Science.gov

Sample records for ilias-cast-cern axion training

  1. Axion Searches

    NASA Astrophysics Data System (ADS)

    Sikivie, Pierre

    The following sections are included: * INTRODUCTION TO AXION PHYSICS * THE COSMOLOGICAL AXION ENERGY DENSITY * The contribution from initial vacuum misalignment * The contribution from cosmic axion strings * THE CAVITY DETECTOR OF GALACTIC HALO AXIONS * THE PHASE SPACE STRUCTURE OF COLD DARK MATTER HALOS * TELESCOPE SEARCH FOR THE 2γ DECAY OF RELIC AXIONS * A SOLAR AXION DETECTOR * ACKNOWLEDGEMENT * REFERENCES

  2. Axion crystals

    NASA Astrophysics Data System (ADS)

    Ozaki, Sho; Yamamoto, Naoki

    2017-08-01

    The low-energy effective theories for gapped insulators are classified by three parameters: permittivity ɛ, permeability μ, and theta angle θ. Crystals with periodic ɛ are known as photonic crystals. We here study the band structure of photons in a new type of crystals with periodic θ (modulo 2 π) in space, which we call the axion crystals. We find that the axion crystals have a number of new properties that the usual photonic crystals do not possess, such as the helicity-dependent mass gap and nonrelativistic gapless dispersion relation at small momentum. We briefly discuss possible realizations of axion crystals in condensed matter systems and high-energy physics.

  3. Axions and SN 1987A: Axion trapping

    SciTech Connect

    Burrows, A.; Ressell, M.T.; Turner, M.S.

    1990-07-01

    If an axion of mass between about 10(exp -3) and 10 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become trapped and radiated from an axion sphere. The trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a diffusion approximation for axion-energy transport. The axion opacity due to inverse nucleon-nucleon, axion bremsstrahlung is computed; and then the numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande II (KII) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The estimate of the axion mass is confirmed above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration - the most sensitive barometer of axion cooling - it is concluded that for an axion mass greater than about 3 eV axion emission would not have had a significant effect on the neutrino bursts detected by KII and IMB. It is strongly suggested that an axion with mass in the interval 10(exp -3) to 3 eV is excluded by the observation of neutrinos from SN 1987A.

  4. Axions and SN 1987A: Axion trapping

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Ressell, M. Ted; Turner, Michael S.

    1990-01-01

    If an axion of mass between about 10(exp -3) and 10 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become trapped and radiated from an axion sphere. The trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a diffusion approximation for axion-energy transport. The axion opacity due to inverse nucleon-nucleon, axion bremsstrahlung is computed; and then the numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande II (KII) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The estimate of the axion mass is confirmed above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration - the most sensitive barometer of axion cooling - it is concluded that for an axion mass greater than about 3 eV axion emission would not have had a significant effect on the neutrino bursts detected by KII and IMB. It is strongly suggested that an axion with mass in the interval 10(exp -3) to 3 eV is excluded by the observation of neutrinos from SN 1987A.

  5. Emission of photons and relativistic axions from axion stars

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2017-08-01

    The number of nonrelativistic axions can be changed by inelastic reactions that produce photons or relativistic axions. Any odd number of axions can annihilate into two photons. Any even number of nonrelativistic axions can scatter into two relativistic axions. We calculate the rate at which axions are lost from axion stars from these inelastic reactions. In dilute systems of axions, the dominant inelastic reaction is axion decay into two photons. In sufficiently dense systems of axions, the dominant inelastic reaction is the scattering of four nonrelativistic axions into two relativistic axions. The scattering of odd numbers of axions into two photons produces monochromatic radio-frequency signals at odd-integer harmonics of the fundamental frequency set by the axion mass. This provides a unique signature for dense systems of axions, such as a dense axion star or a collapsing dilute axion star.

  6. Axions and SN 1987A: Axion trapping

    SciTech Connect

    Burrows, A.; Ressell, M.T.; Turner, M.S.

    1990-05-01

    If an axion of mass between about 10(exp -3) eV and 1 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass less than about 10(exp -2) eV, axions produced deep inside the neutron star simply stream out; in a previous paper this case has been addressed. Remarkably, for an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become trapped and radiated from an axion sphere. In this paper the trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a leakage approximation scheme for axion-energy transport. The axion opacity is computed due to inverse nucleon-nucleon, axion bremsstrahlung, and numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande 2 (K2) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The earlier estimate is confirmed and refined of the axion mass above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration--the most sensitive barometer of axion cooling--it is concluded that for an axion mass of greater than about 0.3 eV, axion emission would not have had a significant effect on the neutrino bursts detected by K2 and IMB. The present work, together with the previous work, strongly suggests that an axion with mass in the interval 10(exp -3) eV to 0.3 eV is excluded by SN 1987A.

  7. Axions and SN 1987A: Axion trapping

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Ressell, M. Ted; Turner, Michael S.

    1990-01-01

    If an axion of mass between about 10(exp -3) eV and 1 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass less than about 10(exp -2) eV, axions produced deep inside the neutron star simply stream out; in a previous paper this case has been addressed. Remarkably, for an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become 'trapped' and radiated from an axion sphere. In this paper the trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a leakage approximation scheme for axion-energy transport. The axion opacity is computed due to inverse nucleon-nucleon, axion bremsstrahlung, and numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande 2 (K2) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The earlier estimate is confirmed and refined of the axion mass above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration--the most sensitive barometer of axion cooling--it is concluded that for an axion mass of greater than about 0.3 eV, axion emission would not have had a significant effect on the neutrino bursts detected by K2 and IMB. The present work, together with the previous work, strongly suggests that an axion with mass in the interval 10(exp -3) eV to 0.3 eV is excluded by SN 1987A.

