyzed NK cell subsets by flow cytometry. For clinical validation, we collected and analyzed blood sample from patients with early breast cancer (EBC, N = 545) and metastatic breast cancer (MBC, N = 42). Our data revealed that tumor-derived IL-18 is associated with bad prognosis in patients with TNBC. Tumor-derived IL-18 increased the immunosuppressive CD56dimCD16dim/- NK cell fraction and induced PD-1 expression on these NK cells.

  4. Effect of IL-18 binding protein on hepatic ischemia-reperfusion injury induced by infrarenal aortic occlusion

    PubMed Central

    Gonul, Yucel; Bal, Ahmet; Ozkececi, Ziya Taner; Celep, Ruchan Bahadir; Adali, Fahri; Hazman, Omer; Koçak, Ahmet; Tosun, Murat

    2015-01-01

    Purpose Severe local and systemic tissue damage called ischemia/reperfusion (IR) injury occurs during the period of reperfusion. Free oxygen radicals and proinflammatory cytokines are responsible for reperfusion injury. IL-18 binding protein (IL-18BP) is a natural inhibitor of IL-18. The balance between IL-18 and IL-18BP has an important role in the inflammatory setting. The present study aimed to investigate whether IL-18BP had a protective role in remote organ hepatic IR injury. Methods Wistar-Albino rats were divided into three groups that contained seven rats. Group I (sham): Laparotomy and infrarenal abdominal aorta (AA) dissection were done but no clamping was done. Group II (I/R): The infrarenal AA was clamped by atraumatic microvascular clamp for 30 minutes and then was exposed to 90 minutes of reperfusion. Group III (IR + IL-18BP): 75 µg/kg of IL-18BP in 0.9% saline (1 mL) was administered 30 minutes before infrarenal AA dissection and clamping; 30 minutes of ischemia was applied and then was exposed to 90 minutes of reperfusion. Results Serum AST, ALT, and LDH levels were remarkably higher in IR group and returned to normal levels in treatment group. The proinflammatory cytokine levels had decreased in treatment group, and was statistically significant compared with the IR group. Serum levels of total oxidant status and oxidative stress index decreased and levels of total antioxidant status increased by IL-18BP. Conclusion This study suggested that IL-18BP has antioxidant, anti-inflammatory and hepatoprotective effects in cases of IR with infrarenal AA induced liver oxidative damage. PMID:25692120

  5. Relationship between thrombospondin-1, endostatin, angiopoietin-2, and coronary collateral development in patients with chronic total occlusion

    PubMed Central

    Qin, Qing; Qian, Juying; Ma, Jianying; Ge, Lei; Ge, Junbo

    2016-01-01

    Abstract This study is aimed to investigate whether serum angiostatic factors (thrombospondin-1 [TSP-1] and endostatin) or angiogenic factors (angiopoietin-2 [Ang-2]) are related to coronary collateral vessel development in patients with chronic total occlusion (CTO). A total of 149 patients were enrolled in the study, and 39 patients with coronary artery disease but without significant stenosis were included in control group. In 110 patients with CTO lesion, 79 with Rentrop grades 2 to 3 collaterals were grouped as good collateral, while 31 with Rentrop grades 0 to 1 collaterals were grouped as poor collateral. Serum TSP-1, endostatin, and Ang-2 levels were studied. Serum endostatin level was significantly higher in poor collateral group compared with control group and good collateral group, respectively (96.2 ± 30.4 vs 77.8 ± 16.5 ng/mL, P = 0.007; 96.2 ± 30.4 vs 81.2 ± 30.4 ng/mL, P = 0.018). In multivariate analysis, decreased serum endostatin level was independently related to good coronary collateral development. Serum TSP-1 level was lower in patients with CTO compared with control group. However, no difference in TSP-1 level was detected between poor and good collateral group. The serum Ang-2 level did not show a significant difference among 3 groups. Circulatory endostatin may be a useful biomarker for coronary collateral development and potential target for therapeutic angiogenesis in patients with CTO. PMID:27537575

  6. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction

    PubMed Central

    Labrousse-Arias, David; Castillo-González, Raquel; Rogers, Natasha M.; Torres-Capelli, Mar; Barreira, Bianca; Aragonés, Julián; Cogolludo, Ángel; Isenberg, Jeffrey S.; Calzada, María J.

    2016-01-01

    Aims Hypoxic conditions stimulate pulmonary vasoconstriction and vascular remodelling, both pathognomonic changes in pulmonary arterial hypertension (PAH). The secreted protein thrombospondin-1 (TSP1) is involved in the maintenance of lung homeostasis. New work identified a role for TSP1 in promoting PAH. Nonetheless, it is largely unknown how hypoxia regulates TSP1 in the lung and whether this contributes to pathological events during PAH. Methods and results In cell and animal experiments, we found that hypoxia induces TSP1 in lungs, pulmonary artery smooth muscle cells and endothelial cells, and pulmonary fibroblasts. Using a murine model of constitutive hypoxia, gene silencing, and luciferase reporter experiments, we found that hypoxia-mediated induction of pulmonary TSP1 is a hypoxia-inducible factor (HIF)-2α-dependent process. Additionally, hypoxic tsp1−/− pulmonary fibroblasts and pulmonary artery smooth muscle cell displayed decreased migration compared with wild-type (WT) cells. Furthermore, hypoxia-mediated induction of TSP1 destabilized endothelial cell–cell interactions. This provides genetic evidence that TSP1 contributes to vascular remodelling during PAH. Expanding cell data to whole tissues, we found that, under hypoxia, pulmonary arteries (PAs) from WT mice had significantly decreased sensitivity to acetylcholine (Ach)-stimulated endothelial-dependent vasodilation. In contrast, hypoxic tsp1−/− PAs retained sensitivity to Ach, mediated in part by TSP1 regulation of pulmonary Kv channels. Translating these preclinical studies, we find in the lungs from individuals with end-stage PAH, both TSP1 and HIF-2α protein expression increased in the pulmonary vasculature compared with non-PAH controls. Conclusions These findings demonstrate that HIF-2α is clearly implicated in the TSP1 pulmonary regulation and provide new insights on its contribution to PAH-driven vascular remodelling and vasoconstriction. PMID:26503986

  7. Micro RNA-19a suppresses thrombospondin-1 in CD35(+) B cells in the intestine of mice with food allergy.

    PubMed

    Yang, Li-Tao; Li, Xiao-Xi; Qiu, Shu-Qi; Zeng, Lu; Li, Lin-Jing; Feng, Bai-Sui; Zheng, Peng-Yuan; Liu, Zhi-Gang; Yang, Ping-Chang

    2016-01-01

    Disruption of immune tolerance is associated in the pathogenesis of allergy. Thrombospondin-1 (TSP1) plays a role in the maintenance of immune tolerance, which is compromised in allergic disorders. Micro RNA (miR) is involved in the regulation of immune responses. This study tests a hypothesis that miR-17-92 cluster is involved in the regulation of TSP1 in the intestinal CD35(+) B cells. In this study, a food allergy mouse model was developed. The intestinal B cells were isolated to be analyzed for the expression of a miR-17-92 cluster and TSP1. The role of miR-19a in the suppression of TSP1 in B cells was tested in a cell culture model. We observed that the levels of TSP1 were significantly decreased; the levels of miR-19a were significantly increased in intestinal CD35(+) B cells of mice sensitized to ovalbumin (OVA) as compared with naïve controls. Exposure to interleukin (IL)-4 suppressed the expression of TSP1 in B cells, which was abolished by inhibition of miR-19a. miR-19a mediated the effects of IL-4 on repressing TSP1 expression in B cells. We conclude that IL-4 suppresses the expression of TSP1 in the intestinal CD35(+) B cells via up regulating miR-19a. The miR-19a may be a target to regulate the immune tolerant status in the body.

  8. Trauma-induced expression of astrocytic thrombospondin-1 is regulated by P2 receptors coupled to protein kinase cascades.

    PubMed

    Tran, Minh Dinh; Furones-Alonso, Ofelia; Sanchez-Molano, Juliana; Bramlett, Helen Marie

    2012-08-22

    Thrombospondin-1 (TSP-1) is an extracellular matrix protein produced by astrocytes, which can promote synaptogenesis. The regulation of astrocytic TSP-1 involves extracellular ATP through the activation of P2Y receptors coupled to various protein kinase signaling pathways. However, not much is known about the mechanisms regulating TSP-1 expression in primary cortical astrocytes after a traumatic brain injury. Using an in-vitro model of central nervous system trauma that stimulates the release of ATP, we found that trauma-induced expression and release of TSP-1 involved purinergic signaling as both expression and release were significantly attenuated by pyridoxalphosphate-6-azophenyl-2'-4'-disulfonic acid, a P2 receptor antagonist. Further antagonist studies with reactive blue 2 point to a role for P2Y4, as reactive blue 2 is a potent antagonist for rat P2Y4 receptors. In addition, the injury-induced expression of TSP-1 was significantly attenuated by the inhibition of extracellular signal-regulated kinase and p38/mitogen-activated protein kinase, whereas injury-induced release of TSP-1 was significantly blocked by the inhibition of extracellular signal-regulated kinase and Akt. Using an in-vivo model of a moderate parasagittal fluid-percussion brain injury, we found that TSP-1 levels were increased when compared with those in sham animals in the cortex, thalamus, and hippocampus. We conclude that TSP-1 expression after injury can be regulated by the activation of P2 receptors coupled with protein kinase signaling pathways and suggest that purinergic signaling, by regulating TSP expression, may play an important role in cell-matrix and cell-cell interactions such as those occurring during central nervous system repair.

  9. Micro RNA-19a suppresses thrombospondin-1 in CD35+ B cells in the intestine of mice with food allergy

    PubMed Central

    Yang, Li-Tao; Li, Xiao-Xi; Qiu, Shu-Qi; Zeng, Lu; Li, Lin-Jing; Feng, Bai-Sui; Zheng, Peng-Yuan; Liu, Zhi-Gang; Yang, Ping-Chang

    2016-01-01

    Disruption of immune tolerance is associated in the pathogenesis of allergy. Thrombospondin-1 (TSP1) plays a role in the maintenance of immune tolerance, which is compromised in allergic disorders. Micro RNA (miR) is involved in the regulation of immune responses. This study tests a hypothesis that miR-17-92 cluster is involved in the regulation of TSP1 in the intestinal CD35+ B cells. In this study, a food allergy mouse model was developed. The intestinal B cells were isolated to be analyzed for the expression of a miR-17-92 cluster and TSP1. The role of miR-19a in the suppression of TSP1 in B cells was tested in a cell culture model. We observed that the levels of TSP1 were significantly decreased; the levels of miR-19a were significantly increased in intestinal CD35+ B cells of mice sensitized to ovalbumin (OVA) as compared with naïve controls. Exposure to interleukin (IL)-4 suppressed the expression of TSP1 in B cells, which was abolished by inhibition of miR-19a. miR-19a mediated the effects of IL-4 on repressing TSP1 expression in B cells. We conclude that IL-4 suppresses the expression of TSP1 in the intestinal CD35+ B cells via up regulating miR-19a. The miR-19a may be a target to regulate the immune tolerant status in the body. PMID:28078021

  10. Divergent Regulation of Angiopoietin-1 and -2, Tie-2, and Thrombospondin-1 Expression by Estrogen in the Baboon Endometrium

    PubMed Central

    Bonagura, Thomas W.; Aberdeen, Graham W.; Babischkin, Jeffery S.; Koos, Robert D.; Pepe, Gerald J.; Albrecht, Eugene D.

    2010-01-01

    SUMMARY Estrogen has an important role in the reconstruction of a new vascular network in the endometrium during each menstrual cycle; however, the underlying mechanisms are incompletely understood. Angiopoietin-1 (Ang-1) promotes vessel assembly, whereas Ang-2 and thrombospondin-1 (TSP-1) cause vessel breakdown. To determine the potential effect of estrogen on the expression of these angioregulatory factors in the endometrium, Ang-1, Ang-2, TSP-1, and Tie-2 receptor mRNA levels were assessed by real-time reverse transcriptase polymerase chain reaction in glandular epithelial and stromal cells isolated from the endometrium of ovariectomized baboons treated acutely with estradiol. Corresponding protein expression was assessed by immunocytochemistry and the proximity ligation assay (PLA) during advancing stages of the baboon menstrual cycle. Serum estradiol levels in ovariectomized baboons were 400 pg/ml within 4–6 hr of estradiol treatment. Ang-1 mRNA levels in glandular epithelial cells increased threefold (P < 0.01) within 4 hr of estradiol administration. In contrast, TSP-1 mRNA levels decreased four- to fivefold (P < 0.01) in endometrial glandular epithelial and stromal cells 4–6 hr after estradiol, whereas Ang-2 and Tie-2 expression was unaltered. Immunostaining for Ang-1 increased, TSP-1 decreased, and Ang-2 and Tie-2 were unaltered in the endometrium during the secretory compared with the proliferative phase of the cycle. Endometrial Ang-1 protein expression, quantified by PLA, increased 10-fold (P < 0.05) between the early proliferative and late proliferative/mid-secretory phases of the menstrual cycle in association with the rise in estrogen. In summary, estrogen induced a rapid, divergent, and cell-specific change in expression of angiostimulatory and angioinhibitory growth factors in the endometrium of the nonhuman primate. PMID:20140967

  11. Glucose and insulin modify thrombospondin 1 expression and secretion in primary adipocytes from diet-induced obese rats.

    PubMed

    Garcia-Diaz, Diego F; Arellano, Arianna V; Milagro, Fermin I; Moreno-Aliaga, Maria Jesus; Portillo, Maria Puy; Martinez, J Alfredo; Campion, Javier

    2011-09-01

    Thrombospondin 1 (TSP-1), an antiangiogenic factor and transforming growth factor (TGF)-β activity regulator, has been recently recognized as an adipokine that correlates with obesity, inflammation and insulin resistance processes. In the present study, epididymal adipocytes of rats that were fed a chow or a high-fat diet (HFD) for 50 days were isolated and incubated (24-72 h) in low (5.6 mM) or high (HG; 25 mM) glucose, in the presence or absence of 1.6 nM insulin. Rats fed the HF diet showed an established obesity state. Serum TSP-1 levels and TSP-1 mRNA basal expression of adipocytes from HFD rats were higher than those from controls. Adipocytes from HFD animals presented an insulin resistance state, as suggested by the lower insulin-stimulated glucose uptake as compared to controls. TSP-1 expression in culture was higher in adipocytes from obese animals at 24 h, but when the adipocytes were treated with HG, these expression levels dropped dramatically. Later at 72 h, TSP-1 expression was lower in adipocytes from HFD rats, and no effects of the other treatments were observed. Surprisingly, the secretion levels of this protein at 72 h were increased significantly by the HG treatment in both types of adipocytes, although they were even higher in adipocytes from obese animals. Finally, cell viability was significantly reduced by HG treatment in both types of adipocytes. In summary, TSP-1 expression/secretion was modulated in an in vitro model of insulin-resistant adipocytes. The difference between expression and secretion patterns suggests a posttranscriptional regulation. The present study confirms that TPS-1 is closely associated with obesity-related mechanisms.

  12. Activation of Latent TGF-β1 by Thrombospondin-1 is a Major Component of Wound Repair

    PubMed Central

    Nör, Jacques E.; DiPietro, Luisa; Murphy-Ullrich, Joanne E.; Hynes, Richard O.; Lawler, Jack; Polverini, Peter J.

    2011-01-01

    Purpose Thrombospondin 1 (TSP1) is a matrix glycoprotein that regulates cell adhesion, migration, and proliferation, and is a natural inhibitor of angiogenesis. Recent evidence suggests that TSP1 is a major physiologic activator of latent transforming growth factor-β1 (TGF-β1), and that TGF-β1 is important for wound healing. The purpose of this study was to examine whether excisional wound healing in TSP1-deficient mice is compromised as a result of deficient TGF-β1 activation. Materials and Methods Punch wounds were made on the dorsum of TSP1 deficient and wild-type mice and the area of granulation tissue, number of microvessels, and inflammatory cell infiltration was evaluated over a period of 28 days. Results TSP1 deficient mice showed impaired wound healing with persistent granulation tissue, decreased collagen content over time, and delayed arrival of macrophages compared to wild-type littermates. The number of microvessels in wounds of TSP1-deficient mice was approximately two-fold greater than in wild-type littermates 10 days after injury. Topical application of TSP1, or KRFK (a peptide derived from TSP1 that activates latent TGF-β1), to wounds of TSP1-deficient mice rescued wild-type patterns of wound repair and partially recovered local levels of TGF-β1 expression. Topical application of anti-TGF-β neutralizing antibody impaired the ability of KRFK to rescue normal patterns of wound neovascularization in TSP1-deficient mice. Conclusions These results demonstrate that TSP1 plays a key role in the orchestration of wound healing, and that TSP1-mediated activation of local TGF-β1 is an important step in this process. PMID:21822445

  13. Variable efficacy of thrombospondin 1 against liver and lung metastases due to differential activity of ADAMTS1

    PubMed Central

    Lee, Yoon-Jin; Koch, Moritz; Karl, Daniel; Torres-Collado, Antoni X.; Fernando, Namali T.; Rothrock, Courtney; Kuruppu, Darshini; Ryeom, Sandra; Iruela-Arispe, M. Luisa; Yoon, Sam S.

    2009-01-01

    Metastases to any organ site require angiogenesis for tumor expansion. Tumor angiogenesis is restrained by a variety of endogenous inhibitors including thrombospondin 1 (TSP1). The principal anti-angiogenic activity of TSP1 resides in a domain containing 3 TSP1 repeats (3TSR), and TSP1 cleavage is regulated, in part, by the metalloproteinase ADAMTS1. Here we examine the role of TSP1 and ADAMTS1 in controlling metastatic disease in the liver and lung. The growth of CT26 colon carcinoma cells and RenCa renal carcinoma cells over-expressing TSP1 was inhibited in the liver but not in the lung. B16F10 melanoma liver metastases demonstrated accelerated growth in Tsp1-null mice compared to controls, while B16F10 lung metastases grew similarly in Tsp1-null mice and controls. We compared cleavage of recombinant TSP1 by liver and lung lysates, and found that liver lysate cleaved TSP1 much more efficiently that lung lysate. This cleavage activity could be blocked with neutralizing antibody or RNA interference directed at ADAMTS1, and cleavage activity was significantly abrogated when liver lysates from Adamts1-null mice were used. Finally to confirm that lack of TSP1 cleavage resulted in ineffective anti-angiogenic function in the lung, we generated CT26 expressing colon cancer cells stably secreting only the 3TSR domain. 3TSR secretion from CT26 cells inhibited both CT26 liver and lung metastases. Collectively, these data indicate that the anti-angiogenic activity of TSP1 is differentially regulated by ADAMTS1 in the liver and lung, and emphasize the notion of variations in the regulation of angiogenesis in different host organ environments. PMID:20103648

  14. Delayed activation of spinal microglia contributes to the maintenance of bone cancer pain in female Wistar rats via P2X7 receptor and IL-18.

    PubMed

    Yang, Yan; Li, Hui; Li, Ting-Ting; Luo, Hao; Gu, Xi-Yao; Lü, Ning; Ji, Ru-Rong; Zhang, Yu-Qiu

    2015-05-20

    Accumulating evidence suggests that activation of spinal microglia contributes to the development of inflammatory and neuropathic pain. However, the role of spinal microglia in the maintenance of chronic pain remains controversial. Bone cancer pain shares features of inflammatory and neuropathic pain, but the temporal activation of microglia and astrocytes in this model is not well defined. Here, we report an unconventional role of spinal microglia in the maintenance of advanced-phase bone cancer pain in a female rat model. Bone cancer elicited delayed and persistent microglial activation in the spinal dorsal horn on days 14 and 21, but not on day 7. In contrast, bone cancer induced rapid and persistent astrocytic activation on days 7-21. Spinal inhibition of microglia by minocycline at 14 d effectively reduced bone cancer-induced allodynia and hyperalgesia. However, pretreatment of minocycline in the first week did not affect the development of cancer pain. Bone cancer increased ATP levels in CSF, and upregulated P2X7 receptor, phosphorylated p38, and IL-18 in spinal microglia. Spinal inhibition of P2X7/p-38/IL-18 pathway reduced advanced-phase bone cancer pain and suppressed hyperactivity of spinal wide dynamic range (WDR) neurons. IL-18 induced allodynia and hyperalgesia after intrathecal injection, elicited mechanical hyperactivity of WDR neurons in vivo, and increased the frequency of mEPSCs in spinal lamina IIo nociceptive synapses in spinal cord slices. Together, our findings demonstrate a novel role of microglia in maintaining advanced phase cancer pain in females via producing the proinflammatory cytokine IL-18 to enhance synaptic transmission of spinal cord nociceptive neurons.

  15. Protection from Inflammatory Organ Damage in a Murine Model of Hemophagocytic Lymphohistiocytosis Using Treatment with IL-18 Binding Protein

    PubMed Central

    Chiossone, Laura; Audonnet, Sandra; Chetaille, Bruno; Chasson, Lionel; Farnarier, Catherine; Berda-Haddad, Yael; Jordan, Stefan; Koszinowski, Ulrich H.; Dalod, Marc; Mazodier, Karin; Novick, Daniela; Dinarello, Charles A.; Vivier, Eric; Kaplanski, Gilles

    2012-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening condition due to the association of an infectious agent with lymphocyte cytotoxicity defects, either of congenital genetic origin in children or presumably acquired in adults. In HLH patients, an excess of lymphocyte or macrophage cytokines, such as IFN-γ and TNFα is present in serum. In animal models of the disease, IFN-γ and TNF-α have been shown to play a central pathogenic role. In humans, unusually high concentrations of IL-18, an inducer of IFN-γ, and TNF-α have been reported, and are associated with an imbalance between IL-18 and its natural inhibitor IL-18 binding protein (IL-18BP) resulting in an excess of free IL-18. Here we studied whether IL-18BP could reduce disease severity in an animal model of HLH. Mouse cytomegalovirus infection in perforin-1 knock-out mice induced a lethal condition similar to human HLH characterized by cytopenia with marked inflammatory lesions in the liver and spleen as well as the presence of hemophagocytosis in bone marrow. IL-18BP treatment decreased hemophagocytosis and reversed liver as well as spleen damage. IL-18BP treatment also reduced both IFN-γ and TNF-α production by CD8+ T and NK cells, as well as Fas ligand expression on NK cell surface. These data suggest that IL-18BP is beneficial in an animal model of HLH and in combination with anti-infectious therapy may be a promising strategy to treat HLH patients. PMID:22891066

  16. IL-1β/IL-6/CRP and IL-18/ferritin: Distinct Inflammatory Programs in Infections

    PubMed Central

    ten Oever, Jaap; van de Veerdonk, Frank L.; Netea, Mihai G.

    2016-01-01

    The host inflammatory response against infections is characterized by the release of pro-inflammatory cytokines and acute-phase proteins, driving both innate and adaptive arms of the immune response. Distinct patterns of circulating cytokines and acute-phase responses have proven indispensable for guiding the diagnosis and management of infectious diseases. This review discusses the profiles of acute-phase proteins and circulating cytokines encountered in viral and bacterial infections. We also propose a model in which the inflammatory response to viral (IL-18/ferritin) and bacterial (IL-6/CRP) infections presents with specific plasma patterns of immune biomarkers. PMID:27977798

  17. Androgenic dependence of exophytic tumor growth in a transgenic mouse model of bladder cancer: a role for thrombospondin-1

    PubMed Central

    Johnson, Aimee M; O'Connell, Mary J; Miyamoto, Hiroshi; Huang, Jiaoti; Yao, Jorge L; Messing, Edward M; Reeder, Jay E

    2008-01-01

    Background Steroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC) in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone. Castration reduces incidence of chemically-induced BC in rodents. It is unclear if this effect is due to hormonal influences on activation/deactivation of carcinogens or a direct effect on urothelial cell proliferation or other malignant processes. We examined the effect of castration on BC growth in UPII-SV40T transgenic mice, which express SV40 T antigen specifically in urothelium and reliably develop BC. Furthermore, because BC growth in UPII-SV40T mice is exophytic, we speculated BC growth was dependent on angiogenesis and angiogenesis was, in turn, androgen responsive. Methods Flat panel detector-based cone beam computed tomography (FPDCT) was used to longitudinally measure exophytic BC growth in UPII-SV40T male mice sham-operated, castrated, or castrated and supplemented with dihydrotestosterone (DHT). Human normal bladder and BC biopsies and mouse bladder were examined quantitatively for thrombospondin-1 (TSP1) protein expression. Results Mice castrated at 24 weeks of age had decreased BC volumes at 32 weeks compared to intact mice (p = 0.0071) and castrated mice administered DHT (p = 0.0233; one-way ANOVA, JMP 6.0.3, SAS Institute, Inc.). Bladder cancer cell lines responded to DHT treatment with increased proliferation, regardless of androgen receptor expression levels. TSP1, an anti-angiogenic factor whose expression is inhibited by androgens, had decreased expression in bladders of UPII-SV40T mice compared to wild-type. Castration increased TSP1 levels in UPII-SV40T mice compared to intact mice. TSP1 protein expression was higher in 8 of 10 human bladder biopsies of normal versus malignant tissue from the same patients. Conclusion FPDCT allows longitudinal

  18. Thrombospondin-1 expression in urothelial carcinoma: prognostic significance and association with p53 alterations, tumour angiogenesis and extracellular matrix components

    PubMed Central

    Ioachim, E; Michael, MC; Salmas, M; Damala, K; Tsanou, E; Michael, MM; Malamou-Mitsi, V; Stavropoulos, NE

    2006-01-01

    Background Thrombospondin-1 (TSP-1) is an extracellular matrix component glycoprotein, which is known to be a potent inhibitor of angiogenesis and may be important in cancer invasiveness. We examined the TSP-1 expression in correlation with conventional clinicopathological parameters to clarify its prognostic significance in bladder cancer. In addition, the possible correlation of TSP-1 expression with microvessel count, VEGF expression, p53 expression as well as with the expression of the extracellular matrix components was studied to explore its implication in vascularization and tumour stroma remodeling. Methods The immunohistochemical expression of TSP-1 in tumour cells and in the tumour stroma was studied in 148 formalin-fixed paraffin-embedded urothelial cell carcinoma tissue samples. Results TSP-1 was detected in perivascular tissue, at the epithelial-stromal junction, in the stroma and in tumour cells in the majority of the cases. In tumour cells, low TSP-1 expression was observed in 43% of the cases, moderate and high in 7%, while 50% showed absence of TSP expression. A higher TSP-1 immunoreactivity in well and moderately differentiated tumours compared to poorly differentiated was noted. PT1 tumours showed decreased TSP-1 expression in comparison to pTa and pT2–4 tumours. Increased tumour cell TSP-1 expression was related to increased microvessel density. In the tumour stroma, 37% of the cases showed small amount of TSP-1 expression, 7.5% moderate and high, while 55% of the cases showed absence of TSP-1 stromal immunoreactivity. Stromal TSP-1 expression was inversely correlated with tumour stage and tumour size. This expression was also positively correlated with microvessel density, VEGF expression and extracellular matrix components tenascin and fibronectin. Using univariate and multivariate analysis we didn't find any significant correlation of TSP-1 expression in superficial tumours in both tumour cells and tumour stroma in terns of the risk of

  19. Antibody and T cell responses induced in chickens immunized with avian influenza virus N1 and NP DNA vaccine with chicken IL-15 and IL-18.

    PubMed

    Lim, Kian-Lam; Jazayeri, Seyed Davoud; Yeap, Swee Keong; Mohamed Alitheen, Noorjahan Banu; Bejo, Mohd Hair; Ideris, Aini; Omar, Abdul Rahman

    2013-12-01

    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P<0.05). The flow cytometry results from both trials demonstrated that the pDis/N1+pDis/IL-18 groups were able to induce CD4+ T cells higher than the pDis/N1 group (P<0.05). Meanwhile, pDis/N1+pDis/IL-18 group was able to induce CD8+ T cells higher than the pDis/N1 group (P<0.05) in Trial 2 only. In the present study, pDis/NP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens.

  20. Sarcoidosis in celiac disease: A page written by genetic variants in IL-18 miRNAs target site?

    PubMed

    Mormile, Raffaella

    2016-05-01

    Sarcoidosis is a chronic idiopathic granulomatous disease. Interleukin-18 (IL-18) has been strongly implicated in the pathogenesis of sarcoidosis. Sarcoidosis shows characteristic microRNAs (miRNAs) profiles. MiRNAs have recently emerged as a new class of modulators of gene expression. MiRNAs are involved in susceptibility to a number of autoimmune diseases promoting and inhibiting the gene expression of different Th1 pro-inflammatory cytokines including IL18. Sarcoidosis has been connected with a variety of autoimmune disorders including celiac disease (CD). CD is a chronic, immune-mediated condition of the small intestine caused by permanent intolerance to dietary gluten. IL-18 has been reported to play an important role in inducing and maintaining inflammation after gluten exposure. MiRNAs expression is significantly altered in CD patients. We hypothesize that sarcoidosis and CD may be the result of common genetic variants in IL-18 miRNA target site.

  1. Synergy between Common γ Chain Family Cytokines and IL-18 Potentiates Innate and Adaptive Pathways of NK Cell Activation

    PubMed Central

    Nielsen, Carolyn M.; Wolf, Asia-Sophia; Goodier, Martin R.; Riley, Eleanor M.

    2016-01-01

    Studies to develop cell-based therapies for cancer and other diseases have consistently shown that purified human natural killer (NK) cells secrete cytokines and kill target cells after in vitro culture with high concentrations of cytokines. However, these assays poorly reflect the conditions that are likely to prevail in vivo in the early stages of an infection and have been carried out in a wide variety of experimental systems, which has led to contradictions within the literature. We have conducted a detailed kinetic and dose–response analysis of human NK cell responses to low concentrations of IL-12, IL-15, IL-18, IL-21, and IFN-α, alone and in combination, and their potential to synergize with IL-2. We find that very low concentrations of both innate and adaptive common γ chain cytokines synergize with equally low concentrations of IL-18 to drive rapid and potent NK cell CD25 and IFN-γ expression; IL-18 and IL-2 reciprocally sustain CD25 and IL-18Rα expression in a positive feedback loop; and IL-18 synergizes with FcγRIII (CD16) signaling to augment antibody-dependent cellular cytotoxicity. These data indicate that NK cells can be rapidly activated by very low doses of innate cytokines and that the common γ chain cytokines have overlapping but distinct functions in combination with IL-18. Importantly, synergy between multiple signaling pathways leading to rapid NK cell activation at very low cytokine concentrations has been overlooked in prior studies focusing on single cytokines or simple combinations. Moreover, although the precise common γ chain cytokines available during primary and secondary infections may differ, their synergy with both IL-18 and antigen–antibody immune complexes underscores their contribution to NK cell activation during innate and adaptive responses. IL-18 signaling potentiates NK cell effector function during innate and adaptive immune responses by synergy with IL-2, IL-15, and IL-21 and immune complexes. PMID:27047490

  2. Synergy between Common γ Chain Family Cytokines and IL-18 Potentiates Innate and Adaptive Pathways of NK Cell Activation.

    PubMed

    Nielsen, Carolyn M; Wolf, Asia-Sophia; Goodier, Martin R; Riley, Eleanor M

    2016-01-01

    Studies to develop cell-based therapies for cancer and other diseases have consistently shown that purified human natural killer (NK) cells secrete cytokines and kill target cells after in vitro culture with high concentrations of cytokines. However, these assays poorly reflect the conditions that are likely to prevail in vivo in the early stages of an infection and have been carried out in a wide variety of experimental systems, which has led to contradictions within the literature. We have conducted a detailed kinetic and dose-response analysis of human NK cell responses to low concentrations of IL-12, IL-15, IL-18, IL-21, and IFN-α, alone and in combination, and their potential to synergize with IL-2. We find that very low concentrations of both innate and adaptive common γ chain cytokines synergize with equally low concentrations of IL-18 to drive rapid and potent NK cell CD25 and IFN-γ expression; IL-18 and IL-2 reciprocally sustain CD25 and IL-18Rα expression in a positive feedback loop; and IL-18 synergizes with FcγRIII (CD16) signaling to augment antibody-dependent cellular cytotoxicity. These data indicate that NK cells can be rapidly activated by very low doses of innate cytokines and that the common γ chain cytokines have overlapping but distinct functions in combination with IL-18. Importantly, synergy between multiple signaling pathways leading to rapid NK cell activation at very low cytokine concentrations has been overlooked in prior studies focusing on single cytokines or simple combinations. Moreover, although the precise common γ chain cytokines available during primary and secondary infections may differ, their synergy with both IL-18 and antigen-antibody immune complexes underscores their contribution to NK cell activation during innate and adaptive responses. IL-18 signaling potentiates NK cell effector function during innate and adaptive immune responses by synergy with IL-2, IL-15, and IL-21 and immune complexes.

  3. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β

    PubMed Central

    Kim, Man Lyang; Chae, Jae Jin; Park, Yong Hwan; De Nardo, Dominic; Stirzaker, Roslynn A.; Ko, Hyun-Ja; Tye, Hazel; Cengia, Louise; DiRago, Ladina; Metcalf, Donald; Roberts, Andrew W.; Kastner, Daniel L.; Lew, Andrew M.; Lyras, Dena; Kile, Benjamin T.; Croker, Ben A.

    2015-01-01

    Gain-of-function mutations that activate the innate immune system can cause systemic autoinflammatory diseases associated with increased IL-1β production. This cytokine is activated identically to IL-18 by an intracellular protein complex known as the inflammasome; however, IL-18 has not yet been specifically implicated in the pathogenesis of hereditary autoinflammatory disorders. We have now identified an autoinflammatory disease in mice driven by IL-18, but not IL-1β, resulting from an inactivating mutation of the actin-depolymerizing cofactor Wdr1. This perturbation of actin polymerization leads to systemic autoinflammation that is reduced when IL-18 is deleted but not when IL-1 signaling is removed. Remarkably, inflammasome activation in mature macrophages is unaltered, but IL-18 production from monocytes is greatly exaggerated, and depletion of monocytes in vivo prevents the disease. Small-molecule inhibition of actin polymerization can remove potential danger signals from the system and prevents monocyte IL-18 production. Finally, we show that the inflammasome sensor of actin dynamics in this system requires caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain, and the innate immune receptor pyrin. Previously, perturbation of actin polymerization by pathogens was shown to activate the pyrin inflammasome, so our data now extend this guard hypothesis to host-regulated actin-dependent processes and autoinflammatory disease. PMID:26008898

  4. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β.

    PubMed

    Kim, Man Lyang; Chae, Jae Jin; Park, Yong Hwan; De Nardo, Dominic; Stirzaker, Roslynn A; Ko, Hyun-Ja; Tye, Hazel; Cengia, Louise; DiRago, Ladina; Metcalf, Donald; Roberts, Andrew W; Kastner, Daniel L; Lew, Andrew M; Lyras, Dena; Kile, Benjamin T; Croker, Ben A; Masters, Seth L

    2015-06-01

    Gain-of-function mutations that activate the innate immune system can cause systemic autoinflammatory diseases associated with increased IL-1β production. This cytokine is activated identically to IL-18 by an intracellular protein complex known as the inflammasome; however, IL-18 has not yet been specifically implicated in the pathogenesis of hereditary autoinflammatory disorders. We have now identified an autoinflammatory disease in mice driven by IL-18, but not IL-1β, resulting from an inactivating mutation of the actin-depolymerizing cofactor Wdr1. This perturbation of actin polymerization leads to systemic autoinflammation that is reduced when IL-18 is deleted but not when IL-1 signaling is removed. Remarkably, inflammasome activation in mature macrophages is unaltered, but IL-18 production from monocytes is greatly exaggerated, and depletion of monocytes in vivo prevents the disease. Small-molecule inhibition of actin polymerization can remove potential danger signals from the system and prevents monocyte IL-18 production. Finally, we show that the inflammasome sensor of actin dynamics in this system requires caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain, and the innate immune receptor pyrin. Previously, perturbation of actin polymerization by pathogens was shown to activate the pyrin inflammasome, so our data now extend this guard hypothesis to host-regulated actin-dependent processes and autoinflammatory disease.

  5. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18.

    PubMed

    Im, S H; Barchan, D; Maiti, P K; Raveh, L; Souroujon, M C; Fuchs, S

    2001-10-01

    Interleukin-18 (IL-18) is a pleiotropic proinflammatory cytokine that plays an important role in interferon gamma (IFN-gamma) production and IL-12-driven Th1 phenotype polarization. Increased expression of IL-18 has been observed in several autoimmune diseases. In this study we have analyzed the role of IL-18 in an antibody-mediated autoimmune disease and elucidated the mechanisms involved in disease suppression mediated by blockade of IL-18, using experimental autoimmune myasthenia gravis (EAMG) as a model. EAMG is a T cell-regulated, antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1- and Th2-type responses are both implicated in EAMG development. We show that treatment by anti-IL-18 during ongoing EAMG suppresses disease progression. The protective effect can be adoptively transferred to naive recipients and is mediated by increased levels of the immunosuppressive Th3-type cytokine TGF-beta and decreased AChR-specific Th1-type cellular responses. Suppression of EAMG is accompanied by down-regulation of the costimulatory factor CD40L and up-regulation of CTLA-4, a key negative immunomodulator. Our results suggest that IL-18 blockade may potentially be applied for immunointervention in myasthenia gravis.

  6. Allergic airway inflammation: unravelling the relationship between IL-37, IL-18Rα and Tir8/SIGIRR.

    PubMed

    Lunding, Lars; Schröder, Alexandra; Wegmann, Michael

    2015-01-01

    The hallmarks of allergic bronchial asthma arise from chronic airway inflammation. Thus, elucidating the mechanisms regulating the maintenance of this chronic inflammatory response is key to understanding asthma pathogenesis. To date, it is not clear whether a predominance of proinflammatory factors or a reduced capacity of counterbalancing anti-inflammatory mediators is the pivotal factor predisposing individuals towards asthma development. The IL-1 cytokine family and its receptor systems comprise a variety of proinflammatory cytokines like IL-1β and IL-18 and anti-inflammatory molecules such as the Toll/interleukin-1 receptor 8/single Ig IL-1 receptor (IL-R)-related molecule (Tir8/SIGIRR) and the recently established cytokine IL-37. This article reviews the functions of these IL-1 cytokine family members in the regulation of allergic airway inflammation and asthma as they have been assessed clinically, in vitro and in mouse models.

  7. Circulating interleukin-18 (IL-18) is a predictor of response to gemcitabine based chemotherapy in patients with pancreatic adenocarcinoma.

    PubMed

    Usul Afsar, Çiğdem; Karabulut, Mehmet; Karabulut, Senem; Alis, Halil; Gonenc, Murat; Dagoglu, Nergiz; Serilmez, Murat; Tas, Faruk

    2017-04-01

    This study was conducted to investigate the serum levels of interleukin-18 (IL-18) in patients with pancreatic adenocarcinoma (PA) and the relationship with tumor progression and known prognostic parameters. Thirty-three patients with PA were studied. Serum samples were obtained on first admission before any treatment. Serum IL-18 levels were analyzed using enzyme-linked immunosorbent assay (ELISA). Age- and sex-matched 30 healthy controls were included in the analysis. The median age at diagnosis was 59 years, range 32-84 years; 20 (61%) patients were men and the remaining were women. The median follow-up time was 26.0 weeks (range: 1.0-184.0 weeks). The median overall survival of the whole group was 41.3 ± 8.3 weeks [95% confidence interval (CI) = 25-58 weeks]. The baseline serum IL-18 levels were significantly higher in patients with PA than in the control group (p < 0.001). Serum IL-18 levels were significantly higher in the patients with high erythrocyte sedimentation rate (ESR) and lactate dehydrogenase (LDH) (p = 0.01 and p = 0.05). Moreover, the chemotherapy-(CTx) unresponsive patients had higher serum IL-18 levels compared to CTx-responsive (p = 0.04) subjects. Conversely, serum IL-18 concentration was found to have no prognostic role on survival (p = 0.45). Serum levels of IL-18 can be a good diagnostic and predictive marker; especially for predicting the response to gemcitabine based CTx in patients with PA but it has no prognostic role. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. CD14 and IL18 gene polymorphisms associated with colorectal cancer subsite risks among atomic bomb survivors.

    PubMed

    Hu, Yiqun; Yoshida, Kengo; Cologne, John B; Maki, Mayumi; Morishita, Yukari; Sasaki, Keiko; Hayashi, Ikue; Ohishi, Waka; Hida, Ayumi; Kyoizumi, Seishi; Kusunoki, Yoichiro; Tokunaga, Katsushi; Nakachi, Kei; Hayashi, Tomonori

    2015-01-01

    Colorectal cancer (CRC) is a common malignancy worldwide, and chronic inflammation is a risk factor for CRC. In this study, we carried out a cohort study among the Japanese atomic bomb (A-bomb) survivor population to investigate any association between immune- and inflammation-related gene polymorphisms and CRC. We examined the effects of six single-nucleotide polymorphisms of CD14 and IL18 on relative risks (RRs) of CRC. Results showed that RRs of CRC, overall and by anatomic subsite, significantly increased with increasing radiation dose. The CD14-911A/A genotype showed statistically significant higher risks for all CRC and distal CRC compared with the other two genotypes. In addition, the IL18-137 G/G genotype showed statistically significant higher risks for proximal colon cancer compared with the other two genotypes. In phenotype-genotype analyses, the CD14-911A/A genotype presented significantly higher levels of membrane and soluble CD14 compared with the other two genotypes, and the IL18-137 G/G genotype tended to be lower levels of plasma interleukin (IL)-18 compared with the other two genotypes. These results suggest the potential involvement of a CD14-mediated inflammatory response in the development of distal CRC and an IL18-mediated inflammatory response in the development of proximal colon cancer among A-bomb survivors.

