Science.gov

Sample records for ilc reference design

  1. ILC cryogenic systems reference design

    SciTech Connect

    Peterson, T.J.; Geynisman, M.; Klebaner, A.; Theilacker, J.; Parma, V.; Tavian, L.; /CERN

    2008-01-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  2. Ilc Cryogenic Systems Reference Design

    NASA Astrophysics Data System (ADS)

    Peterson, T. J.; Geynisman, M.; Klebaner, A.; Parma, V.; Tavian, L.; Theilacker, J.

    2008-03-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  3. ILC Reference Design Report: Accelerator Executive Summary

    SciTech Connect

    Phinney, Nan; /SLAC

    2007-12-14

    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radiofrequency (SCRF) accelerating cavities. The use of the SCRF technology was recommended by the International Technology Recommendation Panel (ITRP) in August 2004 [1], and shortly thereafter endorsed by the International Committee for Future Accelerators (ICFA). In an unprecedented milestone in high-energy physics, the many institutes around the world involved in linear collider R&D united in a common effort to produce a global design for the ILC. In November 2004, the 1st International Linear Collider Workshop was held at KEK, Tsukuba, Japan. The workshop was attended by some 200 accelerator physicists from around the world, and paved the way for the 2nd ILC Workshop in August 2005, held at Snowmass, Colorado, USA, where the ILC Global Design Effort (GDE) was officially formed. The GDE membership reflects the global nature of the collaboration, with accelerator experts from all three regions (Americas, Asia and Europe). The first major goal of the GDE was to define the basic parameters and layout of the machine--the Baseline Configuration. This was achieved at the first GDE meeting held at INFN, Frascati, Italy in December 2005 with the creation of the Baseline Configuration Document (BCD). During the next 14 months, the BCD was used as the basis for the detailed design work and value estimate (as described in section 1.6) culminating in the completion of the second major milestone, the publication of the draft ILC Reference Design Report (RDR). The technical design and cost estimate for the ILC is based on two decades of world-wide Linear Collider R&D, beginning with the construction and operation of the SLAC Linear Collider (SLC). The SLC is acknowledged as a proof-of-principle machine for the linear collider concept. The ILC SCRF linac technology was pioneered by the TESLA collaboration*, culminating in

  4. The Reference Design for the ILC, Costs, and What's Next

    SciTech Connect

    Barish, Barry

    2007-03-26

    A Reference Design for the International Linear Collider was recently released. The scale of the ILC is such that it must be built by an international collaboration and the design is the culmination of a unique global effort. Through ICFA, a decision was made to base the design on superconducting RF technology and then the Global Design Effort (GDE) was created to coordinate the actual accelerator design toward a construction proposal. The reference design establishes all the features of the machine, and defines both the R&D program and engineering design that will now follow over the next few years.

  5. International Linear Collider Reference Design Report Volume 2: Physics at the ILC

    SciTech Connect

    Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; /SLAC /Tokyo U. /Victoria U. /Beijing, Inst. High Energy Phys. /Tel Aviv U. /Birmingham U. /Annecy, LAPP /Minsk, High Energy Phys. Ctr. /DESY /Royal Holloway, U. of London /CERN /Pusan Natl. U. /KEK, Tsukuba /Orsay, LAL /Notre Dame U. /Frascati /Cornell U., Phys. Dept. /Oxford U. /Hefei, CUST /Bangalore, Indian Inst. Sci. /Fermilab

    2011-11-14

    The triumph of 20th century particle physics was the development of the Standard Model and the confirmation of many of its aspects. Experiments determined the particle constituents of ordinary matter, and identified four forces that hold matter together and transform it from one form to another. Particle interactions were found to obey precise laws of relativity and quantum theory. Remarkable features of quantum physics were observed, including the real effects of 'virtual' particles on the visible world. Building on this success, particle physicists are now able to address questions that are even more fundamental, and explore some of the deepest mysteries in science. The scope of these questions is illustrated by this summary from the report Quantum Universe: (1) Are there undiscovered principles of nature; (2) How can we solve the mystery of dark energy; (3) Are there extra dimensions of space; (4) Do all the forces become one; (5) Why are there so many particles; (6) What is dark matter? How can we make it in the laboratory; (7) What are neutrinos telling us; (8) How did the universe begin; and (9) What happened to the antimatter? A worldwide program of particle physics investigations, using multiple approaches, is already underway to explore this compelling scientific landscape. As emphasized in many scientific studies, the International Linear Collider is expected to play a central role in what is likely to be an era of revolutionary advances. Discoveries from the ILC could have breakthrough impact on many of these fundamental questions. Many of the scientific opportunities for the ILC involve the Higgs particle and related new phenomena at Terascale energies. The Standard Model boldly hypothesizes a new form of Terascale energy, called the Higgs field, that permeates the entire universe. Elementary particles acquire mass by interacting with this field. The Higgs field also breaks a fundamental electroweak force into two forces, the electromagnetic and weak

  6. Design Issues for the ILC Positron Source

    SciTech Connect

    Bharadwaj, V.; Batygin, Yu.K.; Pitthan, R.; Schultz, D.C.; Sheppard, J.; Vincke, H.; Wang, J.W.; Gronberg, J.; Stein, W.; /LLNL, Livermore

    2006-02-15

    A positron source for the International Linear Collider (ILC) can be designed using either a multi-GeV electron beam or a multi-MeV photon beam impinging on a metal target. The major design issues are: choice of drive beam and its generation, choice of target material, the target station, positron capture section, target vault and beam transport to the ILC positron damping ring complex. This paper lists the ILC positron source requirements and their implications for the design of the positron source. A conceptual design for the ILC is expected to be finished in the next two years. With emphasis on this timescale, source design issues and possible solutions are discussed.

  7. Design of the ILC Crab Cavity System

    SciTech Connect

    Adolphsen, C.; Beard, C.; Bellantoni, L.; Burt, G.; Carter, R.; Chase, B.; Church, M.; Dexter, A.; Dykes, M.; Edwards, H.; Goudket, P; Jenkins, R.; Jones, R.M.; Kalinin, A.; Khabiboulline, T.; Ko, K.; Latina, A.; Li, Z.; Ma, L.; McIntosh, P.; Ng, C.; /SLAC /Daresbury /Fermilab /Cockcroft Inst. Accel. Sci. Tech. /CERN

    2007-08-15

    The International Linear Collider (ILC) has a 14 mrad crossing angle in order to aid extraction of spent bunches. As a result of the bunch shape at the interaction point, this crossing angle at the collision causes a large luminosity loss which can be recovered by rotating the bunches prior to collision using a crab cavity. The ILC baseline crab cavity is a 9-cell superconducting dipole cavity operating at a frequency of 3.9 GHz. In this paper the design of the ILC crab cavity and its phase control system, as selected for the RDR in February 2007 is described in fuller detail.

  8. Design of the ILC RTML extraction lines

    SciTech Connect

    Seletskiy, S.; Tenenbaum, P.; Walz, D.; Solyak, N.; /Fermilab

    2008-06-01

    The ILC [1] Damping Ring to the Main Linac beamline (RTML) contains three extraction lines (EL). Each EL can be used both for an emergency abort dumping of the beam and tune-up continual train-by-train extraction. Two of the extraction lines are located downstream of the first and second stages of the RTML bunch compressor, and must accept both compressed and uncompressed beam with energy spreads of 2.5% and 0.15%, respectively. In this paper we report on an optics design that allowed minimizing the length of the extraction lines while offsetting the beam dumps from the main line by the distance required for acceptable radiation levels in the service tunnel. The proposed extraction lines can accommodate beams with different energy spreads while at the same time providing the beam size acceptable for the aluminum dump window.

  9. Interim report on the Global Design Effort Global International Linear Collider (ILC) R&D

    SciTech Connect

    Harrison, M.

    2011-04-30

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  10. Design of the ILC RTML Extraction Lines

    SciTech Connect

    Seletskiy, S.; Tenenbaum, P.; Walz, D.; Solyak, N.; /Fermilab

    2011-10-17

    The ILC [1] Damping Ring to the Main Linac beamline (RTML) contains three extraction lines (EL). Each EL can be used both for an emergency abort dumping of the beam and tune-up continual train-by-train extraction. Two of the extraction lines are located downstream of the first and second stages of the RTML bunch compressor, and must accept both compressed and uncompressed beam with energy spreads of 2.5% and 0.15%, respectively. In this paper we report on an optics design that allowed minimizing the length of the extraction lines while offsetting the beam dumps from the main line by the distance required for acceptable radiation levels in the service tunnel. The proposed extraction lines can accommodate beams with different energy spreads while at the same time providing the beam size acceptable for the aluminum dump window. The RTML incorporates three extraction lines, which can be used for either an emergency beam abort or for a train-by-train extraction. The first EL is located downstream of the Damping Ring extraction arc. The other two extraction lines are located downstream of each stage of the two-stage bunch compressor. The first extraction line (EL1) receives 5GeV beam with an 0.15% energy spread. The extraction line located downstream of the first stage of bunch compressor (ELBC1) receives both compressed and uncompressed beam, and therefore must accept beam with both 5 and 4.88GeV energy, and 0.15% and 2.5% energy spread, respectively. The extraction line located after the second stage of the bunch compressor (ELBC2) receives 15GeV beam with either 0.15 or 1.8% energy spread. Each of the three extraction lines is equipped with the 220kW aluminum ball dump, which corresponds to the power of the continuously dumped beam with 5GeV energy, i.e., the beam trains must be delivered to the ELBC2 dump at reduced repetition rate.

  11. ILC Polarized Electron Source Design and R&D Program

    SciTech Connect

    Brachmann, A.; Sheppard, J.; Zhou, F.; Poelker, M.; /SLAC

    2012-04-06

    The R and D program for the ILC electron focuses on three areas. These are the source drive laser system, the electron gun and photo cathodes necessary to produce a highly polarized electron beam. Currently, the laser system and photo cathode development take place at SLAC's 'ILC Injector Test facility', which is an integrated lab (laser and gun) that allows the production of the electron beam and is equipped with a set of diagnostics, necessary to characterize the source performance. Development of the ILC electron gun takes place at Jefferson Lab, where advanced concepts and technologies for HV DC electron guns for polarized beams are being developed. The goal is to combine both efforts at one facility to demonstrate an electron beam with ILC specifications, which are electron beam charge and polarization as well as the cathode's lifetime. The source parameters are summarized in Table 1. The current schematic design of the ILC central complex is depicted in Figure 1. The electron and positron sources are located and laid out approximately symmetric on either side of the damping rings.

  12. Design of the Second-Generation ILC Marx Modulator

    SciTech Connect

    Kemp, M.A.; Benwell, A.; Burkhart, C.; Larsen, R.; MacNair, D.; Nguyen, M.; Olsen, J.; /SLAC

    2010-09-14

    SLAC National Accelerator Laboratory (SLAC) has initiated a program to design and build a Marx-topology modulator to produce a relatively compact, low-cost, high availability klystron modulator for the International Linear Collider (ILC). Building upon the success of the P1 Marx, the SLAC P2 Marx is a second-generation modulator whose design further emphasizes the qualities of modularity and high-availability. This paper outlines highlights of this design and presents single-cell performance data obtained during the proof-of-concept phase of the project.

  13. Design of a Low Loss SRF Cavity for the ILC

    SciTech Connect

    Sekutowicz, J.; Ge, L.; Ko, K.; Lee, L.; Li, Z.; Ng, C.K.; Schussman, G.; Xiao, L.; Gonin, I.; Khabiboulline, T.; Solyak, N.; Kneisel, P.; Morozumi, Y.; Saito, K.; /KEK, Tsukuba

    2006-03-03

    An international team comprising SLAC, KEK, FNAL, JLAB and DESY is collaborating on the design, fabrication and test of a low loss, 1.3 GHz 9-cell SRF structure as a potential improvement for the ILC main linac. The advantages of this structure over the TESLA structure include lower cryogenic loss, shorter rise time, and less stored energy. Among the issues to be addressed in this design are HOM damping, Lorentz force detuning and multipacting. We will report on HOM damping calculations using the parallel finite element eigenmode solver Omega3P and the progress made towards an optimized design. Studies on multipacting and estimates of the Lorentz force detuning will also be presented.

  14. Some Beam Dynamics and Related Studies of Possible Changes to the ILC Baseline Design

    SciTech Connect

    Paterson, Ewan; /SLAC

    2012-04-03

    Since the completion of the ILC Reference Design Report (RDR) in 2007, global R and D has continued on all ILC systems in a coordinated program titled Technical Design Phase 1. This program, which is planned and coordinated by the Program Managers and the Technical Area Group Leaders, will transition to a Phase 2 in 2010 which has the goal of producing a more complete Technical Design Report in 2012. In this transition there will be a re-baseline process which will update and or modify the RDR baseline design taking into account progress with systems design and progress with various technologies coming from the continuing R and D programs. The RDR design was considered by some to be a conservative one and many of the topics being studied for inclusion in a new baseline are directed towards more optimum cost versus risk designs. Some of these are engineering systems design modifications, both technical and civil, while others are accelerator parameters, technical system designs and beam dynamics optimizations. A few of the latter are described here.

  15. The ILC control system.

    SciTech Connect

    Carwardine, J.; Saunders, C.; Arnold, N.; Lenkszus, F.; Rehlich, K.; Simrock, S.; Banerjee, b.; Chase, B.; Gottschalk, E.; Joireman, P.; Kasley, P.; Lackey, S.; McBride, P.; Pavlicek, V.; Patrick, J.; Votava, M.; Wolbers, S.; Furukawa, K.; Michizono, S.; Larson, R.S.; Downing, R.; DESY; FNAL; SLAC

    2007-01-01

    Since the last ICALEPCS, a small multi-region team has developed a reference design model for a control system for the International Linear Collider as part of the ILC Global Design Effort. The scale and performance parameters of the ILC accelerator require new thinking in regards to control system design. Technical challenges include the large number of accelerator systems to be controlled, the large scale of the accelerator facility, the high degree of automation needed during accelerator operations, and control system equipment requiring 'Five Nines' availability. The R&D path for high availability touches the control system hardware, software, and overall architecture, and extends beyond traditional interfaces into the technical systems. Software considerations for HA include fault detection through exhaustive out-of-band monitoring and automatic state migration to redundant systems, while the telecom industry's emerging ATCA standard - conceived, specified, and designed for High Availability - is being evaluated for suitability for ILC front-end electronics.

  16. New HOM coupler design for ILC superconducting cavity

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Noguchi, S.; Kako, E.; Shishido, T.; Hayano, H.

    2008-10-01

    Four superconducting cavities have been developed at the superconducting RF test facility (STF) at KEK as candidates for the International Linear Collider (ILC) accelerating cavity. These cavities, which are termed TESLA-type STF baseline cavities, are equipped with newly designed higher-order-mode (HOM) couplers that have a short outer cylinder and a single welding point on the antenna that acts as the inner conductor. Each STF baseline cavity is equipped with two types of these new HOM couplers: STF I-type and STF L-type. The HOM couplers were designed and developed, and their RF performance was evaluated by using a Cooper model. Then, niobium models were fabricated and cool down tests were conducted with these cavities. In all, 14 cool down tests were performed for the four cavities using a vertical setup that involved the newly designed HOM couplers. Electrochemical polishing of the inner surface of the cavity and frequency tuning of the accelerating mode were performed before each cool down test in order to maintain the RF performance and obtain a higher gradient. These new HOM couplers were operated up to a gradient of 32 MV/m in the accelerating field of the end cell without any serious problem. Their damping performance is comparable to that of the TESLA cavity except for the TM 011 mode, whose performance can be easily corrected by changing the installation angle of the next fabricated cavity. In this paper, the development of the new HOM couplers for STF baseline cavities is described.

  17. Optimization of Helium Vessel Design for ILC Cavities

    SciTech Connect

    Fratangelo, Enrico

    2009-01-01

    The ILC (International Linear Collider) is a proposed new major particle accelerator. It consists of two 20 km long linear accelerators colliding electrons and positrons at an energy exceeding 500 GeV, Achieving this collision energy while keeping reasonable accelerator dimensions requires the use of high electric field superconducting cavities as the main acceleration element. These cavities are operated at l.3 GHz inside an appropriate container (He vessel) at temperatures as low as 1.4 K using superfluid Helium as the refrigerating medium. The purpose of this thesis, in the context of the ILC R&D activities currently in progress at Fermilab (Fermi National Accelerator Laboratory), is the mechanical study of an ILC superconducting cavity and Helium vessel prototype. The main goals of these studies are the determination of the limiting working conditions of the whole He vessel assembly, the simulation of the manufacturing process of the cavity end-caps and the assessment of the Helium vessel's efficiency. In addition this thesis studies the requirements to certify the compliance with the ASME Code of the whole cavity/vessel assembly. Several Finite Elements Analyses were performed by the candidate himself in order to perform the studies listed above and described in detail in Chapters 4 through 8. ln particular the candidate has developed an improved procedure to obtain more accurate results with lower computational times. These procedures will be accurately described in the following chapters. After an introduction that briefly describes the Fennilab and in particular the Technical Division (where all the activities concerning with this thesis were developed), the first part of this thesis (Chapters 2 and 3) explains some of the main aspects of modem particle accelerators. Moreover it describes the most important particle accelerators working at the moment and the basic features of the ILC project. Chapter 4 describes all the activities that were done to certify

  18. Converter-Modulator Design and Operations for the ILC L-band Test Stand

    SciTech Connect

    Reass, William A.; Burkhart, C.; Adolphsen, Chris E.; Beukers, T.; Cassel, R.; de Lira, A.; Papas, C.; Nguyen, M.; Went, R.; Anderson, David E.; /Oak Rdige

    2007-09-10

    To facilitate a rapid response to the International Linear Collider (ILC) L-band development program at SLAC, a spare converter-modulator was shipped from LANL. This modulator was to be a spare for the spallation neutron source (SNS) accelerator at ORNL. The ILC application requires a 33% higher peak output power (15 MW) and output current (120 Amp). This presents significant design challenges to modify the existing hardware and yet maintain switching parameters and thermal cycling within the semiconductor component ratings. To minimize IGBT commutation and free-wheeling diode currents, a different set of optimizations, as compared to the SNS design, were used to tune the resonant switching networks. Additional complexities arose as nanocrystalline cores with different performance characteristics (as compared to SNS), were used to fabricate the resonant 'boost' transformers. This paper will describe the electrical design, modeling efforts, and resulting electrical performance as implemented for the ILC L-band test stand.

  19. Towards a PEBB-Based Design Approach for a Marx-Topology ILC Klystron Modulator

    SciTech Connect

    Macken, K

    2009-10-17

    Introduced by the U.S. Navy more than a decade ago, the concept of Power Electronic Building Blocks (PEBBs) has been successfully applied in various applications. It is well accepted within the power electronics arena that this concept offers the potential to achieve increased levels of modularity and compactness. This approach is thus ideally suited for applications where easy serviceability and high availability are key, such as the ILC. This paper presents a building block approach for designing a Marx-topology ILC klystron modulator.

  20. The ILC global control system.

    SciTech Connect

    Carwardine, J.; Arnold, N.; Lenkszus, F.; Saunders, C.; Rehlich, K.; Simrock, S.; Banerjee, B.; Chase, B.; Gottschalk, E.; Joireman, P.; Kasley, P.; Lackey, S.; McBride, P.; Pavlicek, V.; Patrick, J.; Votava, M.; Wolbers, S.; Furukawa, K.; Michizono, S.; Larsen , R .S.; Downing, R.; FNAL; DESY; KEK; SLAC

    2008-01-01

    The scale and performance parameters of the ILC require new thinking in regards to control system design. This design work has begun quite early in comparison to most accelerator projects, with the goal of uniquely high overall accelerator availability. Among the design challenges are high control system availability, precision timing and rf phase reference distribution, standardizing of interfaces, operability, and maintainability. We present the current state of the design and take a prospective look at ongoing research and development projects.

  1. The RF Design of an HOM Polarized RF Gun for the ILC

    SciTech Connect

    Wang, J.W.; Clendenin, J.E.; Colby, E.R.; Miller, R.A.; Lewellen, J.W.; /Argonne

    2006-11-15

    The ILC requires a polarized electron beam. While a highly polarized beam can be produced by a GaAs-type cathode in a DC gun of the type currently in use at SLAC, JLAB and elsewhere, the ILC injector system can be simplified and made more efficient if a GaAs-type cathode can be combined with a low emittance RF gun. Since this type of cathode is known to be extremely sensitive to vacuum contamination including back bombardment by electrons and ions, any successful polarized RF gun must have a significantly improved operating vacuum compared to existing RF guns. We present a new RF design for an L-Band normal conducting (NC) RF gun for the ILC polarized electron source. This design incorporates a higher order mode (HOM) structure, whose chief virtue in this application is an improved conductance for vacuum pumping on the cathode. Computer simulation models have been used to optimize the RF parameters with two principal goals: first to minimize the required RF power; second to reduce the peak surface field relative to the field at the cathode in order to suppress field emitted electron bombardment. The beam properties have been simulated initially using PARMELA. Vacuum and other practical issues for implementing this design are discussed.

  2. Beam Dynamics Challenges for the ILC

    SciTech Connect

    Kubo, Kiyoshi; Seryi, Andrei; Walker, Nicholas; Wolski, Andy; /Cockcroft Inst. Accel. Sci. Tech.

    2008-02-13

    The International Linear Collider (ILC) is a proposal for 500 GeV center-of-mass electron-positron collider, with a possible upgrade to {approx}1 TeV center-of-mass. At the heart of the ILC are the two {approx}12 km 1.3 GHz superconducting RF (SCRF) linacs which will accelerate the electron and positron beams to an initial maximum energy of 250 GeV each. The Global Design Effort (GDE)--responsible for the world-wide coordination of this uniquely international project--published the ILC Reference Design Report in August of 2007 [1]. The ILC outlined in the RDR design stands on a legacy of over fifteen-years of R&D. The GDE is currently beginning the next step in this ambitious project, namely an Engineering Design phase, which will culminate with the publication of an Engineering Design Report (EDR) in mid-2010. Throughout the history of linear collider development, beam dynamics has played an essential role. In particular, the need for complex computer simulations to predict the performance of the machine has always been crucial, not least because the parameters of the ILC represent in general a large extrapolation from where current machines operate today; many of the critical beam-dynamics features planned for the ILC can ultimately only be truly tested once the ILC has been constructed. It is for this reason that beam dynamics activities will continue to be crucial during the Engineering Design phase, as the available computer power and software techniques allow ever-more complex and realistic models of the machine to be developed. Complementary to the computer simulation efforts are the need for well-designed experiments at beam-test facilities, which--while not necessarily producing a direct demonstration of the ILC-like parameters for the reasons mentioned above--can provide important input and benchmarking for the computer models.

  3. Design Considerations for a PEBB-Based Marx-Topology ILC Klystron Modulator

    SciTech Connect

    Macken, K.; Beukers, T.; Burkhart, C.; Kemp, M.A.; Nguyen, M.N.; Tang, T.; /SLAC

    2009-12-09

    The concept of Power Electronic Building Blocks (PEBBs) has its origin in the U.S. Navy during the last decade of the past century. As compared to a more conventional or classical design approach, a PEBB-oriented design approach combines various potential advantages such as increased modularity, high availability and simplified serviceability. This relatively new design paradigm for power conversion has progressively matured since then and its underlying philosophy has been clearly and successfully demonstrated in a number of real-world applications. Therefore, this approach has been adopted here to design a Marx-topology modulator for an International Linear Collider (ILC) environment where easy serviceability and high availability are crucial. This paper describes various aspects relating to the design of a 32-cell Marx-topology ILC klystron modulator. The concept of nested droop correction is introduced and illustrated. Several design considerations including cosmic ray withstand, power cycling capability, fault tolerance, etc., are discussed. Details of the design of a Marx cell PEBB are included.

  4. Modular design of long narrow scintillating cells for ILC detector

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Maloney, J.; Rykalin, V.; Schellpfeffer, J.; /Fermilab

    2005-09-01

    The experimental results for the narrow scintillating elements with effective area about 20 cm{sup 2} are reported. The elements were formed from the single piece of scintillator and were read out via wavelength shifting fibers with the MRS (Metal/Resistor/Semiconductor) photodiodes on both ends of each fiber. The formation of the cells from the piece of scintillator by using grooves is discussed. The cell performance was tested using the radioactive source by measuring the PMT current and a single rate after amplifier and discrimination with threshold at about three photo electrons in each channel and quad coincidences (double coincidences between sensors on each fiber and double coincidences between two neighboring fibers). This result is of high importance for large multi-channel systems, i.e. module may be used as an active element for calorimeter or muon system for the design of the future electron-positron linear collider detector because cell effective area can be smoothly enlarged or reduced (to 4 cm{sup 2} definitely).

  5. FINAL DESIGN OF ILC RTML EXTRACTION LINE FOR SINGLE STAGE BUNCH COMPRESSOR

    SciTech Connect

    Seletskiy, S.; Solyak, N.

    2011-03-28

    The use of single stage bunch compressor (BC) in the International Linear Collider (ILC) Damping Ring to the Main Linac beamline (RTML) requires new design for the extraction line (EL). The EL located downstream of the BC will be used for both an emergency abort dumping of the beam and the tune-up continuous train-by-train extraction. It must accept both compressed and uncompressed beam with energy spread of 3.54% and 0.15% respectively. In this paper we report the final design that allowed minimizing the length of such extraction line while offsetting the beam dumps from the main line by 5m distance required for acceptable radiation level in the service tunnel. Proposed extraction line can accommodate beams with different energy spreads at the same time providing the beam size suitable for the aluminum ball dump window. We described the final design of the ILC RTML extraction line located downstream of the new single-stage bunch compressor. The extraction line is only 24m long and is capable of accepting and transmitting 220kW of beam power. The EL can be used for both fast intra-train and continual extraction, and is capable of accepting both 0.15% and 3.54% energy spread beams at 5MeV and 4.37MeV respectively.

  6. Lattice design for an ILC damping ring with 3 km circumference

    SciTech Connect

    Wolski, Andrzej

    2004-10-11

    We describe a simple lattice that meets the specifications for the damping times and horizontal and longitudinal emittances for the International Linear Collider (ILC) damping rings. The circumference of a little over 3 km leads to a bunch spacing of around 3 ns, which will require advances in kicker technology for injection and extraction. We present the lattice design, and initial results of studies of the acceptance and collective effects. With the high bunch charge and close spacing, the ion and electron cloud effects are expected to be severe; however, the simple structure of the lattice allows for easy variation of the circumference and bunch spacing, which may make it useful for future investigations.

  7. International linear collider reference design report

    SciTech Connect

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  8. Design and evaluation of a low-level RF control system analog/digital receiver for the ILC main Linacs

    SciTech Connect

    Mavric, Uros; Vidmar, Matjaz; Chase, Brian; /Fermilab

    2008-06-01

    The proposed RF distribution scheme for the two 15 km long ILC LINACs, uses one klystron to feed 26 superconducting RF cavities operating at 1.3 GHz. For a precise control of the vector sum of the signals coming from the SC cavities, the control system needs a high performance, low cost, reliable and modular multichannel receiver. At Fermilab we developed a 96 channel, 1.3 GHz analog/digital receiver for the ILC LINAC LLRF control system. In the paper we present a balanced design approach to the specifications of each receiver section, the design choices made to fulfill the goals and a description of the prototyped system. The design is tested by measuring standard performance parameters, such as noise figure, linearity and temperature sensitivity. Measurements show that the design meets the specifications and it is comparable to other similar systems developed at other laboratories, in terms of performance.

  9. THE SUPERCONDUCTION MAGNETS OF THE ILC BEAM DELIVERY SYSTEM.

    SciTech Connect

    PARKER,B.; ANEREELA, M.; ESCALLIE, J.; HE, P.; JAIN, A.; MARONE, A.; NOSOCHKOV, Y.; SERYI, A.

    2007-06-25

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the ILC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  10. Material Damage Test for ILC Collimators

    SciTech Connect

    Fernandez Hernando, J.L.; Blair, G.A.; Boogert, S.T.; Ellwood, G.E.; Greenhalgh, J.; Keller, L.; Watson, N.K.; /Birmingham U.

    2007-08-14

    Simulations were completed to determine the energy deposition of an ILC bunch using FLUKA, Geant4 and EGS4 to a set of different spoiler designs. These shower simulations were used as inputs to thermal and mechanical studies using ANSYS. This paper presents a proposal to optimize the material choice and mechanical design of ILC spoilers jaws using ATF and benchmark the energy deposition simulations and the ANSYS studies giving the researchers valuable data which will help achieve a definitive ILC spoiler design.

  11. Design of An 18 MW Beam Dump for 500 GeV Electron/Positron Beams at An ILC

    SciTech Connect

    Amann, John; Arnold, Ray; Seryi, Andrei; Walz, Dieter; Kulkarni, Kiran; Rai, Pravin; Satyamurthy, Polepalle; Tiwari, Vikar; Vincke, Heinz; /CERN

    2012-07-05

    This article presents a report on the progress made in designing 18 MW water based Beam Dumps for electrons or positrons for an International Linear Collider (ILC). Multi-dimensional technology issues have to be addressed for the successful design of the Beam Dump. They include calculations of power deposition by the high energy electron/positron beam bunch trains, computational fluid dynamic analysis of turbulent water flow, mechanical design, process flow analysis, hydrogen/oxygen recombiners, handling of radioactive 7Be and 3H, design of auxiliary equipment, provisions for accident scenarios, remote window exchanger, radiation shielding, etc. The progress made to date is summarized, the current status, and also the issues still to be addressed.

  12. Design of an Interaction Region with Head-On Collisions for the ILC

    SciTech Connect

    Appleby, R.; Angal-Kalinin, D.; Jackson, F.; Alabau-Pons, M .; Bambade, P.; Brossard, J.; Dadoun, O.; Rimbault, C.; Keller, L.; Nosochkov, Y.; Seryi, A.; Payet, J.; Napoly, O.; Rippon, C.; Uriot, D.; /DAPNIA, Saclay

    2006-07-12

    An interaction region (IR) with head-on collisions is considered as an alternative to the baseline configuration of the International Linear Collider (ILC) which includes two IRs with finite crossing-angles (2 and 20 mrad). Although more challenging for the beam extraction, the head-on scheme is favored by the experiments because it allows a more convenient detector configuration, particularly in the forward region. The optics of the head-on extraction is revisited by separating the e+ and e- beams horizontally, first by electrostatic separators operated at their LEP nominal field and then using a defocusing quadrupole of the final focus beam line. In this way the septum magnet is protected from the beamstrahlung power. Newly optimized final focus and extraction optics are presented, including a first look at post-collision diagnostics. The influence of parasitic collisions is shown to lead to a region of stable collision parameters. Disrupted beam and beamstrahlung photon losses are calculated along the extraction elements.

  13. Availability and Reliability Issues for ILC

    SciTech Connect

    Himel, T.; Nelson, J.; Phinney, N.; Ross, M.; /Fermilab

    2007-06-27

    The International Linear Collider (ILC) will be the largest most complicated accelerator ever built. For this reason extensive work is being done early in the design phase to ensure that it will be reliable enough. This includes gathering failure mode data from existing accelerators and simulating the failures and repair times of the ILC. This simulation has been written in a general fashion using MATLAB and could be used for other accelerators. Results from the simulation tool have been used in making some of the major ILC design decisions and an unavailability budget has been developed.

  14. TESLA & ILC Cryomodules

    SciTech Connect

    Peterson, T. J.; Weisend, II, J. G.

    2016-01-01

    The TESLA collaboration developed a unique variant of SRF cryomodule designs, the chief feature being use of the large, low pressure helium vapor return pipe as the structural support backbone of the cryomodule. Additional innovative features include all cryogenic piping within the cryomodule (no parallel external cryogenic transfer line), long strings of RF cavities within a single cryomodule, and cryomodules connected in series. Several projects, including FLASH and XFEL at DESY, LCLS-II at SLAC, and the ILC technical design have adopted this general design concept. Advantages include saving space by eliminating the external transfer line, relatively tight packing of RF cavities along the beamline due to fewer warm-cold transitions, and potentially lower costs. However, a primary disadvantage is the relative lack of independence for warm-up, replacement, and cool-down of individual cryomodules.

  15. Optimization of detectors for the ILC

    NASA Astrophysics Data System (ADS)

    Suehara, Taikan; ILD Group; SID Group

    2016-04-01

    International Linear Collider (ILC) is a next-generation e+e- linear collider to explore Higgs, Beyond-Standard-Models, top and electroweak particles with great precision. We are optimizing our two detectors, International Large Detector (ILD) and Silicon Detector (SiD) to maximize the physics reach expected in ILC with reasonable detector cost and good reliability. The optimization study on vertex detectors, main trackers and calorimeters is underway. We aim to conclude the optimization to establish final designs in a few years, to finish detector TDR and proposal in reply to expected ;green sign; of the ILC project.

  16. Injection and Extraction Lines for the ILC Damping Rings

    SciTech Connect

    Reichel, Ina

    2007-06-20

    The current design for the injection and extraction linesintoand out of the ILC Damping Rings is presented as well as the designfor the abort line. Due to changes of the geometric boundary conditionsby other subsystems of the ILC, a modular approach has been used to beable to respond to recurring layout changes whilereusing previouslydesigned parts.

  17. Heat Deposition in Positron Sources for ILC

    SciTech Connect

    Bharadwaj, V.; Pitthan, R.; Sheppard, J.; Vincke, H.; Wang, J.W.; /SLAC

    2006-03-15

    In the International Linear Collider (ILC) positron source, multi-GeV electrons or multi-MeV photons impinge on a metal target to produce the needed positrons in the resulting electromagnetic showers. The incoming beam power is hundreds of kilowatts. Various computer programs -- such as FLUKA or MARS -- can calculate how the incoming beam showers in the target and can track the particle showers through the positron source system. Most of the incoming energy ends up as heat in the various positron source elements. This paper presents results from such calculations and their impact on the design of a positron source for the ILC.

  18. Power coupler for the ILC crab cavity

    SciTech Connect

    Burt, G.; Dexter, A.; Jenkins, R.; Beard, C.; Goudket, P.; McIntosh, P.A.; Bellantoni, Leo; /Fermilab

    2007-06-01

    The ILC crab cavity will require the design of an appropriate power coupler. The beam-loading in dipole mode cavities is considerably more variable than accelerating cavities, hence simulations have been performed to establish the required external Q. Simulations of a suitable coupler were then performed and were verified using a normal conducting prototype with variable coupler tips.

  19. The NGST Design Reference Mission

    NASA Astrophysics Data System (ADS)

    Stockman, H. S.; Mather, J. C.

    1999-12-01

    The NGST Design Reference Mission (DRM) defines the key science goals for the NGST observatory. In 1999, the Ad Hoc Science Working Group (ASWG) refined and prioritized the 22 programs in the DRM. The top two programs, deep imaging and spectroscopic surveys of high redshift galaxies, emphasize the unique and important role that NGST will play in the near infrared (NIR) study of the origins of the first stars and galaxies. The top 7 programs include supernova and weak lensing surveys, determination of the epoch of reionization, imaging and spectroscopic studies of protostars, and mid-infrared (MIR, 5-28 μ m) surveys of heavily obscured star formation regions such as ultra-luminous infrared galaxies (ULIRGs). We describe the DRM, the prioritization process, and the role that the DRM plays in the selection and allocation of instrumental capabilities among the international partners (NASA, ESA, and CSA). NGST is a central mission in the NASA search for astronomical origins. For additional information, readers are encouraged to visit the NASA and STScI websites: http://ngst.gsfc.nasa.gov/, http://www.ngst.stsci.edu/.

  20. The Polarized Electron Source for the International Collider (ILC) Project

    SciTech Connect

    Brachmann, A.; Clendenin, J.E.; Garwin, E.L.; Ioakeimidi, K.; Kirby, R.e.; Maruyama, T.; Prescott, C.Y.; Sheppard, J.; Turner, J.; Zhou, F.; /SLAC

    2006-12-01

    ILC project will be the next large high energy physics tool that will use polarized electrons (and positrons). For this machine spin physics will play an important role. The polarized electron source design is based on electron injectors built for the Stanford Linear Collider (polarized) and Tesla Test Facility (un-polarized). The ILC polarized electron source will provide a 5GeV spin polarized electron beam for injection into the ILC damping ring. Although most ILC machine parameters have been achieved by the SLC or TTF source, features of both must be integrated into one design. The bunch train structure presents unique challenges to the source laser drive system. A suitable laser system has not yet been demonstrated and is part of the ongoing R&D program for ILC at SLAC. Furthermore, ILC injector R&D incorporates photocathode development, increasing available polarization, and improving operational properties in gun vacuum systems. Another important area of research and development is advancing the design of DC and RF electron gun technology for polarized sources. This presentation presents the current status of the design and outlines aspects of the relevant R&D program carried out within the ILC community.

  1. Gathering Design References from Nature

    ERIC Educational Resources Information Center

    Debs, Luciana; Kelley, Todd

    2015-01-01

    Teaching design to middle and high school students can be challenging. One of the first procedures in teaching design is to help students gather information that will be useful in the design phase. An early stage of engineering design as described by Lewis (2005), calls for the designer to establish the state of the art of the problem. During this…

  2. Gathering Design References from Nature

    ERIC Educational Resources Information Center

    Debs, Luciana; Kelley, Todd

    2015-01-01

    Teaching design to middle and high school students can be challenging. One of the first procedures in teaching design is to help students gather information that will be useful in the design phase. An early stage of engineering design as described by Lewis (2005), calls for the designer to establish the state of the art of the problem. During this…

  3. 20-MW Magnicon for ILC

    SciTech Connect

    Jay L. Hirshfield

    2006-11-29

    The 1.3 GHz RF power to drive ILC is now planned to be supplied by 600-1200, 10-MW peak power multi-beam klystrons. In this project, a conceptual design for 1.3 GHz magnicons with 20 MW peak power was developed as an alternative to the klystrons, with the possibility of cutting in half the numbers of high-power tubes and associated components. Design of a conventional magnicon is described, using TM110 modes in all cavities, as well as design of a modified magnicon with a TE111 mode output cavity. The latter has the advantage of much lower surface fields than the TM110 mode, with no loss of output power or electronic efficiency.

  4. Adaptive ILC algorithms of nonlinear continuous systems with non-parametric uncertainties for non-repetitive trajectory tracking

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Lv, Mang-Mang; Ho, John K. L.

    2016-07-01

    In this article, two adaptive iterative learning control (ILC) algorithms are presented for nonlinear continuous systems with non-parametric uncertainties. Unlike general ILC techniques, the proposed adaptive ILC algorithms allow that both the initial error at each iteration and the reference trajectory are iteration-varying in the ILC process, and can achieve non-repetitive trajectory tracking beyond a small initial time interval. Compared to the neural network or fuzzy system-based adaptive ILC schemes and the classical ILC methods, in which the number of iterative variables is generally larger than or equal to the number of control inputs, the first adaptive ILC algorithm proposed in this paper uses just two iterative variables, while the second even uses a single iterative variable provided that some bound information on system dynamics is known. As a result, the memory space in real-time ILC implementations is greatly reduced.

  5. A reference Pelton turbine design

    NASA Astrophysics Data System (ADS)

    Solemslie, B. W.; Dahlhaug, O. G.

    2012-09-01

    The designs of hydraulic turbines are usually close kept corporation secrets. Therefore, the possibility of innovation and co-operation between different academic institutions regarding a specific turbine geometry is difficult. A Ph.D.-project at the Waterpower Laboratory, NTNU, aim to design several model Pelton turbines where all measurements, simulations, the design strategy, design software in addition to the physical model will be available to the public. In the following paper a short description of the methods and the test rig that are to be utilized in the project are described. The design will be based on empirical data and NURBS will be used as the descriptive method for the turbine geometry. In addition CFX and SPH simulations will be included in the design process. Each turbine designed and produced in connection to this project will be based on the experience and knowledge gained from the previous designs. The first design will be based on the philosophy to keep a near constant relative velocity through the bucket.

  6. The U.S. Role in the Global ILC Effort

    NASA Astrophysics Data System (ADS)

    Harrison, Michael

    2008-04-01

    An e+e- Linear Collider in a similar center-of-mass energy range to the LHC was affirmed by the world community in 1999 (HEPAP, ECFA, & ACFA) as the consensus next global HEP facility. With the ICFA decision in 2004 to adopt a superconducting approach to the RF technology of such a machine the Global Design Effort (GDE) was launched to produce a conceptual reference design and associated cost estimate. This design work also indicated the critical R&D milestones that needed to be demonstrated before the ILC could be credibly proposed to the various funding agencies. This talk will review the global R&D program and the role of the U.S. within these activities. Recent funding decisions in the U.K. and the U.S. have impacted these efforts and the current status will be outlined. A snapshot of the detector R&D program will also be given.

  7. Beam Polarization at the ILC: the Physics Impact and the Accelerator Solutions

    SciTech Connect

    Aurand, B.; Bailey, I.; Bartels, C.; Brachmann, A.; Clarke, J.; Hartin, A.; Hauptman, J.; Helebrant, C.; Hesselbach, S.; Kafer, D.; List, J.; Lorenzon, W.; Marchesini, I.; Monig, Klaus; Moffeit, K.C.; Moortgat-Pick, G.; Riemann, S.; Schalicke, A.; Schuler, P.; Starovoitov, P.; Ushakov, A.; /DESY /DESY, Zeuthen /Bonn U. /SLAC

    2011-11-23

    In this contribution accelerator solutions for polarized beams and their impact on physics measurements are discussed. Focus are physics requirements for precision polarimetry near the interaction point and their realization with polarized sources. Based on the ILC baseline programme as described in the Reference Design Report (RDR), recent developments are discussed and evaluated taking into account physics runs at beam energies between 100 GeV and 250 GeV, as well as calibration runs on the Z-pole and options as the 1TeV upgrade and GigaZ. The studies, talks and discussions presented at this conference demonstrated that beam polarization and its measurement are crucial for the physics success of any future linear collider. To achieve the required precision it is absolutely decisive to employ multiple devices for testing and controlling the systematic uncertainties of each polarimeter. The polarimetry methods for the ILC are complementary: with the upstream polarimeter the measurements are performed in a clean environment, they are fast and allow to monitor time-dependent variations of polarization. The polarimeter downstream the IP will measure the disrupted beam resulting in high background and much lower statistics, but it allows access to the depolarization at the IP. Cross checks between the polarimeter results give redundancy and inter-calibration which is essential for high precision measurements. Current plans and issues for polarimeters and also energy spectrometers in the Beam Delivery System of the ILC are summarized in reference [28]. The ILC baseline design allows already from the beginning the operation with polarized electrons and polarized positrons provided the spin rotation and the fast helicity reversal for positrons will be implemented. A reversal of the positron helicity significantly slower than that of electrons is not recommended to not compromise the precision and hence the success of the ILC. Recently to use calibration data at the Z

  8. ILC Vertex Tracker R&D

    SciTech Connect

    Battaglia, Marco; Bussat, Jean-Marie; Contarato, Devis; Denes,Peter; Glesener, Lindsay; Greiner, Leo; Hooberman, Benjamin; Shuman,Derek; Tompkins, Lauren; Vu, Chinh; Bisello, Dario; Giubilato, Piero; Pantano, Devis; Costa, Marco; La Rosa, Alessandro; Bolla, Gino; Bortoletto, Daniela; Children, Isaac

    2007-10-01

    This document summarizes past achievements, current activities and future goals of the R&D program aimed at the design, prototyping and characterization of a full detector module, equipped with monolithic pixel sensors, matching the requirements for the Vertex Tracker at the ILC. We provide a plan of activities to obtain a demonstrator multi-layered vertex tracker equipped with sensors matching the ILC requirements and realistic lightweight ladders in FY11, under the assumption that ILC detector proto-collaborations will be choosing technologies and designs for the Vertex Tracker by that time. The R&D program discussed here started at LBNL in 2004, supported by a Laboratory Directed R&D (LDRD) grant and by funding allocated from the core budget of the LBNL Physics Division and from the Department of Physics at UC Berkeley. Subsequently additional funding has been awarded under the NSF-DOE LCRD program and also personnel have become available through collaborative research with other groups. The aim of the R&D program carried out by our collaboration is to provide a well-integrated, inclusive research effort starting from physics requirements for the ILC Vertex Tracker and addressing Si sensor design and characterization, engineered ladder design, module system issues, tracking and vertex performances and beam test validation. The broad scope of this program is made possible by important synergies with existing know-how and concurrent programs both at LBNL and at the other collaborating institutions. In particular, significant overlaps with LHC detector design, SLHC R&D as well as prototyping for the STAR upgrade have been exploited to optimize the cost per deliverable of our program. This activity is carried out as a collaborative effort together with Accelerator and Fusion Research, the Engineering and the Nuclear Science Divisions at LBNL, INFN and the Department of Physics in Padova, Italy, INFN and the Department of Physics in Torino, Italy and the Department

  9. Direct space-charge effects on the ILC damping rings: Task ForceReport

    SciTech Connect

    Venturini, Marco; Oide, Katsunobu

    2006-02-28

    In 2005 a global effort was initiated to conduct studies for a baseline recommendation for the various components of the International Linear Collider (ILC). Work for the damping rings was subdivided in a number of tasks. This Report contains the contribution to this effort by the Authors as Coordinators of the Task Force on space charge. (A slightly reduced version of this document can also be found as part of the ''Configuration Studies and Recommendations for the ILC Damping Rings'', Edts. A. Wolski, et al., LBNL-59449.) The studies documented in this Report were carried out for several of the reference lattices considered for the baseline recommendation. Space charge effects were found to be quite noticeable in the lattices with the longest circumference. Although it does not appear that they could prevent operation of any machine having such lattices they do favor a choice of a ring design with shorter ({approx}6km) circumference at 5 GeV.

  10. An Over-moded Fundamental Power Coupler for the ILC

    SciTech Connect

    Jeff Neilson

    2009-05-20

    The current design of fundamental power couplers for the ILC are expensive and require excessively long conditioning times. The goal of this develoment is design of a coupler that requires little rf processing and is significantly less expensive to build than the present ILC coupler. The goal of this program is development of a new technology for power couplers.This new technology is based on the cylindrical TE01 mode and other over-moded technologies developed for the X-band rf distribution system of the NCLTA. During the Phase I program, a TE10 to TE01 mode transducer suitable for use as a part of a power coupler in the ILC will be designed, built and tested. Following a succesful test, prototype designs of the TE01 to cavity coupler and thermal will be produced. A detailed study of the suitability of this overmoded waveguide technology for the ILC power coupler will be provided in the final report. Development of over-moded power couplers for superconducting cavities could find application im many world-wide accelerator projects, such as SNS, Jefferson Lab upgrade, RIA, TESLA in addition to the ILC.

  11. SPIROC: design and performances of a dedicated very front-end electronics for an ILC Analog Hadronic CALorimeter (AHCAL) prototype with SiPM read-out

    NASA Astrophysics Data System (ADS)

    Conforti Di Lorenzo, S.; Callier, S.; Fleury, J.; Dulucq, F.; De la Taille, C.; Chassard, G. Martin; Raux, L.; Seguin-Moreau, N.

    2013-01-01

    For the future e+ e- International Linear Collider (ILC) the ASIC SPIROC (Silicon Photomultiplier Integrated Read-Out Chip) was designed to read out the Analog Hadronic Calorimeter (AHCAL) equipped with Silicon Photomultiplier (SiPM). It is an evolution of the FLC_SiPM chip designed by the OMEGA group in 2005. SPIROC2 [1] was realized in AMS SiGe 0.35 μm technology [2] and developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of read-out channels. This ASIC is a very front-end read-out chip that integrates 36 self triggered channels with variable gain to achieve charge and time measurements. The charge measurement must be performed from 1 up to 2000 photo-electrons (p.e.) corresponding to 160 fC up to 320 pC for SiPM gain 106. The time measurement is performed with a coarse 12-bit counter related to the bunch crossing clock (up to 5 MHz) and a fine time ramp based on this clock (down to 200 ns) to achieve a resolution of 1 ns. An analog memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. The analog memory content (time and charge) is digitized thanks to an internal 12-bit Wilkinson ADC. The data is then stored in a 4kbytes RAM. A complex digital part is necessary to manage all these features and to transfer the data to the DAQ. SPIROC2 is the second generation of the SPIROC ASIC family designed in 2008 by the OMEGA group. A very similar version (SPIROC2c) was submitted in February 2012 to improve the noise performance and also to integrate a new TDC (Time to Digital Converter) structure. This paper describes SPIROC2 and SPIROC2c ASICs and illustrates the main characteristics thank to a series of measurements.

  12. Simulations of the Electron Cloud Builld Up and Instabilities for Various ILC Damping Ring Configurations

    SciTech Connect

    Pivi, Mauro; Raubenheimer, Tor O.; Wang, Lanfa; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej; /Liverpool U. /Cockcroft Inst. Accel. Sci. Tech.

    2007-03-12

    In the beam pipe of the positron damping ring of the International Linear Collider (ILC), an electron cloud may be first produced by photoelectrons and ionization of residual gases and then increased by the secondary emission process. This paper reports the assessment of electron cloud effects in a number of configuration options for the ILC baseline configuration. Careful estimates were made of the secondary electron yield (sometimes in the literature also referred as secondary emission yield SEY or {delta}, with a peak value {delta}{sub max}) threshold for electron cloud build-up, and the related single- and coupled-bunch instabilities, as a function of beam current and surface properties for a variety of optics designs. When the configuration for the ILC damping rings was chosen at the end of 2005, the results from these studies were important considerations. On the basis of the joint theoretical and experimental work, the baseline configuration currently specifies a pair of 6 km damping rings for the positron beam, to mitigate the effects of the electron cloud that could present difficulties in a single 6 km ring. However, since mitigation techniques are now estimated to be sufficiently mature, a reduced single 6-km circumference is presently under consideration so as to reduce costs.

  13. Crew Transportation System Design Reference Missions

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  14. Precision Measurements at the ILC

    SciTech Connect

    Nelson, T.K.; /SLAC

    2006-12-06

    With relatively low backgrounds and a well-determined initial state, the proposed International Linear Collider (ILC) would provide a precision complement to the LHC experiments at the energy frontier. Completely and precisely exploring the discoveries of the LHC with such a machine will be critical in understanding the nature of those discoveries and what, if any, new physics they represent. The unique ability to form a complete picture of the Higgs sector is a prime example of the probative power of the ILC and represents a new era in precision physics.

  15. Magnet reliability in the Fermilab Main Injector and implications for the ILC

    SciTech Connect

    Tartaglia, M.A.; Blowers, J.; Capista, D.; Harding, D.J.; Kiemschies, O.; Rahimzadeh-Kalaleh, S.; Tompkins, J.C.; /Fermilab

    2007-08-01

    The International Linear Collider reference design requires over 13000 magnets, of approximately 135 styles, which must operate with very high reliability. The Fermilab Main Injector represents a modern machine with many conventional magnet styles, each of significant quantity, that has now accumulated many hundreds of magnet-years of operation. We review here the performance of the magnets built for this machine, assess their reliability and categorize the failure modes, and discuss implications for reliability of similar magnet styles expected to be used at the ILC.

  16. Automotive Stirling reference engine design report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference Stirling engine system is described which provides the best possible fuel economy while meeting or exceeding all other program objectives. The system was designed to meet the requirements of a 1984 Pontiac Phoenix (X-body). This design utilizes all new technology that can reasonably be expected to be developed by 1984 and that is judged to provide significant improvement, relative to development risk and cost. Topics covered include: (1) external heat system; (2) hot engine system; (3) cold engine system; (4) engine drive system; (5) power control system and auxiliaries; (6) engine instalation; (7) optimization and vehicle simulation; (8) engine materials; and (9) production cost analysis.

  17. Present Status of the ILC Project and Development

    SciTech Connect

    Ross, M.; Walker, N.; Yamamoto, A.; /KEK, Tsukuba

    2011-09-01

    The Technical Design of the International Linear Collider (ILC) Project will be finished in late 2012. The Technical Design Report (TDR) will include a description of the updated design, with a cost estimate and a project plan, and the results of research and development (R & D) done in support of the ILC. Results from directed ILC R & D are used to reduce the cost and risk associated with the ILC design. We present a summary of key challenges and show how the global R & D effort has addressed them. The most important activity has been in pursuit of very high gradient superconducting RF linac technology. There has been excellent progress toward the goal of practical industrial production of niobium sheet-metal cavities with gradient performance in excess of 35 MV/m. In addition, three purpose-built beam test facilities have been constructed and used to study and demonstrate high current linac performance, electron-cloud beam dynamics and precision beam control. The report also includes a summary of component design studies and conventional facilities cost optimization design studies.