  8. Experimental probes of axions

    SciTech Connect

    Chou, Aaron S.; /Fermilab

    2009-10-01

    Experimental searches for axions or axion-like particles rely on semiclassical phenomena resulting from the postulated coupling of the axion to two photons. Sensitive probes of the extremely small coupling constant can be made by exploiting familiar, coherent electromagnetic laboratory techniques, including resonant enhancement of transitions using microwave and optical cavities, Bragg scattering, and coherent photon-axion oscillations. The axion beam may either be astrophysical in origin as in the case of dark matter axion searches and solar axion searches, or created in the laboratory from laser interactions with magnetic fields. This note is meant to be a sampling of recent experimental results.

  9. Dense Axion Stars

    NASA Astrophysics Data System (ADS)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  10. Dense Axion Stars.

    PubMed

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  11. Dense Axion Stars

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-01

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  12. Redefining the Axion Window

    NASA Astrophysics Data System (ADS)

    Di Luzio, Luca; Mescia, Federico; Nardi, Enrico

    2017-01-01

    A major goal of axion searches is to reach inside the parameter space region of realistic axion models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it would be desirable to specify them in terms of precise phenomenological requirements. We consider hadronic axion models and classify the representations RQ of the new heavy quarks Q . By requiring that (i) the Q 's are sufficiently short lived to avoid issues with long-lived strongly interacting relics, (ii) no Landau poles are induced below the Planck scale; 15 cases are selected which define a phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-photon coupling about 2 times (4 times) larger than is commonly assumed. Allowing for more than one RQ, larger couplings, as well as complete axion-photon decoupling, become possible.

  13. Collapse of axion stars

    SciTech Connect

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; Wijewardhana, L. C. R.

    2016-12-15

    Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Here, heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present in the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.

  14. Collapse of axion stars

    DOE PAGES

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; ...

    2016-12-15

    Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Here, heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present inmore » the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.« less

  15. Search for Halo Axions

    SciTech Connect

    Daw, E. J.,; van Bibber, K.

    1998-01-01

    A collaboration of MIT, LLNL, Univ. of Florida, FNAL, UC Berkeley and INR Moscow have built a large-scale RF cavity axion detector. The experiment has been taking production data since February of 1996 and is sensitive enough to detect plausible dark matter axions comprising a reasonable fraction of the mass in our galactic halo. After a brief introduction to axion physics, I discuss details of our instrumentation, our analysis methodology, our run plan and future goals of the experiments.

  16. Inflationary Axion Cosmology

    DOE R&D Accomplishments Database

    Wilczek, Frank; Turner, Michael S.

    1990-09-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.

  17. Inflationary axion cosmology

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1991-01-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10 to the -6th eV. This bound can be evaded if the universe underwent inflation after PQ-symmetry breaking and if the observable universe happens to be a region where the initial axion angle was atypically small. Consideration of fluctuations induced during inflation severely constrains the latter alternative is shown.

  18. Axions and SN 1987A: Axion trapping. [SN 1987a

    SciTech Connect

    Burrows, A. ); Ressell, M.T. NASA Turner, M.S. NASA/Fermilab Astrophysics Center, Fermi National Accelerator Center, P.O. Box 500, Batavia, IL Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, IL )

    1990-11-15

    If an axion of mass between about 10{sup {minus}3} and 10 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass less than about 10{sup {minus}2} eV axions produced deep inside the neutron star simply stream out; in a previous paper we have addressed this case. Remarkably, for an axion of mass greater than about 10{sup {minus}2} eV axions would, like neutrinos, have a mean free path that is smaller than the size of a neutron star, and thus would become trapped'' and radiated from an axion sphere.'' In this paper we treat the trapping regime'' by using numerical models of the initial cooling of a hot neutron star that incorporate a diffusion approximation for axion-energy transport. We compute the axion opacity due to inverse nucleon-nucleon, axion bremsstrahlung, and then use our numerical models to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande II (KII) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. We confirm and refine the earlier estimate of the axion mass above which trapping is so strong that axion emission does not significantly affect the neutrino burst: Based upon the neutrino-burst duration--the most sensitive barometer'' of axion cooling--we conclude that for an axion mass of greater than about 3 eV axion emission would not have had a significant effect on the neutrino bursts detected by KII and IMB. The present work, together with our previous work, strongly suggests that an axion with mass in the interval 10{sup {minus}3} to 3 eV is excluded by the observation of neutrinos from SN 1987A.

  19. Emission of Photons and Relativistic Axions from Axion stars

    NASA Astrophysics Data System (ADS)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2017-01-01

    The number of nonrelativistic axions can be changed by inelastic reactions that produce relativistic axions or photons. Any even number of nonrelativistic axions can scatter inelastically into two relativistic axions. Any odd number of axions can annihilate into two photons. This reaction produces a monochromatic radio-frequency signal at an odd-integer harmonic of the fundamental frequency set by the axion mass. The loss rates of axions from axion stars through these inelastic relations are calculated using the framework of a nonrelativistic effective field theory. Odd-integer harmonics of a fundamental radio-frequency signal provide a unique signature for collapsing axion stars or any dense configuration of axions. Supported by NSF and the DOE.

  20. (Mainly) axion dark matter

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2016-06-01

    The strong CP problem of QCD is at heart a problem of naturalness: why is the FF ˜ term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle- the Higgs boson- has been discovered, one might expect its mass to reside at the axion scale fa ˜ 1011 GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dark matter. Ultimately we would expect detection of both an axion and a WIMP while signals for light higgsinos may show up at LHC and must show up at ILC.