  9. CD14 and IL18 gene polymorphisms associated with colorectal cancer subsite risks among atomic bomb survivors

    PubMed Central

    Hu, Yiqun; Yoshida, Kengo; Cologne, John B; Maki, Mayumi; Morishita, Yukari; Sasaki, Keiko; Hayashi, Ikue; Ohishi, Waka; Hida, Ayumi; Kyoizumi, Seishi; Kusunoki, Yoichiro; Tokunaga, Katsushi; Nakachi, Kei; Hayashi, Tomonori

    2015-01-01

    Colorectal cancer (CRC) is a common malignancy worldwide, and chronic inflammation is a risk factor for CRC. In this study, we carried out a cohort study among the Japanese atomic bomb (A-bomb) survivor population to investigate any association between immune- and inflammation-related gene polymorphisms and CRC. We examined the effects of six single-nucleotide polymorphisms of CD14 and IL18 on relative risks (RRs) of CRC. Results showed that RRs of CRC, overall and by anatomic subsite, significantly increased with increasing radiation dose. The CD14–911A/A genotype showed statistically significant higher risks for all CRC and distal CRC compared with the other two genotypes. In addition, the IL18–137 G/G genotype showed statistically significant higher risks for proximal colon cancer compared with the other two genotypes. In phenotype–genotype analyses, the CD14–911A/A genotype presented significantly higher levels of membrane and soluble CD14 compared with the other two genotypes, and the IL18–137 G/G genotype tended to be lower levels of plasma interleukin (IL)-18 compared with the other two genotypes. These results suggest the potential involvement of a CD14-mediated inflammatory response in the development of distal CRC and an IL18-mediated inflammatory response in the development of proximal colon cancer among A-bomb survivors. PMID:27081544

  10. Heterogeneity of subordination of the IL-18/IFN-γ axis to caspase-1 among patients with Crohn's disease.

    PubMed

    Jarry, Anne; Bossard, Céline; Droy-Dupré, Laure; Volteau, Christelle; Bourreille, Arnaud; Meurette, Guillaume; Mosnier, Jean-François; Laboisse, Christian L

    2015-10-01

    In Crohn's disease (CD), hierarchical architecture of the inflammatory network, including subordination of IL-18, an IFN-γ-inducing cytokine, to the inflammasome, have remained undeciphered. Heterogeneity among patients of such a subordination cannot be evaluated by animal models, monofactorial in their etiology and homogenous in disease progression. To address these issues, we set up an ex vivo model of inflamed mucosa explant cultures from patients with active long-standing CD. Th1 cytokine production, especially IFN-γ and IL-18, was assessed in relation with inflammation intensity. Subordination of the Th1 response to caspase-1, effector of the inflammasome, was determined in explant cultures subjected to pharmacological inhibition of caspase-1 by YVAD. We showed a correlation between secreted IFN-γ/IL-18 levels, and caspase-1 activation, with inflammation intensity of intestinal CD mucosa explants. Inhibition of caspase-1 activation using the specific inhibitor YVAD identified a homogenous non responder group featuring a caspase-1-independent IL-18/IFN-γ response, and a heterogenous responder group, in which both IL-18 and IFN-γ responses were caspase-1-dependent, with a 40-70% range of inhibition by YVAD. These findings bring out the concept of heterogeneity of subordination of the Th1 response to inflammasome activation among CD patients. This ex vivo model should have therapeutic relevance in allowing to determine eligibility of CD patients for new targeted therapies.

  11. Increased levels of serum IL-18 are associated with the long-term outcome of severe traumatic brain injury.

    PubMed

    Ciaramella, Antonio; Della Vedova, Cecilia; Salani, Francesca; Viganotti, Mara; D'Ippolito, Mariagrazia; Caltagirone, Carlo; Formisano, Rita; Sabatini, Umberto; Bossù, Paola

    2014-01-01

    A long-lasting neuroinflammatory cascade may lead to the progression of brain damage, favoring neurodegeneration and cognitive impairment in patients with traumatic brain injury (TBI), but the potential mechanisms underlying this sequence of events remain elusive. Here we aimed to evaluate the impact of interleukin (IL)-18, a proinflammatory cytokine elevated in post-acute head injury and associated with neurodegeneration, on the long-term outcome of patients with chronic TBI. The serum content of IL-18 was evaluated in 16 patients with severe TBI, during their rehabilitation phase, and in a matched group of 16 healthy controls. The disability of the enrolled patients was evaluated by means of the Glasgow Outcome Scale, Levels of Cognitive Functioning, and the Disability Rating Scale. The circulating levels of IL-18 were significantly increased in chronic TBI patients, as compared to healthy subjects, and correlated with the patients' cognitive impairment and disability severity. IL-18 may contribute to the long-term outcome and neurodegeneration in TBI patients. Even though further studies are needed to understand the molecular mechanisms underlying the effects of IL-18 on TBI progression and its associated drop in cognitive function, a possible role of this cytokine as a therapeutic target in TBI can be envisaged. © 2013 S. Karger AG, Basel.

  12. Renoprotective Effect of Lactoferrin against Chromium-Induced Acute Kidney Injury in Rats: Involvement of IL-18 and IGF-1 Inhibition

    PubMed Central

    Hegazy, Rehab; Salama, Abeer; Mansour, Dina; Hassan, Azza

    2016-01-01

    Hexavalent chromium (CrVI) is a heavy metal widely used in more than 50 industries. Nephrotoxicity is a major adverse effect of chromium poisoning. The present study investigated the potential renoprotective effect of lactoferrin (Lf) against potassium dichromate (PDC)-induced acute kidney injury (AKI) in rats. Beside, because previous studies suggest that interlukin-18 (IL-18) and insulin-like growth factor-1 (IGF-1) play important roles in promoting kidney damage, the present work aimed to evaluate the involvement of these two cytokines in PDC model of AKI and in the potential renoprotective effect of lactoferrin. Adult male albino Wistar rats were pretreated with Lf (200mg/kg/day, p.o.) or (300mg/kg/day, p.o.); the doses that are usually used in the experiment studies, for 14 days followed by a single dose of PDC (15mg/kg, s.c.). PDC caused significant increase in serum urea, creatinine, and total protein levels. This was accompanied with decreased renal glutathione content, and increased renal malondialdehyde, IL-18, IL-4, nuclear factor kappa B (NFκB), IGF-1, and the phosphorylated form of forkhead box protein O1 (FoxO1) levels. Moreover, normal expression IFN-γ mRNA and enhanced expression of TNF-α mRNA was demonstrated in renal tissues. Histopathological investigations provoked deleterious changes in the renal tissues. Tubular epithelial hyperplasia and apoptosis were demonstrated immunohistochemically by positive proliferating cell nuclear antigen (PCNA), Bax, and Caspase-3 expression, respectively. Pretreatment of rats with Lf in both doses significantly corrected all previously mentioned PDC-induced changes with no significant difference between both doses. In conclusion, the findings of the present study demonstrated the involvement of oxidative stress, inflammatory reactions, tubular hyperplasia and apoptosis in PDC-induced AKI. It suggested a role of IL-18 through stimulation of IL-4-induced inflammatory pathway, and IGF-1 through triggering FoxO1

  13. Understanding chemical allergen potency: role of NLRP12 and Blimp-1 in the induction of IL-18 in human keratinocytes.

    PubMed

    Papale, Angela; Kummer, Elena; Galbiati, Valentina; Marinovich, Marina; Galli, Corrado L; Corsini, Emanuela

    2017-04-01

    Keratinocytes (KCs) play a key role in all phases of skin sensitization. We recently identified interleukin-18 (IL-18) production as useful end point for determination of contact sensitization potential of low molecular weight chemicals. The aim of this study was to identify genes involved in skin sensitizer-induced inflammasome activation and to establish their role in IL-18 production. For gene expression analysis, cells were treated for 6 h with p-phenylenediamine (PPD) as reference contact allergen; total RNA was extracted and examined with a commercially available Inflammasome Polymerase Chain Reaction (PCR) array. Among genes induced, NLRP12 (Nod-like receptor P12) was selected for further investigation. NLRP12 promoter region contains Blimp-1 (B-lymphocyte-induced maturation protein-1)/PRDM1 binding site, and from the literature, it is reported that Blimp-1 reduces NLRP12 activity and expression in monocytes/macrophages. Their expression and role in KCs are currently unknown. To confirm NLRP12 expression and to investigate its relationship with Blimp-1, cells were exposed for different times (3, 6 and 24 h) to the extreme sensitizer 2,4-dinitrochlorobenzene (DNCB) and the strong sensitizer PPD. Allergens were able to induce both genes, however, with different kinetic, with DNCB more rapidly upregulating Blimp-1 and inducing IL-18 production, compared to PPD. NLRP12 and Blimp-1 expression appeared to be inversely correlated: Blimp-1 silencing resulted in increased NLRP12 expression and reduced contact allergen-induced IL-18 production. Overall results indicate that contact allergens of different potency differently modulate Blimp-1/NLRP12 expression, with strong allergen more rapidly downregulating NLRP12, thus more rapidly inducing IL-18 production. Data confirm that also in KCs, NLRP12 has an inhibitory effect on inflammasome activation assessed by IL-18 maturation.

  14. MiR-379/411 cluster regulates IL-18 and contributes to drug resistance in malignant pleural mesothelioma.

    PubMed

    Yamamoto, Kazuo; Seike, Masahiro; Takeuchi, Susumu; Soeno, Chie; Miyanaga, Akihiko; Noro, Rintaro; Minegishi, Yuji; Kubota, Kaoru; Gemma, Akihiko

    2014-12-01

    Malignant pleural mesothelioma (MPM) is a rapidly fatal malignancy that is increasing in incidence in Japan. In this study, we performed gene and microRNA (miRNA) expression profiling to identify novel therapeutic targets in MPM cells. Based on relative sensitivities to pemetrexed (PEM) and the histone deacetylase (HDAC) inhibitor, vorinostat (SAHA), 211H cells were determined to be the only sensitive MPM cell line out of the 6 tested. On the same series of cell lines, we performed whole genome transcriptomic profiling via DNA microarrays and pathway analysis of the derived data. Of particular note, IL-18 gene expression levels were significantly higher in the cell lines that were either drug resistant or displayed intermediate sensitivity, compared to the sensitive 211H cell line. Pathway analysis revealed IL-18 as an important gene associated with drug sensitivity of MPM cells. A relationship between IL-18 overexpression and drug resistance was also observed following targeted assessment of 10 cytokine genes using quantitative RT-PCR. miRNA expression profiles were evaluated in the MPM cell line panel in order to discern the mechanism of IL-18 induction in the drug-resistant lines. We found that miR-379 and miR-411 belonged to the same cluster of miRNAs located on chromosome 14q32 that commonly target the IL-18 gene. Luciferase reporter assays revealed that miR-379 and miR-411 directly target the IL-18 gene. Introduction of miR-379 plus miR-411, as well as IL-18 silencing, significantly suppressed the invasive capacity of MESO1 cells in vitro. Furthermore, the use of either PEM or SAHA together with miR-379 plus miR-411 mimics mediated increased sensitivity to these drugs in MESO1 cells. These results suggest that the miR-379/411 cluster may provide new therapeutic opportunities for advanced MPM patients, depending on the nature of IL-18 gene expression.

  15. Growth compensatory role of sulindac sulfide-induced thrombospondin-1 linked with ERK1/2 and RhoA GTPase signaling pathways

    PubMed Central

    Moon, Yuseok; Kim, Jeung Il; Yang, Hyun; Eling, Thomas E.

    2009-01-01

    Previously, we reported that non-steroidal anti-inflammatory drugs (NSAIDs) suppress cellular invasion which was mediated by thrombospondin-1 (TSP-1). As the extending study of the previous observation, we investigated the effect of NSAID-induced TSP-1 on the cellular growth and its related signaling transduction of the TSP-1 production. Among diverse NSAIDs, sulindac sulfide was most potent of inducing the human TSP-1 protein expression. Functionally, induced TSP-1 expression was associated with the growth-compensatory action of NSAID. TSP-1 expression was also elevated by mitogenic signals of ERK1/2 and RhoA GTPase pathway which had also growth-promotive capability after sulindac sulfide treatment. These findings suggest the possible mechanism through which tumor cells can survive the chemopreventive action of NSAIDs or the normal epithelium can reconstitute after NSAID-mediated ulceration in a compensatory way. PMID:18261746

  16. Influence of Ovarian Endometrioma on Expression of Steroid Receptor RNA Activator, Estrogen Receptors, Vascular Endothelial Growth Factor, and Thrombospondin 1 in the Surrounding Ovarian Tissues

    PubMed Central

    Lin, Kaiqing; Ma, Junyan; Wu, Ruijin; Zhou, Caiyun

    2014-01-01

    This study investigates the influence of ovarian endometrioma on expression of steroid receptor RNA activator (SRA), estrogen receptors (ERs), vascular endothelial growth factor (VEGF), and thrombospondin 1 (TSP-1) in the surrounding ovarian tissues. Taken from the women with ovarian endometrioma and mature teratoma during laparoscopy, the biopsies were analyzed by real-time polymerase chain reaction and Western blot. Our results indicated that ovarian tissues surrounding endometrioma had lower SRA and ER-α levels but higher SRA protein (SRAP) and ER-β levels than ovarian endometrioma. With lower VEGF levels and higher TSP-1 levels, the surrounding ovarian tissues showed higher expression levels of SRA, SRAP, ER-α, and ER-β in the ovarian endometrioma group when compared to the controls. These data showed that ovarian endometrioma increases SRA, ERs, and TSP-1 but decreases VEGF levels in the surrounding ovarian tissues, suggesting that abnormal expression of these molecules may affect biological behaviors of ovarian endometrioma. PMID:23749764

  17. Cell type-specific post-transcriptional regulation of production of the potent antiangiogenic and proatherogenic protein thrombospondin-1 by high glucose.

    PubMed

    Bhattacharyya, Sanghamitra; Marinic, Tina E; Krukovets, Irene; Hoppe, George; Stenina, Olga I

    2008-02-29

    Hyperglycemia is an independent risk factor for development of vascular diabetic complications. Vascular dysfunction in diabetics manifests in a tissue-specific manner; macrovasculature is affected by atherosclerotic lesions, and microvascular complications are described as "aberrant angiogenesis": in the same patient angiogenesis is increased in some tissues (e.g. retinal neovascularization) and decreased in others (e.g. in skin). Molecular cell- and tissue-specific mechanisms regulating the response of vasculature to hyperglycemia remain unclear. Thrombospondin-1 (TSP-1), a potent antiangiogenic and proatherogenic protein, has been implicated in the development of several vascular diabetic complications (atherosclerosis, nephropathy, and cardiomyopathy). This study examines cell type-specific regulation of production of thrombospondin-1 by high glucose. We previously reported the increased expression of TSP-1 in the large arteries of diabetic animals. mRNA and protein levels were up-regulated in response to high glucose. Unlike in macrovascular cells, TSP-1 protein levels are dramatically decreased in response to high glucose in microvascular endothelial cells and retinal pigment epithelial cells (RPE). This down-regulation is post-transcriptional; mRNA levels are increased. In situ mRNA hybridization and immunohistochemistry revealed that the level of mRNA is up-regulated in RPE of diabetic rats, whereas the protein level is decreased. This cell type-specific posttranscriptional suppression of TSP-1 production in response to high glucose in microvascular endothelial cells and RPE is controlled by untranslated regions of TSP-1 mRNA that regulate coupling of TSP-1 mRNA to polysomes and its translation. The cell-specific regulation of TSP-1 suggests a potential mechanism for the aberrant angiogenesis in diabetics and TSP-1 involvement in development of various vascular diabetic complications.

  18. Contrasting roles of the IL-1 and IL-18 receptors in MyD88-dependent contact hypersensitivity

    PubMed Central

    Klekotka, Paul A.; Yang, Liping; Yokoyama, Wayne M.

    2009-01-01

    Contact hypersensitivity (CHS) requires activation of the innate immune system and results in an adaptive immune response. Many cells of the innate immune system use Toll-like receptors (TLRs), which signal through the adaptor protein MyD88, to initiate an immune response. MyD88 is also required for signaling downstream of the IL-1 and Il-18 receptors. Herein we studied the MyD88 signaling pathway in the CHS response to 2,4-dinitrofluorobenzene (DNFB). Mice deficient in MyD88 were unable to mount a CHS response to DNFB. In contrast, mice deficient in Toll/IL-1R-containing adaptor inducing IFN-β (TRIF), TLR2, TLR4, TLR6 and TLR9 had no defect in their ability to respond to DNFB. While both IL-1R and IL-18R-deficient mice showed a reduced CHS response to DNFB, in bone marrow chimera and adoptive transfer experiments, we found that MyD88 and the IL-18R were required in a radioresistant cell in the sensitization phase of the CHS response. In contrast, similar strategies revealed that the IL-1R was required in a radiosensitive cell in the sensitization phase of the CHS response. Taken together, these data indicate that the IL-1R and IL-18R/MyD88 pathways are required in distinctly different cells during the sensitization phase of CHS. PMID:19657352

  19. Serum IL-18 as biomarker in predicting long-term renal outcome among pediatric-onset systemic lupus erythematosus patients

    PubMed Central

    Wu, Chao-Yi; Yang, Huang-Yu; Yao, Tsung-Chieh; Liu, Su-Hsun; Huang, Jing-Long

    2016-01-01

    Abstract An urge of biomarker identification is needed to better monitor lupus nephritis (LN) disease activity, guide clinical treatment, and predict patient's long-term outcome. With the proinflammatory effect and its association with inflammasomes, the significance of interleukin-18 (IL-18) among pediatric-onset systemic lupus erythematous (pSLE) patient, especially, its importance in predicting long-term renal outcome was investigated. In a pSLE cohort of 96 patients with an average follow-up period of 10.39 ± 3.31 years, clinical data and laboratory workups including serum IL-18 were collected at time of disease onset and 6 months after treatment despite their initial renal status. Through Cox regression analysis, the parameters at baseline and at 6 months posttreatment were carefully analyzed. Average age of all cases was 12.74 ± 3.01 years old and 65 of them underwent renal biopsy at the time of diagnosis. Nine subjects (9.38%) progressed to end-stage renal disease (ESRD) and 2 cases (2.08%) died during follow-up. Through multivariate analysis, serum IL-18 level 6 months posttreatment was found to be the most unfavorable factor associating poor clinical outcome despite patient's initial renal status. In addition, the presentation of serum IL-18 in its correlation with SLE global disease activity as well as the presence and severity of LN were all significant (P < 0.001, P = 0.03, and P = 0.02, respectively). The histological classification of LN, however, was not associated with the level of IL-18 among the pSLE patients (P = 0.64). The role of serum IL-18 as biomarker representing global disease activity and status of renal flares among pSLE population was shown for the first time. Additionally, we have identified IL-18 at 6 months posttreatment a novel marker for long-term renal outcome prediction. PMID:27749566

  20. Identification and expression analysis of an IL-18 homologue and its alternatively spliced form in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Zou, Jun; Bird, Steve; Truckle, Jonathan; Bols, Niels; Horne, Mike; Secombes, Chris

    2004-05-01

    A homologue of interleukin 18 has been identified from rainbow trout, Oncorhynchus mykiss. The trout IL-18 gene spans 3.7 kb and consists of six exons and five introns, sharing the same gene organization with its human counterpart. The putative translated protein is 199 amino acids in length with no predicted signal peptide. Analysis of the multiple sequence alignment reveals a conserved ICE cut site, resulting in a mature peptide of 162 amino acids. The trout IL-18 shares 41-45% similarity with known IL-18 molecules and contains an IL-1 family signature motif. It is constitutively expressed in a wide range of tissues including brain, gill, gut, heart, kidney, liver, muscle, skin and spleen. Transcription is not modulated by lipopolysaccharide, poly(I:C) or trout recombinant IL-1beta in primary head kidney leucocyte cultures and RTS-11 cells, a macrophage cell line. However, expression is downregulated by lipopolysaccharide and rIL-1beta in RTG-2 cells, a fibroblast-like cell line. An alternatively spliced form of IL-18 mRNA has also been found and translates into a 182 amino acid protein with a 17 amino acid deletion in the precursor region of the authentic form. This alternatively spliced form is also widely expressed although much lower than the authentic form. Interestingly, its expression is upregulated by lipopolysaccharide and poly(I:C), but is not affected by rIL-1beta in RTG-2 cells. The present study suggests that alternative splicing may play an important role in regulating IL-18 activities in rainbow trout.

  1. Increased IL18 mRNA levels in peripheral artery disease and its association with triglyceride and LDL cholesterol levels: a pilot study.

    PubMed

    Deser, Serkan Burc; Bayoglu, Burcu; Besirli, Kazım; Cengiz, Mujgan; Arapi, Berk; Junusbekov, Yerik; Dirican, Ahmet; Arslan, Caner

    2016-06-01

    Peripheral artery disease (PAD) typically refers to lower limb vessel ischemia caused by atherosclerotic stenosis of lower extremity arteries. IL18 is a pleiotropic pro-inflammatory cytokine reported to function as an inflammatory biomarker in cardiovascular diseases. IL18 activity is balanced by high-affinity naturally occurring IL18-binding protein (IL18BP). This study aimed to determine whether IL18, IL18 BP mRNA levels and -137 G/C (rs187238) polymorphism, which was previously associated with IL18 gene transcriptional activity, were associated with PAD etiology. IL18, IL18BP mRNA levels from peripheral blood mononuclear cells and -137 G/C (rs187238) polymorphism were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and RT-PCR, respectively, in 55 PAD patients (26 aorta-iliac, 29 femoro-popliteal) and 61 disease-free controls. IL18 mRNA levels were increased in PAD patients compared with healthy controls (p = 0.09); however, did not reach a statistical significant level, also did not significantly differ between aorta-iliac and femoro-popliteal occlusive PAD subgroups (p = 0.285). However, IL18BP mRNA levels were significantly lower in PAD group compared with controls (p < 0.001). Genotype frequencies of rs187238 polymorphism did not significantly differ between PAD patients and controls (p = 0.385). IL18 mRNA levels were significantly correlated with triglycerides and LDL cholesterol levels in PAD patients (p = 0.003, p = 0.014, respectively). HDL cholesterol levels were negatively correlated with IL18 mRNA levels in controls (p = 0.05). This report is a preliminary study to show an association between IL18, IL18BP mRNA levels and PAD and suggests that the IL18 gene may have a significant relationship with triglyceride and LDL cholesterol levels in PAD patients.

  2. Construction and immunogenicity of recombinant fowlpox vaccines coexpressing HA of AIV H5N1 and chicken IL18.

    PubMed

    Mingxiao, Ma; Ningyi, Jin; Zhenguo, Wang; Ruilin, Wang; Dongliang, Fei; Min, Zheng; Gefen, Yin; Chang, Li; Leili, Jia; Kuoshi, Jin; Yingjiu, Zhang

    2006-05-15

    cDNAs of the HA genes of subtype H5N1 AIV were fused to form a single open reading frame, designated H5HA-H7HA. The H5HA-H7HA cDNA and chicken Interleukin-18 (IL18) were inserted into the fowlpox virus (FPV) expression vector pUTA-16-LacZ to produce pUTAL-H5-H7-IL18. cDNA of H5N1 AIV HA was inserted into the FPV expression vector pUTA2 to create the recombinant expression plasmid pUTA2-H5. Plasmids were then co-transected into CEF cells. The two recombinant fowlpox viruses (rFPV) were produced by three cycles with the BrdU and verified by RT-PCR, IFA and Western blotting. One-day-old specific pathogen free (SPF) chickens and 7-day-old commercial Leghorn egg-laying chickens were inoculated with 10(6) PFU recombinant or parental fowlpox vaccine viruses by wing-web puncture. Hemagglutination inhibition (HI) antibody titer and nonspecific cellular immunity level were assessed after 1-3 weeks post-immunization. We found that all rFPV-vaccinated groups produced HI-specific antibodies, and the level of cellular immunity induced by the rFPV-H5-H7-IL18 strain was significantly higher than that induced by rFPV-H5HA. At 3 weeks post-inoculation, immunized SPF and Leghorn chickens were challenged with H5N1 HP AIV. The rFPV-H5-H7-IL18 vaccine strains were able to induce complete (10/10) protection, while the rFPV-H5HA vaccine strain induced (9/10) protection. Cloacal swabbing samples were collected from immunized leghorn chickens during the first week post-challenge; no shedding was found in the rFPV-H5-H7-IL18 vaccinated group. The rFPV-H5-H7-IL18 vaccinated group displayed significantly increased weight gain relative to the rFPV-H5HA group. This study reports a significant step in the further development of new AIV vaccines.

  3. Identification of a truncated splice variant of IL-18 receptor alpha in the human and rat, with evidence of wider evolutionary conservation

    PubMed Central

    Grattan, David R.

    2014-01-01

    Interleukin-18 (IL-18) is a pro-inflammatory cytokine which stimulates activation of the nuclear factor kappa beta (NF-κB) pathway via interaction with the IL-18 receptor. The receptor itself is formed from a dimer of two subunits, with the ligand-binding IL-18Rα subunit being encoded by the IL18R1 gene. A splice variant of murine IL18r1, which has been previously described, is formed by transcription of an unspliced intron (forming a ‘type II’ IL18r1 transcript) and is predicted to encode a receptor with a truncated intracellular domain lacking the capacity to generate downstream signalling. In order to examine the relevance of this finding to human IL-18 function, we assessed the presence of a homologous transcript by reverse transcription-polymerase chain reaction (RT-PCR) in the human and rat as another common laboratory animal. We present evidence for type II IL18R1 transcripts in both species. While the mouse and rat transcripts are predicted to encode a truncated receptor with a novel 5 amino acid C-terminal domain, the human sequence is predicted to encode a truncated protein with a novel 22 amino acid sequence bearing resemblance to the ‘Box 1’ motif of the Toll/interleukin-1 receptor (TIR) domain, in a similar fashion to the inhibitory interleukin-1 receptor 2. Given that transcripts from these three species are all formed by inclusion of homologous unspliced intronic regions, an analysis of homologous introns across a wider array of 33 species with available IL18R1 gene records was performed, which suggests similar transcripts may encode truncated type II IL-18Rα subunits in other species. This splice variant may represent a conserved evolutionary mechanism for regulating IL-18 activity. PMID:25250214

  4. Decreased astrocytic thrombospondin-1 secretion after chronic ammonia treatment reduces the level of synaptic proteins: in vitro and in vivo studies.

    PubMed

    Jayakumar, Arumugam R; Tong, Xiao Y; Curtis, Kevin M; Ruiz-Cordero, Roberto; Shamaladevi, Nagarajarao; Abuzamel, Missa; Johnstone, Joshua; Gaidosh, Gabriel; Rama Rao, Kakulavarapu V; Norenberg, Michael D

    2014-11-01

    Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin-1 (TSP-1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH₄Cl, 0.5-2.5 mM) for 1-10 days, and TSP-1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra- and extracellular TSP-1 levels. Exposure of cultured neurons to conditioned media from ammonia-treated astrocytes showed a decrease in synaptophysin, PSD95, and synaptotagmin levels. Conditioned media from TSP-1 over-expressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP-1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP-1 synthesis in other cell types, also reversed the ammonia-induced TSP-1 reduction. Likewise, we found a significant decline in TSP-1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP-1 may represent an important therapeutic target for CHE. Defective release of astrocytic factors may impair synaptic integrity in chronic hepatic encephalopathy. We found a reduction in the release of the astrocytic matricellular proteins thrombospondin-1 (TSP-1) in ammonia-treated astrocytes; such reduction was associated with a decrease in synaptic proteins caused by conditioned media from ammonia-treated astrocytes. Exposure of neurons to CM from ammonia-treated astrocytes, in which TSP-1 is over

  5. IL-18-induced expression of high-affinity IL-2R on murine NK cells is essential for NK-cell IFN-γ production during murine Plasmodium yoelii infection.

    PubMed

    Stegmann, Kerstin A; De Souza, J Brian; Riley, Eleanor M

    2015-12-01

    Early production of pro-inflammatory cytokines, including IFN-γ, is essential for control of blood-stage malaria infections. We have shown that IFN-γ production can be induced among human natural killer (NK) cells by coculture with Plasmodium falciparum infected erythrocytes, but the importance of this response is unclear. To further explore the role of NK cells during malaria infection, we have characterized the NK-cell response of C57BL/6 mice during lethal (PyYM) or nonlethal (Py17XNL) P. yoelii infection. Ex vivo flow cytometry revealed that NK cells are activated within 24 h of Py17XNL blood-stage infection, expressing CD25 and producing IFN-γ; this response was blunted and delayed during PyYM infection. CD25 expression and IFN-γ production were highly correlated, suggesting a causal relationship between the two responses. Subsequent in vitro experiments revealed that IL-18 signaling is essential for induction of CD25 and synergizes with IL-12 to enhance CD25 expression on splenic NK cells. In accordance with this, Py17XNL-infected erythrocytes induced NK-cell CD25 expression and IFN-γ production in a manner that is completely IL-18- and partially IL-12-dependent, and IFN-γ production is enhanced by IL-2. These data suggest that IL-2 signaling via CD25 amplifies IL-18- and IL-12-mediated NK-cell activation during malaria infection.

  6. Inflammasome activation is reactive oxygen species dependent and mediates irinotecan-induced mucositis through IL-1β and IL-18 in mice.

    PubMed

    Arifa, Raquel D N; Madeira, Mila F M; de Paula, Talles P; Lima, Renata L; Tavares, Livia D; Menezes-Garcia, Zélia; Fagundes, Caio T; Rachid, Milene A; Ryffel, Bernhard; Zamboni, Dario S; Teixeira, Mauro M; Souza, Danielle G

    2014-07-01

    Irinotecan is a useful chemotherapeutic for the treatment of various cancers. Irinotecan treatment is associated with mucositis, which clearly limits the use of the drug. Mechanisms that account for mucositis are only partially known. This study assessed mechanisms and the role of inflammasome activation in irinotecan-induced mucositis. Mucositis in mice was induced by irinotecan injection in C57BL/6 wild-type, gp91phox(-/-), il-18(-/-), casp-1(-/-), and asc(-/-) mice once a day for 4 consecutive days. In some experiments, mice received apocynin to inhibit NADPH oxidase (NOX), IL-1 receptor antagonist, or IL-18 binding protein to prevent activation of IL-1 and IL-18 receptors, respectively. Mice were euthanized 7 days after the beginning of irinotecan treatment, and small intestines were collected for analysis. Irinotecan treatment resulted in increased IL-1β and IL-18 production in ileum and NOX-2-dependent oxidative stress. gp91phox(-/-) and apocynin-treated mice had diminished oxidative stress and less severe mucositis. Furthermore, treatment with apocynin decreased caspase-1 activation and IL-1β and IL-18 production in the ileum. asc(-/-) and casp-1(-/-) mice also had less intestinal injury and decreased IL-1β and IL-18 production. Finally, both the absence of IL-18 and IL-1β resulted in reduced inflammatory response and attenuated intestinal injury. NOX-2-derived oxidative stress mediates inflammasome activation and inflammasome-dependent production of IL-1β and IL-18, which mediate tissue injury during irinotecan-induced mucositis in mice.

  7. Effect of IL-18 gene promoter polymorphisms on prostate cancer occurrence and prognosis in Han Chinese population.

    PubMed

    Liu, J M; Liu, J N; Wei, M T; He, Y Z; Zhou, Y; Song, X B; Ying, B W; Huang, J

    2013-03-15

    Interleukin-18 (IL-18) has been implicated in a wide variety of cellular functions that affect the biological response to tumors. However, there is insufficient evidence to prove that IL-18 gene variants are associated with risk of prostate cancer. We examined a possible association between two promoter polymorphisms, -137G/C (rs187238) and -607C/A (rs1946518), in the IL-18 gene and prostate cancer occurrence and prognosis in Han Chinese. We used a high-resolution melting method to genotype these two polymorphisms in 375 Chinese Han patients with prostate cancer and in 400 age-matched healthy controls. A hundred and eighty-one prostate cancer patients who had been receiving androgen deprivation therapy, including operational and medical castration, were enrolled to follow-up in this study. Carriers of the GG genotype of the -137G/ C polymorphism had a 2.165-times higher risk of prostate cancer progression than carriers of GC [95% confidence interval (CI) = 1.270-3.687]. Patients with the GG genotype at clinical stages III and IV also had significantly lower rates of progression-free survival (relative risk = 2.174, 95%CI = 1.211-3.906). However, we found no significant association of genotype or allele distributions of these two polymorphisms with occurrence of prostate cancer. We conclude that there is evidence that the IL-18 gene promoter polymorphism -137G/ C influences the prognosis of prostate cancer patients in androgen deprivation therapy, although neither of the two SNPs contributes to prostate cancer development.

  8. Extremely elevated IL-18 levels may help distinguish systemic-onset juvenile idiopathic arthritis from other febrile diseases

    PubMed Central

    Xia, Y.; Cui, P.; Li, Q.; Liang, F.; Li, C.; Yang, J.

    2017-01-01

    The aim of this research was to explore whether IL-18 can be a serological marker for the diagnosis of systemic-onset juvenile idiopathic arthritis (sJIA). A total of 23 sJIA patients (13 males, median age 8.2), 20 acute lymphoblastic leukemia (ALL) patients, 18 patients with severe infections (SIF), 26 Kawasaki disease (KD) patients, 18 juvenile idiopathic arthritis (JIA) patients, and 25 healthy control patients were selected for this study. Enzyme-linked immunosorbent assays (ELISAs) were used to determine the serum concentrations of the S100A8, S100A9, and IL-6 proteins. The serum IL-18 levels were detected by a cytometric bead array (CBA). The serum IL-6 concentrations in various disease groups were significantly higher than that in the healthy control group. The IL-6 concentrations exhibited no significant difference between disease groups. The S100A8 level in the sJIA group was significantly higher than those of the ALL, JIA, and healthy control groups but showed no significant difference compared to the SIF and KD groups. The S100A9 serum concentration in the sJIA group was significantly higher than those in the ALL and healthy control groups and exhibited no significant difference from the SIF, KD, and JIA groups. The IL-18 level of the sJIA group was significantly higher than that of the other febrile disease groups. The IL-18 serum concentration may be used as a biological serum marker to distinguish sJIA from other febrile diseases. PMID:28225869

  9. Neonatal high pressure hydrocephalus is associated with elevation of pro-inflammatory cytokines IL-18 and IFNγ in cerebrospinal fluid

    PubMed Central

    Sival, Deborah A; Felderhoff-Müser, Ursula; Schmitz, Thomas; Hoving, Eelco W; Schaller, Carlo; Heep, Axel

    2008-01-01

    Background In human neonatal high pressure hydrocephalus (HPHC), diffuse white matter injury and gliosis predispose to poor neuro-developmental outcome. The underlying mechanism for diffuse white matter damage in neonatal HPHC is still unclear. Analogous to inflammatory white matter damage after neonatal hypoxemia/ischemia, we hypothesized that pro-inflammatory cytokines could be involved in neonatal HPHC. If so, early anti-inflammatory therapy could ameliorate white matter damage in HPHC, before irreversible apoptosis has occurred. In HPHC and control neonates, we therefore aimed to compare cerebrospinal fluid (CSF) concentrations of IL18, IFNγ and sFasL (interleukin 18, interferon gamma and apoptosis marker soluble-Fas ligand, respectively). Methods In neonatal HPHC (n = 30) and controls (n = 15), we compared CSF concentrations of IL18, IFNγ and sFasL using sandwich ELISA. HPHC was grouped according to etiology: spina bifida aperta (n = 20), aqueduct stenosis (n = 4), and fetal intra-cerebral haemorrhage (n = 6). Neonatal control CSF was derived from otherwise healthy neonates (n = 15), who underwent lumbar puncture for exclusion of meningitis. Results In all three HPHC groups, CSF IL18 concentrations were significantly higher than control values, and the fetal intracranial haemorrhage group was significantly higher than SBA group. Similarly, in all HPHC groups CSF-IFNγ concentrations significantly exceeded the control group. In both HPHC and control neonates, CSF FasL concentrations remained within the range of reference values. Conclusion Independent of the pathogenesis, neonatal HPHC is associated with the activation of the pro-inflammatory cytokines (IL-18 and IFNγ) in the CSF, whereas CSF apoptosis biomarkers (sFasL) were unchanged. This suggests that anti-inflammatory treatment (in addition to shunting) could be helpful to preserve cerebral white matter. PMID:19117508

  10. IκBζ augments IL-12- and IL-18-mediated IFN-γ production in human NK cells.

    PubMed

    Kannan, Yashaswini; Yu, Jianhua; Raices, Raquel M; Seshadri, Sudarshan; Wei, Min; Caligiuri, Michael A; Wewers, Mark D

    2011-03-10

    Interferon-γ (IFN-γ) production by natural killer (NK) cells and cytotoxic lymphocytes is a key component of innate and adaptive immune responses. Because inhibitor of κB-ζ (IκBζ), a Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) inducible transcription factor, regulates IFN-γ production in KG-1 cells, we tested IκBζ's role in the classic lymphocyte pathway of IL-12/IL-18-induced IFN-γ. Upon stimulation with IL-12/IL-18, monocyte-depleted human peripheral blood lymphocytes expressed the 79-kDa form of IκBζ and released IFN-γ. CD56(+) NK cells were shown to be the IκBζ-producing lymphocyte subpopulation, which also released abundant IFN-γ in response to IL-12/IL-18. Importantly, IκBζ was undetectable in CD56(-) lymphocytes where IFN-γ release was 10-fold lower. In addition, small interfering RNA knockdown of IκBζ suppressed IFN-γ expression in CD56(+) cells. The association of IκBζ with the IFN-γ promoter was documented by chromatin immunoprecipitation. IFN-γ promoter activity from IκBζ overexpression was confirmed by luciferase reporter assay. Finally, IκBζ coprecipitated with p65 and p50 NF-κB in NK cells in response to IL-12/IL-18, suggesting that IκBζ's effects on IFN-γ promoter activity are coregulated by NF-κB. These results suggest that IκBζ functions as an important regulator of IFN-γ in human NK cells, further expanding the class of IκBζ-modulated genes.

  11. Helicobacter urease–induced activation of the TLR2/NLRP3/IL-18 axis protects against asthma

    PubMed Central

    Koch, Katrin N.; Hartung, Mara L.; Urban, Sabine; Kyburz, Andreas; Bahlmann, Anna S.; Lind, Judith; Backert, Steffen; Taube, Christian; Müller, Anne

    2015-01-01

    Inflammasome activation and caspase-1–dependent (CASP1-dependent) processing and secretion of IL-1β and IL-18 are critical events at the interface of the bacterial pathogen Helicobacter pylori with its host. Whereas IL-1β promotes Th1 and Th17 responses and gastric immunopathology, IL-18 is required for Treg differentiation, H. pylori persistence, and protection against allergic asthma, which is a hallmark of H. pylori–infected mice and humans. Here, we show that inflammasome activation in DCs requires the cytoplasmic sensor NLRP3 as well as induction of TLR2 signaling by H. pylori. Screening of an H. pylori transposon mutant library revealed that pro–IL-1β expression is induced by LPS from H. pylori, while the urease B subunit (UreB) is required for NLRP3 inflammasome licensing. UreB activates the TLR2-dependent expression of NLRP3, which represents a rate-limiting step in NLRP3 inflammasome assembly. ureB-deficient H. pylori mutants were defective for CASP1 activation in murine bone marrow–derived DCs, splenic DCs, and human blood-derived DCs. Despite colonizing the murine stomach, ureB mutants failed to induce IL-1β and IL-18 secretion and to promote Treg responses. Unlike WT H. pylori, ureB mutants were incapable of conferring protection against allergen-induced asthma in murine models. Together, these results indicate that the TLR2/NLRP3/CASP1/IL-18 axis is critical to H. pylori–specific immune regulation. PMID:26214524

  12. IκBζ is essential for natural killer cell activation in response to IL-12 and IL-18

    PubMed Central

    Miyake, Tohru; Satoh, Takashi; Kato, Hiroki; Matsushita, Kazufumi; Kumagai, Yutaro; Vandenbon, Alexis; Tani, Tohru; Muta, Tatsushi; Akira, Shizuo; Takeuchi, Osamu

    2010-01-01

    IκBζ, encoded by Nfibiz, is a nuclear IκB-like protein harboring ankyrin repeats. IκBζ has been shown to regulate IL-6 production in macrophages and Th17 development in T cells. However, the role of IκBζ in natural killer (NK) cells has not be understood. In the present study, we found that the expression of IκBζ was rapidly induced in response to IL-18 in NK cells, but not in T cells. Analysis of Nfkbiz−/− mice revealed that IκBζ was essential for the production of IFN-γ production and cytotoxic activity in NK cells in response to IL-12 and/or IL-18 stimulation. IL-12/IL-18–mediated gene induction was profoundly impaired in Nfkbiz−/− NK cells. Whereas the phosphorylation of STAT4 was normally induced by IL-12 stimulation, STAT4 was not recruited to the Ifng gene regions in Nfkbiz−/− NK cells. Acetylation of histone 3 K9 on Ifng regions was also abrogated in Nfkbiz−/− NK cells. IκBζ was recruited on the proximal promoter region of the Ifng gene, and overexpression of IκBζ together with IL-12 activated the Ifng promoter. Furthermore, Nfkbiz−/− mice were highly susceptible to mouse MCMV infection. Taken together, these results demonstrate that IκBζ is essential for the activation of NK cells and antiviral host defense responses. PMID:20876105

  13. Abnormalities in three-dimensional capillary architecture and imbalance between vascular endothelial growth factor-A and thrombospondin-1 in soleus muscle of ovariectomized rat.