  18. The PIP-II Reference Design Report

    SciTech Connect

    Lebedev, Valeri,

    2015-06-01

    The Proton Improvement Plan-II (PIP-II) is a high-intensity proton facility being developed to support a world-leading neutrino program over the next two decades at Fermilab. PIP-II is an integral part of the U.S. Intensity Frontier Roadmap as described in the Particle Physics Project Prioritization Panel (P5) report of May 2014 [1]. As an immediate goal PIP-II is focused on upgrades to the Fermilab accelerator complex capable of providing a beam power in excess of 1 MW on target at the initiation of LBNF [1,2] operations. PIP-II is a part of a longer-term concept for a sustained campaign of upgrades and improvements to achieve multi-MW capabilities at Fermilab. PIP-II is based on three major thrusts. They are (1) the recently completed upgrades to the Recycler and Main Injector (MI) for the NOvA experiment, (2) the Proton Improvement Plan [3] currently underway, and (3) the Project X Reference Design [4]. Note that: The Proton Improvement Plan (PIP) consolidates a set of improvements to the existing Linac, Booster, and Main Injector (MI) aimed at supporting 15 Hz Booster beam operation. In combination, the NOvA upgrades and PIP create a capability of delivering 700 kW beam power from the Main Injector at 120 GeV; The scope of the Project X Reference Design Report was aimed well beyond PIP. It described a complete concept for a multi-MW proton facility that could support a broad particle physics program based on neutrino, kaon, muon, and nucleon experiments [5,6]. The Project X conceptual design has evolved over a number of years, incorporating continuous input on physics research goals and advances in the underlying technology development programs [7,8,9]. PIP-II, to high degree, inherits these goals as the goals for future developments and upgrades. This document (PIP-II Reference Design Report) describes an initial step in the development of the Fermilab accelerating complex. The plan described in this Report balances the far-term goals of the Laboratory's long

  19. ILC Marx Modulator Development Program Status

    SciTech Connect

    Burkhart, C.; Beukers, T.; Larsen, R.; Macken, K.; Nguyen, M.; Olsen, J.; Tang, T.; /SLAC

    2009-03-04

    Development of a first generation prototype (P1) Marx-topology klystron modulator for the International Linear Collider is nearing completion at the Stanford Linear Accelerator Center. It is envisioned as a smaller, lower cost, and higher reliability alternative to the present, bouncer-topology, 'Baseline Conceptual Design'. The Marx presents several advantages over conventional klystron modulator designs. It is physically smaller; there is no pulse transformer (quite massive at ILC parameters) and the energy storage capacitor bank is quite small, owing to the active droop compensation. It is oil-free; voltage hold-off is achieved using air insulation. It is air cooled; the secondary air-water heat exchanger is physically isolated from the electronic components. The P1-Marx employs all solid state elements; IGBTs and diodes, to control the charge, discharge and isolation of the cells. A general overview of the modulator design and the program status are presented.

  20. Reference repository design concept for bedded salt

    SciTech Connect

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  1. EBT-P proposed reference design report

    SciTech Connect

    Boch, A.L.

    1980-01-01

    This report describes the proposed reference design for the EBT-P proof-of-principle test device. The device described is a result of broad studies by many participating organizations from industry and from Department of Energy-sponsored fusion research groups, some working together and some in competitive studies, but all with the goal of defining a device at minimum cost and with maximum probability of meeting its goals. This design work is based upon advances in experimental and theoretical understanding of EBT achieved at Oak Ridge National Laboratory. The strategy adopted permits an initial test and validation of the key scaling properties of the ELMO Bumpy Torus concept, with a degree of built-in flexibility to extend the performance parameters toward the condition for containing a fusion reactor plasma. This will lead the way, then, to determination of a later power break-even demonstration and an eventual fusion reactor that can exploit the special high power-density and steady-state properties of the EBT concept.

  2. Study for ILC Damping Ring at KEKB

    SciTech Connect

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  3. ILC Linac R&D at SLAC

    SciTech Connect

    Adolphsen, C.; /SLAC

    2006-08-09

    Since the ITRP recommendation in August 2004 to use superconducting rf technology for a next generation linear collider, the former NLC Group at SLAC has been actively pursuing a broad range of R&D for this collider (the ILC). In this paper, the programs concerning linac technology are reviewed. Current activities include the development of a Marx-style modulator and a 10 MW sheet-beam klystron, operation of an L-band (1.3 GHz) rf source using an SNS HVCM modulator and commercial klystrons, design of a more efficient and less costly rf distribution system, construction of a coupler component test stand, fabrication of a prototype positron capture cavity, beam tests of prototype S-band linac beam position monitors and preparations for magnetic center stability measurements of a prototype SC linac quad.

  4. ILC RF System R and D

    SciTech Connect

    Adolphsen, Chris; /SLAC

    2012-07-03

    The Linac Group at SLAC is actively pursuing a broad range of R&D to improve the reliability and reduce the cost of the L-band (1.3 GHz) rf system proposed for the ILC linacs. Current activities include the long-term evaluation of a 120 kV Marx Modulator driving a 10 MW Multi-Beam Klystron, design of a second-generation Marx Modulator, testing of a sheet-beam gun and beam transport system for a klystron, construction of an rf distribution system with remotely-adjustable power tapoffs, and development of a system to combine the power from many klystrons in low-loss circular waveguide where it would be tapped-off periodically to power groups of cavities. This paper surveys progress during the past few years.

  5. High Availability Instrumentation Packaging Standards for the ILC and Detectors

    SciTech Connect

    Downing, R.W.; Larsen, R.S.; /SLAC

    2006-11-30

    ILC designers are exploring new packaging standards for Accelerator Controls and Instrumentation, particularly high-speed serial interconnect systems for intelligent instruments versus the existing parallel backplanes of VME, VXI and CAMAC. The High Availability Advanced Telecom Computing Architecture (ATCA) system is a new industrial open standard designed to withstand single-point hardware or software failures. The standard crate, controller, applications module and sub-modules are being investigated. All modules and sub-modules are hot-swappable. A single crate is designed for a data throughput in communications applications of 2 Tb/s and an Availability of 0.99999, which translates into a downtime of five minutes per year. The ILC is planning to develop HA architectures for controls, beam instrumentation and detector systems.

  6. The ILC Marx Modulator Development Program at SLAC

    SciTech Connect

    Leyh, G.E.; /SLAC

    2005-06-07

    The International Linear Collider [ILC] baseline design requires 576 L-band klystron stations, each supplying 10MW peak RF power to the accelerating structures. Each klystron requires a modulator capable of delivering 120kV, 140A 1.6ms pulses, at 5Hz. Solid-state Marx modulator topologies are rapidly becoming feasible with the advent of PC-board-level 4500V IGBTs, fast single junction HV diodes, high density capacitors, and sophisticated modeling software. Making full use of recent technology advances, the ILC Marx Modulator program at SLAC plans to pursue a 120kV solid-state Marx design, which appears to offer significantly higher efficiency, availability, and cost savings than existing modulator options.

  7. Mechanical stability study of type IV cryomodule (ILC prototype)

    SciTech Connect

    McGee, M.W.; Doremus, R.; Wands, C.R.; /Fermilab

    2007-06-01

    An ANSYS modal and harmonic finite element analysis (FEA) was performed in order to investigate cryomodule design mechanical stability for the proposed International Linear Collider (ILC). The current cryomodule, designated Type IV or (T4CM), closely follows the Type III TESLA Test Facility (TTF) version used at DESY, with the exception of a proposed location of the superconducting (SC) quadrupole at the center. This analysis considered the stringent stability criteria established for the ILC, where vertical motion for the SC quadrupole is limited to the micron range at a few Hz. Model validation was achieved through Type III cryomodule vibration measurement studies performed at DESY. The effect of support location, support stiffness and other important parameters were considered in a parametric sensitivity study. FEA results, fast motion investigations and stabilization techniques are discussed.

  8. Prototyping of the ILC Baseline Positron Target

    SciTech Connect

    Gronberg, J; Brooksby, C; Piggott, T; Abbott, R; Javedani, J; Cook, E

    2012-02-29

    The ILC positron system uses novel helical undulators to create a powerful photon beam from the main electron beam. This beam is passed through a titanium target to convert it into electron-positron pairs. The target is constructed as a 1 m diameter wheel spinning at 2000 RPM to smear the 1 ms ILC pulse train over 10 cm. A pulsed flux concentrating magnet is used to increase the positron capture efficiency. It is cooled to liquid nitrogen temperatures to maximize the flatness of the magnetic field over the 1 ms ILC pulse train. We report on prototyping effort on this system.

  9. Dark current model for ILC main linac

    SciTech Connect

    Solyak, N.; Romanov, G.; Mokhov, N.V.; Eidelman, Y.; Tam, Wai-Ming; /Indiana U.

    2008-06-01

    In the ILC Main Linac, the dark current electrons, generated in SRF cavity can be accelerated to hundreds of MeV before being kicked out by quadrupoles and thus will originate electromagnetic cascade showers in the surrounding materials. Some of the shower secondaries can return back into vacuum and be re-accelerated again. The preliminary results of simulation of the dark current generation in ILC cavity, its dynamics in linac are discussing in this paper.

  10. Development Status of The ILC Marx Modulator

    SciTech Connect

    Nguyen, M; Beukers, T.; Burkhart, C.; Larsen, R.; Olsen, J.; Tang, T.; /SLAC

    2010-06-07

    The ILC Marx Modulator is under development as a lower cost alternative to the 'Baseline Conceptual Design' (BCD) klystron modulator. Construction of a prototype Marx is complete and testing is underway at SLAC. The Marx employs solid state elements, IGBTs and diodes, to control the charge, discharge and isolation of the modules. The prototype is based on a stack of sixteen modules, each initially charged to {approx}11 kV, which are arranged in a Marx topology. Initially, eleven modules combine to produce the 120 kV output pulse. The remaining modules are switched in after appropriate delays to compensate for the voltage droop that results from the discharge of the energy storage capacitors. Additional elements will further regulate the output voltage to {+-}0.5%. The Marx presents several advantages over the conventional klystron modulator designs. It is physically smaller; there is no pulse transformer (quite massive at these parameters) and the energy storage capacitor bank is quite small, owing to the active droop compensation. It is oil-free; voltage hold-off is achieved using air insulation. It is air cooled; the secondary air-water heat exchanger is physically isolated from the electronic components. This paper outlines the current developmental status of the prototype Marx. It presents a detailed electrical and mechanical description of the modulator and operational test results. It will discuss electrical efficiency measurements, fault testing, and output voltage regulation.

  11. Development Status of the ILC Marx Modulator

    SciTech Connect

    Nguyen, M.; Beukers, T.; Burkhart, C.; Larsen, R.; Olsen, J.; Tang, T.; /SLAC

    2008-06-16

    The ILC Marx Modulator is under development as a lower cost alternative to the 'Baseline Conceptual Design' (BCD) klystron modulator. Construction of a prototype Marx is complete and testing is underway at SLAC. The Marx employs solid state elements, IGBTs and diodes, to control the charge, discharge and isolation of the modules. The prototype is based on a stack of sixteen modules, each initially charged to {approx}11 kV, which are arranged in a Marx topology. Initially, eleven modules combine to produce the 120 kV output pulse. The remaining modules are switched in after appropriate delays to compensate for the voltage droop that results from the discharge of the energy storage capacitors. Additional elements will further regulate the output voltage to {+-} 0.5%. The Marx presents several advantages over the conventional klystron modulator designs. It is physically smaller; there is no pulse transformer (quite massive at these parameters) and the energy storage capacitor bank is quite small, owing to the active droop compensation. It is oil-free; voltage hold-off is achieved using air insulation. It is air cooled; the secondary air-water heat exchanger is physically isolated from the electronic components. This paper outlines the current developmental status of the prototype Marx. It presents a detailed electrical and mechanical description of the modulator and operational test results. It will discuss electrical efficiency measurements, fault testing, and output voltage regulation.

  12. Backfill LA Reference Design Feature Evaluation

    SciTech Connect

    Kramer, Norman

    1999-11-17

    Backfill is one of the design features of the repository to be considered for License Application (LA). The objective of this report is to discuss the benefits and liabilities to the repository of the inclusion of backfill in emplacement drifts. Backfill may act as a barrier to water flow, may reduce the waste dissolution rate, and can provide structural protection for the waste package. However, installation of the backfill material can be costly in terms of time, money, and human effort. The scope of this report is to: (1) Analyze the behavior of backfill materials following the intrusion of groundwater for influxes of 1 to 300 mm per year. The report will demonstrate dispersion of groundwater intrusions into backfill over an extended time period when seismic activity and consolidation may cause the potential for liquefaction and settlement of the backfill material. (2) Review the thermal effects of backfill on material behavior. (3) Analyze the effect of rockfall on the performance of backfill and the depth of backfill required to protect waste packages under backfill. (4) Review radiological and heating conditions on placement of backfill. Subsurface Nuclear Safety personnel will perform calculations to determine the radiation reduction-time relationship and shielding capacity of backfill. (5) Evaluate the effects of ventilation on cooling of emplacement drifts and dusting potential. (6) Evaluate drift conditions and configurations to determine the suitability of backfilling methodology. (7) Perform cost assessment of backfill material placement. (8) Evaluate the feature with criteria that will be supplied by the License Application Design Selection (LADS) Team. This report does not discuss backfill for sealing of ramps, shafts and mains but is limited to backfill in emplacement drifts.

  13. Richards Barrier LA Reference Design Feature Evaluation

    SciTech Connect

    N.E. Kramer

    1999-11-17

    The Richards Barrier is one of the design features of the repository to be considered for the License Application (LA), Richards was a soil scientist who first described the diversion of moisture between two materials with different hydrologic properties. In this report, a Richards Barrier is a special type of backfill with a fine-grained material (such as sand) overlaying a coarse-grained material (such as gravel). Water that enters an emplacement drift will first encounter the fine-grained material and be transported around the coarse-grained material covering the waste package, thus protecting the waste package from contact with most of the groundwater. The objective of this report is to discuss the benefits and liabilities to the repository by the inclusion of a Richards Barrier type backfill in emplacement drifts. The Richards Barrier can act as a barrier to water flow, can reduce the waste package material dissolution rate, limit mobilization of the radionuclides, and can provide structural protection for the waste package. The scope of this report is to: (1) Analyze the behavior of barrier materials following the intrusion of groundwater for influxes of 1 to 300 mm per year. The report will demonstrate diversion of groundwater intrusions into the barrier over an extended time period when seismic activity and consolidation may cause the potential for liquefaction and settlement of the Richards Barrier. (2) Review the thermal effects of the Richards Barrier on material behavior. (3) Analyze the effect of rockfall on the performance of the Richards Barrier and the depth of the barrier required to protect waste packages under the barrier. (4) Review radiological and heating conditions on placement of multiple layers of the barrier. Subsurface Nuclear Safety personnel will perform calculations to determine the radiation reduction-time relationship and shielding capacity of the barrier. (5) Evaluate the effects of ventilation on cooling of emplacement drifts and

  14. Consideration of design and calibration of terrestrial reference solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1976-01-01

    A discussion is presented on the problems encountered in the design of a reference cell that meets basic criteria, starting with basic design considerations, and proceeding with the precautions taken to ensure a global monitoring capability. The effects of the variations in atmospheric conditions on the calibration and use of reference cells are presented along with a discussion of the simplifications brought about by the use of spectrally matched test and reference cells. Finally, a method of matching test modules and arrays to reference cells by a red/blue response ratio technique is described.

  15. Thermal Analysis of the ILC Superconductin Quadrupole

    SciTech Connect

    Ross, Ian; /Rose-Hulman Inst., Terre Haute /SLAC

    2006-09-13

    Critical to a particle accelerator's functioning, superconducting magnets serve to focus and aim the particle beam. The Stanford Linear Accelerator Center (SLAC) has received a prototype superconducting quadrupole designed and built by the Centro de Investigaciones Energ{acute e}ticas, Medioambientales y Tecnol{acute o}gicas (CIEMAT) to be evaluated for the International Linear Collider (ILC) project. To ensure proper functioning of the magnet, the device must be maintained at cryogenic temperatures by use of a cooling system containing liquid nitrogen and liquid helium. The cool down period of a low temperature cryostat is critical to the success of an experiment, especially a prototype setup such as this one. The magnet and the dewar each contain unique heat leaks and material properties. These differences can lead to tremendous thermal stresses. The system was analyzed mathematically, leading to ideal liquid helium and liquid nitrogen flow rates during the magnet's cool-down to 4.2 K, along with a reasonable estimate of how long this cool-down will take. With a flow rate of ten gaseous liters of liquid nitrogen per minute, the nitrogen shield will take approximately five hours to cool down to 77 K. With a gaseous helium flow rate of sixty liters per minute, the magnet will take at least nineteen hours to cool down to a temperature of 4.2 K.

  16. ILC MARX MODULATOR DEVELOPMENT PROGRAM STATUS

    SciTech Connect

    Burkhart, Craig; Benwell, Andrew; Beukers, Tony; Kemp, Mark; Larsen, Raymond; MacNair, David; Nguyen, Minh; Olsen, Jeff; Tang, Tao; /SLAC

    2010-08-25

    A Marx-topology klystron modulator is under development for the International Linear Collider (ILC) project. It is envisioned as a lower cost, smaller footprint, and higher reliability alternative to the present, bouncer-topology, baseline design. The application requires 120 kV (+/-0.5%), 140 A, 1.6 ms pulses at a rate of 5 Hz. The Marx constructs the high voltage pulse by combining, in series, a number of lower voltage cells. The Marx employs solid state elements; IGBTs and diodes, to control the charge, discharge and disolation of the cells. Active compensation of the output is used to achieve the voltage regulation while minimizing the stored energy. The developmental testing of a first generation prototype, P1, has been completed. This modulator has been integrated into a test stand with a 10 MW L-band klystron, where each is undergoing life testing. Development of a second generation prototype, P2, is underway. The P2 is based on the P1 topology but incorporates an alternative cell configuration to increase redundancy and improve availability. Status updates for both prototypes are presented.

  17. Muon ID at the ILC

    SciTech Connect

    Milstene, C.; Fisk, G.; Para, A.; /Fermilab

    2006-09-01

    This paper describes a new way to reconstruct and identify muons with high efficiency and high pion rejection. Since muons at the ILC are often produced with or in jets, for many of the physics channels of interest [1], an efficient algorithm to deal with the identification and separation of particles within jets is important. The algorithm at the core of the method accounts for the effects of the magnetic field and for the loss of energy by charged particles due to ionization in the detector. We have chosen to develop the analysis within the setup of one of the Linear Collider Concept Detectors adopted by the US. Within b-pair production jets, particles cover a wide range in momenta; however {approx}80% of the particles have a momentum below 30 GeV[2]. Our study, focused on bbar-b jets, is preceded by a careful analysis of single energy particles between 2 and 50 GeV. As medium energy particles are a substantial component of the jets, many of the particles lose part of their energy in the calorimeters and the solenoid coil before reaching the muon detector where they may have energy below 2 GeV. To deal with this problem we have implemented a Runge-Kutta correction of the calculated trajectory to better handle these lower energy particles. The multiple scattering and other stochastic processes, more important at lower energy, is addressed by a Kalman-filter integrated into the reconstruction algorithm. The algorithm provides a unique and powerful separation of muons from pions. The 5 Tesla magnetic field from a solenoid surrounds the hadron calorimeter and allows the reconstruction and precision.

  18. Designing a Quick Reference Guide: A Teaching Case.

    ERIC Educational Resources Information Center

    Goodwin, Dave

    1994-01-01

    Describes how professional writers from Bell Northern Research, enrolled in a professional writing program, designed a quick reference guide for in-house use, and then provided a theoretical framework to ground and explain their visual design choices. Offers the instructor's theoretical reflections on how visual design can motivate readers to read…

  19. Discovering bottom squark coannihilation at the ILC

    SciTech Connect

    Belyaev, Alexander; Lastovicka, Tomas; Nomerotski, Andrei; Lastovicka-Medin, Gordana

    2010-02-01

    We study the potential of the international linear collider (ILC) at {radical}(s)=500 GeV to probe new dark matter motivated scenario where the bottom squark (sbottom) is the next-to-lightest supersymmetric particle. For this scenario, which is virtually impossible for the LHC to test, the ILC has a potential to cover a large fraction of the parameter space. The challenge is due to a very low energy of jets, below 20-30 GeV, which pushes the jet clustering and flavor tagging algorithms to their limits. The process of sbottom pair production was studied within the SiD detector concept. We demonstrate that ILC offers a unique opportunity to test the supersymmetry parameter space motivated by the sbottom-neutralino coannihilation scenario in cases when the sbottom production is kinematically accessible. The study was done with the full SiD simulation and reconstruction chain including all standard model and beam backgrounds.

  20. Engineering challenges for detectors at the ILC

    SciTech Connect

    Oriunno, Marco

    2016-05-31

    Over the last years two proposals for experiments at the ILC have been developed, ILD and SID. Extensive R&D has been carried out around the world to develop the needed technologies. Furthermore a first round of engineering studies was made as part of the ILC TDR to understand the integration of these different sub-systems into coherent and integrated detector concepts. Among the key challenges for the sub detectors are the extreme low mass/low power requirements or the extreme channel densities needed in particle flow based detectors. Throughout these studies special care was taken to ensure that the engineering models and the simulation models, used in studies of the physics capabilities of the detectors, stay synchronized. In the near future, the models will need to be evolved to take the special requirements of the potential ILC site in Japan into account. Furthermore, the state of the integration of the detectors, and the future directions, will be discussed.

  1. Artificial Intelligence for VHSIC Systems Design (AIVD) User Reference Manual

    DTIC Science & Technology

    1988-12-01

    AD-A259 518 C;ý I RESEARCH TRIANGLE INSTITUTE ARTIFICIAL INTELLIGENCE FOR IVHSIC SYSTEMS DESIGN (AIVD) DTIC USER REFERENCE MANUAL * ScELECTE fl2...Report 14. SUBJECT TERMS IS. MUMBER OF PAGES VHSIC, Software/hardware codesign, Artificial Intelligence graph transformation, ADAS 14. PRICE CODE 17... ARTIFICIAL INTELLIGENCE FOR I VHSIC SYSTEMS DESIGN (AIVD) USER REFERENCE MANUAL December 1988 I Department of the Army ,,’ U.S. Army Electronics Research

  2. HOM/LOM Coupler Study for the ILC Crab Cavity

    SciTech Connect

    Xiao, L.; Li, Z.; Ko, K.; /SLAC

    2007-04-16

    The FNAL 9-cell 3.9GHz deflecting mode cavity designed for the CKM experiment was chosen as the baseline design for the ILC BDS crab cavity. The full 9-cell CKM cavity including the coupler end-groups was simulated using the parallel eigensolver Omega3P and scattering parameter solver S3P. It was found that both the notch filters for the HOM/LOM couplers are very sensitive to the notch gap, which is about 1.6MHz/micron and is more than 10 times more sensitive than the TTF cavity. It was also found in the simulation that the unwanted vertical {pi}-mode (SOM) is strongly coupled to the horizontal 7{pi}/9 mode which causes x-y coupling and reduces the effectiveness of the SOM damping. To meet the ILC requirements, the HOM/LOM couplers are redesigned to address these issues. With the new designs, the damping of the HOM/LOM modes is improved. The sensitivity of the notch filter for the HOM coupler is reduced by one order of magnitude. The notch filter for the LOM coupler is eliminated in the new design which significantly simplifies the geometry. In this paper, we will present the simulation results of the original CKM cavity and the progresses on the HOM/LOM coupler re-design and optimization.

  3. Reference design description for a geologic repository: Revision 01

    SciTech Connect

    1997-09-01

    This document describes the current design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada. This Reference Design Description (RDD) looks at the surface and subsurface repository and disposal container design. Additionally, it reviews the expected long-term performance of the potential repository. In accordance with current legislation, the reference design for the potential repository does not include an interim storage option. The reference design presented allows the disposal of highly radioactive material received from government-owned spent fuel custodian sites; produces high-level waste sites, and commercial spent fuel sites. All design elements meet current federal, state, and local regulations governing the disposal of high-level radioactive waste and protection of the public and the environment. Due to the complex nature of developing a repository, the design will be created in three phases to support Viability Assessment, License Application, and construction. This document presents the current reference design. It will be updated periodically as the design progresses. Some of the details presented here may change significantly as more cost-effective solutions, technical advancements, or changes to requirements are identified.

  4. The Superconducting Magnets of the ILC Beam Delivery System

    SciTech Connect

    Parker, B.; Anerella, M.; Escallier, J.; He, P.; Jain, A.; Marone, A.; Nosochkov, Y.; Seryi, Andrei; /SLAC

    2007-09-28

    The ILC Beam Delivery System (BDS) uses a variety of superconducting magnets to maximize luminosity and minimize background. Compact final focus quadrupoles with multifunction correction coils focus incoming beams to few nanometer spot sizes while focusing outgoing disrupted beams into a separate extraction beam line. Anti-solenoids mitigate effects from overlapping focusing and the detector solenoid field. Far from the interaction point (IP) strong octupoles help minimize IP backgrounds. A low-field but very large aperture dipole is integrated with the detector solenoid to reduce backgrounds from beamstrahlung pairs generated at the IP. Physics requirements and magnetic design solutions for the BDS superconducting magnets are reviewed in this paper.

  5. Tracking Studies to Determine the Required Wiggler Aperture forthe ILC Damping Rings

    SciTech Connect

    Reichel, I.; Wolski, A.

    2006-06-21

    The injection efficiency of an ILC damping ring is closely tied to its acceptance. To maximize both, one wants a physical aperture as large as possible in the wiggler magnets, as these are likely to be the limiting physical apertures in the ring. On the other hand, a small aperture in the wiggler magnets is needed to achieve the required field profile, a high magnetic field that is very linear over the whole physical aperture of the magnet. Tracking studies were done for all proposed ILC damping ring lattices to determine their required physical apertures. Although a half-aperture of 8 or 10mm had been proposed, our studies showed that, for most lattices, a 16mm half-aperture is required. For some lattices a 12mm half aperture might suffice. We present here the results of our studies, which led to adopting a 16mm half-aperture in the current ILC damping ring baseline design.

  6. ILC Instrumentation R&D at SCIPP

    SciTech Connect

    Carman, J.; Crosby, S.; Fadeyev, V.; Partridge, R.; Schumm, B.A.; Spencer, N.; Wilder, M.; /UC, Santa Cruz

    2011-11-14

    The Santa Cruz Institute for Particle Physics (SCIPP) continues to be engaged in research and development towards an ILC detector. The latest efforts at SCIPP are described, including those associated with the LSTFE front-end readout ASIC, the use of charge division to obtain a longitudinal coordinate from silicon strip detectors, and the contribution of strip resistance to readout noise.

  7. Effects of Magnet Errors in the ILC 14 mrad Extraction Line

    SciTech Connect

    Toprek, Dragan; Nosochkov, Yuri; /SLAC

    2009-05-08

    The ILC baseline extraction line is designed for 14 mrad horizontal crossing angle between e{sup +} and e{sup -} colliding beams at Interaction Point (IP). The extraction optics in the Interaction Region (IR) includes a detector integrated dipole field (anti-DID) to reduce orbit perturbation caused by the detector solenoid and minimize detector background. This paper presents a study of random field and alignment errors in the extraction magnets, compensation of the induced orbit perturbation, and effects of errors on extraction beam power loss. The results are obtained for the baseline ILC energy of 500 GeV center-of-mass and three options of beam parameters.

  8. Report of the Fermilab ILC Citizens' Task Force

    SciTech Connect

    2008-06-01

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations. While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.

  9. Design Reference Missions for Deep-Space Optical Communication

    NASA Astrophysics Data System (ADS)

    Breidenthal, J.; Abraham, D.

    2016-05-01

    We examined the potential, but uncertain, NASA mission portfolio out to a time horizon of 20 years, to identify mission concepts that potentially could benefit from optical communication, considering their communications needs, the environments in which they would operate, and their notional size, weight, and power constraints. A set of 12 design reference missions was selected to represent the full range of potential missions. These design reference missions span the space of potential customer requirements, and encompass the wide range of applications that an optical ground segment might eventually be called upon to serve. The design reference missions encompass a range of orbit types, terminal sizes, and positions in the solar system that reveal the chief system performance variables of an optical ground segment, and may be used to enable assessments of the ability of alternative systems to meet various types of customer needs.

  10. Coaxial Coupling Scheme for TESLA/ILC-type Cavities

    SciTech Connect

    J.K. Sekutowicz, P. Kneisel

    2010-05-01

    This paper reports about our efforts to develop a flangeable coaxial coupler for both HOM and fundamental coupling for 9-cell TESLA/ILC-type cavities. The cavities were designed in early 90‘s for pulsed operation with a low duty factor, less than 1 %. The proposed design of the coupler has been done in a way, that the magnetic flux B at the flange connection is minimized and only a field of <5 mT would be present at the accelerating field Eacc of ~ 36 MV/m (B =150 mT in the cavity). Even though we achieved reasonably high Q-values at low field, the cavity/coupler combination was limited in the cw mode to only ~ 7 MV/m, where a thermally initiated degradation occurred. We have improved the cooling conditions by initially drilling radial channels every 30 degrees, then every 15 degrees into the shorting plate. The modified prototype performed well up to 9 MV/m in cw mode. This paper reports about our experiences with the further modified coaxial coupler and about test results in cw and low duty cycle pulsed mode, similar to the TESLA/ILC operation conditions.

  11. Positron Injector Accelerator and RF System for the ILC

    SciTech Connect

    Wang, J.W.; Adolphsen, C.; Bharadwaj, V.; Bowden, G.; Jongewaard, E.; Li, Z.; Miller, R.; Sheppard, J.C.; /SLAC

    2007-03-28

    Due to the extremely high energy deposition from positrons, electrons, photons and neutrons behind the positron target, and because a solenoid is required to focus the large emittance positron beam, the 1.3 GHz preaccelerator has to use normal conducting structures up to energy of 400 MeV. There are many challenges in the design of the normal-conducting portion of the ILC positron injector system such as obtaining high positron yield with required emittance, achieving adequate cooling with the high RF and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. Considering issues of feasibility, reliability and cost savings for the ILC, the proposed design for the positron injector contains both standing-wave (SW) and traveling-wave (TW) L-band accelerator structures. A short version of the new type of the SW section is under fabrication and testing. An updated status report is given. This paper also covers acceleration vs. deceleration for pre-accelerator sections, SW vs. TW structures, as well as longitudinal matching from target to linac and linac to damping ring.

  12. A Vernier Regulator for ILC Marx Droop Compensation

    SciTech Connect

    Tang, Tao

    2009-10-30

    A two-part compensation scheme, Vernier Regulation, has been applied to offset the voltage droop (40% without correction) in a Marx-topology klystron modulator developed for the International Linear Collider (ILC). Coarse regulation, {+-}5%, is achieved by turning on additional Main Marx cells (Delayed Cells) sequentially as the droop reaches the cell voltage (11 kV). Further regulation to {+-}0.5% is achieved by adding a small Marx in series with the Main Marx. This Vernier Marx is composed of sixteen, 1.2 kV cells that are assembled as a seventeenth cell in the Main Marx. These Vernier Cells are turned on sequentially to generate a series of discrete corrections to the droop in the Main Marx cells with a step size {le}1% of the output voltage. As the required correction reaches 11 kV, all Vernier Cells are turned off synchronously with the turn on of a Delayed Cell. There are up to five Delayed Cells and six Vernier Marx cycles during each ILC Marx output pulse. The Vernier Marx has a local control system that will detect and respond to over-voltage and over-current errors. In this paper, a detailed description of the design, implementation and testing of the Vernier Marx is presented.

  13. Model-reference adaptive control system design technique

    NASA Technical Reports Server (NTRS)

    Sutherlin, D. W.; Boland, J. S., III

    1973-01-01

    This paper considers the model-reference adaptive control problem which has received considerable attention in the literature in the last few years. An adaptive control scheme is proposed which has terms in the Liapunov function used in the design procedure which are not included in previously proposed schemes. The relationship of this new scheme to existing schemes is shown by considering the root-loci of the linearized error equations between plant and model. Finally, a second order example is given which illustrates the difference between the two previously proposed model-reference adaptive methods and the one proposed in this paper.

  14. Reference design description for a geologic repository. Revision 02

    SciTech Connect

    1999-01-01

    This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada. It describes the proposed design for a surface facility, subsurface repository, and waste packaging; it also presents the current design of the key engineering systems for the final four phases: operations, monitoring, closure, and postclosure. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. In accordance with current law, this design does not include an interim storage option. This document has six major sections. Section 1 describes the physical layout of the proposed repository. The second section describes the 4-phase evolution of the development of the proposed repository. Section 3 describes the reception of waste from offsite locations. The fourth section details the various systems that will package the waste and move it below ground as well as safety monitoring and closure. Section 5 describes the systems (both physical and analytical) that ensure continued safety after closure. The final section offers design options that may be adopted to increase the margin of safety.

  15. Wake potentials of the ILC Interaction Region

    SciTech Connect

    Novokhatski, A.; /SLAC

    2011-08-16

    The vacuum chamber of the ILC Interaction Region (IR) is optimized for best detector performance. It has special shaping to minimize additional backgrounds due to the metal part of the chamber. Also, for the same reason this thin vacuum chamber does not have water cooling. Therefore, small amounts of power, which may be deposited in the chamber, can be enough to raise the chamber to a high temperature. One of the sources of 'heating' power is the electromagnetic field of the beam. This field diffracts by non-regularities of the beam pipe and excites free-propagating fields, which are then absorbed by the pipe wall. In addition we have a heating power of the image currents due to finite conductivity of the metallic wall. We will discuss these effects as updating the previous results. The conclusions of this report are: (1) The amount of the beam energy loss in IR is almost equal to the energy loss in one ILC (TESLA) accelerating cryo-module; (2) Addition energy spread at IR is very small; (3) Spectrum of the wake fields is limited 300 GHz; (4) Average power of the wake fields excited in IR is 30 W for nominal ILC parameters; and (5) Pulse power in this case is 6 kilowatts.

  16. The Truly Conventional Positron Source for Ilc

    NASA Astrophysics Data System (ADS)

    Omori, Tsunehiko; Urakawa, Junji; Takahashi, Tohru; Kawada, Shin-Ichi; Riemann, Sabine; Gai, Wei; Liu, Wanming; Gao, Jie; Pei, Guoxi; Okuda, Natsuki; Ushakov, Andriy

    2013-10-01

    We propose the conventional positron source driven by a several-GeV electron beam for ILC. Thermal load of the positron production target was a risk of the conventional positron source. To cure it, we employ a 300 Hz electron linac to create positrons with stretched pulse length. In ILC, the bunch timing structures and pulse timing structures can be diffecent in the positron source, in the DR, and in the main linac. We have some flexibility to choose timing structures in positron source and we use it for time stretching. ILC requires about 2600 bunches in a train in the main linac which pulse length is 1 ms. In the conventional source, about 130 positron bunches are created by each pulse of the 300Hz linac. Then 2600 bunches are created in 63 ms. We optimized parameters such as drive beam energy, beam size on the target, and target thickness to maximize the capture efficiency and to mitigate the target thermal load. A slow rotating tungsten disk is employed as positron production target.

  17. Engineering challenges for detectors at the ILC

    DOE PAGES

    Oriunno, Marco

    2016-05-31

    Over the last years two proposals for experiments at the ILC have been developed, ILD and SID. Extensive R&D has been carried out around the world to develop the needed technologies. Furthermore a first round of engineering studies was made as part of the ILC TDR to understand the integration of these different sub-systems into coherent and integrated detector concepts. Among the key challenges for the sub detectors are the extreme low mass/low power requirements or the extreme channel densities needed in particle flow based detectors. Throughout these studies special care was taken to ensure that the engineering models andmore » the simulation models, used in studies of the physics capabilities of the detectors, stay synchronized. In the near future, the models will need to be evolved to take the special requirements of the potential ILC site in Japan into account. Furthermore, the state of the integration of the detectors, and the future directions, will be discussed.« less

  18. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Hoffman, Stephen J.; Beaty, David W.

    2009-01-01

    This paper provides a summary of the 2007 Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration including how Constellation systems can be used. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  19. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  20. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  1. A Future Large-Aperture UVOIR Space Observatory: Reference Designs

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Rioux, Norman; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-01-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  2. A future large-aperture UVOIR space observatory: reference designs

    NASA Astrophysics Data System (ADS)

    Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-09-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  3. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  4. Mooring Design for the Floating Oscillating Water Column Reference Model

    SciTech Connect

    Brefort, Dorian; Bull, Diana L.

    2014-09-01

    To reduce the price of the reference Backward Bent Duct Buoy (BBDB), a study was done analyzing the effects of reducing the mooring line length, and a new mooring design was developed. It was found that the overall length of the mooring lines could be reduced by 1290 meters, allowing a significant price reduction of the system. In this paper, we will first give a description of the model and the storm environment it will be subject to. We will then give a recommendation for the new mooring system, followed by a discussion of the severe weather simulation results, and an analysis of the conservative and aggressive aspects of the design.

  5. Advanced neutron source final preconceptual reference core design

    SciTech Connect

    Copeland, G.L.; Gambill, W.R.; Harrington, R.M.; Johnson, J.A.; Peretz, F.J.; Reutler, H.; Ryskamp, J.M.; Selby, D.L.; West, C.D.; Yoder, G.L.

    1989-08-01

    The preconceptual design phase of the Advanced Neutron Source (ANS) Project ended with the selection of a reference reactor core that will be used to begin conceptual design work. The new reference core consists of two involute fuel elements, of different diameters, aligned axially with a small axial gap between them. The use of different element diameters permits a separate flow of coolant to be provided for each one, thus enhancing the heat removal capability and increasing the thermal-hydraulic margins. The improved cooling allows the elements to be relatively long and thin, so self-shielding is reduced and an acceptable core life can be achieved with a relatively small loading of highly enriched uranium silicide fuel clad in aluminium. The new reference design has a fueled volume 67.4 L, each element having a heated length of 474 mm and a radial fuel thickness of 66 mm. The end-of-cycle peak thermal flux in the large heavy-water reflector tank around the core is estimated to be in the range of 0.8 to 1.0 /times/ 10/sup 20/ m/sup /minus/2/ /center dot/ s/sup /minus/1/. 7 refs., 23 figs., 15 tabs.

  6. Next-Generation Space Telescope design reference mission

    NASA Astrophysics Data System (ADS)

    Smith, Eric P.; Mather, John C.; Stockman, Hervey S.; Bely, Pierre Y.; Stiavelli, Massimo; Burg, Richard

    1998-08-01

    The Next Generation Space Telescope (NGST) Design Reference Mission (DRM) represents a suite of potential astronomical programs and targets along with their expected physical properties, and desired observation modes. This broad science program is being used to drive the observatory design in a way as fundamental as traditional engineering parameters. Astronomers use the DRM to communicate their desires in a quantitative fashion to the engineers who will eventually construct the observatory. The DRM is also the primary tool used to measure the relative value of NGST mission architectures and technological readiness of the program. Specifically, the fraction of the DRM completed by a given observatory configuration in a given time is, to first order, a measure of the value of the design. Those designs which complete a higher fraction of the observations listed below are more capable than those complete lesser fractions.

  7. ILC Extraction Line for 14 mrad Crossing Angle

    SciTech Connect

    Nosochkov, Y.; Markiewicz, T.; Maruyama, T.; Seryi, A.; Parker, B.; /Brookhaven

    2005-12-08

    The earlier studies of the ILC extraction line for 20 mrad and 2 mrad crossing angle options [1]-[5] showed that the 20 mrad design has an advantage of a simpler beamline and lower extraction beam loss because of the independent incoming and extraction optics. However, the large 20 mrad crossing angle requires the use of a crab cavity correction, increases synchrotron radiation emittance growth in the solenoid, and increases photon backscattering from the forward calorimeter of the detector. To reduce these effects, an attempt has been made to minimize the crossing angle while keeping the extraction and incoming lines separate. A new quadrupole scheme near the interaction point has been proposed which allows a reduction of the crossing angle to 14 mrad [6]. The optics design and results of tracking and background simulations for the 14 mrad extraction line are presented.

  8. Non-simplified SUSY: widetilde{τ }-coannihilation at LHC and ILC

    NASA Astrophysics Data System (ADS)

    Berggren, M.; Cakir, A.; Krücker, D.; List, J.; Melzer-Pellmann, I.-A.; Samani, B. Safarzadeh; Seitz, C.; Wayand, S.

    2016-04-01

    If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small widetilde{τ }_1-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and the ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states.

  9. Cryogenic system configuration for the International Linear Collider (ILC) at mountainous site

    NASA Astrophysics Data System (ADS)

    Nakai, H.; Okamura, T.; Delikaris, D.; Peterson, T.; Yamamoto, A.

    2017-02-01

    The International Linear Collider (ILC) plans to make use of ten cryoplants for its main linacs, each providing 19 kW at 4.5 K equivalent and among of it 3.6 kW at 2 K. Each cryoplant will consist of various cryogenic components such as a 4.5 K refrigerator cold box, a 2 K refrigerator cold box, and helium compressors and so on. In the technical design report (TDR) of the ILC, due to the mountainous topology, almost all cryogenic components would be installed in underground cryogenic caverns next to the main linac tunnels and only cooling towers on surface area. However, we would like to find a more effective and sophisticated configuration of the cryoplant components (cryogenic configuration). Under several constraints of technical, geographical, and environmental points of view, the cryogenic configuration should be considered carefully to satisfy such various conditions. After discussions on this topic conducted at various workshops and conferences, an updated cryogenic configuration is suggested. The proposed updated configuration may affect the total construction cost of the ILC and the entire structure of the ILC conventional facilities. The updated cryogenic configuration is presented and the on-going discussions with the conventional facilities and siting (CFS) colleagues for further improvement of the cryogenic configuration is introduced.

  10. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    SciTech Connect

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin; Jensen, David R.; Rogers, Ron; Sheppard, John C.; Lorant, Steve St; Weber, Thomas B.; Weisend, John, II; Brueck, Heinrich; Toral, Fernando; /Madrid, CIEMAT

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting technique is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.

  11. Characterization of innate lymphoid cells (ILC) in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis

    PubMed Central

    Tosi, Isabella; Grys, Katarzyna; Sreeneebus, Hemawtee; Perera, Gayathri K; Chapman, Anna; Smith, Catherine H; Di Meglio, Paola; Nestle, Frank O

    2013-01-01

    Innate lymphoid cells (ILC) are increasingly appreciated as key regulators of tissue immunity. However, their role in human tissue homeostasis and disease remains to be fully elucidated. Here we characterise the ILC in human skin from healthy individuals and from the inflammatory skin disease psoriasis. We show that a substantial proportion of IL-17A and IL-22 producing cells in skin and blood of normal individuals and psoriasis patients are CD3 negative innate lymphocytes. Deep immunophenotyping of human ILC subsets showed a statistically significant increase in the frequency of circulating NKp44+ ILC3 in blood of psoriasis patients compared to healthy individuals or atopic dermatitis patients. More than 50% of circulating NKp44+ ILC3 expressed cutaneous lymphocyte-associated antigen indicating their potential for skin homing. Analysis of skin tissue revealed a significantly increased frequency of total ILC in skin compared to blood. Moreover the frequency of NKp44+ ILC3 was significantly increased in non-lesional psoriatic skin compared to normal skin. A detailed time course of a psoriasis patient treated with anti-TNF showed a close association between therapeutic response, decrease in inflammatory skin lesions, and decrease of circulating NKp44+ ILC3. Overall, data from this initial observational study suggest a potential role for NKp44+ ILC3 in psoriasis pathogenesis. PMID:24352038

  12. Reference Model 2: %22Rev 0%22 Rotor Design.

    SciTech Connect

    Barone, Matthew F.; Berg, Jonathan Charles; Griffith, Daniel

    2011-12-01

    The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

  13. Status of the ILC Crab Cavity Development

    SciTech Connect

    Burt, G.; Dexter, A.; Beard, C.; Goudket, P.; McIntosh, P.; Bellantoni, L.; Grimm, T.; Li, Z.; Xiao, L.; /SLAC

    2011-10-20

    The International Linear Collider (ILC) will require two dipole cavities to 'crab' the electron and positron bunches prior to their collision. It is proposed to use two 9 cell SCRF dipole cavities operating at a frequency of 3.9 GHz, with a transverse gradient of 3.8MV/m in order to provide the required transverse kick. Extensive numerical modelling of this cavity and its couplers has been performed. Aluminium prototypes have been manufactured and tested to measure the RF properties of the cavity and couplers. In addition single cell niobium prototypes have been manufactured and tested in a vertical cryostat. The International Collider (ILC) [1] collides bunches of electrons and positrons at a crossing angle of 14 mrad. The angle between these bunches causes a loss in luminosity due to geometric effects [2]. The luminosity lost from this geometric effect can be recovered by rotating the bunches into alignment prior to collision. One possible method of rotating the bunches is to use a crab cavity [3]. A crab cavity is a transverse defecting cavity, where the phase of the cavity is such that the head and tail of the bunch receive equal and opposite kicks. As the bunches are only 500 nm wide in the horizontal plane, the cavity phase must be strictly controlled to avoid the bunch centre being deflected too much. In order to keep the phase stability within the required limits it is required that the cavity be superconducting to avoid thermal effects in both the cavity and its RF source. At the location of the crab cavity in the ILC there is only 23 cm separation between the centre of the cavity and the extraction line, hence the cavity must be small enough to fit in this space. This, along with the difficulty of making high frequency SRF components, set the frequency of the cavity to 3.9 GHz.

  14. Wake field analysis and modelling of microwave instability in the ILC damping ring

    NASA Astrophysics Data System (ADS)

    Korostelev, M.; Wolski, A.; Thorley, A.

    2011-12-01

    Wake field simulations are performed for given technical designs of the vacuum chamber components for the 6.4 km ILC damping ring, in order to calculate longitudinal wake functions. Modelling of the microwave instability based on multi-turn tracking with many particles is described. A comparison is presented between the potential well distortion found from solving the Haissinski equation and the results of tracking simulations. The threshold for the microwave instability is found for the given designs and lattice parameters.

  15. Low Emittance Guns for the ILC Polarized Electron Beam

    NASA Astrophysics Data System (ADS)

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-06-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of ⩾200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while ⩾500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.

  16. Design of a Dual Channel Self-Reference Photoelectrochemical Biosensor.

    PubMed

    Hao, Nan; Zhang, Ying; Zhong, Hui; Zhou, Zhou; Hua, Rong; Qian, Jing; Liu, Qian; Li, Henan; Wang, Kun

    2017-10-03

    Photoelectrochemical (PEC) biosensors are usually based on the single photocurrent change caused by biorecognition events between analytes and probes. However, the photocurrent may be influenced by other factors besides target analytes and bring a false result. To improve the accuracy and reliability of PEC detection, here we proposed the design of a dual channel self-reference PEC biosensors. CdTe and CdTe-graphene oxide (GO) were chosen as the two PEC active material and modified onto two adjacent areas on the ITO electrode. Then they were functionalized with Aflatoxin B1 (AFB1) aptamer through covalent binding or physical adsorption, respectively. The cathodic current from CdTe-GO and anodic current from CdTe can be well distinguished by adjusting the bias voltage. With the simultaneous application of "signal on" and "signal off" model, dual concentration information may be obtained in one detection and serve as a reference for each other. By comparing these two results, this sensor can clearly distinguish whether the signal change was caused by AFB1 or other interference factors. Compared to traditional PEC biosensors, this design can provide a better accuracy and reliability, which is promising in the future development of PEC detection.

  17. Development of a model superconducting helical undulator for the ILC positron source.

    SciTech Connect

    Kim, S. H.; Accelerator Systems Division

    2008-01-01

    The helical undulator for the proposed International Linear Collider (ILC) positron source requires high-permeability steel poles and superconducting coils to meet the ILC parameters. A short-model undulator with a period of 14 mm was designed, fabricated including high-permeability steel poles, and tested in LHe. The ends of the model were designed to wind the Nb{sub 3}Sn double helix without any conductor joints. After a few quenches in the first excitation test, the current density in the coil reached 1.28 kA/mm{sup 2}, which was approximately 90% of the estimated short-sample critical current density. The periodic on-axis fields were mapped at two azimuth angles. Excluding the end fields, the standard deviation of the field amplitudes and higher harmonic coefficients for the periodic field were less than 7 x 10{sup -3} and 5 x 10{sup -3}, respectively.

  18. Future large-aperture UVOIR space observatory: reference designs

    NASA Astrophysics Data System (ADS)

    Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Phillip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice; Bolcar, Matthew

    2016-10-01

    Our joint NASA GSFC/JPL/MSFC and STScI study team has used community-developed science goals to derive mission needs, design parameters, notional instruments, and candidate mission architectures for a future large-aperture, noncryogenic UVOIR space observatory. We describe the feasibility assessment of system dynamic stability that supports coronagraphy. The observatory is in a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2-m aperture telescope that stows within a 5-m diameter launch vehicle fairing. This paper presents results from the latest cycle of integrated modeling through January 2016. The latest findings support the feasibility of secondary mirror support struts with a thickness on the order of an inch. Thin struts were found not to have a significant negative effect on wavefront error stability. Struts with a width as small as 1 in. may benefit some coronagraph designs by allowing more optical throughput.

  19. Reference Design for a Simple, Durable and Refuelable Interplanetary Spacecraft

    NASA Astrophysics Data System (ADS)

    McConnell, B. S.; Tolley, A. M.

    This article describes a reference design for interplanetary vessels, composed mostly of water, that utilize simplified RF engines for low thrust, long duration propulsion, and hydrogen peroxide for short duration, high thrust burns. The electrothermal engines are designed to heat a wide range of liquid materials, possibly also milled solids or surface dusts. The system emphasizes simple components and processes based on older technologies, many well known since the 1960s, that are understandable, can process a variety of materials, and are easily serviced in flight. The goal is to radically simplify systems and their inter-dependencies, to a point where a reasonably skilled person can learn to operate these vessels, not unlike a sailboat, and to eliminate many design and testing bottlenecks in their construction. The use of water, or hydrogen peroxide generated in situ from that water, is multiply advantageous because it can be used for structure, consumption, irrigation, radiation and debris shielding, and thermal regulation, and thus greatly reduce dead weight by creating an almost fully consumable ship. This also enables the ship to utilize a wide range of in situ materials, and eventually obtain reaction mass from lower gravity sites. The ability to switch between low thrust, constant power and high thrust, short duration maneuvers will enable these ships to travel freely and reach many interesting destinations throughout the solar system. One can think of them as “spacecoaches”, not unlike the prairie schooners of the Old West, which were rugged, serviceable by tradesmen, and easily maintained.

  20. Are ILC2s Jekyll and Hyde in airway inflammation?

    PubMed

    Ealey, Kafi N; Moro, Kazuyo; Koyasu, Shigeo

    2017-07-01

    Asthma is a complex heterogeneous disease of the airways characterized by lung inflammation, airway hyperreactivity (AHR), mucus overproduction, and remodeling of the airways. Group 2 innate lymphoid cells (ILC2s) play a crucial role in the initiation and propagation of type 2 inflammatory programs in allergic asthma models, independent of adaptive immunity. In response to allergen, helminths or viral infection, damaged airway epithelial cells secrete IL-33, IL-25, and thymic stromal lymphopoietin (TSLP), which activate ILC2s to produce type 2 cytokines such as IL-5, IL-13, and IL-9. Furthermore, ILC2s coordinate a network of cellular responses and interact with numerous cell types to propagate the inflammatory response and repair lung damage. ILC2s display functional plasticity in distinct asthma phenotypes, enabling them to respond to very different immune microenvironments. Thus, in the context of non-allergic asthma, triggered by exposure to environmental factors, ILC2s transdifferentiate to ILC1-like cells and activate type 1 inflammatory programs in the lung. In this review, we summarize accumulating evidence on the heterogeneity, plasticity, regulatory mechanisms, and pleiotropic roles of ILC2s in allergic inflammation as well as mechanisms for their suppression in the airways. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Radioisotope Power Systems Reference Book for Mission Designers and Planners

    NASA Technical Reports Server (NTRS)

    Lee, Young; Bairstow, Brian

    2015-01-01

    The RPS Program's Program Planning and Assessment (PPA) Office commissioned the Mission Analysis team to develop the Radioisotope Power Systems (RPS) Reference Book for Mission Planners and Designers to define a baseline of RPS technology capabilities with specific emphasis on performance parameters and technology readiness. The main objective of this book is to provide RPS technology information that could be utilized by future mission concept studies and concurrent engineering practices. A progress summary from the major branches of RPS technology research provides mission analysis teams with a vital tool for assessing the RPS trade space, and provides concurrent engineering centers with a consistent set of guidelines for RPS performance characteristics. This book will be iterated when substantial new information becomes available to ensure continued relevance, serving as one of the cornerstone products of the RPS PPA Office. This book updates the original 2011 internal document, using data from the relevant publicly released RPS technology references and consultations with RPS technologists. Each performance parameter and RPS product subsection has been reviewed and cleared by at least one subject matter representative. A virtual workshop was held to reach consensus on the scope and contents of the book, and the definitions and assumptions that should be used. The subject matter experts then reviewed and updated the appropriate sections of the book. The RPS Mission Analysis Team then performed further updates and crosschecked the book for consistency. Finally, a second virtual workshop was held to ensure all subject matter experts and stakeholders concurred on the contents.

  2. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2009-01-01

    This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.

  3. Mars Design Reference Architecture 5.0 Study: Executive Summary

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2008-01-01

    The NASA Mars Design Reference Architecture 5.0 Study seeks to update its long term goals and objective for human exploration missions; flight and surface systems for human missions and supporting infrastructure; operational concept for human and robotic exploration of Mars; key challenges including risk and cost drivers; and, its development schedule options. It additionally seeks to assess strategic linkages between lunar and Mars strategies and develop and understanding of methods for reducing the cost/risk of human Mars missions through investment in research, technology development, and synergy with other exploration plans. Recommendations are made regarding conjunction class (long-stay) missions which are seen as providing the best balance of cost, risk, and performance. Additionally, this study reviews entry, descent, and landing challenges; in-space transportation systems; launch vehicle and Orion assessments; risk and risk mitigation; key driving requirements and challenges; and, lunar linkages.