  1. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  2. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.; Collaboration: ADMX Collaboration; ADMX-HF Collaboration

    2014-06-24

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  3. Axion cosmology revisited

    NASA Astrophysics Data System (ADS)

    Wantz, Olivier; Shellard, E. P. S.

    2010-12-01

    The misalignment mechanism for axion production depends on the temperature-dependent axion mass. The latter has recently been determined within the interacting instanton liquid model, and provides for the first time a well-motivated axion mass for all temperatures. We reexamine the constraints placed on the axion parameter space in the light of this new mass function. Taking this mass at face value, we find an accurate and updated constraint fa≤2.8(±2)×1011GeV or ma≥21(±2)μeV from the misalignment mechanism in the classic axion window (thermal scenario). However, this is superseded by axion string radiation which leads to fa≲3.2-2+4×1010GeV or ma≳0.20-0.1+0.2meV. In this analysis, we take care to precisely compute the effective degrees of freedom and, to fill a gap in the literature, we present accurate fitting formulas. We solve the evolution equations exactly, and find that analytic results used to date generally underestimate the full numerical solution by a factor 2-3. In the inflationary scenario, axions induce isocurvature fluctuations and constrain the allowed inflationary scale HI. Taking anharmonic effects into account, we show that these bounds are actually weaker than previously computed. Considering the fine-tuning issue of the misalignment angle in the whole of the anthropic window, we derive new bounds which open up the inflationary window near θa→π. In particular, we find that inflationary dark matter axions can have masses as high as 0.01-1meV, covering the whole thermal axion range, with values of HI up to 109GeV. Quantum fluctuations during inflation exclude dominant dark matter axions with masses above ma≲1meV.

  4. Windows on the axion

    SciTech Connect

    Turner, M.S.

    1989-04-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the THETA vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup 6/ eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab.

  5. Axions in gauge mediation

    SciTech Connect

    Carpenter, Linda M.; Dine, Michael; Festuccia, Guido; Ubaldi, Lorenzo

    2009-12-15

    In supersymmetric theories, the presence of axions usually implies the existence of a noncompact, (pseudo)moduli space. In gauge-mediated models, the axion would seem a particularly promising dark matter candidate. The cosmology of the moduli then constrains the gravitino mass and the axion decay constant; the former cannot be much below 10 MeV; the latter cannot be much larger than 10{sup 13} GeV. Axinos, when identifiable, are typically heavy and do not play an important role in cosmology.

  6. Polyinstanton axion inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Uemura, Shohei; Yamamoto, Junji

    2017-07-01

    We investigate the axion inflation model derived by polyinstanton effects in type II superstring theories. Polyinstanton effects are instanton effects corrected by another instanton and they can generate the modulus-axion potential with the double exponential function. Although the axion has a period of small value, this potential can have a flat region because its derivatives are exponentially suppressed by nonperturbative effects. From the view point of the cosmic inflation, such a potential is interesting. In this paper, we numerically study the possibilities of realizing the cosmic inflation. We also study their spectral index and other cosmological observables, numerically.

  7. Axion dark matter searches

    DOE PAGES

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less

  8. UV Completion of Axion

    SciTech Connect

    Choi, Kang-Sin

    2008-11-23

    A multiple number of global U(1)s, arising from accidental symmetries up to a certain order of the potential, enjoy lowering the axion decay constant from UV-scale and evading supersymmetric Fayet-Illiopoulos term constraints.

  9. Particle physics: Axions exposed

    NASA Astrophysics Data System (ADS)

    Lombardo, Maria Paola

    2016-11-01

    Physicists are hunting for a particle called the axion that could solve two major puzzles in fundamental physics. An ambitious study calculates the expected mass of this particle, which might reshape the experimental searches. See Letter p.69

  10. The QCD axion from aligned axions and diphoton excess

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Jeong, Kwang Sik; Kitajima, Naoya; Takahashi, Fuminobu

    2016-04-01

    We argue that the QCD axion can arise from many aligned axions with decay constants much smaller than the conventional axion window. If the typical decay constant is of O (100) GeV to 1 TeV, one or more of the axions or saxions may account for the recently found diphoton excess at ∼ 750 GeV. Our scenario predicts many axions and saxions coupled to gluons with decay constants of order the weak scale, and therefore many collider signatures by heavy axions and saxions will show up at different energy scales. In particular, if the inferred broad decay width is due to multiple axions or saxions, a non-trivial peak structure may become evident when more data is collected. We also discuss cosmological implications of the aligned QCD axion scenario. In the Appendix we give a possible UV completion and argue that the high quality of the Peccei-Quinn symmetry is naturally explained in our scenario.

  11. Tidal streams from axion miniclusters and direct axion searches

    SciTech Connect

    Tinyakov, Peter; Tkachev, Igor; Zioutas, Konstantin E-mail: tkachev@inr.ru

    2016-01-01

    In some axion dark matter models a dominant fraction of axions resides in dense small-scale substructures, axion miniclusters. A fraction of these substructures is disrupted and forms tidal streams where the axion density may still be an order of magnitude larger than the average. We discuss implications of these streams for the direct axion searches. We estimate the fraction of disrupted miniclusters and the parameters of the resulting streams, and find that stream-crossing events would occur at a rate of about 1/(20 yr) for 2–3 days, during which the signal in axion detectors would be amplified by a factor ∼ 10. These estimates suggest that the effect of the tidal disruption of axion miniclusters may be important for direct axion searches and deserves a more thorough study.