    PubMed

    Tanaka, Masayuki; Kanazashi, Miho; Maezawa, Toshiyuki; Kondo, Hiroyo; Fujino, Hidemi

    2015-09-01

    Reduced ovarian hormone levels associated with menopause or ovariectomy (OVX) not only result in vascular dysfunction but also lead to structural abnormalities in capillaries. Therefore, the effect of OVX on the three-dimensional (3-D) architecture of capillary networks and the underlying molecular mechanisms were investigated in rat soleus muscle. Seven-week-old female Wistar rats were divided into the OVX and sham-treated (Sham) groups. The OVX group exhibited lower endurance exercise capacity compared to the sham group and resulted in decreased capillary diameter, number of anastomoses and capillary/anastomosis volume in soleus muscle, indicating 3-D structural abnormalities of capillary networks. Furthermore, OVX led to increased concentrations of thrombospondin-1 (TSP-1) protein and a decreased VEGF-A/TSP-1 ratio, an indicator of angio-adaptations, in soleus muscle compared with the Sham group. These results indicate OVX may induce 3-D capillary regression in soleus muscle through an imbalance between VEGF-A and TSP-1 expression, possibly associated with decreased exercise tolerance in ovariectomized rats.

  14. Non-peptidic thrombospondin-1 mimics as fibroblast growth factor-2 inhibitors: an integrated strategy for the development of new antiangiogenic compounds.

    PubMed

    Colombo, Giorgio; Margosio, Barbara; Ragona, Laura; Neves, Marco; Bonifacio, Silvia; Annis, Douglas S; Stravalaci, Matteo; Tomaselli, Simona; Giavazzi, Raffaella; Rusnati, Marco; Presta, Marco; Zetta, Lucia; Mosher, Deane F; Ribatti, Domenico; Gobbi, Marco; Taraboletti, Giulia

    2010-03-19

    Endogenous inhibitors of angiogenesis, such as thrombospondin-1 (TSP-1), are promising sources of therapeutic agents to treat angiogenesis-driven diseases, including cancer. TSP-1 regulates angiogenesis through different mechanisms, including binding and sequestration of the angiogenic factor fibroblast growth factor-2 (FGF-2), through a site located in the calcium binding type III repeats. We hypothesized that the FGF-2 binding sequence of TSP-1 might serve as a template for the development of inhibitors of angiogenesis. Using a peptide array approach followed by binding assays with synthetic peptides and recombinant proteins, we identified a FGF-2 binding sequence of TSP-1 in the 15-mer sequence DDDDDNDKIPDDRDN. Molecular dynamics simulations, taking the full flexibility of the ligand and receptor into account, and nuclear magnetic resonance identified the relevant residues and conformational determinants for the peptide-FGF interaction. This information was translated into a pharmacophore model used to screen the NCI2003 small molecule databases, leading to the identification of three small molecules that bound FGF-2 with affinity in the submicromolar range. The lead compounds inhibited FGF-2-induced endothelial cell proliferation in vitro and affected angiogenesis induced by FGF-2 in the chicken chorioallantoic membrane assay. These small molecules, therefore, represent promising leads for the development of antiangiogenic agents. Altogether, this study demonstrates that new biological insights obtained by integrated multidisciplinary approaches can be used to develop small molecule mimics of endogenous proteins as therapeutic agents.

  15. Structure and Function of a Fungal Adhesin that Binds Heparin and Mimics Thrombospondin-1 by Blocking T Cell Activation and Effector Function

    PubMed Central

    Brandhorst, T. Tristan; Roy, René; Wüthrich, Marcel; Nanjappa, Som; Filutowicz, Hanna; Galles, Kevin; Tonelli, Marco; McCaslin, Darrell R.; Satyshur, Kenneth; Klein, Bruce

    2013-01-01

    Blastomyces adhesin-1 (BAD-1) is a 120-kD surface protein on B. dermatitidis yeast. We show here that BAD-1 contains 41 tandem repeats and that deleting even half of them impairs fungal pathogenicity. According to NMR, the repeats form tightly folded 17-amino acid loops constrained by a disulfide bond linking conserved cysteines. Each loop contains a highly conserved WxxWxxW motif found in thrombospondin-1 (TSP-1) type 1 heparin-binding repeats. BAD-1 binds heparin specifically and saturably, and is competitively inhibited by soluble heparin, but not related glycosaminoglycans. According to SPR analysis, the affinity of BAD-1 for heparin is 33 nM±14 nM. Putative heparin-binding motifs are found both at the N-terminus and within each tandem repeat loop. Like TSP-1, BAD-1 blocks activation of T cells in a manner requiring the heparan sulfate-modified surface molecule CD47, and impairs effector functions. The tandem repeats of BAD-1 thus confer pathogenicity, harbor motifs that bind heparin, and suppress T-cell activation via a CD47-dependent mechanism, mimicking mammalian TSP-1. PMID:23853587

  16. Stainless Steel Ions Stimulate Increased Thrombospondin-1-Dependent TGF-Beta Activation by Vascular Smooth Muscle Cells: Implications for In-Stent Restenosis

    PubMed Central

    Pallero, Manuel A.; Talbert Roden, Melissa; Chen, Yiu-Fai; Anderson, Peter G.; Lemons, Jack; Brott, Brigitta C.; Murphy-Ullrich, Joanne E.

    2010-01-01

    Background/Aims Despite advances in stent design, in-stent restenosis (ISR) remains a significant clinical problem. All implant metals exhibit corrosion, which results in release of metal ions. Stainless steel (SS), a metal alloy widely used in stents, releases ions to the vessel wall and induces reactive oxygen species, inflammation and fibroproliferative responses. The molecular mechanisms are unknown. TGF-β is known to be involved in the fibroproliferative responses of vascular smooth muscle cells (VSMCs) in restenosis, and TGF-β antagonists attenuate ISR. We hypothesized that SS ions induce the latent TGF-β activator, thrombospondin-1 (TSP1), through altered oxidative signaling to stimulate increased TGF-β activation and VSMC phenotype change. Methods VSMCs were treated with SS metal ion cocktails, and morphology, TSP1, extracellular matrix production, desmin and TGF-β activity were assessed by immunoblotting. Results SS ions stimulate the synthetic phenotype, increased TGF-β activity, TSP1, increased extracellular matrix and downregulation of desmin in VSMCs. Furthermore, SS ions increase hydrogen peroxide and decrease cGMP-dependent protein kinase (PKG) signaling, a known repressor of TSP1 transcription. Catalase blocks SS ion attenuation of PKG signaling and increased TSP1 expression. Conclusions These data suggest that ions from stent alloy corrosion contribute to ISR through stimulation of TSP1-dependent TGF-β activation. PMID:20016205

  17. Increased expression of VEGF-receptors (FLT-1, KDR, NRP-1) and thrombospondin-1 is associated with glomeruloid microvascular proliferation, an aggressive angiogenic phenotype, in malignant melanoma.

    PubMed

    Straume, Oddbjørn; Akslen, Lars A

    2003-01-01

    Glomeruloid microvascular proliferations (GMPs), which are focal proliferative buddings of endothelial cells resembling a renal glomerulus, can be induced experimentally by adenoviral transfer of VEGF-A(165). We recently found that GMPs were present in 13-23% of various human tumours (melanoma, breast-, endometrial- and prostate cancer), and this vascular signature was significantly associated with an impaired prognosis. In the present study, a series of 202 vertical growth phase melanomas were examined for the expression of various angiogenic factors and their receptors. Presence of GMP was associated with increased expression in tumour endothelium of the VEGF-A receptors KDR, FLT-1 and neuropilin-1, as well as VEGF-D protein. Thrombospondin-1 staining in the tumour stroma showed the same relationship. Endothelial cell expression of VEGF-A was increased in GMP endothelium when compared with other intra-tumoural vessels. In contrast, GMP expression of bFGF was decreased. Our findings suggest an important role of VEGF-A and its receptors in GMP formation in human cutaneous melanoma.

  18. Decreased Astrocytic Thrombospondin-1 Secretion After Chronic Ammonia Treatment Reduces the Level of Synaptic Proteins: In Vitro and In Vivo Studies

    PubMed Central

    Jayakumar, A. R.; Tong, X. Y.; Curtis, K. M.; Ruiz-Cordero, R.; Shamaladevi, N.; Abuzamel, M.; Johnstone, J.; Gaidosh, G.; Rama Rao, K.V.; Norenberg, M. D.

    2014-01-01

    Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin-1 (TSP-1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH4Cl, 0.5–2.5 mM) for 1–10 days, and TSP-1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra- and extracellular TSP-1 levels. Exposure of cultured neurons to conditioned media (CM) from ammonia-treated astrocytes showed a decrease in synaptophysin, PSD95 and synaptotagmin levels. CM from TSP-1 overexpressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP-1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP-1 synthesis in other cell types also reversed the ammonia-induced TSP-1 reduction. Likewise, we found a significant decline in TSP-1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP-1 may represent an important therapeutic target for CHE. PMID:25040426

  19. Methotrexate and its therapeutic antagonists caffeine and theophylline, target a motogenic T-cell mechanism driven by thrombospondin-1 (TSP-1).

    PubMed

    Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta

    2016-05-01

    Methotrexate (MTX) is a widely used treatment for inflammatory diseases such as rheumatoid arthritis and psoriasis, based on the concept that it is immunosuppressive. Its mechanism of action, however, remains unclear, although it is thought to depend on adenosine. Caffeine and theophylline, which have several targets including adenosine receptors, have been shown to suppress the beneficial clinical effects of MTX. Here we show that MTX and caffeine and theophylline differentially affect a motogenic T-cell mechanism driven by endogenous thrombospondin-1 (TSP-1) and its receptor, low density lipoprotein receptor-related protein 1 (LRP1). MTX stimulated TSP-1 expression and the motogenic TSP-1/TSP-1 receptor mechanism in primary human T cells, hence mimicking IL-2 and CXCL12, which similar to MTX, dampen inflammatory disease. SiRNA-mediated gene silencing of TSP-1 and LRP1 inhibited this stimulatory effect. Caffeine and theophylline inhibited the TSP-1/TSP-1 receptor mechanism by inhibiting LRP1 expression. These results indicate that the effect of MTX on T cells is immunoregulatory rather than immunosuppressive, and suggest a pathway dependent on TSP-1/TSP-1 receptor interactions for the regulation of immune responses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Glycosylation mediates up-regulation of a potent antiangiogenic and proatherogenic protein, thrombospondin-1, by glucose in vascular smooth muscle cells.

    PubMed

    Raman, Priya; Krukovets, Irene; Marinic, Tina E; Bornstein, Paul; Stenina, Olga I

    2007-02-23

    Accelerated development of atherosclerotic lesions remains the most frequent and dangerous complication of diabetes, accounting for 80% of deaths among diabetics. However, our understanding of the pathways mediating glucose-induced gene expression in vascular cells remains controversial and incomplete. We have identified an intracellular metabolic pathway activated by high glucose in human aortic smooth muscle cells that mediates up-regulation of thrombospondin-1 (TSP-1). TSP-1 is a potent antiangiogenic and proatherogenic protein that may represent an important link between diabetes and vascular complications. Using different glucose analogs and metabolites sharing distinct, limited metabolic steps with glucose, we demonstrated that activation of TSP-1 transcription is mediated by the hexosamine pathway of glucose catabolism, possibly resulting in modulation of the activity of nuclear proteins activity through their glycosylation. Specific inhibitors of glutamine: fructose 6-phosphate amidotransferase (GFAT), an enzyme controlling the hexosamine pathway, as well as direct inhibitors of protein glycosylation efficiently inhibited TSP-1 transcription and the activity of a TSP-1 promoter-reporter construct stimulated by high glucose. Overexpression of recombinant GFAT resulted in increased TSP-1 levels. Pharmacological inhibition of GFAT or protein glycosylation inhibited increased proliferation of human aortic smooth muscle cells caused by glucose. We have demonstrated that the hexosamine metabolic pathway mediates up-regulation of TSP-1 by high glucose. Our results suggest that the hexosamine pathway and intracellular glycosylation may control important steps in initiation and development of atherosclerotic lesions.

  1. Thrombospondin-1 (TSP-1) analogs ABT-510 and ABT-898 inhibit prolactinoma growth and recover active pituitary transforming growth factor-β1 (TGF-β1).

    PubMed

    Recouvreux, M Victoria; Camilletti, M Andrea; Rifkin, Daniel B; Becu-Villalobos, Damasia; Díaz-Torga, Graciela

    2012-08-01

    Prolactinomas are the most prevalent type of secreting pituitary tumors in humans and generally respond well to a medical therapy with dopamine agonists. However, for patients exhibiting resistance to dopaminergic drugs, alternative treatments are desired. Antiangiogenic strategies might represent a potential therapy for these tumors. Thrombospondin 1 (TSP-1) is a large multifunctional glycoprotein involved in multiple biological processes including angiogenesis, apoptosis, and activation of TGF-β1. Because tumors that overexpress TSP-1 grow more slowly, have fewer metastases, and have decreased angiogenesis, TSP-1 provides a novel target for cancer treatment. ABT-510 and ABT-898 are TSP-1 synthetic analogs that mimic its antiangiogenic action. In the present study, we explored the potential effect of ABT-510 and ABT-898 on experimental prolactinomas induced by chronic diethylstilbestrol (DES) treatment in female rats. We demonstrated that a 2-wk treatment with ABT-510 and ABT-898 counteracted the increase in pituitary size and serum prolactin levels as well as the pituitary proliferation rate induced by DES. These inhibitory effects on tumor growth could be mediated by the antiangiogenic properties of the drugs. We also demonstrated that ABT-510 and ABT-898, in addition to their described antiangiogenic effects, increased active TGF-β1 level in the tumors. We postulate that the recovery of the local cytokine activation participates in the inhibition of lactotrope function. These results place these synthetic TSP-1 analogs as potential alternative or complementary treatments in dopamine agonist-resistant prolactinomas.

  2. Pancreatic β-cell protection from inflammatory stress by the endoplasmic reticulum proteins thrombospondin 1 and mesencephalic astrocyte-derived neutrotrophic factor (MANF).

    PubMed

    Cunha, Daniel A; Cito, Monia; Grieco, Fabio Arturo; Cosentino, Cristina; Danilova, Tatiana; Ladrière, Laurence; Lindahl, Maria; Domanskyi, Andrii; Bugliani, Marco; Marchetti, Piero; Eizirik, Décio L; Cnop, Miriam

    2017-09-08

    Cytokine-induced endoplasmic reticulum (ER) stress is one of the molecular mechanisms underlying pancreatic β-cell demise in type 1 diabetes. Thrombospondin 1 (THBS1) was recently shown to promote β-cell survival during lipotoxic stress. Here we show that ER-localized THBS1 is cytoprotective to rat, mouse, and human β-cells exposed to cytokines or thapsigargin-induced ER stress. THBS1 confers cytoprotection by maintaining expression of mesencephalic astrocyte-derived neutrotrophic factor (MANF) in β-cells and thereby prevents the BH3-only protein BIM (BCL2-interacting mediator of cell death)-dependent triggering of the mitochondrial pathway of apoptosis. Prolonged exposure of β-cells to cytokines or thapsigargin leads to THBS1 and MANF degradation and loss of this prosurvival mechanism. Approaches that sustain intracellular THBS1 and MANF expression in β-cells should be explored as a cytoprotective strategy in type 1 diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. 76 FR 76744 - Prospective Grant of Exclusive License: Use of Agents Targeting Thrombospondin-1 and CD47 To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ...-Induced Damage and Enhance the Effectiveness of Radiotherapy in Cancer Patients AGENCY: National... oligonucleotides that reduce expression of CD47 in combination with radiotherapy, to treat or prevent cancers in... morpholinos, peptides and antibodies that block the TSP1/CD47 signaling pathway as radioprotectants for...

  4. Impact of serum immunoglobulins level and IL-18 promoter gene polymorphism among Egyptian patients with idiopathic thrombocytopenic purpura.

    PubMed

    Aref, Salah; El-Ghonemy, Mohamed Sabry; El-Aziz, Sherin Abd; Abouzeid, Tarek; Talaab, Mona; El-Sabbagh, Amr

    2017-03-01

    Based on the concept of immune dysregulation in immune thrombocytopenic purpura (ITP) and that Interleukin-18 (IL-18) is an inflammatory cytokine that plays an important role in autoimmune disease by inducing interferon-γ secretion; this study aimed to assess a possible association between the IL-18 promoter polymorphisms (-607 C/A site) and genetic susceptibility to ITP and the impact of the immunoglobulins (Igs) concentrations level on disease severity and response to therapy. A cross-section study was done on 105 patients' age range from 10 to 28 years, with newly diagnosed ITP at the Oncology Center Mansoura University over the past 2 years and 100 healthy subjects as a control group. For all patients and controls, the IL-18 promoter polymorphism (-607 C/A site) as well as serum Ig (IgG, IgM, IgA) concentration was determined. The IL-18 promoter polymorphism (-607 C/A site) was not significantly different between ITP patients and normal controls. The number of patients respond to standard line of therapy was significantly higher in those with low IgA levels as compared to those with high IgA levels (P = 0.02). On the other hand, the number of patients respond to standard therapy was significantly higher in those patients with high IgM levels as compared to those with low IgM levels (54.7 vs. 36.5%) (P < 0.05). The number of patients with bleeding manifestation was significantly higher among those with high IgA as compared to those with low IgA (43 of 79, 54.4%; vs. 36 of 79, 45.6%; P = 0.04). A change in IgG levels was not associated with response to treatment, bleeding tendency, or platelet counts. There is no association between IL-18 promoter polymorphisms (-607 C/A site) and genetic susceptibility to ITP. High IgA and low IgM levels are a bad index for treatment response to standard therapy.

  5. Genetic basis for variation in plasma IL-18 levels in persons with chronic hepatitis C virus and human immunodeficiency virus-1 infections

    PubMed Central

    Vergara, Candelaria; Thio, Chloe; Latanich, Rachel; Cox, Andrea L.; Kirk, Gregory D.; Mehta, Shruti H.; Busch, Michael; Murphy, Edward L; Villacres, Maria C.; Peters, Marion G.; French, Audrey L.; Golub, Elizabeth; Eron, Joseph; Lahiri, Cecile Delille; Shrestha, Sadeep; Gustafson, Deborah; Young, Mary; Anastos, Kathryn; Aouizerat, Bradley; Kim, Arthur Y.; Lauer, Georg; Thomas, David L.; Duggal, Priya

    2016-01-01

    Inflammasomes are multi-protein complexes integrating pathogen-triggered signaling leading to the generation of pro-inflammatory cytokines, including interleukin-18 (IL-18). Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV) infections are associated with elevated IL-18, suggesting inflammasome activation. However, there is marked person-to-person variation in the inflammasome response to HCV and HIV. We hypothesized that host genetics may explain this variation. To test this, we analyzed the associations of plasma IL-18 levels and polymorphisms in 10 genes in the inflammasome cascade. 1538 participants with active HIV and/or HCV infection in 3 ancestry groups are included. Samples were genotyped using the Illumina Omni 1-quad and Omni 2.5 arrays. Linear regression analyses were performed to test the association of variants with logIL-18 including HCV and HIV infection status and HIV-RNA, in each ancestry group and then meta-analyzed. Eleven highly correlated SNPs (r2=0.98-1) in the IL18-BCO2 region were significantly associated with logIL-18; Each T allele of rs80011693 confers a decrease of 0.06 log pg/mL of IL-18 after adjusting for covariates (rs80011693; rs111311302 β=-0.06, P-value=2.7×10-4). In conclusion, genetic variation in IL18 is associated with IL-18 production in response to HIV and HCV infection and may explain variability in the inflammatory outcomes of chronic viral infections. PMID:28300059

  6. Genetic basis for variation in plasma IL-18 levels in persons with chronic hepatitis C virus and human immunodeficiency virus-1 infections.

    PubMed

    Vergara, C; Thio, C; Latanich, R; Cox, A L; Kirk, G D; Mehta, S H; Busch, M; Murphy, E L; Villacres, M C; Peters, M G; French, A L; Golub, E; Eron, J; Lahiri, C D; Shrestha, S; Gustafson, D; Young, M; Anastos, K; Aouizerat, B; Kim, A Y; Lauer, G; Thomas, D L; Duggal, P

    2017-03-01

    Inflammasomes are multi-protein complexes integrating pathogen-triggered signaling leading to the generation of pro-inflammatory cytokines including interleukin-18 (IL-18). Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections are associated with elevated IL-18, suggesting inflammasome activation. However, there is marked person-to-person variation in the inflammasome response to HCV and HIV. We hypothesized that host genetics may explain this variation. To test this, we analyzed the associations of plasma IL-18 levels and polymorphisms in 10 genes in the inflammasome cascade. About 1538 participants with active HIV and/or HCV infection in three ancestry groups are included. Samples were genotyped using the Illumina Omni 1-quad and Omni 2.5 arrays. Linear regression analyses were performed to test the association of variants with log IL-18 including HCV and HIV infection status, and HIV RNA in each ancestry group and then meta-analyzed. Eleven highly correlated single-nucleotide polymorphisms (r(2)=0.98-1) in the IL-18-BCO2 region were significantly associated with log IL-18; each T allele of rs80011693 confers a decrease of 0.06 log pg ml(-1) of IL-18 after adjusting for covariates (rs80011693; rs111311302 β=-0.06, P-value=2.7 × 10(-4)). In conclusion, genetic variation in IL-18 is associated with IL-18 production in response to HIV and HCV infection, and may explain variability in the inflammatory outcomes of chronic viral infections.

  7. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    SciTech Connect

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung; Park, Yoorim; Bang, Jung-Wook; Kim, Tae Sung; Park, Hyunjeong; Kim, Cherl-hyun; Yang, Yool-hee; Bang, Sa Ik; Cho, Daeho

    2008-09-12

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-{gamma} inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-{gamma} production, we measured IL-18-induced IFN-{gamma} production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-{gamma} expression was blocked by SKI pre-treatment in both mRNA and protein levels. In addition, the increased IFN-{gamma} production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-{gamma} production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-{gamma} production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-{gamma} production via p38 MAPK.

  8. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release.

    PubMed

    Pillon, Nicolas J; Chan, Kenny L; Zhang, Shitian; Mejdani, Marios; Jacobson, Maya R; Ducos, Alexandre; Bilan, Philip J; Niu, Wenyan; Klip, Amira

    2016-11-01

    Obesity is associated with metabolic tissue infiltration by monocyte-derived macrophages. Saturated fatty acids contribute to proinflammatory gene induction in tissue-embedded immune cells. However, it is unknown how circulating monocytes, the macrophage precursors, react to high-fat environments. In macrophages, saturated fatty acids activate inflammatory pathways and, notably, prime caspase-associated inflammasomes. Inflammasome-activated IL-1β contributes to type 2 diabetes. We hypothesized that 1) human monocytes from obese patients show caspase activation, and 2) fatty acids trigger this response and consequent release of IL-1β/IL-18. Human peripheral blood monocytes were sorted by flow cytometry, and caspase activity was measured with a FLICA dye-based assay. Blood monocytes from obese individuals exhibited elevated caspase activity. To explore the nature and consequence of this activity, human THP1 monocytes were exposed to saturated or unsaturated fatty acids. Caspase activity was revealed by isoform-specific cleavage and enzymatic activity; cytokine expression/release was measured by qPCR and ELISA. Palmitate, but not palmitoleate, increased caspase activity in parallel to the release of IL-1β and IL-18. Palmitate induced eventual monocyte cell death with features of pyroptosis (an inflammation-linked cell death program involving caspase-4/5), scored through LDH release, vital dye influx, cell volume changes, and nuclear morphology. Notably, selective gene silencing or inhibition of caspase-4/5 reduced palmitate-induced release of IL-1β and IL-18. In summary, monocytes from obese individuals present elevated caspase activity. Mechanistically, palmitate activates a pyroptotic program in monocytes through caspase-4/5, causing inflammatory cytokine release, additional to inflammasomes. These caspases represent potential, novel, therapeutic targets to taper obesity-associated inflammation. Copyright © 2016 the American Physiological Society.

  9. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18–dependent activation

    PubMed Central

    Loh, Liyen; Wang, Zhongfang; Sant, Sneha; Koutsakos, Marios; Jegaskanda, Sinthujan; Liu, Ligong; Fairlie, David P.; Crowe, Jane; Rossjohn, Jamie; Xu, Jianqing; Doherty, Peter C.; Kedzierska, Katherine

    2016-01-01

    Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to elicit potent immunity to a broad range of bacteria, mainly via the rapid production of inflammatory cytokines. Whether MAIT cells contribute to antiviral immunity is less clear. Here we asked whether MAIT cells produce cytokines/chemokines during severe human influenza virus infection. Our analysis in patients hospitalized with avian H7N9 influenza pneumonia showed that individuals who recovered had higher numbers of CD161+Vα7.2+ MAIT cells in peripheral blood compared with those who succumbed, suggesting a possible protective role for this lymphocyte population. To understand the mechanism underlying MAIT cell activation during influenza, we cocultured influenza A virus (IAV)-infected human lung epithelial cells (A549) and human peripheral blood mononuclear cells in vitro, then assayed them by intracellular cytokine staining. Comparison of influenza-induced MAIT cell activation with the profile for natural killer cells (CD56+CD3−) showed robust up-regulation of IFNγ for both cell populations and granzyme B in MAIT cells, although the individual responses varied among healthy donors. However, in contrast to the requirement for cell-associated factors to promote NK cell activation, the induction of MAIT cell cytokine production was dependent on IL-18 (but not IL-12) production by IAV-exposed CD14+ monocytes. Overall, this evidence for IAV activation via an indirect, IL-18–dependent mechanism indicates that MAIT cells are protective in influenza, and also possibly in any human disease process in which inflammation and IL-18 production occur. PMID:27543331

  10. Regulation of development of CD56 bright CD11c + NK-like cells with helper function by IL-18.

    PubMed

    Li, Wen; Okuda, Akico; Yamamoto, Hideyuki; Yamanishi, Kyosuke; Terada, Nobuyuki; Yamanishi, Hiromichi; Tanaka, Yoshimasa; Okamura, Haruki

    2013-01-01

    Human γδ T cells augment host defense against tumors and infections, and might have a therapeutic potential in immunotherapy. However, mechanism of γδ T cell proliferation is unclear, and therefore it is difficult to prepare sufficient numbers of γδ T cells for clinical immunotherapy. Recently, natural killer (NK)-like CD56(bright)CD11c(+) cells were shown to promote the proliferation of γδ T cells in an IL-18-dependent manner. In this study, we demonstrated that the NK-like CD56(bright)CD11c(+) cells could directly interact with γδ T cells to promote their sustained expansion, while conventional dendritic cells (DCs), IFN-α-induced DCs, plasmacytoid DCs or monocytes did not. We also examined the cellular mechanism underlying the regulation of CD56(bright)CD11c(+) cells. CD14(+) monocytes pre-incubated with IL-2/IL-18 formed intensive interactions with CD56(int)CD11c(+) cells to promote their differentiation to CD56(bright)CD11c(+) cells with helper function. The development of CD56(bright)CD11c(+) cells was suppressed in an IFN-α dependent manner. These results indicate that CD14(+) monocytes pretreated with IL-2/IL-18, but neither DCs nor monocytes, play a determining role on the development and proliferation of CD56(bright)CD11c(+) cells, which in turn modulate the expansion of γδ T cells. CD56(bright)CD11c(+) NK-like cells may be a novel target for immunotherapy utilizing γδ T cells, by overcoming the limitation of γδ T cells proliferation.

  11. IL-37 requires IL-18Rα and SIGIRR/IL-1R8 to diminish allergic airway inflammation in mice.

    PubMed

    Lunding, L; Webering, S; Vock, C; Schröder, A; Raedler, D; Schaub, B; Fehrenbach, H; Wegmann, M

    2015-04-01

    Interleukin (IL) 37 has been described as a negative regulator of innate immunity, as it reduces the activation and cytokine production of different innate immune cells. Recently, results from the CLARA childhood asthma cohort suggested an implication of IL-37 for human asthma pathogenesis. This study aimed to investigate the effects of IL-37 on allergic airway inflammation in a mouse model of experimental asthma. Peripheral blood mononuclear cells (PBMCs) of children were cultured for 48 h (anti-CD3/anti-CD28 stimulation or unstimulated), and IL-37 concentrations in supernatants were determined. Wild-type, IL-18Rα-deficient ((-/-) ), and SIGIRR(-/-) C57BL/6 mice were sensitized to ovalbumin (OVA) and challenged with OVA aerosol to induce acute experimental asthma, and IL-37 was applied intranasally prior to each OVA challenge. Airway hyper-responsiveness (AHR), airway inflammation, cytokine levels in broncho-alveolar lavage fluid, and mucus production were determined. IL-37 production of human PBMCs was significantly lower in allergic asthmatics vs healthy children. In wild-type mice, intranasal administration of IL-37 ablated allergic airway inflammation as well as cytokine production and subsequently diminished the hallmarks of experimental asthma including mucus hyperproduction and AHR. In contrast, local application of IL-37 produced none of these effects in mice lacking either IL18Rα or SIGIRR/IL-1R8. This study demonstrates that IL-37 is able to ablate a TH2 cell-directed allergic inflammatory response and the hallmarks of experimental asthma in mice, suggesting that IL-37 may be critical for asthma pathogenesis. Furthermore, these data suggest a mode of action of IL-37 that involves IL18Rα as well as the orphan receptor SIGIRR/IL-1R8. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Thrombospondin-1 (TSP-1), a new bone morphogenetic protein-2 and -4 (BMP-2/4) antagonist identified in pituitary cells.

    PubMed

    Sallon, Céline; Callebaut, Isabelle; Boulay, Ida; Fontaine, Joel; Logeart-Avramoglou, Delphine; Henriquet, Corinne; Pugnière, Martine; Cayla, Xavier; Monget, Philippe; Harichaux, Grégoire; Labas, Valérie; Canepa, Sylvie; Taragnat, Catherine

    2017-09-15

    Bone morphogenetic proteins (BMPs) regulate diverse cellular responses during embryogenesis and in adulthood including cell differentiation, proliferation, and death in various tissues. In the adult pituitary, BMPs participate in the control of hormone secretion and cell proliferation, suggesting a potential endocrine/paracrine role for BMPs, but some of the mechanisms are unclear. Here, using a bioactivity test based on embryonic cells (C3H10T1/2) transfected with a BMP-responsive element, we sought to determine whether pituitary cells secrete BMPs or BMP antagonists. Interestingly, we found that pituitary-conditioned medium contains a factor that inhibits action of BMP-2 and -4. Combining surface plasmon resonance and high-resolution mass spectrometry helped pinpoint this factor as thrombospondin-1 (TSP-1). Surface plasmon resonance and co-immunoprecipitation confirmed that recombinant human TSP-1 can bind BMP-2 and -4 and antagonize their effects on C3H10T1/2 cells. Moreover, TSP-1 inhibited the action of serum BMPs. We also report that the von Willebrand type C domain of TSP-1 is likely responsible for this BMP-2/4-binding activity, an assertion based on sequence similarity that TSP-1 shares with the von Willebrand type C domain of Crossveinless 2 (CV-2), a BMP antagonist and member of the chordin family. In summary, we identified for the first time TSP-1 as a BMP-2/-4 antagonist and presented a structural basis for the physical interaction between TSP-1 and BMP-4. We propose that TSP-1 could regulate bioavailability of BMPs, either produced locally or reaching the pituitary via blood circulation. In conclusion, our findings provide new insights into the involvement of TSP-1 in the BMP-2/-4 mechanisms of action. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Regulation of thrombospondin-1 expression in alternatively activated macrophages and adipocytes: role of cellular cross talk and omega-3 fatty acids.

    PubMed

    Finlin, Brian S; Zhu, Beibei; Starnes, Catherine P; McGehee, Robert E; Peterson, Charlotte A; Kern, Philip A

    2013-09-01

    Thrombospondin-1 (TSP-1) expression in human adipose positively correlates with body mass index and may contribute to adipose dysfunction by activating transforming growth factor-β and/or inhibiting angiogenesis. Our objective was to determine how TSP-1 is regulated in adipocytes and polarized macrophages using a coculture system and to determine whether fatty acids, including the ω-3 fatty acid docosahexaenoic acid (DHA), regulate TSP-1 expression. Coculture of M1, M2a or M2c macrophages with adipocytes induced TSP-1 gene expression in adipocytes (from 2.4- to 4.2-fold, P<.05), and adipocyte coculture induced TSP-1 gene expression in M1 and M2c macrophages (M1: 8.6-fold, M2c: 26-fold; P<.05). TSP-1 protein levels in the shared media of adipocytes and M2c cells were also strongly induced by coculture (>10-fold, P<.05). DHA treatment during the coculture of adipocytes and M2c macrophages potently inhibited the M2c macrophage TSP-1 mRNA level (97% inhibition, P<.05). Adipocyte coculture induced interleukin (IL)-10 expression in M2c macrophages (10.1-fold, P<.05), and this increase in IL-10 mRNA expression was almost completely blocked with DHA treatment (96% inhibition, P<.05); thus, IL-10 expression closely paralleled TSP-1 expression. Since IL-10 has been shown to regulate TSP-1 in other cell types, we reduced IL-10 expression with siRNA in the M2c cells and found that this caused TSP-1 to be reduced in response to adipocyte coculture by 60% (P<.05), suggesting that IL-10 regulates TSP-1 expression in M2c macrophages. These results suggest that supplementation with dietary ω-3 fatty acids could potentially be beneficial to adipose tissue in obesity by reducing TSP-1 and fibrosis.

  14. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo.

    PubMed

    Yang, Feiya; Jiang, Xian; Song, Liming; Wang, Huiping; Mei, Zhu; Xu, Zhiqing; Xing, Nianzeng

    2016-03-01

    The rapid growth, morbidity and mortality of prostate cancer, and the lack of effective treatment have attracted great interests of researchers to find novel cancer therapies aiming to inhibit angiogenesis and tumor growth. Quercetin is a flavonoid compound that widely exists in the nature. Our previous study preliminarily demonstrated that quercetin effectively inhibited human prostate cancer cell xenograft tumor growth by inhibiting angiogenesis. Thrombospondin-1 (TSP-1) is the first reported endogenous anti-angiogenic factor that can inhibit angiogenesis and tumorigenesis. However, the relationship between quercetin inhibiting angiogenesis and TSP-1 upregulation in prostate cancer has not been determined. Thus, we explored the important role of TSP-1 upregulation in reducing angiogenesis and anti-prostate cancer effect of quercetin both in vitro and in vivo for the first time. After the selected doses were used for a certain time, quercetin i) significantly inhibited PC-3 and human umbilical vein endothelial cells (HUVECs) proliferation, migration and invasion in a dose-dependent manner; ⅱ) effectively inhibited prostate cancer PC-3 cell xenograft tumor growth by 37.5% with 75 mg/kg as compared to vehicle control group, more effective than 25 (22.85%) and 50 mg/kg (29.6%); ⅲ) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; ⅳ) greatly reduced angiogenesis and led to higher TSP-1 protein and mRNA expression both in vitro and in vivo in a dose-dependent manner. Therefore, quercetin could increase TSP-1 expression to inhibit angiogenesis resulting in antagonizing prostate cancer PC-3 cell and xenograft tumor growth. The present study can lay a good basis for the subsequent concrete mechanism study and raise the possibility of applying quercetin to clinical for human prostate cancer in the near future.

  15. Bystander senescence in human peritoneal mesothelium and fibroblasts is related to thrombospondin-1-dependent activation of transforming growth factor-β1.

    PubMed

    Mikuła-Pietrasik, Justyna; Sosińska, Patrycja; Janus, Jędrzej; Rubiś, Błażej; Brewińska-Olchowik, Marta; Piwocka, Katarzyna; Książek, Krzysztof

    2013-09-01

    Senescence bystander effect refers to a phenomenon in which senescent cells elicit the development of senescence phenotype in their nearby young counterparts. In this paper we examined the mechanism of senescence bystander effect triggered by senescent human peritoneal mesothelial cells (HPMCs) in proliferating HPMCs and peritoneal fibroblasts (HPFBs). The results showed that conditioned medium (CM) derived from senescent HPMCs elicited a senescence response (growth inhibition coupled with increased expression of senescence-associated β-galactosidase and accumulation of histone γ-H2A.X) in either early-passage HPMCs or HPFBs. Samples of CM from senescent HPMCs contained increased amounts of numerous soluble mediators of which only transforming growth factor-β1 (TGF-β1) was able to induce senescence phenotype in the both types of peritoneal cells, likely through an induction of reactive oxygen species (ROS) and p38 mitogen-activated protein kinase (MAPK). At the same time, senescent HPMCs released increased amounts of thrombospondin-1 (TSP-1), a major activator of TGF-β1. Significantly, TSP-1 itself was unable to induce senescence phenotype in HPMCs or in HPFBs. The experiments employing anti-TSP-1 antibodies and specific TSP-1 blocking peptide revealed that neutralization of TSP-1 in CM prevented TGF-β1-dependent development of senescence phenotype. Collectively, our findings indicate that senescent HPMCs exhibit senescence-promoting activity toward neighboring young cells (HPMCs and HPFBs), and this effect is, at least partly, related to TSP-1-dependent activation and further ROS- and p38 MAPK-related activity of TGF-β1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Modification of EGF-Like Module 1 of Thrombospondin-1, an Animal Extracellular Protein, by O-Linked N-Acetylglucosamine

    PubMed Central

    Hoffmann, Brian R.; Liu, Yuanyuan; Mosher, Deane F.

    2012-01-01

    Thrombospondin-1 (TSP-1) is known to be subject to three unusual carbohydrate modifications: C-mannosylation, O-fucosylation, and O-glucosylation. We now describe a fourth: O-β-N-acetylglucosaminylation. Previously, O-β-N-acetylglucosamine (O-β-GlcNAc) was found on a threonine in the loop between the fifth and sixth cysteines of the 20th epidermal growth factor (EGF)-like module of Drosophila Notch. A BLAST search based on the Drosophila Notch loop sequence identified a number of human EGF-like modules that contain a similar sequence, including EGF-like module 1 of TSP-1 and its homolog, TSP-2. TSP-1, which has a potentially modifiable serine in the loop, reacted in immuno-blots with the CTD110.6 anti-O-GlcNAc antibody. Antibody reactivity was diminished by treatment of TSP-1 with β-N-acetylhexosaminidase. TSP-2, which lacks a potentially modifiable serine/threonine in the loop, did not react with CTD110.6. Analysis of tandem modules of TSP-1 localized reactivity of CTD110.6 to EGF-like module 1. Top-down mass spectrometric analysis of EGF-like module 1 demonstrated the expected modifications with glucose (+162 Da) and xylose (+132 Da) separately from modification with N-acetyl hexosamine (+203 Da). Mass spectrometric sequence analysis localized the +203-Da modification to Ser580 in the sequence 575CPPGYSGNGIQC586. These results demonstrate that O-β-N-acetylglucosaminylation can occur on secreted extracellular matrix proteins as well as on cell surface proteins. PMID:22403705

  17. Genetic analysis of innate immunity in Behcet’s disease identifies an association with IL-37 and IL-18RAP

    PubMed Central

    Tan, Handan; Deng, Bolin; Yu, Hongsong; Yang, Yi; Ding, Lin; Zhang, Qi; Qin, Jieying; Kijlstra, Aize; Chen, Rui; Yang, Peizeng

    2016-01-01

    Interleukin-1 (IL-1) and the IL-1 receptor (IL-1R) family play an important role in the pathogenesis of inflammatory diseases. This study aimed to investigate the association between single nucleotide polymorphisms (SNP) of IL-1 and IL-1R family genes with Vogt-Koyanagi-Harada (VKH) and Behcet’s disease (BD) in Han Chinese. The case-control study was divided into two stages and included 419 VKH cases, 1063 BD cases and 1872 healthy controls. The MassARRAY platform (Sequenom), iPLEX Gold Assay and TaqMan SNP assays were used to score genotypes of 24 SNPs. The expression of IL-37 and IL-18Rap was measured by ELISA and real-time PCR in genotyped healthy individuals. A significantly lower frequency of the AG genotype, and a higher frequency of the GG genotype and G allele of IL-37/rs3811047 were observed in BD as compared to controls. AA genotype and A allele frequency of IL-18RAP/rs2058660 was significantly decreased in BD as compared to controls. Functional studies performed in healthy controls showed that rs3811047 AG genotype carriers had a higher IL-37 gene expression in peripheral blood mononuclear cells (PBMCs) than GG carriers. GG carriers showed a higher cytokine expression as compared to AG carriers. No association was detected between the tested SNPs and VKH. PMID:27775096

  18. Genetic analysis of innate immunity in Behcet's disease identifies an association with IL-37 and IL-18RAP.

    PubMed

    Tan, Handan; Deng, Bolin; Yu, Hongsong; Yang, Yi; Ding, Lin; Zhang, Qi; Qin, Jieying; Kijlstra, Aize; Chen, Rui; Yang, Peizeng

    2016-10-24

    Interleukin-1 (IL-1) and the IL-1 receptor (IL-1R) family play an important role in the pathogenesis of inflammatory diseases. This study aimed to investigate the association between single nucleotide polymorphisms (SNP) of IL-1 and IL-1R family genes with Vogt-Koyanagi-Harada (VKH) and Behcet's disease (BD) in Han Chinese. The case-control study was divided into two stages and included 419 VKH cases, 1063 BD cases and 1872 healthy controls. The MassARRAY platform (Sequenom), iPLEX Gold Assay and TaqMan SNP assays were used to score genotypes of 24 SNPs. The expression of IL-37 and IL-18Rap was measured by ELISA and real-time PCR in genotyped healthy individuals. A significantly lower frequency of the AG genotype, and a higher frequency of the GG genotype and G allele of IL-37/rs3811047 were observed in BD as compared to controls. AA genotype and A allele frequency of IL-18RAP/rs2058660 was significantly decreased in BD as compared to controls. Functional studies performed in healthy controls showed that rs3811047 AG genotype carriers had a higher IL-37 gene expression in peripheral blood mononuclear cells (PBMCs) than GG carriers. GG carriers showed a higher cytokine expression as compared to AG carriers. No association was detected between the tested SNPs and VKH.