  4. WASH maintains NKp46+ ILC3 cells by promoting AHR expression

    PubMed Central

    Xia, Pengyan; Liu, Jing; Wang, Shuo; Ye, Buqing; Du, Ying; Xiong, Zhen; Han, Ze-Guang; Tong, Liang; Fan, Zusen

    2017-01-01

    Innate lymphoid cells (ILCs) communicate with other haematopoietic and non-haematopoietic cells to regulate immunity, inflammation and tissue homeostasis. How these ILC lineages develop and are maintained is not clear. Here we show that WASH is highly expressed in the nucleus of group 3 ILCs (ILC3s). WASH deletion impairs the cell pool of NKp46+ ILC3s. In NKp46+ ILC3s, WASH recruits Arid1a to the Ahr promoter thus activating AHR expression. WASH deletion in ILC3s decreases the number of NKp46+ ILC3s. Moreover, Arid1a deletion impedes AHR expression and impairs the maintenance of NKp46+ ILC3s. Therefore, WASH-mediated AHR expression has a critical function in the maintenance of NKp46+ ILC3s. PMID:28589939

  5. Optics of the ILC Extraction Line for 2mrad Crossing Angle

    SciTech Connect

    Nosochkov, Y.; Moffeit, K.; Seryi, A.; Spencer, C.; Woods, M.; Angal-Kalinin, D.; Appleby, R.; Parker, B.; /Brookhaven

    2006-01-05

    The ILC extraction line for 2 mrad crossing angle is under development by the SLAC-BNL-UK-France task force collaboration. This report describes the progress in the 2 mrad optics design which includes the changes to the final focus doublet, the complete optics for the extraction diagnostics, and the changes to the sextupole and collimation systems. The results of disrupted beam tracking simulations are presented.

  6. Optimization of the Low Loss SRF Cavity for the ILC

    SciTech Connect

    Sekutowicz, J.S.; Kneisel, P.; Higo, T.; Morozumi, Y.; Saito, K.; Ge, L.; Ko, Yong-kyu; Lee, L.; Li, Z.; Ng, C.K.; Schussman, G.L.; Xiao, L.; /SLAC

    2008-01-18

    The Low-Loss shape cavity design has been proposed as a possible alternative to the baseline TESLA cavity design for the ILC main linacs. The advantages of this design over the TESLA cavity are its lower cryogenic loss, and higher achievable gradient due to lower surface fields. High gradient prototypes for such designs have been tested at KEK (ICHIRO) and TJNAF (LL). However, issues related to HOM damping and multipacting still need to be addressed. Preliminary numerical studies of the prototype cavities have shown unacceptable damping factors for some higher-order dipole modes if the typical TESLA HOM couplers are directly adapted to the design. The resulting wakefield will dilute the beam emittance thus reducing the machine luminosity. Furthermore, high gradient tests on a 9-cell prototype at KEK have experienced multipacting barriers although a single LL cell had achieved a high gradient. From simulations, multipacting activities are found to occur in the end-groups of the cavity. In this paper, we will present the optimization results of the end-groups for the Low-Loss designs for effective HOM damping and alleviation of multipacting.

  7. SUSY at the ILC and Solving the LHC Inverse Problem

    SciTech Connect

    Gainer, James S.; /SLAC

    2008-05-28

    Recently a large scale study of points in the MSSM parameter space which are problematic at the Large Hadron Collider (LHC) has been performed. This work was carried out in part to determine whether the proposed International Linear Collider (ILC) could be used to solve the LHC inverse problem. The results suggest that while the ILC will be a valuable tool, an energy upgrade may be crucial to its success, and that, in general, precision studies of the MSSM are more difficult at the ILC than has generally been believed.

  8. Mars Aerocapture Studies for the Design Reference Mission

    NASA Technical Reports Server (NTRS)

    Lyne, James Evans; Wercinski, Paul; Walberg, Gerald; Jits, Roman

    1997-01-01

    The recent discovery of possible fossilized microbes in a Martian meteorite sample and the spectacular success of the Mars Pathfinder mission have substantially increased public interest and support for future robotic and manned exploration of Mars. NASA is currently refining a plan known as the Design Reference Mission (DRM) in which the first human landing would occur in 2014 after a series of cargo launches which would place surface systems and an Earth return vehicle at Mars two years prior to the crew's arrival. At each subsequent launch opportunity (which occur approximately every twenty-six months), an additional Earth return vehicle, surface facility and crew would depart for Mars, with each crew employing the systems launched during the previous opportunity. The mission design calls for a long-duration surface stay, rapid crew transits, in-situ manufacture of the Mars ascent propellant, nuclear thermal propulsion for the trans-Mars injection burn, and the use of aerocapture for both the cargo and crew vehicles at Mars.

  9. Radiation calculations for the ILC cryomodule

    SciTech Connect

    Nakao, N.; Mokhov, N.V.; Klebaner, A.; /Fermilab

    2007-04-01

    The MARS15 radiation simulations were performed for the ILC cryomodule. The model assumes a uniform beam loss intensity of 1 W/m of 750-MeV and 250-GeV electron along the inner surface of the beam pipe and the cavity iris of the 12-m cryomodule. Two-dimensional distributions of radiation dose in the module were obtained. Absorbed dose rate and energy spectra of electrons, photons, neutrons and protons were also obtained at the three cryogenic thermometers locations by filling with silicon material in the appropriate locations, and radiation hardness of the thermometers was discussed. From the obtained results, maximum absorbed dose of thermometers at the cooling pipe is 0.85mGy/sec (85 mRad/sec), that is 0.31 MGy (31 MRad) for 20 years.

  10. Simulation of Wakefield Effect in ILC IR Chamber

    SciTech Connect

    Pei, S; Seryi, A.; Raubenheimer, T.O.; /SLAC

    2008-06-26

    To achieve super high luminosity, high current beams with very short bunch length are needed, which carry high intensity EM fields. For ILC, two bunch trains with bunch length of 300 {micro}m and bunch charge of 3.2nC are needed to collide at the IR to achieve the ILC luminosity goals. When the 300 {micro}m bunches pass through the IR chamber, wakefields will be excited, which will cause HOM power flowing through the IR chamber beam pipe to the final doublets due to the high frequency characteristic of the induced wakefields. Since superconducting technology is adopted for the final doublets of ILC BDS, whose operation stability might be affected by the HOM power produced at the IR chamber, quench might happen. In this paper, we did some analytical estimation and numerical simulation on the wakefield effects in ILC IR chamber.

  11. NASA's RPS Design Reference Mission Set for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could

  12. NASA'S RPS Design Reference Mission Set for Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could

  13. NASA's RPS Design Reference Mission Set for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could

  14. Hanford Waste Vitrification Plant reference conceptual design report

    SciTech Connect

    Not Available

    1987-07-01

    This document describes the Reference Conceptual Design (RCD) of the Hanford Waste Vitrification Plant (HWVP). The HWVP will immobilize pretreated Hanford defense liquid high-level waste prior to shipment to a geologic repository, satisfying an objective in the President's Defense Waste Management Plan. The HWVP will vitrify the waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at Hanford until they are shipped to a Federal Geologic Repository. The HWVP will support a glass production rate of 100 pounds per hour. The annual production goal of 610,000 pounds of glass is based on 70% plant availability, excluding downtime for Melter replacement. The HWVP will be located approximately 2000 feet southwest of B-Plant in the 200 East Area of the Hanford Site and will occupy an area approximately 1200 feet by 1200 feet. The RCD cost estimate for the HWVP is $920 million. Hot startup of the HWVP is currently scheduled for Fiscal Year 1999. 9 refs., 19 figs., 17 tabs.

  15. Detailed cost estimate of reference residential photovoltaic designs

    SciTech Connect

    Palmer, R.S.; Penasa, D.A.; Thomas, M.G.

    1983-04-01

    This report presents estimated installation costs for four reference residential photovoltaic designs. Installation cost estimates ranged from $1.28 to $2.12/W/sub p/ for arrays installed by union labor (4.1 to 6.07 kW/sub p/-systems), and from $1.22 to $1.83 W/sub p/ for non-union installations. Standoff mounting was found to increase costs from $1.63/W/sub p/ to $2.12/W/sub p/ for a representative case, whereas 25 kWh of battery storage capacity increased installation costs from $1.44/W/sub p/ to $2.08/W/sub p/. Overall system costs (union-based were $6000 to $7000 for a 4.1 kW array in the northeast, to approx. $9000 for a 6.07 kW/sub p/ array in the southwest. This range of installation costs, approx. $1 to $2/W/sub p/ (in 1980 dollars), is representative of current installation costs for residential PV systems. Any future cost reductions are likely to be small and can be accomplished only by optimization of mounting techniques, module efficiencies, and module reliability in toto.

  16. Basic coaxial mass driver reference design. [electromagnetic lunar launch

    NASA Technical Reports Server (NTRS)

    Kolm, H. H.

    1977-01-01

    The reference design for a basic coaxial mass driver is developed to illustrate the principles and optimization procedures on the basis of numerical integration by programmable pocket calculators. The four inch caliber system uses a single-coil bucket and a single-phase propulsion track with discrete coils, separately energized by capacitors. An actual driver would use multiple-coil buckets and an oscillatory multi-phase drive system. Even the basic, table-top demonstration system should in principle be able to achieve accelerations in the 1,000 m/sq sec range. Current densities of the order of 25 ka/sq cm, continuously achievable only in superconductors, are carried by an ordinary aluminum bucket coil for a short period in order to demonstrate the calculated acceleration. Ultimately the system can be lengthened and provided with a magnetically levitated, superconducting bucket to study levitation dynamics under quasi-steady-state conditions, and to approach lunar escape velocity in an evacuated tube.

  17. Group 3 innate lymphoid cells (ILC3s): Origin, differentiation, and plasticity in humans and mice.

    PubMed

    Montaldo, Elisa; Juelke, Kerstin; Romagnani, Chiara

    2015-08-01

    Since their discovery, innate lymphoid cells (ILCs) have been the subject of intense research. As their name implies, ILCs are innate cells of lymphoid origin, and can be grouped into subsets based on their cytotoxic activity, cytokine profile, and the transcriptional requirements during ILC differentiation. The main ILC groups are "killer" ILCs, comprising NK cells, and "helper-like" ILCs (including ILC1s, ILC2s, and ILC3s). This review examines the origin, differentiation stages, and plasticity of murine and human ILC3s. ILC3s express the retinoic acid receptor (RAR) related orphan receptor RORγt and the signature cytokines IL-22 and IL-17. Fetal ILC3s or lymphoid tissue inducer cells are required for lymphoid organogenesis, while postnatally developing ILC3s are important for the generation of intestinal cryptopatches and isolated lymphoid follicles as well as for the defence against pathogens and epithelial homeostasis. Here, we discuss the transcription factors and exogenous signals (including cytokines, nutrients and cell-to-cell interaction) that drive ILC3 lineage commitment and acquisition of their distinctive effector program. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Staffing by Design: A Methodology for Staffing Reference

    ERIC Educational Resources Information Center

    Ward, David; Phetteplace, Eric

    2012-01-01

    The growth in number and kind of online reference services has resulted in both new users consulting library research services as well as new patterns of service use. Staffing in-person and virtual reference services desks adequately requires a systematic analysis of patterns of use across service points in order to successfully meet fluctuating…

  19. Staffing by Design: A Methodology for Staffing Reference

    ERIC Educational Resources Information Center

    Ward, David; Phetteplace, Eric

    2012-01-01

    The growth in number and kind of online reference services has resulted in both new users consulting library research services as well as new patterns of service use. Staffing in-person and virtual reference services desks adequately requires a systematic analysis of patterns of use across service points in order to successfully meet fluctuating…

  20. Higher Order Mode Heating Analysis for the ILC Superconducting Linacs

    SciTech Connect

    Bane, K.L.F.; Nantista, C.; Adolphsen, C.; /SLAC

    2010-10-27

    The superconducting cavities and interconnects in the 11 km long linacs of the International Linear Collider (ILC) are designed to operate at 2K, where cooling costs are very expensive. It is thus important to minimize cryogenic heat loads. In addition to an unavoidable static load and the dynamic load of the fundamental 1.3 GHz accelerating rf, a further heat source is presented by the higher order mode (HOM) power deposited by the beam. Such modes will be damped by specially designed HOM couplers attached to the cavities (for trapped modes), and by ceramic dampers at 70K that are located between the eight or nine cavity cryomodules (for propagating modes). Brute force calculation of the higher frequency modes excited in a string of cryomodules is limited by computing capacity (see, e.g. [1]). M. Liepe has calculated {approx} 400 longitudinal TM modes in 3 superconducting cavities plus absorbers, up to 8 GHz [2]. Joestingmeier, et al., have used a ray tracing calculation to find the effect at higher frequencies, specifically in the range of tens of GHz and above [3]. In this report we present a scattering matrix approach, which we apply to an rf unit comprising 26 cavities and 3 absorbers. We perform calculations at sample frequencies (up to 20 GHz) to predict the effectiveness of the ceramic dampers in limiting HOM heat deposition at 2K.

  1. Klystron Cluster Scheme for ILC High Power RF Distribution

    SciTech Connect

    Nantista, Christopher; Adolphsen, Chris; /SLAC

    2009-07-06

    We present a concept for powering the main linacs of the International Linear Collider (ILC) by delivering high power RF from the surface via overmoded, low-loss waveguides at widely spaced intervals. The baseline design employs a two-tunnel layout, with klystrons and modulators evenly distributed along a service tunnel running parallel to the accelerator tunnel. This new idea eliminates the need for the service tunnel. It also brings most of the warm heat load to the surface, dramatically reducing the tunnel water cooling and HVAC requirements. In the envisioned configuration, groups of 70 klystrons and modulators are clustered in surface buildings every 2.5 km. Their outputs are combined into two half-meter diameter circular TE{sub 01} mode evacuated waveguides. These are directed via special bends through a deep shaft and along the tunnel, one upstream and one downstream. Each feeds approximately 1.25 km of linac with power tapped off in 10 MW portions at 38 m intervals. The power is extracted through a novel coaxial tap-off (CTO), after which the local distribution is as it would be from a klystron. The tap-off design is also employed in reverse for the initial combining.

  2. Design and Principles Enabling the Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Moeller, Bjoern; Dexter, Dan; Madden, Michael; Crues, Edwin Z.; Garro, Alfredo; Skuratovskiy, Anton

    2017-01-01

    A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high

  3. Spintronic Memristor Based Temperature Sensor Design with CMOS Current Reference

    DTIC Science & Technology

    2012-03-01

    torques acting on its free layer magnetization vector, which is significantly impacted by thermal fluctuations. Therefore, the memristance, a.k.a. the...when HP lab firstly discovered it through a TiO2 thin-film structure [2]. Memristors show many promising characteristics as the next- generation data...As illustrated in Figure 2(a), the device is composed of two ferromagnetic layers : reference and free layers . The reference layer is coupled to a

  4. Aryl hydrocarbon receptor signaling involves in the human intestinal ILC3/ILC1 conversion in the inflamed terminal ileum of Crohn’s disease patients

    PubMed Central

    Li, Jian; Doty, Andria; Glover, Sarah C.

    2016-01-01

    Innate lymphoid cells (ILCs) are emerging as important components of our immune system that have critical effector and regulatory functions in both innate and adaptive immune responses. They are enriched at mucosal surfaces, such as lung and intestine. Our previous work has shown that Lineage−CRTH2−CD45+NKp44−CD117−CD127+ILC1s accumulated in the inflamed terminal ileum of patients with Crohn’s disease (CD) at the expense of NKp44+ILC3s. This phenotype conversion impairs the intestinal barrier integrity and contributes to the dysregulated immune responses of CD patients. Our next step was to search for pathways to modulate this phenotype switch. The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. Initial studies of AHR concentrated on its role in the detoxification of xenobiotics. However, recent research has focused on the immune system. Especially, AHR pathway is proven to be essential for the maintenance of intestinal ILC3s in mouse models. We examined whether AHR pathway participated in the human intestinal ILC phenotype change in the inflamed terminal ileum of CD patients. As anticipated, NKp44+ILC3s, NKp44−ILC3s and ILC1s had differential AHR expression. This AHR signaling mediated CD117 expression on the surface of ILC3s. The conversion from ILC3 to ILC1 was accompanied by the downregulation of AHR expression. We further observed that there was a disparity between AHR protein expression and mRNA expression in the inflamed terminal ileum tissues of CD patients compared to unaffected areas. These findings suggest that AHR pathway is also important for human intestinal ILC phenotype regulation and impaired AHR signaling in the inflamed gut of CD patients possibly contributes to the ILC3/ILC1 conversion.

  5. The 4th Concept Detector for the ILC

    NASA Astrophysics Data System (ADS)

    Mazzacane, A.

    2010-05-01

    The 4th Concept Detector is designed for high precision measurements of Physics processes accessible at ILC. It consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a cluster-counting low-mass drift chamber for robust pattern recognition with over 100 three-dimensional space-points each with about 55 μm resolution, 3.5% specific ionization measurement; a high precision dual-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, both with time-history readout, for the energy measurement of hadrons, jets, electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid to return the flux and provide a second field region for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. All four subsystems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, Aleph, Delphi, L3, and Opal. All four sub-detector will be described along with their performance and Physics capabilities obtained with full simulation studies.

  6. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    SciTech Connect

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  7. Content Analysis of Virtual Reference Data: Reshaping Library Website Design.

    PubMed

    Fan, Suhua Caroline; Welch, Jennifer M

    2016-01-01

    An academic health sciences library wanted to redesign its website to provide better access to health information in the community. Virtual reference data were used to provide information about user searching behavior. This study analyzed three years (2012-2014) of virtual reference data, including e-mail questions, text messaging, and live chat transcripts, to evaluate the library website for redesigning, especially in areas such as the home page, patrons' terminology, and issues prompting patrons to ask for help. A coding system based on information links in the current library website was created to analyze the data.

  8. An Earth-Moon System Trajectory Design Reference Catalog

    NASA Technical Reports Server (NTRS)

    Folta, David; Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.

    2014-01-01

    As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination.

  9. Characteristics of innate lymphoid cells (ILCs) and their role in immunological disorders (an update).

    PubMed

    Yazdani, Reza; Sharifi, Mehri; Shirvan, Aylar Saba; Azizi, Gholamreza; Ganjalikhani-Hakemi, Mazdak

    2015-01-01

    Innate lymphoid cells (ILCs) are a novel family of hematopoietic effectors and regulators of innate immunity. Although these cells are morphologically similar to B cells and T cells, however they do not express antigen receptors. ILCs seems to have emerging roles in innate immune responses against infectious or non-infectious microorganisms, protection of the epithelial barrier, lymphoid organogenesis and inflammation, tissue remodeling and regulating homeostasis of tissue stromal cells. In addition, it has recently been reported that ILCs have a crucial role in several disorders such as allergy and autoimmunity. Based on their phenotype and functions, ILCs are classified into three major groups called ILCs1, ILCs2, and ILCs3. Here we reviewed the most recent data concerning diverse ILC phenotypes, subclasses, functions in immune responses as well as in immune mediated disorders.

  10. The IST-05 Reference Model in Evaluation and Design

    DTIC Science & Technology

    2004-04-01

    bits and bytes in a computer memory. To avoid the need for telepathy in manipulating and understanding the data, the IST-05 Reference Model... synthetic views from digital elevation maps and from photographic imagery, but today’s technology makes this possible. Example 2: Instructions for the arrival

  11. 7 CFR 801.12 - Design requirements incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... by reference. (a) Moisture meters. All moisture meters approved for use in official grain moisture determination and certification shall meet applicable requirements contained in the FGIS Moisture Handbook and the General Code and Grain Moisture Meters Code of the 1991 edition of the National Institute...

  12. 7 CFR 801.12 - Design requirements incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... by reference. (a) Moisture meters. All moisture meters approved for use in official grain moisture determination and certification shall meet applicable requirements contained in the FGIS Moisture Handbook and the General Code and Grain Moisture Meters Code of the 1991 edition of the National Institute...

  13. 7 CFR 801.12 - Design requirements incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... by reference. (a) Moisture meters. All moisture meters approved for use in official grain moisture determination and certification shall meet applicable requirements contained in the FGIS Moisture Handbook and the General Code and Grain Moisture Meters Code of the 1991 edition of the National Institute...

  14. 7 CFR 801.12 - Design requirements incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... by reference. (a) Moisture meters. All moisture meters approved for use in official grain moisture determination and certification shall meet applicable requirements contained in the FGIS Moisture Handbook and the General Code and Grain Moisture Meters Code of the 1991 edition of the National Institute...

  15. The LHC Inverse Problem, Supersymmetry and the ILC

    SciTech Connect

    Berger, C.F.; Gainer, J.S.; Hewett, J.L.; Lillie, B.; Rizzo, T.G.

    2007-11-12

    We address the question whether the ILC can resolve the LHC Inverse Problem within the framework of the MSSM. We examine 242 points in the MSSM parameter space which were generated at random and were found to give indistinguishable signatures at the LHC. After a realistic simulation including full Standard Model backgrounds and a fast detector simulation, we find that roughly only one third of these scenarios lead to visible signatures of some kind with a significance {ge} 5 at the ILC with {radical}s = 500 GeV. Furthermore, we examine these points in parameter space pairwise and find that only one third of the pairs are distinguishable at the ILC at 5{sigma}.

  16. Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation.

    PubMed

    Song, Christina; Lee, Jacob S; Gilfillan, Susan; Robinette, Michelle L; Newberry, Rodney D; Stappenbeck, Thaddeus S; Mack, Matthias; Cella, Marina; Colonna, Marco

    2015-10-19

    Group 3 ILCs (ILC3s) are innate sources of IL-22 and IL-17 and include lymphoid tissue-inducer (LTi)-like and NKp46(+) subsets. Both depend on RORγt and aryl hydrocarbon receptor, but NKp46(+)ILC3s also require Notch and T-bet for their development and are transcriptionally distinct. The extent to which these subsets have unique functions, especially in the context of T cell- and B cell-sufficient mice, remains largely unclear. To investigate the specific function of NKp46(+)ILC3s among other ILC3 subsets and T cells, we generated mice selectively lacking NKp46(+)ILC3s or all ILC3s and crossed them to T cell-deficient mice, thus maintaining B cells in all mice. In mice lacking T cells, NKp46(+)ILC3s were sufficient to promote inflammatory monocyte accumulation in the anti-CD40 innate colitis model through marked production of GM-CSF. In T cell-competent mice, lack of NKp46(+)ILCs had no impact on control of intestinal C. rodentium infection, whereas lack of all ILC3s partially impaired bacterial control. Thus, NKp46(+)ILC3s have a unique capacity to promote inflammation through GM-CSF-induced accumulation of inflammatory monocytes, but are superseded by LTi-like ILC3s and T cells in controlling intestinal bacterial infection.

  17. Down-regulation of E protein activity augments an ILC2 differentiation program in the thymus

    USDA-ARS?s Scientific Manuscript database

    Innate lymphoid cells (ILCs) are important regulators in various immune responses. Current paradigm states that all newly-made ILCs originate from common lymphoid progenitors (CLP) in the bone marrow. Id2, an inhibitor of E protein transcription factors, is indispensable for ILC differentiation. Une...

  18. Probing the Universal Randall-Sundrum Model at the ILC

    SciTech Connect

    Davoudiasl, H.; Lillie, B.; Rizzo, T.G.; /SLAC

    2005-12-14

    The Randall-Sundrum model with all Standard Model (SM) fields in the bulk, including the Higgs, can be probed by precision measurements at the ILC. In particular, the couplings of the Higgs to the gauge bosons of the SM can be determined with high accuracy at the ILC. Here we examine the deviations in these couplings from their SM values within the framework of the Universal Randall-Sundrum Model (URSM) as well as the corresponding couplings of the first Higgs Kaluza-Klein excitation.

  19. RF and data acquisition systems for Fermilab's ILC SRF cavity vertical test stand

    SciTech Connect

    Ozelis, Joseph P.; Nehring, Roger; Grenoble, Christiana; Powers, Thomas J.; /Jefferson Lab

    2007-06-01

    Fermilab is developing a facility for vertical testing of SRF cavities as part of its ILC program. The RF system for this facility is based on the proven production cavity test systems used at Jefferson Lab for CEBAF and SNS cavity testing. The design approach is modular in nature, using commercial-off-the-shelf (COTS) components. This yields a system that can be easily debugged and modified, and with ready availability of spares. Comprehensive data acquisition and control is provided by a PXI-based hardware platform in conjunction with software developed in the LabView programming environment.

  20. Design of zero reference codes by means of a global optimization method.

    PubMed

    Saez-Landete, José; Alonso, José; Bernabeu, Eusebio

    2005-01-10

    The grating measurement systems can be used for displacement and angle measurements. They require of zero reference codes to obtain zero reference signals and absolute measures. The zero reference signals are obtained from the autocorrelation of two identical zero reference codes. The design of codes which generate optimum signals is rather complex, especially for larges codes. In this paper we present a global optimization method, a DIRECT algorithm for the design of zero reference codes. This method proves to be a powerful tool for solving this inverse problem.

  1. Design of zero reference codes by means of a global optimization method

    NASA Astrophysics Data System (ADS)

    Saez Landete, José; Alonso, José; Bernabeu, Eusebio

    2005-01-01

    The grating measurement systems can be used for displacement and angle measurements. They require of zero reference codes to obtain zero reference signals and absolute measures. The zero reference signals are obtained from the autocorrelation of two identical zero reference codes. The design of codes which generate optimum signals is rather complex, especially for larges codes. In this paper we present a global optimization method, a DIRECT algorithm for the design of zero reference codes. This method proves to be a powerful tool for solving this inverse problem.

  2. Design reference year for development of photovoltaic envelope systems

    NASA Astrophysics Data System (ADS)

    Mihalka, Peter; Matiasovsky, Peter

    2017-07-01

    An application of photovoltaic cells on external surfaces of building envelope represents a development of new construction element. A mutual coupling between thermal behaviour of photovoltaic layer and the other layers of the structure, with special properties, requires a specific selection of the characteristic outdoor thermal boundary conditions, necessary for optimum design of the envelope from the aspect of structure, material composition and geometry. The main design criteria are the effectiveness and elimination of overheating of photovoltaic module and the optimisation of heat distribution in the envelope structure during particular year seasons. The paper contains the results of the analysis of time courses of climatic elements during a real year as the boundary conditions for simulation of photovoltaic integrated building envelope systems, used in simulations of thermal behaviour of photovoltaics integrated with building envelope systems.

  3. Design of Low Complexity Model Reference Adaptive Controllers

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan

    2012-01-01

    Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.

  4. Radiation requirements and testing of cryogenic thermometers for the ILC

    SciTech Connect

    Barnett, T.; Filippov, Yu.P.; Mokhov, N.V.; Nakao, N.; Klebaner, A.L.; Korenev, S.A.; Theilacker, J.C. /; Trenikhina, J.; Vaziri, K.; /Fermilab

    2007-07-01

    Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox{reg_sign} and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results.

  5. Human innate lymphoid cells (ILCs) in filarial infections.

    PubMed

    Bonne-Année, S; Nutman, T B

    2017-05-15

    Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  6. Comparison of Beam-Based Alignment Algorithms for the ILC

    SciTech Connect

    Smith, J.C.; Gibbons, L.; Patterson, J.R.; Rubin, D.L.; Sagan, D.; Tenenbaum, P.; /SLAC

    2006-03-15

    The main linac of the International Linear Collider (ILC) requires more sophisticated alignment techniques than those provided by survey alone. Various Beam-Based Alignment (BBA) algorithms have been proposed to achieve the desired low emittance preservation. Dispersion Free Steering, Ballistic Alignment and the Kubo method are compared. Alignment algorithms are also tested in the presence of an Earth-like stray field.

  7. Transverse wake field simulations for the ILC acceleration structure

    SciTech Connect

    Solyak, N.; Lunin, A.; Yakovlev, V.; /Fermilab

    2008-06-01

    Details of wake potential simulation in the acceleration structure of ILC, including the RF cavities and input/HOM couplers are presented. Transverse wake potential dependence is described versus the bunch length. Beam emittance dilution caused by main and HOM couplers is estimated, followed by a discussion of possible structural modifications allowing a reduction of transverse wake potential.

  8. An Intestinal Inflammasome - The ILC3-Cytokine Tango.

    PubMed

    Gonçalves, Pedro; Di Santo, James P

    2016-04-01

    The inflammasome is a key regulator of immune responses in the gut. Two recent studies in the journal Cell demonstrate that epithelial inflammasome activation and IL-18 secretion can control intestinal homeostasis or induce autoinflammation. ILC3 cells are triggered to secrete IL-22, regulating IL-18 expression in epithelial cells, in turn modulating homeostasis and inflammation.

  9. Fast calculation of the `ILC norm' in iterative learning control

    NASA Astrophysics Data System (ADS)

    Rice, Justin K.; van Wingerden, Jan-Willem

    2013-06-01

    In this paper, we discuss and demonstrate a method for the exploitation of matrix structure in computations for iterative learning control (ILC). In Barton, Bristow, and Alleyne [International Journal of Control, 83(2), 1-8 (2010)], a special insight into the structure of the lifted convolution matrices involved in ILC is used along with a modified Lanczos method to achieve very fast computational bounds on the learning convergence, by calculating the 'ILC norm' in ? computational complexity. In this paper, we show how their method is equivalent to a special instance of the sequentially semi-separable (SSS) matrix arithmetic, and thus can be extended to many other computations in ILC, and specialised in some cases to even faster methods. Our SSS-based methodology will be demonstrated on two examples: a linear time-varying example resulting in the same ? complexity as in Barton et al., and a linear time-invariant example where our approach reduces the computational complexity to ?, thus decreasing the computation time, for an example, from the literature by a factor of almost 100. This improvement is achieved by transforming the norm computation via a linear matrix inequality into a check of positive definiteness - which allows us to further exploit the almost-Toeplitz properties of the matrix, and additionally provides explicit upper and lower bounds on the norm of the matrix, instead of the indirect Ritz estimate. These methods are now implemented in a MATLAB toolbox, freely available on the Internet.

  10. Increased ILC2s in the eosinophilic nasal polyp endotype are associated with corticosteroid responsiveness

    PubMed Central

    Walford, Hannah H.; Lund, Sean J.; Baum, Rachel E.; White, Andrew A.; Bergeron, Christopher M.; Husseman, Jacob; Bethel, Kelly J.; Scott, David R.; Khorram, Naseem; Miller, Marina; Broide, David H.; Doherty, Taylor A.

    2014-01-01

    Type 2 innate lymphoid cells (ILC2s) have recently been identified in human nasal polyps, but whether numbers of ILC2s differ by polyp endotype or are influenced by corticosteroid use is unknown. Here, we show that eosinophilic nasal polyps contained double the number of ILC2s vs. non-eosinophilic polyps. Polyp ILC2s were also reduced by 50% in patients treated with systemic corticosteroids. Further, using a fungal allergen challenge mouse model, we detected greatly reduced Th2 cytokine-producing and Ki-67+ proliferating lung ILC2s in mice receiving dexamethasone. Finally, ILC2 Annexin V staining revealed extensive apoptosis after corticosteroid treatment in vivo and in vitro. Thus, ILC2s are elevated in the eosinophilic nasal polyp endotype and systemic corticosteroid treatment correlated with reduced polyp ILC2s. Finally, allergen-challenged mice showed reduced ILC2s and increased ILC2 apoptosis after corticosteroid treatment suggesting that ILC2 may be responsive to corticosteroids in eosinophilic respiratory disease. PMID:25236785

  11. Large Synoptic Survey Telescope: From Science Drivers to Reference Design

    SciTech Connect

    Ivezic, Z.; Axelrod, T.; Brandt, W.N.; Burke, D.L.; Claver, C.F.; Connolly, A.; Cook, K.H.; Gee, P.; Gilmore, D.K.; Jacoby, S.H.; Jones, R.L.; Kahn, S.M.; Kantor, J.P.; Krabbendam, V.; Lupton, R.H.; Monet, D.G.; Pinto, P.A.; Saha, A.; Schalk, T.L.; Schneider, D.P.; Strauss, Michael A.; /Washington U., Seattle, Astron. Dept. /LSST Corp. /Penn State U., Astron. Astrophys. /KIPAC, Menlo Park /NOAO, Tucson /LLNL, Livermore /UC, Davis /Princeton U., Astrophys. Sci. Dept. /Naval Observ., Flagstaff /Arizona U., Astron. Dept. - Steward Observ. /UC, Santa Cruz /Harvard U. /Johns Hopkins U. /Illinois U., Urbana

    2011-10-14

    In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next-generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST). LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pachon in Northern Chile. The current baseline design, with an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg{sup 2} field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image quality, as well as superb astrometric and photometric accuracy. The survey area will include 30,000 deg{sup 2} with {delta} < +34.5{sup o}, and will be imaged multiple times in six bands, ugrizy, covering the wavelength range 320-1050 nm. About 90% of the observing time will be devoted to a deep-wide-fast survey mode which will observe a 20,000 deg{sup 2} region about 1000 times in the six bands during the anticipated 10 years of operation. These data will result in databases including 10 billion galaxies and a similar number of stars, and will serve the majority of science programs. The remaining 10% of the observing time will be allocated to special programs such as Very Deep and Very Fast time domain surveys. We describe how the

  12. A reference pelton turbine - design and efficiency measurements

    NASA Astrophysics Data System (ADS)

    Solemslie, Bjørn W.; Dahlhaug, Ole G.

    2014-03-01

    The Pelton turbine has been subject to a varying degree of research interest since the debut of the technology over a century ago. Despite its age there are gaps in the knowledge concerning the flow mechanisms effecting the flow through the turbine. A Pelton turbine has been designed at the Waterpower Laboratory at NTNU. This has been done in connection to a Ph.D. project focusing on the flow in Pelton turbine buckets. The design of the turbine has been conducted using in-house knowledge in addition to some comments from a turbine producer. To describe the geometry multiple Bezier curves were used and the design strategy aimed to give a smooth and continuous gradient along the main flow directions in the bucket. The turbine has been designed for the operational conditions of the Pelton test rig installed at the Waterpower Laboratory which is a horizontal single jet test rig with a jet diameter(ds) of 35 mm. The diameter(D) of the runner was set to 513 mm and the width(W) of a bucket 114 mm, leading to a D/W ratio of 4.5. Manufacturing of the turbine has been carried out in aluminium and the turbine has undergone efficiency testing and visual inspection during operation at a head of 70 m. The turbine did not performed as expected and the maximum efficiency was found to be 77.75%. The low efficiency is mainly caused by a large amount of water leaving the bucket through the lip and hence transferring close to zero of its energy to the shaft. The reason for the large lip loss is discussed and two possible causes are found; the jet is located too close to the lip, and the inner surface of the bucket does not lead the water away from the lip. The turbine geometry and all data from both measurements and simulations will be available upon request in an effort to increase the amount of available data concerning Pelton turbines.

  13. Design of an ultra-compact reference ULE cavity

    NASA Astrophysics Data System (ADS)

    Didier, Alexandre; Millo, Jacques; Lacroûte, Clément; Ouisse, Morvan; Delporte, Jérôme; Giordano, Vincent; Rubiola, Enrico; Kersalé, Yann

    2016-06-01

    This article presents the design and the conception of an ultra-compact Fabry-Pérot cavity which will be used to develop an ultra-stable laser. The proposed cavity is composed of a 25 mm long ULE spacer with fused silica mirrors. It leads to an expected fractional frequency stability of 1.5 x 10-15 limited by the thermal noise. The chosen geometry leads to an acceleration relative sensitivity below 10-12 /(m/s2) for all directions.

  14. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    SciTech Connect

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, while also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by

  15. Architectural design proposal for a Martian base to continue NASA Mars Design Reference Mission

    NASA Astrophysics Data System (ADS)

    Kozicki, Janek

    The issue of extraterrestrial bases has recently been a very vivid one. There are orbital stations currently existing and humans will travel to Mars around 2030. They will need stations established there, which will provide them the proper living conditions. Firstly, it might be a small module brought from Earth (e.g. NASA Mars Design Reference Mission module (DRM)), in later stages equivalents of Earth houses may be built from local resources. The goal of this paper is to propose an architectural design for an intermediate stage — for a larger habitable unit transported from Earth. It is inspired by terrestrial portable architecture ideas. A pneumatic structure requires small volume during transportation. However, it provides large habitable space after deployment. It is designed for transport by DRM transportation module and its deployment is considerable easy and brief. An architectural solution analogous to a terrestrial house with a studio and a workshop was assumed. Its form was a result of technical and environmental limitations, and the need for an ergonomic interior. The spatial placement of following zones was carefully considered: residential, agricultural and science, as well as a garage with a workshop, transportation routes, and a control and communication center. The issues of Life Support System, energy, food, water and waste recycling were also discussed. This Martian base was designed to be crewed by a team of eight people to stay on Mars for at least 1.5 year. An Open Plan architectural solution was assumed in pneumatic modules, with a high level of modularity. Walls of standardized sizes with zip-fasteners allow free rearrangement of the interior to adapt to a new situation (e.g. damage of one of the pneumatic modules or a psychological ,,need of a change"). The architectural design focuses on ergonomic and psychological aspects of longer stay in hostile Martian environment. This solution provides Martian crew with a comfortable habitable

  16. Design of the beam delivery system for the international linear collider.

    SciTech Connect

    Seryi, A.; Amann, J.; Arnold, R.; Asiri, F.; Bane, K.; Carwardine, J.; Saunders, C.; Accelerator Systems Division; SLAC; FNAL

    2008-01-01

    The beam delivery system for the linear collider focuses beams to nanometer sizes at its interaction point, collimates the beam halo to provide acceptable background in the detector and has a provision for state-of-the art beam instrumentation in order to reach the ILCs physics goals. This paper describes the design details and status of the baseline configuration considered for the reference design and also lists alternatives.

  17. A Hierarchical Control Architecture for a PEBB-Based ILC Marx Modulator

    SciTech Connect

    Macken, K.; Burkhart, C.; Larsen, R.; Nguyen, M.N.; Olsen, J.; /SLAC

    2011-12-15

    The idea of building power conversion systems around Power Electronic Building Blocks (PEBBs) was initiated by the U.S. Office of Naval Research in the mid 1990s. A PEBB-based design approach is advantageous in terms of power density, modularity, reliability, and serviceability. It is obvious that this approach has much appeal for pulsed power conversion including the International Linear Collider (ILC) klystron modulator application. A hierarchical control architecture has the inherent capability to support the integration of PEBBs. This has already been successfully demonstrated in a number of industrial applications in the recent past. This paper outlines the underlying concepts of a hierarchical control architecture for a PEBB-based Marx-topology ILC klystron modulator. The control in PEBB-based power conversion systems can be functionally partitioned into (three) hierarchical layers; system layer, application layer, and PEBB layer. This has been adopted here. Based on such a hierarchical partition, the interfaces are clearly identified and defined and, consequently, are easily characterised. A conceptual design of the hardware manager, executing low-level hardware oriented tasks, is detailed. In addition, the idea of prognostics is briefly discussed.

  18. Time domain and frequency domain design techniques for model reference adaptive control systems

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1971-01-01

    Some problems associated with the design of model-reference adaptive control systems are considered and solutions to these problems are advanced. The stability of the adapted system is a primary consideration in the development of both the time-domain and the frequency-domain design techniques. Consequentially, the use of Liapunov's direct method forms an integral part of the derivation of the design procedures. The application of sensitivity coefficients to the design of model-reference adaptive control systems is considered. An application of the design techniques is also presented.

  19. Studies of Room Temperature Accelerator Structures for the ILC Positron Source

    SciTech Connect

    Wang, J.W.; Adolphsen, C.; Bharadwaj, V.; Bowden, G.B.; Dolgashev, V.A.; Jones, R.M.; Jongewaard, E.N.; Lewandowski, J.R.; Li, Z.; Miller, R.H.; /SLAC

    2006-03-15

    There are many challenges in the design of the normal-conducting portion of the ILC positron injector system such as achieving adequate cooling with the high RF and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. The proposed design for the positron injector contains both standing-wave and traveling-wave L-band accelerator structures for high RF efficiency, low cost and ease of fabrication. This paper presents results from several studies including particle energy deposition for both undulator based and conventional positron sources, cooling system design, accelerator structure optimization, RF pulse heating, cavity frequency stabilization, and RF feed system design.

  20. Energy Efficient Drivepower : Literature Reference List, Volume 2 Design Engineer's Supplement.

    SciTech Connect

    Ula, Sadrul; Jordan, Don L.; Birnbaum, Larry E.

    1993-01-01

    A large number of information sources in the area of the efficient use of drivepower are listed. The main list is for the general user of drivepower systems. The other list is a supplemental reference list for the design engineer.

  1. Energy Efficient Drivepower : Literature Reference List, Volume 2, Design Engineer`s Supplement.

    SciTech Connect

    Ula, Sadrul.; Birnbaum, Larry E.; Jordan, Don

    1992-01-01

    A large number of information sources in the area of the efficient use of drivepower are listed. The main list is for the general user of drivepower systems. The other list is a supplemental reference list for the design engineer.

  2. Constraining capability of Zγh production at the ILC

    NASA Astrophysics Data System (ADS)

    Alam, Sher; Behera, Subhasish; Kumar, Satendra; Sahoo, Shibananda

    2017-01-01

    Higgs boson couplings with gauge bosons are probed through e‑e+ → Zγh in an effective Lagrangian framework. For this study, the beam polarization facility at the ILC along with the typical center-of-mass energy of 500 GeV is considered. The reach of the ILC with an integrated luminosity of 300 fb‑1 in the determination of CP-conserving parameters is obtained. Sensitivity of the probe of each of these couplings in the presence of other couplings is investigated. The most influential coupling parameters are c¯W = ‑c¯B. Other parameters of significant effect are c¯HW and c¯HB. A detailed study of the various kinematic distributions represents possibilities to disentangle the effect of some of these couplings.

  3. Generalization of norm optimal ILC for nonlinear systems with constraints

    NASA Astrophysics Data System (ADS)

    Volckaert, Marnix; Diehl, Moritz; Swevers, Jan

    2013-08-01

    This paper discusses a generalization of norm optimal iterative learning control (ILC) for nonlinear systems with constraints. The conventional norm optimal ILC for linear time invariant systems formulates an update equation as a closed form solution of the minimization of a quadratic cost function. In this cost function the next trial's tracking error is approximated by implicitly adding a correction to the model. The proposed approach makes two adaptations to the conventional approach: the model correction is explicitly estimated, and the cost function is minimized using a direct optimal control approach resulting in nonlinear programming problems. An efficient solution strategy for such problems is developed, using a sparse implementation of an interior point method, such that long data records can be efficiently processed. The proposed approach is validated experimentally.

  4. Electroweak radiative corrections to triple photon production at the ILC

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Wei-Hua; Duan, Peng-Fei; Song, Mao; Li, Gang

    2016-07-01

    In this paper, we present the precision predictions for three photon production in the standard model (SM) at the ILC including the full next-to-leading (NLO) electroweak (EW) corrections, high order initial state radiation (h.o.ISR) contributions and beamstrahlung effects. We present the LO and the NLO EW + h.o.ISR + beamstrahlung corrected total cross sections for various colliding energy when √{ s} ≥ 200 GeV and the kinematic distributions of final photons with √{ s} = 500 GeV at ILC, and find that the NLO EW corrections, the h.o.ISR contributions and the beamstrahlung effects are important in exploring the process e+e- → γγγ.

  5. Two universal extra dimensions and spinless photons at the ILC.

    SciTech Connect

    Freitas, A.; Kong, K.-C.; High Energy Physics; Univ Chicago; FNAL

    2008-02-01

    We study the ILC phenomenology of Kaluza-Klein (KK) modes along two universal extra dimensions compactified on the chiral square. We compute production cross sections of various (1, 0) particles at the ILC with (s){sup 1/2} = 1 TeV, focusing on decays of KK-leptons and the KK partner of the hypercharge gauge boson down to the 'spinless photon', which is the lightest KK particle. We contrast this model to one universal extra dimension with KK-photon (spin-1) and supersymmetry with neutralino (spin-1/2) or gravitino (spin-3/2) dark matter. We also investigate the discovery potential for (1, 1) KK bosons as s-channel resonances.

  6. ILC @ SLAC R&D Program for a Polarized RF Gun

    SciTech Connect

    Clendenin, J.E.; Brachman, A.; Dowell, D.H.; Garwin, E.L.; Ioakemidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.A.; Prescott, C.Y.; Wang, J.W.; Lewellen, J.W.; Prepost, R.; /Wisconsin U., Madison

    2006-01-25

    Photocathode rf guns produce high-energy low-emittance electron beams. DC guns utilizing GaAs photocathodes have proven successful for generating polarized electron beams for accelerators, but they require rf bunching systems that significantly increase the transverse emittance of the beam. With higher extraction field and beam energy, rf guns can support higher current densities at the cathode. The source laser system can then be used to generate the high peak current, relatively low duty-factor micropulses required by the ILC without the need for post-extraction rf bunching. The net result is that the injection system for a polarized rf gun can be identical to that for an unpolarized rf gun. However, there is some uncertainty as to the survivability of an activated GaAs cathode in the environment of an operating rf gun. Consequently, before attempting to design a polarized rf gun for the ILC, SLAC plans to develop an rf test gun to demonstrate the rf operating conditions suitable for an activated GaAs cathode.

  7. Recommendation for Mitigations of the Electron Cloud Instability in the ILC

    SciTech Connect

    Pivi, M.T.F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Shibata, K.; Ohmi, K.; Dugan, G.; Palmer, M.; Crittenden, J.A.; Harkay, K.; Boon, L.; Furman, M.A.; Vallgren, C.Yin; /CERN

    2011-12-13

    Electron cloud has been identified as one of the highest priority issues for the international Linear Collider (ILC) Damping Rings (DR). An electron cloud Working Group (WG) has evaluated the electron cloud effect and instability, and mitigation solutions for the electron cloud formation. Working group deliverables include recommendations for the baseline and alternate solutions to the electron cloud formation in various regions of the ILC Positron DR, which is presently assumed to be the 3.2 km design. Detailed studies of a range of mitigation options including coatings, clearing electrodes, grooves and novel concepts, were carried out over the previous several years by nearly 50 researchers, and the results of the studies form the basis for the recommendation. The recommendations are the result of the working group discussions held at numerous meetings and during a dedicated workshop. In addition, a number of items requiring further investigation were identified during the discussions at the Cornell meeting and studies will be carried out at CesrTA, a test accelerator dedicated to electron cloud studies, and other institutions.

  8. Recommendation for Mitigations of the Electron Cloud Instability in the ILC

    SciTech Connect

    Pivi, M. T. F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Shibata, K.; Ohmi, K.; Dugan, G.; Palmer, M.; Crittenden, J. A.; Harkay, K.; Boon, L.; Furman, M. A.; Yin Vallgren, A. C.

    2011-09-04

    Electron cloud has been identified as one of the highest priority issues for the international Linear Collider (ILC) Damping Rings (DR). An electron cloud Working Group (WG) has evaluated the electron cloud effect and instability, and mitigation solutions for the electron cloud formation. Working group deliverables include recommendations for the baseline and alternate solutions to the electron cloud formation in various regions of the ILC Positron DR, which is presently assumed to be the 3.2 km design. Detailed studies of a range of mitigation options including coatings, clearing electrodes, grooves and novel concepts, were carried out over the previous several years by nearly 50 researchers, and the results of the studies form the basis for the recommendation. The recommendations are the result of the working group discussions held at numerous meetings and during a dedicated workshop. In addition, a number of items requiring further investigation were identified during the discussions at the Cornell meeting and studies will be carried out at CesrTA, a test accelerator dedicated to electron cloud studies, and other institutions.

  9. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    SciTech Connect

    Kimura, N.; Yamamoto, A.; Andreev, N.; Kashikhin, V. S.; Tartaglia, M. A.; Kerby, J.; Takahashi, M.; Tosaka, T.

    2014-01-29

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  10. QCD correction to single top quark production at the ILC

    SciTech Connect

    Penunuri, F.; Larios, F.; Bouzas, Antonio O.

    2011-04-01

    Single top quark production at the International Linear Collider (ILC) can be used to obtain high precision measurements of the V{sub tb} Cabibbo-Kobayashi-Maskawa quark-mixing matrix (CKM) element as well as the effective tbW coupling. We have calculated the QCD correction for the cross section in the context of an effective vector boson approximation. Our results show a {approx}10% increase due to the strong interaction.

  11. Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors

    SciTech Connect

    Piot, Philippe; Bracke, Adam; Demir, Veysel; Maxwell, Timothy; Rihaoui, Marwan; Jing, Chunguang; Power, John

    2010-12-01

    We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC e⁻ injectors and e⁺ and e⁻ bunch compressors. Techniques to measure the first order moments and recover the first order longitudinal transfer map of the injector's intricate bunching scheme are presented. Coherent transition radiation diagnostics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model.

  12. A Study of Thermocurrent Induced Magnetic Fields in ILC Cavities

    SciTech Connect

    Crawford, Anthony C.; Cooley, Victoria

    2014-03-31

    The case of axisymmetric ILC-type cavities with titanium helium vessels is investigated. A first-order estimate for magnetic field within the SRF current layer is presented. The induced magnetic field is found to be not more than 1.4x10-8 Tesla = 0.14 milligauss for the case of axial symmetry. Magnetic fields due to symmetry breaking effects are discussed.

  13. CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal draining lymph nodes

    PubMed Central

    Mackley, Emma C.; Houston, Stephanie; Marriott, Clare L.; Halford, Emily E.; Lucas, Beth; Cerovic, Vuk; Filbey, Kara J.; Maizels, Rick M.; Hepworth, Matthew R.; Sonnenberg, Gregory F.; Milling, Simon; Withers, David R.

    2015-01-01

    Presentation of peptide:MHCII by RORγ-expressing group 3 innate lymphoid cells (ILC3s), which are enriched within gut tissue, is required for control of CD4 T-cell responses to commensal bacteria. It is not known whether ILC populations migrate from their mucosal and peripheral sites to local draining secondary lymphoid tissues. Here we demonstrate that ILC3s reside within the interfollicular areas of mucosal draining lymph nodes, forming a distinct microenvironment not observed in peripheral lymph nodes. By photoconverting intestinal cells in Kaede mice we reveal constitutive trafficking of ILCs from the intestine to the draining mesenteric lymph nodes, which specifically for the LTi-like ILC3s was CCR7-dependent. Thus, ILC populations traffic to draining lymph nodes using different mechanisms. PMID:25575242

  14. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    SciTech Connect

    Berwald, D.H.; Whitley, R.H.; Garner, J.K.; Gromada, R.J.; McCarville, T.J.; Moir, R.W.; Lee, J.D.; Bandini, B.R.; Fulton, F.J.; Wong, C.P.C.; Maya, I.; Hoot, C.G.; Schultz, K.R.; Miller, L.G.; Beeston, J.M.; Harris, B.L.; Westman, R.A.; Ghoniem, N.M.; Orient, G.; Wolfer, M.; DeVan, J.H.; Torterelli, P.

    1985-09-01

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future.

  15. Longitudinal Single-Bunch Instability in the ILC Damping Rings: Estimate of Current Threshold

    SciTech Connect

    Venturini, Marco; Venturini, Marco

    2008-06-25

    Characterization of single-bunch instabilities in the International Linear Collider (ILC) damping rings (DRs) has been indicated as a high-priority activity toward completion of an engineering design. In this paper we report on a first estimate ofthe current thresholds for the instability using numerical and analytical models of the wake potentials associated with the various machine components. The numerical models were derived (upon appropriate scaling) from designs of the correspondingcomponents installed in existing machines. The current thresholds for instabilities were determined by numerical solution of the Vlasov equation for the longitudinal dynamics. For the DR baseline lattice as of Feb. 2007 we find the critical current forinstability to be safely above the design specifications leaving room for further optimization of the choice of the momentum compaction.

  16. Magnetic tunnel junction design margin exploration for self-reference sensing scheme.

    PubMed

    Sun, Z; Li, H; Wang, X

    2012-04-01

    This work investigates the magnetic tunnel junction (MTJ) design requirements for the application of nondestructive self-reference sensing scheme, a novel sensing scheme featuring high tolerance of process variations, fast sensing speed, and no impact on device reliability. Unlike the conventional sensing scheme that requires a large TMR ratio and the uniform antiparallel and parallel resistances for MTJs, the nondestructive self-reference sensing scheme is more sensitive to the roll-off slope of MTJ's R-I or R-V curve. Our purpose is to provide a guidance to facilitate MTJ design used in the nondestructive self-reference scheme. In this work, we comprehensively investigate and analyze the design matrix by considering MTJ device physical properties, such as bias voltage dependent conductance, spin torque, etc. The manuscript suggests the approaches to optimize MTJ design for better trade-off between device properties and circuit design.

  17. Magnetic tunnel junction design margin exploration for self-reference sensing scheme

    PubMed Central

    Sun, Z.; Li, H.; Wang, X.

    2012-01-01

    This work investigates the magnetic tunnel junction (MTJ) design requirements for the application of nondestructive self-reference sensing scheme, a novel sensing scheme featuring high tolerance of process variations, fast sensing speed, and no impact on device reliability. Unlike the conventional sensing scheme that requires a large TMR ratio and the uniform antiparallel and parallel resistances for MTJs, the nondestructive self-reference sensing scheme is more sensitive to the roll-off slope of MTJ’s R-I or R-V curve. Our purpose is to provide a guidance to facilitate MTJ design used in the nondestructive self-reference scheme. In this work, we comprehensively investigate and analyze the design matrix by considering MTJ device physical properties, such as bias voltage dependent conductance, spin torque, etc. The manuscript suggests the approaches to optimize MTJ design for better trade-off between device properties and circuit design. PMID:22481837

  18. Differential phenotypic and functional properties of liver-resident NK cells and mucosal ILC1s.

    PubMed

    Tang, Ling; Peng, Hui; Zhou, Jing; Chen, Yongyan; Wei, Haiming; Sun, Rui; Yokoyama, Wayne M; Tian, Zhigang

    2016-02-01

    Group 1 innate lymphoid cells (ILCs) consist of conventional natural killer (cNK) cells, tissue-resident NK cells and mucosal ILC1s. Recently identified liver-resident NK cells, which can mount contact hypersensitivity responses, and mucosal ILC1s that are involved in pathogenesis of colitis are distinct from cNK cells in several aspects, but the issue of how they are related to each other has not been clearly clarified. Here, we show that liver-resident NK cells and mucosal ILC1s have different phenotypes, as evidenced by distinct expression patterns of homing-associated molecules. Moreover, mucosal ILC1s exhibit tissue residency akin to liver-resident NK cells. Importantly, liver-resident NK cells express relative high levels of cytotoxic effector molecules, which are poorly expressed by mucosal ILC1s, and exhibit stronger cytotoxic activity compared with mucosal ILC1s. These results demonstrate differential phenotypic and functional characteristics of liver-resident NK cells and mucosal ILC1s, shedding new light on the diversity of ILC family.