  12. Astrophysics of Collapsing Axion Stars

    NASA Astrophysics Data System (ADS)

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; Wijewardhana, L. C. R.

    2017-01-01

    Axion stars are condensed states of large numbers of axion particles, bound by self-gravitation and quantum self-interactions. The mass of weakly bound axion stars is limited by gravitational stability, with condensates exceeding the maximum mass subject to collapse. During the collapse process, the axion density increases and higher-order self-interactions become increasingly relevant. By taking these terms into account, we provide evidence that in spite of a leading attractive interaction, collapsing axion stars stabilize in a dense state which is larger than its Schwarzschild radius, and so do not form black holes. During the last moments of collapse, number changing processes take place in the axion star with a very large rate, leading to emission of many highly energetic axions which escape from galaxies and galaxy clusters. Finally, if axion stars are a significant fraction of cold dark matter, then frequent collisions with each other or with ordinary stars could catalyze this collapse process as well.

  13. Photon propagator for axion electrodynamics

    SciTech Connect

    Itin, Yakov

    2007-10-15

    The axion modified electrodynamics is usually used as a model for description of possible violation of Lorentz invariance in field theory. The low-energy manifestation of Lorentz violation can hopefully be observed in experiments with electromagnetic waves. It justifies the importance of studying how a small axion addition can modify the wave propagation. Although a constant axion does not contribute to the dispersion relation at all, even a slowly varying axion field destroys the light cone structure. In this paper, we study the wave propagation in the axion modified electrodynamics in the framework of the premetric approach. In addition to the modified dispersion relation, we derive the axion generalization of the photon propagator in Feynman and Landau gauge. Our consideration is free of the usual restriction to the constant gradient axion field. It is remarkable that the axion modified propagator is Hermitian. Consequently, the dissipation effects are absent even in the phenomenological model considered here.

  14. A collider observable QCD axion

    DOE PAGES

    Dimopoulos, Savas; Hook, Anson; Huang, Junwu; ...

    2016-11-09

    Here, we present a model where the QCD axion is at the TeV scale and visible at a collider via its decays. Conformal dynamics and strong CP considerations account for the axion coupling strongly enough to the standard model to be produced as well as the coincidence between the weak scale and the axion mass. The model predicts additional pseudoscalar color octets whose properties are completely determined by the axion properties rendering the theory testable.

  15. Axion domain wall baryogenesis

    SciTech Connect

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu

    2015-07-28

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  16. Axion domain wall baryogenesis

    SciTech Connect

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu E-mail: kitajima@tuhep.phys.tohoku.ac.jp

    2015-07-01

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m ≅ 10{sup 8}–10{sup 13} GeV and f ≅ 10{sup 13}–10{sup 16} GeV . Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  17. Dark matter in axion landscape

    NASA Astrophysics Data System (ADS)

    Daido, Ryuji; Kobayashi, Takeshi; Takahashi, Fuminobu

    2017-02-01

    If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.

  18. The lifetime of axion stars

    NASA Astrophysics Data System (ADS)

    Eby, Joshua; Suranyi, Peter; Wijewardhana, L. C. R.

    2016-05-01

    We investigate the decay of condensates of scalars in a field theory defined by V (𝒜) = m2f2[1 -cos(𝒜/f)], where m and f are the mass and decay constant of the scalar field. An example of such a theory is that of the axion, in which case the condensates are called axion stars. The axion field, 𝒜, is self-adjoint. As a result, the axion number is not an absolutely conserved quantity. Therefore, axion stars are not stable and have finite lifetimes. Bound axions, localized on the volume of the star, have a coordinate uncertainty δx ˜ R ˜ 1/(maΔ), where R is the radius of the star and Δ = 1 - E0 2/ma 2. Here ma and E0 are the mass, and the ground state energy of the bound axion. Then the momentum distribution of axions has a width of δp ˜ maΔ. At strong binding, Δ = 𝒪(1), bound axions can easily transfer a sufficient amount of momentum to create and emit a free axion, leading to fast decay of the star with a transition rate Γ ˜ ma. However, when Δ ≪ 1, the momentum distribution is more restricted, and as shown in this paper, the transition rate for creating a free axion decreases as exp(-pδx) ˜exp(-Δ-1). Then sufficiently large, weakly bound axion stars, produced after the Big Bang, survive until the present time. We plot the region of their stability, limited by decay through axion loss and by gravitational instability, as a function of the mass of the axion and the mass of the star.

  19. Composite accidental axions

    NASA Astrophysics Data System (ADS)

    Redi, Michele; Sato, Ryosuke

    2016-05-01

    We present several models where the QCD axion arises accidentally. Confining gauge theories can generate axion candidates whose properties are uniquely determined by the quantum numbers of the new fermions under the Standard Model. The Peccei-Quinn symmetry can emerge accidentally if the gauge theory is chiral. We generalise previous constructions in a unified framework. In some cases these models can be understood as the deconstruction of 5-dimensional gauge theories where the Peccei-Quinn symmetry is protected by locality but more general constructions are possible.

  20. Tunneling in axion monodromy

    NASA Astrophysics Data System (ADS)

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo

    2016-10-01

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman's original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. We also briefly comment on the applications of our results to the relaxion scenario.