  19. IL-15 dependent induction of IL-18 secretion as a feedback mechanism controlling human MAIT-cell effector functions.

    PubMed

    Sattler, Arne; Dang-Heine, Chantip; Reinke, Petra; Babel, Nina

    2015-08-01

    Mucosal-associated invariant T (MAIT) cells are characterized by an invariant TCRVα7.2 chain recognizing microbial vitamin B metabolites presented by the MHC-Ib molecule MR1. They are mainly detectable in the CD8(+) and CD8(-) CD4(-) "double negative" T-cell compartments of mammals and exhibit both Th1- and Th17-associated features. As MAIT cells show a tissue-homing phenotype and operate at mucosal surfaces with myriads of pathogenic encounters, we wondered how IL-15, a multifaceted cytokine being part of the intestinal mucosal barrier, impacts on their functions. We demonstrate that in the absence of TCR cross-linking, human MAIT cells secrete IFN-γ, increase perforin expression and switch on granzyme B production in response to IL-15. As this mechanism was dependent on the presence of CD14(+) cells and sensitive to IL-18 blockade, we identified IL-15 induced IL-18 production by monocytes as an inflammatory, STAT5-dependent feedback mechanism predominantly activating the MAIT-cell population. IL-15 equally affects TCR-mediated MAIT-cell functions since it dramatically amplifies bacteria-induced IFN-γ secretion, granzyme production, and cytolytic activity at early time points, an effect being most pronounced under suboptimal TCR stimulation conditions. Our data reveal a new quality of IL-15 as player in an inflammatory cytokine network impacting on multiple MAIT-cell functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Behavioral and genetic investigations of low exploratory behavior in Il18r1(-/-) mice: we can't always blame it on the targeted gene.

    PubMed

    Eisener-Dorman, Amy F; Lawrence, David A; Bolivar, Valerie J

    2010-10-01

    The development of gene-targeting technologies has enabled research with immune system-related knockout mouse strains to advance our understanding of how cytokines and their receptors interact and influence a number of body systems, including the central nervous system (CNS). A critical issue when we are interpreting phenotypic data from these knockout strains is the potential role of genes other than the targeted one. Although many of the knockout strains have been made congenic on a C57BL/6 (B6) genetic background, there remains a certain amount of genetic material from the129 substrain that was used in the development of these strains. This genetic material could result in phenotypes incorrectly attributed to the targeted gene. We recently reported low-activity behavior in Il10(-/-) mice that was linked to this genetic material rather than the targeted gene itself. In the current study we confirm the generalizability of those earlier findings, by assessing behavior in Il18(-/-) and Il18r1(-/-) knockout mice. We identified low activity and high anxiety-like behaviors in Il18r1(-/-) mice, whereas Il18(-/-) mice displayed little anxiety-like behavior. Although Il18r1(-/-) mice are considered a congenic strain, we have identified substantial regions of 129P2-derived genetic material not only flanking the ablated Il18r1 on Chromosome 1, but also on Chromosomes 4, 5, 8, 10, and 14. Our studies suggest that residual 129-derived gene(s), rather than the targeted Il18r1 gene, is/are responsible for the low level of activity seen in the Il18r1(-/-) mice. Mapping studies are necessary to identify the gene or genes contributing to the low-activity phenotype.

  1. Behavioral and genetic investigations of low exploratory behavior in Il18r1−/− mice: We can’t always blame it on the targeted gene

    PubMed Central

    Eisener-Dorman, Amy F.; Lawrence, David A.; Bolivar, Valerie J.

    2010-01-01

    The development of gene targeting technologies has enabled research with immune system-related knockout mouse strains to advance our understanding of how cytokines and their receptors interact and influence a number of body systems, including the central nervous system. A critical issue when we are interpreting phenotypic data from these knockout strains is the potential role of genes other than the targeted one. Although many of the knockout strains have been made congenic on a C57BL/6 (B6) genetic background, there remains a certain amount of genetic material from the129 substrain that was used in the development of these strains. This genetic material could result in phenotypes incorrectly attributed to the targeted gene. We recently reported low activity behavior in Il10−/− mice that was linked to this genetic material rather than the targeted gene itself. In the current study we confirm the generalizability of those earlier findings, by assessing behavior in Il18−/− and Il18r1−/− knockout mice. We identified low activity and high anxiety-like behaviors in Il18r1−/− mice, whereas Il18−/− mice displayed little anxiety-like behavior. Although Il18r1−/− mice are considered a congenic strain, we have identified substantial regions of 129P2-derived genetic material not only flanking the ablated Il18r1 on Chromosome 1, but also on Chromosomes 4, 5, 8, 10, and 14. Our studies suggest that residual 129-derived gene(s), rather than the targeted Il18r1 gene, is/are responsible for the low level of activity seen in the Il18r1−/− mice. Mapping studies are necessary to identify the gene or genes contributing to the low activity phenotype. PMID:20580925

  2. Interleukin-18 and IL18 -607A/C and -137G/C gene polymorphisms in patients with penicillin allergy.

    PubMed

    Ming, L; Wen, Q; Qiao, H-L; Dong, Z-M

    2011-01-01

    This study investigated the association between polymorphisms (-607A/C and -137G/C) in the promoter region of the IL18 gene (which encodes interleukin [IL]-18) and serum levels of IL-18, using standard genotyping techniques (sequence specific primer-polymerase chain reaction) and an enzyme-linked immunosorbent assay, respectively, in patients allergic to penicillin. A higher frequency of A alleles and the AA genotype was found at position -607A/C in patients allergic to penicillin than in control subjects. For the -137G/C position, the C allele was more frequent in patients allergic to penicillin than in control subjects. Haplotype analysis showed that the -607A/-137C haplotype was more frequent in patients allergic to penicillin than in control subjects. The patients had a significantly higher serum IL-18 level than the control subjects. In conclusion, IL18 -607A/C and -137G/C promoter polymorphisms are associated with susceptibility to penicillin allergy. In particular, the -137G/C position appears to play an important role in IL18 expression.

  3. A novel cancer vaccine strategy with combined IL-18 and HSV-TK gene therapy driven by the hTERT promoter in a murine colorectal cancer model.

    PubMed

    Higashi, Kosuke; Hazama, Shoichi; Araki, Atsuhiro; Yoshimura, Kiyoshi; Iizuka, Norio; Yoshino, Shigefumi; Noma, Takafumi; Oka, Masaaki

    2014-10-01

    A therapeutic vaccine against minimal residual cancer cells is needed for the treatment of patients with colorectal cancer. Several gene therapy studies have revealed that the combination of a suicide gene and cytokine gene might induce effective antitumor immunity. In this study, we constructed an interleukin (IL)-18 and herpes simplex virus-thymidine kinase (HSV-TK) expression vector driven by the human telomerase reverse transcriptase (hTERT) promoter to study the efficacy of combination gene therapy with IL-18 and the HSV-TK suicide gene. Low immunogenic colon 26 cells were used for transfection and inoculation into syngeneic BALB/c mice. Large established tumors of colon 26 transfectants expressing IL-18 and HSV-TK driven by the hTERT promoter were completely eradicated after GCV administration in syngeneic BALB/c mice. Immunohistochemical analysis at the tumor rejection sites revealed enormous infiltrations of CD8+ T lymphocytes as well as CD4+ T lymphocytes and CD11b+ monocytes. Moreover, established distant tumors were completely eradicated by vaccination with the IL-18 and HSV-TK transfectants in combination with GCV. These data suggest that the IL-18 and suicide gene therapy can elicit antitumor specific immunity. In conclusion, gene therapy with IL-18 and HSV-TK plasmid vector driven by the hTERT promoter may be useful for cancer vaccination.

  4. C-reactive protein induces interleukin-6 and thrombospondin-1 protein and mRNA expression through activation of nuclear factor-ĸB in HK-2 cells.

    PubMed

    Wang, Hai-rong; Chen, De-liang; Zhao, Mingming; Shu, Shao-wu; Xiong, Shi-xi; Gan, Xue-dong; Chao, Sheng-ping; Cao, Jian-lei

    2012-01-01

    Although C-reactive protein (CRP) is significantly increased in patients with diabetic nephropathy, whether CRP exerts direct proinflammatory effects on human renal tubular epithelial cells (HK-2 cells) is still unclear. HK-2 cells were incubated with purified CRP at clinically relevant concentrations (0, 5, 10, 20 and 40 μg/ml). The protein and transcript levels of thrombospondin-1 (TSP-1) and interleukin-6 (IL-6) were determined by ELISA and RT-PCR. Phosphorylation of p38MAPK was investigated through Western blot analysis in HK-2 cells induced by CRP. The activation of nuclear factor-kappa B (NF-κB) was studied via EMSA. A specific p38MAPK inhibitor (SB203580) and an NF-κB inhibitor (PDTC; pyrrolidine dithiocarbamate) were used to analyze the signal transduction in CRP induction. To explore the direct or indirect role of CRP in HK-2 cells, IL-6 or TSP-1 antibodies were used. The expression of IL-6, TSP-1 and transforming growth factor-β(1 )(TGF-β(1)) were determined through Western blot analysis in HK-2 cells. In HK-2 cells, purified CRP significantly induced protein release and mRNA expression of IL-6 and TSP-1 in a dose- and time-dependent manner. TGF-β(1) protein was overexpressed in HK-2 cells induced by CRP, which cannot be inhibited by IL-6 or TSP-1 antibodies. CRP triggered phosphorylation of p38MAPK and activation of NF-κB-mediated signal transduction. SB203580 (5 μM) and PDTC (50 μM) efficiently suppressed those effects of CRP in HK-2 cells. CRP induces IL-6 and TSP-1 protein release and mRNA expression from HK-2 cells via activation of the p38MAPK and NF-κB signaling pathways and TGF-β(1) was highly expressed in HK-2 cells, suggesting that CRP plays an important role in the propagation and prolongation of inflammation in renal fibrosis. Copyright © 2012 S. Karger AG, Basel.

  5. Association of thrombospondin-1 with the actin cytoskeleton of human thrombin-activated platelets through an alphaIIbbeta3- or CD36-independent mechanism.

    PubMed Central

    Saumet, Anne; Jesus, Nando de; Legrand, Chantal; Dubernard, Véronique

    2002-01-01

    Thrombospondin-1 (TSP-1) is an adhesive glycoprotein which, when secreted from alpha-granules of activated platelets, can bind to the cell surface and participate in platelet aggregate formation. In this study, we show that thrombin activation leads to the rapid and specific association of a large amount of secreted alpha-granular TSP-1 with the actin cytoskeleton. This cytoskeletal association of TSP-1 was correlated with platelet secretion, but not aggregation, and was inhibited by cytochalasin D, an inhibitor of actin polymerization. Association of TSP-1 with the actin cytoskeleton was mediated by membrane receptors, as shown by using MAII, a TSP-1-specific monoclonal antibody that inhibited both TSP-1 surface binding to activated platelets and cytoskeletal association. TSP-1 and its potential membrane receptors, e.g. alphaIIbbeta3 integrin, CD36 and CD47, concomitantly associated with the actin cytoskeleton. However, studies on platelets from a patient with type I Glanzmann's thrombasthenia lacking alphaIIbbeta3 and another with barely detectable CD36 showed normal TSP-1 surface expression and association with the actin cytoskeleton. Likewise, no involvement of CD47 in TSP-1 association with the actin cytoskeleton could be inferred from experiments with control platelets using the function-blocking anti-CD47 antibody B6H12. Finally, assembly of signalling complexes, as observed through translocation of tyrosine-phosphorylated proteins and kinases to the actin cytoskeleton, was found to occur in concert with cytoskeletal association of TSP-1, in control platelets as well as in thrombasthenic and CD36-deficient platelets. Our results imply a role for the actin cytoskeleton in the membrane-surface expression process of TSP-1 molecules and suggest a possible coupling of TSP-1 receptors to signalling events occurring independently of alphaIIbbeta3 or CD36. These results provide new insights into the link between surface-bound TSP-1 and the contractile actin

  6. Immune responses in pigs induced by recombinant DNA vaccine co-expressing swine IL-18 and membrane protein of porcine reproductive and respiratory syndrome virus.

    PubMed

    Zhang, Xiaodong; Wang, Xiaoli; Mu, Lianzhi; Ding, Zhuang

    2012-01-01

    In this study, two DNA vaccines, which express the membrane (M) protein of porcine respiratory and reproductive syndrome virus (PRRSV) (pEGFP-M) and co-express both M and swine IL-18 (pEGFP-IL18-M), were constructed and their abilities to induce humoral and cellular responses in piglets were comparatively evaluated. Experimental results showed that both recombinant DNA vaccines could not elicit neutralizing antibodies in the immunized piglets. However, both DNA vaccines elicited Th1-biased cellular immune responses. Notably, pigs immunized with the plasmid pEGFP-IL18-M developed significantly higher levels of IFN-γ and IL-2 production response and stronger specific T-lymphocyte proliferation response than the pigs inoculated with the plasmids pEGFP-M and pEGFP-IL18 (P < 0.05). These results illustrated that co-expression of M and IL-18 proteins could significantly improve the potency of DNA vaccination on the activation of vaccine-induced virus-specific cell-mediated immune responses in pigs, which may be used as a strategy to develop a new generation of vaccines against highly pathogenic PRRSV.

  7. IL-37 inhibits IL-18-induced tubular epithelial cell expression of pro-inflammatory cytokines and renal ischemia-reperfusion injury.

    PubMed

    Yang, Yunbo; Zhang, Zhu-Xu; Lian, Dameng; Haig, Aaron; Bhattacharjee, Rabindra N; Jevnikar, Anthony M

    2015-02-01

    Cytokines and chemokines produced by tubular epithelial and infiltrating cells are critical to inflammation in renal ischemia-reperfusion injury. IL-37, a newly described IL-1 family member, inhibits IL-18-dependent pro-inflammatory cytokine production by its binding to IL-18 receptors and IL-18 binding protein. The potential role of IL-37 in renal ischemia-reperfusion injury is unknown. Here we found that exposure of tubular epithelial cells to exogenous IL-37 downregulated hypoxia and the IL-18-induced expression of TNFα, IL-6, and IL-1β. Importantly, human PT-2 tubular epithelial cells have inducible expression of IL-37. Moreover, pro-inflammatory cytokine expression was augmented in IL-37 mRNA-silenced tubular epithelial cells and inhibited by transfection with pCMV6-XL5-IL-37. In a mouse ischemic injury model, transgenic expression of human IL-37 inhibited kidney expression of TNFα, IL-6, and IL-1β and improved mononuclear cell infiltration, kidney injury, and function. Thus, human tubular epithelial cells express the IL-18 contra-regulatory protein IL-37 as an endogenous control mechanism to reduce inflammation. Augmenting kidney IL-37 may represent a novel strategy to suppress renal injury responses and promote kidney function after renal ischemic injury and transplantation.

  8. Immune Responses in Pigs Induced by Recombinant DNA Vaccine Co-Expressing Swine IL-18 and Membrane Protein of Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Zhang, Xiaodong; Wang, Xiaoli; Mu, Lianzhi; Ding, Zhuang

    2012-01-01

    In this study, two DNA vaccines, which express the membrane (M) protein of porcine respiratory and reproductive syndrome virus (PRRSV) (pEGFP-M) and co-express both M and swine IL-18 (pEGFP-IL18-M), were constructed and their abilities to induce humoral and cellular responses in piglets were comparatively evaluated. Experimental results showed that both recombinant DNA vaccines could not elicit neutralizing antibodies in the immunized piglets. However, both DNA vaccines elicited Th1-biased cellular immune responses. Notably, pigs immunized with the plasmid pEGFP-IL18-M developed significantly higher levels of IFN-γ and IL-2 production response and stronger specific T-lymphocyte proliferation response than the pigs inoculated with the plasmids pEGFP-M and pEGFP-IL18 (P < 0.05). These results illustrated that co-expression of M and IL-18 proteins could significantly improve the potency of DNA vaccination on the activation of vaccine-induced virus-specific cell-mediated immune responses in pigs, which may be used as a strategy to develop a new generation of vaccines against highly pathogenic PRRSV. PMID:22754326

  9. Suppressive effect of modified arabinoxylan from rice bran (MGN-3) on D-galactosamine-induced IL-18 expression and hepatitis in rats.

    PubMed

    Zheng, Surina; Sanada, Hiroo; Dohi, Hirofumi; Hirai, Shizuka; Egashira, Yukari

    2012-01-01

    We investigated in this study the effect of modified arabinoxylan from rice bran (MGN-3) and its fractions on D-galactosamine (D-GalN)-induced IL-18 expression and hepatitis in rats. Male Wistar rats were pretreated with MGN-3 or fractions of the MGN-3 hydrolysate, or with saline 1 h before administering D-GalN (400 mg/kg B.W.). The serum transaminase activities, IL-18 mRNA expression level in the liver and IL-18 concentration in the serum were determined 24 h after injecting D-GalN. Both the oral and intraperitoneal administration of MGN-3 (20 mg/kg B.W.) alleviated D-GalN-induced hepatic injury under these experimental conditions. The low-molecular-weight fraction (LMW) of MGN-3 showed the strongest protective effect on D-GalN-induced liver injury, its main sugar component being glucose. Moreover, the D-GalN-induced IL-18 expression was significantly reduced by treating with MGN-3 and LMW. The results suggest that MGN-3 and LMW could provide significant protection against D-GalN liver injury, and that IL-18 might be involved in their protective influence.

  10. Microvascular abnormalities in capillaroscopy correlate with higher serum IL-18 and sE-selectin levels in patients with type 1 diabetes complicated by microangiopathy.

    PubMed

    Kuryliszyn-Moskal, Anna; Dubicki, Artur; Zarzycki, Wiesław; Zonnenberg, Anna; Górska, Maria

    2011-01-01

    Microvascular abnormalities are one of the most important causes of persistent diabetic complications. The aim of this study was to compare microvascular changes examined by nailfold capillaroscopy with serum concentrations of soluble E-selectin (sE-selectin) and IL-18 in type 1 diabetic patients with and without microangiopathy. Serum levels of sE-selectin and IL-18 were determined by an enzyme-linked immunosorbent assay in 106 patients with type 1 diabetes and in 40 healthy controls. All diabetic patients were evaluated by extensive clinical, laboratory and capillaroscopic studies. Morphological changes were observed by nailfold capillaroscopy in 86 out of 106 (81%) diabetic patients. Severe capillaroscopic changes were seen in 32 out of 54 (59%) patients with microangiopathy, but in only seven out of 52 (13%) patients without microangiopathy. Higher serum levels of sE-selectin (p < 0.001) and IL-18 (p < 0.05) were demonstrated in diabetic patients compared to controls. Significant differences of sE-selectin (p , 0.001) and IL-18 (p < 0.01) serum concentrations were observed between diabetic patients with microangiopathy and controls. Moreover, comparison between patients with and without microangiopathic complications showed a significantly higher capillaroscopic score and sE-selectin serum concentration in the group with microangiopathy (p < 0.001). Furthermore, diabetic patients with severe microvascular changes in capillaroscopy showed significantly higher IL-18 (p < 0.001) and sE-selectin (p < 0.05) serum levels than subgroups without changes or with mild abnormalities. Our findings suggest that abnormalities in nailfold capillaroscopy may reflect the extent of microvascular involvement and are associated with higher sE-selectin and IL-18 serum levels, as well as with microangiopathic complications in diabetic patients.

  11. Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles.

    PubMed

    Plomgaard, Peter; Penkowa, Milena; Pedersen, Bente K

    2005-01-01

    Skeletal muscle is now recognized as an endocrine organ with the capacity to produce signal peptides in response to muscle contractions. Here we demonstrate that resting healthy human muscles express cytokines in a fiber type specific manner. Human muscle biopsies from seven healthy young males were obtained from m. triceps, m. quadriceps vastus lateralis and m. soleus. Type I fibers contributed (mean +/- SE) 24.0 +/- 2.5% in triceps of total fibers, 51.3 +/- 2.4% in vastus and 84.9 +/- 22% in soleus. As expected, differences in the fiber type composition were accompanied by marked differences between the three muscles with regard to MHC I and MHC IIa mRNA expression. Immunohistochemistry demonstrated that tumor necrosis factor (TNF)-alpha and interleukin (IL)-18 were solely expressed by type II fibers, whereas the expression of IL-6 was more prominent in type I compared to type II fibers. The fiber type specificity was found in triceps, vastus and soleus indicating that the level of daily muscle activity did not influence basal cytokine expression. The specificity of cytokine expression in different muscle fiber types in healthy young males suggests that cytokines may play specific regulatory roles in normal physiology.

  12. IL-18, but not IL-12, induces production of IFN-γ in the immunosuppressive environment of HPV16 E7 transgenic hyperplastic skin.

    PubMed

    Gosmann, Christina; Frazer, Ian H; Mattarollo, Stephen R; Blumenthal, Antje

    2014-10-01

    IFN-γ has a central role in the defense against infections and cancer. More recently, however, IFN-γ has also been reported to have immunosuppressive effects in models of autoimmune disease, melanoma, and premalignant skin disease. Although IL-12 and IL-18 are critical inducers of IFN-γ during infection, the mechanisms that induce IFN-γ in an immunosuppressive context are unknown. Previously, we identified a key role for IFN-γ in mediating the suppression of antigen-specific immune responses in a transgenic mouse model of human papillomavirus (HPV)-associated epidermal hyperplasia, driven by the expression of the HPV16 E7 oncoprotein from a keratin 14 promoter (K14E7). We now demonstrate elevated production of IFN-γ, IL-18, and IL-12 by K14E7 transgenic skin compared with nontransgenic skin. IFN-γ in K14E7 transgenic skin was produced predominantly by CD8(+) and CD4(+) T cells, which were present in greater numbers in K14E7 transgenic skin. Production of IFN-γ in K14E7 skin required IL-18 but not IL-12. Our findings show that IL-18 contributes to inducing IFN-γ in an immunosuppressive cutaneous environment caused by viral oncogene-driven hyperplasia.

  13. IL-18 Is Involved in Eosinophil-Mediated Tumoricidal Activity against a Colon Carcinoma Cell Line by Upregulating LFA-1 and ICAM-1.

    PubMed

    Gatault, Solène; Delbeke, Marie; Driss, Virginie; Sarazin, Aurore; Dendooven, Arnaud; Kahn, Jean-Emmanuel; Lefèvre, Guillaume; Capron, Monique

    2015-09-01

    Eosinophils are multifunctional leukocytes that are involved in innate and adaptive immune responses through the expression of various receptors and mediators. Previously, we showed that human eosinophils and T cells shared cytotoxic activities against tumor cells that involved the γ-δ TCR and cell-cell contact. In this study, we investigated the molecules involved in eosinophil-tumor cell interactions. Given the role of IL-18 in cell adhesion and in protecting against colon cancer, we evaluated its role in eosinophil-mediated cytotoxicity against Colo-205, a human colon carcinoma cell line. We found that human eosinophils exerted dose- and time-dependent tumoricidal activity against Colo-205 cells. Neutralization of IL-18 significantly reduced eosinophil-mediated Colo-205 apoptosis and inhibited cell-cell adhesion. Moreover, addition of rIL-18 led to upregulation of CD11a and ICAM-1 adhesion molecules, which were involved in the contact between eosinophils and Colo-205 cells. Our results indicated that IL-18 was involved in the eosinophil-mediated death of Colo-205 by facilitating contact between effector and target cells. These data underscored the involvement of an additional mediator in eosinophil-mediated antitumor cytotoxicity. Our findings support existing evidence that eosinophils could play a beneficial role in the context of colon cancer.

  14. Squalene emulsion potentiates the adjuvant activity of the TLR4 agonist, GLA, via inflammatory caspases, IL-18, and IFN-γ.

    PubMed

    Desbien, Anthony L; Reed, Steven J; Bailor, Hilton R; Dubois Cauwelaert, Natasha; Laurance, John D; Orr, Mark T; Fox, Christopher B; Carter, Darrick; Reed, Steven G; Duthie, Malcolm S

    2015-02-01

    The synthetic TLR4 agonist glucopyranosyl lipid adjuvant (GLA) is a potent Th1-response-inducing adjuvant when formulated in a squalene oil-in-water emulsion (SE). While the innate signals triggered by TLR4 engagement are well studied, the contribution of SE remains unclear. To better understand the effect of SE on the adjuvant properties of GLA-SE, we compared the innate and adaptive immune responses elicited by immunization with different formulations: GLA without oil, SE alone or the combination, GLA-SE, in mice. Within the innate response to adjuvants, only GLA-SE displayed features of inflammasome activation, evidenced by early IL-18 secretion and IFN-γ production in memory CD8(+) T cells and neutrophils. Such early IFN-γ production was ablated in caspase-1/11(-/-) mice and in IL-18R1(-/-) mice. Furthermore, caspase-1/11 and IL-18 were also required for full Th1 CD4(+) T-cell induction via GLA-SE. Thus, we demonstrate that IL-18 and caspase-1/11 are components of the response to immunization with the TLR4 agonist/squalene oil-in-water based adjuvant, GLA-SE, providing implications for other adjuvants that combine oils with TLR agonists. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Interleukin-18 (IL-18) is equally expressed in inflammatory breast cancer and noninflammatory locally advanced breast cancer: A possible association with chemotherapy response.

    PubMed

    Aguiar, Marco Antonio Nasser; Wanderley, Carlos Wagner S; Nobre, Lívia Maria Soares; Alencar, Mateus Rolim Mendes; Saldanha, Maria do Perpétuo Socorro; Souza, Alceu Machado; Wong, Deysi Viviana Tenazoa; Barros, Paulo Goberlânio; Almeida, Paulo Roberto Carvalho; Lima-Júnior, Roberto Cesar Pereira; Ribeiro, Ronaldo Albuquerque

    2017-08-02

    Inflammatory breast cancer (IBC) is the most aggressive form of locally advanced breast cancer. The signs of inflammation such as hyperemia and hyperthermia might suggest the possible participation of inflammatory mediators. This study investigates stromal and tumor expression of nuclear factor-kappa B (NF-κB) and interleukin-18 (IL-18) in samples obtained from IBC and noninflammatory locally advanced breast cancer (LABC) and the influence of these markers on patients' prognosis. Demographic data, tumor molecular characteristics and overall survival in both groups were also assessed. Furthermore, in this study, we evaluated the expression of IL-18 and p50 nuclear fraction of NF-κB by immunohistochemistry in specimens from IBC and LABC (T4b). We observed that 24.6% of women were diagnosed with IBC up to age 40. In addition, the patients with IBC showed a lower overall survival when compared to LABC. In regard to molecular markers, ER(+) , C-erbB2(-) or triple negative IBC patients showed a significantly reduced overall survival. In addition, a higher IL-18 immunostaining in stroma of IBC and LABC was observed in comparison with tumor cells, but stromal immunoexpression was similar between IBC and LABC. Besides, IL-18 positivity seemed be related with a better clinical response to neoadjuvant chemotherapy. However, NF-κB expression was identical in both groups. The IL-18 is present in tumor stroma of IBC and LABC and seems to be associated with the complete response to neoadjuvant chemotherapy. © 2017 John Wiley & Sons Australia, Ltd.

  16. A Eukaryotic Expression Plasmid Carrying Chicken Interleukin-18 Enhances the Response to Newcastle Disease Virus Vaccine

    PubMed Central

    Li, Xiaokang; Zhang, Chunjie; Wu, Tingcai; Li, Yinju

    2014-01-01

    Interleukin-18 (IL-18) is an important cytokine involved in innate and acquired immunity. In this study, we cloned the full-length chicken IL-18 (ChIL-18) gene from specific-pathogen-free (SPF) chicken embryo spleen cells and provided evidence that the ChIL-18 gene in a recombinant plasmid was successfully expressed in chicken DT40 cells. ChIL-18 significantly enhanced gamma interferon (IFN-γ) mRNA expression in chicken splenocytes, which increased IFN-γ-induced nitric oxide (NO) synthesis by macrophages. The potential genetic adjuvant activity of the ChIL-18 plasmid was examined in chickens by coinjecting ChIL-18 plasmid and inactivated Newcastle disease virus (NDV) vaccine. ChIL-18 markedly elevated serum hemagglutination inhibition (HI) titers and anti-hemagglutinin-neuraminidase (anti-HN)-specific antibody levels, induced the secretion of both Th1- (IFN-γ) and Th2- (interleukin-4) type cytokines, promoted the proliferation of T and B lymphocytes, and increased the populations of CD3+ T cells and their subsets, CD3+ CD4+ and CD3+ CD8+ T cells. Furthermore, a virus challenge revealed that ChIL-18 contributed to protection against Newcastle disease virus challenge. Taken together, our data indicate that the coadministration of ChIL-18 plasmid and NDV vaccine induces a strong immune response at both the humoral and cellular levels and that ChIL-18 is a novel immunoadjuvant suitable for NDV vaccination. PMID:25355794

  17. Prevention and cure of rotavirus infection via TLR5/NLRC4–mediated production of IL-22 and IL-18

    PubMed Central

    Zhang, Benyue; Chassaing, Benoit; Shi, Zhenda; Uchiyama, Robin; Zhang, Zhan; Denning, Timothy L.; Crawford, Sue E.; Pruijssers, Andrea J.; Iskarpatyoti, Jason A.; Estes, Mary K.; Dermody, Terence S.; Ouyang, Wenjun; Williams, Ifor R.; Vijay-Kumar, Matam; Gewirtz, Andrew T.

    2016-01-01

    Activators of innate immunity may have the potential to combat a broad range of infectious agents. We report that treatment with bacterial flagellin prevented rotavirus (RV) infection in mice and cured chronically RV-infected mice. Protection was independent of adaptive immunity and interferon (IFN, type I and II) and required flagellin receptors Toll-like receptor 5 (TLR5) and NOD-like receptor C4 (NLRC4). Flagellin-induced activation of TLR5 on dendritic cells elicited production of the cytokine interleukin-22 (IL-22), which induced a protective gene expression program in intestinal epithelial cells. Flagellin also induced NLRC4-dependent production of IL-18 and immediate elimination of RV-infected cells. Administration of IL-22 and IL-18 to mice fully recapitulated the capacity of flagellin to prevent or eliminate RV infection and thus holds promise as a broad-spectrum antiviral agent. PMID:25395539

  18. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults.

    PubMed

    Kohut, M L; McCann, D A; Russell, D W; Konopka, D N; Cunnick, J E; Franke, W D; Castillo, M C; Reighard, A E; Vanderah, E

    2006-05-01

    Increased serum levels of inflammatory mediators have been associated with numerous disease states including atherosclerosis, Type II diabetes, hypertension, depression, and overall mortality. We hypothesized that a long-term exercise intervention among older adults would reduce serum inflammatory cytokines, and this reduction would be mediated, in part, by improvements in psychosocial factors and/or by beta-adrenergic receptor mechanisms. Adults age 64 were randomly assigned to either an aerobic exercise treatment (CARDIO) or a flexibility/strength exercise treatment (FLEX) 3 days/week, 45 min/day for 10 months. A subgroup of subjects treated with non-selective beta(1)beta(2) adrenergic antagonists were included to evaluate the potential role of beta-adrenergic receptor adaptations as mediators of an exercise-induced change in inflammation. The inflammatory mediators [C-reactive protein (CRP), IL-6, tumor necrosis factor (TNF)-alpha, and IL-18] and the psychosocial factors (depression, perceived stress, optimism, sense of coherence, and social support) were measured pre- and post-intervention. The CARDIO treatment resulted in significant reductions in serum CRP, IL-6, and IL-18 compared to the FLEX treatment (significant treatment x time interaction, p<.05), whereas TNFalpha declined in both groups (main effect of time, p=.001). However, several psychosocial factors (depression, optimism, and sense of coherence) improved in both groups suggesting that the reduction of CRP, IL-6, and IL-18 in the CARDIO group was not mediated by improvements in psychosocial scores. With respect to the potential role of beta-adrenergic receptors, both CARDIO subjects treated with beta-adrenergic antagonists and those who were not treated with those medications demonstrated similar reductions in serum CRP, IL-6, IL-18, and TNFalpha. In summary, we have observed that an aerobic exercise intervention can significantly reduce serum inflammatory mediators, but beta-adrenergic receptors

  19. Profiles of IFN-γ and its regulatory cytokines (IL-12, IL-18 and IL-10) in peripheral blood mononuclear cells from patients with multidrug-resistant tuberculosis

    PubMed Central

    LEE, J-S; SONG, C-H; KIM, C-H; KONG, S-J; SHON, M-H; KIM, H-J; PARK, J-K; PAIK, T-H; JO, E-K

    2002-01-01

    This study investigated the profiles of IFN-γ and its regulatory cytokines (IL-12, IL-18 and IL-10) in response to a purified protein derivative (PPD) antigen in peripheral blood mononuclear cells (PBMC) from 18 HIV-negative patients with multidrug-resistant tuberculosis (MDRTB), and compared them with those from 19 healthy tuberculin reactors (HTR). ELISA results showed that following stimulation with PPD, IFN-γ production was significantly reduced, whereas production of both IL-18 and IL-10 was significantly elevated in MDRTB patients compared with HTR. Three out of 18 patients with MDRTB of greater than 4 years duration showed significantly elevated IL-12 p70 production, induced by in vitro PPD stimulation of their PBMC, when compared with data from HTR. However, when taken as a group, MDRTB patients were similar to HTR in their IL-12 p70-producing capacity. IL-12 p70 protein paralleled IL-12 p40 protein expression. In addition, the production of IL-12 p40 was significantly correlated with IL-10 in all patients, but was not correlated with IFN-γ. Neutralization of IL-10 increased IL-12 p40 about twofold, but did not significantly alter IFN-γ induction in MDRTB. IFN-γ in MDRTB was highly correlated with lymphoproliferation and CD4 counts, but was not correlated with IL-12, IL-18 or IL-10 production. Our findings suggest that patients with MDRTB have dysregulated IL-12, IL-18 and IL-10 production during Mycobacterium tuberculosis infection, and the cytokine profiles are similar to those in patients with drug-sensitive advanced TB previously reported in the literature. In addition, IL-10 may not have a dominant role in defective IFN-γ production in patients with MDRTB. PMID:12067307

  20. IκBζ augments IL-12– and IL-18–mediated IFN-γ production in human NK cells

    PubMed Central

    Kannan, Yashaswini; Yu, Jianhua; Raices, Raquel M.; Seshadri, Sudarshan; Wei, Min; Caligiuri, Michael A.

    2011-01-01

    Interferon-γ (IFN-γ) production by natural killer (NK) cells and cytotoxic lymphocytes is a key component of innate and adaptive immune responses. Because inhibitor of κB-ζ (IκBζ), a Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) inducible transcription factor, regulates IFN-γ production in KG-1 cells, we tested IκBζ's role in the classic lymphocyte pathway of IL-12/IL-18–induced IFN-γ. Upon stimulation with IL-12/IL-18, monocyte-depleted human peripheral blood lymphocytes expressed the 79-kDa form of IκBζ and released IFN-γ. CD56+ NK cells were shown to be the IκBζ-producing lymphocyte subpopulation, which also released abundant IFN-γ in response to IL-12/IL-18. Importantly, IκBζ was undetectable in CD56− lymphocytes where IFN-γ release was 10-fold lower. In addition, small interfering RNA knockdown of IκBζ suppressed IFN-γ expression in CD56+ cells. The association of IκBζ with the IFN-γ promoter was documented by chromatin immunoprecipitation. IFN-γ promoter activity from IκBζ overexpression was confirmed by luciferase reporter assay. Finally, IκBζ coprecipitated with p65 and p50 NF-κB in NK cells in response to IL-12/IL-18, suggesting that IκBζ's effects on IFN-γ promoter activity are coregulated by NF-κB. These results suggest that IκBζ functions as an important regulator of IFN-γ in human NK cells, further expanding the class of IκBζ-modulated genes. PMID:21224476

  1. Genome-Wide Analysis Identifies IL-18 and FUCA2 as Novel Genes Associated with Diastolic Function in African Americans with Sickle Cell Disease

    PubMed Central

    Sysol, Justin R.; Abbasi, Taimur; Patel, Amit R.; Lang, Roberto M.; Gupta, Akash; Garcia, Joe G. N.; Gordeuk, Victor R.; Machado, Roberto F.

    2016-01-01

    Background Diastolic dysfunction is common in sickle cell disease (SCD), and is associated with an increased risk of mortality. However, the molecular pathogenesis underlying this development is poorly understood. The aim of this study was to identify a gene expression profile that is associated with diastolic function in SCD, potentially elucidating molecular mechanisms behind diastolic dysfunction development. Methods Diastolic function was measured via echocardiography in 65 patients with SCD from two independent study populations. Gene expression microarray data was compared with diastolic function in both study cohorts. Candidate genes that associated in both analyses were tested for validation in a murine SCD model. Lastly, genotyping array data from the replication cohort was used to derive cis-expression quantitative trait loci (cis-eQTLs) and genetic associations within the candidate gene regions. Results Transcriptome data from both patient cohorts implicated 7 genes associated with diastolic function, and mouse SCD myocardial expression validated 3 of these genes. Genetic associations and eQTLs were detected in 2 of the 3 genes, FUCA2 and IL18. Conclusions FUCA2 and IL18 are associated with diastolic function in SCD patients, and may be involved in the pathogenesis of the disease. Genetic polymorphisms within the FUCA2 and IL18 gene regions are also associated with diastolic function in SCD, likely by affecting expression levels of the genes. PMID:27636371

  2. Nonredundant roles of TIRAP and MyD88 in airway response to endotoxin, independent of TRIF, IL-1 and IL-18 pathways.

    PubMed

    Togbe, Dieudonnée; Aurore, Gorse; Noulin, Nicolas; Quesniaux, Valérie F J; Schnyder-Candrian, Silvia; Schnyder, Bruno; Vasseur, Virginie; Akira, Shizuo; Hoebe, Kasper; Beutler, Bruce; Ryffel, Bernhard; Couillin, Isabelle

    2006-11-01

    Inhaled endotoxins induce an acute inflammatory response in the airways mediated through Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). However, the relative roles of the TLR4 adaptor proteins TIRAP and TRIF and of the MyD88-dependent IL-1 and IL-18 receptor pathways in this response are unclear. Here, we demonstrate that endotoxin-induced acute bronchoconstriction, vascular damage resulting in protein leak, Th1 cytokine and chemokine secretion and neutrophil recruitment in the airways are abrogated in mice deficient for either TIRAP or MyD88, but not in TRIF deficient mice. The contribution of other TLR-independent, MyD88-dependent signaling pathways was investigated in IL-1R1, IL-18R and caspase-1 (ICE)-deficient mice, which displayed normal airway responses to endotoxin. In conclusion, the TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin critically depend on the expression of both adaptor proteins, TIRAP and MyD88, suggesting cooperative roles, while TRIF, IL-1R1, IL-18R signaling pathways are dispensable.

  3. T cell expression of IL-18R and DR3 is essential for non-cognate stimulation of Th1 cells and optimal clearance of intracellular bacteria

    PubMed Central

    Pham, Oanh H.