  19. Scaffolding Students' Development of Creative Design Skills: A Curriculum Reference Model

    ERIC Educational Resources Information Center

    Lee, Chien-Sing; Kolodner, Janet L.

    2011-01-01

    This paper provides a framework for promoting creative design capabilities in the context of achieving community goals pertaining to sustainable development among high school students. The framework can be used as a reference model to design formal or out-of-school curriculum units in any geographical region. This theme is chosen due to its…

  20. Scaffolding Students' Development of Creative Design Skills: A Curriculum Reference Model

    ERIC Educational Resources Information Center

    Lee, Chien-Sing; Kolodner, Janet L.

    2011-01-01

    This paper provides a framework for promoting creative design capabilities in the context of achieving community goals pertaining to sustainable development among high school students. The framework can be used as a reference model to design formal or out-of-school curriculum units in any geographical region. This theme is chosen due to its…

  1. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform.

    PubMed

    Zhang, Wang; Su, Tao

    2016-09-22

    In the field of fast Fourier transform (FFT)-based frequency invariant beamforming (FIB), there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI) over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL). The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed.

  2. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform

    PubMed Central

    Zhang, Wang; Su, Tao

    2016-01-01

    In the field of fast Fourier transform (FFT)-based frequency invariant beamforming (FIB), there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI) over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL). The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed. PMID:27669242

  3. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Reference design process

    NASA Technical Reports Server (NTRS)

    Meyer, D. D.

    1979-01-01

    The airplane design process and its interfaces with manufacturing and customer operations are documented to be used as criteria for the development of integrated programs for the analysis, design, and testing of aerospace vehicles. Topics cover: design process management, general purpose support requirements, design networks, and technical program elements. Design activity sequences are given for both supersonic and subsonic commercial transports, naval hydrofoils, and military aircraft.

  4. Design and operation of a Loran-C time reference station

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1974-01-01

    Some of the practical questions that arise when one decides to use Loran-C in a time reference system are explored. An extensive effort is made to provide basic, practical information on establishing and operating a reference station. Four areas were covered: (1) the design, configuration and operational concepts which should be considered prior to establishing and operating a reference station using Loran-C, (2) the options and tradeoffs available regarding capabilities, cost, size, versatility, ease of operation, etc., that are available to the designer, (3) what measurements are made, how they are made and what they mean, and (4) the experience the U.S. Naval Observatory Time Service Division has had in the design and operation of such stations.

  5. Optimal design of optical reference signals by use of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Saez-Landete, José; Salcedo-Sanz, Sancho; Rosa-Zurera, Manuel; Alonso, José; Bernabeu, Eusebio

    2005-10-01

    A new technique for the generation of optical reference signals with optimal properties is presented. In grating measurement systems a reference signal is needed to achieve an absolute measurement of the position. The optical signal is the autocorrelation of two codes with binary transmittance. For a long time, the design of this type of code has required great computational effort, which limits the size of the code to ˜30 elements. Recently, the application of the dividing rectangles (DIRECT) algorithm has allowed the automatic design of codes up to 100 elements. Because of the binary nature of the problem and the parallel processing of the genetic algorithms, these algorithms are efficient tools for obtaining codes with particular autocorrelation properties. We design optimum zero reference codes with arbitrary length by means of a genetic algorithm enhanced with a restricted search operator.

  6. Reactivity studies on the final preconceptual reference design of the Advanced Neutron Source

    SciTech Connect

    Ryskamp, J.M.; Redmond, E.L. II; Kim, S.S.; Fletcher, C.D.

    1990-04-01

    An Advanced Neutron Source (ANS) with a peak thermal neutron flux of 8.0 {minus} 9.0 {times} 10{sup 19} m{sup {minus}2}s{sup {minus}1} is being designed for condensed matter physics, materials science, isotope production, and fundamental physics research. A final preconceptual reference reactor design has been selected in order to examine the safety, performance, and costs associated with this one design. This report presents reactor physics analyses of safety aspects of the reference reactor design that are related to core reactivity changes. These analyses include control rod worth, shutdown rod worth, heavy water voiding, light water ingress, single fuel element criticality, fuel element movement, and neutron beam tube flooding. The positive and negative findings are explored for each of these analyses. Based on these analyses, some design modifications that further improve the reactor safety are identified and recommended. 12 refs., 4 figs., 16 tabs.

  7. Planck-LFI: design and performance of the 4 Kelvin Reference Load Unit

    NASA Astrophysics Data System (ADS)

    Valenziano, L.; Cuttaia, F.; De Rosa, A.; Terenzi, L.; Brighenti, A.; Cazzola, G. P.; Garbesi, A.; Mariotti, S.; Orsi, G.; Pagan, L.; Cavaliere, F.; Biggi, M.; Lapini, R.; Panagin, E.; Battaglia, P.; Butler, R. C.; Bersanelli, M.; D'Arcangelo, O.; Levin, S.; Mandolesi, N.; Mennella, A.; Morgante, G.; Morigi, G.; Sandri, M.; Simonetto, A.; Tomasi, M.; Villa, F.; Frailis, M.; Galeotta, S.; Gregorio, A.; Leonardi, R.; Lowe, S. R.; Maris, M.; Meinhold, P.; Mendes, L.; Stringhetti, L.; Zonca, A.; Zacchei, A.

    2009-12-01

    The LFI radiometers use a pseudo-correlation design where the signal from the sky is continuously compared with a stable reference signal, provided by a cryogenic reference load system. The reference unit is composed by small pyramidal horns, one for each radiometer, 22 in total, facing small absorbing targets, made of a commercial resin ECCOSORB CRTM, cooled to ~ 4.5 K. Horns and targets are separated by a small gap to allow thermal decoupling. Target and horn design is optimized for each of the LFI bands, centered at 70, 44 and 30 GHz. Pyramidal horns are either machined inside the radiometer 20K module or connected via external electro-formed bended waveguides. The requirement of high stability of the reference signal imposed a careful design for the radiometric and thermal properties of the loads. Materials used for the manufacturing have been characterized for thermal, RF and mechanical properties. We describe in this paper the design and the performance of the reference system.

  8. 48 CFR 28.204-3 - Irrevocable letter of credit (ILC).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... furnish a bond secured by an ILC in an amount equal to the penal sum required to be secured (see 28.204... expiration date, the ILC is automatically extended without amendment for one year from the expiration date... officer provides the financial institution with a written statement waiving the right to payment....

  9. 48 CFR 28.204-3 - Irrevocable letter of credit (ILC).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Irrevocable letter of...-3 Irrevocable letter of credit (ILC). (a) Any person required to furnish a bond has the option to... no document other than a written demand and the ILC (and letter of confirmation, if any), expire...

  10. 48 CFR 28.204-3 - Irrevocable letter of credit (ILC).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Irrevocable letter of...-3 Irrevocable letter of credit (ILC). (a) Any person required to furnish a bond has the option to... no document other than a written demand and the ILC (and letter of confirmation, if any), expire...

  11. Benchmarking / Crosschecking DFS in the ILC Main Linac

    SciTech Connect

    Smith, Jeffrey C.; Eliasson, Peder; Latina, Andrea; Schulte, Daniel; Poirier, Freddy; Walker, Nicholas; Lebrun, Paul; Ranjan, Kirti; Kubo, Kiyoshi; Tenenbaum, Peter; /SLAC

    2007-01-08

    In an effort to compare beam dynamics and create a ''benchmark'' for Dispersion Free Steering (DFS) a comparison was made between different ILC simulation programs while performing DFS. This study consisted of three parts. First, a simple betatron oscillation was tracked through each code. Secondly, a set of component misalignments and corrector settings generated from one program was read into the others to confirm similar emittance dilution. Thirdly, given the same set of component misalignments DFS was performed independently in each program and the resulting emittance dilution was compared. Performance was found to agree exceptionally well in all three studies.

  12. Multi-Bunch Simulations of the ILC for Luminosity Performance Studies

    SciTech Connect

    White, G.; Walker, N.; Schulte, D.; /CERN

    2005-07-11

    To study the luminosity performance of the International Linear Collider (ILC) with different design parameters, a simulation was constructed that tracks a multi-bunch representation of the beam from the Damping Ring extraction through to the Interaction Point. The simulation code PLACET is used to simulate the LINAC, MatMerlin is used to track through the Beam Delivery System and GUINEA-PIG for the beam-beam interaction. Included in the simulation are ground motion and wakefield effects, intra-train fast feedback and luminosity-based feedback systems. To efficiently study multiple parameters/multiple seeds, the simulation is deployed on the Queen Mary High-Throughput computing cluster at Queen Mary, University of London, where 100 simultaneous simulation seeds can be run.

  13. Copper Prototype Measurements of the HOM, LOM And SOM Couplers for the ILC Crab Cavity

    SciTech Connect

    Burt, G.; Ambattu, P.K.; Dexter, A.C.; Bellantoni, L.; Goudket, P.; McIntosh, P.A.; Li, Z.; Xiao, L.; /SLAC

    2011-11-04

    The ILC Crab Cavity is positioned close to the IP and delivered luminosity is very sensitive to the wakefields induced in it by the beam. A set of couplers were designed to couple to and damp the spurious modes of the crab cavity. As the crab cavity operates using a dipole mode, it has different damping requirements from an accelerating cavity. A separate coupler is required for the monopole modes below the operating frequency of 3.9 GHz (known as the LOMs), the opposite polarization of the operating mode (the SOM), and the modes above the operating frequency (the HOMs). Prototypes of each of these couplers have been manufactured out of copper and measured attached to an aluminum nine cell prototype of the cavity and their external Q factors were measured. The results were found to agree well with numerical simulations.

  14. Development of a 10 MW Sheet Beam Klystron for the ILC

    SciTech Connect

    Sprehn, D.; Jongewaard, E.; Haase, A.; Jensen, A.; Martin, D.; Burke, A.; /SAIC, Sunnyvale

    2009-05-07

    SLAC is developing a 10 MW, 5 Hz, 1.6 ms, L-band (1.3 GHz) Sheet-Beam Klystron as a less expensive and more compact alternative to the ILC baseline Multiple-Beam Klystron. The Klystron is intended as a plug-compatible device of the same beam current and operating voltage as existing Multiple-Beam Klystrons. At this time, a beam tester has been constructed and currently is in test. The beam tester includes an intercepting cup for making beam quality measurements of the 130 A, 40-to-1 aspect ratio beam. Measurements will be made of the electrostatic beam and of the beam after transporting through a drift tube and magnetic focusing system. General theory of operation, design trade-offs, and manufacturing considerations of both the beam tester and klystron will be discussed.

  15. Copper Prototype Measurements of the HOM, LOM and SOM Couplers for the ILC Crab Cavity

    SciTech Connect

    Burt, G.; Ambattu, P.K.; Dexter, A.C.; Bellantoni, L.; Goudket, P.; McIntosh, P.A.; Li, Z.; Xiao, L.; /SLAC

    2008-06-23

    The ILC Crab Cavity is positioned close to the IP and delivered luminosity is very sensitive to the wakefields induced in it by the beam. A set of couplers were designed to couple to and damp the spurious modes of the crab cavity. As the crab cavity operates using a dipole mode, it has different damping requirements from an accelerating cavity. A separate coupler is required for the monopole modes below the operating frequency of 3.9 GHz (known as the LOMs), the opposite polarization of the operating mode (the SOM), and the modes above the operating frequency (the HOMs). Prototypes of each of these couplers have been manufactured out of copper and measured attached to an aluminum nine cell prototype of the cavity and their external Q factors were measured. The results were found to agree well with numerical simulations.

  16. HCI Design Patterns for C2: A Vision for a DoD Design Reference Library

    DTIC Science & Technology

    2006-06-01

    Costume Design Story This past Halloween , the first author had to select a costume for his three-year old son. Asking the boy what he...experience creating clothing from patterns, resulting in a costume that fit well and gave authentic appearance; a Halloween success story. Off-the...environments like C2. HCI DESIGN PATTERNS: HISTORY & STATE OF PRACTICE Design Patterns emerged in the 1970s from the field of physical architecture, that

  17. CD4+ group 1 innate lymphoid cells form a functionally distinct ILC subset that is increased in systemic sclerosis

    PubMed Central

    Whalen, Elizabeth; Molitor, Jerry A.; Bluestone, Jeffrey A.; Buckner, Jane H.; Ziegler, Steven F.

    2016-01-01

    Innate lymphoid cells (ILC) are a heterogeneous group of cellular subsets that produce large amounts of T cell-associated cytokines in response to innate stimulation in the absence of antigen. In this study, we define distinct patterns of surface marker and cytokine expression among the ILC subsets that may further delineate their migration and function. Most notably, we found that the subset previously defined as ILC1 contains CD4+ CD8−, CD4− CD8+ and CD4− CD8− populations. Although all ILC1 subsets shared characteristics with Th1 cells, CD4+ ILC1 also demonstrated significant phenotypic and functional heterogeneity. We also show that the frequencies of CD4+ ILC1 and NKp44+ ILC3, but not CD4− ILC1 or ILC2, are increased in the peripheral blood of individuals with systemic sclerosis (SSc), a disease characterized by fibrotic and vascular pathology as well as immune dysregulation. Furthermore, we demonstrate that CD4+ and CD4− ILC1 are functionally divergent based on their IL-6Rα expression, and that the frequency of IL-6Rα expression on ILC is altered in SSc. The distinct phenotypic and functional features of CD4+ and CD4− ILC1 suggest that they may have differing roles in the pathogenesis of immune-mediated diseases such as systemic sclerosis. PMID:26826243

  18. Conceptual spacecraft and arcjet propulsion system design for the SP-100 interim reference mission

    NASA Technical Reports Server (NTRS)

    Zafran, S.; Bell, M. W. J.

    1990-01-01

    An arcjet propulsion system, delivering 7.5 N thrust, was defined for the SP-100 Space Reactor Power System Interim Reference Mission. Conceptual design trades and configuration studies of a spacecraft suitable for the mission were performed to the extent necessary to define propulsion system requirements and interfaces. The propulsion system design is based on the use of 30-kW, constricted arc, ammonia arcjet engines operating in parallel during orbit boost from low earth to geosynchronous orbit.

  19. An Automated Tool for Developing Experimental Designs: The Computer-Aided Design Reference for Experiments (CADRE)

    DTIC Science & Technology

    2009-01-01

    survey procedures, and cognitive task analysis), system design methods (e.g., focus groups , design guidelines, specifications, and requirements), and...LABORATORY - HRED ATTN AMSRD ARL HR MZ A DAVISON 199 E 4TH ST STE C TECH PARK BLG 2 FT LEONARD WOOD MO 65473-1949 1 ARMY RSCH LABORATORY

  20. The Role of Virtual Reference in Library Web Site Design: A Qualitative Source for Usage Data

    ERIC Educational Resources Information Center

    Powers, Amanda Clay; Shedd, Julie; Hill, Clay

    2011-01-01

    Gathering qualitative information about usage behavior of library Web sites is a time-consuming process requiring the active participation of patron communities. Libraries that collect virtual reference transcripts, however, hold valuable data regarding how the library Web site is used that could benefit Web designers. An analysis of virtual…

  1. 77 FR 60985 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... for Air Pollution Measurement Systems, Volume I,'' EPA/600/R-94/038a and ``Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Quality Monitoring Program'' EPA-454/B... AGENCY Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New...

  2. Design Reference Missions (DRM): Integrated ODM 'Air-Taxi' Mission Features

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt; Starr, Ginn; Saltzman, John A.

    2017-01-01

    Design Reference Missions (DRM): Integrated ODM Air-Taxi Mission Features, Hybrid Electric Integrated System Testbed (HEIST) flight control. Structural Health, Energy Storage, Electric Components, Loss of Control, Degraded Systems, System Health, Real-Time IO Operator Geo-Fencing, Regional Noise Abatement and Trusted Autonomy Inter-operability.

  3. 77 FR 32632 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... AGENCY Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent... of lead (Pb) in the ambient air. FOR FURTHER INFORMATION CONTACT: Robert Vanderpool, Human Exposure... CFR Part 53, the EPA evaluates various methods for monitoring the concentrations of those ambient...

  4. The Role of Virtual Reference in Library Web Site Design: A Qualitative Source for Usage Data

    ERIC Educational Resources Information Center

    Powers, Amanda Clay; Shedd, Julie; Hill, Clay

    2011-01-01

    Gathering qualitative information about usage behavior of library Web sites is a time-consuming process requiring the active participation of patron communities. Libraries that collect virtual reference transcripts, however, hold valuable data regarding how the library Web site is used that could benefit Web designers. An analysis of virtual…

  5. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  6. Physics Interplay of the LHC and the ILC

    SciTech Connect

    Weiglein, G.

    2004-12-17

    Physics at the Large Hadron Collider (LHC) and the International e{sup +}e{sup -} Linear Collider (ILC)will be complementary in many respects, as has been demonstrated at previous generations of hadron and lepton colliders. This report addresses the possible interplay between the LHC and ILC in testing the Standard Model and in discovering and determining the origin of new physics. Mutual benefits for the physics programme at both machines can occur both at the level of a combined interpretation of Hadron Collider and Linear Collider data and at the level of combined analyses of the data, where results obtained at one machine can directly influence the way analyses are carried out at the other machine. Topics under study comprise the physics of weak and strong electroweak symmetry breaking, supersymmetric models, new gauge theories, models with extra dimensions, and electroweak and QCD precision physics. The status of the work that has been carried out within the LHC/LC Study Group so far is summarized in this report. Possible topics for future studies are outlined.

  7. Analysis of wakefields in the ILC crab cavity

    SciTech Connect

    Burt, G.; Dexter, A.; Bellantoni, L.; Beard, C.; Goudket, P.; Jones, R.; /Manchester U.

    2006-06-01

    The large crossing angle schemes of the ILC need a correction of bunch orientation at the interaction point (IP) in order to recover a luminosity loss of up to 80%. The orientation of bunches can be changed using a set of transverse deflecting cavities. The location of these crab cavities would be close to the final focus, and small deflections caused by wake fields in the cavities could cause misalignments of the bunches at the IP. Wake fields in the 3.9GHz deflecting cavities under development at FNAL have been analysed and their effects studied in view of use as the ILC crab cavity. Numerical simulations have been performed to determine the long-range wake potentials of up to quadrupole order modes in this cavity and their effect upon bunches passing through this cavity. Trapped modes within the CKM cavity have been investigated. Short-range wakes have also been a topic of study. The effect of the final focus quadrupole magnets on the deflection given to the bunch have also been calculated and used to calculate luminosity loss due to wake fields.

  8. A Sneak Preview of the E-ELT Design Reference Science Plan Questionnaire Results

    NASA Astrophysics Data System (ADS)

    Kissler-Patig, M.; Küpcü Yoldaş, A.; Liske, J.

    2009-12-01

    The European Extremely Large Telescope is in its detailed design phase until the end of 2010. During this period, the telescope design is being consolidated and instrument and operation concepts are being studied. The scientific users are feeding back requirements into the project in numerous ways. One of them, the Design Reference Science Plan, was an opportunity for the entire community to provide direct feedback to the project. Here, we summarise the first results from this study. The full report will appear in the first half of 2010.

  9. Individual RF Test Results of the Cavities Used in the First US-built ILC-type Cryomodule

    SciTech Connect

    Hocker, A; Harms, E R; Lunin, A; Sergatskov, D A; Sukhanov, A I; Eremeev, G V; Geng, R L; Ozelis, J P

    2012-07-01

    Eight 1.3-GHz, nine-cell SRF cavities have been installed in a cryomodule intended to demonstrate the ILC design goal of 31.5 MV/m. These cavities all underwent two types of individual RF testing: a low-power continuous-wave test of the 'bare' cavity and a high-power pulsed test of the 'dressed' cavity. Presented here is a discussion of the results from these tests and a comparison of their performance in the two configurations.

  10. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  11. HEAO attitude reference design. [for satellite attitude control and determination subsystem

    NASA Technical Reports Server (NTRS)

    Hoffman, D. P.; Mcelroy, T. T.

    1978-01-01

    The paper deals with the precision onboard attitude reference implemented as part of the attitude control and determination subsystem for the three High Energy Astronomy Observatories (HEAO-A, HEAO-B, and HEAO-C) in the HEAO scientific spacecraft program. The first observatory (HEAO-A, designated HEAO-1 when in orbit) was launched successfully into near-earth orbit on August 12, 1977. The HEAO attitude reference, analysis techniques for performance prediction, and flight results from the HEAO-1 observatory during its first months of operation. The HEAO-B design is specifically described and analyzed in terms of gyro processing, kinematic integration, ground update algorithm, and star tracker update algorithm. Attitude reference performance estimates are also discussed. It is shown that the orbital performance of the attitude reference correlates very well with the developmental predictions, thereby validating the analytical techniques used during the development. This validation provides a firm basis from which to extrapolate to other applications and related design concepts.

  12. Cytokine and Lipid Mediator Regulation of Group 2 Innate Lymphoid Cells (ILC2s) in Human Allergic Airway Disease.

    PubMed

    Cavagnero, Kellen; Doherty, Taylor A

    2017-08-01

    The recent discovery of group 2 innate lymphoid cells (ILC2s) has caused a paradigm shift in the understanding of allergic airway disease pathogenesis. Prior to the discovery of ILC2s, Th2 cells were largely thought to be the primary source of type 2 cytokines; however, activated ILC2s have since been shown to contribute significantly, and in some cases, dominantly to type 2 cytokine production. Since the discovery of ILC2s in 2010, many mediators have been shown to regulate their effector functions. Initial studies identified the epithelial derived cytokines IL-25, IL-33, and TSLP as activators of ILC2s, and recent studies have identified many additional cytokine and lipid mediators that are involved in ILC2 regulation. ILC2s and their mediators represent novel therapeutic targets for allergic airway diseases and intensive investigation is underway to better understand ILC2 biology and upstream and downstream pathways that lead to ILC2-driven airway pathology. In this review, we will focus on the cytokine and lipid mediators that regulate ILC2s in human allergic airway disease, as well as highlight newly discovered mediators of mouse ILC2s that may eventually translate to humans.

  13. A reference model for model-based design of critical infrastructure protection systems

    NASA Astrophysics Data System (ADS)

    Shin, Young Don; Park, Cheol Young; Lee, Jae-Chon

    2015-05-01

    Today's war field environment is getting versatile as the activities of unconventional wars such as terrorist attacks and cyber-attacks have noticeably increased lately. The damage caused by such unconventional wars has also turned out to be serious particularly if targets are critical infrastructures that are constructed in support of banking and finance, transportation, power, information and communication, government, and so on. The critical infrastructures are usually interconnected to each other and thus are very vulnerable to attack. As such, to ensure the security of critical infrastructures is very important and thus the concept of critical infrastructure protection (CIP) has come. The program to realize the CIP at national level becomes the form of statute in each country. On the other hand, it is also needed to protect each individual critical infrastructure. The objective of this paper is to study on an effort to do so, which can be called the CIP system (CIPS). There could be a variety of ways to design CIPS's. Instead of considering the design of each individual CIPS, a reference model-based approach is taken in this paper. The reference model represents the design of all the CIPS's that have many design elements in common. In addition, the development of the reference model is also carried out using a variety of model diagrams. The modeling language used therein is the systems modeling language (SysML), which was developed and is managed by Object Management Group (OMG) and a de facto standard. Using SysML, the structure and operational concept of the reference model are designed to fulfil the goal of CIPS's, resulting in the block definition and activity diagrams. As a case study, the operational scenario of the nuclear power plant while being attacked by terrorists is studied using the reference model. The effectiveness of the results is also analyzed using multiple analysis models. It is thus expected that the approach taken here has some merits

  14. Thermal design and test results for SUNLITE ultra-stable reference cavity

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1991-01-01

    SUNLITE (Stanford University-NASA Laser In-Space Technology Experiment) is a space-based experiment which uses a reference cavity to provide a stable frequency reference for a terahertz laser oscillator. Thermal stability of the cavity is a key factor in attaining a stable narrow-linewidth laser beam. The mount which is used to support and align the cavity will provide thermal isolation from the environment. The baseline requirement for thermal stability of the cavity is 0.025 C/min, but the design is directed toward achieving stability well beyond this requirement to improve the science data gained. A prototype of the cavity mount was fabricated and tested to characterize the thermal performance. The thermal vacuum test involved stable high-resolution temperature measurements and stable baseplate temperature control over long durations. Based on test data, the cavity mount design satisfies the severe requirement for the cavity thermal stability.

  15. Multi-point Adjoint-Based Design of Tilt-Rotors in a Noninertial Reference Frame

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Acree, Cecil W.

    2014-01-01

    Optimization of tilt-rotor systems requires the consideration of performance at multiple design points. In the current study, an adjoint-based optimization of a tilt-rotor blade is considered. The optimization seeks to simultaneously maximize the rotorcraft figure of merit in hover and the propulsive efficiency in airplane-mode for a tilt-rotor system. The design is subject to minimum thrust constraints imposed at each design point. The rotor flowfields at each design point are cast as steady-state problems in a noninertial reference frame. Geometric design variables used in the study to control blade shape include: thickness, camber, twist, and taper represented by as many as 123 separate design variables. Performance weighting of each operational mode is considered in the formulation of the composite objective function, and a build up of increasing geometric degrees of freedom is used to isolate the impact of selected design variables. In all cases considered, the resulting designs successfully increase both the hover figure of merit and the airplane-mode propulsive efficiency for a rotor designed with classical techniques.

  16. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents

  17. Control system design for the large space systems technology reference platform

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1982-01-01

    Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.

  18. Integrated Design and Production Reference Integration with ArchGenXML V1.00

    SciTech Connect

    Barter, R H

    2004-07-20

    ArchGenXML is a tool that allows easy creation of Zope products through the use of Archetypes. The Integrated Design and Production Reference (IDPR) should be highly configurable in order to meet the needs of a diverse engineering community. Ease of configuration is key to the success of IDPR. The purpose of this paper is to describe a method of using a UML diagram editor to configure IDPR through ArchGenXML and Archetypes.

  19. Design of bandgap reference circuits in a 65 nm CMOS technology for HL-LHC applications

    NASA Astrophysics Data System (ADS)

    Traversi, G.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Ratti, L.; Re, V.

    2015-02-01

    This work is concerned with the design and characterization of bandgap reference circuits capable of operating with a power supply of 1.2 V in view of applications to HL-LHC experiments. Due to the harsh environment foreseen for these devices, different solutions have been considered and implemented in a 65 nm CMOS technology. Together with a conventional structure which exploits bipolar devices, a smaller solution based on pn diodes and a version with MOS transistors biased in weak inversion region are included. This paper intends to describe and compare the features of the different circuits designed.

  20. Design of two-dimensional zero reference codes with cross-entropy method.

    PubMed

    Chen, Jung-Chieh; Wen, Chao-Kai

    2010-06-20

    We present a cross-entropy (CE)-based method for the design of optimum two-dimensional (2D) zero reference codes (ZRCs) in order to generate a zero reference signal for a grating measurement system and achieve absolute position, a coordinate origin, or a machine home position. In the absence of diffraction effects, the 2D ZRC design problem is known as the autocorrelation approximation. Based on the properties of the autocorrelation function, the design of the 2D ZRC is first formulated as a particular combination optimization problem. The CE method is then applied to search for an optimal 2D ZRC and thus obtain the desirable zero reference signal. Computer simulation results indicate that there are 15.38% and 14.29% reductions in the second maxima value for the 16x16 grating system with n(1)=64 and the 100x100 grating system with n(1)=300, respectively, where n(1) is the number of transparent pixels, compared with those of the conventional genetic algorithm.

  1. Optimization of the Low-Loss SRF Cavity for the ILC

    SciTech Connect

    Z. Li; L. Ge; K. Ko; L. Lee; C.-K. Ng; G. L. Schussman; L. Xiao; T. Higo; Y. Morozumi; K. Saito; P. Kneisel; J. S. Sekutowicz

    2007-08-01

    The Low-Loss shape cavity design has been proposed as a possible alternative to the baseline TESLA cavity design for the ILC. The advantages of this design over the TESLA cavity are its lower cryogenic loss, and higher achievable gradient due to lower surface fields. High gradient prototypes for such designs have been tested at KEK (ICHIRO) and JLab (LL). However, issues related to HOM damping and multipacting (MP) still need to be addressed. Preliminary numerical studies of the prototype cavities have shown unacceptable damping for some higher-order dipole modes if the typical TESLA HOM couplers are directly adapted to the design. The resulting wakefield will dilute the beam emittance thus reduces the machine luminosity. Furthermore, high gradient tests on a 9-cell prototype at KEK have experienced MP barriers although a single LL cell had achieved a high gradient. From simulations, MP activities are found to occur in the end-groups of the cavity. In this paper, we will present the optimization results of the end-groups for the Low-Loss shape for effective HOM damping and alleviation of multipacting. Comparisons of simulation results with measurements will also be presented.

  2. Cavity BPM System Tests for the ILC Spectrometer

    SciTech Connect

    Slater, M.

    2007-12-21

    The main physics program of the International Linear Collider (ILC) requires a measurement of the beam energy at the interaction point with an accuracy of 10{sup -4} or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPMs) has been proposed. This paper reports on the cavity BPM system that was deployed to test this proposal. We demonstrate sub-micron resolution and micron level stability over 20 hours for a 1 m long BPM triplet. We find micron-level stability over 1 hour for 3 BPM stations distributed over a 30 m long baseline. The understanding of the behavior and response of the BPMs gained from this work has allowed full spectrometer tests to be carried out.

  3. Development of a TPC for an ILC Detector

    NASA Astrophysics Data System (ADS)

    Diener, R.; LCTPC Collaboration

    The ILD concept, one of two proposed detector concepts for the planned International Linear Collider (ILC), foresees a Time Projection Chamber (TPC) as the main tracking detector. The LCTPC (Linear Collider TPC) collaboration pursues R&D to develop such a TPC based on the best state-of-the-art technology. After tests with smaller prototypes, the current efforts focus on studies using a large prototype with a diameter of 770 mm and a length of 610 mm. This prototype can accommodate seven read-out modules of a size comparable to the onesthatwouldbeusedinthe finalTPC.Several prototypesof modulesusing MicromegasorGEM structuresasgas amplification were constructedand tested. Besidesthe traditionalpad read-out,apixel read-out basedontheTimePix chipis studiedinthese testswithupto8TimePixchipsona board.The current statusand futureplansoftheR&Dare presented.

  4. Configuration Studies and Recommendations for the ILC DampingRings

    SciTech Connect

    Wolski, Andrzej; Gao, Jie; Guiducci, Susanna

    2006-02-04

    We describe the results of studies comparing different options for the baseline configuration of the ILC damping rings. The principal configuration decisions apply to the circumference, beam energy, lattice type, and technology options for key components, including the injection/extraction kickers and the damping wigglers. To arrive at our recommended configuration, we performed detailed studies of a range of lattices representing a variety of different configuration options; these lattices are described in Chapter 2. The results of the various studies are reported in chapters covering issues of beam dynamics, technical subsystems, costs, and commissioning, reliability and upgrade ability. Our detailed recommendations for the baseline configuration are given in Chapter 7, where we also outline further research and development that is needed before a machine using our recommended configuration can be built and operated successfully. In the same chapter, we suggest possible alternatives to the baseline configuration.

  5. Configuration Studies and Recommendations for the ILC DampingRings

    SciTech Connect

    Wolski, Andrzej; Gao, Jie; Guiducci, Susanna

    2006-02-04

    We describe the results of studies comparing differentoptions for the baseline configuration of the ILC damping rings. Theprincipal configuration decisions apply to the circumference, beamenergy, lattice type, and technology options for key components,including the injection/extraction kickers and the damping wigglers. Toarrive at our recommended configuration, we performed detailed studies ofa range of lattices representing a variety of different configurationoptions; these lattices are described in Chapter 2. The results of thevarious studies are reported in chapters covering issues of beamdynamics, technical subsystems, costs, and commissioning, reliability andupgradeability. Our detailed recommendations for the baselineconfiguration are given in Chapter 7, where we also outline furtherresearch and development that is needed before a machine using ourrecommended configuration can be built and operated successfully. In thesame chapter, we suggest possible alternatives to the baselineconfiguration.

  6. Reconstruction of IP Beam Parameters at the ILC From Beamstrahlung

    SciTech Connect

    White, G.; /SLAC /Queen Mary, U. of London

    2005-07-11

    The luminosity performance of the ILC will be very sensitive to the parameters of the colliding bunches. Only some of these parameters can be measured using planned instrumentation. This analysis aims to access some of the colliding beam parameters not available by other means and to improve on the resolution of those that are. GUINEA-PIG is used to simulate the beam-beam interactions and produce beamstrahlung radiation (e+/e- pairs and photons). These are tracked to a simulation of the low-angle Beam Calorimeter and a photon detector and event shapes are produced. A Taylor map is produced to transform from the event shapes to the simulated beam parameters. This paper reports on the progress of this analysis, examining the usefulness of the proposed fitting technique.

  7. FPGA-based Klystron linearization implementations in scope of ILC

    SciTech Connect

    Omet, M.; Michizono, S.; Varghese, P.; Schlarb, H.; Branlard, J.; Cichalewski, W.

    2015-01-23

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successful implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.

  8. FPGA-based Klystron linearization implementations in scope of ILC

    DOE PAGES

    Omet, M.; Michizono, S.; Matsumoto, T.; ...

    2015-01-23

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less

  9. Implications of long-range wakefields on multi-bunch beam dynamics in the ILC with a new low surface field superconducting cavity

    NASA Astrophysics Data System (ADS)

    Nesmiyan, I.; Jones, R. M.; Juntong, N.

    2014-01-01

    This article focusses on a beam dynamics study for the linacs of the ILC. In particular, the impact of long-range transverse wakefields on the beam quality is studied for the case in which the ILC would be built using the new low surface field (NLSF) superconducting cavities. This presents an alternative design to the baseline TESLA-style cavities. The progress of the beam down ~10 km of each linac is simulated using the tracking computer code PLACET. In addition, the results of an analytical matrix method, in which the beam is subjected to identical wakefields from each cavity, are also presented. Both systematic and random errors, arising as a natural process during fabrication, are implemented in the beam tracking study. The latter source of error is found to be beneficial, as emittance dilution is reduced due to the beam receiving non-coherent kicks.

  10. Planetary benchmarks. [structural design criteria for radar reference devices on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Uphoff, C.; Staehle, R.; Kobrick, M.; Jurgens, R.; Price, H.; Slade, M.; Sonnabend, D.

    1978-01-01

    Design criteria and technology requirements for a system of radar reference devices to be fixed to the surfaces of the inner planets are discussed. Offshoot applications include the use of radar corner reflectors as landing beacons on the planetary surfaces and some deep space applications that may yield a greatly enhanced knowledge of the gravitational and electromagnetic structure of the solar system. Passive retroreflectors with dimensions of about 4 meters and weighing about 10 kg are feasible for use with orbiting radar at Venus and Mars. Earth-based observation of passive reflectors, however, would require very large and complex structures to be delivered to the surfaces. For Earth-based measurements, surface transponders offer a distinct advantage in accuracy over passive reflectors. A conceptual design for a high temperature transponder is presented. The design appears feasible for the Venus surface using existing electronics and power components.

  11. Lung ILC2s link innate and adaptive responses in allergic inflammation.

    PubMed

    Martinez-Gonzalez, Itziar; Steer, Catherine A; Takei, Fumio

    2015-03-01

    How allergens trigger the T helper 2 (Th2) response that characterizes allergic lung inflammation is not well understood. Epithelium-derived alarmins released after an allergen encounter activate the innate immune system, including group 2 innate lymphoid cells (ILC2s) which produce the type 2 interleukins IL-5 and IL-13. It has been recently shown that ILC2-derived cytokines are responsible not only for the innate responses underlying allergic inflammation but also for the initiation of the adaptive Th2 response. We review the role of lung ILC2s in the development of allergic inflammation and, in the context of recent findings, propose a common pathway wherein ILC2s, activated by the epithelium-derived cytokine IL-33, link the innate and the adaptive responses after allergen encounter in the lung. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway.

    PubMed

    Yu, Yong; Tsang, Jason C H; Wang, Cui; Clare, Simon; Wang, Juexuan; Chen, Xi; Brandt, Cordelia; Kane, Leanne; Campos, Lia S; Lu, Liming; Belz, Gabrielle T; McKenzie, Andrew N J; Teichmann, Sarah A; Dougan, Gordon; Liu, Pentao

    2016-11-03

    Innate lymphoid cells (ILCs) functionally resemble T lymphocytes in cytotoxicity and cytokine production but lack antigen-specific receptors, and they are important regulators of immune responses and tissue homeostasis. ILCs are generated from common lymphoid progenitors, which are subsequently committed to innate lymphoid lineages in the α-lymphoid progenitor, early innate lymphoid progenitor, common helper innate lymphoid progenitor and innate lymphoid cell progenitor compartments. ILCs consist of conventional natural killer cells and helper-like cells (ILC1, ILC2 and ILC3). Despite recent advances, the cellular heterogeneity, developmental trajectory and signalling dependence of ILC progenitors are not fully understood. Here, using single-cell RNA-sequencing (scRNA-seq) of mouse bone marrow progenitors, we reveal ILC precursor subsets, delineate distinct ILC development stages and pathways, and report that high expression of programmed death 1 (PD-1(hi)) marked a committed ILC progenitor that was essentially identical to an innate lymphoid cell progenitor. Our data defined PD-1(hi)IL-25R(hi) as an early checkpoint in ILC2 development, which was abolished by deficiency in the zinc-finger protein Bcl11b but restored by IL-25R overexpression. Similar to T lymphocytes, PD-1 was upregulated on activated ILCs. Administration of a PD-1 antibody depleted PD-1(hi) ILCs and reduced cytokine levels in an influenza infection model in mice, and blocked papain-induced acute lung inflammation. These results provide a perspective for exploring PD-1 and its ligand (PD-L1) in immunotherapy, and allow effective manipulation of the immune system for disease prevention and therapy.

  13. Reference energy extremal optimization: a stochastic search algorithm applied to computational protein design.

    PubMed

    Zhang, Naigong; Zeng, Chen

    2008-08-01

    We adapt a combinatorial optimization algorithm, extremal optimization (EO), for the search problem in computational protein design. This algorithm takes advantage of the knowledge of local energy information and systematically improves on the residues that have high local energies. Power-law probability distributions are used to select the backbone sites to be improved on and the rotamer choices to be changed to. We compare this method with simulated annealing (SA) and motivate and present an improved method, which we call reference energy extremal optimization (REEO). REEO uses reference energies to convert a problem with a structured local-energy profile to one with more random profile, and extremal optimization proves to be extremely efficient for the latter problem. We show in detail the large improvement we have achieved using REEO as compared to simulated annealing and discuss a number of other heuristics we have attempted to date. 2008 Wiley Periodicals, Inc.

  14. High density wireless EEG prototype: Design and evaluation against reference equipment.

    PubMed

    Rossi, Stefano; Patki, Shrishail; Passoni, Marco; Perko, Hannes; Gritsch, Gerhard; Ossenblok, Pauly; Yazicioglu, Refet Firat

    2014-01-01

    A high density wireless electroencephalographic (EEG) platform has been designed. It is able to record up to 64 EEG channels with electrode to tissue impedance (ETI) monitoring. The analog front-end is based on two kinds of low power ASICs implementing the active electrodes and the amplifier. A power efficient compression algorithm enables the use of continuous wireless transmission of data through Bluetooth for real-time monitoring with an overall power consumption of about 350 mW. EEG acquisitions on five subjects (one healthy subject and four patients suffering from epilepsy) have been recorded in parallel with a reference system commonly used in clinical practice and data of the wireless prototype and reference system have been processed with an automatic tool for seizure detection and localization. The false alarm rates (0.1-0.5 events per hour) are comparable between the two system and wireless prototype also detected the seizure correctly and allowed its localization.

  15. On direct model reference adaptive controller design for flexible space structures

    NASA Astrophysics Data System (ADS)

    Mehiel, Eric Anthony

    Direct Model Reference Adaptive Control (DMRAC) and Direct Adaptive Disturbance Rejection (DADR) control methods have recently been developed with control of flexible structures in mind. In this case, the plant model is generally high order since many modes of the structure are needed to faithfully model the response of the structure. DMRAC and DADR control provide a method for adaptively controlling such a high order system and rejecting disturbances from the plant with a much lower order controller. However, DMRAC and DADR theory do not provide many suggestions or guidelines for actually designing and implementing DMRAC and DADR controllers. A procedural design process is proposed where by the engineer can develop a reference model and adaptive gains for the DMRAC and DADR controller. How to modify a non-minimum phase or non-SPR system so that the augmented system is SPR is also considered. By modifying the output matrix of the system with a nonlinear optimization technique, the system can be made SPR. Within this context, two theorems are stated and proved that show when certain types of systems can be made SPR or when the systems are SPR. It is shown that an appropriate choice of output feedback gain for a single mode, SISO system, will always stabilize the system and make the system SPR. Also, it is shown that a multi-mode, MIMO system is SPR when certain conditions are met. In both cases the satisfaction of the SPR conditions are based on the modal characteristics of the plant model. The proposed design procedure and theorems are applied to a known illustrative system, a 2-dimentional aeroelastic wing system, and a 79-state model of a space telescope. Each application of the DMRAC and DADR design procedure elucidate different problems that arise when trying to apply DMRAC and DADR control to a given system. The problems encountered are synthesized as design suggestions for engineers hoping to apply DMRAC and DADR control techniques. Namely, if at all possible

  16. Requirements and design reference mission for the WFIRST/AFTA coronagraph instrument

    NASA Astrophysics Data System (ADS)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; Noecker, Charley; Neville, Timothy; Pham, Hung; Rud, Mike; Tang, Hong; Villalvazo, Juan

    2015-09-01

    The WFIRST-AFTA coronagraph instrument takes advantage of AFTAs 2.4-meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes: Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, Lyot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architectures. Structural Thermal Optical Performance (STOP) analysis predicts the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  17. Requirements and Design Reference Mission for the WFIRST-AFTA Coronagraph Instrument

    NASA Technical Reports Server (NTRS)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; hide

    2015-01-01

    The WFIRST-AFTA coronagraph instrument take s advantage of AFTA s 2.4 -meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes : Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, yot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architecture s. Structural Thermal Optical Performance (STOP) analysis predict s the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  18. Resistive-Wall Instability in the Damping Rings of the ILC

    SciTech Connect

    Wang, L.; Bane, K.L.F.; Raubenheimer, T.; Ross, M.; /SLAC

    2006-07-05

    In the damping rings of the International Linear Collider (ILC), the resistive-wall instability is one of the dominant transverse instabilities. This instability directly influences the choice of material and aperture of the vacuum pipe, and the parameters of the transverse feedback system. This paper investigates the resistive-wall instabilities in an ILC damping ring under various conditions of beam pipe material, aperture, and fill pattern.

  19. A Study of Laser System Requirements for Application in Beam Diagnostics And Polarimetry at the ILC

    SciTech Connect

    Dixit, S.; Delerue, N.; Foster, B.; Howell, D.F.; Peach, K.; Quelch, G.; Qureshi, M.; Reichold, A.; Hirst, G.; Ross, I.; Urakawa, J.; Soskov, V.; Variola, A.; Zomer, F.; Blair, G.A.; Boogert, S.T.; Boorman, G.; Bosco, A.; Driouichi, C.; Karataev, P.; Brachmann, A.; /SLAC

    2007-02-12

    Advanced laser systems will be essential for a range of diagnostics devices and polarimetry at the ILC. High average power, high beam quality, excellent stability and reliability will be crucial in order to deliver the information required to attain the necessary ILC luminosity as well as for efficient polarimetry. The key parameters are listed together with the R & D required to achieve the necessary laser system performance.

  20. Murine thymic NK cells are distinct from ILC1s and have unique transcription factor requirements.

    PubMed

    Gabrielli, Sara; Sun, Mengxi; Bell, April; Zook, Erin C; de Pooter, Renee F; Zamai, Loris; Kee, Barbara L

    2017-03-09

    Group 1 innate lymphoid cells include natural killer (NK) cells and ILC1s, which mediate the response to intracellular pathogens. Thymic NK (tNK) cells were described with hybrid features of immature NK cells and ILC1 but whether these cells are related to NK cells or ILC1 has not been fully investigated. We report that murine tNK cells expressed the NK-cell associated transcription factor EOMES and developed independent of the essential ILC1 factor TBET, confirming their placement within the NK lineage. Moreover, tNK cells resemble NK cells rather than ILC1 in their requirements for the E protein transcription factor inhibitor ID2. We provide further insight into the mechanisms governing tNK-cell development by showing that the transcription factor ETS1 prevented tNK cell acquisition of the conventional NK-cell maturation markers CD11b and KLRG1. Our data reveal few ILC1 in the thymus and clarify the identity and developmental requirements of tNK cells. This article is protected by copyright. All rights reserved.

  1. Prolonged activation of IL-5–producing ILC2 causes pulmonary arterial hypertrophy

    PubMed Central

    Tsuneyama, Koichi; Kawaguchi, Makoto; Fukuoka, Junya; Kudo, Fujimi; Nakae, Susumu; Arita, Makoto; Nagai, Yoshinori; Takaki, Satoshi; Takatsu, Kiyoshi

    2017-01-01

    IL-33 is one of the critical cytokines that activates group 2 innate lymphoid cells (ILC2s) and mediates allergic reactions. Accumulating evidence suggests that IL-33 is also involved in the pathogenesis of several chronic inflammatory diseases. Previously, we generated an IL-5 reporter mouse and revealed that lung IL-5–producing ILC2s played essential roles in regulating eosinophil biology. In this study, we evaluated the consequences of IL-33 administration over a long period, and we observed significant expansion of ILC2s and eosinophils surrounding pulmonary arteries. Unexpectedly, pulmonary arteries showed severe occlusive hypertrophy that was ameliorated in IL-5– or eosinophil-deficient mice, but not in Rag2-deficient mice. This indicates that IL-5–producing ILC2s and eosinophils play pivotal roles in pulmonary arterial hypertrophy. Administration of a clinically used vasodilator was effective in reducing IL-33–induced hypertrophy and repressed the expansion of ILC2s and eosinophils. Taken together, these observations demonstrate a previously unrecognized mechanism in the development of pulmonary arterial hypertrophy and the causative roles of ILC2 in the process. PMID:28405615

  2. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control.

    PubMed

    Schwartz, Christian; Khan, Adnan R; Floudas, Achilleas; Saunders, Sean P; Hams, Emily; Rodewald, Hans-Reimer; McKenzie, Andrew N J; Fallon, Padraic G

    2017-09-04

    Group 2 innate lymphoid cells (ILC2s) are important effector cells driving the initiation of type 2 immune responses leading to adaptive T helper 2 (Th2) immunity. Here we show that ILC2s dynamically express the checkpoint inhibitor molecule PD-L1 during type 2 pulmonary responses. Surprisingly, PD-L1:PD-1 interaction between ILC2s and CD4(+) T cells did not inhibit the T cell response, but PD-L1-expressing ILC2s stimulated increased expression of GATA3 and production of IL-13 by Th2 cells both in vitro and in vivo. Conditional deletion of PD-L1 on ILC2s impaired early Th2 polarization and cytokine production, leading to delayed worm expulsion during infection with the gastrointestinal helminth Nippostrongylus brasiliensis Our results identify a novel PD-L1-controlled mechanism for type 2 polarization, with ILC2s mediating an innate checkpoint to control adaptive T helper responses, which has important implications for the treatment of type 2 inflammation. © 2017 Schwartz et al.

  3. Human Exploration of Mars Design Reference Architecture 5.0, Addendum #2

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor); Watts Kevin D. (Editor)

    2014-01-01

    This report serves as the second Addendum to NASA-SP-2009-566, "Human Exploration of Mars Design Reference Architecture 5.0." The data and descriptions contained within this Addendum capture some of the key assessments and studies produced since publication of the original document, predominately covering those conducted from 2009 through 2012. The assessments and studies described herein are for the most part independent stand-alone contributions. Effort has not been made to assimilate the findings to provide an updated integrated strategy. That is a recognized future effort. This report should not be viewed as constituting a formal plan for the human exploration of Mars.

  4. MAPMT H7546B anode current response study for ILC SiD muon system prototype

    SciTech Connect

    Dyshkant, A.; Blazey, G.; Francis, K.; Hedin, D.; Zutshi, V.; Fisk, H.; Milstene, C.; Abrams, R.; /Indiana U.

    2007-10-01

    The proposed Silicon Detector (SiD) concept for the ILC has barrel and end cap muon systems. An SiD scintillator based muon system prototype has 256 strips and was constructed from extruded strips, WLS fibers, clear fibers, and multianode photo multiplier tubes (MAPMT) Hamamatsu H7546B. Six MAPMTs were used. As a first step to understand strip output, the response of every anode to a given brightness of light and applied voltage must be measured. For the test, a custom made light source was used. Each MAPMT output was measured independently. The anode currents were measured at constant (green) input light brightness and the same photocathode to anode voltage (800V). The anode currents have a wide spread; for all tubes the maximum value is 5.23 times larger than the minimum value. The MAPMT cross talk was measured for one of the central inputs. The maximum cross talk value is about 4.9%. The average cross talk for the nearest four neighboring channels is 3.9%, for the farthest four is 1%. To assure the reproducibility and repeatability of the measurements, the double reference method was used.

  5. Cryogenic Propulsion Stage (CPS) Configuration in Support of NASA's Multiple Design Reference Missions (DRMs)

    NASA Technical Reports Server (NTRS)

    Hanna, Stephen G.; Jones, David L.; Creech, Stephen D.; Lawrence, Thomas D.

    2012-01-01

    In support of the National Aeronautics and Space Administration's (NASA) Human Exploration and Operations Mission Directorate (HEOMD), the Space Launch System (SLS) is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's or-bit (BEO). The SLS Team is tasked with developing a system capable of safely and repeatedly lofting a new fleet of spaceflight vehicles beyond Earth orbit. The Cryogenic Propulsion Stage (CPS) is a key enabler for evolving the SLS capability for BEO missions. This paper reports on the methodology and initial recommendations relative to the CPS, giving a brief retrospective of early studies on this promising propulsion hardware. This paper provides an overview of the requirements development and CPS configuration in support of NASA's multiple Design Reference Missions (DRMs).

  6. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection.

    PubMed

    Wilhelm, Christoph; Harrison, Oliver J; Schmitt, Vanessa; Pelletier, Martin; Spencer, Sean P; Urban, Joseph F; Ploch, Michelle; Ramalingam, Thirumalai R; Siegel, Richard M; Belkaid, Yasmine

    2016-07-25

    Innate lymphoid cells (ILC) play an important role in many immune processes, including control of infections, inflammation, and tissue repair. To date, little is known about the metabolism of ILC and whether these cells can metabolically adapt in response to environmental signals. Here we show that type 2 innate lymphoid cells (ILC2), important mediators of barrier immunity, predominantly depend on fatty acid (FA) metabolism during helminth infection. Further, in situations where an essential nutrient, such as vitamin A, is limited, ILC2 sustain their function and selectively maintain interleukin 13 (IL-13) production via increased acquisition and utilization of FA. Together, these results reveal that ILC2 preferentially use FAs to maintain their function in the context of helminth infection or malnutrition and propose that enhanced FA usage and FA-dependent IL-13 production by ILC2 could represent a host adaptation to maintain barrier immunity under dietary restriction.

  7. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection

    PubMed Central

    Harrison, Oliver J.; Urban, Joseph F.; Ramalingam, Thirumalai R.; Siegel, Richard M.

    2016-01-01

    Innate lymphoid cells (ILC) play an important role in many immune processes, including control of infections, inflammation, and tissue repair. To date, little is known about the metabolism of ILC and whether these cells can metabolically adapt in response to environmental signals. Here we show that type 2 innate lymphoid cells (ILC2), important mediators of barrier immunity, predominantly depend on fatty acid (FA) metabolism during helminth infection. Further, in situations where an essential nutrient, such as vitamin A, is limited, ILC2 sustain their function and selectively maintain interleukin 13 (IL-13) production via increased acquisition and utilization of FA. Together, these results reveal that ILC2 preferentially use FAs to maintain their function in the context of helminth infection or malnutrition and propose that enhanced FA usage and FA-dependent IL-13 production by ILC2 could represent a host adaptation to maintain barrier immunity under dietary restriction. PMID:27432938

  8. The effects of user factors and symbol referents on public symbol design using the stereotype production method.

    PubMed

    Ng, Annie W Y; Siu, Kin Wai Michael; Chan, Chetwyn C H

    2012-01-01

    This study investigated the influence of user factors and symbol referents on public symbol design among older people, using the stereotype production method for collecting user ideas during the symbol design process. Thirty-one older adults were asked to draw images based on 28 public symbol referents and to indicate their familiarity with and ease with which they visualised each referent. Differences were found between the pictorial solutions generated by males and females. However, symbol design was not influenced by participants' education level, vividness of visual imagery, object imagery preference or spatial imagery preference. Both familiar and unfamiliar referents were illustrated pictorially without much difficulty by users. The more visual the referent, the less difficulty the users had in illustrating it. The findings of this study should aid the optimisation of the stereotype production method for user-involved symbol design. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. Design verification of large time constant thermal shields for optical reference cavities.