  1. Search for solar axions

    NASA Astrophysics Data System (ADS)

    Newman, Seth Aaron

    Peccei and Quinn proposed an elegant solution for restoring CP symmetry to the QCD Lagrangian [37]. This method includes an additional global U(1) symmetry included in the QCD Lagrangian which is spontaneously broken at a high energy scale, fa. Breaking the symmetry generates a Nambu-Goldstone boson called the axion. Although there are various detection mechanisms that search for the axion, this thesis focuses on the the axio-electric effect. The axio-electric is similar to the photo-electric effect in that an axion is absorbed by an atom which subsequently emits an electron. The electron's energy is equivalent to the incoming axion energy minus the binding energy. The higher shell electrons immediately replenish the missing binding energy yielding a single energy peak at the incoming axion's energy. The 14.4 keV M1 transition of 57Fe is one possible axion source. The development of an optimum trigger algorithm has lowered the threshold for analysis in TeO2 bolometers to a few keV making an axion signature accessible to CUORE related R&D experiments such as the Chinese Crystal Validation Runs (CCVR) and Three Towers Test (TTT). These TeO2 crystal detectors have masses 750 and 790 grams, respectively. Each crystal has a stabilization heater and a germanium thermometer attached to its surface by an epoxy glue. The two previous experiments are R&D tests for the upcoming larger experiment, CUORE. CUORE will be made of 988 TeO2 crystals arranged in 19 towers with 13 floors each, each floor with 4 detectors. This thesis examined 87.01 kg·days of Three Towers data for an axion signal. A peak is observed in the region of interest with a statistical significance less than 1sigma over the expected background fluctuations, yielding a total background rate of 0.185 +/- 0.001 (Stat.) +/- 0.006 (Syst.) Counts/kg/day at 95% C.L. This places an experimental limit on the coupling constant fa of f a (S = 0.50) ≥ 1.16 x 106 GeV at 95% C.L. Projecting the TTT result to the CUORE

  2. Experimental overview of axion searches

    SciTech Connect

    van Bibber, K.

    1995-06-28

    Experimental methods to search for the ``invisible axion`` (f{sub a} {much_gt} 250 GeV) are reviewed. The report focuses on the axion-photon coupling, both for laboratory experiments as well as those looking for stellar or cosmologically produced axions. The conclusion is that while the axion-photon mixing in principle would permit laboratory axion searches which are broadband in mass, in fact no such experiment could have the sensitivity to the axion, where m{sub afa} {approx} m{sub {pi}f{pi}}. The only experiments which promise to have any chance to find the axion are the microwave cavity experiments, which presume axions to constitute our galactic halo dark matter. The conversion of axions into a monochromatic microwave signal in a resonant circuit affords the experiment the extraordinary sensitivity required to see the axion, at the expense of being narrow-band in mass, i.e. a tuning experiment. Two such efforts are underway in the world.

  3. Axion inflation with cross-correlated axion isocurvature perturbations

    SciTech Connect

    Kadota, Kenji; Kobayashi, Tatsuo; Otsuka, Hajime

    2016-01-25

    We study the inflation scenarios, in the framework of superstring theory, where the inflaton is an axion producing the adiabatic curvature perturbations while there exists another light axion producing the isocurvature perturbations. We discuss how the non-trivial couplings among string axions can generically arise, and calculate the consequent cross-correlations between the adiabatic and isocurvature modes through concrete examples. Based on the Planck analysis on the generally correlated isocurvature perturbations, we show that there is a preference for the existence of the correlated isocurvature modes for the axion monodromy inflation while the natural inflation disfavors such isocurvature modes.

  4. Axion inflation with cross-correlated axion isocurvature perturbations

    SciTech Connect

    Kadota, Kenji; Kobayashi, Tatsuo; Otsuka, Hajime E-mail: kobayashi@particle.sci.hokudai.ac.jp

    2016-01-01

    We study the inflation scenarios, in the framework of superstring theory, where the inflaton is an axion producing the adiabatic curvature perturbations while there exists another light axion producing the isocurvature perturbations. We discuss how the non-trivial couplings among string axions can generically arise, and calculate the consequent cross-correlations between the adiabatic and isocurvature modes through concrete examples. Based on the Planck analysis on the generally correlated isocurvature perturbations, we show that there is a preference for the existence of the correlated isocurvature modes for the axion monodromy inflation while the natural inflation disfavors such isocurvature modes.

  5. Towards a Realistic Axion Star

    SciTech Connect

    Barranco, J.; Bernal, A.

    2008-07-02

    In this work we estimate the radius and the mass of a self-gravitating system made of axions. The quantum axion field satisfies the Klein-Gordon equation in a curved space-time and the metric components of this space-time are solutions to the Einstein equations with a source term given by the vacuum expectation value of the energy-momentum operator constructed from the axion field. As a first step towards an axion star we consider the up to the {phi}{sup 6} term in the axion potential expansion. We found that axion stars would have masses of the order of asteroids ({approx}10{sup -10}M{center_dot}) and radius of the order {approx} few centimeters.

  6. Axions in astrophysics and cosmology

    SciTech Connect

    Sikivie, P.

    1984-07-01

    Axion models often have a spontaneously broken exact discrete symmetry. In that case, they have discretely degenerate vacua and hence domain walls. The properties of the domain walls, the cosmological catastrophe they produce and the ways in which this catastrophe may be avoided are explained. Cosmology and astrophysics provide arguments that imply the axion decay constant should lie in the range 10/sup 8/ GeV less than or equal to f/sub a/ less than or equal to 10/sup 12/ GeV. Reasons are given why axions are an excellent candidate to constitute the dark matter of galactic halos. Using the coupling of the axions to the electromagnetic field, detectors are described to look for axions floating about in the halo of our galaxy and for axions emitted by the sun. (LEW)

  7. Structure of axionic domain walls

    NASA Astrophysics Data System (ADS)

    Huang, M. C.; Sikivie, P.