    2017-01-01

    Th1 cells can be activated by TCR-independent stimuli, but the importance of this pathway in vivo and the precise mechanisms involved require further investigation. Here, we used a simple model of non-cognate Th1 cell stimulation in Salmonella-infected mice to examine these issues. CD4 Th1 cell expression of both IL-18R and DR3 was required for optimal IFN-γ induction in response to non-cognate stimulation, while IL-15R expression was dispensable. Interestingly, effector Th1 cells generated by immunization rather than live infection had lower non-cognate activity despite comparable IL-18R and DR3 expression. Mice lacking T cell intrinsic expression of MyD88, an important adapter molecule in non-cognate T cell stimulation, exhibited higher bacterial burdens upon infection with Salmonella, Chlamydia or Brucella, suggesting that non-cognate Th1 stimulation is a critical element of efficient bacterial clearance. Thus, IL-18R and DR3 are critical players in non-cognate stimulation of Th1 cells and this response plays an important role in protection against intracellular bacteria. PMID:28817719

  4. T cell expression of IL-18R and DR3 is essential for non-cognate stimulation of Th1 cells and optimal clearance of intracellular bacteria.

    PubMed

    Pham, Oanh H; O'Donnell, Hope; Al-Shamkhani, Aymen; Kerrinnes, Tobias; Tsolis, Renée M; McSorley, Stephen J

    2017-08-01

    Th1 cells can be activated by TCR-independent stimuli, but the importance of this pathway in vivo and the precise mechanisms involved require further investigation. Here, we used a simple model of non-cognate Th1 cell stimulation in Salmonella-infected mice to examine these issues. CD4 Th1 cell expression of both IL-18R and DR3 was required for optimal IFN-γ induction in response to non-cognate stimulation, while IL-15R expression was dispensable. Interestingly, effector Th1 cells generated by immunization rather than live infection had lower non-cognate activity despite comparable IL-18R and DR3 expression. Mice lacking T cell intrinsic expression of MyD88, an important adapter molecule in non-cognate T cell stimulation, exhibited higher bacterial burdens upon infection with Salmonella, Chlamydia or Brucella, suggesting that non-cognate Th1 stimulation is a critical element of efficient bacterial clearance. Thus, IL-18R and DR3 are critical players in non-cognate stimulation of Th1 cells and this response plays an important role in protection against intracellular bacteria.

  5. In vivo and in vitro IL-18 production during uveitis associated with Behçet disease: effect of glucocorticoid therapy.

    PubMed

    Belguendouz, H; Messaoudene, D; Lahmar-Belguendouz, K; Djeraba, Z; Otmani, F; Terahi, M; Tiar, M; Hartani, D; Lahlou-Boukoffa, O S; Touil-Boukoffa, C

    2015-03-01

    Uveitis represents one of the major diagnostic criteria in Behçet's disease. It is most prevalent in the countries of the Mediterranean area, including Algeria, and along the Silk Road. Clinical features include oral and genital ulcers, ocular and skin lesions, as well as central nervous system, joint, vascular, gastrointestinal, or pulmonary manifestations. Many studies have reported that Th1 immune responses are involved in the physiopathology. We have previously studied the production of IL-12 and IFN-γ, cytokine markers in the Th1 pathway involved in Behçet's disease. In our study, we investigate in vivo and in vitro IL-18 production in Algerian patients with Behçet's disease with ocular manifestations in various stages of the disease. We examined the effect of glucocorticoids on IL-18 production during the active stage of the disease. Our results suggest that IL-18 could be a good biomarker for monitoring disease activity and its regression, demonstrating the effectiveness of treatment on the underlying immunopathologic process.

  6. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction.

    PubMed

    Nold-Petry, Claudia A; Lo, Camden Y; Rudloff, Ina; Elgass, Kirstin D; Li, Suzhao; Gantier, Michael P; Lotz-Havla, Amelie S; Gersting, Søren W; Cho, Steven X; Lao, Jason C; Ellisdon, Andrew M; Rotter, Björn; Azam, Tania; Mangan, Niamh E; Rossello, Fernando J; Whisstock, James C; Bufler, Philip; Garlanda, Cecilia; Mantovani, Alberto; Dinarello, Charles A; Nold, Marcel F

    2015-04-01

    Interleukin 37 (IL-37) and IL-1R8 (SIGIRR or TIR8) are anti-inflammatory orphan members of the IL-1 ligand family and IL-1 receptor family, respectively. Here we demonstrate formation and function of the endogenous ligand-receptor complex IL-37-IL-1R8-IL-18Rα. The tripartite complex assembled rapidly on the surface of peripheral blood mononuclear cells upon stimulation with lipopolysaccharide. Silencing of IL-1R8 or IL-18Rα impaired the anti-inflammatory activity of IL-37. Whereas mice with transgenic expression of IL-37 (IL-37tg mice) with intact IL-1R8 were protected from endotoxemia, IL-1R8-deficient IL-37tg mice were not. Proteomic and transcriptomic investigations revealed that IL-37 used IL-1R8 to harness the anti-inflammatory properties of the signaling molecules Mer, PTEN, STAT3 and p62(dok) and to inhibit the kinases Fyn and TAK1 and the transcription factor NF-κB, as well as mitogen-activated protein kinases. Furthermore, IL-37-IL-1R8 exerted a pseudo-starvational effect on the metabolic checkpoint kinase mTOR. IL-37 thus bound to IL-18Rα and exploited IL-1R8 to activate a multifaceted intracellular anti-inflammatory program.

  7. Donor IL-18 rs5744247 polymorphism as a new biomarker of tacrolimus elimination in Chinese liver transplant patients during the early post-transplantation period: results from two cohort studies.

    PubMed

    Fan, Junwei; Zhang, Xiaoqing; Ren, Lei; Chen, Dawei; Wu, Shaohan; Guo, Feng; Qin, Shengying; Wang, Zhaowen; Lin, Zhong; Xing, Tonghai; Sun, Xing; Peng, Zhihai

    2015-01-01

    This study evaluated the relationships between IL-18 polymorphisms and tacrolimus elimination in Chinese liver transplant patients. Eighty-four liver transplant patients from Shanghai (training set) and 50 patients from Shandong (validating set) were inculded. IL-18 polymorphisms (rs5744247, rs7106524, rs549908, rs187238 and rs1946518) and CYP3A5 rs776746 were genotyped. In training set, daily drug dose, total bilirubin, donor CYP3A5 rs776746 and IL-18 rs5744247 genotypes were screened to construct prediction model for tacrolimus elimination. This model was confirmed in validating set (p < 0.001). Donor IL-18 rs5744247 polymorphism was an independent predictor of tacrolimus elimination in the first week after transplantation in both training (p = 0.008) and validating cohorts (p = 0.033). Donor IL-18 rs5744247 polymorphism may influence on tacrolimus elimination. Original submitted 16 July 2014; Revision submitted 12 November 2014.

  8. Comparison of serum levels of IL-18 in peripheral blood of patients with type II diabetes with nephropathy clinical protests and patients with type II diabetes without nephropathy clinical protests.

    PubMed

    Mir, M; Rostami, A; Hormozi, M

    Interleukin (IL)-18 is a proinflammatory cytokine secreted from mononuclear cells. Serum concentration of IL-18 is a strong predictor of death in patients with cardiovascular diseases. Recent studies have shown that microinflammation is involved in the pathogenesis of diabetic nephropathy as well as of cardiovascular diseases. This study aimed to test the hypothesis that the serum level of IL-18 is a common predictor of nephropathy and atherosclerosis in patients with type 2 diabetes. 69 diabetic patient that have documented file in two centers (Ali asghar hospital and dialysis center of Imam ali hospital) had selected. 32 patients with type 2 nephropathic diabetes and 37 age- and sex-matched control subjects with type 2 diabetes that haven't any sign and symptom of nephropathy were enrolled.then take 5 ml blood from peripheral veins. Patients with positive CRP were excluded(2 patients in control group and 1 patient in case group). We assessed measured serum IL-18 levels in all patients. Serum IL-18 levels were significantly elevated in patients with type 2 diabetes with nephropathy as compared with control subjects (serum IL-18 261.29±20.25 vs. 167.20±13.48 pg/ml, P<0.001. the all patients in case control have upper level of serum IL-18 vs the control group. Serum levels of IL-18 in nephropathic patient significantly rise and Serum levels of IL-18 might be a predictor factor of progression of diabetic nephropathy. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  9. Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease

    PubMed Central

    Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M

    2017-01-01

    Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn–Rotnycki–Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection. PMID:28280602

  10. Inhibition of transforming growth factor-β signalling attenuates interleukin (IL)-18 plus IL-2-induced interstitial lung disease in mice

    PubMed Central

    Segawa, S; Goto, D; Yoshiga, Y; Sugihara, M; Hayashi, T; Chino, Y; Matsumoto, I; Ito, S; Sumida, T

    2010-01-01

    Interstitial lung disease (ILD) is an intractable disease induced by various factors in humans. However, there is no universally effective treatment for ILD. In this study, we investigated the role of transforming growth factor (TGF)-β signalling in the pathogenesis of ILD by using model mice. Injection of interleukin (IL)-18 plus IL-2 in C57BL6 (B6) mice resulted in acute ILD by infiltration of natural killer (NK) cells and a significant increase of TGF-β mRNA in the lung. To examine the pathogenetic role of TGF-β in ILD mice, we used SB-431542 (4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]-benzamide), which is a potent and selective inhibitor of TGF-β receptor I (TβRI), also known as activin receptor-like kinase 5 (ALK5). Treatment of B6-ILD mice with SB-431542 resulted in improvement of ILD, delay in mortality, reduction of the expression of interferon (IFN)-γ and IL-6 in the lungs. The same treatment also decreased significantly the percentage of natural killer (NK) cells in the lungs (P < 0·05) and mRNA expression levels of certain chemokines such as CCL2, CCL3, CCL4, CCL5 and CXCL10 in B6-ILD. These findings were confirmed by IL-18 plus IL-2 treatment of Smad3-deficient (Smad3–/–) mice (P < 0·05). Our results showed that inhibition of TGF-β signalling reduced the percentage of NK cells and the expression of certain chemokines in the lungs, resulting in improvement of ILD. The findings suggest that TGF-β signalling may play an important role in the pathogenesis of IL-18 plus IL-2-induced ILD in mice. PMID:20089076

  11. Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease.

    PubMed

    Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M

    2017-01-01

    Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn-Rotnycki-Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection.

  12. A comparison of blood and cerebrospinal fluid cytokines (IL-1β, IL-6, IL-18, TNF-α) in neonates with perinatal hypoxia.

    PubMed

    Šumanović-Glamuzina, Darinka; Čulo, Filip; Čulo, Melanie Ivana; Konjevoda, Paško; Jerković-Raguž, Marjana

    2017-08-20

    Perinatal hypoxia-ischemia is a specific and important pathological event in neonatal care practice. The data on relationship between the concentrations of cytokines in blood and cerebrospinal fluid (CSF) and perinatal brain injury are scarce. The aim of this study is to evaluate changes in interleukin (IL-1β, IL-6, and IL-18) and tumor necrosis factor alpha (TNF-α) levels in newborns with perinatal hypoxia (PNH). CSF and serum samples of 35 term and near-term (35-40 weeks) newborns with PNH, at the age of 3-96 hours, were analyzed using enzyme-linked immunosorbent assay. Control group consisted of 25 non-asphyxic/non-hypoxic infants of the same age sampled for clinically suspected perinatal meningitis, but proven negative and healthy otherwise. The cytokine values in CSF and serum samples were determined in relation to initial hypoxic-ischemic encephalopathy (HIE) staged according the Sarnat/Sarnat method, and compared with neurological outcome at 12 months of age estimated using Amiel-Tison procedure. The concentrations of IL-6 and TNF-α in serum of PNH patients were significantly higher compared to control group (p = 0.0407 and p = 0.023, respectively). No significant difference between average values of cytokines in relation to the stage of HIE was observed. Significantly higher levels of IL-6 and IL-18 corresponded to a mildly abnormal neurological outcome, while higher levels of IL-6 and TNF-α corresponded to a severely abnormal neurological outcome, at 12 months of age. Elevated serum levels of IL-6 and TNF-α better corresponded with hypoxia/ischemia compared to CSF values, within 96 hours of birth. Also, higher serum levels of IL-6, TNF-α, and IL-18 corresponded better with abnormal neurological outcome at 12 months of age, compared to CSF values.

  13. Changes in Neuronal Excitability by Activated Microglia: Differential Na(+) Current Upregulation in Pyramid-Shaped and Bipolar Neurons by TNF-α and IL-18.

    PubMed

    Klapal, Lars; Igelhorst, Birte A; Dietzel-Meyer, Irmgard D

    2016-01-01

    Microglia are activated during pathological events in the brain and are capable of releasing various types of inflammatory cytokines. Here, we demonstrate that the addition of 5% microglia activated by 1 μg/ml lipopolysaccharides (LPS) to hippocampal cultures upregulates Na(+) current densities (INavD) of bipolar as well as pyramid-shaped neurons, thereby increasing their excitability. Deactivation of microglia by the addition of 10 ng/ml transforming growth factor-β (TGF-β) decreases INavD below control levels suggesting that the residual activated microglial cells influence neuronal excitability in control cultures. Preincubation of hippocampal cultures with 10 ng/ml tumor necrosis factor-α (TNF-α), a major cytokine released by activated microglia, upregulated INavD significantly by ~30% in bipolar cells, whereas in pyramid-shaped cells, the upregulation only reached an increase of ~14%. Incubation of the cultures with antibodies against either TNF-receptor 1 or 2 blocked the upregulation of INavD in bipolar cells, whereas in pyramid-shaped cells, increases in INavD were exclusively blocked by antibodies against TNF-receptor 2, suggesting that both cell types respond differently to TNF-α exposure. Since additional cytokines, such as interleukin-18 (IL-18), are released from activated microglia, we tested potential effects of IL-18 on INavD in both cell types. Exposure to 5-10 ng/ml IL-18 for 4 days increased INavD in both pyramid-shaped as well as bipolar neurons, albeit the dose-response curves were shifted to lower concentrations in bipolar cells. Our results suggest that by secretion of cytokines, microglial cells upregulate Na(+) current densities in bipolar and pyramid-shaped neurons to some extent differentially. Depending on the exact cytokine composition and concentration released, this could change the balance between the activity of inhibitory bipolar and excitatory pyramid-shaped cells. Since bipolar cells show a larger upregulation of

  14. [Study of the polymorphism R353Q in the coagulation factor VII gene and the N700S in the thrombospondin-1 gene in young patients with acute myocardial infarction].

    PubMed

    Valades-Mejía, María Guadalupe; Domínguez-López, María Lilia; Aceves-Chimal, José Luis; Miranda, Alfredo Leaños; Majluf-Cruz, Abraham; Isordia-Salas, Irma

    2014-01-01

    Acute myocardial infarction is the first cause of morbidity and mortality in the world, resulting in the combination of genetic and environmental factors. It has been postulated that the R353Q polymorphism of the coagulation FVII gene represents a protective factor for acute myocardial infarction, whereas the N700S polymorphism in the thrombospondin-1 gene is associated with an increased risk for acute myocardial infarction; however, the results are still contradicted. The objective of the study was to examine the possible association of the FVII R353Q and N700S polymorphism and acute myocardial infarction in Mexican patients with acute myocardial infarction younger than 45 years old. Case-control study that included 252 patients who were diagnosed with acute myocardial infarction and 252 apparently healthy, age- and gender-matched individuals without a history of coronary artery disease. R353Q and N700S polymorphisms were determined in all participants by PCR-RFLP. There was no statistical significant difference in genotype distribution (p = 0.06) between the acute myocardial infarction and control groups. Also, there was a similar genotype distribution of N700S polymorphism between stroke and control groups (p = 0.50). Hypertension, diabetes mellitus, family history of coronary disease and dyslipidemia represented independent risk factors for acute myocardial infarction. Polymorphisms R353Q and N700S do not represent a protective or risk factor for acute myocardial infarction in young Mexican individuals.

  15. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation.

    PubMed

    Zhang, Kun; Zhang, Yinyin; Feng, Weijing; Chen, Renhua; Chen, Jie; Touyz, Rhian M; Wang, Jingfeng; Huang, Hui

    2017-10-01

    Vascular calcification (VC) is an important predictor of cardiovascular morbidity and mortality. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is a key mechanism of VC. Recent studies show that IL-18 (interleukin-18) favors VC while TRPM7 (transient receptor potential melastatin 7) channel upregulation inhibits VC. However, the relationship between IL-18 and TRPM7 is unclear. We questioned whether IL-18 enhances VC and osteogenic differentiation of VSMCs through TRPM7 channel activation. Coronary artery calcification and serum IL-18 were measured in patients by computed tomographic scanning and enzyme-linked immunosorbent assay, respectively. Primary rat VSMCs calcification were induced by high inorganic phosphate and exposed to IL-18. VSMCs were also treated with TRPM7 antagonist 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA to block TRPM7 channel activity and expression. TRPM7 currents were recorded by patch-clamp. Human studies showed that serum IL-18 levels were positively associated with coronary artery calcium scores (r=0.91; P<0.001). In VSMCs, IL-18 significantly decreased expression of contractile markers α-smooth muscle actin, smooth muscle 22 α, and increased calcium deposition, alkaline phosphatase activity, and expression of osteogenic differentiation markers bone morphogenetic protein-2, Runx2 (runt-related transcription factor 2), and osteocalcin (P<0.05). IL-18 increased TRPM7 expression through ERK1/2 (extracellular signal-regulated kinase 1/2) signaling activation, and TRPM7 currents were augmented by IL-18 treatment. Inhibition of TRPM7 channel by 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA prevented IL-18-enhanced osteogenic differentiation and VSMCs calcification. These findings suggest that coronary artery calcification is associated with increased IL-18 levels. IL-18 enhances VSMCs osteogenic differentiation and subsequent VC induced by β-glycerophosphate via TRPM7 channel activation

  16. Mycobacterium tuberculosis Infection of Dendritic Cells Leads to Partially Caspase-1/11-Independent IL-1β and IL-18 Secretion but Not to Pyroptosis

    PubMed Central

    Abdalla, Hana; Srinivasan, Lalitha; Shah, Swati; Mayer-Barber, Katrin D.; Sher, Alan; Sutterwala, Fayyaz S.; Briken, Volker

    2012-01-01

    Background Interleukin-1β (IL-1β) is important for host resistance against Mycobacterium tuberculosis (Mtb) infections. The response of the dendritic cell inflammasome during Mtb infections has not been investigated in detail. Methodology/Principal Findings Here we show that Mtb infection of bone marrow-derived dendritic cells (BMDCs) induces IL-1β secretion and that this induction is dependent upon the presence of functional ASC and NLRP3 but not NLRC4 or NOD2. The analysis of cell death induction in BMDCs derived from these knock-out mice revealed the important induction of host cell apoptosis but not necrosis, pyroptosis or pyronecrosis. Furthermore, NLRP3 inflammasome activation and apoptosis induction were both reduced in BMDCs infected with the esxA deletion mutant of Mtb demonstrating the importance of a functional ESX-1 secretion system. Surprisingly, caspase-1/11-deficient BMDCs still secreted residual levels of IL-1βand IL-18 upon Mtb infection which was abolished in cells infected with the esxA Mtb mutant. Conclusion Altogether we demonstrate the partially caspase-1/11-independent, but NLRP3- and ASC- dependent IL-1β secretion in Mtb-infected BMDCs. These findings point towards a potential role of DCs in the host innate immune response to mycobacterial infections via their capacity to induce IL-1β and IL-18 secretion. PMID:22911706

  17. IL-6, IL-18, sIL-2R, and TNFα proinflammatory markers in depression and schizophrenia patients who are free of overt inflammation.

    PubMed

    Al-Hakeim, Hussein Kadhem; Al-Rammahi, Duaa Abdulzahraa; Al-Dujaili, Arafat Hussein

    2015-08-15

    Major depressive disorder (MDD) and schizophrenia are associated with inflammatory processes. Studies have shown that these disorders exhibit increase in the level of one or more proinflammatory markers. However, these studies did not exclude patients with obvious inflammation (i.e., CRP>6mg/L). Therefore, a comprehensive study should include those inflammatory disorders. In the present study, the inflammatory natures of MDD and schizophrenia were investigated. To achieve this goal, serum levels of interleukin-6 (IL-6), interleukin-18 (IL-18), tumor necrosis factor alpha (TNFα), and soluble interleukin 2 receptor (sIL-2R) in depressed and schizophrenic patients were obtained and compared with those of the control group. Results showed a significant increase (p<0.05) in serum levels of IL-6, IL-18, TNFα, and sIL-2R in MDD and schizophrenic patients compared with the control group. Also patients with schizophrenia group showed higher levels of the inflammatory markers than MDD and control groups. The current study concluded that the immunological response in the MDD and schizophrenic patients groups was significantly stimulated. These disorders may be considered an inflammatory disorder because of elevated levels of proinflammatory cytokines in spite of lacking an overt inflammation. Furthermore results of this study suggested the possibility of the use of anti-inflammatory drugs as adjuvant therapy in schizophrenic and depressive disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Simvastatin attenuates the additive effects of TNF-α and IL-18 on the connexin 43 up-regulation and over-proliferation of cultured aortic smooth muscle cells.

    PubMed

    Lin, Yu-Chun; Chiang, Chiang-Hua; Chang, Li-Teh; Sun, Cheuk-Kwan; Leu, Steve; Shao, Pei-Lin; Hsieh, Ming-Chu; Tsai, Tzu-Hsien; Chua, Sarah; Chung, Sheng-Ying; Kao, Ying-Hsien; Yip, Hon-Kan

    2013-06-01

    Statin therapy is known to down-regulate inflammatory activities in atheromatous tissues of animals. The aims of this study were to examine the regulatory role of interleukin-18 (IL-18) in the connexin 43 (Cx43) and the proliferation of cultured aortic smooth muscle cells (SMCs) as well as to elucidate the underlying therapeutic mechanism of simvastatin. Vytorin therapy significantly alleviated high-cholesterol diet-induced hypercholesterolemia, suppressed neointimal hyperplasia, macrophage infiltration, and Cx43 and IL-18 expression in rabbit aortic walls. In vitro study using an aortic SMC line showed that IL-18 up-regulated constitutive Cx43 expression and potentiated tumor necrosis factor-α (TNF-α)-triggered Akt and MAPK signaling pathways. Simvastatin treatment alone reduced constitutive Cx43 levels and prevented the TNF-α-induced IL-18 up-regulation. Mechanistic investigation using kinase-specific inhibitors showed that simvastatin pretreatment attenuated TNF-α-elicited Akt and ERK1/2 phosphorylation, whereas PI3K and all MAPK activities were also implied in the additive effect of TNF-α and IL-18 on Cx43 up-regulation. Proliferation assay indicated that IL-18 stimulated SMC proliferation and synergized the TNF-α-stimulated cell proliferation. Likewise, simvastatin treatment suppressed the SMC over-proliferation induced not only by TNF-α alone, but also by simultaneous treatment with TNF-α and IL-18. The suppression of simvastatin in SMC proliferation was not mediated through mitochondrial related pro-apoptogenesis under both scenarios. In conclusion, simvastatin attenuates the additive effects of TNF-α and IL-18 on Cx43 up-regulation and over-proliferation of aortic SMCs, mainly through the blockade of Akt signaling pathway. These findings may fortify the rationale underlying the atheroprotective mechanism of statin therapy.

  19. Anti-tumour necrosis factor (TNF) α treatment of rheumatoid arthritis (infliximab) selectively down regulates the production of interleukin (IL) 18 but not of IL12 and IL13

    PubMed Central

    Pittoni, V; Bombardieri, M; Spinelli, F; Scrivo, R; Alessandri, C; Conti, F; Spadaro, A; Valesini, G

    2002-01-01

    Methods: Ten patients with RA not responding to disease modifying antirheumatic drugs (DMARDs) received intravenous infliximab at a dose of 3 mg/kg at baseline and after two and six weeks. Serum samples were collected from all patients before each infusion and assayed for IL18, IL12, and IL13 by enzyme linked immunosorbent assay (ELISA); IL18 was also measured eight weeks after the last infusion. Results: Serum concentrations of IL18 in all patients were already markedly reduced from baseline after two weeks (p<0.005). Serum IL18 was also decreased in a stable manner after six (p<0.01) and 14 weeks (p<0.01) compared with baseline concentrations. No significant modifications were found in serum concentrations of IL12 and IL13 at any time point. Conclusion: There was a rapid and persistent decrease in serum concentrations of IL18 in all the patients studied. This result provides evidence of an in vivo regulation of IL18 by TNFα and suggests that anti-TNFα therapy is likely to interrupt the synergistic effect between these two cytokines. PMID:12117680

  20. Inhibition of VEGFR2 Activation and Its Downstream Signaling to ERK1/2 and Calcium by Thrombospondin-1 (TSP1): In silico Investigation

    PubMed Central

    Bazzazi, Hojjat; Isenberg, Jeffery S.; Popel, Aleksander S.

    2017-01-01

    VEGF signaling through VEGFR2 is a central regulator of the angiogenic response. Inhibition of VEGF signaling by the stress-induced matricellular protein TSP1 plays a role in modulating the angiogenic response to VEGF in both health and disease. TSP1 binding to CD47 inhibits VEGFR2 activation. The full implications of this inhibitory interaction are unknown. We developed a detailed rule-based computational model to inquire if TSP1-CD47 signaling through VEGF had downstream effects upon ERK1/2 and calcium. Our Simulations suggest that enhanced degradation of VEGFR2 initiated by the binding of TSP1 to CD47 is sufficient to explain the inhibition of VEGFR2 phosphorylation, calcium elevation, and ERK1/2 activation downstream of VEGF. A complementary mechanism involving the recruitment of phosphatases to the VEGFR2 complex with consequent increase in the rate of receptor dephosphorylation may augment the inhibition of the VEGF signal. The model was then utilized to simulate the effect of inhibiting external TSP1 or the depletion of CD47 as potential therapeutic strategies in restoring VEGF signaling. Results suggest that depleting CD47 is a more efficient strategy in inhibiting the effects of TSP1/CD47 on VEGF signaling. Our results highlight the utility of in silico investigations in elucidating and clarifying molecular mechanisms at the intersection of TSP1 and VEGF biology and in differentiating between competing pro-angiogenic therapeutic strategies relevant to peripheral arterial disease (PAD) and wound healing. PMID:28220078

  1. Thrombospondin-1 Silencing Down-Regulates Integrin Expression Levels in Human Anaplastic Thyroid Cancer Cells with BRAFV600E: New Insights in the Host Tissue Adaptation and Homeostasis of Tumor Microenvironment

    PubMed Central

    Duquette, Mark; Sadow, Peter M.; Lawler, Jack; Nucera, Carmelo

    2013-01-01

    Background and Rationale: Anaplastic thyroid cancer (ATC) is characterized by pleomorphic cells, has a poor prognosis, is highly devastating disease, and is not curable. No reliable biomarkers of metastatic potential, helpful for early diagnosis of ATC and therapeutic response have been found yet. Thrombospondin-1 (TSP-1) plays a fundamental role in cancer progression by regulating cell stromal cross-talk in the tumor microenvironment. Goals: Our goal was to understand whether TSP-1 could affect protein levels of its integrin receptors (e.g., ITGα3, α6, and β1) and cell morphology in BRAFV600E-ATC cells in vitro and in vivo. Experimental Design: Anaplastic thyroid cancer-derived cell cultures and western blotting were used to assess integrin protein expression upon TSP-1 silencing. Immunohistochemistry was performed on orthotopic primary human ATC and metastatic ATC in lung tissue to compare TSP-1 and integrin protein expression levels. Results: TSP-1 knock-down down-regulates ITGα3, α6, and β1 in BRAFV600E-human ATC cells. BRAFV600E-ATC cells with TSP-1 knock-down were rounded compared to control cells, which displayed a spread morphology. TSP-1 knock-down also reduced TSP-1, ITGα3, α6, and β1 protein expression levels in vivo in the ATC microenvironment, which is enriched in stromal and inflammatory cells. Conclusion: TSP-1 silencing causes changes in ITG levels and ATC cell morphology. The assessment of TSP-1 and ITG levels might contribute to earlier metastatic potential of BRAFV600E-positive aggressive thyroid cancers, and allow improved patient selection for clinical trials. PMID:24348463

  2. Interleukin (IL)-22 receptor 1 is over-expressed in primary Sjogren’s syndrome and Sjögren-associated non-Hodgkin lymphomas and is regulated by IL-18

    PubMed Central

    Ciccia, F; Guggino, G; Rizzo, A; Bombardieri, M; Raimondo, S; Carubbi, F; Cannizzaro, A; Sireci, G; Dieli, F; Campisi, G; Giacomelli, R; Cipriani, Paola; De Leo, G; Alessandro, R; Triolo, G

    2015-01-01

    The aim of this study was to elucidate more clearly the role of interleukin (IL)-18 in modulating the IL-22 pathway in primary Sjögren’s syndrome (pSS) patients and in pSS-associated lymphomas. Minor salivary glands (MSGs) from patients with pSS and non-specific chronic sialoadenitis (nSCS), parotid glands biopsies from non-Hodgkin lymphomas (NHL) developed in pSS patients, were evaluated for IL-18, IL-22, IL-22 receptor 1 (IL-22R1), IL-22 binding protein (IL-22BP) and signal transducer and activator of transcription-3 (STAT-3) expression. MSGs IL-22R1-expressing cells were characterized by confocal microscopy and flow cytometry in pSS, nSCS and healthy controls. The effect of recombinant IL-18 and IL-22 on peripheral blood mononuclear cells (PBMCs) from pSS and nSCS was studied by flow cytometry and reverse transcription–polymerase chain reaction (RT-PCR). MSGs of pSS and NHL were characterized by an imbalance between IL-22 and IL-22BP protein expression, with IL-18 and IL-22BP being expressed in a mutually exclusive manner and IL-18 and IL-22R1 being correlated directly. Aberrant expression of IL-22R1, induced by IL-18, was observed only among tissue and circulating myeloid cells of pSS patients and macrophages of NHL tissues of pSS patients, but not nSCS. IL-22R1 expression on PBMC of pSS was functional, as its stimulation with recombinant IL-22 significantly up-regulated the expression of STAT-3, IL-17 and IL-22. An IL-18-dependent aberrant expression of IL-22R1 on cells of haematopoietic origin seems to be a specific immunological signature of patients with pSS and pSS-associated lymphomas. PMID:25880879

  3. Interleukin (IL)-22 receptor 1 is over-expressed in primary Sjogren's syndrome and Sjögren-associated non-Hodgkin lymphomas and is regulated by IL-18.

    PubMed

    Ciccia, F; Guggino, G; Rizzo, A; Bombardieri, M; Raimondo, S; Carubbi, F; Cannizzaro, A; Sireci, G; Dieli, F; Campisi, G; Giacomelli, R; Cipriani, Paola; De Leo, G; Alessandro, R; Triolo, G

    2015-08-01

    The aim of this study was to elucidate more clearly the role of interleukin (IL)-18 in modulating the IL-22 pathway in primary Sjögren's syndrome (pSS) patients and in pSS-associated lymphomas. Minor salivary glands (MSGs) from patients with pSS and non-specific chronic sialoadenitis (nSCS), parotid glands biopsies from non-Hodgkin lymphomas (NHL) developed in pSS patients, were evaluated for IL-18, IL-22, IL-22 receptor 1 (IL-22R1), IL-22 binding protein (IL-22BP) and signal transducer and activator of transcription-3 (STAT-3) expression. MSGs IL-22R1-expressing cells were characterized by confocal microscopy and flow cytometry in pSS, nSCS and healthy controls . The effect of recombinant IL-18 and IL-22 on peripheral blood mononuclear cells (PBMCs) from pSS and nSCS was studied by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). MSGs of pSS and NHL were characterized by an imbalance between IL-22 and IL-22BP protein expression, with IL-18 and IL-22BP being expressed in a mutually exclusive manner and IL-18 and IL-22R1 being correlated directly. Aberrant expression of IL-22R1, induced by IL-18, was observed only among tissue and circulating myeloid cells of pSS patients and macrophages of NHL tissues of pSS patients, but not nSCS. IL-22R1 expression on PBMC of pSS was functional, as its stimulation with recombinant IL-22 significantly up-regulated the expression of STAT-3, IL-17 and IL-22. An IL-18-dependent aberrant expression of IL-22R1 on cells of haematopoietic origin seems to be a specific immunological signature of patients with pSS and pSS-associated lymphomas. © 2015 British Society for Immunology.

  4. Extracellular TDP-43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase-3/IL-18 signaling in microglia.

    PubMed

    Leal-Lasarte, María M; Franco, Jaime M; Labrador-Garrido, Adahir; Pozo, David; Roodveldt, Cintia

    2017-07-01

    Dysregulated microglial responses are central in neurodegenerative proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar disease (FTLD). Pathologic TDP-43, which is typically found in intracellular inclusions, is a misfolding protein with emerging roles in ALS and FTLD. Recently, TDP-43 species have been found in extracellular fluids of patients; however, the overall implications of TDP-43-mediated signaling linked to neuroinflammation are poorly understood. Our work-the first, to our knowledge, to focus on innate immunity responses to TDP-43 aggregates-shows that such species are internalized by microglia and cause abnormal mobilization of endogenous TDP-43. Exposure to TDP-43 aggregates elicited not only IL-1β, but also NLRP3-dependent and noncanonical IL-18 processing. Moreover, we report a link between TDP-43 and neuronal loss via the apoptosis-independent emerging roles of caspase-3 in neurotoxic inflammation. Our results further support the view of noncell autonomous neurodegenerative mechanisms in ALS. Remarkably, we demonstrate that TDP-43 aggregates bind to and colocalize with MAPK/MAK/MRK overlapping kinase (MOK) and show that its phosphorylation status is disrupted. Finally, we show that this TDP-43-caused activation state can be altered by exogenous Hsp27 and Hsp70 chaperones. Our study provides new insight into the immune phenotype, mechanisms, and signaling pathways that operate in microglial neurotoxic activation in ALS.-Leal-Lasarte, M. M., Franco, J. M., Labrador-Garrido, A., Pozo, D., Roodveldt, C. Extracellular TDP-43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase-3/IL-18 signaling in microglia. © FASEB.

  5. Defective synthesis and release of astrocytic thrombospondin-1 mediates the neuronal TDP-43 proteinopathy, resulting in defects in neuronal integrity associated with chronic traumatic encephalopathy: in vitro studies.

    PubMed

    Jayakumar, Arumugam Radhakrishnan; Tong, Xiao Y; Shamaladevi, Nagarajarao; Barcelona, Stephanie; Gaidosh, Gabriel; Agarwal, Apeksha; Norenberg, Michael D

    2017-02-01

    Transactivating DNA-binding protein-43 (TDP-43) inclusions and the accumulation of phosphorylated and ubiquitinated tau proteins (p-tau) have been identified in postmortem brain specimens from patients with chronic traumatic encephalopathy (CTE). To examine whether these proteins contribute to the development of CTE, we utilized an in vitro trauma system known to reproduce many of the findings observed in humans and experimental animals with traumatic brain injury. Accordingly, we examined the role of TDP-43 and Tau in an in vitro model of trauma, and determined whether these proteins contribute to the defective neuronal integrity associated with CNS trauma. Single or multiple episodes of trauma to cultured neurons resulted in a time-dependent increase in cytosolic levels of phosphorylated TDP-43 (p-TDP-43). Trauma to cultured neurons also caused an increase in levels of casein kinase 1 epsilon (CK1ε), and ubiquitinated p-TDP-43, along with a decrease in importin-β (all factors known to mediate the "TDP-43 proteinopathy"). Defective neuronal integrity, as evidenced by a reduction in levels of the NR1 subunit of the NMDA receptor, and in PSD95, along with increased levels of phosphorylated tau were also observed. Additionally, increased levels of intra- and extracellular thrombospondin-1 (TSP-1) (a factor known to regulate neuronal integrity) were observed in cultured astrocytes at early stages of trauma, while at later stages decreased levels were identified. The addition of recombinant TSP-1, conditioned media from cultured astrocytes at early stages of trauma, or the CK1ε inhibitor PF4800567 hydrochloride to traumatized cultured neurons reduced levels of p-TDP-43, and reversed the trauma-induced decline in NR1 subunit of the NMDA receptor and PSD95 levels. These findings suggest that a trauma-induced increase in TDP-43 phosphorylation contributes to defective neuronal integrity, and that increasing TSP-1 levels may represent a useful therapeutic approach for

  6. Inflammasomes Induced by 7-Ketocholesterol and Other Stimuli in RPE and in Bone Marrow–Derived Cells Differ Markedly in Their Production of IL-1β and IL-18

    PubMed Central

    Shi, Guangpu; Chen, Siqi; Wandu, Wambui S.; Ogbeifun, Osato; Nugent, Lindsey F.; Maminishkis, Arvydas; Hinshaw, Samuel J. H.; Rodriguez, Ignacio R.; Gery, Igal

    2015-01-01

    Purpose. The inflammatory process plays a major role in the pathogenesis of AMD, and recent data indicate the involvement of inflammasomes. Inflammasomes are intracellular structures that trigger inflammation by producing mature interleukin-(IL)-1β and IL-18. This study examined the capacity of 7-ketocholesterol (7KCh), an oxysterol that accumulates in the retinal pigmented epithelium (RPE) and choroid, to initiate inflammasome formation in RPE and bone marrow–derived cells. Methods. Tested cells included fetal human RPE (fhRPE), human ARPE-19 cells, primary human brain microglia cells, and human THP-1 monocyte cells. 7-Ketocholesterol and other compounds were added to the cell cultures, and their stimulatory effects were determined by quantitative PCR and release of cytokines, measured by ELISA and Western blotting. Results. 7-Ketocholesterol efficiently induced inflammasome formation by all primed cell populations, but secreted cytokine levels were higher in cultures of bone marrow–derived cells (microglia and THP-1 cells) than in RPE cultures. Interestingly, inflammasomes formed in cells of the two populations differed strikingly in their preferential production of the two cytokines. Thus, whereas bone marrow–derived cells produced levels of IL-1β that were higher than those of IL-18, the opposite was found with RPE cells, which secreted higher levels of IL-18. Importantly, Western blot analysis showed that IL-18, but not IL-1β, was expressed constitutively by RPE cells. Conclusions. 7-Ketocholesterol efficiently stimulates inflammasome formation and is conceivably involved in the pathogenesis of AMD. In contrast to bone marrow–derived cells, RPE cells produced higher levels of IL-18 than IL-1β. Further, IL-18, a multifunctional cytokine, was expressed constitutively by RPE cells. These observations provide new information about stimuli and cells and their products assumed to be involved in the pathogenesis of AMD. PMID:25678688

  7. Enhanced expression of interleukin-18 in serum and pancreas of patients with chronic pancreatitis

    PubMed Central

    Schneider, Alexander; Haas, Stephan L; Hildenbrand, Ralf; Siegmund, Sören; Reinhard, Iris; Nakovics, Helmut; Singer, Manfred V; Feick, Peter

    2006-01-01

    AIM: To investigate interleukin-18 (IL-18) in patients with chronic panreatitis (CP). METHODS: We studied 29 patients with CP and 30 healthy controls. Peripheral blood mononuclear cells (PBMC) were isolated and incubated with 50 mmol/L ethanol, lipopolysaccharide (LPS) (doses 25 g/L, 250 g/L, 2500 g/L) and both agents for 24 h. Levels of IL-18 in the supernatants, and levels of IL-18, IL-12, interferon (IFN)-γ and soluble CD14 in the serum were analysed by ELISA technique. Expression of IL-18 in PBMC was investigated by reverse-transcription (RT)-PCR. IL-18 protein levels in CP tissue and in normal pancreas were studied by ELISA technique. IL-18 levels in PBMC and pancreatic tissue were determined by Westernblot. Immunohistochemistry for pancreatic IL-18 expression was performed. RESULTS: In patients, IL-18 serum levels were significantly enhanced by 76% (mean: 289.9 ± 167.7 ng/L) compared with controls (mean: 165.2 ± 43.6 ng/L; P < 0.0005). IL-12 levels were enhanced by 25% in patients (18.3 ± 7.3 ng/L) compared with controls (14.7 ± 6.8 ng/L, P = 0.0576) although not reaching the statistical significance. IFN-γ and soluble CD14 levels were not increased. In vitro, LPS stimulated significantly and dose-dependently IL-18 secretion from PBMC. Incubation with ethanol reduced LPS-stimulated IL-18 secretion by about 50%. The mRNA expression of IL-18 in PBMC and the response of PBMC to ethanol and LPS was similar in CP patients and controls. In PBMC, no significant differences in IL-18 protein levels were detected between patients and controls. IL-18 protein levels were increased in CP tissues compared to normal pancreatic tissues. IL-18 was expressed by pancreatic acinar cells and by infiltrating inflammatory cells within the pancreas. CONCLUSION: IL-18 originates from the chronically inflammed pancreas and appears to be involved in the fibrotic destruction of the organ. PMID:17072982

  8. T cell responses are elicited against Respiratory Syncytial Virus in the absence of signalling through TLRs, RLRs and IL-1R/IL-18R

    PubMed Central

    Goritzka, Michelle; Pereira, Catherine; Makris, Spyridon; Durant, Lydia R.; Johansson, Cecilia

    2015-01-01

    Pattern recognition receptors (PRRs) and cytokine receptors are key players in the initiation of immune responses to infection. PRRs detecting viral RNA, such as toll like receptor (TLR)-3, -7/8, and RIG-I like receptors (RLRs; RIG-I and MDA-5), as well as cytokine receptors such as interleukin 1 receptor (IL-1R), have been implicated in responses to RNA viruses that infect the airways. The latter includes respiratory syncytial virus (RSV), a human pathogen that can cause severe lower respiratory tract infections, especially in infants. To evaluate the collective contribution of PRRs and IL-1R signalling to RSV immunity, we generated Myd88/Trif/Mavs−/− mice that are deficient in signalling by all TLRs, RLRs and IL-1R, as well as other cytokine receptors such as IL-18 receptor. Early production of pro-inflammatory mediators and lung infiltration by immune cells were completely abrogated in infected Myd88/Trif/Mavs−/− mice. However, RSV-specific CD8+ T cells were elicited and recruited into the lungs and airways. Consistent with these findings, Myd88/Trif/Mavs−/− mice survived RSV infection but displayed higher viral load and weight loss. These data highlight an unappreciated level of redundancy in pathways that couple innate virus sensing to adaptive immunity, providing the host with remarkable resilience to infection. PMID:26688048

  9. Natural Killer Cell Subsets and IL-2, IL-15, and IL-18 Genes Expressions in Chronic Kidney Allograft Dysfunction and Graft Function in Kidney Allograft Recipients

    PubMed Central

    Assadiasl, S.; Sepanjnia, A.; Aghili, B.; Nafar, M.; Ahmadpoor, P.; Pourrezagholi, F.; Parvin, M.; Shahlaee, A.; Nicknam, M. H.; Amirzargar, A.