    PubMed

    Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

  10. Spacecraft and mission design for the SpaceNuclear PowerSystem Reference Mission

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1987-01-01

    The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the Space Nuclear Power System Reference Mission, are outlined. The vehicle design is based on a 92 kW ammonia arcjet system operating at an I(sp) of 1050 s and an efficiency of 45 percent. The arcjet/gimbal system, power processing unit, and propellant feed-system are described. A 100 kW(e) space nuclear power system is assumed and the spacecraft mass is baselined at 5250 kg excluding the propellant, propellent feed system, and integrated chemical boost engine. A radiation/arcjet efflux diagnostics package is included in the performance analysis. Three mission scenarios are described and are capable of demonstrating the full capability of the space nuclear power source. The missions considered include power system deployment to possible SDI platform orbits and a spacecraft storage mission to an orbit of three times geosynchronous (GEO) with return to GEO corresponding to Delta V's between 7400 m/s, and 7900 m/s. This spacecraft meets the Reference Mission constraint of low developmental risk and is scaleable to power levels projected for future space platforms.

  11. Compact, Intelligent, Digitally Controlled IGBT Gate Drivers for a PEBB-Based ILC Marx Modulator

    SciTech Connect

    Nguyen, M.N.; Burkhart, C.; Olsen, J.J.; Macken, K.; /SLAC

    2010-06-07

    SLAC National Accelerator Laboratory has built and is currently operating a first generation prototype Marx klystron modulator to meet ILC specifications. Under development is a second generation prototype, aimed at improving overall performance, serviceability, and manufacturability as compared to its predecessor. It is designed around 32 cells, each operating at 3.75 kV and correcting for its own capacitor droop. Due to the uniqueness of this application, high voltage gate drivers needed to be developed for the main 6.5 kV and droop correction 1.7 kV IGBTs. The gate driver provides vital functions such as protection of the IGBT from over-voltage and over-current, detection of gate-emitter open and short circuit conditions, and monitoring of IGBT degradation (based on collector-emitter saturation voltage). Gate drive control, diagnostic processing capabilities, and communication are digitally implemented using an FPGA. This paper details the design of the gate driver circuitry, component selection, and construction layout. In addition, experimental results are included to illustrate the effectiveness of the protection circuit.

  12. Dark current and radiation shielding studies for the ILC main linac

    SciTech Connect

    Mokhov, Nikolai V.; Rakhno, I. L.; Solyak, N. A.; Sukhanov, A.; Tropin, I. S.

    2016-12-05

    Electrons of dark current (DC), generated in high-gradient superconducting RF cavities (SRF) due to field emission, can be accelerated up to very high energies—19 GeV in the case of the International Linear Collider (ILC) main linac—before they are removed by focusing and steering magnets. Electromagnetic and hadron showers generated by such electrons can represent a significant radiation threat to the linac equipment and personnel. In our study, an operational scenario is analysed which is believed can be considered as the worst case scenario for the main linac regarding the DC contribution to the radiation environment in the main linac tunnel. A detailed modelling is performed for the DC electrons which are emitted from the surface of the SRF cavities and can be repeatedly accelerated in the high-gradient fields in many SRF cavities. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the prompt dose design level of 25 μSv/hr in the service tunnel can be provided by a 2.3-m thick concrete wall between the main and service ls.

  13. Innate Immune Defenses Mediated by Two ILC Subsets are Critical for Protection Against Acute Clostridium difficile Infection

    PubMed Central

    Abt, Michael C.; Lewis, Brittany B.; Caballero, Silvia; Xiong, Huizhong; Carter, Rebecca A.; Sušac, Bože; Ling, Lilan; Leiner, Ingrid; Pamer, Eric G.

    2015-01-01

    Summary Infection with the opportunistic enteric pathogen Clostridium difficile is an increasingly common clinical complication that follows antibiotic treatment-induced gut microbiota perturbation. Innate lymphoid cells (ILCs) are early responders to enteric pathogens; however, their role during C. difficile infection is undefined. To identify immune pathways that mediate recovery from C. difficile infection, we challenged C57BL/6, Rag1−/−, which lack T and B cells, and Rag2−/− Il2rg−/− (Ragγc−/−) mice, which additionally lack ILCs, with C. difficile. In contrast to Rag1−/− mice, ILC-deficient Ragγc−/− mice rapidly succumbed to infection. Rag1−/−, but not Ragγc−/− mice, upregulate expression of ILC1 or ILC3 associated proteins following C. difficile infection. Protection against infection was restored by transferring ILCs into Ragγc−/− mice. While ILC3s made a minor contribution to resistance, loss of IFN-γ or T-bet-expressing ILC1s in Rag1−/− mice increased susceptibility to C. difficile. These data demonstrate a critical role for ILC1s in defense against C. difficile. PMID:26159718

  14. Progress towards crab cavity solutions for the ILC

    SciTech Connect

    Burt, G.; Dexter, A.; Bellantoni, L.; Beard, C.; Goudket, P.; /Cockcroft Inst. Accel. Sci. Tech.

    2006-06-01

    In order to achieve acceptable luminosity for ILC crossing angles greater than 2 mrad, RF deflection cavities must be used to rotate electron and position bunches leading up to the IP. A bunch that passes through a deflection cavity at a phase where the deflection averages to zero, receives a crab kick leading to a finite rotation at the IP. For a beam energy of 500 GeV and a crossing angle of 20 mrad the required crab kick is about 11.4 MV at 1.3 GHz and 3.8 MV at 3.9 GHz. Cavities are needed on both beams and are likely to be positioned about 12 m before the IP. Any RF phase error between the bunch and the cavity leads to a deflection of the bunch in addition to a rotation of the bunch. Any differential phase error between the cavities leads to differing deflections and consequential loss in luminosity. An updated analysis of system requirements and phase tolerances with respect to original calculations [1] is given. Issues on cavity and frequency choice are discussed.

  15. FPGA-based klystron linearization implementations in scope of ILC

    NASA Astrophysics Data System (ADS)

    Omet, M.; Michizono, S.; Matsumoto, T.; Miura, T.; Qiu, F.; Chase, B.; Varghese, P.; Schlarb, H.; Branlard, J.; Cichalewski, W.

    2014-12-01

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successful implementation for one algorithm and a proof of principle for two algorithms. The functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation. Besides this, a proof of principle of an FPGA-based klystron and cavity simulator implemented at the High Energy Accelerator Research Organization (KEK), Japan, was demonstrated. Its purpose is to allow the development and test of digital LLRF control systems including klystron linearization algorithms when no actual klystron and cavity are available.

  16. FPGA-based klystron linearization implementations in scope of ILC

    NASA Astrophysics Data System (ADS)

    Omet, M.; Michizono, S.; Matsumoto, T.; Miura, T.; Qiu, F.; Chase, B.; Varghese, P.; Schlarb, H.; Branlard, J.; Cichalewski, W.

    2015-04-01

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successful implementation for one algorithm and a proof of principle for two algorithms. The functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation. Besides this, a proof of principle of an FPGA-based klystron and cavity simulator implemented at the High Energy Accelerator Research Organization (KEK), Japan was demonstrated. Its purpose is to allow the development and test of digital LLRF control systems including klystron linearization algorithms when no actual klystron and cavity are available.

  17. Technical Reference Suite Addressing Challenges of Providing Assurance for Fault Management Architectural Design

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda; Whitman, Gerek

    2016-01-01

    Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IVV) Program, with Software Assurance Research Program support, extracted FM architectures across the IVV portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IVV projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management.

  18. An extended protocol for usability validation of medical devices: research design and reference model.

    PubMed

    Schmettow, Martin; Schnittker, Raphaela; Schraagen, Jan Maarten

    2017-03-21

    This paper proposes and demonstrates an extended protocol for usability validation testing of medical devices. A review of currently used methods for the usability evaluation of medical devices revealed two main shortcomings. Firstly, the lack of methods to closely trace the interaction sequences and derive performance measures. Secondly, a prevailing focus on cross-sectional validation studies, ignoring the issues of learnability and training. The U.S. Federal Drug and Food Administration's recent proposal for a validation testing protocol for medical devices is then extended to address these shortcomings: (1) a novel process measure 'normative path deviations' is introduced that is useful for both quantitative and qualitative usability studies and (2) a longitudinal, completely within-subject study design is presented that assesses learnability, training effects and allows analysis of diversity of users. A reference regression model is introduced to analyze data from this and similar studies, drawing upon generalized linear mixed-effects models and a Bayesian estimation approach. The extended protocol is implemented and demonstrated in a study comparing a novel syringe infusion pump prototype to an existing design with a sample of 25 healthcare professionals. Strong performance differences between designs were observed with a variety of usability measures, as well as varying training-on-the-job effects. We discuss our findings with regard to validation testing guidelines, reflect on the extensions and discuss the perspectives they add to the validation process.

  19. Characterization of bandgap reference circuits designed for high energy physics applications

    NASA Astrophysics Data System (ADS)

    Traversi, G.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Mattiazzo, S.; Ratti, L.; Re, V.; Riceputi, E.

    2016-07-01

    The objective of this work is to design a high performance bandgap voltage reference circuit in a standard commercial 65 nm CMOS technology capable of operating in harsh radiation environments. A prototype circuit based on three different devices (diode, bipolar transistor and MOSFET) was fabricated and tested. Measurement results show a temperature variation as low as ±3.4 mV over a temperature range of 170 ° C (-30 °C to 140 °C) and a line regulation at room temperature of 5.2%/V. Measured VREF is 690 mV±15 mV (3σ) for 26 samples on the same wafer. Circuits correctly operate with supply voltages in the range from 1.32 V down to 0.78 V. A reference voltage shift of only 7.6 mV (around 1.1%) was measured after irradiation with 10 keV X-rays up to an integrated dose of 225 Mrad (SiO2).

  20. Human Health and Performance Aspects of the Mars Design Reference Mission

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2000-01-01

    This paper will describe the current planning for exploration-class missions, emphasizing the medical, and human factors aspects of such expeditions. The details of mission architecture are still under study, but a typical Mars design reference mission comprises a six-month transit from Earth to Mar, eighteen months in residence on Mars, and a six-month transit back to Earth. Physiological stressors will include environmental factors such as prolonged exposure to radiation, weightlessness in transit, and hypogravity and a toxic atmosphere while on Mars. Psychological stressors will include remoteness from Earth, confinement, and potential interpersonal conflicts, all complicated by circadian alterations. Medical risks including trauma must also be considered. Results of planning for assuring human health and performance will be presented.

  1. Performance of three 4. 5 m dipoles for SSC reference design D

    SciTech Connect

    Dahl, P.; Cottingham, J.; Fernow, R.; Garber, M.; Ghosh, A.; Goodzeit, C.; Greene, A.; Herrera, J.; Kahn, S.; Kelly, E.

    1985-01-01

    Three 4.5 m long dipoles for Reference Design D of the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos theta coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6T with little training, or the short sample limit of the conductor, and in subcooled (2.6 to 2.4 K) liquid, 8T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated at eight times the required current without training.

  2. The WFIRST Interim Design Reference Mission: Capabilities, Constraints, and Open Questions

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The Project Office and Science Definition Team for the Wide-Field Infrared Survey Telescope (WFIRST) are in the midst of a pre-Phase A study to establish a Design Reference Mission (DRM). An Interim report was released in June 2011, with a final report due later in 2012. The predicted performance of the Interim DRM Observatory will be described, including optical quality, observing efficiency, and sensitivity for representative observing scenarios. Observing constraints and other limitations on performance will also be presented, with an emphasis on potential Guest Observer programs. Finally, a brief status update will be provided on open trade studies of interest to the scientific community. The final DRM may differ from the Interim DRM presented here. However, the underlying requirements of the scientific programs are not expected to change, hence the capabilities of the IDRM are likely to be maintained even if the implementation changes in significant ways.

  3. RF and Data Acquisition Systems for Fermilab's ILC SRF Cavity Vertical Test Stand

    SciTech Connect

    Joseph P. Ozelis; Roger Nehring; Christiana Grenoble; Thomas J. Powers

    2007-06-01

    Fermilab is developing a facility for vertical testing of SRF cavities as part of a program to improve cavity performance reproducibility for the ILC. The RF system for this facility, using the classic combination of oscillator, phase detector/mixer, and loop amplifier to detect the resonant cavity frequency and lock onto the cavity, is based on the proven production cavity test systems used at Jefferson Lab for CEBAF and SNS cavity testing. The design approach is modular in nature, using commercial-off-the-shelf (COTS) components. This yields a system that can be easily debugged and modified, and with ready availability of spares. Data acquisition and control is provided by a PXI-based hardware platform in conjunction with software developed in the LabView programming environment. This software provides for amplitude and phase adjustment of incident RF power, and measures all relevant cavity power levels, cavity thermal environment parameters, as well as field emission-produced radiation. It also calculates the various cavity performance parameters and their associated errors. Performance during system commissioning and initial cavity tests will be presented.

  4. ILC Damping Rings: Benefit of the Antechamber or: Antechamber vs. SEY

    SciTech Connect

    Furman, M. A.

    2011-03-30

    We present simulation results of the build-up of the electron-cloud density ne for the two proposed ILC damping ring lattices, DC04 and DSB3, with particular attention to the potential benefit of an antechamber. We examine a field-free region and a dipole bending magnet, with or without an antechamber. We assume a secondary electronemission model for the chamber surface based on approximate fits to measured data for TiN, except that we let the peak value of the secondary emission yield (SEY), delta max, be a variable. We conclude that there is a critical value of delta max below which the antechamber provides a substantial benefit, roughly a factor ~;;40 reduction in ne relative to the case in which max exceeds the critical value. We estimate the steady-state value of ne as a function of delta max, and thereby obtain the critical value of delta max for all cases considered. Thus, from the perspective of the electron-cloud effect, the inclusion of an antechamber in the design is justified only if delta max is below the critical value. The results presented here constitute a slight extension of those previously presented in March and September, 2010 [1, 2].

  5. Estimation of radiation effects in the front-end electronics of an ILC electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Bartsch, V.; Postranecky, M.; Targett-Adams, C.; Warren, M.; Wing, M.

    2008-08-01

    The front-end electronics of the electromagnetic calorimeter of an International Linear Collider detector are situated in a radiation environment. This requires the effect of the radiation on the performance of the electronics, specifically FPGAs, to be examined. In this paper we study the flux, particle spectra and deposited doses at the front-end electronics of the electromagnetic calorimeter of a detector at the ILC. We also study the occupancy of the electromagnetic calorimeter. These estimates are compared with measurements, e.g. of the radiation damage of FPGAs, done elsewhere. The outcome of the study shows that the radiation doses and the annual flux is low enough to allow today's FPGAs to operate. The Single Event Upset rate, however, lies between 14 min and 12 h depending on the FPGA used and therefore needs to be considered in the design of the data acquisition system of the electromagnetic calorimeter. The occupancy is about 0.002 per bunch train not taking into account the effect of noise which depends on the choice of the detector.

  6. Technical Reference Suite Addressing Challenges of Providing Assurance for Fault Management Architectural Design

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda; Whitman, Gerek

    2016-01-01

    Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IV&V) Program, with Software Assurance Research Program support, extracted FM architectures across the IV&V portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IV&V projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management. The identification of particular FM architectures, visibility, and associated IV&V techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. Additionally, the role FM has with regard to strengthened security requirements, with potential to advance overall asset protection of flight software systems, is being addressed with the development of an adverse conditions database encompassing flight software vulnerabilities. Capitalizing on the established framework, this TR suite provides assurance capability for a variety of FM architectures and varied development approaches. Research results are being disseminated across NASA, other agencies, and the

  7. AHR prevents human IL-1R1hi ILC3 differentiation to natural killer cells

    PubMed Central

    Hughes, Tiffany; Briercheck, Edward L.; Freud, Aharon G.; Trotta, Rossana; McClory, Susan; Scoville, Steven D.; Keller, Karen; Deng, Youcai; Cole, Jordan; Harrison, Nicholas; Mao, Charlene; Zhang, Jianying; Benson, Don M.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    SUMMARY Accumulating evidence indicates that human natural killer (NK) cells develop in secondary lymphoid tissue (SLT) through a so-called “stage 3” developmental intermediate minimally characterized by a CD34-CD117+CD94- immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC) types that includes interleukin-1 receptor (IL-1R1) positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here we show that antagonism of the aryl hydrocarbon receptor (AHR) or silencing of AHR gene expression promotes differentiation of tonsillar IL-22-producing IL-1R1hi human ILC3s to CD56brightCD94+ IFN-gamma-producing cytolytic mature NK cells expressing eomesodermin (EOMES) and T-Box Protein 21 (TBX21 or TBET). Hence, AHR is a transcription factor that prevents human IL-1R1hi ILC3s from differentiating into NK cells. PMID:24953655

  8. Mechanical design of the University of Florida Torsion Pendulum for testing the LISA Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Shelley, Ryan; Chilton, Andrew; Olatunde, Tawio; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2014-03-01

    The Laser Interferometer Space Antenna (LISA) requires free falling test masses, whose acceleration must be below 3 fm/s2/rtHz in the lower part of LISA's frequency band ranging from 0.1 to 100 mHz. Gravitational reference sensors (GRS) house the test masses, shield them from external disturbances, control their orientation, and sense their position at the nm/rtHz level. The GRS torsion pendulum is a laboratory test bed for GRS technology. By decoupling the system of test masses from the gravity of the Earth, it is possible to identify and quantify many sources of noise in the sensor. The mechanical design of the pendulum is critical to the study of the noise sources and the development of new technologies that can improve performance and reduce cost. The suspended test mass is a hollow, gold-coated, aluminum cube which rests inside a gold-coated, aluminum housing with electrodes for sensing and actuating all six degrees of freedom. This poster describes the design, analysis, and assembly of the mechanical subsystems of the UF Torsion Pendulum.

  9. Design Of A SCRAMJET Nozzle With Streamline Tracing Technique And Reference Temerature Methode

    NASA Astrophysics Data System (ADS)

    Riehmer, J.; Gulhan, A.

    2011-05-01

    This study presents a method to find an optimal shape of a three-dimensional supersonic nozzle for a rectangular scramjet combustion chamber with rounded edges by taking into account the skin friction effects. The geometric and flow constraints are defined within the German DFG GRK 1095/2 project and the designed nozzle will be part of a scramjet demonstrator configuration [1]. The nozzle inlet conditions are mean values of the combustion chamber exit conditions with the assumption of a constant specific heat ratio. To generate the shape of the nozzle a streamline tracing technique is applied to an axis-symmetric flow field calculated by the Method of Characteristics (MOC). Skin friction in relatively high pressure supersonic flow from the combustion chamber is very dominant and cannot be neglected in the design process. Therefore the skin friction is calculated using the Reference Temperature Method (RTM) and used for the determination of the thrust and moment vectors. This allows considering viscous effects without boundary layer calculations. With this approach an optimal truncated ideal nozzle contour which yields the geometric constraints can be derived. For the validation of this method comparative calculations have been carried out with the DLR code TAU on an exemplary axis-symmetric supersonic nozzle for different flow conditions. Results showed a good agreement. Finally for the three-dimensional nozzle the analytical solution for the inviscous and viscous case provided comparable data like TAU simulations. Further simplifications of the approach for an efficient three-dimensional nozzle design will be addressed in the paper.

  10. Critical role of fatty acid metabolism in ILC2 mediated barrier protection during malnutrition and helminth infection

    USDA-ARS?s Scientific Manuscript database

    Innate lymphoid cells (ILCs) play an important role in many immune processes, including control of infections, inflammation and tissue repair. To date little is known about the metabolism of ILCs under steady-state conditions and infection, and whether these cells can metabolically adapt in response...

  11. Long noncoding RNA lncKdm2b is required for ILC3 maintenance by initiation of Zfp292 expression.

    PubMed

    Liu, Benyu; Ye, Buqing; Yang, Liuliu; Zhu, Xiaoxiao; Huang, Guanling; Zhu, Pingping; Du, Ying; Wu, Jiayi; Qin, Xiwen; Chen, Runsheng; Tian, Yong; Fan, Zusen

    2017-05-01

    Innate lymphoid cells (ILCs) communicate with other hematopoietic and nonhematopoietic cells to regulate immunity, inflammation and tissue homeostasis. How ILC lineages develop and are maintained remains largely unknown. In this study we observed that a divergent long noncoding RNA (lncRNA), lncKdm2b, was expressed at high levels in intestinal group 3 ILCs (ILC3s). LncKdm2b deficiency in the hematopoietic system led to reductions in the number and effector functions of ILC3s. LncKdm2b expression sustained the maintenance of ILC3s by promoting their proliferation through activation of the transcription factor Zfp292. Mechanistically, lncKdm2b recruited the chromatin organizer Satb1 and the nuclear remodeling factor (NURF) complex onto the Zfp292 promoter to initiate its transcription. Deletion of Zfp292 or Bptf also abrogated the maintenance of ILC3s, leading to susceptibility to bacterial infection. Therefore, our findings reveal that lncRNAs may represent an additional layer of regulation of ILC development and function.

  12. An Architecture Proposal for the ILC Test Beam Silicon Telescope at Fermilab

    SciTech Connect

    Turqueti, M.A.; /Fermilab

    2007-04-01

    The requirements for an ILC Test Beam silicon telescope system are foreseen to be very stringent. Resolution, noise, and throughput must be carefully managed in order to provide a useful instrument for the high energy physics community to develop detector technologies for the ILC. Since the ILC Test Beam is meant to test a wide variety of different detectors, it must employ universally accepted software techniques, hardware standards and protocols as well as easy integration of hardware and software with the various clients using the system. In this paper, we describe an open modular architecture to achieve these goals, including an analysis of the entire chain of software and hardware needed to meet the requirements.

  13. Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector

    NASA Astrophysics Data System (ADS)

    Ono, Shun; Togawa, Manabu; Tsuji, Ryoji; Mori, Teppei; Yamada, Miho; Arai, Yasuo; Tsuboyama, Toru; Hanagaki, Kazunori

    2017-02-01

    We have been developing a new monolithic pixel sensor with silicon-on-insulator (SOI) technology for the International Linear Collider (ILC) vertex detector system. The SOI monolithic pixel detector is realized using standard CMOS circuits fabricated on a fully depleted sensor layer. The new SOI sensor SOFIST can store both the position and timing information of charged particles in each 20×20 μm2 pixel. The position resolution is further improved by the position weighted with the charges spread to multiple pixels. The pixel also records the hit timing with an embedded time-stamp circuit. The sensor chip has column-parallel analog-to-digital conversion (ADC) circuits and zero-suppression logic for high-speed data readout. We are designing and evaluating some prototype sensor chips for optimizing and minimizing the pixel circuit.

  14. Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration

    SciTech Connect

    Larsen, R

    2009-10-17

    High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

  15. First samples of Ti and Nb tubes explosion welding joint with stainless steel for ILC 1.8 K cryomodule

    NASA Astrophysics Data System (ADS)

    Sabirov, B. M.; Budagov, J. A.; Shirkov, G. D.

    2013-07-01

    The world first samples of Ti and Nb tubes joint with stainless steel ones by an explosion welding by the JINR-VNIIEF-FNAL-INFN cooperation were manufactured in the frame of ILC R&D programe. An applying methods of relaxation of residual tensions (after explosion and electron beam welding), macro- and microanalyses of welding seam and cryogenic tests of the samples produced manifest the achievement of high mechanic strength (≈250 MPa/share) of welding seam, solidity and leak absence on 10-10 l atm/s level at 1.8 K. The explosion welding technology and methods introducing to industrial manufacturing of the 4-th generation of cryomodule of TESLA TYPE DESIGN can exclude the Ti—communications, connect the Nb—cavity with stainless steel vessel and reduce significantly the accelerator cost.

  16. REFERENCE MANUAL FOR RASSMIT VERSION 2.1: SUB-SLAB DEPRESSURIZATION SYSTEM DESIGN PERFORMANCE SIMULATION PROGRAM

    EPA Science Inventory

    The report is a reference manual for RASSMlT Version 2.1, a computer program that was developed to simulate and aid in the design of sub-slab depressurization systems used for indoor radon mitigation. The program was designed to run on DOS-compatible personal computers to ensure ...

  17. REFERENCE MANUAL FOR RASSMIT VERSION 2.1: SUB-SLAB DEPRESSURIZATION SYSTEM DESIGN PERFORMANCE SIMULATION PROGRAM

    EPA Science Inventory

    The report is a reference manual for RASSMlT Version 2.1, a computer program that was developed to simulate and aid in the design of sub-slab depressurization systems used for indoor radon mitigation. The program was designed to run on DOS-compatible personal computers to ensure ...

  18. Design and Cohort Characteristics of the Social Spectrum Study: A Multicenter Study of the Autism Spectrum among Clinically Referred Children

    ERIC Educational Resources Information Center

    Duvekot, Jorieke; Hoopen, Leontine W.; Slappendel, Geerte; van der Ende, Jan; Verhulst, Frank C.; van der Sijde, Ad; Greaves-Lord, Kirstin

    2017-01-01

    This paper provides an overview of the design and cohort characteristics of the Social Spectrum Study: a clinical cohort study that used a two-phase sampling design to identify children at risk for ASD. After screening 1281 children aged 2.5-10 years who had been consecutively referred to one of six mental health services in the Netherlands,…

  19. The X-ray Microcalorimeter Spectrometer (XMS): A Reference Cryogenic Instrument Design for Constellation-X

    NASA Technical Reports Server (NTRS)

    Whitehouse, Paul L.

    2003-01-01

    Constellation-X, a mission now belonging to the Beyond Einstein initiative, is being planned to inherit the x-ray sky from Chandra, XMM-Newton and Astro-E. The first two of four observatories in the constellation will be launched together in 2013 and followed a year later by the launch of the remaining two. The four will independently orbit the Sun-Earth Lagrange point L2. An instrument compliment resides in the Focal Plane Module (FPM) of each observatory 10 m from the Optics Module and consists of three Hard X-ray Telescope (HXT) detectors, a Reflection Grating Spectrometer (RGS) focal plane CCD camera and an X-ray Microcalorimeter Spectrometer (XMS). Instrument awards are scheduled for early 2006. The reference detector for XMS is a 32 x 32 array of microcalorimetric superconducting Transition Edge Sensors (TES). Each pixel casts a variable resistance in a SQUID based multiplexed readout circuit which is coupled to series SQUID arrays for amplification and finally read out by external electronics. A multi-stage continuous ADR will provide the stable 50 mK desired for the TES array and a stable 1 K for the series SQUID arrays while also lifting thermal parasitic and inefficiency loads to a 6 K cryocooler interface. The 6 K cryocooler is expected to emerge from the joint-project Advanced Cryocooler Technology Development Program (ACTDP) in which Constellation-X is an active participant. Project Pre-Formulation activities are marked by extensive technology development necessitating early, but realistic, thermal and cooling load requirements for ADR and ACTDP-cryocooler design points. Such requirements are driven by the encompassing XMS cryostat and ultimately by the thermal environment imposed by the FPM. It is further desired that the XMS instrument be able to operate on its side in the laboratory, with a warm vacuum shell, during an extensive calibration regime. It is that reference system design of the XMS instrument (microcalorimeter, ADR, cryocooler and

  20. The X-ray Microcalorimeter Spectrometer (XMS): A Reference Cryogenic Instrument Design for Constellation-X

    NASA Technical Reports Server (NTRS)

    Whitehouse, Paul L.

    2003-01-01

    Constellation-X, a mission now belonging to the Beyond Einstein initiative, is being planned to inherit the x-ray sky from Chandra, XMM-Newton and Astro-E. The first two of four observatories in the constellation will be launched together in 2013 and followed a year later by the launch of the remaining two. The four will independently orbit the Sun-Earth Lagrange point L2. An instrument compliment resides in the Focal Plane Module (FPM) of each observatory 10 m from the Optics Module and consists of three Hard X-ray Telescope (HXT) detectors, a Reflection Grating Spectrometer (RGS) focal plane CCD camera and an X-ray Microcalorimeter Spectrometer (XMS). Instrument awards are scheduled for early 2006. The reference detector for XMS is a 32 x 32 array of microcalorimetric superconducting Transition Edge Sensors (TES). Each pixel casts a variable resistance in a SQUID based multiplexed readout circuit which is coupled to series SQUID arrays for amplification and finally read out by external electronics. A multi-stage continuous ADR will provide the stable 50 mK desired for the TES array and a stable 1 K for the series SQUID arrays while also lifting thermal parasitic and inefficiency loads to a 6 K cryocooler interface. The 6 K cryocooler is expected to emerge from the joint-project Advanced Cryocooler Technology Development Program (ACTDP) in which Constellation-X is an active participant. Project Pre-Formulation activities are marked by extensive technology development necessitating early, but realistic, thermal and cooling load requirements for ADR and ACTDP-cryocooler design points. Such requirements are driven by the encompassing XMS cryostat and ultimately by the thermal environment imposed by the FPM. It is further desired that the XMS instrument be able to operate on its side in the laboratory, with a warm vacuum shell, during an extensive calibration regime. It is that reference system design of the XMS instrument (microcalorimeter, ADR, cryocooler and

  1. Vehicle occupancy detection camera position optimization using design of experiments and standard image references

    NASA Astrophysics Data System (ADS)

    Paul, Peter; Hoover, Martin; Rabbani, Mojgan

    2013-03-01

    Camera positioning and orientation is important to applications in domains such as transportation since the objects to be imaged vary greatly in shape and size. In a typical transportation application that requires capturing still images, inductive loops buried in the ground or laser trigger sensors are used when a vehicle reaches the image capture zone to trigger the image capture system. The camera in such a system is in a fixed position pointed at the roadway and at a fixed orientation. Thus the problem is to determine the optimal location and orientation of the camera when capturing images from a wide variety of vehicles. Methods from Design for Six Sigma, including identifying important parameters and noise sources and performing systematically designed experiments (DOE) can be used to determine an effective set of parameter settings for the camera position and orientation under these conditions. In the transportation application of high occupancy vehicle lane enforcement, the number of passengers in the vehicle is to be counted. Past work has described front seat vehicle occupant counting using a camera mounted on an overhead gantry looking through the front windshield in order to capture images of vehicle occupants. However, viewing rear seat passengers is more problematic due to obstructions including the vehicle body frame structures and seats. One approach is to view the rear seats through the side window. In this situation the problem of optimally positioning and orienting the camera to adequately capture the rear seats through the side window can be addressed through a designed experiment. In any automated traffic enforcement system it is necessary for humans to be able to review any automatically captured digital imagery in order to verify detected infractions. Thus for defining an output to be optimized for the designed experiment, a human defined standard image reference (SIR) was used to quantify the quality of the line-of-sight to the rear seats of

  2. Machine-Related Backgrounds in the SiD Detector at ILC

    SciTech Connect

    Denisov, D.S.; Mokhov, N.V.; Striganov, S.I.; Kostin, M.A.; Tropin, I.S.; /Tomsk Polytechnic U.

    2006-08-01

    With a multi-stage collimation system and magnetic iron spoilers in the tunnel, the background particle fluxes on the ILC detector can be substantially reduced. At the same time, beam-halo interactions with collimators and protective masks in the beam delivery system create fluxes of muons and other secondary particles which can still exceed the tolerable levels for some of the ILC sub-detectors. Results of modeling of such backgrounds in comparison to those from the e{sup +}e{sup -} interactions are presented in this paper for the SiD detector.

  3. Analysis of DESY-Flash LLRF Measurements for the ILC Heavy Beam Loading Test

    SciTech Connect

    Cancelo, Gustavo; Chase, Brian; Davidsaver, Michael; Carwardine, J.; Simrock, Stefan; Ayvazyan, Valeri; Grecki, Mariusz; Matsumoto, Toshihiro; Michizono, Shinichiro; /KEK, Tsukuba

    2009-06-01

    In September 2008 the DESY-FLASH accelerator was run with up to 550, 3 nano-coulomb bunches at 5 Hz repetition rate. This test is part of a longer-term study aimed at validating ILC parameters by operation as close as possible to ILC beam currents and RF gradients. The present paper reports on the analysis that has been done in order to understand the RF control system performance during this test. Actual klystron power requirements and beam stability are evaluated with heavy beam loading conditions. Results include suggested improvements for upcoming tests in 2009.

  4. Diffusive Barrier and Getter Under Waste Packages VA Reference Design Feature Evaluations

    SciTech Connect

    MacNeil, K.

    1999-05-24

    This technical document evaluates those aspects of the diffusive barrier and getter features which have the potential for enhancing the performance of the Viability Assessment Reference Design and are also directly related to the key attributes for the repository safety strategy of that design. The effects of advection, hydrodynamic dispersion, and diffusion on the radionuclide migration rates through the diffusive barrier were determined through the application of the one-dimensional, advection/dispersion/diffusion equation. The results showed that because advective flow described by the advection-dispersion equation dominates, the diffusive barrier feature alone would not be effective in retarding migration of radiocuclides. However, if the diffusive barrier were combined with one or more features that reduced the potential for advection, then transport of radionuclides would be dominated by diffusion and their migration from the EBS would be impeded. Apatite was chosen as the getter material used for this report. Two getter configurations were developed, Case 1 and Case 2. As in the evaluation of the diffusive barrier, the effects of advection, hydrodynamic dispersion, and diffusion on the migration of radionuclides through the getter are evaluated. However, in addition to these mechanisms, the one-dimensional advection/dispersion/diffusion model is modified to include the effect of sorption on radionuclide migration rates through the sorptive medium (getter). As a result of sorption, the longitudinal dispersion coefficient, and the average linear velocity are effectively reduced by the retardation factor. The retardation factor is a function of the getter material's dry bulk density, sorption coefficient and moisture content. The results of the evaluation showed that a significant delay in breakthrough through the getter can be achieved if the thickness of the getter barrier is increased.

  5. A Design Method of Code Correlation Reference Waveform in GNSS Based on Least-Squares Fitting.

    PubMed

    Xu, Chengtao; Liu, Zhe; Tang, Xiaomei; Wang, Feixue

    2016-07-29

    The multipath effect is one of the main error sources in the Global Satellite Navigation Systems (GNSSs). The code correlation reference waveform (CCRW) technique is an effective multipath mitigation algorithm for the binary phase shift keying (BPSK) signal. However, it encounters the false lock problem in code tracking, when applied to the binary offset carrier (BOC) signals. A least-squares approximation method of the CCRW design scheme is proposed, utilizing the truncated singular value decomposition method. This algorithm was performed for the BPSK signal, BOC(1,1) signal, BOC(2,1) signal, BOC(6,1) and BOC(7,1) signal. The approximation results of CCRWs were presented. Furthermore, the performances of the approximation results are analyzed in terms of the multipath error envelope and the tracking jitter. The results show that the proposed method can realize coherent and non-coherent CCRW discriminators without false lock points. Generally, there is performance degradation in the tracking jitter, if compared to the CCRW discriminator. However, the performance promotions in the multipath error envelope for the BOC(1,1) and BPSK signals makes the discriminator attractive, and it can be applied to high-order BOC signals.

  6. Protein interference with ion-selective electrode measurement depends on reference electrode composition and design.

    PubMed

    Payne, R B; Buckley, B M; Rawson, K M

    1991-01-01

    There is controversy about whether protein interferes with ion measurements using ion-selective electrodes. We have investigated the effects of changes in the salt-bridge composition of five commercially available analysers with open, membrane-restricted or porous frit-restricted reference electrode junctions on measurements of an albumin solution prepared by gel filtration. When the manufacturers' salt bridges were used, instruments with open or membrane-restricted junctions showed apparent increases in the activity of ionized calcium, sodium and potassium in the presence of protein. When the hypertonic bridge solutions were replaced with 150 mmol/L potassium chloride this increase disappeared. The instrument with a porous frit-restricted junction showed no protein effect, but its response to changes in sample sodium chloride concentration in protein-free solution suggested that its junction was functionally equivalent to that formed with an isotonic sodium chloride bridge. Our results emphasize that liquid junction design and composition affect ion measurements in protein-containing solutions and suggest that the use of hypertonic bridge solutions for biological samples needs to be re-examined.

  7. The first lunar outpost: The design reference mission and a new era in lunar science

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.

    1993-01-01

    The content of the First Lunar Outpost (FLO) Design Reference Mission has been formulated and a 'strawman' science program has been established. The mission consists of two independent launches using heavy lift vehicles that land directly on the lunar surface. A habitat module and support systems are flown to the Moon first. After confirmation of a successful deployment of the habitat systems, the crewed lunar lander is launched and piloted to within easy walking distance (2 km) of the habitat. By eliminating the Apollo style lunar orbit rendezvous, landing sites at very high latitudes can be considered. A surface rover and the science experiments will accompany the crew. The planned stay time is 45 days, two lunar days and one night. A payload of 3.3 metric tons will support a series of geophysics, geology, astronomy, space physics, resource utilization, and life science experiments. Sample return is 150 to 200 kg. The rover is unpressurized and can carry four astronauts or two astronauts and 500 kg of payload. The rover can also operate in robotic mode with the addition of a robotics package. The science and engineering experiment strategy is built around a representative set of place holder experiments.

  8. Design of a Model Reference Adaptive Controller for an Unmanned Air Vehicle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper presents the "Adaptive Control Technology for Safe Flight (ACTS)" architecture, which consists of a non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off nominal ones. The design and implementation procedures of both controllers are presented. The aim of these procedures, which encompass both theoretical and practical considerations, is to develop a controller suitable for flight. The ACTS architecture is applied to the Generic Transport Model developed by NASA-Langley Research Center. The GTM is a dynamically scaled test model of a transport aircraft for which a flight-test article and a high-fidelity simulation are available. The nominal controller at the core of the ACTS architecture has a multivariable LQR-PI structure while the adaptive one has a direct, model reference structure. The main control surfaces as well as the throttles are used as control inputs. The inclusion of the latter alleviates the pilot s workload by eliminating the need for cancelling the pitch coupling generated by changes in thrust. Furthermore, the independent usage of the throttles by the adaptive controller enables their use for attitude control. Advantages and potential drawbacks of adaptation are demonstrated by performing high fidelity simulations of a flight-validated controller and of its adaptive augmentation.

  9. A Design Method of Code Correlation Reference Waveform in GNSS Based on Least-Squares Fitting

    PubMed Central

    Xu, Chengtao; Liu, Zhe; Tang, Xiaomei; Wang, Feixue

    2016-01-01

    The multipath effect is one of the main error sources in the Global Satellite Navigation Systems (GNSSs). The code correlation reference waveform (CCRW) technique is an effective multipath mitigation algorithm for the binary phase shift keying (BPSK) signal. However, it encounters the false lock problem in code tracking, when applied to the binary offset carrier (BOC) signals. A least-squares approximation method of the CCRW design scheme is proposed, utilizing the truncated singular value decomposition method. This algorithm was performed for the BPSK signal, BOC(1,1) signal, BOC(2,1) signal, BOC(6,1) and BOC(7,1) signal. The approximation results of CCRWs were presented. Furthermore, the performances of the approximation results are analyzed in terms of the multipath error envelope and the tracking jitter. The results show that the proposed method can realize coherent and non-coherent CCRW discriminators without false lock points. Generally, there is performance degradation in the tracking jitter, if compared to the CCRW discriminator. However, the performance promotions in the multipath error envelope for the BOC(1,1) and BPSK signals makes the discriminator attractive, and it can be applied to high-order BOC signals. PMID:27483275

  10. Results using active quench protection strip heaters on a Reference Design D SSC dipole magnet

    SciTech Connect

    Ganetis, G.; Prodell, A.

    1986-01-01

    Measurements were made with a Reference Design D SSC dipole magnet to study the quench behavior of the magnet when active quench protections trip heaters were used to initiate quenches. The magnet has a 2-layer cosine theta coil configuration with a bore diameter of 4 cm and a length of 4.5 m. The strip heaters, their arrangement and installation are described. Three strip heaters individually and in combinations were used during these studies in the first series of which the magnet current was set at that value for which the quantity integral I/sup 2/ dt was maximum. A capacitor was discharged through the strip heater with the charging voltage being increased progressively until a magnet quench was initiated. The time interval between when the voltage was applied to the strip heater and when the magnet quench began was measured as was the time required for the voltage across the magnet coil that had quenched to reach 3V. These times and the quantity integral I/sup 2/ dt are presented for several values of charging voltage for different heaters and combinations of heaters. Curves of these times and integral I/sup 2/ dt as a function of magnet current at constant capacitance and voltage are also shown.

  11. Analysis of the LSC microbunching instability in MaRIE linac reference design

    SciTech Connect

    Yampolsky, Nikolai

    2016-09-22

    In this report we estimate the effect of the microbunching instability in the MaRIE XFEL linac. The reference design for the linac is described in a separate report. The parameters of the L1, L2, and L3 linacs as well as BC1 and BC2 bunch compressors were the same as in the referenced report. The beam dynamics was assumed to be linear along the accelerator (which is a reasonable assumption for estimating the effect of the microbunching instability). The parameters of the bunch also match the parameters described in the referenced report. Additionally, it was assumed that the beam radius is equal to R = 100 m and does not change along linac. This assumption needs to be revisited at later studies. The beam dynamics during acceleration was accounted in the matrix formalism using a Matlab code. The input parameters for the linacs are: RF peak gradient, RF frequency, RF phase, linac length, and initial beam energy. The energy gain and the imposed chirp are calculated based on the RF parameters self-consistently. The bunch compressors are accounted in the matrix formalism as well. Each chicane is characterized by the beam energy and the R56 matrix element. It was confirmed that the linac and beam parameters described previously provide two-stage bunch compression with compression ratios of 10 and 20 resulting in the bunch of 3kA peak current.

  12. FirefOx Design Reference fO2 Sensor for Hot, Deep Atmospheres

    NASA Astrophysics Data System (ADS)

    Izenberg, N.; Papadakis, S.; Deglau, D.; Francomacaro, A. S.

    2016-12-01

    Understanding the composition of the lowest portion of Venus' atmosphere is critical to knowing the stable mineralogy of the rocks there. Oxygen gas is a critical trace component, with fugacity, or partial pressure, estimated in the range of 10-19 to 10-22 from early probe measurements down to 22km altitude (Pioneer Venus, Venera), chemical equilibrium measurements, and other modeling. "FirefOx" is a simple oxygen fugacity sensor with the express purpose of determining the partial pressure of oxygen in the lowest scale heights of the Venus atmosphere, and especially the lowest hundreds of meters; the surface atmosphere interface, where the atmosphere and surface move to thermodynamic equilibrium. Knowledge of the fO2 at the surface atmosphere interface is crucial to determining the stable mineralogy of surface materials (e.g. magnetite vs. hematite) and gas chemistry in the near-surface atmosphere FirefOx is a Metal/Metal Oxide oxygen fugacity sensor intended to be mounted on the outside of a Venus descent probe, with electronics housed inside a thermally controlled environment. The sole sensor capability is the precise, accurate detection of the partial pressure of oxygen gas (fO2) in the near-surface environment of Venus, at up to 95-bar pressure (predominantly CO2. Surface temperatures at mean planetary elevation are near 735 K, thus a required operational temperature range of 710-740 K covers a range of near-surface elevations. FirefOx system requirements are low ( 100-200 grams, mass, milliwatt power, several kilobytes total science data). A design reference sensor, composed of custom, Yittria-ZrO ceramic electrolyte, with an encapsulated Pd/PdO standard and patterned Pt electrodes has demonstrated scientifically useful signal-to-noise millivolt level potential at temperatures as low as 620 K, relatable to fO2 by a Nernst equation E = RT/4F ln(PO2/PrefO2) where E = open circuit potential across the sensor electrolyte, R = universal gas constant, T

  13. Hepatitis B virus genotype A: design of reference sequences for sub-genotypes.

    PubMed

    Cai, Qun; Zhu, Huilan; Zhang, Yafei; Li, Xu; Zhang, Zhenhua

    2016-06-01

    Genotype A of hepatitis B virus (HBV/A) is widespread and is currently divided into six sub-genotypes. Suitable reference sequences for different sub-genotypes can facilitate research on HBV/A. However, the current reference sequences for this virus are insufficient. In the present work, we retrieved 442 full-length HBV/A genomic sequences from the GenBank database and classified them into sub-genotypes by phylogenetic analysis. By the maximum likelihood method using the MEGA6.0 software, we established the reference sequences for different HBV/A sub-genotypes. Our analyses demonstrated that these reference sequences clustered phylogenetically with known strains, indicating that the reference sequences we established indeed belonged to the right sub-genotypes. HBV/A subtype sequences were selected by geographic origins and grouped as sub-genotypes including A1-South Africa, A2-Europe, A3-Cameroon, and A5-Haiti. Reference sequences of sub-genotypes A1, A2, A3, and A5 were constructed and deposited into GenBank (KP234050-KP234053). By applying phylogenetic analyses, we further determined the time to most recent common ancestor of HBV/A lineages. In conclusion, these newly established reference sequences can provide suitable reference standards for studies on the molecular biology and virology of HBV genotype A.

  14. Design and control of energy efficient drying processes with specific reference to foods

    SciTech Connect

    Franzen, K.; Kim, M.; Liang, H.; Murakami, E.; Narsimhan, G.; Okos, M.; Singh, R.; Waananen, K.; Xiong, X.

    1988-07-15

    This report contains a detailed summary of all work performed to date. Task 10 involves a comprehensive review of drying theory. Proposed mass transfer mechanisms include liquid and vapor diffusion, capillary flow, surface diffusion, hydrodynamic flow, and evaporation/condensation processes. Pasta was chosen as a model system in this project since it is macroscopically homogenous and can be made under controlled conditions. Task 11 involves experimental drying studies. A high pressure drying apparatus is available for studies related to the revision of the fundamental drying model. The dryer will require two major modifications for the planned tests: installation of a pressure control valve and recirculation of exhaust gas. A tray dryer was used to measure the shrinkage coefficient of nonfat milk, and will be used for further tests on nonfat milk, as well as whey and tomato puree. A method of economic analysis regarding use of mechanical vapor recompression is presented. Task 12 involves food quality studies. A model of nonenzymatic browning (NEB) was developed based on NEB in skim milk samples containing 3.5--50% moisture, exposed to temperatures of 35--130{degrees}C. The browning rate was zero order after a lag period, and the temperature dependence fit an Arrhenius relation. The critical moisture occurs between 4% and 11% moisture. Task 13 addresses recommendations and strategies for dryer design and control. Moisture sensors were reviewed with specific reference to their on-line applicability. The IR sensor was found to be the most promising. Task 14 examined moisture mobility and interaction in foods. The BET adsorption method using nitrogen gas was applied to pasta, skim milk and egg albumin systems. The data obtained do not show good reproducibility, possibly due to an inadequate sample size. The possibility of using water vapor adsorption will be studied in future experiments. 210 refs., 30 figs., 22 tabs. (MHB)

  15. Development studies for the ILC: Measurements and simulations for a time projection chamber with GEM technology

    NASA Astrophysics Data System (ADS)

    Ledermann, Bernhard; Kaminski, Jochen; Kappler, Steffen; Müller, Thomas

    2007-10-01

    A Time Projection Chamber (TPC) with Gas Electron Multiplier (GEM) technology is well suited for usage as central tracker at the International Linear Collider (ILC). To study the high potential of this detector type a small prototype of 25 cm length was built in Karlsruhe and used in several experimental setups. In this publication the results of these measurements and of additional Monte Carlo simulations are presented. By introducing the so-called equivalent drift distance a combination of all results was possible leading to a recommended configuration of the multi-GEM tower for the ILC-TPC. It will be shown that for conditions considered in the TESLA-TDR the transverse spatial resolution will be able to reach 65 μm for 10 cm and 190 μm for 200 cm drift at the ILC. This as well as the expectations for longitudinal spatial resolution, for energy resolutions of the specific ionization, and for single pad row efficiency should be able to meet the requirements of a future ILC-TPC.

  16. Single Higgs boson production at the ILC in the left-right twin Higgs model

    NASA Astrophysics Data System (ADS)

    Liu, Yao-Bei; Xiao, Zhen-Jun

    2015-06-01

    In this work, we analyze three dominant single SM-like Higgs boson production processes in the left-right twin Higgs model (LRTHM): the Higgs-strahlung (HS) process {{e}+}{{e}-}\\to Zh, the vector boson fusion (VBF) process {{e}+}{{e}-}\\to ν \\bar{ν }h and the associate production with top pair process {{e}+}{{e}-}\\to t\\bar{t}h for three possible energy stages of the International Linear Collider (ILC), and compared our results with the expected experimental accuracies for various accessible Higgs decay channels. The following observations have been obtained. (1) In the reasonable parameter space, the LRTHM can generate moderate contributions to theses processes with polarized beams. (2) Among various Higgs boson decay channels, the b\\bar{b} signal strength is the most sensitive to the LRTHM due to the high expected precision. For the t\\bar{t}h production process, the absolute value of {{μ }b\\bar{b}} may deviate from the SM prediction by over 8.7% and thus may be detectable at the proposed ILC with \\sqrt{s}=1 TeV. (3) ILC experiments may give a strong limit on the scale parameter f: for the case of ILC-250 GeV, for example, the lower limit for parameter f of the LRTHM is f > 1150 GeV at the 2σ level.

  17. Lepton flavor violating Higgs boson decay {\\boldsymbol{h}} \\rightarrow \\mu \\tau at the ILC

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indrani; Datta, Amitava; Kundu, Anirban

    2016-12-01

    We study the possible reach of the proposed International Linear Collider (ILC) in exploring the lepton flavour violating (LFV) Higgs boson decay h\\to μ τ . Two generic types of models are investigated, both involving an extended scalar sector. For the first type, the rest of the scalars are heavy and beyond the reach of ILC, but the LFV decay occurs through a tiny admixture of the Standard Model (SM) doublet with heavy degrees of freedom. In the second class, which is more constrained from the existing data, the SM Higgs boson does not have any LFV decay but there are other scalars degenerate with it that give rise to the LFV signal. We show that the ILC can pin down the branching fraction of h\\to μ τ , and hence the effective LFV Yukawa coupling, to a very small value, due to the fact that there are signal channels with unlike flavour leptons but no missing energy. It turns out that the low-energy options of the ILC, namely, \\sqrt{s}=250 or 500 GeV, are better for investigating such channels, and the option of beam polarization helps too. At least an order of magnitude improvement is envisaged over the existing limits, and the effective LFV Yukawa coupling can be probed at the level of 10-4.

  18. Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis.

    PubMed

    Trabanelli, Sara; Chevalier, Mathieu F; Martinez-Usatorre, Amaia; Gomez-Cadena, Alejandra; Salomé, Bérengère; Lecciso, Mariangela; Salvestrini, Valentina; Verdeil, Grégory; Racle, Julien; Papayannidis, Cristina; Morita, Hideaki; Pizzitola, Irene; Grandclément, Camille; Bohner, Perrine; Bruni, Elena; Girotra, Mukul; Pallavi, Rani; Falvo, Paolo; Leibundgut, Elisabeth Oppliger; Baerlocher, Gabriela M; Carlo-Stella, Carmelo; Taurino, Daniela; Santoro, Armando; Spinelli, Orietta; Rambaldi, Alessandro; Giarin, Emanuela; Basso, Giuseppe; Tresoldi, Cristina; Ciceri, Fabio; Gfeller, David; Akdis, Cezmi A; Mazzarella, Luca; Minucci, Saverio; Pelicci, Pier Giuseppe; Marcenaro, Emanuela; McKenzie, Andrew N J; Vanhecke, Dominique; Coukos, George; Mavilio, Domenico; Curti, Antonio; Derré, Laurent; Jandus, Camilla

    2017-09-19

    Group 2 innate lymphoid cells (ILC2s) are involved in human diseases, such as allergy, atopic dermatitis and nasal polyposis, but their function in human cancer remains unclear. Here we show that, in acute promyelocytic leukaemia (APL), ILC2s are increased and hyper-activated through the interaction of CRTH2 and NKp30 with elevated tumour-derived PGD2 and B7H6, respectively. ILC2s, in turn, activate monocytic myeloid-derived suppressor cells (M-MDSCs) via IL-13 secretion. Upon treating APL with all-trans retinoic acid and achieving complete remission, the levels of PGD2, NKp30, ILC2s, IL-13 and M-MDSCs are restored. Similarly, disruption of this tumour immunosuppressive axis by specifically blocking PGD2, IL-13 and NKp30 partially restores ILC2 and M-MDSC levels and results in increased survival. Thus, using APL as a model, we uncover a tolerogenic pathway that may represent a relevant immunosuppressive, therapeutic targetable, mechanism operating in various human tumour types, as supported by our observations in prostate cancer.Group 2 innate lymphoid cells (ILC2s) modulate inflammatory and allergic responses, but their function in cancer immunity is still unclear. Here the authors show that, in acute promyelocytic leukaemia, tumour-activated ILC2s secrete IL-13 to induce myeloid-derived suppressor cells and support tumour growth.

  19. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    NASA Astrophysics Data System (ADS)

    Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.

    2014-01-01

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R&D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q0 was 1.5×1010 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni-Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and permeability

  20. Design and implementation of magnetically maneuverable capsule endoscope system with direction reference for image navigation.

    PubMed

    Sun, Zhen-Jun; Ye, Bo; Sun, Yi; Zhang, Hong-Hai; Liu, Sheng

    2014-07-01

    This article describes a novel magnetically maneuverable capsule endoscope system with direction reference for image navigation. This direction reference was employed by utilizing a specific magnet configuration between a pair of external permanent magnets and a magnetic shell coated on the external capsule endoscope surface. A pair of customized Cartesian robots, each with only 4 degrees of freedom, was built to hold the external permanent magnets as their end-effectors. These robots, together with their external permanent magnets, were placed on two opposite sides of a "patient bed." Because of the optimized configuration based on magnetic analysis between the external permanent magnets and the magnetic shell, a simplified control strategy was proposed, and only two parameters, yaw step angle and moving step, were necessary for the employed robotic system. Step-by-step experiments demonstrated that the proposed system is capable of magnetically maneuvering the capsule endoscope while providing direction reference for image navigation.

  1. Design implementation and control of MRAS error dynamics. [Model-Reference Adaptive System

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III

    1974-01-01

    Use is made of linearized error characteristic equation for model-reference adaptive systems to determine a parameter adjustment rule for obtaining time-invariant error dynamics. Theoretical justification of error stability is given and an illustrative example included to demonstrate the utility of the proposed technique.