    1985-09-01

    The structure of axionic domain walls is investigated using the low-energy effective theory of axions and pions. We derive the spatial dependence of the phases of the Peccei-Quinn scalar field and the QCD quark-antiquark condensates inside an axionic domain wall. Thence an accurate estimate of the wall surface energy density is obtained. The equations of motion for axions, photons, leptons, and baryons in the neighborhood of axionic domain walls are written down and estimates are given for the wall reflection and transmission coefficients of these particles. Finally, we discuss the energy dissipation by axionic domain walls oscillating in the early universe due to the reflection of particles in the primordial soup.

  8. Axions and SN1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Turner, Michael S.; Brinkmann, R. P.

    1988-01-01

    The effect of free-streaming axion emission on numerical models for the cooling of the newly born neutron star associated with SN1987A is considered. It is found that for an axion mass of greater than approximately 10 to the -3 eV, axion emission shortens the duration of the expected neutrino burst so significantly that it would be inconsistent with the neutrino observations made by the Kamiokande II and Irvine-Michigan-Brookhaven detectors. However, the possibility has not been investigated that axion trapping (which should occur for masses greater than or equal to 0.02 eV) sufficiently reduces axion emission so that axion masses greater than approximately 2 eV would be consistent with the neutrino observations.

  9. Axion Bounds from Precision Cosmology

    SciTech Connect

    Raffelt, G. G.; Hamann, J.; Hannestad, S.; Mirizzi, A.; Wong, Y. Y. Y.

    2010-08-30

    Depending on their mass, axions produced in the early universe can leave different imprints in cosmic structures. If axions have masses in the eV-range, they contribute a hot dark matter fraction, allowing one to constrain m{sub a} in analogy to neutrinos. In the more favored scenario where axions play the role of cold dark matter and if reheating after inflation does not restore the Peccei-Quinn symmetry, the axion field provides isocurvature fluctuations that are severely constrained by precision cosmology. There remains a small sliver in parameter space where isocurvature fluctuations could still show up in future probes.

  10. Axions in String Theory

    SciTech Connect

    Svrcek, Peter; Witten, Edward; /Princeton, Inst. Advanced Study

    2006-06-09

    In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.

  11. Tunneling in axion monodromy

    DOE PAGES

    Brown, Jon; Cottrell, William; Shiu, Gary; ...

    2016-10-06

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman’s original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. As a result, we alsomore » briefly comment on the applications of our results to the relaxion scenario.« less

  12. Tunneling in axion monodromy

    SciTech Connect

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo

    2016-10-06

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman’s original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. As a result, we also briefly comment on the applications of our results to the relaxion scenario.

  13. Mississippi State Axion Search

    NASA Astrophysics Data System (ADS)

    Madsen, John

    2014-03-01

    The Mississippi State Axion Search (MASS) is an attempt to improve the limit on the mass coupling parameter of the Axion. The design features a sealed cavity partitioned by a lead wall into which RF power is transmitted. Another antenna on the far end of the cavity serves as the detector. The signal acquired by this antenna is fed through an integrator and a series of pre-amps and lock-ins before reaching the data acquisition system. The data acquisition system, written in the LabView front end DASYLab, operates at 1 kHz in synchronicity with a TTL pulse that resets the integrator. The value recorded by the DAQ is, therefore, the maximum voltage of integration in the millisecond period. The Axion signal would appear in the data as a voltage excess. Several measures have been implemented with more being developed to ensure the validity of detections. Large excesses are cut by an electronics system, and smaller anomalies will be excised in the data analysis. Results will also compared to a complete Monte Carlo simulation currently in development. Prajwal Mohanmurthy*, Dipangkar Dutta, Nicholas Fowler, Mikhail Gaerlan, Kris Madsen, Adam Powers, Amy Ray, David Reed, Robertsen Riehle, Mitra Shabestari, Zachary Windham, Zach Short.

  14. Constraints on small-field axion inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Oikawa, Akane; Omoto, Naoya; Otsuka, Hajime; Saga, Ikumi

    2017-03-01

    We study general class of small-field axion inflations, which are the mixture of polynomial and sinusoidal functions suggested by the natural and axion monodromy inflations. The axion decay constants leading to the successful axion inflations are severely constrained in order not to spoil the big bang nucleosynthesis and overproduce the isocurvature perturbation originating from the QCD axion. We in turn find that the cosmologically favorable axion decay constants are typically of order the grand unification scale or the string scale, which is consistent with the prediction of closed-string axions.

  15. Axion dark matter detection using atomic transitions.

    PubMed

    Sikivie, P

    2014-11-14

    Dark matter axions may cause transitions between atomic states that differ in energy by an amount equal to the axion mass. Such energy differences are conveniently tuned using the Zeeman effect. It is proposed to search for dark matter axions by cooling a kilogram-sized sample to millikelvin temperatures and count axion induced transitions using laser techniques. This appears to be an appropriate approach to axion dark matter detection in the 10^{-4}  eV mass range.