    2016-01-01

    Background: While acute rejection and early graft loss rates have decreased substantially over the past four decades, progressive chronic allograft dysfunction (CAD) still remains a common cause of late graft loss in kidney transplant recipients. Objective: This study was conducted to investigate the percentage of natural killer (NK) cell subsets and IL-2, 15 and 18 genes expression in two groups of CAD and well-function graft (WFG) recipients. Methods: 30 renal allograft recipients with biopsy-proven interstitial fibrosis/tubular atrophy (IF/TA) and impaired renal function, and 30 sex- and age-matched WFG patients were enrolled in this study. The percentage of NK cell subsets including NK CD56bright and NK CD56dim cells were determined by flowcytometry; IL-2, IL-15, and IL-18 genes expressions were assessed by real-time PCR. Results: Compared to WFG patients, there was a significant (p<0.05) increase in the percentage of NK CD56bright cells in CAD patients. However, the difference in percentage of NK CD56dim cells or CD56dim/CD56bright ratio between the studied groups was not significant. In addition, IL-2, 15 and 18 genes expressions were almost similar in CAD and WFG patients. Conclusion: We found higher percentages of NK CD56bright subset in kidney transplant recipients with CAD without considerable changes in related cytokines’ gene expression, suggesting a possible defect of NK cells maturation in these patients. PMID:28078060

  10. Interleukin 18 coexpression during respiratory syncytial virus infection results in enhanced disease mediated by natural killer cells.

    PubMed

    Harker, James A; Godlee, Alexandra; Wahlsten, Jennifer L; Lee, Debbie C P; Thorne, Lucy G; Sawant, Devika; Tregoning, John S; Caspi, Rachel R; Bukreyev, Alexander; Collins, Peter L; Openshaw, Peter J M

    2010-04-01

    Respiratory syncytial virus (RSV) causes bronchiolitis, the main cause of infantile hospitalization. Immunity against reinfection is poor, and there is great interest in boosting vaccine responses using live vectors expressing host cytokines. We therefore constructed a recombinant RSV expressing murine interleukin 18 (RSV/IL-18), a cytokine capable of inducing strong antiviral immune responses. In vitro RSV/IL-18 replicated at wild-type levels and produced soluble IL-18. In naïve BALB/c mice, RSV/IL-18 infection significantly increased both IL-18 mRNA and protein and attenuated the peak viral load 3-fold. Despite a reduced viral load, RSV/IL-18 infection caused a biphasic weight loss at days 2 and 6 postinfection that was not seen in wild-type infection. Day 2 disease was associated with enhanced pulmonary natural killer (NK) cell numbers and activity and was prevented by NK cell depletion during infection; day 6 disease was correlated with CD8 T-cell recruitment and was enhanced by NK cell depletion. IL-18 expression during priming also enhanced RSV-specific antibody responses and T-cell responses on secondary RSV infection. Therefore, while IL-18 boosted antiviral immunity and reduced the viral load, its coexpression worsened disease. This is the first recombinant RSV with this property, and these are the first studies to demonstrate that NK cells can induce pathology during pulmonary viral infections.

  11. DNA vaccine (P1-2A-3C-pCDNA) co-administered with Bovine IL-18 gives protective immune response against Foot and Mouth Disease in cattle.

    PubMed

    Kotla, Sivareddy; Sanghratna Vishanath, Bahire; H J, Dechamma; K, Ganesh; V V S, Suryanarayana; Reddy, G R

    2016-09-25

    Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals causing considerable economic loss in the affected countries. Presently used tissue culture inactivated vaccine protects the vaccinated animals for a short duration. DNA vaccines along with appropriate adjutants is one of the approach for the development of alternative vaccine. In the present study, we constructed P1-2A-3CpCDNA (containing P1-2A-3C coding sequences of FMDV Asia-1 Ind 63/72) and bovine IL-18 pCDNA plasmids and evaluated in cattle. Four groups of calves each group containing six calves were vaccinated with 200μg of plasmid DNA vaccine P1-2A-3CpCDNA, P1-2A-3CpCDNA+ bIL-18pCDNA and inactivated vaccine respectively where as fourth group was unvaccinated. P1-2A-3CpCDNA+bIL-18pCDNA vaccinated animals have shown higher levels of neutralizing antibodies and specific T-cell proliferation responses. Higher levels of CD4(+) and CD8(+) cells were observed in these animals. Similarly, IL-18 adjuvanted group has shown increased Th1 and Th2 cytokine responses. All the vaccinated animals were challenged with cattle adapted FMD homologous Asia1 virus two weeks after the booster dose. IL18 co administered DNA vaccine construct has protected four out of six animals challenged with homologous virus. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Urinary kidney injury molecule 1 (KIM-1) and interleukin 18 (IL-18) as risk markers for heart failure in older adults: the Health, Aging, and Body Composition (Health ABC) Study.

    PubMed

    Driver, Todd H; Katz, Ronit; Ix, Joachim H; Magnani, Jared W; Peralta, Carmen A; Parikh, Chirag R; Fried, Linda; Newman, Anne B; Kritchevsky, Stephen B; Sarnak, Mark J; Shlipak, Michael G

    2014-07-01

    Kidney damage and reduced kidney function are potent risk factors for heart failure, but existing studies are limited to assessing albuminuria or estimated glomerular filtration rate (eGFR). We evaluated the associations of levels of urinary biomarkers of kidney tubular injury (interleukin 18 [IL-18] and kidney injury molecule 1 [KIM-1]) with future risk of heart failure. Retrospective cohort study. 2,917 participants without heart failure in the Health, Aging, and Body Composition (Health ABC) cohort. Ratios of urine KIM-1, IL-18, and albumin to creatinine (KIM-1:Cr, IL-18:Cr, and ACR, respectively). Incident heart failure over a median follow-up of 12 years. Median values of each marker at baseline were 812 (IQR, 497-1,235)pg/mg for KIM-1:Cr, 31 (IQR, 19-56)pg/mg for IL-18:Cr, and 8 (IQR, 5-19) mg/g for ACR. 596 persons developed heart failure during follow-up. The top quartile of KIM-1:Cr was associated with risk of incident heart failure after adjustment for baseline eGFR, heart failure risk factors, and ACR (HR, 1.32; 95% CI, 1.02-1.70) in adjusted multivariate proportional hazards models. The top quartile of IL-18:Cr also was associated with heart failure in a model adjusted for risk factors and eGFR (HR, 1.35; 95% CI, 1.05-1.73), but was attenuated by adjustment for ACR (HR, 1.15; 95% CI, 0.89-1.48). The top quartile of ACR had a stronger adjusted association with heart failure (HR, 1.96; 95% CI, 1.53-2.51). Generalizability to other populations is uncertain. Higher urine KIM-1 concentrations were associated independently with incident heart failure risk, although the associations of higher ACR were of stronger magnitude. Published by Elsevier Inc.

  13. Broadly impaired NK cell function in non-obese diabetic mice is partially restored by NK cell activation in vivo and by IL-12/IL-18 in vitro.

    PubMed

    Johansson, Sofia E; Hall, Håkan; Björklund, Jens; Höglund, Petter

    2004-01-01

    NK cells represent a link between innate and adaptive immunity, and may play a role in regulating autoimmune disorders. We have characterized the NK cell population in non-obese diabetic (NOD) mice. The percentage and absolute numbers of NK cells were similar in NOD and control MHC-matched B6.g7 mice. However, the capacity of NOD NK cells to mediate natural cytotoxicity as well as FcR- and Ly49D-mediated killing was compromised in vitro, suggesting a defect affecting multiple activation pathways. The defect was neither linked to the NK gene complex nor to the MHC, as determined by comparison with mice congenic for these regions. Introducing the beta(2)-microglobulin mutation on the NOD background further impaired NK cell function, showing that the compromised cytotoxic capacity in these two strains arises from two independent mechanisms. In vivo rejection responses against tumor cells and against MHC class I-deficient spleen cells were decreased in naive NOD recipients, but restored in mice pre-activated with tilorone, a potent activator of NK cells. In addition, killing of some tumor targets was restored in vitro after activation of NK cells with IL-12 plus IL-18 or with IFN-alpha/beta, but not with IL-2. Interestingly, natural killing of RMA-S targets by NOD NK cells could not be restored in vitro, indicating that restoration of killing capacity was only partial. Our data suggest a severe, but partially restorable, killing defect in NOD NK cells, affecting activation through several pathways.

  14. Endogenous conversion of ω-6 to ω-3 polyunsaturated fatty acids in fat-1 mice attenuated intestinal polyposis by either inhibiting COX-2/β-catenin signaling or activating 15-PGDH/IL-18.

    PubMed

    Han, Young-Min; Park, Jong-Min; Cha, Ji-Young; Jeong, Migyeong; Go, Eun-Jin; Hahm, Ki Baik

    2016-05-01

    Omega-3 polyunsaturated fatty acids (ω-3PUFAs) have inhibitory effects in various preclinical cancer models, but their effects in intestinal polyposis have never been examined. As attempts have been made to use nutritional intervention to counteract colon cancer development, in this study we evaluated the effects of ω-3 PUFAs on intestinal polyposis in the Apc(Min/+) mouse model. The experimental groups included wild-type C56BL/6 mice, Apc(Min/+) mice, fat-1 transgenic mice expressing an n-3 desaturase to enable ω-3 PUFA synthesis, and Apc(Min/+) × fat-1 double-transgenic mice; all mice were 20 weeks of age. Small intestines were collected for gross and pathologic evaluation, including assessment of polyp number and size, followed by immunohistochemical staining and Western blotting. After administration of various concentrations of ω-3 PUFAs, PUFA levels were measured in small intestine tissue by GC/MS/MS analysis to compare with PUFA synthesis of between C57BL6 and fat-1mice. As a result, ω-3 PUFAs significantly attenuated Apc mutation-induced intestinal polyposis accompanied with significant inhibition of Wnt/β-catenin signaling, COX-2 and PGE2, but induced significant levels of 15-PGDH. In addition, significant induction of the inflammasome-related substrates as IL-1β and IL-18 and activation of caspase-1 was observed in Apc(Min/+) × fat-1 mice. Administration of at least 3 g/60 kg ω-3 PUFAs was equivalent to ω-3 PUFAs produced in fat-1 mice and resulted in significant increase in the expression of IL-1β, caspase-3 and IL-18, as seen in Apc(Min/+) × fat-1 mice. We conclude that ω-3PUFAs can prevent intestinal polyp formation by inhibition of Wnt/β-catenin signaling, but increased levels of 15-PGDH and IL-18.

  15. Enhanced effects of combined bu-zhong-yi-qi-tang (TJ-41) and interleukin-18 on the production of tumour necrosis factor-alpha and interferon-gamma in human peripheral blood mononuclear cells.

    PubMed

    Tamura, R; Takahashi, H K; Xue, D; Kubo, S; Saito, S; Nishibori, M; Iwagaki, H; Tanaka, N

    2004-01-01

    Co-stimulatory molecules play important roles in immune responses. We investigated the effect of Bu-Zhong-Yi-Qi-Tang (TJ-41) on the expression of intercellular adhesion molecule-1 (ICAM-1), B7.1 and B7.2 by peripheral blood mononuclear cells stimulated by interleukin-18 (IL-18) using fluorescence-activated cell sorter analysis. TJ-41 increased IL-18-induced ICAM-1 and B7.2 expression, resulting in enhanced production of tumour necrosis factor-alpha and interferon-gamma. These results suggest that TJ-41 enhances IL-18-induced cell-mediated immunity and may enhance host defence mechanisms against pathogens.

  16. A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn's disease and celiac disease.

    PubMed

    Festen, Eleonora A M; Goyette, Philippe; Green, Todd; Boucher, Gabrielle; Beauchamp, Claudine; Trynka, Gosia; Dubois, Patrick C; Lagacé, Caroline; Stokkers, Pieter C F; Hommes, Daan W; Barisani, Donatella; Palmieri, Orazio; Annese, Vito; van Heel, David A; Weersma, Rinse K; Daly, Mark J; Wijmenga, Cisca; Rioux, John D

    2011-01-27

    Crohn's disease (CD) and celiac disease (CelD) are chronic intestinal inflammatory diseases, involving genetic and environmental factors in their pathogenesis. The two diseases can co-occur within families, and studies suggest that CelD patients have a higher risk to develop CD than the general population. These observations suggest that CD and CelD may share common genetic risk loci. Two such shared loci, IL18RAP and PTPN2, have already been identified independently in these two diseases. The aim of our study was to explicitly identify shared risk loci for these diseases by combining results from genome-wide association study (GWAS) datasets of CD and CelD. Specifically, GWAS results from CelD (768 cases, 1,422 controls) and CD (3,230 cases, 4,829 controls) were combined in a meta-analysis. Nine independent regions had nominal association p-value <1.0 x 10⁻⁵ in this meta-analysis and showed evidence of association to the individual diseases in the original scans (p-value < 1 x 10⁻² in CelD and < 1 x 10⁻³ in CD). These include the two previously reported shared loci, IL18RAP and PTPN2, with p-values of 3.37 x 10⁻⁸ and 6.39 x 10⁻⁹, respectively, in the meta-analysis. The other seven had not been reported as shared loci and thus were tested in additional CelD (3,149 cases and 4,714 controls) and CD (1,835 cases and 1,669 controls) cohorts. Two of these loci, TAGAP and PUS10, showed significant evidence of replication (Bonferroni corrected p-values <0.0071) in the combined CelD and CD replication cohorts and were firmly established as shared risk loci of genome-wide significance, with overall combined p-values of 1.55 x 10⁻¹⁰ and 1.38 x 10⁻¹¹ respectively. Through a meta-analysis of GWAS data from CD and CelD, we have identified four shared risk loci: PTPN2, IL18RAP, TAGAP, and PUS10. The combined analysis of the two datasets provided the power, lacking in the individual GWAS for single diseases, to detect shared loci with a relatively small

  17. A Meta-Analysis of Genome-Wide Association Scans Identifies IL18RAP, PTPN2, TAGAP, and PUS10 As Shared Risk Loci for Crohn's Disease and Celiac Disease

    PubMed Central

    Boucher, Gabrielle; Beauchamp, Claudine; Trynka, Gosia; Dubois, Patrick C.; Lagacé, Caroline; Stokkers, Pieter C. F.; Hommes, Daan W.; Barisani, Donatella; Palmieri, Orazio; Annese, Vito; van Heel, David A.; Weersma, Rinse K.; Daly, Mark J.; Wijmenga, Cisca; Rioux, John D.

    2011-01-01

    Crohn's disease (CD) and celiac disease (CelD) are chronic intestinal inflammatory diseases, involving genetic and environmental factors in their pathogenesis. The two diseases can co-occur within families, and studies suggest that CelD patients have a higher risk to develop CD than the general population. These observations suggest that CD and CelD may share common genetic risk loci. Two such shared loci, IL18RAP and PTPN2, have already been identified independently in these two diseases. The aim of our study was to explicitly identify shared risk loci for these diseases by combining results from genome-wide association study (GWAS) datasets of CD and CelD. Specifically, GWAS results from CelD (768 cases, 1,422 controls) and CD (3,230 cases, 4,829 controls) were combined in a meta-analysis. Nine independent regions had nominal association p-value <1.0×10−5 in this meta-analysis and showed evidence of association to the individual diseases in the original scans (p-value <1×10−2 in CelD and <1×10−3 in CD). These include the two previously reported shared loci, IL18RAP and PTPN2, with p-values of 3.37×10−8 and 6.39×10−9, respectively, in the meta-analysis. The other seven had not been reported as shared loci and thus were tested in additional CelD (3,149 cases and 4,714 controls) and CD (1,835 cases and 1,669 controls) cohorts. Two of these loci, TAGAP and PUS10, showed significant evidence of replication (Bonferroni corrected p-values <0.0071) in the combined CelD and CD replication cohorts and were firmly established as shared risk loci of genome-wide significance, with overall combined p-values of 1.55×10−10 and 1.38×10−11 respectively. Through a meta-analysis of GWAS data from CD and CelD, we have identified four shared risk loci: PTPN2, IL18RAP, TAGAP, and PUS10. The combined analysis of the two datasets provided the power, lacking in the individual GWAS for single diseases, to detect shared loci with a relatively small effect. PMID:21298027

  18. IL18 — EDRN Public Portal

    Cancer.gov

    From NCBI Gene: The protein encoded by this gene is a proinflammatory cytokine that augments natural killer cell activity in spleen cells, and stimulates interferon gamma production in T-helper type I cells. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Aug 2011

  19. Genetically determined high activity of IL-12 and IL-18 in ulcerative colitis and TLR5 in Crohns disease were associated with non-response to anti-TNF therapy.

    PubMed

    Bank, S; Andersen, P S; Burisch, J; Pedersen, N; Roug, S; Galsgaard, J; Turino, S Y; Brodersen, J B; Rashid, S; Rasmussen, B K; Avlund, S; Olesen, T B; Hoffmann, H J; Nexø, B A; Sode, J; Vogel, U; Andersen, V

    2017-01-31

    Anti-tumour necrosis factor-α (TNF-α) is used for treatment of severe cases of inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). However, one-third of the patients do not respond to the treatment. A recent study indicated that genetically determined high activity of pro-inflammatory cytokines, including interleukin-1β (IL-1β), IL-6 and interferon gamma (IFN-γ), are associated with non-response to anti-TNF therapy. Using a candidate gene approach, 21 functional single-nucleotide polymorphisms (SNPs) in 14 genes in the Toll-like receptors, the inflammasome and the IFNG pathways were assessed in 482 and 256 prior anti-TNF naïve Danish patients with CD and UC, respectively. The results were analysed using logistic regression (adjusted for age and gender). Eight functional SNPs were associated with anti-TNF response either among patients with CD (TLR5 (rs5744174) and IFNGR2 (rs8126756)), UC (IL12B (rs3212217), IL18 (rs1946518), IFNGR1 (rs2234711), TBX21 (rs17250932) and JAK2 (rs12343867)) or in the combined cohort of patient with CD and UC (IBD) (NLRP3 (rs10754558), IL12B (rs3212217) and IFNGR1 (rs2234711)) (P<0.05). Only the association with heterozygous genotype of IL12B (rs3212217) (OR: 0.24, 95% CI: 0.11-0.53, P=0.008) among patients with UC withstood Bonferroni correction for multiple testing. In conclusion, Our results suggest that SNPs associated with genetically determined high activity of TLR5 among patients with CD and genetically determined high IL-12 and IL-18 levels among patients with UC were associated with non-response. Further studies will evaluate whether these genes may help stratifying patients according to the expected response to anti-TNF treatment.The Pharmacogenomics Journal advance online publication, 31 January 2017; doi:10.1038/tpj.2016.84.

  20. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs

    PubMed Central

    Neves, Fabiana; Abrantes, Joana; Almeida, Tereza; de Matos, Ana Lemos; Costa, Paulo P

    2015-01-01

    ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse. PMID:26395994

  1. Expression of IL-1Ra, IL-6, IL-8, IL-18, TNF-α and IFN-γ genes in peripheral blood leukocytes of rabbits infected with RHDV (Rabbit Haemorrhagic Disease Virus).

    PubMed

    Trzeciak-Ryczek, Alicja; Tokarz-Deptuła, Beata; Deptuła, Wiesław

    2017-11-01

    Rabbit haemorrhagic disease virus (RHDV) induces a highly contagious and extremely lethal disease that fulfils many requirements of an animal model of fulminant hepatic failure (FHF); however, the pathogenesis of RHD has still not been fully elucidated. Cytokines play an important role in regulation of the immune response and pathogenesis of many diseases, including those caused by viral infections. Furthermore, recent studies indicate a role of the immune response, especially peripheral blood leukocytes (PBL), in the pathogenesis of RHD. Thus, in the present study we investigated the expression of IL-1Ra, IL-6, IL-8, IL-18, TNF-α and IFN-γ genes in PBL of RHDV-infected rabbits. We also compared the expression of genes encoding these cytokines in rabbits with different course of RHDV infection (in animals that died 36 h post infection or survived even over 60 h after infection). The study revealed increased expression of genes encoding pro-inflammatory cytokines: IL-6, IL-8, TNF-α, IFN-γ in PBL of RHDV-infected rabbits. Moreover, the level of cytokine gene expression depended on the course of RHD. Hence, the results obtained indicate the potential role of these cytokines in RHDV infection and their influence on the survival time of infected rabbits. Copyright © 2017. Published by Elsevier Ltd.

  2. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs.

    PubMed

    Neves, Fabiana; Abrantes, Joana; Almeida, Tereza; de Matos, Ana Lemos; Costa, Paulo P; Esteves, Pedro J

    2015-11-01

    ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse. © The Author(s) 2015.

  3. Interleukin-1 receptor cluster: gene organization of IL1R2, IL1R1, IL1RL2 (IL-1Rrp2), IL1RL1 (T1/ST2), and IL18R1 (IL-1Rrp) on human chromosome 2q.

    PubMed

    Dale, M; Nicklin, M J

    1999-04-01

    The family of interleukin-1 receptor-like genes currently has six known members. We have constructed a contig of 10 overlapping human PAC clones that covers 530 kb and includes five of the six family members. The termini of the contig were mapped to the interval between D2S373 and D2S176 (chromosome 2q12) by radiation hybrid mapping. The contig contains the genes (cen --> tel), in the order given, for the type II interleukin-1 (IL-1) receptor (IL1R2), the type I IL-1 receptor (IL1R1), the IL-1 receptor-related protein 2 (IL1RL2), T1/ST2/fit-1 (IL1RL1), and the IL-1 receptor-related protein 1, which has recently been shown to be a component of the IL-18 receptor (IL18R1). We show that all the genes are transcribed in the same direction, with IL1R2 being transcribed toward the cluster. The only known family member that is absent from the human contig is the IL-1 receptor accessory protein gene (IL1RAP), which maps to 3q28. Copyright 1999 Academic Press.

  4. Anthocyanins from black soybean seed coat enhance wound healing.

    PubMed

    Xu, Lianji; Choi, Tae Hyun; Kim, Sukwha; Kim, Sang-Hyon; Chang, Hyuk Won; Choe, Misun; Kwon, Sun Young; Hur, Ji An; Shin, Sung Chul; Chung, Jong Il; Kang, Dawon; Zhang, Duo

    2013-10-01

    Anthocyanins are known to have antioxidant and antiinflammatory effects. We hypothesized that anthocyanins would enhance wound healing in Sprague-Dawley rats. The purpose of this study was to evaluate our hypothesis and investigate the mechanism of wound healing enhancement. The cytoprotective effect of an immortalized epidermal keratinocyte cell line (HaCaT) and human neonatal dermal fibroblasts in response to various concentrations of anthocyanins was determined. Vascular endothelial growth factor (VEGF) and thrombospondin 1 (TSP1) of HaCaT were measured by Western blot analysis. Anthocyanins were applied to the wounds in rats, and the healing ratio was calculated. Tissue VEGF, TSP1, CD31, nuclear factor-κB, and phosphorylation of IκBα were measured. The viability of the HaCaT cell line and human neonatal dermal fibroblasts increased under cytotoxicity by H2O2 in the anthocyanin-treated groups. The VEGF in the anthocyanin-treated groups increased, whereas TSP1 decreased. Wounds in the experimental groups healed faster, and VEGF and CD31 increased in the experimental groups, whereas TSP1 decreased. Anthocyanins inhibited the translocation of nuclear factor-κB (p65) from cytosol to nucleus and also prevented the phosphorylation of IκBα. Anthocyanins enhance wound healing through a cytoprotective effect, enhancement of angiogenesis, and an antiinflammatory effect.

  5. Enhancement of Th1-biased protective immunity against avian influenza H9N2 virus via oral co-administration of attenuated Salmonella enterica serovar Typhimurium expressing chicken interferon-α and interleukin-18 along with an inactivated vaccine

    PubMed Central

    2012-01-01

    Background Control of currently circulating re-assorted low-pathogenicity avian influenza (LPAI) H9N2 is a major concern for both animal and human health. Thus, an improved LPAI H9N2 vaccination strategy is needed to induce complete immunity in chickens against LPAI H9N2 virus strains. Cytokines play a crucial role in mounting both the type and extent of an immune response generated following infection with a pathogen or after vaccination. To improve the efficacy of inactivated LPAI H9N2 vaccine, attenuated Salmonella enterica serovar Typhimurium was used for oral co-administration of chicken interferon-α (chIFN-α) and chicken interleukin-18 (chIL-18) as natural immunomodulators. Results Oral co-administration of S. enterica serovar Typhimurium expressing chIFN-α and chIL-18, prior to vaccination with inactivated AI H9N2 vaccine, modulated the immune response of chickens against the vaccine antigen through enhanced humoral and Th1-biased cell-mediated immunity, compared to chickens that received single administration of S. enterica serovar Typhimurium expressing either chIFN-α or chIL-18. To further test the protective efficacy of this improved vaccination regimen, immunized chickens were intra-tracheally challenged with a high dose of LPAI H9N2 virus. Combined administration of S. enterica serovar Typhimurium expressing chIFN-α and chIL-18 showed markedly enhanced protection compared to single administration of the construct, as determined by mortality, clinical severity, and feed and water intake. This enhancement of protective immunity was further confirmed by reduced rectal shedding and replication of AIV H9N2 in different tissues of challenged chickens. Conclusions Our results indicate the value of combined administration of chIFN-α and chIL-18 using a Salmonella vaccine strain to generate an effective immunization strategy in chickens against LPAI H9N2. PMID:22776696

  6. Biosynthesis and Expression of a Disintegrin-like and Metalloproteinase Domain with Thrombospondin-1 Repeats-15

    PubMed Central

    Dancevic, Carolyn M.; Fraser, Fiona W.; Smith, Adam D.; Stupka, Nicole; Ward, Alister C.; McCulloch, Daniel R.

    2013-01-01

    The proteoglycanase clade of the ADAMTS superfamily shows preferred proteolytic activity toward the hyalectan/lectican proteoglycans as follows: aggrecan, brevican, neurocan, and versican. ADAMTS15, a member of this clade, was recently identified as a putative tumor suppressor gene in colorectal and breast cancer. However, its biosynthesis, substrate specificity, and tissue expression are poorly described. Therefore, we undertook a detailed study of this proteinase and its expression. We report propeptide processing of the ADAMTS15 zymogen by furin activity, identifying RAKR212↓ as a major furin cleavage site within the prodomain. ADAMTS15 was localized on the cell surface, activated extracellularly, and required propeptide processing before cleaving V1 versican at position 441E↓A442. In the mouse embryo, Adamts15 was expressed in the developing heart at E10.5 and E11.5 days post-coitum and in the musculoskeletal system from E13.5 to E15.5 days post-coitum, where it was co-localized with hyaluronan. Adamts15 was also highly expressed in several structures within the adult mouse colon. Our findings show overlapping sites of Adamts15 expression with other members of ADAMTS proteoglycanases during embryonic development, suggesting possible cooperative roles during embryogenesis, consistent with other ADAMTS proteoglycanase combinatorial knock-out mouse models. Collectively, these data suggest a role for ADAMTS15 in a wide range of biological processes that are potentially mediated through the processing of versican. PMID:24220035

  7. Thrombospondin 1 Wages a Double Hit Against Cancer | Center for Cancer Research

    Cancer.gov

    Cancer is the result of a complex series of molecular steps that promote uncontrolled growth and erode the body’s ability to fight the resulting tumor. Generating a more complete picture of these molecular events should help identify strategies to prevent and treat the disease.

  8. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    SciTech Connect

    Helkin, Alex; Maier, Kristopher G.; Gahtan, Vivian

    2015-09-04

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods: Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not, likely due conservation of N-terminal domains in TSP-1 and -2. In addition, TSP-1, -2 and -5 significantly affect VSMC gene expression; however, little overlap exists in the specific genes altered. This study further delineates TSP-1, -2 and -5's contributions to processes related to VSMC physiology. - Highlights: • We examined the effects of three different thrombospondins on smooth muscle cells. • Thrombospondins −1, −2, −5 all increase smooth muscle cell migration. • Thrombospondins −1 and −2, but not −5, increase smooth muscle cell proliferation. • All three thrombospondins exhibit temporally distinct patterns of gene expression. • Thrombospondins −1 and −2 display distinct patterns of gene expression.

  9. Induction of thrombospondin 1 by retinoic acid is important during differentiation of neuroblastoma cells.

    PubMed Central

    Castle, V P; Ou, X; O'Shea, S; Dixit, V M

    1992-01-01

    Neuroblastoma, a malignant neoplasm that arises in the adrenal medulla or sympathetic ganglion, is one of the most common solid tumors of childhood. Reports that neuroblastomas spontaneously mature to form benign ganglioneuromas have prompted investigations into the efficacy of using agents that induce neuronal differentiation in the treatment of this malignancy. Retinoic acid is one agent in particular that has been shown to induce growth inhibition and terminal differentiation of neuroblastoma cell lines in vitro. Using the human neuroblastoma cell line SMH-KCNR, we have investigated the role of the extracellular matrix protein thrombospondin in retinoic acid induced neuroblastoma differentiation. Treatment with retinoic acid results in a rapid induction (within 4 h) of thrombospondin (TSP) message which is independent of intervening protein synthesis and superinducible in the presence of cycloheximide. This suggests that TSP functions as a retinoic acid inducible immediate early response gene. A concomitant increase in both cell associated and soluble forms of TSP protein can be detected within 24 h of retinoic acid treatment. A functional role for TSP in SMH-KCNR differentiation was established in experiments which showed that exposure to anti-TSP monoclonal antibodies delay retinoic acid differentiation for 48 h. At the time the cells overcome the effects of TSP inhibition, laminin production becomes maximal. Treatment of the cells with a combination of anti-TSP and antilaminin antibodies results in complete inhibition of differentiation. Images PMID:1430209

  10. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling.

    PubMed

    Jiang, Jing; Chen, Xinchun; An, Hongjuan; Yang, Bingfen; Zhang, Fuping; Cheng, Xiaoxing

    2016-09-02

    The functions of MAIT cells at the site of Mycobacterium tuberculosis infection in humans are still largely unknown. In this study, the phenotypes and immune response of MAIT cells from tuberculous pleural effusions and peripheral blood were investigated. MAIT cells in tuberculous pleural effusions had greatly enhanced IFN-γ, IL-17F and granzyme B response compared with those in peripheral blood. The level of IFN-γ response in MAIT cells from tuberculous pleural effusions was inversely correlated with the extent of tuberculosis infection (p = 0.0006). To determine whether cytokines drive the immune responses of MAIT cells at the site of tuberculosis infection, the role of IL-1β, IL-2, IL-7, IL-12, IL-15 and IL-18 was investigated. Blockade of IL-2, IL-12 or IL-18 led to significantly reduced production of IFN-γ and/or granzyme B in MAIT cells from tuberculous pleural effusions. Majority of IL-2-producing cells (94.50%) in tuberculous pleural effusions had phenotype of CD3(+)CD4(+), and most IL-12p40-producing cells (91.39%) were CD14(+) cells. MAIT cells had significantly elevated expression of γc receptor which correlated with enhanced immune responses of MAIT cells. It is concluded that MAIT cells from tuberculous pleural effusions exhibited highly elevated immune response to Mtb antigens, which are controlled by cytokines produced by innate/adaptive immune cells.

  11. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling

    PubMed Central

    Jiang, Jing; Chen, Xinchun; An, Hongjuan; Yang, Bingfen; Zhang, Fuping; Cheng, Xiaoxing

    2016-01-01

    The functions of MAIT cells at the site of Mycobacterium tuberculosis infection in humans are still largely unknown. In this study, the phenotypes and immune response of MAIT cells from tuberculous pleural effusions and peripheral blood were investigated. MAIT cells in tuberculous pleural effusions had greatly enhanced IFN-γ, IL-17F and granzyme B response compared with those in peripheral blood. The level of IFN-γ response in MAIT cells from tuberculous pleural effusions was inversely correlated with the extent of tuberculosis infection (p = 0.0006). To determine whether cytokines drive the immune responses of MAIT cells at the site of tuberculosis infection, the role of IL-1β, IL-2, IL-7, IL-12, IL-15 and IL-18 was investigated. Blockade of IL-2, IL-12 or IL-18 led to significantly reduced production of IFN-γ and/or granzyme B in MAIT cells from tuberculous pleural effusions. Majority of IL-2-producing cells (94.50%) in tuberculous pleural effusions had phenotype of CD3+CD4+, and most IL-12p40-producing cells (91.39%) were CD14+ cells. MAIT cells had significantly elevated expression of γc receptor which correlated with enhanced immune responses of MAIT cells. It is concluded that MAIT cells from tuberculous pleural effusions exhibited highly elevated immune response to Mtb antigens, which are controlled by cytokines produced by innate/adaptive immune cells. PMID:27586092

  12. Biophysical Studies of the Type 1 Repeats of Human Thrombospondin-1 to Characterize the Structural Basis of its Angiostatic Effect

    DTIC Science & Technology

    1999-08-01

    determined conditions to isolate the recombinant protein under native conditions. The process involved cleaving the recombinant fusion protein bound to... process . There are, however, reports in the literature of crystals being obtained for His-tagged proteins (15). To remove the His-tag, I needed a protease... process . Another recombinant protein (P3E123) that we have expressed in the baculovirus system also displays a multiple banding pattern and contains bands

  13. Curcumin protects against lipopolysaccharide-induced vasoconstriction dysfunction via inhibition of thrombospondin-1 and transforming growth factor-β1

    PubMed Central

    LU, WEI; JIANG, JIAN-PING; HU, JUE; WANG, JUE; ZHENG, MING-ZHI

    2015-01-01

    Sepsis is a complex syndrome characterized by the development of progressive dysfunction in multiple organs. The aim of the present study was to investigate the protective effect of curcumin against lipopolysaccharide (LPS)-induced vasoconstrictive dysfunction, and to investigate the possible underlying mechanism. Male Sprague-Dawley rats were randomly divided into the following groups: Control, sepsis and curcumin. A sepsis model was established by an intraperitoneal (i.p.) injection of 5 mg/kg LPS. Thoracic aortic rings obtained from the rats were mounted in an organ bath and the vasoconstriction of the rings was recorded. In addition, the serum E-selectin levels were determined by an enzyme-linked immunosorbent assay. The expression levels of thrombospondin (TSP)-1 and transforming growth factor (TGF)-β1 in the aortic tissue were detected by immunohistochemistry. Vasoconstriction of the aortic rings was found to significantly decrease in the sepsis rats when compared with the control group. However, curcumin (10 or 20 mg/kg, i.p.) prevented the vasoconstrictive dysfunction induced by LPS. The serum level of E-selectin and the expression levels of TSP-1 and TGF-β1 significantly increased in the sepsis rats when compared with the control group rats; however, the levels decreased significantly following treatment with curcumin (10 or 20 mg/kg). Furthermore, hematoxylin and eosin staining revealed that curcumin alleviated the LPS-induced damage in the aortic tunica intima and tunica media. Therefore, the results indicated that curcumin alleviates LPS-induced vasoconstrictive dysfunction in the thoracic aorta of rats. In addition, the inhibition of TSP-1 and TGF-β1 expression may be involved in the mechanism underlying this protective effect. PMID:25574201

  14. Polymorphisms A387P in thrombospondin-4 and N700S in thrombospondin-1 perturb calcium binding sites.

    PubMed

    Stenina, Olga I; Ustinov, Valentin; Krukovets, Irene; Marinic, Tina; Topol, Eric J; Plow, Edward F

    2005-11-01

    Recent genetic studies have associated members of the thrombospondin (TSP) gene family with premature cardiovascular disease. The disease-associated polymorphisms lead to single amino acid changes in TSP-4 (A387P) and TSP-1 (N700S). These substitutions reside in adjacent domains of these highly homologous proteins. Secondary structural predictive programs and the homology of the domains harboring these amino acid substitutions to those in other proteins pointed to potential alterations of putative Ca2+ binding sites that reside in close proximity to the polymorphic amino acids. Since Ca2+ binding is critical for the structure and function of TSP family members, direct evidence for differences in Ca2+ binding by the polymorphic forms was sought. Using synthetic peptides and purified recombinant variant fragments bearing the amino acid substitutions, we measured differences in Tb3+ luminescence as an index of Ca2+ binding. The Tb3+ binding constants placed the TSP-1 region affected by N700S polymorphism among other high-affinity Ca2+ binding sites. The affinity of Ca2+ binding was lower for peptides (3.5-fold) and recombinant fragments (10-fold) containing the S700 vs. the N700 form. In TSP-4, the P387 form acquired an additional Ca2+ binding site absent in the A387 form. The results of our study suggest that both substitutions (A387P in TSP-4 and N700S in TSP-1) alter Ca2+ binding properties. Since these substitutions exert the opposite effects on Ca2+ binding, a decrease in TSP-1 and an increase in TSP-4, the two TSP variants are likely to influence cardiovascular functions in distinct but yet pathogenic ways.

  15. Trophoblast cells primed with vasoactive intestinal peptide enhance monocyte migration and apoptotic cell clearance through αvβ3 integrin portal formation in a model of maternal-placental interaction.

    PubMed

    Paparini, Daniel; Grasso, Esteban; Calo, Guillermina; Vota, Daiana; Hauk, Vanesa; Ramhorst, Rosanna; Leirós, Claudia Pérez

    2015-12-01

    increased CD39 and IL-10 expression (P < 0.05). Phagocytosis of apoptotic trophoblast cells by monocytes and monocyte-differentiated macrophages was increased by VIP conditioned medium (P < 0.05 versus media conditioned in the absence of VIP or direct addition of 100 nM VIP). The boosting effect of VIP conditioned medium on phagocytosis involved increased expression and re-localization of αvβ3 integrin on phagocytic cells along with enhanced expression of thrombospondin 1 on trophoblast cells. The conclusions are based on in vitro experiments with monocytes drawn from peripheral blood of healthy individuals and trophoblast cell lines and we were unable to ascertain that these mechanisms operate similarly in vivo. We cannot rule out a differential behavior of either trophoblast cells targeted in vivo with VIP, or primary cultures of first trimester trophoblast cells assayed in vitro. The results presented provide new clues for immune and trophoblast cell pharmacological targeting in pregnancy complications of immunopathologic nature. This work was funded by the National Agency of Sciences and Technology ANPCyT (PICT 2011-0144), National Research Council CONICET (PIP 602/2012) and University of Buenos Aires (UBACyT 20020130100040BA) to C.P.L. The authors have no conflicts of interest to disclose. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Soluble IL-18 receptor complex: a new star in the firmament of rheumatoid arthritis diagnosis?

    PubMed

    van de Loo, Fons A J

    2011-04-27

    It has long been recognized that laboratory tests are useful in the diagnosis of disease and to monitor treatment outcome. Their performance has become even more demanding with the development of personalized medicine. In patients with rheumatoid arthritis (RA) the standard biochemical tests measure serological markers of disease, such as C-reactive protein, and RA-associated auto-antibodies, such as rheumatoid factor and anti-citrullinated protein antibodies. The information obtained from these markers does not, however, provide a complete picture of the disease and treatment efficacy. New biomarkers based on cytokine receptor complexes are promising for RA theragnostics.