  2. Connecting Online Learners with Diverse Local Practices: The Design of Effective Common Reference Points for Conversation

    ERIC Educational Resources Information Center

    Friend Wise, Alyssa; Padmanabhan, Poornima; Duffy, Thomas M.

    2009-01-01

    This mixed-methods study probed the effectiveness of three kinds of objects (video, theory, metaphor) as common reference points for conversations between online learners (student teachers). Individuals' degree of detail-focus was examined as a potentially interacting covariate and the outcome measure was learners' level of tacit knowledge related…

  3. Group 2 innate lymphoid cells (ILC2s) are increased in chronic rhinosinusitis with nasal polyps or eosinophilia.

    PubMed

    Ho, J; Bailey, M; Zaunders, J; Mrad, N; Sacks, R; Sewell, W; Harvey, R J

    2015-02-01

    Chronic rhinosinusitis (CRS) is a heterogeneous disease with an uncertain pathogenesis. Group 2 innate lymphoid cells (ILC2s) represent a recently discovered cell population which has been implicated in driving Th2 inflammation in CRS; however, their relationship with clinical disease characteristics has yet to be investigated. The aim of this study was to identify ILC2s in sinus mucosa in patients with CRS and controls and compare ILC2s across characteristics of disease. A cross-sectional study of patients with CRS undergoing endoscopic sinus surgery was conducted. Sinus mucosal biopsies were obtained during surgery and control tissue from patients undergoing pituitary tumour resection through transphenoidal approach. ILC2s were identified as CD45(+) Lin(-) CD127(+) CD4(-) CD8(-) CRTH2(CD294)(+) CD161(+) cells in single cell suspensions through flow cytometry. ILC2 frequencies, measured as a percentage of CD45(+) cells, were compared across CRS phenotype, endotype, inflammatory CRS subtype and other disease characteristics including blood eosinophils, serum IgE, asthma status and nasal symptom score. 35 patients (40% female, age 48 ± 17 years) including 13 with eosinophilic CRS (eCRS), 13 with non-eCRS and 9 controls were recruited. ILC2 frequencies were associated with the presence of nasal polyps (P = 0.002) as well as high tissue eosinophilia (P = 0.004) and eosinophil-dominant CRS (P = 0.001) (Mann-Whitney U). They were also associated with increased blood eosinophilia (P = 0.005). There were no significant associations found between ILC2s and serum total IgE and allergic disease. In the CRS with nasal polyps (CRSwNP) population, ILC2s were increased in patients with co-existing asthma (P = 0.03). ILC2s were also correlated with worsening nasal symptom score in CRS (P = 0.04). As ILC2s are elevated in patients with CRSwNP, they may drive nasal polyp formation in CRS. ILC2s are also linked with high tissue and blood eosinophilia and have a potential role in

  4. The value of well-designed experiments in studying diseases with special reference to amphibians.

    PubMed

    Blaustein, Andrew R; Alford, Ross A; Harris, Reid N

    2009-09-01

    Relatively few studies of amphibian diseases have employed standard ecological experimental designs. We discuss what constitutes a well-designed ecological experiment and encourage their use in disease studies. We illustrate how well-designed experiments can be used to determine the effects of pathogens on amphibians and we illustrate how ancillary information, including that collected using molecular tools, can be used to enhance the value of such experiments.

  5. 20 CFR 10.301 - May the physician designated on Form CA-16 refer the employee to another medical specialist or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false May the physician designated on Form CA-16... Benefits Emergency Medical Care § 10.301 May the physician designated on Form CA-16 refer the employee to another medical specialist or medical facility? The physician designated on Form CA-16 may refer the...

  6. 20 CFR 10.301 - May the physician designated on Form CA-16 refer the employee to another medical specialist or...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false May the physician designated on Form CA-16... Benefits Emergency Medical Care § 10.301 May the physician designated on Form CA-16 refer the employee to another medical specialist or medical facility? The physician designated on Form CA-16 may refer the...

  7. 20 CFR 10.301 - May the physician designated on Form CA-16 refer the employee to another medical specialist or...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false May the physician designated on Form CA-16... Benefits Emergency Medical Care § 10.301 May the physician designated on Form CA-16 refer the employee to another medical specialist or medical facility? The physician designated on Form CA-16 may refer the...

  8. 20 CFR 10.301 - May the physician designated on Form CA-16 refer the employee to another medical specialist or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true May the physician designated on Form CA-16... Benefits Emergency Medical Care § 10.301 May the physician designated on Form CA-16 refer the employee to another medical specialist or medical facility? The physician designated on Form CA-16 may refer the...

  9. 20 CFR 10.301 - May the physician designated on Form CA-16 refer the employee to another medical specialist or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true May the physician designated on Form CA-16... Benefits Emergency Medical Care § 10.301 May the physician designated on Form CA-16 refer the employee to another medical specialist or medical facility? The physician designated on Form CA-16 may refer the...

  10. Evaluation and Compensation of Detector Solenoid Effects on Disrupted Beam in the ILC 14 mrad Extraction Line

    SciTech Connect

    Toprek, Dragan; Nosochkov, Yuri; /SLAC

    2008-12-18

    This paper presents calculations of detector solenoid effects on disrupted primary beam in the ILC 14 mrad extraction line. Particle tracking simulations are performed for evaluation of primary beam loss along the line as well as of beam distribution and polarization at Compton Interaction Point. The calculations are done both without and with solenoid compensation. The results are obtained for the baseline ILC energy of 500 GeV center-of-mass and three options of beam parameters.

  11. Reference Assessment

    ERIC Educational Resources Information Center

    Bivens-Tatum, Wayne

    2006-01-01

    This article presents interesting articles that explore several different areas of reference assessment, including practical case studies and theoretical articles that address a range of issues such as librarian behavior, patron satisfaction, virtual reference, or evaluation design. They include: (1) "Evaluating the Quality of a Chat Service"…

  12. Reference Assessment

    ERIC Educational Resources Information Center

    Bivens-Tatum, Wayne

    2006-01-01

    This article presents interesting articles that explore several different areas of reference assessment, including practical case studies and theoretical articles that address a range of issues such as librarian behavior, patron satisfaction, virtual reference, or evaluation design. They include: (1) "Evaluating the Quality of a Chat Service"…

  13. The Reference Ability Neural Network Study: motivation, design, and initial feasibility analyses.

    PubMed

    Stern, Yaakov; Habeck, Christian; Steffener, Jason; Barulli, Daniel; Gazes, Yunglin; Razlighi, Qolamreza; Shaked, Danielle; Salthouse, Timothy

    2014-12-01

    We introduce and describe the Reference Ability Neural Network Study and provide initial feasibility data. Based on analyses of large test batteries administered to individuals ranging from young to old, four latent variables, or reference abilities (RAs) that capture the majority of the variance in age-related cognitive change have been identified: episodic memory, fluid reasoning, perceptual speed, and vocabulary. We aim to determine whether spatial fMRI networks can be derived that are uniquely associated with the performance of each reference ability. We plan to image 375 healthy adults (50 per decade from age 20 to 50; 75 per decade from age 50 to 80) while performing a set of 12 cognitive tasks. Data on 174 participants are reported here. Three tasks were grouped a priori into each of the four reference ability domains. We first assessed to what extent both cognitive task scores and activation patterns readily show convergent and discriminant validity, i.e. increased similarity between tasks within the same domain and decreased similarity between tasks between domains, respectively. Block-based time-series analysis of each individual task was conducted for each participant via general linear modeling. We partialled activation common to all tasks out of the imaging data. For both test scores and activation topographies, we then calculated correlations for each of 66 possible pairings of tasks, and compared the magnitude of correlation of tasks within reference ability domains to that of tasks between domains. For the behavioral data, globally there were significantly stronger inter-task correlations within than between domains. When examining individual abilities, 3 of the domains also met these criteria but memory reached only borderline significance. Overall there was greater topographic similarity within reference abilities than between them (p<0.0001), but when examined individually, statistical significance was reached only for episodic memory and

  14. The Reference Ability Neural Network Study: Motivation, Design, and Initial Feasibility Analyses

    PubMed Central

    Stern, Yaakov; Habeck, Christian; Steffener, Jason; Barulli, Daniel; Gazes, Yunglin; Razlighi, Qolamreza; Shaked, Danielle; Salthouse, Timothy

    2014-01-01

    We introduce and describe the Reference Ability Neural Network Study and provide initial feasibility data. Based on analyses of large test batteries administered to individuals ranging from young to old, four latent variables, or reference abilities (RAs) that capture the majority of the variance in age-related cognitive change have been identified: episodic memory, fluid reasoning, perceptual speed, and vocabulary. We aim to determine whether spatial fMRI networks can be derived that are uniquely associated with the performance of each reference ability. We plan to image 375 healthy adults (50 per decade from age 20 to 50; 75 per decade from age 50 to 80) while performing a set of 12 cognitive tasks. Data on 174 participants are reported here. Three tasks were grouped a priori into each of the four reference ability domains. We first assessed to what extent both cognitive task scores and activation patterns readily show convergent and discriminant validity, i.e. increased similarity between tasks within the same domain and decreased similarity between tasks between domains, respectively. Block-based time-series analysis of each individual task was conducted for each participant via general linear modeling. We partialled activation common to all tasks out of the imaging data. For both test scores and activation topographies, we then calculated correlations for each of 66 possible pairings of tasks, and compared the magnitude of correlation of tasks within reference ability domains to that of tasks between domains. For the behavioral data, globally there were significantly stronger inter-task correlations within than between domains. When examining individual abilities, 3 of the domains also met these criteria but memory reached only borderline significance. Overall there was greater topographic similarity within reference abilities than between them (p<0.0001), but when examined individually, statistical significance was reached only for episodic memory and

  15. A mussel tissue certified reference material for multiple phycotoxins. Part 1: design and preparation.

    PubMed

    McCarron, Pearse; Emteborg, Håkan; Nulty, Cíara; Rundberget, Thomas; Loader, Jared I; Teipel, Katharina; Miles, Christopher O; Quilliam, Michael A; Hess, Philipp

    2011-05-01

    The development of multi-analyte methods for lipophilic shellfish toxins based on liquid chromatography-mass spectrometry permits rapid screening and analysis of samples for a wide variety of toxins in a single run. Validated methods and appropriate certified reference materials (CRMs) are required to ensure accuracy of results. CRMs are essential for accurate instrument calibration, for assessing the complete analytical method from sample extraction to data analysis and for verifying trueness. However, CRMs have hitherto only been available for single toxin groups. Production of a CRM containing six major toxin groups was achieved through an international collaboration. Preparation of this material, CRM-FDMT1, drew on information from earlier studies as well as improved methods for isolation of toxins, handling bulk tissues and production of reference materials. Previous investigations of stabilisation techniques indicated freeze-drying to be a suitable procedure for preparation of shellfish toxin reference materials and applicable to a wide range of toxins. CRM-FDMT1 was initially prepared as a bulk wet tissue homogenate containing domoic acid, okadaic acid, dinophysistoxins, azaspiracids, pectenotoxin-2, yessotoxin and 13-desmethylspirolide C. The homogenate was then freeze-dried, milled and bottled in aliquots suitable for distribution and analysis. The moisture content and particle size distribution were measured, and determined to be appropriate. A preliminary toxin analysis of the final material showed a comprehensive toxin profile.

  16. Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package

    SciTech Connect

    Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

    1985-10-01

    This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document.

  17. Validation Studies for Numerical Simulations of Flow Phenomena Expected in the Lower Plenum of a Prismatic VHTR Reference Design

    SciTech Connect

    Richard W. Johnson

    2005-09-01

    The final design of the very high temperature reactor (VHTR) of the fourth generation of nuclear power plants (Gen IV) has not yet been established. The VHTR may be either a prismatic (block) or pebble bed type. It may be either gas-cooled or cooled with an as yet unspecified molten salt. However, a conceptual design of a gas-cooled VHTR, based on the General Atomics GT-MHR, does exist and is called the prismatic VHTR reference design, MacDonald et al [2003], General Atomics [1996]. The present validation studies are based on the prismatic VHTR reference design. In the prismatic VHTR reference design, the flow in the lower plenum will be introduced by dozens of turbulent jets issuing into a large crossflow that must negotiate dozens of cylindrical support columns as it flows toward the exit duct of the reactor vessel. The jets will not all be at the same temperature due to the radial variation of power density expected in the core. However, it is important that the coolant be well mixed when it enters the power conversion unit to ensure proper operation and long life of the power conversion machinery. Hence, it is deemed important to be able to accurately model the flow and mixing of the variable temperature coolant in the lower plenum and exit duct. Accurate flow modeling involves determining modeling strategies including the fineness of the grid needed, iterative convergence tolerance, numerical discretization method used, whether the flow is steady or unsteady, and the turbulence model and wall treatment employed. It also involves validation of the computer code and turbulence model against a series of separate and combined flow phenomena and selection of the data used for the validation. The present report describes progress made to date for the task entitled ‘CFD software validation of jets in crossflow’ which was designed to investigate the issues pertaining to the validation process.

  18. Probing top-Z dipole moments at the LHC and ILC

    SciTech Connect

    Röntsch, Raoul; Schulze, Markus

    2015-08-11

    We investigate the weak electric and magnetic dipole moments of top quark-Z boson interactions at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). Their vanishingly small magnitude in the Standard Model makes these couplings ideal for probing New Physics interactions and for exploring the role of top quarks in electroweak symmetry breaking. In our analysis, we consider the production of two top quarks in association with a Z boson at the LHC, and top quark pairs mediated by neutral gauge bosons at the ILC. These processes yield direct sensitivity to top quark-Z boson interactions and complement indirect constraints from electroweak precision data. Our computation is accurate to next-to-leading order in QCD, we include the full decay chain of top quarks and the Z boson, and account for theoretical uncertainties in our constraints. Furthermore, we find that LHC experiments will soon be able to probe weak dipole moments for the first time.

  19. Studies on GEM modules for a Large Prototype TPC for the ILC

    NASA Astrophysics Data System (ADS)

    Tsionou, Dimitra

    2017-02-01

    The International Linear Collider (ILC) is a future electron-positron collider with centre of mass energy of 500-1000 GeV. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its high precision tracking system consists of Silicon sub-detectors and a Time Projection Chamber (TPC) equipped with micro-pattern gas detectors (MPGDs). Within the framework of the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. This prototype has been equipped with Gas Electron Multiplier (GEM) modules and studied with electron beams of energies 1-6 GeV at the DESY test beam facility. The performance of the prototype detector and the extrapolation to the ILD TPC is presented here. In addition, ongoing optimisation studies and R&D activities in order to prepare the next GEM module iteration are discussed.

  20. When Insult Is Added to Injury: Cross Talk between ILCs and Intestinal Epithelium in IBD.

    PubMed

    van der Gracht, Esmé; Zahner, Sonja; Kronenberg, Mitchell

    2016-01-01

    Inflammatory bowel disease (IBD) is characterized by an impairment of the integrity of the mucosal epithelial barrier, which causes exacerbated inflammation of the intestine. The intestinal barrier is formed by different specialized epithelial cells, which separate the intestinal lumen from the lamina propria. In addition to its crucial role in protecting the body from invading pathogens, the intestinal epithelium contributes to intestinal homeostasis by its biochemical properties and communication to underlying immune cells. Innate lymphoid cells (ILCs) are a recently described population of lymphocytes that have been implicated in both mucosal homeostasis and inflammation. Recent findings indicate a critical feedback loop in which damaged epithelium activates these innate immune cells to restore epithelial barrier function. This review will focus on the signalling pathways between damaged epithelium and ILCs involved in repair of the epithelial barrier and tissue homeostasis and the relationship of these processes with the control of IBD.

  1. When Insult Is Added to Injury: Cross Talk between ILCs and Intestinal Epithelium in IBD

    PubMed Central

    2016-01-01

    Inflammatory bowel disease (IBD) is characterized by an impairment of the integrity of the mucosal epithelial barrier, which causes exacerbated inflammation of the intestine. The intestinal barrier is formed by different specialized epithelial cells, which separate the intestinal lumen from the lamina propria. In addition to its crucial role in protecting the body from invading pathogens, the intestinal epithelium contributes to intestinal homeostasis by its biochemical properties and communication to underlying immune cells. Innate lymphoid cells (ILCs) are a recently described population of lymphocytes that have been implicated in both mucosal homeostasis and inflammation. Recent findings indicate a critical feedback loop in which damaged epithelium activates these innate immune cells to restore epithelial barrier function. This review will focus on the signalling pathways between damaged epithelium and ILCs involved in repair of the epithelial barrier and tissue homeostasis and the relationship of these processes with the control of IBD. PMID:27578924

  2. Neutralino relic density from ILC measurements in the CP-violating MSSM

    NASA Astrophysics Data System (ADS)

    Bélanger, G.; Kittel, O.; Kraml, S.; Martyn, H.-U.; Pukhov, A.

    2008-07-01

    We discuss ILC measurements for a specific MSSM scenario with CP phases, where the lightest neutralino is a good candidate for dark matter, annihilating efficiently through t-channel exchange of light staus. These prospective (CP-even) ILC measurements are then used to fit the underlying model parameters. A collider prediction of the relic density of the neutralino from this fit gives 0.116<Ωh2<0.19 at 95% C.L. CP-odd observables, while being a direct signal of CP violation, do not help in further constraining Ωh2. The interplay with (in)direct detection of dark matter and with measurements of electric dipole moments is also discussed. Finally we comment on collider measurements at higher energies for refining the prediction of Ωh2.

  3. Monte-Carlo-based studies of a polarized positron source for International Linear Collider (ILC)

    NASA Astrophysics Data System (ADS)

    Dollan, Ralph; Laihem, Karim; Schälicke, Andreas

    2006-04-01

    The full exploitation of the physics potential of an International Linear Collider (ILC) requires the development of a polarized positron beam. New concepts of polarized positron sources are based on the development of circularly polarized photon sources. The polarized photons create electron-positron pairs in a thin target and transfer their polarization state to the outgoing leptons. To achieve a high level of positron polarization the understanding of the production mechanisms in the target is crucial. Therefore, a general framework for the simulation of polarized processes with GEANT4 is under development. In this contribution the current status of the project and its application to a study of the positron production process for the ILC is presented.

  4. Emittance Dilution due to Dipole Mode Rotating and Coupling in the Main Linacs of the ILC

    SciTech Connect

    Jones, R.M.; Miller, R.H.; /SLAC

    2005-05-25

    The progress of multiple bunches of charged particles down the main L-band linacs of the ILC (International Linear Collider) can be disrupted by wakefields. These wakefields correspond to the electromagnetic fields excited in the accelerating cavities and have both long-range and short-range components. The horizontal and vertical modal components of the wakefield will be excited at slightly different frequencies (the dipole mode frequency degeneracy's are split) due to inevitable manufacturing errors. We simulate the progress of the ILC beam down the collider under the influence of these wakefields. In particular, we investigate the consequences on the final emittance dilution of the beam of coupling of the horizontal to the vertical motion of the beam.

  5. Probing top-Z dipole moments at the LHC and ILC

    NASA Astrophysics Data System (ADS)

    Röntsch, Raoul; Schulze, Markus

    2015-08-01

    We investigate the weak electric and magnetic dipole moments of top quark- Z boson interactions at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). Their vanishingly small magnitude in the Standard Model makes these couplings ideal for probing New Physics interactions and for exploring the role of top quarks in electroweak symmetry breaking. In our analysis, we consider the production of two top quarks in association with a Z boson at the LHC, and top quark pairs mediated by neutral gauge bosons at the ILC. These processes yield direct sensitivity to top quark- Z boson interactions and complement indirect constraints from electroweak precision data. Our computation is accurate to next-to-leading order in QCD, we include the full decay chain of top quarks and the Z boson, and account for theoretical uncertainties in our constraints. We find that LHC experiments will soon be able to probe weak dipole moments for the first time.

  6. SP-100 system definition conceptual reference design activities: February through June 1983. Technical information report

    SciTech Connect

    Fortenberry, J.W.; Moore, D.M.; Petrick, S.W.; Smoak, R.H.

    1983-12-01

    The original SP-100 conceptual system design was examined from the mechanical design and integration viewpoint for the purpose of updating the design, identifying concerns, and providing recommendations for future work. Some of the findings were that: Integration of heat pipes into the radiator structure appears practical, but a number of problems remain to be addressed and resolved through development effort; thermal and structural interfacing of the shield and defining shield weight are key areas that need to be addressed; the radiator may be critical in shell buckling which would make beryllium a leading candidate material; material problems such as beryllium vs. shuttle fracture mechanics criteria need to be addressed.

  7. Design and realization of the high-precision weighing systems as the gravimetric references in PTB's national water flow standard

    NASA Astrophysics Data System (ADS)

    Engel, Rainer; Beyer, Karlheinz; Baade, Hans-Joachim

    2012-07-01

    PTB's ‘Hydrodynamic Test Field’, which represents a high-accuracy water flow calibration facility, serves as the national primary standard for liquid flow measurands. As the core reference device of this flow facility, a gravimetric standard has been incorporated, which comprises three special-design weighing systems: 300 kg, 3 tons and 30 tons. These gravimetric references were realized as a combination of a strain-gauge-based and an electromagnetic-force-compensation load-cell-based balance, each. Special emphasis had to be placed upon the dynamics design of the whole weighing system, due to the high measurement resolution and the dynamic behavior of the weighing systems, which are dynamically affected by mechanical vibrations caused by environmental impacts, flow machinery operation, flow noise in the pipework and induced wave motions in the weigh tanks. Taking into account all the above boundary conditions, the design work for the gravimetric reference resulted in a concrete foundation ‘rock’ of some 300 tons that rests on a number of vibration isolators. In addition to these passively operating vibration isolators, the vibration damping effect is enhanced by applying an electronic level regulation device.

  8. The 2mrad horizontal crossing angle IR layout for a TeV ILC

    SciTech Connect

    Appleby, R.; Angal-Kalinin, D.; Bambade, P.; Mouton, B.; Napoly, O.; Payet, J.; Seryi, A.; Nosochkov, Y.; /SLAC

    2005-07-27

    The current status of the 2mrad crossing angle layout for the ILC is reviewed. The scheme developed in the UK and France is described and the performance discussed for a TeV machine. Secondly, the scheme developed at SLAC and BNL is then studied and modified for a TeV machine. We find that both schemes can handle the higher energy beam with modifications, and share many common features.

  9. Final Results on RF and Wake Kicks Caused by the Couplers for the ILC Cavity

    SciTech Connect

    Lunin, Andrei; Gonin, Ivan; Solyak, Nikolay; Yakovlev, Vyacheslav; /Fermilab

    2010-05-01

    In the paper the results are presented for calculation of the transverse wake and RF kick from the power and HOM couplers of the ILC acceleration structure. The RF kick was calculated stand-alone by HFSS, CST MWS and COMSOL codes while the wake kick was calculated by GdfidL. The calculation precision and convergence for both cases are discussed and compared to the results obtained independently by other group.

  10. Gain-Scheduled Complementary Filter Design for a MEMS Based Attitude and Heading Reference System

    PubMed Central

    Yoo, Tae Suk; Hong, Sung Kyung; Yoon, Hyok Min; Park, Sungsu

    2011-01-01

    This paper describes a robust and simple algorithm for an attitude and heading reference system (AHRS) based on low-cost MEMS inertial and magnetic sensors. The proposed approach relies on a gain-scheduled complementary filter, augmented by an acceleration-based switching architecture to yield robust performance, even when the vehicle is subject to strong accelerations. Experimental results are provided for a road captive test during which the vehicle dynamics are in high-acceleration mode and the performance of the proposed filter is evaluated against the output from a conventional linear complementary filter. PMID:22163824

  11. Suppression of Secondary Electron Emission using Triangular Grooved Surface in the ILC Dipole and Wiggler Magnets

    SciTech Connect

    Wang, L.; Bane, K.; Chen, C.; Himel, T.; Munro, M.; Pivi, M.; Raubenheimer, T.; Stupakov, G.; /SLAC

    2007-07-06

    The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit machine performance. The suppression of electrons in a magnet is a challenge for the positron damping ring of the International Linear Collider (ILC) as well as the Large Hadron Collider. Simulation show that grooved surfaces can significantly reduce the electron yield in a magnet. Some of the secondary electrons emitted from the grooved surface return to the surface within a few gyrations, resulting in a low effective secondary electron yield (SEY) of below 1.0 A triangular surface is an effective, technologically attractive mitigation with a low SEY and a weak dependence on the scale of the corrugations and the external magnetic field. A chamber with triangular grooved surface is proposed for the dipole and wiggler sections of the ILC and will be tested in KEKB in 2007. The strategy of electron cloud control in ILC and the optimization of the grooved chamber such as the SEY, impedance as well as the manufacturing of the chamber, are also discussed.

  12. Inverse type II seesaw mechanism and its signature at the LHC and ILC

    NASA Astrophysics Data System (ADS)

    Freitas, F. F.; de S. Pires, C. A.; Rodrigues da Silva, P. S.

    2017-06-01

    The advent of the LHC, and the proposal of building future colliders as the ILC, both programmed to explore new physics at the TeV scale, justify the recent interest in collider phenomenology of seesaw mechanisms whose signatures lie on TeV scale or less. The most popular TeV scale seesaw mechanisms are the inverse seesaw ones. There are three types of inverse seesaw mechanisms, but only that one implemented in an arrangement involving six non-standard heavy neutrinos has received attention. In this paper we develop an inverse seesaw mechanism based on Higgs triplet model and simulate its collider phenomenology by producing doubly charged Higgses at the LHC and ILC and analyzing their subsequent decays in pair of leptons. We find that although the new scalars decouple from the standard ones, signals of these scalars may be detected in the current run of the LHC or in the future ILC. Our simulations probe the model in the region of parameter space that generates the correct neutrino masses and mixing for both normal and inverted hierarchy cases.

  13. Design and characterization of a versatile reference instrument for rapid, reproducible specular gloss measurements

    SciTech Connect

    Liu Jian; Noel, Mario; Zwinkels, Joanne

    2005-08-01

    A reference goniospectrophotometer has been developed at the National Research Council of Canada (NRC) for providing high-accuracy traceable measurements of specular gloss at several standard geometries, including 75 deg. for paper samples, haze and absence-of-bloom gloss, and color appearance of gonioapparent materials. This is to the authors/ knowledge the first reported reference instrument that has this level of versatility for rapidly characterizing the total visual appearance properties of a wide variety of materials and applications. This instrument also replaces the NRC glossmeter that has been providing primary level specular gloss measurements in accordance with International Organization for Standardization and American Society for Testing and Materials standards for measurements of paint and ceramic materials at geometries of 20 deg. , 60 deg. , and 85 deg. . The new instrument has been fully characterized for sources of error and compared with the NRC glossmeter. Its measurement reproducibility of 0.02 gloss unit is a factor-of-5 improvement, and its overall estimated expanded (k=2) uncertainty is 0.3 gloss unit at all three standard geometries.

  14. MYCIN II: design and implementation of a therapy reference with complex content-based indexing.

    PubMed

    Kim, D K; Fagan, L M; Jones, K T; Berrios, D C; Yu, V L

    1998-01-01

    We describe the construction of MYCIN II, a prototype system that provides for content-based markup and search of a forthcoming clinical therapeutics textbook, Antimicrobial Therapy and Vaccines. Existing commercial search technology for digital references utilizes generic tools such as textword-based searches with geographical or statistical refinements. We suggest that the drawbacks of such systems significantly restrict their use in everyday clinical practice. This is in spite of the fact that there is a great need for the information contained within these same references. The system we describe is intended to supplement keyword searching so that certain important questions can be asked easily and can be answered reliably (in terms of precision and recall). Our method attacks this problem in a restricted domain of knowledge-clinical infectious disease. For example, we would like to be able to answer the class of questions exemplified by the following query: "What antimicrobial agents can be used to treat endocarditis caused by Eikenella corrodens?" We have compiled and analyzed a list of such questions to develop a concept-based markup scheme. This scheme was then applied within an HTML markup to electronically "highlight" passages from three textbook chapters. We constructed a functioning web-based search interface. Our system also provides semi-automated querying of PubMed using our concept markup and the user's actions as a guide.

  15. Los Alamos Controlled Air Incinerator for radioactive waste. Volume II. Engineering design reference manual

    SciTech Connect

    Koenig, R.A.; Draper, W.E.; Newmyer, J.M.; Warner, C.L.

    1982-10-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  16. Plasma motor/generator reference system designs for power and propulsion

    NASA Technical Reports Server (NTRS)

    Mccoy, James E.

    1987-01-01

    Four Plasma Motor/Generator (PMG) Reference Systems, hollow cathode-based versions of the electrodynamic tether concept which are to be used in study and analysis of future propulsion and power applications, are discussed. These systems are equally applicable for use as electric generators to provide power to a spacecraft or as electric motors using power from the spacecraft. Operating at relatively high current and low voltage, the PMGs avoid requirements for technological advances to handle very high voltages. Permanent deployment with passive I x B control of tether dynamics eliminates the complexity and weight of a TSS style tether reel. A 20 kW PMG uses 10 km of number two aluminum wire, weighs 1200 kg, and has an electrical efficiency of 93 percent. A larger 200 kW system uses 20 km of number 00 aluminum wire, weighs 4200 kg, and operates at 87 percent efficiency.

  17. Protoptype integrated design (Pride) system reference manual. Volume 2: Schema definition

    NASA Technical Reports Server (NTRS)

    Fishwick, P. A.; Sutter, T. R.; Blackburn, C. L.

    1983-01-01

    An initial description of an evolving relational database schema is presented for the management of finite element model design and analysis data. The report presents a description of each relation including attribute names, data types, and definitions. The format of this report is such that future modifications and enhancements may be easily incorporated.

  18. An Electronic Service Quality Reference Model for Designing E-Commerce Websites Which Maximizes Customer Satisfaction

    ERIC Educational Resources Information Center

    Shaheen, Amer N.

    2011-01-01

    This research investigated Electronic Service Quality (E-SQ) features that contribute to customer satisfaction in an online environment. The aim was to develop an approach which improves E-CRM processes and enhances online customer satisfaction. The research design adopted mixed methods involving qualitative and quantitative methods to…

  19. Environmental Design and Educational Performance, with Particular Reference to "Green" Schools in Hampshire and Essex

    ERIC Educational Resources Information Center

    Edwards, Brian W.

    2006-01-01

    This article examines the argument that "green" schools enhance educational performance. Having set the context of the relationship between environmentalism and the design of schools in the twentieth century, the article explores the performance of a number of green schools built in the UK between 1980 and 1995. The aim is to discover…

  20. An Electronic Service Quality Reference Model for Designing E-Commerce Websites Which Maximizes Customer Satisfaction

    ERIC Educational Resources Information Center

    Shaheen, Amer N.

    2011-01-01

    This research investigated Electronic Service Quality (E-SQ) features that contribute to customer satisfaction in an online environment. The aim was to develop an approach which improves E-CRM processes and enhances online customer satisfaction. The research design adopted mixed methods involving qualitative and quantitative methods to…

  1. Environmental Design and Educational Performance, with Particular Reference to "Green" Schools in Hampshire and Essex

    ERIC Educational Resources Information Center

    Edwards, Brian W.

    2006-01-01

    This article examines the argument that "green" schools enhance educational performance. Having set the context of the relationship between environmentalism and the design of schools in the twentieth century, the article explores the performance of a number of green schools built in the UK between 1980 and 1995. The aim is to discover…

  2. Durability-Based Design Properties of Reference Crossply Carbon-Fiber Composite

    SciTech Connect

    Corum, J.M.

    2001-04-16

    This report provides recommended durability-based design properties and criteria for a crossply carbon-fiber composite for possible automotive structural applications. Although the composite utilized aerospace-grade carbon-fiber reinforcement, it was made by a rapid-molding process suitable for high-volume automotive use. The material is the first in a planned progression of candidate composites to be characterized as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. The composite addressed in this report is a ({+-}45{degree})3S crossply consisting of continuous Thornel T300 fibers in a Baydur 420 IMR urethane matrix. This composite is highly anisotropic with two dominant fiber orientations--0/90{degree} and {+-}45{degree}. Properties and models were developed for both orientations. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  3. Light weight radioisotope heater unit (LWRHU): a technical description of the reference design

    SciTech Connect

    Tate, R.E.

    1982-01-01

    The Light Weight Radioisotope Heater Unit (LWRHU), a new radioisotope heater unit for use in space missions, is a /sup 238/PuO/sub 2/-fueled unit designed to provide a thermal watt in dispersed locations on a spacecraft. The LWRHU is required to maintain the temperature of a component at a level where the component will function reliably in space. Two major constraints are placed on the unit's design; it must be as light as possible and must provide enough protection to immobilize the plutonium fuel to the maximum extent in all phases of the unit's lifetime. The four components are pelletized fuel, platinum-alloy encapsulation, pyrolytic graphite thermal insulation, and high-technology graphite ablation shell. The LWRHU is a cylinder 32 mm (1.26 in.) high and 26 mm (1.02 in.) in diameter. It weighs slightly less than 40 g(.09 lb).

  4. Schematic designs for penetration seals for a reference repository in bedded salt

    SciTech Connect

    Kelsall, P.C.; Case, J.B.; Meyer, D.; Coons, W.E.

    1982-11-01

    The isolation of radioactive wastes in geologic repositories requires that man-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the straitigraphy of southeastern New Mexico. The designs are presented for extensive peer review and will be updated as site-specific conceptual designs when a site for a repository in salt has been selected. The principal material used in the seal system is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate as the repository rooms creep close to the degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For southeastern New Mexico salt, analyses indicate that this process will require approximately 1000 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 400 years for a seal located in an access tunnel within the repository. Bulkheads composed of contrete or salt bricks are also included in the seal system as components which will have low permeability during the period required for salt consolidation.

  5. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    ScienceCinema

    None

    2016-07-12

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  6. Altair Descent and Ascent Reference Trajectory Design and Initial Dispersion Analyses

    NASA Technical Reports Server (NTRS)

    Kos, Larry D.; Polsgrove, Tara T.; Sostaric, Ronald r.; Braden, Ellen M.; Sullivan, Jacob J.; Lee, Thanh T.

    2010-01-01

    The Altair Lunar Lander is the linchpin in the Constellation Program (CxP) for human return to the Moon. Altair is delivered to low Earth orbit (LEO) by the Ares V heavy lift launch vehicle, and after subsequent docking with Orion in LEO, the Altair/Orion stack is delivered through translunar injection (TLI). The Altair/Orion stack separating from the Earth departure stage (EDS) shortly after TLI and continues the flight to the Moon as a single stack. Altair performs the lunar orbit insertion (LOI) maneuver, targeting a 100-km circular orbit. This orbit will be a polar orbit for missions landing near the lunar South Pole. After spending nearly 24 hours in low lunar orbit (LLO), the lander undocks from Orion and performs a series of small maneuvers to set up for descending to the lunar surface. This descent begins with a small deorbit insertion (DOI) maneuver, putting the lander on an orbit that has a perilune of 15.24 km (50,000 ft), the altitude where the actual powered descent initiation (PDI) commences. At liftoff from Earth, Altair has a mass of 45 metric tons (mt). However after LOI (without Orion attached), the lander mass is slightly less than 33 mt at PDI. The lander currently has a single descent module main engine, with TBD lb(sub f) thrust (TBD N), providing a thrust-to-weight ratio of approximately TBD Earth g's at PDI. LDAC-3 (Lander design and analysis cycle #3) is the most recently closed design sizing and mass properties iteration. Upgrades for loss of crew (LDAC-2) and loss of mission (LDAC-3) have been incorporated into the lander baseline design (and its Master Equipment List). Also, recently, Altair has been working requirements analyses (LRAC-1). All nominal data here are from the LDAC-3 analysis cycle. All dispersions results here are from LRAC-1 analyses.

  7. Human Health and Performance Aspects of Mars Design Reference Mission of July, 1997

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    1999-01-01

    The human element is the most complex element of the mission design Mars missions will pose significant physiological and psychological challenges to crew members Some challenges (human engineering, life support) must be overcome (potential "non-starters") Some challenges (bone, radiation) may be show-stoppers ISS will only Indirectly address Mars questions before any "Go/No Go" decision Significant amount of ground-based and specialized flight research will be required -- Critical Path Roadmap project will direct HSLSPO's research toward Mars exploration objectives

  8. Destination Deimos: A Design Reference Architecture for Initial Human Exploration of the Mars System

    NASA Technical Reports Server (NTRS)

    Logan, James S.; Adamo, D. R.

    2011-01-01

    The two biggest challenges to successful human operations in interplanetary space are flight dynamics, constrained by the cold hard physics of the rocket equation, and bioastronautics, the psychophysiological realities of human adaptation, or lack thereof, to the deep space environment. Without substantial innovation in project/mission architecture and vehicle design, human exploration of the Mars system could be problematic for decades. Although a human landing on Mars is inevitable, humans-in-the-loop telerobotic exploration from the outer Martian moon Deimos is the best way to begin. Precursor robotic missions for reconnaissance and local site preparation will be required.

  9. Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750°C Reactor Outlet Temperature

    SciTech Connect

    Michael G. McKellar; Edwin A. Harvego

    2010-05-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

  10. Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant

    SciTech Connect

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated

  11. H2FIRST Reference Station Design Task: Project Deliverable 2-2

    SciTech Connect

    Pratt, Joseph; Terlip, Danny; Ainscough, Chris; Kurtz, Jennifer; Elgowainy, Amgad

    2015-04-20

    This report presents near-term station cost results and discusses cost trends of different station types. It compares various vehicle rollout scenarios and projects realistic near-term station utilization values using the station infrastructure rollout in California as an example. It describes near-term market demands and matches those to cost-effective station concepts. Finally, the report contains detailed designs for five selected stations, which include piping and instrumentation diagrams, bills of materials, and several site-specific layout studies that incorporate the setbacks required by NFPA 2, the National Fire Protection Association Hydrogen Technologies Code. This work identified those setbacks as a significant factor affecting the ability to site a hydrogen station, particularly liquid stations at existing gasoline stations. For all station types, utilization has a large influence on the financial viability of the station.

  12. The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation.

    PubMed

    Wilkinson, Mark D; Vandervalk, Benjamin; McCarthy, Luke

    2011-10-24

    The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in

  13. The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation

    PubMed Central

    2011-01-01

    Background The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. Description SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. Conclusions SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner

  14. Mars Global Reference Atmospheric Model (Mars-GRAM) and Database for Mission Design

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Johnson, D. L.

    2003-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model, while above 80 km it is based on Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiting Laser Altimeter. Validation studies are described comparing Mars-GRAM with Mars Global Surveyor Radio Science and Thermal Emission Spectrometer data. RS data from 2480 profiles were used, covering latitudes 75 deg S to 72 deg N, surface to approximately 40 km, for seasons ranging from areocentric longitude of Sun (Ls) = 70-160 deg and 265-310 deg. RS data spanned a range of local times, mostly 0-9 hours and 18-24 hours. For interests in aerocapture and precision landing, comparisons concentrated on atmospheric density. At a fixed height of 20 km, RS density varied by about a factor of 2.5 over ranges of latitudes and Ls values observed. Evaluated at matching positions and times, these figures show average RSMars-GRAM density ratios were generally 1+/-)0.05, except at heights above approximately 25 km and latitudes above approximately 50 deg N. Average standard deviation of RSMars-GRAM density ratio was 6%. TES data were used covering surface to approximately 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of a Mars global dust storm). Depending on season, TES data covered latitudes 85 deg S to 85 deg N. Most TES data were concentrated near local times 2 hours and 14 hours. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (greater than 45 deg N), or at most altitudes in the southern hemisphere at Ls approximately 90 and 180 deg. Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of

  15. A Human Lin− CD123+ CD127low Population Endowed with ILC Features and Migratory Capabilities Contributes to Immunopathological Hallmarks of Psoriasis

    PubMed Central

    Mora-Velandia, Luz María; Castro-Escamilla, Octavio; Méndez, Andrés González; Aguilar-Flores, Cristina; Velázquez-Avila, Martha; Tussié-Luna, María Isabel; Téllez-Sosa, Juan; Maldonado-García, César; Jurado-Santacruz, Fermín; Ferat-Osorio, Eduardo; Martínez-Barnetche, Jesus; Pelayo, Rosana; Bonifaz, Laura C.

    2017-01-01

    Innate lymphoid cells (ILC) are members of a heterogeneous family with a lymphoid origin that mimics the T helper (Th) cytokine profile. ILC are involved in early effector cytokine-mediated responses during infections in peripheral tissues. ILC also play an important role in chronic skin inflammatory diseases, including psoriasis. Although classical ILC express CD127, it has been recently reported that the presence of non-classical CD127− ILC populations and an early ILC precursor (EILP) CD127low. ILC development has predominately been investigated in mouse models. However, in humans, different transcription factors have been described for ILC identification. NFIL3 (nuclear factor, IL-3 regulated) is crucial for ILC development in response to IL-7. CD123 (IL-3Rα) is usually used to exclude basophils during ILC identification, however, it is unknown if in response to IL-3, NFIL3 could be relevant to induce ILC features in Lin− CD123+ populations in addition, is also unknown whether peripheral blood (PB) population with ILC features may have skin-homing potential to participate in skin inflammatory chronic diseases. Here, we report a Lin− CD123+ CD127low CD7+ CLA+ population that share some phenotypic properties with basophils, but expresses several transcription factors for ILC commitment such as inhibitor of DNA binding 2 (Id2), NFIL3, promyelocytic leukemia zinc finger (PLZF), thymocyte selection-associated high-mobility group box protein (TOX), and T cell factor-1 (TCF-1). In addition, this population expresses different ILC markers: CD132, CD90, CD161, α4 integrin, c-Kit, CRTH2, AhR, and IL-23R. IL-3 prevents apoptosis and increases their NFIL3, TOX, and PLZF expression. In PB, the CD123+ CD127low population is predominantly a conspicuous population that expresses T-bet and RORγt. The Lin− CD123+ CD127low population in PB has a limited Th type cytokine expression and highly expresses IL-8. The Lin− CD123+ CD127low population expresses skin

  16. A Human Lin(-) CD123(+) CD127(low) Population Endowed with ILC Features and Migratory Capabilities Contributes to Immunopathological Hallmarks of Psoriasis.

    PubMed

    Mora-Velandia, Luz María; Castro-Escamilla, Octavio; Méndez, Andrés González; Aguilar-Flores, Cristina; Velázquez-Avila, Martha; Tussié-Luna, María Isabel; Téllez-Sosa, Juan; Maldonado-García, César; Jurado-Santacruz, Fermín; Ferat-Osorio, Eduardo; Martínez-Barnetche, Jesus; Pelayo, Rosana; Bonifaz, Laura C

    2017-01-01

    Innate lymphoid cells (ILC) are members of a heterogeneous family with a lymphoid origin that mimics the T helper (Th) cytokine profile. ILC are involved in early effector cytokine-mediated responses during infections in peripheral tissues. ILC also play an important role in chronic skin inflammatory diseases, including psoriasis. Although classical ILC express CD127, it has been recently reported that the presence of non-classical CD127(-) ILC populations and an early ILC precursor (EILP) CD127(low). ILC development has predominately been investigated in mouse models. However, in humans, different transcription factors have been described for ILC identification. NFIL3 (nuclear factor, IL-3 regulated) is crucial for ILC development in response to IL-7. CD123 (IL-3Rα) is usually used to exclude basophils during ILC identification, however, it is unknown if in response to IL-3, NFIL3 could be relevant to induce ILC features in Lin(-) CD123(+) populations in addition, is also unknown whether peripheral blood (PB) population with ILC features may have skin-homing potential to participate in skin inflammatory chronic diseases. Here, we report a Lin(-) CD123(+) CD127(low) CD7(+) CLA(+) population that share some phenotypic properties with basophils, but expresses several transcription factors for ILC commitment such as inhibitor of DNA binding 2 (Id2), NFIL3, promyelocytic leukemia zinc finger (PLZF), thymocyte selection-associated high-mobility group box protein (TOX), and T cell factor-1 (TCF-1). In addition, this population expresses different ILC markers: CD132, CD90, CD161, α4 integrin, c-Kit, CRTH2, AhR, and IL-23R. IL-3 prevents apoptosis and increases their NFIL3, TOX, and PLZF expression. In PB, the CD123(+) CD127(low) population is predominantly a conspicuous population that expresses T-bet and RORγt. The Lin(-) CD123(+) CD127(low) population in PB has a limited Th type cytokine expression and highly expresses IL-8. The Lin(-) CD123(+) CD127(low) population

  17. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving ILC3

    PubMed Central

    Withers, David R.; Hepworth, Matthew R.; Wang, Xinxin; Mackley, Emma C.; Halford, Emily E.; Dutton, Emma E.; Marriott, Clare L.; Brucklacher-Waldert, Verena; Veldhoen, Marc; Kelsen, Judith; Baldassano, Robert N.; Sonnenberg, Gregory F.

    2016-01-01

    RAR-related orphan receptor γt (ROR-γt) directs differentiation of pro-inflammatory T helper 17 (TH17) cells and is a potential therapeutic target in chronic autoimmune and inflammatory diseases1–3. However, ROR-γt-dependent group 3 innate lymphoid cells (ILC3s) provide essential immunity and tissue protection in the intestine4–11, suggesting that targeting ROR-γt could also result in impaired host defense to infection or enhanced tissue damage. Here, we demonstrate that transient chemical inhibition of ROR-γt in mice selectively reduces cytokine production from TH17 cells but not ILC3s in the context of intestinal infection with Citrobacter rodentium, resulting in preserved innate immunity. Transient genetic deletion of ROR-γt in mature ILC3s also did not impair cytokine responses in the steady state or during infection. Finally, pharmacologic inhibition of ROR-γt provided therapeutic benefit in mouse models of intestinal inflammation, and reduced the frequencies of TH17 cells but not ILC3s isolated from primary intestinal samples of individuals with inflammatory bowel disease (IBD). Collectively, these results reveal differential requirements for ROR-γt in the maintenance of TH17 cell versus ILC3 responses, and suggest that transient inhibition of ROR-γt is a safe and effective therapeutic approach during intestinal inflammation. PMID:26878233

  18. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection

    PubMed Central

    Pelly, VS; Kannan, Y; Coomes, SM; Entwistle, LJ; Rückerl, D; Seddon, B; MacDonald, AS; McKenzie, A; Wilson, MS

    2017-01-01

    Immunity to many human and murine gastrointestinal helminth parasites requires interleukin-4 (IL-4)-directed type 2 helper (TH2) differentiation of CD4+ T cells to elicit type-2 immunity. Despite a good understanding of the inflammatory cascade elicited following helminth infection, the initial source of IL-4 is unclear. Previous studies using the rat helminth parasite Nippostronglyus brasiliensis, identified an important role for basophil-derived IL-4 for TH2 differentiation. However, basophils are redundant for TH2 differentiation following infection with the natural helminth parasite of mice Heligmosomoides polygyrus, indicating that other sources of IL-4 are required. In this study using H. polygyrus, which is controlled by IL-4-dependent immunity, we identified that group-2 innate lymphoid cells (ILC2s) produced significant amounts of IL-4 and IL-2 following H. polygyrus infection. Leukotriene D4 was sufficient to stimulate IL-4 secretion by ILC2s, and the supernatant from activated ILC2s could potently drive TH2 differentiation in vitro in an IL-4-dependent manner. Furthermore, specific deletion of IL-4 from ILC2s compromised TH2 differentiation in vivo. Overall, this study highlights a previously unrecognized and important role for ILC2-derived IL-4 for TH2 differentiation in a natural TH2-dependent model of human helminthiasis. PMID:26883724

  19. Reference allocations and use of a disparity measure to inform the design of allocation funding formulas in public health programs.

    PubMed

    Buehler, James W; Bernet, Patrick M; Ogden, Lydia L

    2012-01-01

    Funding formulas are commonly used by federal agencies to allocate program funds to states. As one approach to evaluating differences in allocations resulting from alternative formula calculations, we propose the use of a measure derived from the Gini index to summarize differences in allocations relative to 2 referent allocations: one based on equal per-capita funding across states and another based on equal funding per person living in poverty, which we define as the "proportionality of allocation" (PA). These referents reflect underlying values that often shape formula-based allocations for public health programs. The size of state populations serves as a general proxy for the amount of funding needed to support programs across states. While the size of state populations living in poverty is correlated with overall population size, allocations based on states' shares of the national population living in poverty reflect variations in funding need shaped by the association between poverty and multiple adverse health outcomes. The PA measure is a summary of the degree of dispersion in state-specific allocations relative to the referent allocations and provides a quick assessment of the impact of selecting alternative funding formula designs. We illustrate the PA values by adjusting a sample allocation, using various measures of the salary costs and in-state wealth, which might modulate states' needs for federal funding.

  20. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 1: Reference Design Document (RDD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.

  1. On the Design of Attitude-Heading Reference Systems Using the Allan Variance.

    PubMed

    Hidalgo-Carrió, Javier; Arnold, Sascha; Poulakis, Pantelis

    2016-04-01

    The Allan variance is a method to characterize stochastic random processes. The technique was originally developed to characterize the stability of atomic clocks and has also been successfully applied to the characterization of inertial sensors. Inertial navigation systems (INS) can provide accurate results in a short time, which tend to rapidly degrade in longer time intervals. During the last decade, the performance of inertial sensors has significantly improved, particularly in terms of signal stability, mechanical robustness, and power consumption. The mass and volume of inertial sensors have also been significantly reduced, offering system-level design and accommodation advantages. This paper presents a complete methodology for the characterization and modeling of inertial sensors using the Allan variance, with direct application to navigation systems. Although the concept of sensor fusion is relatively straightforward, accurate characterization and sensor-information filtering is not a trivial task, yet they are essential for good performance. A complete and reproducible methodology utilizing the Allan variance, including all the intermediate steps, is described. An end-to-end (E2E) process for sensor-error characterization and modeling up to the final integration in the sensor-fusion scheme is explained in detail. The strength of this approach is demonstrated with representative tests on novel, high-grade inertial sensors. Experimental navigation results are presented from two distinct robotic applications: a planetary exploration rover prototype and an autonomous underwater vehicle (AUV).

  2. Final safety analysis report for the Galileo Mission: Volume 1, Reference design document

    SciTech Connect

    Not Available

    1988-05-01

    The Galileo mission uses nuclear power sources called Radioisotope Thermoelectric Generators (RTGs) to provide the spacecraft's primary electrical power. Because these generators contain nuclear material, a Safety Analysis Report (SAR) is required. A preliminary SAR and an updated SAR were previously issued that provided an evolving status report on the safety analysis. As a result of the Challenger accident, the launch dates for both Galileo and Ulysses missions were later rescheduled for November 1989 and October 1990, respectively. The decision was made by agreement between the DOE and the NASA to have a revised safety evaluation and report (FSAR) prepared on the basis of these revised vehicle accidents and environments. The results of this latest revised safety evaluation are presented in this document (Galileo FSAR). Volume I, this document, provides the background design information required to understand the analyses presented in Volumes II and III. It contains descriptions of the RTGs, the Galileo spacecraft, the Space Shuttle, the Inertial Upper Stage (IUS), the trajectory and flight characteristics including flight contingency modes, and the launch site. There are two appendices in Volume I which provide detailed material properties for the RTG.

  3. Power Requirements for The NASA Mars Design Reference Architecture (DRA) 5.0

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    2009-01-01

    This paper summarizes the power systems analysis results from NASA s recent Mars DRA 5.0 study which examined three architecture options and resulting mission requirements for a human Mars landing mission in the post-2030 timeframe. DRA 5.0 features a long approximately 500 day surface stay split mission using separate cargo and crewed Mars transfer vehicles. Two cargo flights, utilizing minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crew during the next mission opportunity approximately 26 months later. The pre-deployment of cargo poses unique challenges for set-up and emplacement of surface assets that results in the need for self or robotically deployed designs. Three surface architecture options were evaluated for breadth of science content, extent of exploration range/capability and variations in system concepts and technology. This paper describes the power requirements for the surface operations of the three mission options, power system analyses including discussion of the nuclear fission, solar photovoltaic and radioisotope concepts for main base power and long range mobility.

  4. Design and assembly sequence analysis of option 3 for CETF reference space station

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Andersen, Gregory C.; Hall, John B., Jr.; Allen, Cheryl L.; Scott, A. D., Jr.; So, Kenneth T.

    1987-01-01

    A design and assembly sequence was conducted on one option of the Dual Keel Space Station examined by a NASA Critical Evaluation Task Force to establish viability of several variations of that option. A goal of the study was to produce and analyze technical data to support Task Force decisions to either examine particular Option 3 variations in more depth or eliminate them from further consideration. An analysis of the phasing assembly showed that use of an Expendable Launch Vehicle in conjunction with the Space Transportation System (STS) can accelerate the buildup of the Station and ease the STS launch rate constraints. The study also showed that use of an Orbital Maneuvering Vehicle on the first flight can significantly benefit Station assembly and, by performing Station subsystem functions, can alleviate the need for operational control and reboost systems during the early flights. In addition to launch and assembly sequencing, the study assessed stability and control, and analyzed node-packaging options and the effects of keel removal on the structural dynamics of the Station. Results of these analyses are presented and discussed.

  5. Design and performance of an arcjet nuclear electric propulsion system for a mid-1990's reference mission

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1987-01-01

    The design and performance of an arcjet nuclear-electric-propulsion spacecraft, suitable for use in the Space Nuclear Power System (SNPS) reference mission, are outlined. The vehicle design was based on a 30-kW ammonia arcjet system operating at an Isp of 1050 s and an efficiency of 45 percent. The arcjet/gimbal system, power-processing unit, and propellant-feed system are described. A 100-kWe SNPS was assumed, and the spacecraft mass was baselined at 5250 kg (excluding the propellant-feed system). A radiation/arcjet efflux diagnostics package was included in the performance analysis. This spacecraft, assuming a Shuttle launch from KSC, can perform a 50-deg inclination change and reach a final orbit of 35,860 km with a 120-d trip time providing a 4-mo active load for the SNPS. Alternatively, a Titan IV launch would provide a mass margin of 120 kg to a 10,000-km, 58-deg final orbit in 74 d. This spacecraft meets the reference-mission constraint of low developmental risk, and is scalable to power levels projected for future space platforms.