  16. Axionic mirage mediation

    SciTech Connect

    Nakamura, Shuntaro; Okumura, Ken-ichi; Yamaguchi, Masahiro

    2008-06-01

    Although mirage mediation is one of the most plausible mediation mechanisms of supersymmetry breaking, it suffers from two crucial problems. One is the {mu}/B{mu} problem, and the second is the cosmological one. The former stems from the fact that the B parameter tends to be comparable with the gravitino mass, which is 2 orders of magnitude larger than the other soft masses. The latter problem is caused by the decay of the modulus whose branching ratio into the gravitino pair is sizable. In this paper, we propose a model of mirage mediation, in which Peccei-Quinn symmetry is incorporated. In this axionic mirage mediation, it is shown that the Peccei-Quinn symmetry breaking scale is dynamically determined around 10{sup 10} GeV to 10{sup 12} GeV due to the supersymmetry breaking effects, and the {mu} problem can be solved naturally. Furthermore, in our model, the lightest supersymmetric particle (LSP) is the axino, that is, the superpartner of the axion. The overabundance of the LSPs due to decays of the modulus/gravitino, which is the most serious cosmological difficulty in the mirage mediation, can be avoided if the axino is sufficiently light. The next-LSPs (NLSPs) produced by the gravitino decay eventually decay into the axino LSPs, yielding the dominant component of the axinos remaining today. It is shown that the axino with a mass of O(100) MeV is naturally realized, which can constitute the dark matter of the Universe, with a free-streaming length of the order of 0.1 Mpc. The saxion, the real scalar component of the axion supermultiplet, can also be cosmologically harmless due to the dilution of the modulus decay. The lifetime of the NLSP is relatively long, but much shorter than 1 sec, when the big-bang nucleosynthesis commences. The decay of the NLSP would provide intriguing collider signatures.

  17. Model of visible QCD axion

    NASA Astrophysics Data System (ADS)

    Fukuda, Hajime; Harigaya, Keisuke; Ibe, Masahiro; Yanagida, Tsutomu T.

    2015-07-01

    We pursue a class of visible axion models where the axion mass is enhanced by strong dynamics in a mirrored copy of the Standard Model in the line of the idea put forward by Rubakov. In particular, we examine the consistency of the models with laboratory, astrophysical, and cosmological constraints. As a result, viable parameter regions are found, where the mass of the axion is of O (100 ) MeV or above while the Peccei-Quinn breaking scale is at around 103 - 5 GeV .

  18. Is the Universal String Axion the QCD Axion

    SciTech Connect

    Gaillard, Mary K.; Kain, Ben

    2005-10-14

    We consider the class of effective supergravity theories from the weakly coupled heterotic string in which local supersymmetry is broken by gaugino condensation in a hidden sector, with dilaton stabilization achieved through corrections to the classical dilaton Kahler potential. If there is a single hidden condensing (simple) gauge group, the axion is massless (up to contributions from higher dimension operators) above the QCD condensation scale. We show how the standard relation between the axion mass and its Planck scale coupling constant is modified in this class of models due to a contribution to the axion-gluon coupling that appears below the scale of supersymmetry breaking when gluinos are integrated out. In particular there is a point of enhanced symmetry in parameter space where the axion mass is suppressed. We revisit the question of the universal axion as the Peccei-Quinn axion in the light of these results, and find that the strong CP problem is avoided in most compactifications of the weakly coupled heterotic string.

  19. Axion Isocurvature and Magnetic Monopoles

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Rajendran, Surjeet; Sanches, Fabio

    2016-04-01

    We propose a simple mechanism to suppress axion isocurvature fluctuations using hidden sector magnetic monopoles. This allows for the Peccei-Quinn scale to be of the order of the unification scale consistently with high scale inflation.

  20. Axions in gravity with torsion

    NASA Astrophysics Data System (ADS)

    Castillo-Felisola, Oscar; Corral, Cristóbal; Kovalenko, Sergey; Schmidt, Iván; Lyubovitskij, Valery E.

    2015-04-01

    We study a scenario allowing a solution of the strong charge parity problem via the Peccei-Quinn mechanism, implemented in gravity with torsion. In this framework there appears a torsion-related pseudoscalar field known as the Kalb-Ramond axion. We compare it with the so-called Barbero-Immirzi axion recently proposed in the literature also in the context of the gravity with torsion. We show that they are equivalent from the viewpoint of the effective theory. The phenomenology of these torsion-descended axions is completely determined by the Planck scale without any additional model parameters. These axions are very light and very weakly interacting with ordinary matter. We briefly comment on their astrophysical and cosmological implications in view of the recent BICEP2 and Planck data.

  1. Can Radio Telescopes Find Axions?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    In the search for dark matter, the most commonly accepted candidates are invisible, massive particles commonly referred to as WIMPs. But as time passes and we still havent detected WIMPs, alternative scenarios are becoming more and more appealing. Prime among these is the idea of axions.A Bizarre ParticleThe Italian PVLAS is an example of a laboratory experiment that attempted to confirm the existence of axions. [PVLAS]Axions are a type of particle first proposed in the late 1970s. These theorized particles arose from a new symmetry introduced to solve ongoing problems with the standard model for particle physics, and they were initially predicted to have more than a keV in mass. For this reason, their existence was expected to be quickly confirmed by particle-detector experiments yet no detections were made.Today, after many unsuccessful searches, experiments and theory tell us that if axions exist, their masses must lie between 10-610-3 eV. This is minuscule an electrons mass is around 500,000 eV, and even neutrinos are on the scale of a tenth of an eV!But enough of anything, even something very low-mass, can weigh a lot. If they are real, then axions were likely created in abundance during the Big Bang and unlike heavier particles, they cant decay into anything lighter, so we would expect them all to still be around today. Our universe could therefore be filled with invisible axions, potentially providing an explanation for dark matter in the form of many, many tiny particles.Artists impression of the central core of proposed Square Kilometer Array antennas. [SKA/Swinburne Astronomy Productions]How Do We Find Them?Axions barely interact with ordinary matter and they have no electric charge. One of the few ways we can detect them is with magnetic fields: magnetic fields can change axions to and from photons.While many studies have focused on attempting to detect axions in laboratory experiments, astronomy provides an alternative: we can search for cosmological