  17. Soluble IL-18 receptor complex: a new star in the firmament of rheumatoid arthritis diagnosis?

    PubMed Central

    2011-01-01

    It has long been recognized that laboratory tests are useful in the diagnosis of disease and to monitor treatment outcome. Their performance has become even more demanding with the development of personalized medicine. In patients with rheumatoid arthritis (RA) the standard biochemical tests measure serological markers of disease, such as C-reactive protein, and RA-associated auto-antibodies, such as rheumatoid factor and anti-citrullinated protein antibodies. The information obtained from these markers does not, however, provide a complete picture of the disease and treatment efficacy. New biomarkers based on cytokine receptor complexes are promising for RA theragnostics. PMID:21542890

  18. Immune responses induced by DNA vaccines bearing Spike gene of PEDV combined with porcine IL-18

    USDA-ARS?s Scientific Manuscript database

    Porcine epidemic diarrhea virus (PEDV) is the causative agent of porcine epidemic diarrhea, a highly contagious enteric disease of swine. The Spike (S) protein is one of the main structural proteins of PEDV capable of inducing neutralizing antibodies in vivo. Herein, we generated three distinct DNA ...

  19. Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice.

    PubMed

    Kang, Min-Jong; Lee, Chun Geun; Lee, Jae-Young; Dela Cruz, Charles S; Chen, Zhijian J; Enelow, Richard; Elias, Jack A

    2008-08-01

    Viral infections have more severe consequences in patients who have been exposed to cigarette smoke (CS) than in those not exposed to CS. For example, in chronic obstructive pulmonary disease (COPD), viruses cause more severe disease exacerbation, heightened inflammation, and accelerated loss of lung function compared with other causes of disease exacerbation. Symptomatology and mortality in influenza-infected smokers is also enhanced. To test the hypothesis that these outcomes are caused by CS-induced alterations in innate immunity, we defined the effects of CS on pathogen-associated molecular pattern-induced (PAMP-induced) pulmonary inflammation and remodeling in mice. CS was found to enhance parenchymal and airway inflammation and apoptosis induced by the viral PAMP poly(I:C). CS and poly(I:C) also induced accelerated emphysema and airway fibrosis. The effects of a combination of CS and poly(I:C) were associated with early induction of type I IFN and IL-18, later induction of IL-12/IL-23 p40 and IFN-gamma, and the activation of double-stranded RNA-dependent protein kinase (PKR) and eukaryotic initiation factor-2alpha (eIF2alpha). Further analysis using mice lacking specific proteins indicated a role for TLR3-dependent and -independent pathways as well as a pathway or pathways that are dependent on mitochondrial antiviral signaling protein (MAVS), IL-18Ralpha, IFN-gamma, and PKR. Importantly, CS enhanced the effects of influenza but not other agonists of innate immunity in a similar fashion. These studies demonstrate that CS selectively augments the airway and alveolar inflammatory and remodeling responses induced in the murine lung by viral PAMPs and viruses.

  20. Moral Enhancement

    PubMed Central

    Douglas, Thomas

    2008-01-01

    Opponents of biomedical enhancement often claim that, even if such enhancement would benefit the enhanced, it would harm others. But this objection looks unpersuasive when the enhancement in question is a moral enhancement — an enhancement that will expectably leave the enhanced person with morally better motives than she had previously. In this article I (1) describe one type of psychological alteration that would plausibly qualify as a moral enhancement, (2) argue that we will, in the medium-term future, probably be able to induce such alterations via biomedical intervention, and (3) defend future engagement in such moral enhancements against possible objections. My aim is to present this kind of moral enhancement as a counter-example to the view that biomedical enhancement is always morally impermissible. PMID:19132138

  1. Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells.

    PubMed

    Ochoa, Maria Carmen; Minute, Luna; Rodriguez, Inmaculada; Garasa, Saray; Perez-Ruiz, Elisabeth; Inogés, Susana; Melero, Ignacio; Berraondo, Pedro

    2017-02-21

    Antibody-dependent cellular cytotoxicity (ADCC) is a set of mechanisms that target cells coated with IgG antibodies of the proper subclasses (IgG1 in the human) to be the prey of cell-to-cell cytolysis executed by immune cells expressing FcRIIIA (CD16A). These effectors include not only natural killer (NK) cells but also other CD16(+) subsets such as monocyte/macrophages, NKT cells or γδ T cells. In cancer therapy, ADCC is exploited by antibodies that selectively recognize proteins on the surface of malignant cells. An approach to enhance antitumor activity is to act on effector cells so they are increased in their numbers or enhanced in their individual (on a cell per cell basis) ADCC performance. This enhancement can be therapeutically attained by cytokines (that is, interleukin (IL)-15, IL-21, IL-18, IL-2); immunostimulatory monoclonal antibodies (that is, anti-CD137, anti-CD96, anti-TIGIT, anti-KIR, anti-PD-1); TLR agonists or by adoptive infusions of ex vivo expanded NK cells which can be genetically engineered to become more efficient effectors. In conjunction with approaches optimizing IgG1 Fc affinity to CD16, acting on effector cells offers hope to achieve synergistic immunotherapy strategies.Immunology and Cell Biology advance online publication, 21 February 2017; doi:10.1038/icb.2017.6.

  2. Biosynthesis and expression of a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats-15: a novel versican-cleaving proteoglycanase.

    PubMed

    Dancevic, Carolyn M; Fraser, Fiona W; Smith, Adam D; Stupka, Nicole; Ward, Alister C; McCulloch, Daniel R

    2013-12-27

    The proteoglycanase clade of the ADAMTS superfamily shows preferred proteolytic activity toward the hyalectan/lectican proteoglycans as follows: aggrecan, brevican, neurocan, and versican. ADAMTS15, a member of this clade, was recently identified as a putative tumor suppressor gene in colorectal and breast cancer. However, its biosynthesis, substrate specificity, and tissue expression are poorly described. Therefore, we undertook a detailed study of this proteinase and its expression. We report propeptide processing of the ADAMTS15 zymogen by furin activity, identifying RAKR(212)↓ as a major furin cleavage site within the prodomain. ADAMTS15 was localized on the cell surface, activated extracellularly, and required propeptide processing before cleaving V1 versican at position (441)E↓A(442). In the mouse embryo, Adamts15 was expressed in the developing heart at E10.5 and E11.5 days post-coitum and in the musculoskeletal system from E13.5 to E15.5 days post-coitum, where it was co-localized with hyaluronan. Adamts15 was also highly expressed in several structures within the adult mouse colon. Our findings show overlapping sites of Adamts15 expression with other members of ADAMTS proteoglycanases during embryonic development, suggesting possible cooperative roles during embryogenesis, consistent with other ADAMTS proteoglycanase combinatorial knock-out mouse models. Collectively, these data suggest a role for ADAMTS15 in a wide range of biological processes that are potentially mediated through the processing of versican.

  3. The Lack of Thrombospondin-1 (TSP1) Dictates the Course of Wound Healing in Double-TSP1/TSP2-Null Mice

    PubMed Central

    Agah, Azin; Kyriakides, Themis R.; Lawler, Jack; Bornstein, Paul

    2002-01-01

    Thrombospondin (TSP) 1 and 2, share the same overall structure and interact with a number of the same cell-surface receptors. In an attempt to elucidate their biological roles more clearly, we generated double-TSP1/TSP2-null animals and compared their phenotype to those of TSP1- and TSP2-null mice. Double-null mice exhibited an apparent phenotype that primarily represented the sum of the abnormalities observed in the single-null mice. However, surprisingly, the wound-healing response in double-null mice resembled that in TSP1-null animals and differed from that in TSP2-nulls. Thus, although the excisional wounds of TSP2-null mice are characterized by increased neovascularization and heal at an accelerated rate, TSP1-null and double-null animals demonstrated delayed healing, as indicated by the prolonged persistence of inflammation and delayed scab loss. Immunohistochemical analysis showed that, similar to TSP1-null mice, the granulation tissue of double-null mice was not excessively vascularized. Furthermore as in TSP1-nulls, decreases in macrophage recruitment and in the levels of monocyte chemoattractant protein-1 indicated that the inflammatory phase of the wound-healing response was impaired in double-null mice. Our data demonstrate that the consequences of a lack of TSP1 predominate in the response of double-null mice, and dictate the course of wound healing. These findings reflect distinct temporal and spatial expressions of TSP1 and TSP2 in the healing wound. PMID:12213711

  4. Cytokine-Induced Memory-Like Differentiation Enhances Unlicensed Natural Killer Cell Antileukemia and FcγRIIIa-Triggered Responses.

    PubMed

    Wagner, Julia A; Berrien-Elliott, Melissa M; Rosario, Maximillian; Leong, Jeffrey W; Jewell, Brea A; Schappe, Timothy; Abdel-Latif, Sara; Fehniger, Todd A

    2017-03-01

    Cytokine-induced memory-like natural killer (NK) cells differentiate after short-term preactivation with IL-12, IL-15, and IL-18 and display enhanced effector function in response to cytokines or tumor targets for weeks after the initial preactivation. Conventional NK cell function depends on a licensing signal, classically delivered by an inhibitory receptor engaging its cognate MHC class I ligand. How licensing status integrates with cytokine-induced memory-like NK cell responses is unknown. We investigated this interaction using killer cell immunoglobulin-like receptor- and HLA-genotyped primary human NK cells. Memory-like differentiation resulted in enhanced IFN-γ production triggered by leukemia targets or FcγRIIIa ligation within licensed NK cells, which exhibited the highest functionality of the NK cell subsets interrogated. IFN-γ production by unlicensed memory-like NK cells was also enhanced to a level comparable with that of licensed control NK cells. Mechanistically, differences in responses to FcγRIIIa-based triggering were not explained by alterations in key signaling intermediates, indicating that the underlying biology of memory-like NK cells is distinct from that of adaptive NK cells in human cytomegalovirus-positive individuals. Additionally, memory-like NK cells responded robustly to cytokine receptor restimulation with no impact of licensing status. These results demonstrate that both licensed and unlicensed memory-like NK cell populations have enhanced functionality, which may be translated to improve leukemia immunotherapy.

  5. CD47: A Master Regulator of Stemness | Center for Cancer Research

    Cancer.gov

    Identifying the pathways cells use to regulate proliferation, differentiation, and survival are essential for designing new treatments to stimulate organ and tissue repair following injury and for diseases as diverse as cancer and diabetes. The thrombospondin-1 receptor CD47 seems to limit cell survival and regeneration after stress. At the same time, CD47 levels are increased on the surface of cancer cells, which show enhanced proliferation and survival. To understand this apparent paradox, David Roberts, Ph.D., in CCR’s Laboratory of Pathology and his colleagues decided to investigate CD47’s mechanism of action using CD47- and thrombospondin-1-null mice.

  6. Amphotericin B stimulates γδ T and NK cells, and enhances protection from Salmonella infection.

    PubMed

    Hedges, Jodi F; Mitchell, Angela M; Jones, Kerri; Kimmel, Emily; Ramstead, Andrew G; Snyder, Deann T; Jutila, Mark A

    2015-08-01

    Amphotericin B (AmB) is a commonly used antifungal drug, with well-documented effects on cellular immune responses. We determined that AmB-stimulated γδ T-cell activation and proliferation in vitro at very low concentrations. AmB also enhanced IFN-γ production by NK cells in combination with IL-18. AmB had a greater effect on IFN-γ production in cells isolated from very young animals. Although innate immunostimulatory aspects of AmB have been defined, AmB has not been extensively applied in non-fungal infection settings. Given that γδ T cells are increased and activated in Salmonella infection in cattle, we assessed the effects of AmB in protection from Salmonella enterocolitis in calves. One injection of AmB, at approximately one-tenth of the concentration used in human patients to counter fungal infection, or saline control, was delivered intravenously to calves prior to infection with Salmonella. This single injection caused no adverse effects, reduced disease symptoms from Salmonella enterocolitis and significantly reduced Salmonella bacteria shed in feces of infected animals. Our findings suggest that AmB may be an inexpensive and readily available prophylactic approach for the prevention of bacterial infection in calves.

  7. Virus-Infected Human Mast Cells Enhance Natural Killer Cell Functions.

    PubMed

    Portales-Cervantes, Liliana; Haidl, Ian D; Lee, Patrick W; Marshall, Jean S

    2017-01-01

    Mucosal surfaces are protected from infection by both structural and sentinel cells, such as mast cells. The mast cell's role in antiviral responses is poorly understood; however, they selectively recruit natural killer (NK) cells following infection. Here, the ability of virus-infected mast cells to enhance NK cell functions was examined. Cord blood-derived human mast cells infected with reovirus (Reo-CBMC) and subsequent mast cell products were used for the stimulation of human NK cells. NK cells upregulated the CD69 molecule and cytotoxicity-related genes, and demonstrated increased cytotoxic activity in response to Reo-CBMC soluble products. NK cell interferon (IFN)-γ production was also promoted in the presence of interleukin (IL)-18. In vivo, SCID mice injected with Reo-CBMC in a subcutaneous Matrigel model, could recruit and activate murine NK cells, a property not shared by normal human fibroblasts. Soluble products of Reo-CBMC included IL-10, TNF, type I and type III IFNs. Blockade of the type I IFN receptor abrogated NK cell activation. Furthermore, reovirus-infected mast cells expressed multiple IFN-α subtypes not observed in reovirus-infected fibroblasts or epithelial cells. Our data define an important mast cell IFN response, not shared by structural cells, and a subsequent novel mast cell-NK cell immune axis in human antiviral host defense.

  8. Biocatalyst Enhancement

    EPA Science Inventory

    The increasing availability of enzyme collections has assisted attempts by pharmaceutical producers to adopt green chemistry approaches to manufacturing. A joint effort between an enzyme producer and a pharmaceutical manufacturer has been enhanced over the past three years by ena...

  9. Biocatalyst Enhancement

    EPA Science Inventory

    The increasing availability of enzyme collections has assisted attempts by pharmaceutical producers to adopt green chemistry approaches to manufacturing. A joint effort between an enzyme producer and a pharmaceutical manufacturer has been enhanced over the past three years by ena...

  10. Enhancing bioremediation

    SciTech Connect

    Koenigsberg, S.

    1997-02-01

    Oxygen is often the limiting factor in aerobic bioremediation. Without adequate oxygen, contaminant degradation will either cease or proceed by highly inefficient anaerobic processes. Researchers at Regenesis Bioremediation Products recently develope a technology to combat this problem, Oxygen Release Compound (ORC) a unique formulation of magnesium peroxide release oxygen slowly when hydrated. ORC is idea for supporting bioremediation of underground storage tank releases. ORC treatment represents a low intensity approach to remediation - simple, passive, low-cost, long term enhancement of a natural attenuation. 1 fig.

  11. EDITORIAL: Enhancing nanolithography Enhancing nanolithography

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-01-01

    Lithography was invented in late 18th century Bavaria by an ambitious young playwright named Alois Senefelder. Senefelder experimented with stone, wax, water and ink in the hope of finding a way of reproducing text so that he might financially gain from a wider distribution of his already successful scripts. His discovery not only facilitated the profitability of his plays, but also provided the world with an affordable printing press that would ultimately democratize the dissemination of art, knowledge and literature. Since Senefelder, experiments in lithography have continued with a range of innovations including the use of electron beams and UV that allow increasingly higher-resolution features [1, 2]. Applications for this have now breached the limits of paper printing into the realms of semiconductor and microelectronic mechanical systems technology. In this issue, researchers demonstrate a technique for fabricating periodic features in poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) [3]. Their method combines field enhancements from silica nanospheres with laser-interference lithography to provide a means of patterning a polymer that has the potential to open the market of low-end, high-volume microelectronics. Laser-interference lithography has already been used successfully in patterning. Researchers in Korea used laser-interference lithography to generate stamps for imprinting a two-dimensional photonic crystal structure into green light emitting diodes (LEDs) [4]. The imprinted patterns comprised depressions 100 nm deep and 180 nm wide with a periodicity of 295 nm. In comparison with unpatterned LEDs, the intensity of photoluminescence was enhanced by a factor of seven in the LEDs that had the photonic crystal structures imprinted in them. The potential of exploiting field enhancements around nanostructures for new technologies has also attracted a great deal of attention. Researchers in the USA and Australia have used the field

  12. How aluminum adjuvants could promote and enhance non-target IgE synthesis in a genetically-vulnerable sub-population.

    PubMed

    Terhune, Todd D; Deth, Richard C

    2013-01-01

    Aluminum-containing adjuvants increase the effectiveness of vaccination, but their ability to augment immune responsiveness also carries the risk of eliciting non-target responses, especially in genetically susceptible individuals. This study reviews the relevant actions of aluminum adjuvants and sources of genetic risk that can combine to adversely affect a vulnerable sub-population. Aluminum adjuvants promote oxidative stress and increase inflammasome activity, leading to the release of IL-1β, IL-18, and IL-33, but not the important regulatory cytokine IL-12. In addition, they stimulate macrophages to produce PGE₂, which also has a role in regulating immune responses. This aluminum-induced cytokine context leads to a T(H)2 immune response, characterized by the further release of IL-3, IL-4, IL-5, IL-9, IL-13, and IgE-potentiating factors such as sCD23. Genetic variants in cytokine genes, such as IL-4, IL-13, IL-33, and IL-18 influence the response to vaccines in children and are also associated with atopy. These genetic factors may therefore define a genetically-vulnerable sub-population, children with a family history of atopy, who may experience an exaggerated T(H)2 immune response to aluminum-containing vaccines. IL-4, sCD23, and IgE are common factors for both atopy and the immune-stimulating properties of aluminum adjuvants. IL-4 is critical in the production of IgE and total IgE up-regulation. IL-4 has also been reported to induce the production of sCD23 and trigger resting sIgM+, sIgD+ B-cells to switch to sIgE+ B-cells, making them targets for IgE-potentiating factors. Further, the actions of IgE-potentiating factors on sIgE+ B-cells are polyclonal and unrestricted, triggering their differentiation into IgE-forming plasma cells. These actions provide a mechanism for aluminum-adjuvant promotion and enhancement of non-target IgE in a genetically vulnerable sub-population. Identification of these individuals may decrease the risk of adverse events

  13. Extracellular matrix metalloproteinase inducer enhances host resistance against pseudomonas aeruginosa infection through MAPK signaling pathway

    PubMed Central

    Li, Yongwei; Chen, Lu; Wang, Chunxia; Chen, Jianshe; Zhang, Xiaoqian; Hu, Yue; Niu, Xiaobin; Pei, Dongxu; He, Zhiqiang; Bi, Yongyi

    2016-01-01

    This study aims to explore the role of extra-cellular matrix metalloproteinase inducer (EMMPRIN) in the drug resistance of the pseudomonas aeruginosa (PA). The BALB/c mice were transfected with PA, then the mice were infected with the siRNA of EMMPRIN to silence the EMMPRIN gene. The EMMPRIN mRNA and protein were detected by using RT-PCR and western blot, respectively. In order to examine the function of EMMPRIN in drug resistance of PA, the BALB/c and C57BL/6 mice were treated with EMMPRIN siRNA. The cytokines, EMMPRIN and MMP9 were examined by the RP-PCR and ELISA, respectively, undergoing the silence of EMMPRIN siRNA. Moreover, the western blot assay was also used to test the phosphorylated MAPK in the murine macrophages after silenced by the EMMPRIN siRNA. The EMMPRIN was activated, with lipopolysaccharide stimulation and treated with the MAPK inhibitor, to evaluate whether the MAPK participates in the EMMPRIN-triggered drug resistance. The results indicated that the EMMPRIN expression was elevated in the infected BALB/c at 3 or 5 days post-infection. Silence of EMMPRIN Enhanced the Production of pro-inflammatory cytokines in PA keratitis. Silence of EMMPRIN significantly up-regulated Th1-type cytokines IFN-γ, IL-12, and IL-18, but down-regulated Th2-type cytokines IL-4, IL-5, and IL-10. MMP9 was increased in the cells with rEMMPRIN treatment. EMMPRIN inhibits pro-inflammatory cytokine production via a MAPK signaling pathway. In conclusion, EMMPRIN promotes host resistance against pseudomonas aeruginosa infection via MAPK signaling pathway. PMID:28078032

  14. Enhancement in Sport, and Enhancement outside Sport

    PubMed Central

    Douglas, Thomas

    2009-01-01

    Sport is one of the first areas in which enhancement has become commonplace. It is also one of the first areas in which the use of enhancement technologies has been heavily regulated. Some have thus seen sport as a testing ground for arguments about whether to permit enhancement. However, I argue that there are fairness-based objections to enhancement in sport that do not apply as strongly in some other areas of human activity. Thus, I claim that there will often be a stronger case for permitting enhancement outside of sport than for permitting enhancement in sport. I end by considering some methodological implications of this conclusion. PMID:19750128

  15. House dust mite major allergen Der f 1 enhances proinflammatory cytokine and chemokine gene expression in a cell line of canine epidermal keratinocytes.

    PubMed

    Maeda, Shingo; Maeda, Sadatoshi; Shibata, Sanae; Chimura, Naoki; Fukata, Tsuneo

    2009-10-15

    House dust mite (HDM) allergens are the most common allergens involved in the induction of IgE-mediated hypersensitivity. Recently, epicutaneous sensitization with HDM allergens has been emphasized in the development of atopic dermatitis (AD); however, direct stimulation of canine keratinocytes by mite allergens has not been well investigated. In the present study, we investigated the effects of Der f 1, a major allergen of Dermatophagoides farinae, on cytokine and chemokine gene expression in a canine keratinocyte cell line, CPEK. CPEK constitutively expressed mRNA for TNF-alpha, IL-12p35, IL-18, GM-CSF, TGF-beta, IL-8/CXCL8, TARC/CCL17, CTACK/CCL27 and MEC/CCL28. Of all the cytokines and chemokines investigated in CPEK, transcription levels of GM-CSF, IL-8/CXCL8 and TNF-alpha mRNA were significantly enhanced by stimulation with Der f 1. The present results suggest that Der f 1 can directly augment inflammatory cytokine and chemokine production from keratinocytes, and may initiate allergic inflammation independently of Type-I hypersensitivity.

  16. Genetic enhancements and expectations.

    PubMed

    Sorensen, K

    2009-07-01

    Some argue that genetic enhancements and environmental enhancements are not importantly different: environmental enhancements such as private schools and chess lessons are simply the old-school way to have a designer baby. I argue that there is an important distinction between the two practices--a distinction that makes state restrictions on genetic enhancements more justifiable than state restrictions on environmental enhancements. The difference is that parents have no settled expectations about genetic enhancements.

  17. Ditigal-Image Enhancement

    NASA Technical Reports Server (NTRS)

    Woods, R.; Gonzalez, R.

    1984-01-01

    Programable system enhances digitally monocular and stereographic images at video rates. Provides automatic and interactive enhancement modes based on histogram modification and intensity-mapping techniques.

  18. Autonomy and Enhancement.

    PubMed

    Schaefer, G Owen; Kahane, Guy; Savulescu, Julian

    2014-01-01

    Some have objected to human enhancement on the grounds that it violates the autonomy of the enhanced. These objections, however, overlook the interesting possibility that autonomy itself could be enhanced. How, exactly, to enhance autonomy is a difficult problem due to the numerous and diverse accounts of autonomy in the literature. Existing accounts of autonomy enhancement rely on narrow and controversial conceptions of autonomy. However, we identify one feature of autonomy common to many mainstream accounts: reasoning ability. Autonomy can then be enhanced by improving people's reasoning ability, in particular through cognitive enhancement; given how valuable autonomy is usually taken to be, this gives us extra reason to pursue such cognitive enhancements. Moreover, autonomy-based objections will be especially weak against such enhancements. As we will argue, those who are worried that enhancements will inhibit people's autonomy should actually embrace those enhancements that will improve autonomy.

  19. Helicobacter pylori activates the TLR2/NLRP3/caspase-1/IL-18 axis to induce regulatory T-cells, establish persistent infection and promote tolerance to allergens.

    PubMed

    Koch, Katrin N; Müller, Anne

    2015-01-01

    The Gram-negative bacterium Helicobacter pylori is both a normal constituent of the human gastric microbiota as well as a pathogen tightly associated with severe gastric disorders. The ability of H. pylori to activate the inflammasome and caspase-1 in antigen-presenting and other cells, and the resulting processing and release of caspase-1-dependent cytokines, impacts both the immunomodulatory and pathogenic activities of H. pylori. This article summarizes recent insights by us and others on the bacterial and host prerequisites of inflammasome activation. H. pylori predominantly activates the NLRP3 inflammasome through a process that requires TLR2-dependent licensing. We identified the urease enzyme, a colonization determinant known to be required for acid adaptation, as critically required for activation of the TLR2/NLRP3/caspase-1 axis. The phenotypes of urease mutants, as well as mouse strains defective for TLR2 or NLRP3, are discussed with respect to their ability to support persistent colonization, immune tolerance and immunity to H. pylori.

  20. Helicobacter pylori activates the TLR2/NLRP3/caspase-1/IL-18 axis to induce regulatory T-cells, establish persistent infection and promote tolerance to allergens

    PubMed Central

    Koch, Katrin N; Müller, Anne

    2015-01-01

    The Gram-negative bacterium Helicobacter pylori is both a normal constituent of the human gastric microbiota as well as a pathogen tightly associated with severe gastric disorders. The ability of H. pylori to activate the inflammasome and caspase-1 in antigen-presenting and other cells, and the resulting processing and release of caspase-1-dependent cytokines, impacts both the immunomodulatory and pathogenic activities of H. pylori. This article summarizes recent insights by us and others on the bacterial and host prerequisites of inflammasome activation. H. pylori predominantly activates the NLRP3 inflammasome through a process that requires TLR2-dependent licensing. We identified the urease enzyme, a colonization determinant known to be required for acid adaptation, as critically required for activation of the TLR2/NLRP3/caspase-1 axis. The phenotypes of urease mutants, as well as mouse strains defective for TLR2 or NLRP3, are discussed with respect to their ability to support persistent colonization, immune tolerance and immunity to H. pylori. PMID:26727421

  1. Cognitive Enhancement and Education

    ERIC Educational Resources Information Center

    Buchanan, Allen

    2011-01-01

    Cognitive enhancement--augmenting normal cognitive capacities--is not new. Literacy, numeracy, computers, and the practices of science are all cognitive enhancements. Science is now making new cognitive enhancements possible. Biomedical cognitive enhancements (BCEs) include the administration of drugs, implants of genetically engineered or…

  2. Cognitive Enhancement and Education

    ERIC Educational Resources Information Center

    Buchanan, Allen

    2011-01-01

    Cognitive enhancement--augmenting normal cognitive capacities--is not new. Literacy, numeracy, computers, and the practices of science are all cognitive enhancements. Science is now making new cognitive enhancements possible. Biomedical cognitive enhancements (BCEs) include the administration of drugs, implants of genetically engineered or…

  3. Justice, fairness, and enhancement.

    PubMed

    Savulescu, Julian

    2006-12-01

    This article begins by considering four traditional definitions of enhancement, then proposes a fifth, the Welfarist definition. It then considers fairness-based objections to enhancement, using the example of performance enhancement in sport. In so doing it defines sport and the values proper to it, surveys alternative theories of justice, considers the natural distribution of capabilities and disabilities, and draws a distinction between social, psychological, and biological enhancement. The article advances a new argument that justice requires enhancement.

  4. Enhancement and Civic Virtue

    PubMed Central

    Jefferson, Will; Douglas, Thomas; Kahane, Guy; Savulescu, Julian

    2014-01-01

    Opponents of biomedical enhancement frequently adopt what Allen Buchanan has called the Personal Goods Assumption. On this assumption, the benefits of biomedical enhancement will accrue primarily to those individuals who undergo enhancements, not to wider society. Buchanan has argued that biomedical enhancements might in fact have substantial social benefits by increasing productivity. We outline another way in which enhancements might benefit wider society: by augmenting civic virtue and thus improving the functioning of our political communities. We thus directly confront critics of biomedical enhancement who argue that it will lead to a loss of social cohesion and a breakdown in political life. PMID:24882886

  5. Chemical penetration enhancers.

    PubMed

    Newton, Stephen J

    2013-01-01

    Chemical penetration enhancers are utilized in topical preparations as a method for enhancing permeation of drugs across the skin. In particular, they are utilized for transdermal delivery of medications in an attempt to produce a systemic response, to avoid first-pass metabolism, and to decrease the gastrointestinal transit time observed with oral medications. A review of the selection of chemical penetration enhancers, their mechanism of action, the most common chemical penetration enhancers in each class, and alternatives will be discussed in detail.

  6. Smart Image Enhancement Process

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J. (Inventor); Rahman, Zia-ur (Inventor); Woodell, Glenn A. (Inventor)

    2012-01-01

    Contrast and lightness measures are used to first classify the image as being one of non-turbid and turbid. If turbid, the original image is enhanced to generate a first enhanced image. If non-turbid, the original image is classified in terms of a merged contrast/lightness score based on the contrast and lightness measures. The non-turbid image is enhanced to generate a second enhanced image when a poor contrast/lightness score is associated therewith. When the second enhanced image has a poor contrast/lightness score associated therewith, this image is enhanced to generate a third enhanced image. A sharpness measure is computed for one image that is selected from (i) the non-turbid image, (ii) the first enhanced image, (iii) the second enhanced image when a good contrast/lightness score is associated therewith, and (iv) the third enhanced image. If the selected image is not-sharp, it is sharpened to generate a sharpened image. The final image is selected from the selected image and the sharpened image.

  7. Interleukin-18 induces EMMPRIN expression in primary cardiomyocytes via JNK/Sp1 signaling and MMP-9 in part via EMMPRIN and through AP-1 and NF-κB activation

    PubMed Central

    Reddy, Venkatapuram Seenu; Prabhu, Sumanth D.; Mummidi, Srinivas; Valente, Anthony J.; Venkatesan, Balachandar; Shanmugam, Prakashsrinivasan; Delafontaine, Patrice

    2010-01-01

    IL-18 and the extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN) stimulate the expression of proinflammatory cytokines and MMPs and are elevated in myocardial hypertrophy, remodeling, and failure. Here, we report several novel findings in primary cardiomyocytes treated with IL-18. First, IL-18 activated multiple transcription factors, including NF-κB (p50 and p65), activator protein (AP)-1 (cFos, cJun, and JunD), GATA, CCAAT/enhancer-binding protein, myocyte-specific enhancer-binding factor, interferon regulatory factor-1, p53, and specific protein (Sp)-1. Second, IL-18 induced EMMPRIN expression via myeloid differentiation primary response gene 88/IL-1 receptor-associated kinase/TNF receptor-associated factor-6/JNK-dependent Sp1 activation. Third, IL-18 induced a number of MMP genes, particularly MMP-9, at a rapid rate as well as tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-3 at a slower rate. Finally, the IL-18 induction of MMP-9 was mediated in part via EMMPRIN and through JNK- and ERK-dependent AP-1 activation and p38 MAPK-dependent NF-κB activation. These results suggest that the elevated expression of IL-18 during myocardial injury and inflammation may favor EMMPRIN and MMP induction and extracellular matrix degradation. Therefore, targeting IL-18 or its signaling pathways may be of potential therapeutic benefit in adverse remodeling. PMID:20693392

  8. Interleukin-18 augments growth ability of primary human melanocytes by PTEN inactivation through the AKT/NF-κB pathway.

    PubMed

    Zhou, Jia; Shang, Jing; Song, Jing; Ping, Fengfeng

    2013-02-01

    Normal human skin relies on melanocytes to provide photoprotection and thermoregulation by producing melanin. The growth and behavior of melanocytes are controlled by many factors. Interleukin-18 (IL-18) is expressed in both immune and non-immune cells and participates in the adjustment of multitude cellular functions. Nonetheless, the regulative roles of IL-18 in melanogenesis and growth of melanocytes have not been explored. The present study was conducted to investigate the effects of IL-18 on melanocytes and elucidate the underlying mechanisms. We proved that IL-18 increased the tyrosinase activity and melanin content in normal human foreskin-derived epidermal melanocytes (NHEM). Treatment with IL-18 (20 ng/ml) enhanced the expression of c-Kit, microphtalmia-associated transcription factor (MITF) and its downstream tyrosinase-related protein 1 (TRP-1), and TRP-2. In addition, IL-18 induced NHEM migration at concentration of 20 ng/ml. These results indicated a promotive action of IL-18 on melanogenesis in NHEM. Our data revealed that IL-18 stimulated ERK1/2 and NF-κB activation, improved p-Akt, p70 S6K and anti-apoptotic Bcl-2 levels, and deactivated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in NHEM. Besides, IL-18 increased level of PTEN phosphorylation to protect NHEM from damage induced by H(2)O(2). These results in vitro showed the accommodation of IL-18 in melanocytes growth. Therefore, we suggested an important regulating action of IL-18 to melanogenesis and cell growth ability of skin melanocytes.

  9. Interleukin-18 directly protects cortical neurons by activating PI3K/AKT/NF-κB/CREB pathways.

    PubMed

    Zhou, Jia; Ping, Feng-feng; Lv, Wen-ting; Feng, Jun-yi; Shang, Jing

    2014-09-01

    Interleukin-18 (IL-18), a member of the IL-1 family of cytokines, was initially identified as an interferon (IFN)-γ-inducing factor. IL-18 is expressed in both immune and non-immune cells and participates in the adjustment of multitude cellular functions. Nonetheless, the effects of IL-18 on cortical neurons have not been explored. The present study was conducted to investigate the influence of IL-18 on rat primary cortical neurons and elucidate the underlying mechanisms. We proved that rrIL-18 increased the brain-derived neurotrophic factor (BDNF) expression in a time-dependent manner. Treatment with rrIL-18 (50 ng/ml) deactivated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) by facilitating its phosphorylation, enhanced the expression of Phosphoinositide 3-OH kinase (PI3K) and p-Akt, standing for the activation of the PI3K/Akt pathway. As its pivotal downstream pathways, nuclear factor-kappa B (NF-κB), cAMP-responsive element binding protein (CREB)/Bcl-2 and glycogen synthase kinase-3β (GSK-3β) were examined in further steps. Our data revealed that rrIL-18 stimulated NF-κB activation, improved p-CREB and anti-apoptotic Bcl-2 expression levels. But rrIL-18 had little or no effect on GSK-3β pathway. Besides, rrIL-18 increased levels of BDNF and Bcl-2/Bax ratio and decreased cleaved caspase-3 expression to protect cortical neurons from damage induced by oxygen-glucose deprivation (OGD). These results in vitro showed the protection of IL-18 on cortical neurons. And this direct neuroprotective effect of IL-18 is crippled by PI3K inhibitor wortmannin.

  10. Immunostimulatory effects of recombinant Erysipelothrix rhusiopathiae expressing porcine interleukin-18 in mice and pigs.

    PubMed

    Ogawa, Yohsuke; Minagawa, Yu; Shi, Fang; Eguchi, Masahiro; Muneta, Yoshihiro; Shimoji, Yoshihiro

    2012-09-01

    Interleukin-18 (IL-18), which was originally called gamma interferon (IFN-γ)-inducing factor, has been shown to play an important role in innate and acquired immune responses. In this study, attenuated Erysipelothrix rhusiopathiae strains were engineered to produce porcine IL-18 (poIL-18) and evaluated for their potential immunostimulatory effect in animals. Recombinant poIL-18 was successfully expressed in the recombinant E. rhusiopathiae strains YS-1/IL-18 and KO/IL-18. The culture supernatant of YS-1/IL-18 was confirmed to induce IFN-γ production in murine splenocytes in vitro, and this production was inhibited by incubation with anti-poIL-18 monoclonal antibodies. Furthermore, more IFN-γ production was induced upon stimulation of splenocytes with concanavalin A for splenocytes from mice that were intraperitoneally inoculated with YS-1/IL-18 than for splenocytes from control mice inoculated with the parent strain YS-1. Peritoneal macrophages from mice preinoculated with YS-1/IL-18 exhibited enhanced phagocytosis of Salmonella enterica subsp. enterica serovar Typhimurium compared with peritoneal macrophages from control mice preinoculated with YS-1. We also confirmed the immunostimulatory effect on humoral immune responses against antigens of E. rhusiopathiae and Mycoplasma hyopneumoniae in gnotobiotic pigs that were orally preinoculated with KO/IL-18. Thus, these results provide evidence that E. rhusiopathiae is a promising vector for the expression of host cytokines and suggest the potential utility of E. rhusiopathiae vector-encoded cytokines in the activation of host innate and acquired immune responses.

  11. Purification and characterization of the human interleukin-18 receptor.

    PubMed

    Torigoe, K; Ushio, S; Okura, T; Kobayashi, S; Taniai, M; Kunikata, T; Murakami, T; Sanou, O; Kojima, H; Fujii, M; Ohta, T; Ikeda, M; Ikegami, H; Kurimoto, M

    1997-10-10

    Interleukin (IL)-18 was identified as a molecule that induces IFN-gamma production and enhances NK cell cytotoxicity. In this paper, we report upon the purification and characterization of human IL-18 receptor (hIL-18R). We selected the Hodgkin's disease cell line, L428, as the most strongly hIL-18R-expressing cell line based on the results of binding assays. This binding was inhibited by IL-18 but not by IL-1beta. The dissociation constant (Kd) of 125I-IL-18 binding to L428 cells was about 18.5 nM, with 18,000 binding sites/cell. After immunizing mice with L428 cells and cloning, a single monoclonal antibody (mAb) against hIL-18R was obtained (mAb 117-10C). Sequentially, hIL-18R was purified from 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS)-extracted L428 cells by wheat germ lectin-Sepharose 4B chromatography and mAb 117-10C-Sepharose chromatography. The internal amino acid sequences of hIL-18R all matched those of human IL-1 receptor-related protein (IL-1Rrp), the ligand of which was unknown to date. When expressed in COS-1 cells, the cDNA of IL-1Rrp conferred IL-18 binding properties on the cells and the capacity for signal transduction. From these results, we conclude that a functional IL-18 receptor component is IL-1Rrp.

  12. Immunostimulatory Effects of Recombinant Erysipelothrix rhusiopathiae Expressing Porcine Interleukin-18 in Mice and Pigs

    PubMed Central

    Ogawa, Yohsuke; Minagawa, Yu; Shi, Fang; Eguchi, Masahiro; Muneta, Yoshihiro

    2012-01-01

    Interleukin-18 (IL-18), which was originally called gamma interferon (IFN-γ)-inducing factor, has been shown to play an important role in innate and acquired immune responses. In this study, attenuated Erysipelothrix rhusiopathiae strains were engineered to produce porcine IL-18 (poIL-18) and evaluated for their potential immunostimulatory effect in animals. Recombinant poIL-18 was successfully expressed in the recombinant E. rhusiopathiae strains YS-1/IL-18 and KO/IL-18. The culture supernatant of YS-1/IL-18 was confirmed to induce IFN-γ production in murine splenocytes in vitro, and this production was inhibited by incubation with anti-poIL-18 monoclonal antibodies. Furthermore, more IFN-γ production was induced upon stimulation of splenocytes with concanavalin A for splenocytes from mice that were intraperitoneally inoculated with YS-1/IL-18 than for splenocytes from control mice inoculated with the parent strain YS-1. Peritoneal macrophages from mice preinoculated with YS-1/IL-18 exhibited enhanced phagocytosis of Salmonella enterica subsp. enterica serovar Typhimurium compared with peritoneal macrophages from control mice preinoculated with YS-1. We also confirmed the immunostimulatory effect on humoral immune responses against antigens of E. rhusiopathiae and Mycoplasma hyopneumoniae in gnotobiotic pigs that were orally preinoculated with KO/IL-18. Thus, these results provide evidence that E. rhusiopathiae is a promising vector for the expression of host cytokines and suggest the potential utility of E. rhusiopathiae vector-encoded cytokines in the activation of host innate and acquired immune responses. PMID:22761300

  13. [Medical image enhancement: Sharpening].

    PubMed

    Kats, L; Vered, M

    2015-04-01

    Most digital imaging systems provide opportunities for image enhancement operations. These are applied to improve the original image and to make the image more appealing visually. One possible means of enhancing digital radiographic image is sharpening. The purpose of sharpening filters is to improve image quality by removing noise or edge enhancement. Sharpening filters may make the radiographic images subjectively more appealing. But during this process, important radiographic features may disappear while artifacts that simulate pathological process might be generated. Therefore, it is of utmost importance for dentists to be familiar with and aware of the use of image enhancement operations, provided by medical digital imaging programs.

  14. Credit Enhancement Overview Guide

    SciTech Connect

    Financing Solutions Working Group

    2014-01-01

    Provides considerations for state and local policymakers and energy efficiency program administrators designing and implementing successful credit enhancement strategies for residential and commercial buildings.

  15. Acute experimental changes in mood state regulate immune function in relation to central opioid neurotransmission: a model of human CNS-peripheral inflammatory interaction.