  6. Design and performance of an arcjet nuclear electric propulsion system for a mid-1990's reference mission

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1987-01-01

    The design and performance of an arcjet nuclear-electric-propulsion spacecraft, suitable for use in the Space Nuclear Power System (SNPS) reference mission, are outlined. The vehicle design was based on a 30-kW ammonia arcjet system operating at an Isp of 1050 s and an efficiency of 45 percent. The arcjet/gimbal system, power-processing unit, and propellant-feed system are described. A 100-kWe SNPS was assumed, and the spacecraft mass was baselined at 5250 kg (excluding the propellant-feed system). A radiation/arcjet efflux diagnostics package was included in the performance analysis. This spacecraft, assuming a Shuttle launch from KSC, can perform a 50-deg inclination change and reach a final orbit of 35,860 km with a 120-d trip time providing a 4-mo active load for the SNPS. Alternatively, a Titan IV launch would provide a mass margin of 120 kg to a 10,000-km, 58-deg final orbit in 74 d. This spacecraft meets the reference-mission constraint of low developmental risk, and is scalable to power levels projected for future space platforms.

  7. Fast Ferroelectric L-Band Tuner for ILC Cavities

    SciTech Connect

    Hirshfield, Jay L

    2010-03-15

    Design, analysis, and low-power tests are described on a 1.3 GHz ferroelectric tuner that could find application in the International Linear Collider or in Project X at Fermi National Accelerator Laboratory. The tuner configuration utilizes a three-deck sandwich imbedded in a WR-650 waveguide, in which ferroelectric bars are clamped between conducting plates that allow the tuning bias voltage to be applied. Use of a reduced one-third structure allowed tests of critical parameters of the configuration, including phase shift, loss, and switching speed. Issues that were revealed that require improvement include reducing loss tangent in the ferroelectric material, development of a reliable means of brazing ferroelectric elements to copper parts of the tuner, and simplification of the mechanical design of the configuration.

  8. An Inverse Kinematics Solution Based on CA-CMAC and ILC for Trajectory Tracking of Redundant DOF Manipulator

    NASA Astrophysics Data System (ADS)

    Hua-qing, LIU; Wang, LV

    2017-02-01

    The composite control strategy of CA-CMAC and ILC is adopted to solve the inverse kinematic problem of the redundant DOF manipulator during its real-time and high-precision tracking on the three-dimensional space target trajectory. A direct inverse model control strategy is adopted, in which CA-CMAC takes the current joint angles and the desired position increment of the manipulator as the input, and estimates the expected joint angle increments of the manipulator using the system history control experience. Then the estimated joint angles are taken as the initial value of the ILC module by which the control effect is improved iteratively. Based on the MATLAB, the tracking controls of linear and circular space target trajectories were simulated respectively. The results show that CA-CAMC and ILC composite control has better tracking precision and stability than CMAC control, while keeping the joint angles of the manipulator continuous and smooth during trajectory tracking.

  9. Development of an Adder-Topology ILC Damping Ring Kicker Modulator

    SciTech Connect

    Tang, Tao; Burkhart, Craig; /SLAC

    2009-05-08

    The ILC damping ring injection and extraction kickers will require high availability modulators that can deliver {+-}5 kV pulses into 50 {Omega} with a 2 ns flattop ({approx}1 ns rise and fall time) at up to 6 MHz. An effort is underway at SLAC National Accelerator Laboratory to meet these requirements using a transmission line adder topology to combine the output of an array of {approx}1 kV modules. The modules employ an ultra-fast hybrid MOSFET/driver that can switch 33 A in 1.2 ns. Experimental results for a scale adder structure are presented.

  10. Controls, LLRF, and instrumentation systems for ILC test facilities at Fermilab

    SciTech Connect

    Chase, B.; Votava, M.; Wendt, M.; /Fermilab

    2007-06-01

    The major controls and instrumentation systems for the ILC test areas and the NML test accelerator at Fermilab are discussed. The test areas include 3 separate areas for Vertical Superconducting RF Cavity Testing, Horizontal Cavity Testing, and NML RF and beam test area. A common control infrastructure for the test areas including a controls framework, electronic logbook and cavity database will be provided, while supporting components supplied by collaborators with diverse areas of expertise (EPICS, DOOCS, LabVIEW, and Matlab). The discussions on the instrumentation systems are focused on overview and requirements.

  11. Field Quality And Magnetic Center Stability Achieved in a Variable Permanent Magnet Quadrupole for the ILC

    SciTech Connect

    Iwashita, Y.; Mihara, T.; Kumada, M.; Spencer, C.; /SLAC

    2006-02-06

    A superstrong permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens for the International Linear Collider (ILC). Our prototype PMQ can produce variable strengths from 3.5T to 24.2T in 1.4T steps. The magnetic center of the PMQ must not move more than a few microns during a 20% strength change to enable a Beam-Based Alignment (BBA) process to work. Our PMQ can be mechanically adjusted to suppress the center movement from more than 30{micro}m to less than 10{micro}m during strength changes.

  12. CP-sensitive spin-spin correlations in neutralino production at the ILC

    NASA Astrophysics Data System (ADS)

    Bartl, A.; Hohenwarter-Sodek, K.; Kernreiter, T.; Kittel, O.; Terwort, M.

    2009-07-01

    We study the CP-violating terms of the spin-spin correlations in neutralino production and their subsequent two-body decays into sleptons plus leptons at the ILC. We analyze CP-sensitive observables with the help of T-odd products of the spin-spin terms. These terms depend on the polarizations of both neutralinos, with one polarization perpendicular to the production plane. We present a detailed numerical study of the CP-sensitive observables, cross sections, and neutralino branching ratios in the Minimal Supersymmetric Standard Model with complex parameters.

  13. ILC TARGET WHEEL RIM FRAGMENT/GUARD PLATE IMPACT ANALYSIS

    SciTech Connect

    Hagler, L

    2008-07-17

    A positron source component is needed for the International Linear Collider Project. The leading design concept for this source is a rotating titanium alloy wheel whose spokes rotate through an intense localized magnetic field. The system is composed of an electric motor, flexible motor/drive-shaft coupling, stainless steel drive-shaft, two Plumber's Block tapered roller bearings, a titanium alloy target wheel, and electromagnet. Surrounding the target wheel and magnet is a steel frame with steel guarding plates intended to contain shrapnel in case of catastrophic wheel failure. Figure 1 is a layout of this system (guard plates not shown for clarity). This report documents the FEA analyses that were performed at LLNL to help determine, on a preliminary basis, the required guard plate thickness for three potential plate steels.

  14. Design and characterization of an RF excited micro atmospheric pressure plasma jet for reference in plasma medicine

    NASA Astrophysics Data System (ADS)

    Schulz-von der Gathen, Volker

    2015-09-01

    Over the last decade a huge variety of atmospheric pressure plasma jets has been developed and applied for plasma medicine. The efficiency of these non-equilibrium plasmas for biological application is based on the generated amounts of reactive species and radiation. The gas temperatures stay within a range tolerable for temperature-sensitive tissues. The variety of different discharge geometries complicates a direct comparison. In addition, in plasma-medicine the combination of plasma with reactive components, ambient air, as well as biologic tissue - typically also incorporating fluids - results in a complex system. Thus, real progress in plasma-medicine requires a profound knowledge of species, their fluxes and processes hitting biological tissues. That will allow in particular the necessary tailoring of the discharge to fit the conditions. The complexity of the problem can only be overcome by a common effort of many groups and requires a comparison of their results. A reference device based on the already well-investigated micro-scaled atmospheric pressure plasma jet is presented. It is developed in the frame of the European COST initiative MP1101 to establish a publicly available, stable and reproducible source, where required plasma conditions can be investigated. Here we present the design and the ideas behind. The presentation discusses the requirements for the reference source and operation conditions. Biological references are also defined by the initiative. A specific part of the talk will be attributed to the reproducibility of results from various samples of the device. Funding by the DFG within the Package Project PAK816 ``Plasma Cell Interaction in Dermatology'' and the Research Unit FOR 1123 ``Physics of microplasmas'' is gratefully acknowledged.

  15. Adjoint-Based Design of Rotors using the Navier-Stokes Equations in a Noninertial Reference Frame

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.

    2009-01-01

    Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated using comparisons with a complex-variable technique, and a number of single- and multi-point optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.

  16. Adjoint-Based Design of Rotors Using the Navier-Stokes Equations in a Noninertial Reference Frame

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.

    2010-01-01

    Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated by using comparisons with a complex-variable technique, and a number of single- and multipoint optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.

  17. Probing top-Z dipole moments at the LHC and ILC

    DOE PAGES

    Röntsch, Raoul; Schulze, Markus

    2015-08-11

    We investigate the weak electric and magnetic dipole moments of top quark-Z boson interactions at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). Their vanishingly small magnitude in the Standard Model makes these couplings ideal for probing New Physics interactions and for exploring the role of top quarks in electroweak symmetry breaking. In our analysis, we consider the production of two top quarks in association with a Z boson at the LHC, and top quark pairs mediated by neutral gauge bosons at the ILC. These processes yield direct sensitivity to top quark-Z boson interactions and complement indirectmore » constraints from electroweak precision data. Our computation is accurate to next-to-leading order in QCD, we include the full decay chain of top quarks and the Z boson, and account for theoretical uncertainties in our constraints. Furthermore, we find that LHC experiments will soon be able to probe weak dipole moments for the first time.« less

  18. Precision study of ZZγ production including Z-boson leptonic decays at the ILC

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Duan, Peng-Fei; Ma, Wen-Gan; Zhang, Ren-You; Chen, Chong

    2016-02-01

    We report on the precision predictions for the e^+e^- → Z Zγ ~process including Z-boson leptonic decays at the ILC in the standard model (SM). The calculation includes the full next-to-leading (NLO) electroweak (EW) corrections and high order initial state radiation (h.o. ISR) contributions. We find that the NLO EW corrections heavily suppress the LO cross section, and the h.o. ISR effects are notable near the threshold while become small in high energy region. We present the LO and the NLO EW+h.o. ISR corrected distributions of the transverse momenta of final Z-boson and photon as well as the Z-pair invariant mass, and we investigate the corresponding NLO EW and h.o. ISR relative corrections. We also study the leptonic decays of the final Z-boson pair by adopting the MadSpin method where the spin correlation effect is involved. We conclude that both the h.o. ISR effects and the NLO EW corrections are important in exploring the ZZγ production at the ILC.

  19. Contact interactions in Higgs-vector boson associated production at the ILC

    NASA Astrophysics Data System (ADS)

    Cohen, Jonathan; Bar-Shalom, Shaouly; Eilam, Gad

    2016-08-01

    We explore new physics (NP) effects in Higgs-vector boson associated production at a future International Linear Collider (ILC) via e+e-→Z h ,Z h h , using effective field theory (EFT) techniques. In particular, we focus on a certain class of dimension 6 operators, which are generated by tree-level exchanges of a new heavy vector field in the underlying theory. These operators induce new contact terms of the form ψ ψ ϕ D ϕ , involving the Standard Model (SM) fermions (ψ ), gauge-bosons (D is the covariant derivative) and the SM Higgs field (ϕ ). We investigate the high-energy behavior of these new effective interactions in e+e-→Z h ,Z h h , imposing bounds from electroweak precision measurements, and show that the ILC is an excellent testing ground for probing this type of NP via e+e-→Z h ,Z h h . We also address the validity of the EFT expansion and we study the correlation between the h Z and h h Z signals, which can be utilized in future searches for NP in these channels.

  20. Initial results of a silicon sensor irradiation study for ILC extreme forward calorimetry

    NASA Astrophysics Data System (ADS)

    Band, Reyer; Fadeyev, Vitaliy; Field, R. Clive; Key, Spencer; Kim, Tae Sung; Markiewicz, Thomas; Martinez-McKinney, Forest; Maruyama, Takashi; Mistry, Khilesh; Nidumolu, Ravi; Schumm, Bruce A.; Spencer, Edwin; Timlin, Conor; Wilder, Max

    2014-11-01

    Detectors proposed for the International Linear Collider (ILC) incorporate a tungsten sampling calorimeter ('BeamCal') intended to reconstruct showers of electrons, positrons and photons that emerge from the interaction point of the collider with angles between 5 and 50 milliradians. For the innermost radius of this calorimeter, radiation doses at shower-max are expected to reach 100 MRad per year, primarily due to minimum-ionizing electrons and positrons that arise in the induced electromagnetic showers of e+e- 'beamstrahlung' pairs produced in the ILC beam-beam interaction. However, radiation damage to calorimeter sensors may be dominated by hadrons induced by nuclear interactions of shower photons, which are much more likely to contribute to the non-ionizing energy loss that has been observed to damage sensors exposed to hadronic radiation. We report here on the results of SLAC Experiment T-506, for which several different types of silicon diode sensors were exposed to doses of radiation induced by showering electrons of energy 3.5-10.6 GeV. By embedding the sensor under irradiation within a tungsten radiator, the exposure incorporated hadronic species that would potentially contribute to the degradation of a sensor mounted in a precision sampling calorimeter. Depending on sensor technology, efficient charge collection was observed for doses as large as 220 MRad.

  1. Design and characterisation of a thin-film electrode array with shared reference/counter electrodes for electrochemical detection.

    PubMed

    Uludag, Yildiz; Olcer, Zehra; Sagiroglu, Mahmut Samil

    2014-07-15

    In the current study, a novel electrode array and integrated microfluidics have been designed and characterised in order to create a sensor chip which is not only easy, rapid and cheaper to produce but also have a smaller imprint and good electrochemical sensing properties. The current study includes the assessment of the effects of an Au quasi-reference electrode and the use of shared reference/counter electrodes for the array, in order to obtain a small array that can be produced using a fine metal mask. In the study, it is found that when Au is used as the quasi-reference electrode, the arrays with shared reference and counter electrodes result in faster electron transfer kinetics and prevent the potential change with respect to scan rate, and hence is advantageous with respect to conventional electrodes. In addition, the resulting novel electrode array has been shown to result in higher current density (10.52 µA/cm(2); HRP detection assay) and measured diffusion coefficient (14.40×10(-12) cm(2)/s; calculated from the data of cyclic voltammetry with 1mM potassium ferricyanide) with respect to conventional electrodes tested in the study. Using the new electrode arrays, the detection limits obtained from horse radish peroxidase (HRP) and bisphenol A assays were 12.5 ng/ml (2.84×10(-10) M ) and 10 ng/ml (44×10(-9) M), respectively. Performing the HRP detection assay in a flow injection system using array integrated microfluidics provided 25 times lower detection limit (11.36×10(-12) M), although Ti has been used as electrode material instead of Au. In short, incorporation of this new electrode array to lab-on-a-chip or MEMs (micro-electro mechanic systems) technologies may pave the way for easy to use automated biosensing devices that could be used for a variety of applications from diagnostics to environmental monitoring, and studies will continue to move forward in this direction. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A Phobos-Deimos Mission as an Element of the NASA Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2011-01-01

    NASA has conducted a series of mission studies over the past 25 years examining the eventual exploration of the surface of Mars by humans. The latest version of this evolutionary series of design reference missions/architectures - Design Reference Architecture 5 or DRA-5 - was completed in 2007. This paper examines the implications of including a human mission to explore the moons of Mars and teleoperate robots in various locations, but not to land the human crews on Mars, as an element of this reference architecture. Such a mission has been proposed several times during this same 25 year evolution leading up to the completion of DRA-5 primarily as a mission of testing the in-space vehicles and operations while surface vehicles and landers are under development. But such a precursor or test mission has never been explicitly included as an element of this Architecture. This paper will first summarize the key features of the DRA-5 to provide context for the remainder of the assessment. This will include a description of the in-space vehicles that would be the subject of a shakedown test during the Mars orbital mission. A decision tree will be used to illustrate the factors that will be analyzed, and the sequence in which they will be addressed, for this assessment. The factors that will be analyzed include the type of interplanetary transfer orbit (opposition class versus conjunction class), the type of parking orbit (circular versus elliptical), and the type of propulsion technology (high thrust chemical versus nuclear thermal rocket). The manner in which each of these factors impacts an individual mission will be described. In addition to the direct impact of these factors, additional considerations impacting crew health and overall programmatic outcomes will be discussed. Numerical results for each of the factors in the decision tree will be grouped with derived qualitative impacts from crew health and programmatic consideration. These quantitative and qualitative

  3. Towards a reference cavitating vessel Part III—design and acoustic pressure characterization of a multi-frequency sonoreactor

    NASA Astrophysics Data System (ADS)

    Wang, Lian; Memoli, Gianluca; Hodnett, Mark; Butterworth, Ian; Sarno, Dan; Zeqiri, Bajram

    2015-08-01

    A multi-frequency cavitation vessel (RV-multi) has been commissioned at the National Physical Laboratory (NPL, UK), with the aim of establishing a standard source of acoustic cavitation in water, with reference to which details of the cavitation process can be studied and cavitation measurement techniques evaluated. The vessel is a cylindrical cavity with a maximum capacity up to 17 L, and is designed to work at six frequency ranges, from 21 kHz to 136 kHz, under controlled temperature conditions. This paper discusses the design of RV-multi and reports experiments carried out to establish the reproducibility of the acoustic pressure field established within the vessel and its operating envelope, including sensitivity to aspects such as water depth and temperature. The acoustic field distribution was determined along the radial and depth directions within the vessel using a miniature hydrophone, for two input voltage levels under low power transducer excitation conditions (e.g. below the cavitation threshold). Particular care was taken in determining peak acoustic pressure locations, as these are critical for accompanying cavitation studies. Perturbations of the vessel by the measuring hydrophone were also monitored with a bottom-mounted pressure sensor.

  4. Characterization and Comparison of Control Units for Piezo Actuators to be used for Lorentz Force Compensation inth ILC

    SciTech Connect

    Bhattacharyya, Sampriti; Pilipenko, Roman; /Fermilab

    2010-01-01

    Superconducting accelerators, such as the International Linear Collider (ILC), rely on very high Q accelerating cavities to achieve high electric fields at low RF power. Such cavities have very narrow resonances: a few kHz with a 1.3GHz resonance frequency for the ILC. Several mechanical factors cause tune shifts much larger than this: pressure variations in the liquid helium bath; microphonics from pumps and other mechanical devices; and for a pulsed machine such as the ILC, Lorentz force detuning (pressure from the contained RF field). Simple passive stiffening is limited by many manufacturing and material considerations. Therefore, active tuning using piezo actuators is needed. Here we study a supply for their operation. Since commercial power amplifiers are expensive, we analyzed the characteristics of four power amplifiers: (iPZD) built by Istituto Nazionale di Fisica Nucleare (Sezione di Pisa); and a DC-DC converter power supply built in Fermilab (Piezo Master); and two commercial amplifiers, Piezosystem jena and Piezomechanik. This paper presents an analysis and characterization of these amplifiers to understand the cost benefit and reliability when using in a large scale, pulsed beam accelerator like the ILC.

  5. Measurement of the Higgs boson mass and e+e-→Z H cross section using Z →μ+μ- and Z →e+e- at the ILC

    NASA Astrophysics Data System (ADS)

    Yan, J.; Watanuki, S.; Fujii, K.; Ishikawa, A.; Jeans, D.; Strube, J.; Tian, J.; Yamamoto, H.

    2016-12-01

    This paper presents a full simulation study of the measurement of the production cross section (σZ H ) of the Higgsstrahlung process e+e-→Z H and the Higgs boson mass (MH ) at the International Linear Collider (ILC), using events in which a Higgs boson recoils against a Z boson decaying into a pair of muons or electrons. The analysis is carried out for three center-of-mass energies √{s }=250 , 350, and 500 GeV, and two beam polarizations eL-eR+ and eR-eL+ , for which the polarizations of e- and e+ are (P e-,P e+) =(-80 % ,+30 %) and (+80 % , -30 % ), respectively. Assuming an integrated luminosity of 250 fb-1 for each beam polarization at √{s }=250 GeV , where the best lepton momentum resolution is obtainable, σZ H and MH can be determined with a precision of 2.5% and 37 MeV for eL-eR+ and 2.9% and 41 MeV for eR-eL+ , respectively. Regarding a 20 year ILC physics program, the expected precisions for the HZZ coupling and MH are estimated to be 0.4% and 14 MeV, respectively. The event selection is designed to optimize the precisions of σZ H and MH while minimizing the bias on the measured σZ H due to discrepancy in signal efficiencies among Higgs decay modes. For the first time, model independence has been demonstrated to a sub-percent level for the σZ H measurement at each of the three center-of-mass energies. The results presented show the impact of center-of-mass energy and beam polarization on the evaluated precisions and serve as a benchmark for the planning of the ILC run scenario.

  6. Design of Linear DC Motor Two-degree-of-freedom Positioning System using Model Reference type Sliding Mode Controller

    NASA Astrophysics Data System (ADS)

    Urushihara, Shiro; Kamano, Takuya; Yura, Satoshi; Yasuno, Takashi; Suzuki, Takayuki

    One of fundamental problems in the factory automation is how to obtain linear motion. Linear motors produce directly the linear motion force without a motion-transform mechanism. Linear d.c. motors (LDMs) have excellent performance and controllability. However, the dynamics of small-sized LDMs is adversely affected by the dead-band due to the friction between brushes and commutators. In this paper, it is described that the design of the two-degree-of-freedom positioning system with a LDM using model reference type sliding mode controller (SMC). The proposed positioning system consists of a fixed gain feedforward controller and a SMC used as a feedback controller. The objective of the SMC is to repress the influence of nonlinear characteristics (the dead-band and parameter variations etc.). The tracking performance can be improved as the fixed gain feedforward controller makes a dynamic inverse system in the feedforward path. The effectiveness of the proposed system for improvement of the tracking performance is demonstrated by experimental results.

  7. Results from heater-induced quenches of A 4. 5 m Reference Design D dipole for the SSC

    SciTech Connect

    Ganetis, G.; Prodell, A.

    1986-01-01

    Quench studies were performed using a 4.5 m long Reference Design D, SSC dipole to determine the temperature rise of the magnet conductor during a quench by measuring the resistance of the conductor cable in the immediate vicinity of the quench. The single bore magnet was wound with improved NbTi conductor in a 2-layer cosine theta coil configuration of 4.0 cm inner diameter. Eight pairs of voltage taps were installed at various locations on the right side of the inner coil of the magnet. ''Spot'' heaters were centrally located between the voltage taps of 4 of these pairs on the midplane turn of the inner coil to initiate magnet quenches. A redundant array of voltage taps and heaters was also installed on the left side of the inner coil. The resistance of the conductor was obtained from observations of the current and voltage during a magnet quench. The temperature of the conductor was then determined by comparing its resistance to an R vs T curve appropriate for the conductor. The quantity ..integral.. I/sup 2/dt and the temperature, T, are presented as a function of current, and the maximum conductor temperature is shown as a function of ..integral.. I/sup 2/dt. Measured longitudinal and azimuthal quench propagation velocities are also presented as a function of magnet current, and the temperatures at several locations on the inner magnet coil are plotted as a function of the time after a quench was initiated.

  8. Benefits of statistical molecular design, covariance analysis, and reference models in QSAR: a case study on acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Andersson, C. David; Hillgren, J. Mikael; Lindgren, Cecilia; Qian, Weixing; Akfur, Christine; Berg, Lotta; Ekström, Fredrik; Linusson, Anna

    2015-03-01

    Scientific disciplines such as medicinal- and environmental chemistry, pharmacology, and toxicology deal with the questions related to the effects small organic compounds exhort on biological targets and the compounds' physicochemical properties responsible for these effects. A common strategy in this endeavor is to establish structure-activity relationships (SARs). The aim of this work was to illustrate benefits of performing a statistical molecular design (SMD) and proper statistical analysis of the molecules' properties before SAR and quantitative structure-activity relationship (QSAR) analysis. Our SMD followed by synthesis yielded a set of inhibitors of the enzyme acetylcholinesterase (AChE) that had very few inherent dependencies between the substructures in the molecules. If such dependencies exist, they cause severe errors in SAR interpretation and predictions by QSAR-models, and leave a set of molecules less suitable for future decision-making. In our study, SAR- and QSAR models could show which molecular sub-structures and physicochemical features that were advantageous for the AChE inhibition. Finally, the QSAR model was used for the prediction of the inhibition of AChE by an external prediction set of molecules. The accuracy of these predictions was asserted by statistical significance tests and by comparisons to simple but relevant reference models.

  9. Distinguishing Little Higgs product and simple group models at the CERN LHC and ILC

    SciTech Connect

    Kilian, W.; Rainwater, D.; Reuter, J.

    2006-11-01

    We propose a means to discriminate between the two basic variants of Little Higgs models, the Product Group and Simple Group models, at the next generation of colliders. It relies on a special coupling of light pseudoscalar particles present in Little Higgs models, the pseudoaxions, to the Z and the Higgs boson, which is present only in Simple Group models. We discuss the collider phenomenology of the pseudoaxion in the presence of such a coupling at the LHC, where resonant production and decay of either the Higgs or the pseudoaxion induced by that coupling can be observed for much of parameter space. The full allowed range of parameters, including regions where the observability is limited at the LHC, is covered by a future ILC, where double scalar production would be a golden channel to look for.

  10. Spin Rotation Schemes at the ILC for Two Interaction Regions and Positron Polarization with both Helicities

    SciTech Connect

    Moffeit, K.

    2005-02-17

    This note describes a spin rotation scheme for the ILC that allows the polarization spin vector of the electron and positron beams to be tuned independently for two Interaction Regions (IR). The correct spin direction for a particular IR can be selected by directing the beam into one of two parallel spin rotation beam lines located between the damping ring and the linac. With suitable fast kicker magnets, it is possible to rapidly switch between these parallel beam lines, so that polarized beams can be delivered to two IRs on a pulse train by pulse train basis. A similar scheme can be employed in the insertion beam line to the positron damping ring, to allow rapid helicity switching for polarized positrons.

  11. Progress of ILC High Gradient SRF Cavity R&D at Jefferson Lab

    SciTech Connect

    R.L. Geng, J. Dai, G.V. Eremeev, A.D. Palczewski

    2011-09-01

    Latest progress of ILC high gradient SRF cavity R&D at Jefferson Lab will be presented. 9 out of 10 real 9-cell cavities reached an accelerating gradient of more than 38 MV/m at a unloaded quality factor of more than 8 {center_dot} 109. New understandings of quench limitation in 9-cell cavities are obtained through instrumented studies of cavities at cryogenic temperatures. Our data have shown that present limit reached in 9-cell cavities is predominantly due to localized defects, suggesting that the fundamental material limit of niobium is not yet reached in 9-cell cavities and further gradient improvement is still possible. Some examples of quench-causing defects will be given. Possible solutions to pushing toward the fundamental limit will be described.

  12. Intrabeam Scattering Studies for the ILC Damping Rings Using a NewMATLAB Code

    SciTech Connect

    Reichel, I.; Wolski, A.

    2006-06-21

    A new code to calculate the effects of intrabeam scattering (IBS) has been developed in MATLAB based on the approximation suggested by K. Bane. It interfaces with the Accelerator Toolbox but can also read in lattice functions from other codes. The code has been benchmarked against results from other codes for the ATF that use this approximation or do the calculation in a different way. The new code has been used to calculate the emittance growth due to intrabeam scattering for the lattices currently proposed for the ILC Damping Rings, as IBS is a concern, especially for the electron ring. A description of the code and its user interface, as well as results for the Damping Rings, will be presented.

  13. NR activity in the accelerating cavities development and study for ILC positron source parameters

    NASA Astrophysics Data System (ADS)

    Paramonov, V. V.; Kravchuk, L. V.; Moiseev, V. A.; Naboka, A. N.; Skasyrskaya, A. K.

    2008-12-01

    The critical part of the normal conducting (NC) positron preaccelerator (PPA) at the ILC positron source (PS) are capture sections that should operate with an accelerating gradient of up to 15 MV/m in combination with long RF pulse (˜1 ms). Developed at the Institute of Nuclear Research (INR) and now being constructed at DESY, the CDS booster cavity for the Photo Injector Test facility, DESY, Zeuthen, will operate under the same conditions and is a full-scale, high-RF-power prototype of the PS capture cavities. Cavity construction status and results of cavity tuning at a low RF level are presented. Other features of the standing wave cavities for the PPA, such as RF pulsed heating, advanced cooling, and beam loading, are discussed.

  14. Emittance reconstruction from measured beam sizes in ATF2 and perspectives for ILC

    NASA Astrophysics Data System (ADS)

    Faus-Golfe, A.; Navarro, J.; Fuster Martinez, N.; Resta Lopez, J.; Giner Navarro, J.

    2016-05-01

    The projected emittance (2D) and the intrinsic emittance (4D) reconstruction method by using the beam size measurements at different locations is analyzed in order to study analytically the conditions of solvability of the systems of equations involved in this process. Some conditions are deduced and discussed, and general guidelines about the locations of the measurement stations have been obtained to avoid unphysical results. The special case of the multi-Optical Transition Radiation system (m-OTR), made of four measurement stations, in the Extraction Line (EXT) of Accelerator Test Facility 2 (ATF2) has been simulated in much detail and compared with measurements. Finally a feasibility study of a multi-station system for fast transverse beam size measurement, emittance reconstruction and coupling correction in the Ring to Main Linac (RTML) of International Linear Collider (ILC) Diagnostic sections of the RTML has been discussed in detail.

  15. Testing the CP-violating MSSM in stau decays at the LHC and ILC

    NASA Astrophysics Data System (ADS)

    Dreiner, Herbi; Kittel, Olaf; Kulkarni, Suchita; Marold, Anja

    2011-05-01

    We study CP violation in the two-body decay of a scalar tau into a neutralino and a tau, which should be probed at the LHC and ILC. From the normal tau polarization, a CP asymmetry is defined which is sensitive to the CP phases of the trilinear scalar coupling parameter Aτ, the gaugino mass parameter M1, and the Higgsino mass parameter μ, in the stau-neutralino sector of the minimal supersymmetric standard model. Asymmetries of more than 70% are obtained in scenarios with strong stau mixing. As a result, detectable CP asymmetries in stau decays at the LHC are found, motivating further detailed experimental studies for probing the supersymmetry CP phases.

  16. Power Losses in the ILC 20-Mrad Extraction Line at 1-TeV

    SciTech Connect

    Ferrari, Arnaud; Nosochkov, Yuri; /SLAC

    2007-07-02

    The authors have performed a detailed study of the power losses in the post-collision extraction line of a TeV e{sup +}e{sup -} collider with a crossing angle of 20 mrad at the interaction point. Five cases were considered: four luminosity configurations for ILC and one for CLIC. For all of them, the strong beam-beam effects at the interaction point lead to an emittance growth for the outgoing beam, as well as to the production of beamstrahlung photons and e{sup +}e{sup -} coherent pairs. The power losses along the extraction line, which are due to energy deposition by a fraction of the disrupted beam, of the beamstrahlung photons and of the coherent pairs, were estimated in the case of ideal collisions, as well as with a vertical position or angular offset at the interaction point.

  17. Overview of high gradient SRF R&D for ILC cavities at Jefferson Lab

    SciTech Connect

    Geng, Rongli

    2009-11-01

    We report the progress on high gradient R&D of ILC cavities at Jefferson Lab (JLab) since the Beijing workshop. Routine 9-cell cavity electropolishing (EP) processing and RF testing has been enhanced with added surface mapping and T-mapping instrumentations. 12 new 9-cell cavities (10 of them are baseline fine-grain TESLA-shape cavities: 5 built by ACCEL/Research Instruments, 4 by AES and 1 by JLab; 2 of them are alternative cavities: 1 fine-grain ICHIRO-shape cavity built by KEK/Japan industry and 1 large-grain TESLA-shape cavity built by JLab) are EP processed and tested. 76 EP cycles are accumulated, corresponding to more than 200 hours of active EP time. Field emission (FE) and quench behaviors of electropolished 9-cell cavities are studied. EP process continues to be optimized, resulting in advanced procedures and hence improved cavity performance. Several 9-cell cavities reached 35 MV/m after the first light EP processing. FE-free performance has been demonstrated in 9-cell cavities in 35-40 MV/m range. 1-cell cavity studies explore new techniques for defect removal as well as advanced integrated cavity processing. Surface studies of niobium samples electropolished together with real cavities provide new insight into the nature of field emitters. Close cooperation with the US cavity fabrication industry has been undertaking with the successful achievement of 41 MV/m for the first time in a 9-cell ILC cavity built by AES. As the size of the data set grows, it is now possible to construct gradient yield curves, from which one can see that significant progress has been made in raising the high gradient yield.

  18. New SCALE Sensitivity/Uncertainty Capabilities Applied to Bias Estimation and to Design of MIRTE Reference Experiments

    SciTech Connect

    Rearden, Bradley T; Duhamel, Isabelle; Letang, Eric

    2009-01-01

    New TSUNAMI tools of SCALE 6, TSURFER and TSAR, are demonstrated to examine the bias effects of small-worth test materials, relative to reference experiments. TSURFER is a data adjustment bias and bias uncertainty assessment tool, and TSAR computes the sensitivity of the change in reactivity between two systems to the cross-section data common to their calculation. With TSURFER, it is possible to examine biases and bias uncertainties in fine detail. For replacement experiments, the application of TSAR to TSUNAMI-3D sensitivity data for pairs of experiments allows the isolation of sources of bias that could otherwise be obscured by materials with more worth in an individual experiment. The application of TSUNAMI techniques in the design of nine reference experiments for the MIRTE program will allow application of these advanced techniques to data acquired in the experimental series. The validation of all materials in a complex criticality safety application likely requires consolidating information from many different critical experiments. For certain materials, such as structural materials or fission products, only a limited number of critical experiments are available, and the fuel and moderator compositions of the experiments may differ significantly from those of the application. In these cases, it is desirable to extract the computational bias of a specific material from an integral keff measurement and use that information to quantify the bias due to the use of the same material in the application system. Traditional parametric and nonparametric methods are likely to prove poorly suited for such a consolidation of specific data components from a diverse set of experiments. An alternative choice for consolidating specific data from numerous sources is a data adjustment tool, like the ORNL tool TSURFER (Tool for Sensitivity/Uncertainty analysis of Response Functionals using Experimental Results) from SCALE 6.1 However, even with TSURFER, it may be difficult to

  19. Civil engineering reference guide

    SciTech Connect

    Merritt, F.S.

    1986-01-01

    The civil engineering reference guide contains the following: Structural theory. Structural steel design. Concrete design and construction. Wood design and construction. Bridge engineering. Geotechnical engineering. Water engineering. Environmental engineering. Surveying.

  20. A Novel Strategy for Selection and Validation of Reference Genes in Dynamic Multidimensional Experimental Design in Yeast

    PubMed Central

    Cankorur-Cetinkaya, Ayca; Dereli, Elif; Eraslan, Serpil; Karabekmez, Erkan; Dikicioglu, Duygu; Kirdar, Betul

    2012-01-01

    Background Understanding the dynamic mechanism behind the transcriptional organization of genes in response to varying environmental conditions requires time-dependent data. The dynamic transcriptional response obtained by real-time RT-qPCR experiments could only be correctly interpreted if suitable reference genes are used in the analysis. The lack of available studies on the identification of candidate reference genes in dynamic gene expression studies necessitates the identification and the verification of a suitable gene set for the analysis of transient gene expression response. Principal Findings In this study, a candidate reference gene set for RT-qPCR analysis of dynamic transcriptional changes in Saccharomyces cerevisiae was determined using 31 different publicly available time series transcriptome datasets. Ten of the twelve candidates (TPI1, FBA1, CCW12, CDC19, ADH1, PGK1, GCN4, PDC1, RPS26A and ARF1) we identified were not previously reported as potential reference genes. Our method also identified the commonly used reference genes ACT1 and TDH3. The most stable reference genes from this pool were determined as TPI1, FBA1, CDC19 and ACT1 in response to a perturbation in the amount of available glucose and as FBA1, TDH3, CCW12 and ACT1 in response to a perturbation in the amount of available ammonium. The use of these newly proposed gene sets outperformed the use of common reference genes in the determination of dynamic transcriptional response of the target genes, HAP4 and MEP2, in response to relaxation from glucose and ammonium limitations, respectively. Conclusions A candidate reference gene set to be used in dynamic real-time RT-qPCR expression profiling in yeast was proposed for the first time in the present study. Suitable pools of stable reference genes to be used under different experimental conditions could be selected from this candidate set in order to successfully determine the expression profiles for the genes of interest. PMID:22675547

  1. SUSY-QCD Effects in Top Quark Pair Production in Association with a Gluon at the ILC

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Ming; Liu, Ning

    2015-08-01

    Given the null results of searches for new physics at the LHC, we investigate the one-loop effects SUSY QCD in the process e^ + e^ - \\to t\\bar tg at the ILC in Minimal Supersymmetric Standard Model (MSSM). We find that the relative SUSY-QCD corrections to the cross section of e^ + e^ - \\to t\\bar tg can maximally reach 6.5%(3.2%) at the ILC with \\sqrt s = 1000 GeV when m\\bar t1 = 313.4 GeV and m\\bar g = 500≤ft( {1500} \\right) GeV. Supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 11305049, 11275057, and 11405047, by Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20134104120002 and by the Startup Foundation for Doctors of Henan Normal University under Grant No. 11112

  2. Probing the origin of 750 GeV diphoton excess with the precision measurements at the ILC

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Hamaguchi, Koichi; Moroi, Takeo; Yanagi, Keisuke

    2016-08-01

    The recently reported diphoton excess at the LHC may imply the existence of a new resonance with a mass of about 750 GeV which couples to photons via loops of new charged particles. In this letter, we study the possibility to test such models at the ILC, paying attention to the new charged particles responsible for the diphoton decay of the resonance. We show that they affect the scattering processes e+e- → f f bar (with f denoting Standard Model fermions) at the ILC, which makes it possible to indirectly probe the new charged particles even if they are out of the kinematical reach. We also show that the discriminations of the diphoton models may be possible based on a study of the angular distributions of f f bar .

  3. Design and Development of an Equipotential Voltage Reference (Grounding) System for a Low-Cost Rapid-Development Modular Spacecraft Architecture

    NASA Technical Reports Server (NTRS)

    Lukash, James A.; Daley, Earl

    2011-01-01

    This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.

  4. Design of a Personnel and Training Information System for Educational R&D Personnel: Recommended Journals and References. Project Product.

    ERIC Educational Resources Information Center

    Mattas, Frank W.

    This document comprises a list of periodicals, references, and sources recommended by the Far West Laboratory for Educational Research and Development for a "core" collection of information resources useful in meeting the information needs of those concerned with personnel and training in educational research, development, diffusion, and…

  5. The role of beam polarization for radiative neutralino production at the ILC

    NASA Astrophysics Data System (ADS)

    Dreiner, H. K.; Kittel, O.; Langenfeld, U.

    2008-03-01

    We analyze the impact of electron and positron beam polarization on radiative neutralino production at the international linear collider (ILC). We focus on three different mSUGRA scenarios in turn at the Higgs strahlung threshold, the top pair production threshold, and at sqrt{s} =500 GeV. In these scenarios at the corresponding sqrt{s}, radiative neutralino production is the only supersymmetric production mechanism that is kinematically allowed. The heavier neutralinos and charginos as well as the sleptons, squarks and gluinos are too heavy to be pair produced. We calculate the signal cross section and also the standard model background from radiative neutrino production. For our scenarios, we obtain significances larger than 10 and signal to background ratios between 2% and 5%, if we have electron beam polarization P_{e^-} = 0.0 0.8 and positron beam polarization P_{e^+} = 0.0 0.3. If we have electron beam polarization of P_{e^-} = 0.9, then the signal is observable with P_{e^+} = 0.0 but both the significance and the signal to background ratio are significantly improved for P_{e^+} = 0.3.

  6. A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis

    PubMed Central

    Moretti, Silvia; Renga, Giorgia; Oikonomou, Vasilis; Galosi, Claudia; Pariano, Marilena; Iannitti, Rossana G.; Borghi, Monica; Puccetti, Matteo; De Zuani, Marco; Pucillo, Carlo E.; Paolicelli, Giuseppe; Zelante, Teresa; Renauld, Jean-Christophe; Bereshchenko, Oxana; Sportoletti, Paolo; Lucidi, Vincenzina; Russo, Maria Chiara; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; Talesa, Vincenzo Nicola; Napolioni, Valerio; Romani, Luigina

    2017-01-01

    T helper 9 (Th9) cells contribute to lung inflammation and allergy as sources of interleukin-9 (IL-9). However, the mechanisms by which IL-9/Th9 mediate immunopathology in the lung are unknown. Here we report an IL-9-driven positive feedback loop that reinforces allergic inflammation. We show that IL-9 increases IL-2 production by mast cells, which leads to expansion of CD25+ type 2 innate lymphoid cells (ILC2) and subsequent activation of Th9 cells. Blocking IL-9 or inhibiting CD117 (c-Kit) signalling counteracts the pathogenic effect of the described IL-9-mast cell-IL-2 signalling axis. Overproduction of IL-9 is observed in expectorates from cystic fibrosis (CF) patients, and a sex-specific variant of IL-9 is predictive of allergic reactions in female patients. Our results suggest that blocking IL-9 may be a therapeutic strategy to ameliorate inflammation associated with microbial colonization in the lung, and offers a plausible explanation for gender differences in clinical outcomes of patients with CF. PMID:28090087

  7. Participation in workplace design with reference to low back pain: a case for the improvement of the police patrol car.

    PubMed

    Kuorinka, I; Côté, M M; Baril, R; Geoffrion, R; Giguère, D; Dalzell, M A; Larue, C

    1994-07-01

    Thirty Canadian police officers, divided into six groups, participated in the redesign of the interior of the patrol car. Three of the groups consisted of individuals having a history of low back disease. The effect of participating in a design process on the characteristics of the final design and on the perception of the low back pain was studied in a semi-experimental setting. The participants developed a strong commitment to the participatory design process, which was reflected in their productions. The differences between participants with and without a history of a low back disease was not marked. The former tended to stress posture-related elements in their analysis and design.

  8. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 reference manual

    SciTech Connect

    Griffin, Joshua D. (Sandai National Labs, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L.; Watson, Jean-Paul; Kolda, Tamara Gibson; Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J.; Hough, Patricia Diane; Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Guinta, Anthony A.; Brown, Shannon L.

    2006-10-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  9. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual.

    SciTech Connect

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane; Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  10. Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems.

    PubMed

    Brien, Chris J; Berger, Bettina; Rabie, Huwaida; Tester, Mark

    2013-02-08

    There are a number of unresolved issues in the design of experiments in greenhouses. They include whether statistical designs should be used and, if so, which designs should be used. Also, are there thigmomorphogenic or other effects arising from the movement of plants on conveyor belts within a greenhouse? A two-phase, single-line wheat experiment involving four tactics was conducted in a conventional greenhouse and a fully-automated phenotyping greenhouse (Smarthouse) to investigate these issues. Analyses of our experiment show that there was a small east-west trend in total area of the plants in the Smarthouse. Analyses of the data from three multiline experiments reveal a large north-south trend. In the single-line experiment, there was no evidence of differences between trios of lanes, nor of movement effects. Swapping plant positions during the trial was found to decrease the east-west trend, but at the cost of increased error variance. The movement of plants in a north-south direction, through a shaded area for an equal amount of time, nullified the north-south trend. An investigation of alternative experimental designs for equally-replicated experiments revealed that generally designs with smaller blocks performed best, but that (nearly) trend-free designs can be effective when blocks are larger. To account for variation in microclimate in a greenhouse, using statistical design and analysis is better than rearranging the position of plants during the experiment. For the relocation of plants to be successful requires that plants spend an equal amount of time in each microclimate, preferably during comparable growth stages. Even then, there is no evidence that this will be any more precise than statistical design and analysis of the experiment, and the risk is that it will not be successful at all. As for statistical design and analysis, it is best to use either (i) smaller blocks, (ii) (nearly) trend-free arrangement of treatments with a linear trend term

  11. Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems

    PubMed Central

    2013-01-01

    Background There are a number of unresolved issues in the design of experiments in greenhouses. They include whether statistical designs should be used and, if so, which designs should be used. Also, are there thigmomorphogenic or other effects arising from the movement of plants on conveyor belts within a greenhouse? A two-phase, single-line wheat experiment involving four tactics was conducted in a conventional greenhouse and a fully-automated phenotyping greenhouse (Smarthouse) to investigate these issues. Results and discussion Analyses of our experiment show that there was a small east–west trend in total area of the plants in the Smarthouse. Analyses of the data from three multiline experiments reveal a large north–south trend. In the single-line experiment, there was no evidence of differences between trios of lanes, nor of movement effects. Swapping plant positions during the trial was found to decrease the east–west trend, but at the cost of increased error variance. The movement of plants in a north–south direction, through a shaded area for an equal amount of time, nullified the north–south trend. An investigation of alternative experimental designs for equally-replicated experiments revealed that generally designs with smaller blocks performed best, but that (nearly) trend-free designs can be effective when blocks are larger. Conclusions To account for variation in microclimate in a greenhouse, using statistical design and analysis is better than rearranging the position of plants during the experiment. For the relocation of plants to be successful requires that plants spend an equal amount of time in each microclimate, preferably during comparable growth stages. Even then, there is no evidence that this will be any more precise than statistical design and analysis of the experiment, and the risk is that it will not be successful at all. As for statistical design and analysis, it is best to use either (i) smaller blocks, (ii) (nearly) trend

  12. Improved fiber-optic link for the phase reference distribution system for the TESLA technology based projects

    NASA Astrophysics Data System (ADS)

    Czuba, Krzysztof; Felber, Matthias

    2005-09-01

    The UV Free-Electron Laser (UVFEL) [1], The X-Ray Free-Electron Laser (XFEL) [2] and The International Linear Accelerator (ILC) [9] projects will require phase synchronization of various RF frequency subsystems on kilometer distances with accuracy better than 1ps. To fulfill these requirements, a phase reference distribution system concept was proposed and a prototype was developed for tests in the TESLA Test Facility 2 (TTF2). An important part of the phase reference system is the fiber-optic phase stable, long distance link described in this paper. An interferometrical scheme with feedback on phase, suppressing long term phase drifts induced by temperature changes was developed and tested in laboratory and under accelerator conditions. A motorized optical delay line was used in the system to compensate for phase errors. Described are error considerations and most important project issues like the hardware development and the real time phase controller software. The presented measurement results satisfy the design requirements. Experience gained during the experiments yielded proposals for system improvements.

  13. Reference design of 100 MW-h lithium/iron sulfide battery system for utility load leveling

    SciTech Connect

    Zivi, S.M.; Kacinskas, H.; Pollack, I.; Chilenskas, A.A.; Barney, D.L.; Grieve, W.; McFarland, B.L.; Sudar, S.; Goldstein, E.; Adler, E.

    1980-03-01

    The first year in a two-year cooperative effort between Argonne National Laboratory and Rockwell International to develop a conceptual design of a lithium alloy/iron sulfide battery for utility load leveling is presented. A conceptual design was developed for a 100 MW-h battery system based upon a parallel-series arrangement of 2.5 kW-h capacity cells. The sales price of such a battery system was estimated to be very high, $80.25/kW-h, exclusive of the cost of the individual cells, the dc-to-ac converters, site preparation, or land acquisition costs. Consequently, the second year's efforts were directed towards developing modified designs with significantly lower potential costs.

  14. Design and pharmacological evaluation of PF-4840154, a non-electrophilic reference agonist of the TrpA1 channel.

    PubMed

    Ryckmans, Thomas; Aubdool, Aisah A; Bodkin, Jennifer V; Cox, Peter; Brain, Susan D; Dupont, Thomas; Fairman, Emma; Hashizume, Yoshinobu; Ishii, Naoko; Kato, Teruhisa; Kitching, Linda; Newman, Julie; Omoto, Kiyoyuki; Rawson, David; Strover, Jade

    2011-08-15

    TrpA1 is an ion channel involved in nociceptive and inflammatory pain. It is implicated in the detection of chemical irritants through covalent binding to a cysteine-rich intracellular region of the protein. While performing an HTS of the Pfizer chemical collection, a class of pyrimidines emerged as a non-reactive, non-covalently binding family of agonists of the rat and human TrpA1 channel. Given the issues identified with the reference agonist Mustard Oil (MO) in screening, a new, non-covalently binding agonist was optimized and proved to be a superior agent to MO for screening purposes. Compound 16a (PF-4840154) is a potent, selective agonist of the rat and human TrpA1 channel and elicited TrpA1-mediated nocifensive behaviour in mouse.

  15. Architectural and Functional Design and Evaluation of E-Learning VUIS Based on the Proposed IEEE LTSA Reference Model.

    ERIC Educational Resources Information Center

    O'Droma, Mairtin S.; Ganchev, Ivan; McDonnell, Fergal

    2003-01-01

    Presents a comparative analysis from the Institute of Electrical and Electronics Engineers (IEEE) Learning Technology Standards Committee's (LTSC) of the architectural and functional design of e-learning delivery platforms and applications, e-learning course authoring tools, and learning management systems (LMSs), with a view of assessing how…

  16. Architectural and Functional Design and Evaluation of E-Learning VUIS Based on the Proposed IEEE LTSA Reference Model.

    ERIC Educational Resources Information Center

    O'Droma, Mairtin S.; Ganchev, Ivan; McDonnell, Fergal

    2003-01-01

    Presents a comparative analysis from the Institute of Electrical and Electronics Engineers (IEEE) Learning Technology Standards Committee's (LTSC) of the architectural and functional design of e-learning delivery platforms and applications, e-learning course authoring tools, and learning management systems (LMSs), with a view of assessing how…

  17. User’s Reference Manual: Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA).

    DTIC Science & Technology

    1980-12-01

    methodology. The analysis procedure considers overturn- ing, sliding, and bearing pressure, relative to the soil immediately adjacent to the wall...equilibrium methods. (e) Limiting value of the overturning stalbi lity resultant ratio . (f) Reinforced concrete design parameters. (g) Specification...combination of Values inside user-defined ranges of base width, bottom of tow elevation, base slope, and key length, for a given stem ratio or toe width

  18. Osseo-mechanical induction of extra-cortical plates with reference to their surface properties and geometric designs.

    PubMed

    Coathup, M J; Bates, P; Cool, P; Walker, P S; Blumenthal, N; Cobb, J P; Blunn, G W

    1999-04-01

    The purpose of this investigation was to determine which geometric and surface properties encouraged optimal ingrowth and bonding of bone to an extra-cortical plate. Forty-eight titanium extra-cortical plates were attached onto the left and right femora of adult rabbits. The plates were of six different designs and the osseoconductive effects of four surfaces were examined. A roughened titanium surface, a plasma sprayed HA coating of low crystallinity (57%) and a solution precipitated calcium phosphate coating were compared with a plasma sprayed crystalline hydroxyapatite coating (crystallinity 85%). Thin sections were prepared by grinding and polishing. Bone formation and the interface around the plates were investigated histologically and computer and morphometric analyses were used to quantify new bone formation, bone apposition onto the plate, bone porosity and the condition of the HA coating. The study found that a hydroxyapatite coating (with the exception of the solution precipitated coating) had significantly greater interfacial contact with bone when compared to a roughened titanium surface, and that significantly more bone attached to a crystalline HA coating compared with the HA coating of lower crystallinity although significantly more bone formed in the vicinity of the lower crystalline HA coating. Differences in the bony reaction induced by the various geometric designs were evident and the optimal plate design requires either holes or slots along its length as this encouraged bone ingrowth into the plate.

  19. Vacuum Referred Binding Energy (VRBE)-Guided Design of Orange Persistent Ca3Si2O7:Eu(2+) Phosphors.

    PubMed

    Ueda, Jumpei; Maki, Ryomei; Tanabe, Setsuhisa

    2017-09-05

    Orange persistent phosphors of Ca3Si2O7 (CSO) doped with Eu(2+) were strategically developed by codoping Sm(3+) or Tm(3+). First, a vacuum referred binding energy, VRBE, diagram of Ca3Si2O7 (CSO) was constructed from the measured spectroscopic data. By the zigzag curve of the divalent lanthanide ions in the VRBE diagram, Sm(3+) and Tm(3+) ions were predicted to be a suitable electron trap for the persistent luminescence. The initial persistent luminance of CSO:Eu(2+)-Sm(3+) and CSO:Eu(2+)-Tm(3+) was found to be 290 times and 9300 times stronger, respectively, compared with CSO:Eu(2+). By optimizing Eu(2+) and Tm(3+) concentrations, the persistent luminescence duration on 0.32 mcd/m(2) reached approximately 50 min in CSO:Eu(2+)-Tm(3+). From the VRBE diagram and the persistent luminescence properties, we discuss the persistent mechanism including the charging process, detrapping process, and electron trapping centers.

  20. Conceptual designs for waste packages for horizontal or vertical emplacement in a repository in salt for reference in the site characterization plan

    SciTech Connect

    Not Available

    1987-06-01

    This report includes the options of horizontal and vertical emplacement, the addition of a phased repository, an additional waste form (intact spent fuel), revised geotechnical data appropriate for the Deaf Smith County site, new corrosion data for the container, and new repository design data. The waste package consists of waste form and canister within a thick-walled, low-carbon steel container surrounded by packing. The container is a hollow cylinder with a flat head welded to each end. The design concepts for the waste container or vertical and horizontal emplacement are identical. This report discusses the results of analyses of aspects of the reference waste package concept needing changes because of new data and information believed applicable to the Deaf Smith County site. Included are waste package conceptual designs or (1) the reference defense high-level waste form from the Savannah River Plant; (2) intact spent fuel with our pressurized-water-reactor or nine boiling-water-reactor assemblies per package for emplacement during Phase 1 of repository operation; and (3) spent fuel which has been disassembled and consolidated into a segmented cylindrical canister with rods from either 12 pressurized-water-reactor or 30 boiling-water-reactor assemblies per package for emplacement during Phase 2. 30 refs., 61 figs., 30 tabs.