    PubMed

    Prossin, A R; Koch, A E; Campbell, P L; Barichello, T; Zalcman, S S; Zubieta, J-K

    2016-02-01

    Although evidence shows depressed moods enhance risk for somatic diseases, molecular mechanisms underlying enhanced somatic susceptibility are ill-defined. Knowledge of these molecular mechanisms will inform development of treatment and prevention strategies across comorbid depressive and somatic illnesses. Existing evidence suggests that interleukin-18 (IL-18; an IL-1 family cytokine) is elevated in depression and implicated in pathophysiology underlying comorbid medical illnesses. We previously identified strong associations between baseline IL-18 and μ-opioid receptor availability in major depressive disorder (MDD) volunteers. Combined with the evidence in animal models, we hypothesized that experimental mood induction would change IL-18, the extent proportional to opioid neurotransmitter release. Using the Velten technique in a [(11)C]carfentanil positron emission tomography neuroimaging study, we examined the impact of experimentally induced mood (sad, neutral) on plasma IL-18 and relationships with concurrent changes in the central opioid neurotransmission in 28 volunteers (healthy, MDD). Results showed mood induction impacted IL-18 (F2,25=12.2, P<0.001), sadness increasing IL-18 (T27=2.6, P=0.01) and neutral mood reducing IL-18 (T27=-4.1, P<0.001). In depressed volunteers, changes in IL-18 were more pronounced (F2,25=3.6, P=0.03) and linearly proportional to sadness-induced μ-opioid activation (left ventral pallidum, bilateral anterior cingulate cortices, right hypothalamus and bilateral amygdala). These data demonstrate that dynamic changes of a pro-inflammatory IL-1 superfamily cytokine, IL-18, and its relationship to μ-opioid neurotransmission in response to experimentally induced sadness. Further testing is warranted to delineate the role of neuroimmune interactions involving IL-18 in enhancing susceptibility to medical illness (that is, diabetes, heart disease and persistent pain states) in depressed individuals.

  16. Acute experimental changes in mood state regulate immune function in relation to central opioid neurotransmission: a model of human CNS-peripheral inflammatory interaction

    PubMed Central

    Prossin, A R; Koch, A E; Campbell, P L; Barichello, T; Zalcman, S S; Zubieta, J-K

    2016-01-01

    Although evidence shows depressed moods enhance risk for somatic diseases, molecular mechanisms underlying enhanced somatic susceptibility are ill-defined. Knowledge of these molecular mechanisms will inform development of treatment and prevention strategies across comorbid depressive and somatic illnesses. Existing evidence suggests that interleukin-18 (IL-18; an IL-1 family cytokine) is elevated in depression and implicated in pathophysiology underlying comorbid medical illnesses. We previously identified strong associations between baseline IL-18 and μ-opioid receptor availability in major depressive disorder (MDD) volunteers. Combined with the evidence in animal models, we hypothesized that experimental mood induction would change IL-18, the extent proportional to opioid neurotransmitter release. Using the Velten technique in a [11C]carfentanil positron emission tomography neuroimaging study, we examined the impact of experimentally induced mood (sad, neutral) on plasma IL-18 and relationships with concurrent changes in the central opioid neurotransmission in 28 volunteers (healthy, MDD). Results showed mood induction impacted IL-18 (F2,25=12.2, P<0.001), sadness increasing IL-18 (T27=2.6, P=0.01) and neutral mood reducing IL-18 (T27=−4.1, P<0.001). In depressed volunteers, changes in IL-18 were more pronounced (F2,25=3.6, P=0.03) and linearly proportional to sadness-induced μ-opioid activation (left ventral pallidum, bilateral anterior cingulate cortices, right hypothalamus and bilateral amygdala). These data demonstrate that dynamic changes of a pro-inflammatory IL-1 superfamily cytokine, IL-18, and its relationship to μ-opioid neurotransmission in response to experimentally induced sadness. Further testing is warranted to delineate the role of neuroimmune interactions involving IL-18 in enhancing susceptibility to medical illness (that is, diabetes, heart disease and persistent pain states) in depressed individuals. PMID:26283642

  17. Hemorrhage enhances cytokine, complement component 3, and caspase-3, and regulates microRNAs associated with intestinal damage after whole-body gamma-irradiation in combined injury.

    PubMed

    Kiang, Juliann G; Smith, Joan T; Anderson, Marsha N; Elliott, Thomas B; Gupta, Paridhi; Balakathiresan, Nagaraja S; Maheshwari, Radha K; Knollmann-Ritschel, Barbara

    2017-01-01

    Hemorrhage following whole-body γ-irradiation in a combined injury (CI) model increases mortality compared to whole-body γ-irradiation alone (RI). The decreased survival in CI is accompanied by increased bone marrow injury, decreased hematocrit, and alterations of miRNA in the kidney. In this study, our aim was to examine cytokine homeostasis, susceptibility to systemic bacterial infection, and intestinal injury. More specifically, we evaluated the interleukin-6 (IL-6)-induced stress proteins including C-reactive protein (CRP), complement 3 (C3), Flt-3 ligand, and corticosterone. CD2F1 male mice received 8.75 Gy 60Co gamma photons (0.6 Gy/min, bilateral) which was followed by a hemorrhage of 20% of the blood volume. In serum, RI caused an increase of IL-1, IL-2, IL-3, IL-5, IL-6, IL-12, IL-13, IL-15, IL-17A, IL-18, G-CSF, CM-CSF, eotaxin, IFN-γ, MCP-1, MIP, RANTES, and TNF-α, which were all increased by hemorrhage alone, except IL-9, IL-17A, and MCP-1. Nevertheless, CI further elevated RI-induced increases of these cytokines except for G-CSF, IFN- γ and RANTES in serum. In the ileum, hemorrhage in the CI model significantly enhanced RI-induced IL-1β, IL-3, IL-6, IL-10, IL-12p70, IL-13, IL-18, and TNF-α concentrations. In addition, Proteus mirabilis Gram(-) was found in only 1 of 6 surviving RI mice on Day 15, whereas Streptococcus sanguinis Gram(+) and Sphingomonas paucimobilis Gram(-) were detected in 2 of 3 surviving CI mice (with 3 CI mice diseased due to inflammation and infection before day 15) at the same time point. Hemorrhage in the CI model enhanced the RI-induced increases in C3 and decreases in CRP concentrations. However, hemorrhage alone did not alter the basal levels, but hemorrhage in the CI model displayed similar increases in Flt-3 ligand levels as RI did. Hemorrhage alone altered the basal levels of corticosterone early after injury, which then returned to the baseline, but in RI mice and CI mice the increased corticosterone concentration

  18. Selective image enhancement

    NASA Technical Reports Server (NTRS)

    Gonzalez, R. C.; Fittes, B. A.

    1976-01-01

    Digital technique for television systems can be used with remote manipulators. Algorithm is used to divide image into N-by-N picture elements which may be individually enhanced. Enhancement may be controlled with joystick. Similar arrangement simplifies remote manipulator operation.

  19. Image-Enhancement Program

    NASA Technical Reports Server (NTRS)

    Matthews, Christine G.; Stacy, Kathryn

    1993-01-01

    ENHANCETOOL computer program has capabilities for interactive enhancement of digital images. Includes particularly useful combination of algorithms not existing in single interactive program. Software package also provides means through which additional image-enhancement algorithms easily integrated and made available to user. Written in C Language.

  20. Enhanced oil recovery update

    SciTech Connect

    Smith, R.V

    1989-03-01

    Technology continues to grow in the realm of enhanced oil recovery. Since 1950 several processes have proven economic for oil recovery. Others are still in their infancy and must be custom designed for each reservoir. This paper gives a general overview of these processes. The author focuses on the latest technology and the outlook for enhanced oil recovery operations.

  1. Enhancing Drug Court Success

    ERIC Educational Resources Information Center

    Deschenes, Elizabeth Piper; Ireland, Connie; Kleinpeter, Christine B.

    2009-01-01

    This study evaluates the impact of enhanced drug court services in a large county in Southern California. These enhanced services, including specialty counseling groups, educational/employment resources, and increased Residential Treatment (RT) beds, were designed to increase program retention and successful completion (graduation) of drug court.…

  2. Enhancing Drug Court Success

    ERIC Educational Resources Information Center

    Deschenes, Elizabeth Piper; Ireland, Connie; Kleinpeter, Christine B.

    2009-01-01

    This study evaluates the impact of enhanced drug court services in a large county in Southern California. These enhanced services, including specialty counseling groups, educational/employment resources, and increased Residential Treatment (RT) beds, were designed to increase program retention and successful completion (graduation) of drug court.…

  3. Enhancement of heat transfer

    NASA Astrophysics Data System (ADS)

    Nakayama, W.

    Recent publications on enhancement of heat transfer are reviewed, emphasizing the effects of roughness elements, fins, and porous surfaces. Enhancement of forced convective heat transfer on roughened surfaces, performance evaluation of enhanced surfaces, viscous flows in cooled tubes and tubes with swirlers, and active methods of enhancement are addressed. Aspects of pool boiling heat transfer are considered, including nucleate boiling heat transfer on rough surfaces and porous surfaces, and maximum and minimum heat fluxes. Evaporative heat transfer is discussed for thin-film evaporation on structured surfaces and liquid spray cooling of a heated surface. Condensation heat transfer on external surfaces is covered, including filmwise condensation on vertical finned and fluted surfaces and on horizontal tubes. In-tube boiling and condensation are treated, discussing their enhancement by fins and inserts, as well as critical heat flux in coiled, rifled, and corrugated tubes.

  4. Should we enhance animals?

    PubMed Central

    Chan, Sarah

    2012-01-01

    Much bioethical discussion has been devoted to the subject of human enhancement through various technological means such as genetic modification. Although many of the same technologies could be, indeed in many cases already have been, applied to non-human animals, there has been very little consideration of the concept of “animal enhancement”, at least not in those specific terms. This paper addresses the notion of animal enhancement and the ethical issues surrounding it. A definition of animal enhancement is proposed that provides a framework within which to consider these issues; and it is argued that if human enhancement can be considered to be a moral obligation, so too can animal enhancement. PMID:19880704

  5. EDITORIAL: Nano-enhanced! Nano-enhanced!

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-08-01

    In the early 19th century, a series of engineering and scientific breakthroughs by Nicolas Léonard Sadi Carnot, James Watt and many others led to the foundations of thermodynamics and a new pedigree of mechanical designs that reset the standards of engineering efficiency. The result was the industrial revolution. In optical- and electronics- based nanotechnology research, a similarly subtle bargain is being made; we cannot alter the fact that systems have a finite response to external excitations, but what we can do is enhance that response. The promising attributes of ZnO have long been recognised; its large band gap and high exciton binding energy lend it to a number of applications from laser diodes, LEDs, optical waveguides and switches, and acousto-optic applications to sun cream. When this material is grown into nanowires and nanorods, the material gains a whole new dimension, as quantum confinement effects come into play. Discovery of the enhanced radiative recombination, which has potential for exploitation in many optical and opto-electronic applications, drove intensive research into investigating these structures and into finding methods to synthesise them with optimised properties. This research revealed further subtleties in the properties of these materials. One example is the work by researchers in the US reporting synthesis procedures that produced a yield—defined as the weight ratio of ZnO nanowires to the original graphite flakes—of 200%, and which also demonstrated, through photoluminescence analysis of nanowires grown on graphite flakes and substrates, that graphite induces oxygen vacancies during annealing, which enhances the deep-level to near-band-edge emission ratio [1]. Other one-dimensional materials that provide field emission enhancements include carbon nanotubes, and work has been performed to find ways of optimising the emission efficiency from these structures, such as through control of the emitter density [2]. One of the

  6. The proinflammatory cytokine interleukin-18 alters multiple signaling pathways to inhibit natural killer cell death

    USGS Publications Warehouse

    Hodge, D.L.; Subleski, J.J.; Reynolds, D.A.; Buschman, M.D.; Schill, W.B.; Burkett, M.W.; Malyguine, A.M.; Young, H.A.

    2006-01-01

    The proinflammatory cytokine, interleukin-18 (IL-18), is a natural killer (NK) cell activator that induces NK cell cytotoxicity and interferon-?? (IFN-??) expression. In this report, we define a novel role for IL-18 as an NK cell protective agent. Specifically, IL-18 prevents NK cell death initiated by different and distinct stress mechanisms. IL-18 reduces NK cell self-destruction during NK-targeted cell killing, and in the presence of staurosporin, a potent apoptotic inducer, IL-18 reduces caspase-3 activity. The critical regulatory step in this process is downstream of the mitochondrion and involves reduced cleavage and activation of caspase-9 and caspase-3. The ability of IL-18 to regulate cell survival is not limited to a caspase death pathway in that IL-18 augments tumor necrosis factor (TNF) signaling, resulting in increased and prolonged mRNA expression of c-apoptosis inhibitor 2 (cIAP2), a prosurvival factor and caspase-3 inhibitor, and TNF receptor-associated factor 1 (TRAF1), a prosurvival protein. The cumulative effects of IL-18 define a novel role for this cytokine as a molecular survival switch that functions to both decrease cell death through inhibition of the mitochondrial apoptotic pathway and enhance TNF induction of prosurvival factors. ?? Mary Ann Liebert, Inc.

  7. Expression of interleukin-18 by porcine airway and intestinal epithelium.

    PubMed

    Muneta, Yoshihiro; Goji, Noriko; Tsuji, Noriko M; Mikami, Osamu; Shimoji, Yoshihiro; Nakajima, Yasuyuki; Yokomizo, Yuichi; Mori, Yasuyuki

    2002-08-01

    In this study, we investigated the expression of interleukin-18 (IL-18) in porcine airway and intestinal epithelium. We found constitutive protein expression of precursor IL-18 in primary culture of porcine airway epithelium. Immunohistochemical staining revealed that porcine IL-18 was localized in the porcine airway epithelium and that it was significantly upregulated with experimental endotoxemia induced by Escherichia coli lipopolysaccharide (LPS) inoculation. We also confirmed by immunohistochemical staining that IL-18 was expressed in porcine intestinal epithelial cells. Moreover, the concentration of IL-18 in intestinal cell lysates of 1-day-old piglets was about 3-fold and 6-fold less than that in those of 1-month-old and 6-month-old piglets, respectively. Exogenous IL-18 was able to induce interferon-gamma (IFN-gamma) in the peripheral blood of 1-day-old piglets, whereas concanavalin A (ConA) was not able to induce IFN-gamma in the same condition. These results suggest that mucosal epithelial cells are among the major sources of IL-18 in pig and that IL-18 may be useful as a therapeutic agent for the enhancement of immune responses and as a vaccine adjuvant, especially in neonatal piglets.

  8. Oncolytic adenovirus expressing interleukin-18 improves antitumor activity of dacarbazine for malignant melanoma

    PubMed Central

    Yang, Chunhua; Cao, Hang; Liu, Ning; Xu, Kai; Ding, Meng; Mao, Li-jun

    2016-01-01

    Conditionally replicating adenoviruses have emerged as novel therapeutic agents for cancer. This study aimed to evaluate synergistic antitumor activity of replication-competent adenovirus armed with interleukin (IL)-18 (ZD55-IL-18) and dacarbazine (DTIC) against melanoma. Melanoma A375 cells or nude mouse tumor xenografts were treated with ZD55-IL-18 alone or together with DTIC. The results showed that ZD55-IL-18 competently replicated in A375 cells and expressed IL-18, and these were not affected by DTIC. ZD55-IL-18 enhanced the cytotoxicity of DTIC accompanied by increased apoptosis. Moreover, ZD55-IL-18 and DTIC synergistically inhibited the growth but promoted the apoptosis of A375 xenografts and inhibited vascular endothelial growth factor expression and lung metastasis in xenografts of nude mice. In conclusion, this is the first study to show synergistic anticancer activity of ZD55-IL-18 and DTIC for malignant melanoma. Our results provide evidence that chemo-gene-viro therapeutic approach has greater potential for malignant cancers than conventional chemotherapy or gene therapy. PMID:27895465

  9. Oncolytic adenovirus expressing interleukin-18 improves antitumor activity of dacarbazine for malignant melanoma.

    PubMed

    Yang, Chunhua; Cao, Hang; Liu, Ning; Xu, Kai; Ding, Meng; Mao, Li-Jun

    2016-01-01

    Conditionally replicating adenoviruses have emerged as novel therapeutic agents for cancer. This study aimed to evaluate synergistic antitumor activity of replication-competent adenovirus armed with interleukin (IL)-18 (ZD55-IL-18) and dacarbazine (DTIC) against melanoma. Melanoma A375 cells or nude mouse tumor xenografts were treated with ZD55-IL-18 alone or together with DTIC. The results showed that ZD55-IL-18 competently replicated in A375 cells and expressed IL-18, and these were not affected by DTIC. ZD55-IL-18 enhanced the cytotoxicity of DTIC accompanied by increased apoptosis. Moreover, ZD55-IL-18 and DTIC synergistically inhibited the growth but promoted the apoptosis of A375 xenografts and inhibited vascular endothelial growth factor expression and lung metastasis in xenografts of nude mice. In conclusion, this is the first study to show synergistic anticancer activity of ZD55-IL-18 and DTIC for malignant melanoma. Our results provide evidence that chemo-gene-viro therapeutic approach has greater potential for malignant cancers than conventional chemotherapy or gene therapy.

  10. Interlukin-18 Is a Pivot Regulatory Factor on Matrix Metalloproteinase-13 Expression and Brain Astrocytic Migration.

    PubMed

    Chen, Jia-Hong; Tsai, Chon-Haw; Lin, Hsiao-Yun; Huang, Chien-Fang; Leung, Yuk-Man; Lai, Sheng-Wei; Tsai, Cheng-Fang; Chang, Pei-Chun; Lu, Dah-Yuu; Lin, Chingju

    2016-11-01

    The expression of matrix metalloproteinase-13 (MMP-13) has been shown to be elevated in some pathophysiological conditions and is involved in the degradation of extracellular matrix in astrocytes. In current study, the function of MMP-13 was further investigated. The conditioned medium (CM) collected from activated microglia increased interleukin (IL)-18 production and enhanced MMP-13 expression in astrocytes. Furthermore, treatment with recombinant IL-18 increased MMP-13 protein and mRNA levels in astrocytes. Recombinant IL-18 stimulation also increased the enzymatic activity of MMP-13 and the migratory activity of astrocytes, while administration of MMP-13 or pan-MMP inhibitors antagonized IL-18-induced migratory activity of astrocytes. In addition, administration of recombinant IL-18 to astrocytes led to the phosphorylation of JNK, Akt, or PKCδ, and treatment of astrocytes with JNK, PI3 kinase/Akt, or PKCδ inhibitors significantly decreased the IL-18-induced migratory activity. Taken together, the results suggest that IL-18-induced MMP-13 expression in astrocytes is regulated by JNK, PI3 kinase/Akt, and PKCδ signaling pathways. These findings also indicate that IL-18 is an important regulator leading to MMP-13 expression and cell migration in astrocytes.

  11. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    PubMed

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL(-1) and 0.6-0.7 ng mL(-1), respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces.

  12. Enhanced superconductivity of fullerenes

    DOEpatents

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  13. Prototype vein contrast enhancer

    NASA Astrophysics Data System (ADS)

    Zeman, Herbert D.; Lovhoiden, Gunnar; Vrancken, Carlos

    2004-07-01

    A proof-of-principle prototype Vein Contrast Enhancer (VCE) has been designed and constructed. The VCE is an instrument that makes vein access easier by capturing an infrared image of peripheral veins, enhancing the vein-contrast using software image processing, and projecting the enhanced vein-image back onto the skin using a modified commercial projector. The prototype uses software alignment to achieve alignment accuracy between the captured infrared image and the projected visible image of better than 0.06 mm. Figure 1 shows the prototype demonstrated in our laboratory.

  14. Fluorescent viscoelastic enhancement.

    PubMed

    Smith, K D; Burt, W L

    1992-11-01

    By inserting an Erreger 485 exciter filter into the operating microscope, translucent yellow Healon (sodium hyaluronate) transforms into a brilliant opaque green viscoelastic. We have developed this technique and termed it "fluorescent viscoelastic enhancement." Using the technique, we demonstrated that the time required to remove Healon from the anterior chamber after intraocular lens insertion varies. Healon is usually aspirated quickly, in less than 17 seconds. Otherwise it traps behind the intraocular lens and requires more time for irrigation/aspiration (I/A) and manipulation of the I/A tip. Fluorescent viscoelastic enhancement minimized I/A time, reducing excess turbulence and manipulation in the anterior chamber, and thus may reduce corneal endothelial cell loss. This study also demonstrated that fluorescent viscoelastic enhancement prevented postoperative intraocular pressure rise, compared to the conventional removal of clear Healon. Fluorescent viscoelastic enhancement assures the surgeon that a large amount of Healon is not left behind.

  15. Rethinking enhancement in sport.

    PubMed

    Miah, Andy

    2006-12-01

    This article explores the arguments surrounding the use of human enhancement technologies in sport, arguing for a reconceptualization of the doping debate. First, it develops an overview and critique of the legislative structures on enhancement. Subsequently, a conceptual framework for understanding the role of technological effects in sport is advanced. Finally, two case studies (hypoxic chambers and gene transfer) receive specific attention, through which it is argued that human enhancement technologies can enrich the practice of elite sports rather than diminish them. In conclusion, it is argued that elite sports are at a pivotal moment in their history as an increasing range of enhancements makes less relevant the protection of the natural human through anti-doping.

  16. Enhanced metabolite generation

    DOEpatents

    Chidambaram, Devicharan [Middle Island, NY

    2012-03-27

    The present invention relates to the enhanced production of metabolites by a process whereby a carbon source is oxidized with a fermentative microbe in a compartment having a portal. An electron acceptor is added to the compartment to assist the microbe in the removal of excess electrons. The electron acceptor accepts electrons from the microbe after oxidation of the carbon source. Other transfers of electrons can take place to enhance the production of the metabolite, such as acids, biofuels or brewed beverages.

  17. Moral enhancement and freedom.

    PubMed

    Harris, John

    2011-02-01

    This paper identifies human enhancement as one of the most significant areas of bioethical interest in the last twenty years. It discusses in more detail one area, namely moral enhancement, which is generating significant contemporary interest. The author argues that so far from being susceptible to new forms of high tech manipulation, either genetic, chemical, surgical or neurological, the only reliable methods of moral enhancement, either now or for the foreseeable future, are either those that have been in human and animal use for millennia, namely socialization, education and parental supervision or those high tech methods that are general in their application. By that is meant those forms of cognitive enhancement that operate across a wide range of cognitive abilities and do not target specifically 'ethical' capacities. The paper analyses the work of some of the leading contemporary advocates of moral enhancement and finds that in so far as they identify moral qualities or moral emotions for enhancement they have little prospect of success. © 2010 Blackwell Publishing Ltd.

  18. MORAL ENHANCEMENT AND FREEDOM

    PubMed Central

    Harris, John

    2011-01-01

    This paper identifies human enhancement as one of the most significant areas of bioethical interest in the last twenty years. It discusses in more detail one area, namely moral enhancement, which is generating significant contemporary interest. The author argues that so far from being susceptible to new forms of high tech manipulation, either genetic, chemical, surgical or neurological, the only reliable methods of moral enhancement, either now or for the foreseeable future, are either those that have been in human and animal use for millennia, namely socialization, education and parental supervision or those high tech methods that are general in their application. By that is meant those forms of cognitive enhancement that operate across a wide range of cognitive abilities and do not target specifically ‘ethical’ capacities. The paper analyses the work of some of the leading contemporary advocates of moral enhancement and finds that in so far as they identify moral qualities or moral emotions for enhancement they have little prospect of success. PMID:21133978

  19. A defect in the synthesis of Interferon-γ by the T cells of Complement-C5 deficient mice leads to enhanced susceptibility for tuberculosis.

    PubMed

    Mashruwala, Mary Anne; Smith, Amanda K; Lindsey, Devin R; Moczygemba, Margaret; Wetsel, Rick A; Klein, John R; Actor, Jeffrey K; Jagannath, Chinnaswamy

    2011-12-01

    Interferon-γ (IFNγ) plays a major role during host defense against Mycobacterium tuberculosis (Mtb). T cells produce IFNγ in response to IL-12 and IL-18 secreted from Mtb infected macrophages. IFNγ in turn, induces nitric oxide secretion in macrophages that kills Mtb. IFNγ knockout mice are thus hyper-susceptible to tuberculosis. We reported earlier that Complement-C5 deficient (C5(-/-)) congenic mice are more susceptible to tuberculosis and showed reduced IL-12 synthesis in their macrophages. Using C5(-/-) congenic mice that carry a deletion in the C5 gene and the wild type C5(+/+) mice, we demonstrate here that, the C5(-/-) derived CD3(+) T cells, have an additional defect in the synthesis of IFNγ. C5(-/-) T cells produced lower levels of IFNγ upon stimulation by antigen presenting cells (APCs) infected with Mtb or when stimulated directly with a combination of IL-12 and IL-18. The latter was in part due to a reduced phosphorylation of STAT4 following IL-12/IL-18 stimulation. Addition of C5a peptide to IL-12/IL-18 partially restored STAT4 phosphorylation and IFNγ synthesis in C5(-/-) T cells indicating that IL-12/IL-18 mediated signaling within CD3(+) T cells involves C5a peptide. Finally, C5(-/-) T cells derived from M. bovis BCG or Mtb infected mice showed a reduced expression of T-bet (T-box expressed in T cells) transcription factor, which correlated well with a reduced T cell secretion of IFNγ. Since T-bet mediated IFNγ synthesis facilitates Th1 expansion, C5(-/-) mouse derived T cells appear to have an intrinsic defect in the production of IFNγ, which is related to C5 deficiency and this may explain their increased susceptibility to infection with Mtb and BCG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A defect in the synthesis of Interferon-γ by the T cells of Complement-C5 deficient mice leads to enhanced susceptibility for tuberculosis

    PubMed Central

    Mashruwala, Mary Anne; Smith, Amanda K.; Lindsey, Devin R.; Moczygemba, Margaret; Wetsel, Rick A.; Klein, John R.; Actor, Jeffrey K.; Jagannath, Chinnaswamy

    2012-01-01

    Interferon-γ (IFNγ) plays a major role during host defense against Mycobacterium tuberculosis (Mtb). T cells produce IFNγ in response to IL-12 and IL-18 secreted from Mtb infected macrophages. IFNγ in turn, induces nitric oxide secretion in macrophages that kills Mtb. IFNγ knock-out mice are thus hyper-susceptible to tuberculosis. We reported earlier that Complement C5 deficient (C5-/-) congenic mice are more susceptible to tuberculosis and showed reduced IL-12 synthesis in their macrophages. Using C5-/- congenic mice that carry a deletion in the C5 gene and the wild type C5+/+ mice, we demonstrate here that, the C5-/-derived CD3+ T cells, have an additional defect in the synthesis of IFNγ. C5-/- T cells produced lower levels of IFNγ upon stimulation by antigen presenting cells (APCs) infected with Mtb or when stimulated directly with a combination of IL-12 and IL-18. The latter was in part due to a reduced phosphorylation of STAT-4 following IL-12/IL-18 stimulation. Addition of C5a peptide to IL-12/IL-18 partially restored STAT4 phosphorylation and IFNγ synthesis in C5-/- T cells indicating that IL-12/IL-18 mediated signaling within CD3+ T cells involves C5a peptide. Finally, C5-/- T cells derived from M.bovis BCG or Mtb infected mice showed a reduced expression of T-bet (T-box expressed in T cells) transcription factor, which correlated well with a reduced T cell secretion of IFNγ. Since T-bet mediated IFNγ synthesis facilitates Th1 expansion, C5-/- mouse derived T cells appear to have an intrinsic defect in the production of IFNγ, which is related to C5 deficiency and this may explain their increased susceptibility to infection with Mtb and BCG. PMID:22154007

  1. Mechanisms of Memory Enhancement

    PubMed Central

    Stern, Sarah A.

    2012-01-01

    The ongoing quest for memory enhancement is one that grows necessary as the global population increasingly ages. The extraordinary progress that has been made in the past few decades elucidating the underlying mechanisms of how long-term memories are formed has provided insight into how memories might also be enhanced. Capitalizing on this knowledge, it has been postulated that targeting many of the same mechanisms, including CREB activation, AMPA/NMDA receptor trafficking, neuromodulation (e.g. via dopamine, adrenaline, cortisol or acetylcholine) and metabolic processes (e.g. via glucose and insulin) may all lead to the enhancement of memory. These and other mechanisms and/or approaches have been tested via genetic or pharmacological methods in animal models, and several have been investigated in humans as well. In addition, a number of behavioral methods, including exercise and reconsolidation, may also serve to strengthen and enhance memories. By capitalizing on this knowledge and continuing to investigate these promising avenues, memory enhancement may indeed be achieved in the future. PMID:23151999

  2. Interleukin-18 stimulates fibronectin expression in primary human cardiac fibroblasts via PI3K-Akt-dependent NF-kappaB activation.

    PubMed

    Reddy, Venkatapuram Seenu; Harskamp, Ralf Egan; van Ginkel, Margreet Willie; Calhoon, John; Baisden, Clinton Eugene; Kim, In-San; Valente, Anthony J; Chandrasekar, Bysani

    2008-06-01

    Fibronectin (FN), a key component of the extracellular matrix, is upregulated in cardiac tissue during myocardial hypertrophy and failure. Here we show that interleukin (IL)-18, a proinflammatory and pro-hypertrophic cytokine, stimulates FN expression in adult human cardiac fibroblasts (HCF), an effect blocked by either the IL-18BP:Fc chimera or IL-18 neutralizing antibodies. IL-18 stimulated FN promoter-reporter activity in HCF, a response attenuated by mutation of an NF-kappaB binding site in the FN promoter. Overexpression of p65 stimulated FN transcription. IL-18 stimulated in vitro (p65, p50) and in vivo NF-kappaB DNA binding activities, and induced kappaB-dependent reporter gene activity. These effects were inhibited by adenoviral transduction of dominant negative (dn) p65 (Ad.dnp65) and dnIKK2 (Ad.dnIKK2). Investigation of signaling intermediates revealed that IL-18 stimulated PI3 kinase activity (blocked by wortmannin, LY294002, or Ad.dnPI3Kp85), and Akt phosphorylation and kinase activity (blocked by SH-5 or Ad.dnAkt). Furthermore, targeting MyD88, IRAK1, TRAF6, PI3K, Akt, and NF-kappaB by RNA interference or dn expression vectors blunted IL-18 mediated FN transcription and mRNA expression. Conversely, FN stimulated IL-18 expression. These data provide the first evidence that IL-18 and FN stimulate each other's expression in HCF, and suggest a role for IL-18, FN and their crosstalk in myocardial hypertrophy and remodeling, disease states characterized by enhanced FN expression and fibrosis. (c) 2007 Wiley-Liss, Inc.

  3. Surface Enhanced Quantum Control

    NASA Astrophysics Data System (ADS)

    Rangan, Chitra

    2013-05-01

    Miniaturization of quantum technologies have led to physics that require the marriage of atomic physics and nanomaterials science. Some of the resulting areas of research are hybrid quantum devices, single-molecule spectroscopies, table-top intense field generators, etc. I will present an area of research that I dub ``Surface-enhanced quantum control'' that is an exciting way of controlling light and nanomatter. By combining the electromagnetic enhancement properties of plasmonic nanomaterials with the modification of the atomic properties, we can achieve an unprecedented level of control over quantum dynamics. I will present examples of surface-enhanced state purification, in which quantum states near metal nanostructures can be rapidly purified by the application of a weak near-resonant control field. We gratefully acknowledge support from the NSERC Discovery Grant Program and the NSERC Strategic Network for Bioplasmonic Systems.

  4. Degraded document image enhancement

    NASA Astrophysics Data System (ADS)

    Agam, G.; Bal, G.; Frieder, G.; Frieder, O.

    2007-01-01

    Poor quality documents are obtained in various situations such as historical document collections, legal archives, security investigations, and documents found in clandestine locations. Such documents are often scanned for automated analysis, further processing, and archiving. Due to the nature of such documents, degraded document images are often hard to read, have low contrast, and are corrupted by various artifacts. We describe a novel approach for the enhancement of such documents based on probabilistic models which increases the contrast, and thus, readability of such documents under various degradations. The enhancement produced by the proposed approach can be viewed under different viewing conditions if desired. The proposed approach was evaluated qualitatively and compared to standard enhancement techniques on a subset of historical documents obtained from the Yad Vashem Holocaust museum. In addition, quantitative performance was evaluated based on synthetically generated data corrupted under various degradation models. Preliminary results demonstrate the effectiveness of the proposed approach.

  5. Rituals enhance consumption.

    PubMed

    Vohs, Kathleen D; Wang, Yajin; Gino, Francesca; Norton, Michael I

    2013-09-01

    Four experiments tested the novel hypothesis that ritualistic behavior potentiates and enhances ensuing consumption--an effect found for chocolates, lemonade, and even carrots. Experiment 1 showed that participants who engaged in ritualized behavior, compared with those who did not, evaluated chocolate as more flavorful, valuable, and deserving of behavioral savoring. Experiment 2 demonstrated that random gestures do not boost consumption as much as ritualistic gestures do. It further showed that a delay between a ritual and the opportunity to consume heightens enjoyment, which attests to the idea that ritual behavior stimulates goal-directed action (to consume). Experiment 3 found that performing a ritual oneself enhances consumption more than watching someone else perform the same ritual, suggesting that personal involvement is crucial for the benefits of rituals to emerge. Finally, Experiment 4 provided direct evidence of the underlying process: Rituals enhance the enjoyment of consumption because of the greater involvement in the experience that they prompt.

  6. Christian Self-Enhancement.

    PubMed

    Gebauer, Jochen E; Sedikides, Constantine; Schrade, Alexandra

    2017-02-16

    People overestimate themselves in domains that are central to their self-concept. Critically, the psychological status of this "self-centrality principle" remains unclear. One view regards the principle as an inextricable part of human nature and, thus, as universal and resistant to normative pressure. A contrasting view regards the principle as liable to pressure (and subsequent modification) from self-effacement norms, thus questioning its universality. Advocates of the latter view point to Christianity's robust self-effacement norms, which they consider particularly effective in curbing self-enhancement, and ascribe Christianity an ego-quieting function. Three sets of studies examined the self-centrality principle among Christians. Studies 1A and 1B (N = 2,118) operationalized self-enhancement as better-than-average perceptions on the domains of commandments of faith (self-centrality: Christians ≫ nonbelievers) and commandments of communion (self-centrality: Christians > nonbelievers). Studies 2A-2H (N = 1,779) operationalized self-enhancement as knowledge overclaiming on the domains of Christianity (self-centrality: Christians ≫ nonbelievers), communion (self-centrality: Christians > nonbelievers), and agency (self-centrality: Christians ≈ nonbelievers). Studies 3A-3J (N = 1,956) operationalized self-enhancement as grandiose narcissism on the domains of communion (self-centrality: Christians > nonbelievers) and agency (self-centrality: Christians ≈ nonbelievers). The results converged across studies, yielding consistent evidence for Christian self-enhancement. Relative to nonbelievers, Christians self-enhanced strongly in domains central to the Christian self-concept. The results also generalized across countries with differing levels of religiosity. Christianity does not quiet the ego. The self-centrality principle is resistant to normative pressure, universal, and rooted in human nature. (PsycINFO Database Record

  7. Enhancing Shear Thickening

    NASA Astrophysics Data System (ADS)

    Madraki, Fatemeh; Hormozi, Sarah; Ovarlez, Guillaume; Guazzelli, Elisabeth; Pouliquen, Olivier

    2016-11-01

    A cornstarch suspension is the quintessential particulate system that exhibits shear thickening. By adding large non-Brownian spheres to a cornstarch suspension, we show that shear thickening can be significantly enhanced. More precisely, the shear thickening transition is found to be increasingly shifted to lower critical shear rates. This enhancement is found to be mainly controlled by the concentration of the large particles. ANR(ANR-13-IS09-0005-01), ANR(ANR-11-LABX-0092), MIDEX (ANR-11-IDEX-0001-02), NSF (CBET-1554044-CAREER).

  8. Biomedical enhancements as justice.

    PubMed

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society.

  9. Music Enhances Learning.

    ERIC Educational Resources Information Center

    Campabello, Nicolette; De Carlo, Mary Jane; O'Neil, Jean; Vacek, Mary Jill

    An action research project implemented musical strategies to affect and enhance student recall and memory. The target population was three suburban elementary schools near a major midwestern city: (1) a kindergarten classroom contained 32-38 students; (2) a second grade classroom contained 23 students and five Individualized Education Program…

  10. Enhancing Employee Skills.

    ERIC Educational Resources Information Center

    1999

    This document contains four symposium papers on enhancing employee skills. "The Effect of Study Skills Training Intervention on United States Air Force Aeromedical Apprentices" (John C. Griffith) demonstrates how study skills intervention resulted in a significant increase in the end-of-course scores of a sample of 90 randomly selected Air Force…

  11. Enhancing Learning and Thinking.

    ERIC Educational Resources Information Center

    Mulcahy, Robert F., Ed.; And Others

    This book presents 16 papers on programs and approaches that have been developed around the world to enhance learning and thinking skills for children and adults. Papers are divided among three main sections focussing respectively on issues and applications, specific applications to school content, and assessment and evaluation. Papers have the…

  12. Investigations into Character Enhancement.

    ERIC Educational Resources Information Center

    Hartoonian, H. Michael

    2001-01-01

    Presents six different investigations of character enhancement that attempts to answer three questions: (1) who are you; (2) what is your destination; and (3) who is your captain? Intends to build relationships among ideas such as perspective taking, seeing and making connections with the other, and understanding more about ethical development.…

  13. Enhancing Workgroup Performance.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on enhancing workgroup performance in human resource development (HRD). "Formation of Cross-Cultural Global Teams: Making Informed Choices on Team Composition" (Robert L. Dilworth) describes how a mixed class of U.S. and international students identified their cultural and learning…

  14. Teaching to Enhance Research

    ERIC Educational Resources Information Center

    Harland, Tony

    2016-01-01

    In this paper, I present a conceptual argument for "teaching-led research" in which university lecturers construct courses that directly and positively influence their research, while at the same time, safeguard and enhance the student experience. A research-pedagogy for higher education considers the link between teaching and research,…

  15. Enhancing Employee Skills.

    ERIC Educational Resources Information Center

    1999

    This document contains four symposium papers on enhancing employee skills. "The Effect of Study Skills Training Intervention on United States Air Force Aeromedical Apprentices" (John C. Griffith) demonstrates how study skills intervention resulted in a significant increase in the end-of-course scores of a sample of 90 randomly selected Air Force…

  16. Simulations of Enhanced Confinement

    NASA Astrophysics Data System (ADS)

    Dorland, W.; Kotschenreuther, M.; Liu, Q. P.; Jones, C. S.; Beer, M. A.; Hammett, G. W.

    1996-11-01

    Most existing tokamaks routinely achieve enhanced confinement regimes. Designs for new, larger tokamaks therefore are typically predicated upon reliable enhanced confinement performance. However, most enhanced confinement regimes rely (to some degree) upon sheared E×B flows to stabilize the turbulence that otherwise limits the confinement. For example, the pedestal H-mode transport barrier is typically attributed to shear stabilization [Biglari, Diamond and Terry, Phys. Fl. B, 2 1 (1990)]. Unfortunately, it is easily shown that sheared E×B stabilization of microinstabilities such as the ITG mode does not scale favorably with machine size. Here, using nonlinear gyrofluid simulations in general geometry, we attempt to quantify the confinement enhancement that can be expected from velocity shear stabilization for conventional reactor plasmas. We also consider other microinstability stabilization mechanisms(See related presentations by Beer, Kotschenreuther, Manickam, and Ramos, this conference.) (strong density peaking, Shafranov shift stabilization, dots) and unconventional reactor configurations.^2 Experimental datasets from JET, DIII-D, C-Mod and TFTR are analyzed, and ITER operation is considered.

  17. Cognition-Enhancing Drugs

    PubMed Central

    Mehlman, Maxwell J

    2004-01-01

    New drugs that enhance cognition in cognitively healthy individuals present difficult public policy challenges. While their use is not inherently unethical, steps must be taken to ensure that they are safe, that they are widely available to promote equality of opportunity, and that individuals are free to decide whether or not to use them. PMID:15330974

  18. Investigations into Character Enhancement.

    ERIC Educational Resources Information Center

    Hartoonian, H. Michael

    2001-01-01

    Presents six different investigations of character enhancement that attempts to answer three questions: (1) who are you; (2) what is your destination; and (3) who is your captain? Intends to build relationships among ideas such as perspective taking, seeing and making connections with the other, and understanding more about ethical development.…

  19. Measuring and Enhancing Creativity

    ERIC Educational Resources Information Center

    Mahboub, Kamyar C.; Portillo, Margaret B.; Liu, Yinhui; Chandraratna, Susantha

    2004-01-01

    The purpose of this study was to assess ways by which creativity may be enhanced in a design-oriented course. In order to demonstrate the validity of the approach, a statistically based study was employed. Additionally, the experiment was replicated in two design-oriented fields at the University of Kentucky. These fields were civil engineering…

  20. Enhancing Workgroup Performance.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on enhancing workgroup performance in human resource development (HRD). "Formation of Cross-Cultural Global Teams: Making Informed Choices on Team Composition" (Robert L. Dilworth) describes how a mixed class of U.S. and international students identified their cultural and learning…

  1. Electrostatically Enhanced Vortex Separator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R.

    1993-01-01

    Proposed device removes fine particles from high-pressure exhaust gas of chemical reactor. Negatively charged sectors on rotating disks in vortex generator attracts positively charged particles from main stream of exhaust gas. Electrostatic charge enhances particle-separating action of vortex. Gas without particles released to atmosphere.