  1. Design and technical reference to mitigate rapid crack propagation in polyethylene pipes for gas distribution. Final report, 1989-1996

    SciTech Connect

    Kanninen, M.F.; O`Donoghue, P.E.; Grigory, S.C.; Kim, L.J.; Couque, H.

    1997-06-01

    Because of the inevitable need for procedures that could be used by gas distribution engineers to preclude the occurrence of large scale rupture in the larger diameter and higher pressure polyethylene (PE) gas piping systems anticipated in the future, research was undertaken to develop and validate an appropriate methodology. The approach that was taken coupled a European-developed test apparatus known as the S4 test with PFRAC, a computer simulation model developed by SwRI. The resulting substantially enhanced S4 procedure requires only a single pipe test to be performed, with the results being extrapolatable for predicting the potential for PE pipe rupture in a range of service conditions. User-oriented design and operating guidelines have been derived from the computer model to allow gas distribution engineers to readily apply the results of this research.

  2. Validation of a new highly standardised, lab-independent whole-blood leukocyte function assay for clinical trials (ILCS).

    PubMed

    Schmolz, M; Hurst, T L; Bailey, D M; Powell, J R; Forsey, R J; Thompson, J M; Williams, C; Pawelec, G

    2004-04-01

    Physical stress induced in healthy volunteers by the Loughborough intermittent shuttle test (LIST) was used to validate a newly developed whole-blood cell culture system (Instant leukocyte culture system (ILCS). Exercise induced immune modulation was investigated through measurement of cytokine levels after activating leukocytes in peripheral blood ex vivo using the physiologic stimulant lipopolysaccharide (LPS). LPS induced production of three different cytokines, interferon gamma (IFNgamma), interleukin-6 (IL-6), and interleukin-10 (IL-10). IFNgamma levels were significantly decreased (P = 0.02 and P = 0.001 ) and IL-10 levels significantly increased (P= 0.04 and 0.03) after exercise. LPS induced IL-6 production was only marginally further increased by exercise. In conclusion, the ILCS system provided a reliable ex vivo method, showing common as well as subject specific features in the time course of the immune modulation caused by the LIST protocol. This system will be useful for studies of the elderly, where cytokine standardisation is notoriously difficult.

  3. The Development of Steady-State Activation Hubs between Adult LTi ILC3s and Primed Macrophages in Small Intestine.

    PubMed

    Savage, Adam K; Liang, Hong-Erh; Locksley, Richard M

    2017-09-01

    Group 3 innate lymphoid cells (ILC3s) are important for intestinal health, particularly in controlling inflammation in response to epithelial dysregulation, but their role during homeostasis remains less well understood. We generated IL-22 reporter mice to assess production of this key cytokine by ILC3s in the small intestine during development and under basal conditions. Although IL-22 is produced by a variety of lymphocyte populations, constitutively high IL-22 expression was limited to lymphoid-tissue inducer (LTi) cells residing in lymph node-like structures in the gut called solitary intestinal lymphoid tissues (SILT). Constitutive IL-22 expression was dependent on the microbiota and MyD88 signaling, appeared upon weaning, and was present across the spectrum of SILT, including in cryptopatches. Activated SILT LTi cells colocalized with a rare subpopulation of activated macrophages constitutively positive for IL-12/23 p40 and capable of activating neonatal LTi cells in response to TLR stimulus. Thus, weaning leads to the organization of innate immune activation hubs at SILT that mature and are continuously sustained by signals from the microbiota. This functional and anatomic organization constitutes a significant portion of the steady-state IL-23/IL-22 axis. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. HPV16-E7 Expression in skin induces TSLP secretion, type 2 ILC infiltration and atopic dermatitis-like lesions

    PubMed Central

    Bergot, Anne-Sophie; Monnet, Nastasia; Tran, Le Son; Mittal, Deepak; Al-Kouba, Jane; Steptoe, Raymond J.; Grimbaldeston, Michele A.; Frazer, Ian H.; Wells, James W.

    2014-01-01

    Atopic dermatitis is a common pruritic and inflammatory skin disorder with unknown etiology. Most commonly occurring during early childhood, atopic dermatitis is associated with eczematous lesions and lichenification, in which the epidermis becomes hypertrophied resulting in thickening of the skin. In this study, we report an atopic dermatitis-like pathophysiology results in a murine model following the expression of the high-risk Human Papillomavirus (HPV) 16 oncoprotein E7 in keratinocytes under the Keratin 14 promoter. We show that HPV 16 E7 expression in the skin is associated with skin thickening, acanthosis and light spongiosis. Locally, HPV 16 E7 expressing skin secreted high levels of TSLP and contained increased numbers of ILCs. High levels of circulating IgE were associated with increased susceptibility to skin allergy in a model of cutaneous challenge, and to airway bronchiolar inflammation, enhanced airway goblet cell metaplasia and mucus production in a model of atopic march. Surprisingly, skin pathology occurred independently of T-cells and mast cells. Thus, our findings suggest that the expression of a single HPV oncogene in the skin can drive the onset of atopic dermatitis-like pathology through the induction of TSLP and type 2 ILC infiltration. PMID:25601274

  5. Q0 Improvement of Large-Grain Multi-Cell Cavities by Using JLab's Standard ILC EP Processing

    SciTech Connect

    Geng, R. L.; Eremeev, G. V.; Kneisel, P.; Liu, K. X.; Lu, X. Y.; Zhao, K.

    2011-07-01

    As reported previously at the Berlin workshop, applying the JLab standard ILC electropolishing (EP) recipe on previously buffered chemical polishing (BCP) etched fine-grain multi-cell cavities results in improvement both in gradient and Q{sub 0}. We recently had the opportunity to experiment with two 1300 MHz 9-cell large-gain niobium cavities manufactured by JLab and Peking University. Both cavities were initially BCP etched and further processed by using JLab's standard ILC EP recipe. Due to fabrication defects, these two cavities only reached a gradient in the range of 20-30 MV/m. Interestingly both cavities demonstrated significant Q{sub 0} improvement in the gradient range of 15-20 MV/m. At 2K, a Q{sub 0} value of 2E10 is achieved at 20 MV/m. At a reduced temperature of 1.8K, a Q{sub 0} value of 3E10 is achieved at 20 MV/m. These results suggest that a possible path for obtaining higher Q{sub 0} in the medium gradient range is to use the large-grain material for cavity fabrication and EP and low temperature bake for cavity processing.

  6. Neutral Higgs Boson Pair-Production and Trilinear Self-Couplings in the Mssm at Ilc and Clic Energies

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Rodríguez, A.; Hernández-Ruíz, M. A.; Sampayo, O. A.

    We study pair-production as well as the triple self-couplings of the neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) at the future International Linear e+e- Collider (ILC) and Compact Linear Collider (CLIC). The analysis is based on the reactions e+e--> b bar b hih_i, t bar t hih_i with hi = h, H, A. We evaluate the total cross-section for both bbar bhih_i, tbar thih_i and calculate the total number of events considering the complete set of Feynman diagrams at tree-level. We vary the triple couplings κλhhh, κλHhh, κλhAA, κλHAA, κλhHH and κλHHH within the range κ = -1 and +2. The numerical computation is done for the energies expected at the ILC with a center-of-mass energy 500, 1000, 1600 GeV and a luminosity 1000 fb-1. The channels e+e--> b bar b hih_i and e+e--> t bar t hih_i are also discussed to a center-of-mass energy of 3 TeV and luminosities of 1000 fb-1 and 5000 fb-1.

  7. SIMULATION OF NEUTRON BACKGROUNDS FROM THE ILC EXTRACTION LINE BEAM DUMP

    SciTech Connect

    Darbha, S; Keller, L.; Maruyama, T.

    2008-01-01

    The operation of the International Linear Collider (ILC) as a precision measurement machine is dependent upon the quality of the charge-coupled device (CCD) silicon vertex detector. An integrated fl ux of 1010 neutrons/cm2 incident upon the vertex detector will degrade its performance by causing displacement damage in the silicon. One source of the neutron background arises from the dumping of the spent electron and positron beams into the extraction line beam dumps. The Monte Carlo program FLUKA was used to simulate the collision of the electron beam with the dump and to determine the resulting neutron fl ux at the interaction point (IP). A collimator and tunnel were added and their effect on the fl ux was analyzed. A neutron source was then generated and directed along the extraction line towards a model of the vertex detector to determine the neutron fl ux in its silicon layers. Models of the beampipe and BeamCal, a silicon-tungsten electromagnetic calorimeter in the very forward region of the detector, were placed in the extraction line and their effects on scattering were studied. The IP fl uence was determined to be 3.7x1010 +/- 2.3x1010 neutrons/cm2/year when the tunnel and collimator were in place, with no appreciable increase in statistics when the tunnel was removed. The BeamCal was discovered to act as a collimator by signifi cantly impeding the fl ow of neutrons towards the detector. The majority of damage done to the fi rst layer of the detector was found to come from neutrons with a direct line of sight from the fi rst extraction line quadrupole QDEX1, with only a small fraction scattering off of the beampipe and into the detector. The 1 MeV equivalent neutron fl uence was determined to be 9.3x108 neutrons/cm2/year from the electron beam alone. The two beams collectively contribute double to this fl uence, which is 19% of the threshold value in one year. Future work will improve the detector model and other sources of neutron backgrounds will be

  8. China Connections Reference Book.

    ERIC Educational Resources Information Center

    Kalat, Marie B.; Hoermann, Elizabeth F.

    This reference book focuses on six aspects of the geography of the People's Republic of China. They are: territory, governing units, population and land use, waterways, land forms, and climates. Designed as a primary reference, the book explains how the Chinese people and their lifestyles are affected by China's geography. Special components…

  9. Interreligious education: Conceptualising a needs assessment framework for curriculum design in plural societies (with special reference to Mauritius)

    NASA Astrophysics Data System (ADS)

    Maudarbux, Mohammad Belall

    2016-08-01

    The growing debate on intercultural and interreligious dialogue has one major drawback: how to translate academic and theoretical contributions into practical tools for educators and policy makers. This paper aims to fill this gap by presenting a transferable "needs assessment model" based on five criteria and twenty measurable indicators of interreligious relations within a country. Using the example of Mauritius, a densely multilingual and multireligious country, the paper gives an inside view of the preparations which led to the launch of an innovative "Peace and Interfaith Studies" course at the University of Mauritius in 2010. The author was himself involved first as a curriculum consultant and then as a project manager of this course at the Council of Religions in Mauritius. After clarifying the differences between related concepts like multicultural education, intercultural education and religious education, the author defines "interreligious education" as being distinct from all of the above. The paper then proceeds to explain the rationale of interreligious education, followed by the identification of the critical factors which affect curriculum design and policy making. It uses these factors to highlight how each of them operates in Mauritius to create a web of complexity which makes interreligious education extremely volatile. This is followed by an overview of religious education in the Mauritian schooling system, an overview of the needs assessment framework and a description of the innovative "Peace and Interfaith Studies" course. The paper ends with a brief discussion of the main challenges of this model.

  10. Reference Services.

    ERIC Educational Resources Information Center

    Bunge, Charles A.

    1999-01-01

    Discusses library reference services. Topics include the historical development of reference services; instruction in library use, particularly in college and university libraries; guidance; information and referral services and how they differ from traditional question-answering service; and future concerns, including user fees and the planning…

  11. Reference Services.

    ERIC Educational Resources Information Center

    Bunge, Charles A.

    1999-01-01

    Discusses library reference services. Topics include the historical development of reference services; instruction in library use, particularly in college and university libraries; guidance; information and referral services and how they differ from traditional question-answering service; and future concerns, including user fees and the planning…

  12. Reference Revolutions.

    ERIC Educational Resources Information Center

    Mason, Marilyn Gell

    1998-01-01

    Describes developments in Online Computer Library Center (OCLC) electronic reference services. Presents a background on networked cataloging and the initial implementation of reference services by OCLC. Discusses the introduction of OCLC FirstSearch service, which today offers access to over 65 databases, future developments in integrated…

  13. Moderator design studies for a new neutron reference source based on the D-T fusion reaction

    NASA Astrophysics Data System (ADS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  14. Moderator design studies for a new neutron reference source based on the D–T fusion reaction

    SciTech Connect

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuterium-tritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14.6 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2 to 5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  15. Initial Piloted Simulation Evaluation of the Reference-H High-Speed Civil Transport Design During Takeoff and Recovery From Limit Flight Conditions

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.

    1999-01-01

    An initial assessment of a proposed High-Speed Civil Transport (HSCT) was conducted in the fall of 1995 at the NASA Langley Research Center. This configuration, known as the Industry Reference-H (Ref.-H), was designed by the Boeing Aircraft Company as part of their work in the High Speed Research program. It included a conventional tail, a cranked-arrow wing, four mixed-flow turbofan engines, and capacity for transporting approximately 300 passengers. The purpose of this assessment was to evaluate and quantify operational aspects of the Reference-H configuration from a pilot's perspective with the additional goal of identifying design strengths as well as any potential configuration deficiencies. This study was aimed at evaluating the Ref.-H configuration at many points of the aircraft's envelope to determine the suitability of the vehicle to accomplish typical mission profiles as well as emergency or envelope-limit conditions. Pilot-provided Cooper-Harper ratings and comments constituted the primary vehicle evaluation metric. The analysis included simulated real-time piloted evaluations, performed in a 6 degree of freedom motion base NASA Langley Visual-Motion Simulator, combined with extensive bath analysis. The assessment was performed using the third major release of the simulation data base (known as Ref.-H cycle 2B).

  16. Quarter-scale modeling of room convergence effects on CH (contact-handled) TRU drum waste emplacements using WIPP (Waste Isolation Pilot Plant) reference design geometries

    SciTech Connect

    VandeKraats, J.

    1987-11-01

    This study investigates the effect of horizontal room convergence on CH waste packages emplaced in the WIPP Reference Design geometry (rooms 13 feet high by 33 feet wide, with minus 3/8 inch screened backfill emplaced over and around the waste packages) as a function of time. Based on two tests, predictions were made with regard to full-scale 6-packs emplaced in the Reference Design geometry. These are that load will be transmitted completely through the stack within the first five years after waste emplacement and all drums in all 6-packs will be affected; that virtually all drums will show some deformation eight years after emplacement; that some drums may breach before the eighth year after emplacement has elapsed; and that based on criteria developed during testing, it is predicted that 1% of the drums emplaced will be breached after 8 years and, after 15 years, approximately 12% of the drums are predicted to be breached. 8 refs., 41 figs., 3 tabs.

  17. Nuclear Thermal Rocket/Vehicle Characteristics And Sensitivity Trades For NASA's Mars Design Reference Architecture (DRA) 5.0 Study

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2009-01-01

    This paper summarizes Phase I and II analysis results from NASA's recent Mars DRA 5.0 study which re-examined mission, payload and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal rocket (NTR) propulsion was again identified as the preferred in-space transportation system over chemical/aerobrake because of its higher specific impulse (I(sub sp)) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit (IMLEO) which is important for reducing the number of Ares-V heavy lift launches and overall mission cost. DRA 5.0 features a long surface stay (approximately 500 days) split mission using separate cargo and crewed Mars transfer vehicles (MTVs). All vehicles utilize a common core propulsion stage with three 25 klbf composite fuel NERVA-derived NTR engines (T(sub ex) approximately 2650 - 2700 K, p(sub ch) approximately 1000 psia, epsilon approximately 300:1, I(sub sp) approximately 900 - 910 s, engine thrust-toweight ratio approximately 3.43) to perform all primary mission maneuvers. Two cargo flights, utilizing 1-way minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crewed MTV during the next mission opportunity (approximately 26 months later). The cargo payload elements aerocapture (AC) into Mars orbit and are enclosed within a large triconicshaped aeroshell which functions as payload shroud during launch, then as an aerobrake and thermal protection system during Mars orbit capture and subsequent entry, descent and landing (EDL) on Mars. The all propulsive crewed MTV is a 0-gE vehicle design that utilizes a fast conjunction trajectory that allows approximately 6-7 month 1-way transit times to and from Mars. Four 12.5 kW(sub e) per 125 square meter rectangular photovoltaic arrays provide the crewed MTV with

  18. Five-year examination of utilization and drug cost outcomes associated with benefit design changes including reference pricing for proton pump inhibitors in a state employee health plan.

    PubMed

    Johnson, Jill T; Neill, Kathryn K; Davis, Dwight A

    2011-04-01

    The Arkansas State Employee Benefits Division (EBD) is a self-insured program comprising public school and other state employees, their spouses, and dependents. Previous research published in JMCP (2006) showed drug cost savings of $2.20 per member per month (PMPM; 37.6%) or annualized savings of $3.4 million associated with a benefit design change and coverage of the proton pump inhibitor (PPI) omeprazole over-the-counter (OTC) beginning in March 2004. On May 1, 2005, brand esomeprazole was excluded from coverage, with current users grandfathered for 4 months until September 2005. Reference pricing for PPIs, including esomeprazole but excluding generic omeprazole, was implemented on September 1, 2005, and the beneficiary cost share for all PPIs except generic omeprazole was determined from comparison of the PPI actual price to the $0.90 omeprazole OTC reference price per unit. To examine PPI utilization and drug costs before and after (a) excluding esomeprazole from coverage (with grandfathering current users) and (b) implementing a therapeutic maximum allowable cost (TMAC), or reference-pricing benefit design, for the PPI class in a large state employee health plan with fairly stable enrollment of approximately 127,500 members in 2005 through 2008 and approximately 128,000 members in 2009 Q1. The pharmacy claims database for the EBD was used to examine utilization and cost data for PPIs in a longitudinal analysis for the 61-month period from March 1, 2004, through March 31, 2009. Pharmacy claims data were compared for the period 14 months prior to esomeprazole exclusion (preperiod), 4 months during the esomeprazole exclusion (postperiod 1), and the ensuing 43 months of PPI reference pricing (postperiod 2). PPI cost and utilization data for the intervention group of approximately 127,500 beneficiaries were compared with a group of 122 self-insured employers with a total of nearly 1 million beneficiaries whose pharmacy benefits did not include reference pricing for

  19. The Center for Informal Learning and Schools' Informal Learning Certificate (ILC) Program: Professional Development and Community for Informal Science Educators Working with Schools. An Evaluation Report

    ERIC Educational Resources Information Center

    Smith, Anita; Helms, Jenifer V.; St. John, Mark

    2007-01-01

    Inverness Research Associates served as external evaluators for the Center for Informal Learning and Schools (CILS) from its inception in 2002 as a National Science Foundation (NSF)-funded Center for Learning and Teaching. One of the programs that CILS developed was the Informal Learning Certificate (ILC) for informal science educators (mostly…

  20. Ready Reference.

    ERIC Educational Resources Information Center

    Koltay, Emery

    1999-01-01

    Includes the following ready reference information: "Publishers' Toll-Free Telephone Numbers"; "How to Obtain an ISBN (International Standard Book Number)"; "How to Obtain an ISSN (International Standard Serial Number)"; and "How to Obtain an SAN (Standard Address Number)". (AEF)

  1. Design and simulation of a biconic multipass absorption cell for the frequency stabilization of the reference seeder laser in IPDA lidar.

    PubMed

    Mu, Yongji; Du, Juan; Yang, Zhongguo; Sun, Yanguang; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2016-09-01

    The design process and simulation method of a multipass absorption cell used for the frequency stabilization of the reference seeder laser in integrated path differential absorption (IPDA) lidar are presented. On the basis of the fundamental theory of the Herriott multipass cell comprising two spherical mirrors, the initial parameters of the multipass cell, which has an optical path greater than 10 m and consists of two biconic mirrors, were calculated. More than 30 light spots were distributed on each mirror, and the distance between adjacent spots was mostly optimized to greater than six times the beam waist. After optimization, the simulated transmittance spectrum and associated differential signal were obtained. The interference induced by surface scattering was also simulated, and its influence on the differential signal was analyzed. A correspondence between the simulated results and the testing data was observed.

  2. Bibliography of Environmental Design References.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. ERIC Clearinghouse on Educational Facilities.

    A bibliography on sources related to the structuring of the physical environment has been developed based on professional and classroom experience. This initial selection of journals, books, and unpublished papers gives an overview of man and the environmental conditions which are part of his daily living pattern. Information leading to design…

  3. Full simulation study of the top Yukawa coupling at the ILC at √s = 1 TeV

    SciTech Connect

    Price, T.; Roloff, P.; Strube, J.; Tanabe, T.

    2015-07-04

    We present a study of the expected precision for the measurement of the top Yukawa coupling, yt, in e+e- collisions at a center-of-mass energy of 1 TeV. Independent analyses of tt-barH final states containing at least six hadronic jets are performed, based on detailed simulations of SiD and ILD, the two candidate detector concepts for the ILC. We estimate that a statistical precision on yt of 4.5 % can be obtained with an integrated luminosity of 1 ab-1 that is split equally between two configurations for the beam polarization P(e-,e+), (-80 %,+20 %) and (+80 %,-20 %). This estimate improves to 4 % if the 1 ab-1 sample is assumed to be fully in the P(e-,e+)=(-80 %,+20 %) configuration.

  4. Flavor-changing top-charm associated productions at the ILC in the littlest Higgs model with T parity

    SciTech Connect

    Zhang Yanju; Lu Gongru; Wang Xuelei

    2011-04-01

    The littlest Higgs model with T parity has new flavor-changing couplings with the standard model quarks, which do not suffer strong constraints from electroweak precision data. So these flavor-changing interactions may enhance the cross sections of some flavor-changing neutral-current processes. In this work, we study the flavor-changing top-charm associated productions via the e{sup -}{gamma} collision at the ILC. We find that the cross sections are sensitive to the mirror quark masses. With reasonable values of the parameters, the cross sections may reach the detectable level and provide useful information about the relevant parameters in the littlest Higgs model with T parity, especially in setting an upper limit on the mirror quark masses.

  5. Full simulation study of the top Yukawa coupling at the ILC at √s = 1 TeV

    DOE PAGES

    Price, T.; Roloff, P.; Strube, J.; ...

    2015-07-04

    We present a study of the expected precision for the measurement of the top Yukawa coupling, yt, in e+e- collisions at a center-of-mass energy of 1 TeV. Independent analyses of tt-barH final states containing at least six hadronic jets are performed, based on detailed simulations of SiD and ILD, the two candidate detector concepts for the ILC. We estimate that a statistical precision on yt of 4.5 % can be obtained with an integrated luminosity of 1 ab-1 that is split equally between two configurations for the beam polarization P(e-,e+), (-80 %,+20 %) and (+80 %,-20 %). This estimate improvesmore » to 4 % if the 1 ab-1 sample is assumed to be fully in the P(e-,e+)=(-80 %,+20 %) configuration.« less

  6. Mitigation of Emittance Dilution Due to Transverse Mode Coupling in the L-Band Linacs of the ILC

    SciTech Connect

    Jones, R.M.; Jones, R.M.; Miller, R.H.; /SLAC

    2007-04-16

    The main L-band linacs of the ILC accelerate 2820 bunches from a center of mass of 10 GeV to 500 GeV (and in the proposed later upgrade, to 1 TeV). The emittance of the vertical plane is approximately 400 times less than that of the horizontal plane. Provided the vertical and horizontal mode dipole frequencies are degenerate then the motion in each plane is not coupled. However, in reality the frequency degeneracy is split and the eigenmodes are shifted due to inevitable manufacturing errors introduced in fabricating 20,000 cavities. This gives rise to a transverse coupling in the horizontal-vertical motion and can readily lead to a dilution in the emittance in the vertical plane. We investigate means to ameliorate this effect dilution by splitting the horizontal-vertical tune of the lattice.

  7. H∞ iterative learning controller design for a class of discrete-time systems with data dropouts

    NASA Astrophysics Data System (ADS)

    Bu, Xuhui; Hou, Zhongsheng; Yu, Fashan; Wang, Fuzhong

    2014-09-01

    In this paper, the issue of H∞ iterative learning controller design is considered for a class of discrete-time systems with data dropouts. With the super-vector formulation of iterative learning control (ILC), such a system can be formulated as a linear discrete-time stochastic system in the iteration domain, and then a sufficient condition guaranteeing both stability of the ILC process and the desired H∞ performance in the iteration domain is presented. The condition can be derived in terms of linear matrix inequalities that can be solved by using existing numerical techniques. A numerical simulation example is also included to validate the theoretical results.

  8. Poroelastic references

    SciTech Connect

    Morency, Christina

    2014-12-12

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  9. Reference Roundup.

    ERIC Educational Resources Information Center

    Silver, Linda; And Others

    1982-01-01

    Briefly describes the nature and availability of reference books for children and adolescents and then reviews some recent publications of this type, including works of a general nature and works on social science, science, the arts, language, history and geography, and biography. (JL)

  10. Ready Reference.

    ERIC Educational Resources Information Center

    Koltay, Emery

    2001-01-01

    Includes four articles that relate to ready reference, including a list of publishers' toll-free telephone numbers and Web sites; how to obtain an ISBN (International Standard Book Number) and an ISSN (International Standard Serial Number); and how to obtain an SAN (Standard Address Number), for organizations that are involved in the book…

  11. Comparison of Occlusive and Open Application in a Psoriasis Plaque Test Design, Exemplarily Using Investigations of Mapracorat 0.1% Ointment versus Vehicle and Reference Drugs.

    PubMed

    Wigger-Alberti, Walter; Williams, Ragna; von Mackensen, Yi-Ling; Hoffman-Wecker, Maciej; Grossmann, Ulrike; Staedtler, Gerald; Nkulikiyinka, Richard; Shakery, Kaweh

    2017-01-01

    Psoriasis plaque tests (PPTs) are important tools in the early phases of antipsoriatic drug development. Two distinct PPT design variants (open vs. occluded drug application) are commonly used, but no previous work has aimed to directly compare and contrast their performance. We compared the antipsoriatic efficacy of mapracorat 0.1% ointment and reference drugs reported in 2 separate studies, representing open and occluded PPT designs. The drug effect size was measured by sonography (mean change in echo-poor band thickness), chromametry, and standardized clinical assessment. Antipsoriatic effects were detectable for the study drugs in both occluded and open PPTs. Differences between the potency of antipsoriatic drugs and vehicle were observable. The total antipsoriatic effect size appeared to be higher in the occluded PPT than the open PPT, despite the shorter treatment duration (2 vs. 4 weeks). Effect dynamics over time revealed greater differences between some study drugs in the open PPT compared to the occluded PPT. Taking the higher technical challenges for the open PPT into account, we recommend the occluded PPT as a standard screening setting in early drug development. In special cases, considering certain drug aspects or study objectives that would require procedural adaptations, an open PPT could be the better-suited design. Finally, both PPT models show clear advantages: classification as phase I studies, small number of psoriatic subjects, relatively short study duration, excellent discrimination between compounds and concentrations, parallel measurement of treatment response, and go/no go decisions very early in clinical development. © 2017 S. Karger AG, Basel.

  12. "Grid" versus "Ground": Optimized Design of Low-Distortion Projections Using Existing Projection Types Rigorously Georeferenced to the National Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Dennis, M. L.; Armstrong, M. L.

    2016-12-01

    With the adoption of a new geometric datum in 2022, NOAA's National Geodetic Survey (NGS) will update the State Plane Coordinate System (SPCS). This update may consist simply of offsetting northings and/or eastings of existing SPCS projection zones. However, there is significant interest among NGS customers for another type of projected coordinate system: Low-Distortion Projections (LDPs). Although LDPs are presently not endorsed or supported by NGS, an assessment of LDP feasibility and performance is warranted within the context of updating the National Spatial Reference System (NSRS). LDPs are conformal map projections that minimize linear distortion at the topographic surface, manifested as a difference in distance between a pair of projected "grid" coordinates and the true horizontal "ground" distance. For SPCS, the differences can exceed a few hundred parts per million (ppm), and it can be problematic for engineering and surveying applications. Although such distortion cannot be eliminated, an LDP design method is presented that yields optimal results even for large areas of variable elevation. This approach can provide much lower distortion than the traditional method of scaling SPCS to ground, often called "modified" SPCS (MSPCS). MSPCS was included in training provided by NGS beginning in the 1960s, but it does not optimally minimize linear distortion. LDP systems have been adopted throughout the United States. One such system is the Oregon Coordinate Reference System (OCRS). Figure 1 compares distortion of an MSPCS for Bend, Oregon, to the OCRS zone for that area, where the green shading indicates distortion within ±20 ppm (2 cm/km or 0.1 ft/mile). The difference in performance is striking, even though both use the same projection type. Because LDPs cover larger areas, one can be used for many projects, whereas in most cases one MSPCS (and sometimes more) must be defined for every project. Importantly, the presented method for designing LDPs is based on

  13. NASCAP programmer's reference manual

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Stannard, P. R.; Katz, I.

    1993-01-01

    The NASA Charging Analyzer Program (NASCAP) is a computer program designed to model the electrostatic charging of complicated three-dimensional objects, both in a test tank and at geosynchronous altitudes. This document is a programmer's reference manual and user's guide. It is designed as a reference to experienced users of the code, as well as an introduction to its use for beginners. All of the many capabilities of NASCAP are covered in detail, together with examples of their use. These include the definition of objects, plasma environments, potential calculations, particle emission and detection simulations, and charging analysis.

  14. Value-Based Assessment of Radiology Reporting Using Radiologist-Referring Physician Two-Way Feedback System-a Design Thinking-Based Approach.

    PubMed

    Shaikh, Faiq; Hendrata, Kenneth; Kolowitz, Brian; Awan, Omer; Shrestha, Rasu; Deible, Christopher

    2017-06-01

    In the era of value-based healthcare, many aspects of medical care are being measured and assessed to improve quality and reduce costs. Radiology adds enormously to health care costs and is under pressure to adopt a more efficient system that incorporates essential metrics to assess its value and impact on outcomes. Most current systems tie radiologists' incentives and evaluations to RVU-based productivity metrics and peer-review-based quality metrics. In a new potential model, a radiologist's performance will have to increasingly depend on a number of parameters that define "value," beginning with peer review metrics that include referrer satisfaction and feedback from radiologists to the referring physician that evaluates the potency and validity of clinical information provided for a given study. These new dimensions of value measurement will directly impact the cascade of further medical management. We share our continued experience with this project that had two components: RESP (Referrer Evaluation System Pilot) and FRACI (Feedback from Radiologist Addressing Confounding Issues), which were introduced to the clinical radiology workflow in order to capture referrer-based and radiologist-based feedback on radiology reporting. We also share our insight into the principles of design thinking as applied in its planning and execution.

  15. A review on grain and nut deterioration and design of the dryers for safe storage with special reference to Turkish hazelnuts.

    PubMed

    Ozilgen, M; Ozdemir, M

    2001-01-01

    Turkey produces about 80% of the total hazelnut crop of the world. About 75% of the production are exported. In Turkey hazelnuts are traditionally sun dried, and may be subject to mold growth and subsequent mycotoxin formation due to prolonged drying time under humid and rainy weather conditions. Drying hazelnuts in a reasonable time after harvest is necessary for mycotoxin-free, high-quality products. In general, nuts and cereals contaminated by the toxins pose a potential hazard not only to the people of the producer countries, but also to people of the importing countries, if they should be regarded as safe by inefficient sampling plans, therefore preventing toxin formation actually benefits very large populations. Deterioration and health hazards associated with toxin contaminated hazelnuts and other nuts and cereals have similar causes and consequences; therefore, deterioration of the nuts and cereals in storage has been reviewed by considering as many grains and nuts as possible, then special reference was made to hazelnuts. Proper preharvest practices followed by proper drying and safe storage reduces the hazards associated with contamination by the toxins. This article reviews the pre- and post-harvest practices, and the grain- and nut-drying systems required for toxin-free products. Because drying is the major unit operation involving this process, the drying systems and the mathematical models required for their design is also discussed.

  16. Polarization Setup and Polarimetry for 2 IRs, and Status of Downstream Polarimeter Designs

    SciTech Connect

    Moffeit, Kenneth; Woods, Mike; Nosochkov, Yuri; Schuler, Peter; Moenig, Klaus; Oliver, W.; /Tufts U.

    2005-06-29

    A spin rotation scheme for the International Linear Collider (ILC) is presented that allows the polarization spin vector to be tuned independently for different Interaction Regions (IR). A scheme to allow rapid helicity switching for polarized positrons is discussed. Comments on the downstream polarimeter designs are given.

  17. Scalar production in association with a Z boson at the LHC and ILC: The mixed Higgs-radion case of warped models

    NASA Astrophysics Data System (ADS)

    Angelescu, Andrei; Moreau, Grégory; Richard, François

    2017-07-01

    The radion scalar field might be the lightest new particle predicted by extradimensional extensions of the standard model. It could thus lead to the first signatures of new physics at the LHC collider. We perform a complete study of the radion production in association with the Z gauge boson in the custodially protected warped model with a brane-localized Higgs boson addressing the gauge hierarchy problem. Radion-Higgs mixing effects are present. Such a radion production receives possibly resonant contributions from the Kaluza-Klein excitations of the Z boson as well as the extra neutral gauge boson (Z'). All the exchange and mixing effects induced by those heavy bosons are taken into account in the radion coupling and rate calculations. The investigation of the considered radion production at the LHC allows us to be sensitive to some parts of the parameter space but only the ILC program at high luminosity would cover most of the theoretically allowed parameter space via the studied reaction. Complementary tests of the same theoretical parameters can be realized through the high accuracy measurements of the Higgs couplings at the ILC. The generic sensitivity limits on the rates discussed for the LHC and ILC potential reach can be applied to the searches for other (light) exotic scalar bosons.

  18. Qualification of the Second Batch Production 9-Cell Cavities Manufactured by AES and Validation of the First US Industrial Cavity Vendor for ILC

    SciTech Connect

    Geng, R. L.; Golden, B. A.; Kushnick, P.; Overton, R. B.; Calderaro, M.; Peterson, E.; Rathke, J.; Champion, M. S.; Follkie, J.; Crawford, A. C.; Forehand, D.

    2011-07-01

    One of the major goals of ILC SRF cavity R&D is to develop industrial capabilities of cavity manufacture and processing in all three regions. In the past several years, Jefferson Lab, in collaboration with Fermi National Accelerator Laboratory, has processed and tested all the 9-cell cavities of the first batch (4 cavities) and second batch (6 cavities) production cavities manufactured by Advanced Energy Systems Inc. (AES). Over the course, close information feedback was maintained, resulting in changes in fabrication and processing procedures. A light buffered chemical polishing was introduced, removing the weld splatters that could not be effectively removed by heavy EP alone. An 800 Celsius 2 hour vacuum furnace heat treatment procedure replaced the original 600 Celsius 10 hour procedure. Four out of the six 9-cell cavities of the second production bath achieved a gradient of 36-41 MV/m at a Q0 of more than 8E9 at 35 MV/m. This result validated AES as the first ''ILC certified'' industrial vendor in the US for ILC cavity manufacture.

  19. NED-2 reference guide

    Treesearch

    Mark J. Twery; Peter D. Knopp; Scott A. Thomasma; Donald E. Nute

    2012-01-01

    This is the reference guide for NED-2, which is the latest version of NED, a forest ecosystem management decision support system. This software is part of a family of software products intended to help resource managers develop goals, assess current and future conditions, and produce sustainable management plans for forest properties. Designed for stand-alone Windows-...

  20. An Amharic Reference Grammar.

    ERIC Educational Resources Information Center

    Leslau, Wolf

    This reference grammar presents a structural description of the orthography, phonology, morphology, and syntax of Amharic, the national language of Ethiopia. The Amharic material in this work, designed to prepare the student for speaking and reading the language, appears in both Amharic script and phonetic transcription. See ED 012 044-5 for the…

  1. Chat Reference. SPEC Kit.

    ERIC Educational Resources Information Center

    Ronan, Jana, Comp.; Turner, Carol, Comp.

    2002-01-01

    This SPEC (Systems and Procedures Exchange Center) Kit presents the results of a survey of Association of Research Libraries (ARL) member libraries designed to gather data on chat reference service. A total of 66 of 124 ARL member libraries responded to the survey. A copy of the questionnaire with tabulated results is presented. Representative…

  2. Design of a Power-Assisted Spacesuit Glove Actuator

    NASA Technical Reports Server (NTRS)

    Howard, Russell D.

    2000-01-01

    This paper presents the details of the design and implementation of an electromechanical power-assisted spacesuit glove actuator. The project was a joint effort by the University of Maryland's Space Systems Laboratory and ILC Dover, Inc., and involved innovative approaches to power augmentation and compact actuator packaging. The first actuator built validated several basic design concepts, and the second demonstrated improved performance and met many of the goals for flight qualification of the technology.

  3. Design of a Power-Assisted Spacesuit Glove Actuator

    NASA Technical Reports Server (NTRS)

    Howard, Russell D.

    2000-01-01

    This paper presents the details of the design and implementation of an electromechanical power-assisted spacesuit glove actuator. The project was a joint effort by the University of Maryland's Space Systems Laboratory and ILC Dover, Inc., and involved innovative approaches to power augmentation and compact actuator packaging. The first actuator built validated several basic design concepts, and the second demonstrated improved performance and met many of the goals for flight qualification of the technology.

  4. Computer classes and games in virtual reality environment to reduce loneliness among students of an elderly reference center: Study protocol for a randomised cross-over design.

    PubMed

    Antunes, Thaiany Pedrozo Campos; Oliveira, Acary Souza Bulle de; Crocetta, Tania Brusque; Antão, Jennifer Yohanna Ferreira de Lima; Barbosa, Renata Thais de Almeida; Guarnieri, Regiani; Massetti, Thais; Monteiro, Carlos Bandeira de Mello; Abreu, Luiz Carlos de

    2017-03-01

    Physical and mental changes associated with aging commonly lead to a decrease in communication capacity, reducing social interactions and increasing loneliness. Computer classes for older adults make significant contributions to social and cognitive aspects of aging. Games in a virtual reality (VR) environment stimulate the practice of communicative and cognitive skills and might also bring benefits to older adults. Furthermore, it might help to initiate their contact to the modern technology. The purpose of this study protocol is to evaluate the effects of practicing VR games during computer classes on the level of loneliness of students of an elderly reference center. This study will be a prospective longitudinal study with a randomised cross-over design, with subjects aged 50 years and older, of both genders, spontaneously enrolled in computer classes for beginners. Data collection will be done in 3 moments: moment 0 (T0) - at baseline; moment 1 (T1) - after 8 typical computer classes; and moment 2 (T2) - after 8 computer classes which include 15 minutes for practicing games in VR environment. A characterization questionnaire, the short version of the Short Social and Emotional Loneliness Scale for Adults (SELSA-S) and 3 games with VR (Random, MoviLetrando, and Reaction Time) will be used. For the intervention phase 4 other games will be used: Coincident Timing, Motor Skill Analyser, Labyrinth, and Fitts. The statistical analysis will compare the evolution in loneliness perception, performance, and reaction time during the practice of the games between the 3 moments of data collection. Performance and reaction time during the practice of the games will also be correlated to the loneliness perception. The protocol is approved by the host institution's ethics committee under the number 52305215.3.0000.0082. Results will be disseminated via peer-reviewed journal articles and conferences. This clinical trial is registered at ClinicalTrials.gov identifier: NCT

  5. The MARX Modulator Development Program for the International Linear Collider

    SciTech Connect

    Leyh, G.E.; /SLAC

    2006-06-12

    The ILC Marx Modulator Development Program at SLAC is working towards developing a full-scale ILC Marx ''Reference Design'' modulator prototype, with the goal of significantly reducing the size and cost of the ILC modulator while improving overall modulator efficiency and availability. The ILC Reference Design prototype will provide a proof-of-concept model to industry in advance of Phase II SBIR funding, and also allow operation of the new 10MW L-Band Klystron prototypes immediately upon their arrival at SLAC.

  6. Enterprise Reference Library

    NASA Technical Reports Server (NTRS)

    Bickham, Grandin; Saile, Lynn; Havelka, Jacque; Fitts, Mary

    2011-01-01

    Introduction: Johnson Space Center (JSC) offers two extensive libraries that contain journals, research literature and electronic resources. Searching capabilities are available to those individuals residing onsite or through a librarian s search. Many individuals have rich collections of references, but no mechanisms to share reference libraries across researchers, projects, or directorates exist. Likewise, information regarding which references are provided to which individuals is not available, resulting in duplicate requests, redundant labor costs and associated copying fees. In addition, this tends to limit collaboration between colleagues and promotes the establishment of individual, unshared silos of information The Integrated Medical Model (IMM) team has utilized a centralized reference management tool during the development, test, and operational phases of this project. The Enterprise Reference Library project expands the capabilities developed for IMM to address the above issues and enhance collaboration across JSC. Method: After significant market analysis for a multi-user reference management tool, no available commercial tool was found to meet this need, so a software program was built around a commercial tool, Reference Manager 12 by The Thomson Corporation. A use case approach guided the requirements development phase. The premise of the design is that individuals use their own reference management software and export to SharePoint when their library is incorporated into the Enterprise Reference Library. This results in a searchable user-specific library application. An accompanying share folder will warehouse the electronic full-text articles, which allows the global user community to access full -text articles. Discussion: An enterprise reference library solution can provide a multidisciplinary collection of full text articles. This approach improves efficiency in obtaining and storing reference material while greatly reducing labor, purchasing and

  7. Setting reference targets

    SciTech Connect

    Ruland, R.E.

    1997-04-01

    Reference Targets are used to represent virtual quantities like the magnetic axis of a magnet or the definition of a coordinate system. To explain the function of reference targets in the sequence of the alignment process, this paper will first briefly discuss the geometry of the trajectory design space and of the surveying space, then continue with an overview of a typical alignment process. This is followed by a discussion on magnet fiducialization. While the magnetic measurement methods to determine the magnetic centerline are only listed (they will be discussed in detail in a subsequent talk), emphasis is given to the optical/mechanical methods and to the task of transferring the centerline position to reference targets.

  8. A time stepping coupled finite element-state space modeling environment for synchronous machine performance and design analysis in the ABC frame of reference

    NASA Astrophysics Data System (ADS)

    Deng, Fang

    iteratively used in obtaining inductance parameters prior to another round of SS computation of the steady-state current profiles. Again, the model is iterative in nature, in which the user continues cycling through the two sections, namely the FE and SS sections of the CFE-SS modeling environment, until the desired degree of convergence is achieved. The CFE-SS approach uses only design data such as physical dimensions, magnetic circuit geometry, magnetic material characteristics, winding particulars and layouts, and hence does not depend on the existence of actual hardware. The modeling environment is totally within the ABC frame of reference, therefore no approximating assumptions such as sinusoidally distributed mmf's or current sheets were made.

  9. Research and development for electropolishing of Nb for ILC accelerator cavities

    SciTech Connect

    Kelley, Michael J.

    2009-09-21

    The objectives of this project are to 1, Expand the scientific and technological understanding of the effect of post-treatment (electropolish, buffered chemical polish, low-temperature baking) on the surface of niobium; 2, Relate the knowledge to the performance of niobium superconducting radiofrequency accelerator cavities; and, 3, Thereby design and demonstrate an electropolish process that can be applied to complete cavities.

  10. Norm-Optimal ILC Applied to a High-Speed Rack Feeder

    NASA Astrophysics Data System (ADS)

    Schindele, Dominik; Aschemann, Harald; Ritzke, Jöran

    2010-09-01

    Rack feeders as automated conveying systems for high bay rackings are of high practical importance. To shorten the transport times by using trajectories with increased kinematic values accompanying control measures for a reduction of the excited structural vibrations are necessary. In this contribution, the model-based design of a norm-optimal iterative learning control structure is presented. The rack feeder is modelled as an elastic multibody system. For the mathematical description of the bending deflections a Ritz ansatz is introduced. The tracking control design is performed separately for both axes using decentralised state space representations. Both the achievable performance and the resulting tracking accuracy of the proposed control concept are shown by measurement results from the experimental set-up.

  11. Precision measurements of σhadronic for αeff( E) at ILC energies and ( g-2) μ

    NASA Astrophysics Data System (ADS)

    Jegerlehner, F.

    2006-12-01

    A more precise determination of the effective fine structure constant α(E) is mandatory for confronting data from future precision experiments with precise SM predictions. Higher precision would help a lot in monitoring new physics by increasing the significance of any deviation from theory. At a future ee-collider like the ILC, as at LEP before, α(E) plays the role the static zero momentum α=α(0) plays in low energy physics. However, by going to the effective version of α one loses about a factor 2×10 at E=m to 10 5 at E=M in precision, such that for physics at the gauge boson mass scale and beyond α(E) is the least known basic parameter, about a factor 20 less precise than the neutral gauge boson mass M and by about a factor 60 less precise than the Fermi constant G. Examples of precision limitations are α(m) which limits the theoretical precision of the muon anomalous magnetic moment a and α(M) which limits the accuracy of the prediction of the weak mixing parameter sinΘ and indirectly the upper bound on the Higgs mass m. An optima exploitation of a future linear collider for precision physics requires an improvement of the precision of α(E) by something like a factor ten. We discuss a strategy which should be able to reach this goal by appropriate efforts in performing dedicated measurements of σ in a wide energy range as well as efforts in theory and in particular improving the precision of the QCD parameters α, m and m by lattice QCD and/or more precise determinations of them by experiments and perturbative QCD efforts. Projects at VEPP-2000 (Novosibirsk) and DANAE/KLOE-2 (Frascati) are particularly important for improving on α(M) as well as α(m). Using the Adler function as a monitor, one observes that we may obtain the hadronic shift Δαhad(5)(MZ2) as a sum Δαhad(5)(+Δαhad(5)( where the first term includes the full non-perturbative part with the choice s=(2.5 or larger. In such a determination low-energy machines play a particularly

  12. Experiments on HOM spectrum manipulation in a 1.3 GHz ILC SC cavity

    SciTech Connect

    Khabiboulline, T.; Solyak, N.; Yakovlev, V.; /Fermilab

    2011-03-01

    Superconducting cavities with high operating Q will be installed in the Project-X, a superconducting linac, which is under development at Fermilab. Possibility of cavity design without HOM couplers considered. Rich spectrum of the beam and large number of cavities in ProjectX linac can result to resonance excitation of some high order modes with high shunt impedance. Under scope of study of High order modes damping the manipulation with HOM spectrum in cold linac is considered. Results of detuning HOM spectrum of 1.3 GHz cavities at 2K in Horizontal Test Station of Fermilab are presented. Possible explanation of the phenomena is discussed.

  13. HARDROC3, a 3rd generation ASIC with zero suppress for ILC Semi Digital Hadronic Calorimeter

    NASA Astrophysics Data System (ADS)

    Dulucq, F.; Callier, S.; de La Taille, C.; Martin-Chassard, G.; Seguin-Moreau, N.; Zoccarato, Y.

    2017-02-01

    HARDROC is the front end chip designed to read out the Resistive Plate Chambers foreseen for the Digital HAdronic CALorimeter (DHCAL) of the future International Linear Collider. The very fine granularity of the calorimeter implies thousands of electronics channels per cubic meter which is a new feature of "imaging" calorimetry. Moreover, for compactness, chips must be embedded inside the detector making crucial the reduction of the power consumption down to 12 μ W per channel. This is achieved using power-pulsing and online zero-suppression. Around 800 HARDROC3 were produced in 2015. The overall performance and production tests will be detailed.

  14. Expert Systems for Reference Work.

    ERIC Educational Resources Information Center

    Parrot, James R.

    1986-01-01

    Discussion of library reference work that may be suitable for use of expert systems focuses on (1) information and literature searches, and (2) requests to interpret bibliographic references and locate items listed. Systems and computer-assisted instruction modules designed for information retrieval at the University of Waterloo Library are…

  15. An Integrated Support and Alignment System for Large ILC Lattice Elements

    SciTech Connect

    Viola, Robert

    2013-05-15

    The manipulators used to support and position lattice elements are critical components of all particle accelerators. The increased use of large superconducting magnets and accelerator modules places even greater demands on these manipulators. However, the performance of these support systems has not kept pace with the advances made in other areas of accelerator technology. This results in accelerators that are difficult to align and may not be capable of achieving target luminosities. An innovative new type of positioning mechanism tailored to the requirements of the International Linear Collider is proposed. The Tri-Sphere System provides secure support for large lattice elements and precision adjustment in six degrees of freedom. Integrated target sockets allow the support system to be rapidly pre-aligned. The system's kinematic design passively guides lattice elements into their correct location during installation. A complimentary Portable Actuation Unit provides the advantages of automated adjustment and allows these adjustments to be completely decoupled from surveying.

  16. Certified reference materials and reference methods for nuclear safeguards and security.

    PubMed

    Jakopič, R; Sturm, M; Kraiem, M; Richter, S; Aregbe, Y

    2013-11-01

    Confidence in comparability and reliability of measurement results in nuclear material and environmental sample analysis are established via certified reference materials (CRMs), reference measurements, and inter-laboratory comparisons (ILCs). Increased needs for quality control tools in proliferation resistance, environmental sample analysis, development of measurement capabilities over the years and progress in modern analytical techniques are the main reasons for the development of new reference materials and reference methods for nuclear safeguards and security. The Institute for Reference Materials and Measurements (IRMM) prepares and certifices large quantities of the so-called "large-sized dried" (LSD) spikes for accurate measurement of the uranium and plutonium content in dissolved nuclear fuel solutions by isotope dilution mass spectrometry (IDMS) and also develops particle reference materials applied for the detection of nuclear signatures in environmental samples. IRMM is currently replacing some of its exhausted stocks of CRMs with new ones whose specifications are up-to-date and tailored for the demands of modern analytical techniques. Some of the existing materials will be re-measured to improve the uncertainties associated with their certified values, and to enable laboratories to reduce their combined measurement uncertainty. Safeguards involve the quantitative verification by independent measurements so that no nuclear material is diverted from its intended peaceful use. Safeguards authorities pay particular attention to plutonium and the uranium isotope (235)U, indicating the so-called 'enrichment', in nuclear material and in environmental samples. In addition to the verification of the major ratios, n((235)U)/n((238)U) and n((240)Pu)/n((239)Pu), the minor ratios of the less abundant uranium and plutonium isotopes contain valuable information about the origin and the 'history' of material used for commercial or possibly clandestine purposes, and

  17. Library Reference Services.

    ERIC Educational Resources Information Center

    Miller, Constance; And Others

    1985-01-01

    Seven articles on library reference services highlight reference obsolescence in academic libraries, major studies of unobtrusive reference tests, methods for evaluating reference desk performance, reference interview evaluation, problems of reference desk control, online searching by end users, and reference collection development in…

  18. A Project to Design and Build the Magnets for a New Test Beamline, the ATF2, at KEK

    SciTech Connect

    Spencer, Cherrill M.; Sugahara, Ryuhei; Masuzawa, Mika; Bolzon, Benoit; Jeremie, Andrea; /Annecy, LAPP

    2011-02-07

    In order to achieve the high luminosity required at the proposed International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System, and to maintain the beams collisions with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, a special beamline has been designed and built as an extension of the existing extraction beamline of the Accelerator Test Facility at KEK, Japan. The ATF provides an adequate ultra-low emittance electron beam that is comparable to the ILC requirements; the ATF2 mimics the ILC final focus system to create a tightly focused, stable beam. There are 37 magnets in the ATF2, 29 quadrupoles, 5 sextupoles and 3 bends. These magnets had to be acquired in a short time and at minimum cost, which led to various acquisition strategies; but nevertheless they had to meet strict requirements on integrated strength, physical dimensions, compatibility with existing magnet movers and beam position monitors, mechanical stability and field stability and quality. This paper will describe how 2 styles of quadrupoles, 2 styles of sextupoles, one dipole style and their supports were designed, fabricated, refurbished or modified, measured and aligned by a small team of engineers from 3 continents.

  19. Simulator For The Linear Collider (SLIC): A Tool For ILC Detector Simulations

    NASA Astrophysics Data System (ADS)

    Graf, Norman; McCormick, Jeremy

    2006-10-01

    The Simulator for the Linear Collider (SLIC) is a detector simulation program based on the GEANT4 toolkit. It is intended to enable end users to easily model detector concepts by providing the ability to fully describe detectors using plain text files read in by a common executable at runtime. The detector geometry, typically the most complex part of a detector simulation, is described at runtime using the Linear Collider Detector Description (LCDD). This system allows end users to create complex detector geometries in a standard XML format rather than procedural code such as C++. The LCDD system is based on the Geometry Description Markup Language (GDML) from the LHC Applications Group (LCG). The geometry system facilitates the study of different full detector design and their variations. SLIC uses the StdHep format to read input created by event generators and outputs events in the Linear Collider IO (LCIO) format. The SLIC package provides a binding to GEANT4 and many additional commands and features for the end user.

  20. Simulator for the Linear Collider (SLIC): a Tool for ILC Detector Simulations

    SciTech Connect

    Graf, N.; McCormick, J.; /SLAC

    2007-02-13

    The Simulator for the Linear Collider (SLIC) is a detector simulation program based on the GEANT4 toolkit. It is intended to enable end users to easily model detector concepts by providing the ability to fully describe detectors using plain text files read in by a common executable at runtime. The detector geometry, typically the most complex part of a detector simulation, is described at runtime using the Linear Collider Detector Description (LCDD). This system allows end users to create complex detector geometries in a standard XML format rather than procedural code such as C++. The LCDD system is based on the Geometry Description Markup Language (GDML) from the LHC Applications Group (LCG). The geometry system facilitates the study of different full detector design and their variations. SLIC uses the StdHep format to read input created by event generators and outputs events in the Linear Collider IO (LCIO) format. The SLIC package provides a binding to GEANT4 and many additional commands and features for the end user.