  2. Planck data and ultralight axions

    SciTech Connect

    Csáki, Csaba; Kaloper, Nemanja; Terning, John E-mail: kaloper@physics.ucdavis.edu

    2015-06-01

    We examine the effects of photon-axion mixing on the CMB. We show that if there are very underdense regions between us and the last scattering surface which contain coherent magnetic fields (whose strength can be orders of magnitude weaker than the current bounds), then photon-axion mixing can induce observable deviations in the CMB spectrum. Specifically, we show that the mixing can give rise to non-thermal spots on the CMB sky. As an example we consider the well known CMB cold spot, which according to the Planck data has a weak distortion from a black body spectrum, that can be fit by our model. While this explanation of the non-thermality in the region of the cold spot is quite intriguing, photon-axion oscillations do not explain the temperature of the cold spot itself. Nevertheless we demonstrate the possible sensitivity of the CMB to ultralight axions which could be exploited by observers.

  3. Two applications of axion electrodynamics

    NASA Technical Reports Server (NTRS)

    Wilczek, Frank

    1987-01-01

    The equations of axion electrodynamics are studied. Variations in the axion field can give rise to peculiar distributions of charge and current. These effects provide a simple understanding of the fractional electric charge on dyons and of some recently discovered oddities in the electrodynamics of antiphase boundaries in PbTe. Some speculations regarding the possible occurrence of related phenomena in other solids are presented.

  4. Ultrasensitive Searches for the Axion

    SciTech Connect

    van Bibber, K A; Rosenberg, L J

    2006-07-14

    The axion, a hypothetical elementary particle arising from a compelling solution to the strong-CP problem, has eluded discovery for three decades. Experiments based on coherent axion-photon mixing in strong magnetic fields are just now reaching the sensitivity to detect it, either as the dark matter or as a component of the solar flux. Although of lower sensitivity, purely laboratory experiments hold potential for surprise.

  5. Axion dynamics in wormhole background

    SciTech Connect

    Rey, S.

    1989-05-15

    When axions are coupled to gravity, it is known that wormholes exist asgravitational instantons. These wormholes break global U(1) symmetry explicitlythus giving rise to the wormhole-induced low-energy effective Lagrangian. Wederive systematically this effective Lagrangian to lower orders in thederivative expansion. The role of U(1) symmetry to the third-quantized fieldtheory of topology change and the invisible-axion phenomenology in the wormholebackground are also discussed.

  6. Portal Connecting Dark Photons and Axions.

    PubMed

    Kaneta, Kunio; Lee, Hye-Sung; Yun, Seokhoon

    2017-03-10

    The dark photon and the axion (or axionlike particle) are popular light particles of the hidden sector. Each of them has been actively searched for through the couplings called the vector portal and the axion portal. We introduce a new portal connecting the dark photon and the axion (axion-photon-dark photon, axion-dark photon-dark photon), which emerges in the presence of the two particles. This dark axion portal is genuinely new couplings, not just from a product of the vector portal and the axion portal, because of the internal structure of these couplings. We present a simple model that realizes the dark axion portal and discuss why it warrants a rich phenomenology.

  7. Dark matter axions and caustic rings

    SciTech Connect

    Sikivie, P.

    1997-11-01

    This report contains discussions on the following topics: the strong CP problem; dark matter axions; the cavity detector of galactic halo axions; and caustic rings in the density distribution of cold dark matter halos.

  8. Portal Connecting Dark Photons and Axions

    NASA Astrophysics Data System (ADS)

    Kaneta, Kunio; Lee, Hye-Sung; Yun, Seokhoon

    2017-03-01

    The dark photon and the axion (or axionlike particle) are popular light particles of the hidden sector. Each of them has been actively searched for through the couplings called the vector portal and the axion portal. We introduce a new portal connecting the dark photon and the axion (axion-photon-dark photon, axion-dark photon-dark photon), which emerges in the presence of the two particles. This dark axion portal is genuinely new couplings, not just from a product of the vector portal and the axion portal, because of the internal structure of these couplings. We present a simple model that realizes the dark axion portal and discuss why it warrants a rich phenomenology.

  9. Axion inflation and Affleck-Dine baryogenesis

    NASA Astrophysics Data System (ADS)

    Akita, Kensuke; Kobayashi, Tatsuo; Otsuka, Hajime

    2017-04-01

    String theory generically predicts the coupling between the Affleck-Dine field and axion field through higher-dimensional operators. We thus explore the Affleck-Dine baryogenesis on an axion background. It turns out that the axion oscillation produces an enough amount of baryon asymmetry of the Universe just after the inflation, even without a soft supersymmetry-breaking A-term. This baryogenesis scenario is applicable to the string axion inflation.

  10. Axion cooling of neutron stars

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting x-ray sources put constraints on the properties of axions, and by extension, of any light pseudoscalar dark matter particles, whose existence has been postulated to solve the strong-C P problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by S - and P -wave nucleonic condensates in a benchmark code for cooling simulations, as well as provide fit formulas for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring nonaccreted iron and accreted light-element envelopes, and a range of nucleon-axion couplings. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for the onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the temperature vs age plane were confronted with the (time-averaged) measured surface temperature of the central compact object in the Cas A supernova remnant as well as surface temperatures of three nearby middle-aged thermally emitting pulsars. We find that the axion coupling is limited to fa/107 GeV ≥(5 - 10 ) , which translates into an upper bound on axion mass ma≤(0.06 - 0.12 ) eV for Peccei-Quinn charges of the neutron |Cn|˜0.04 and proton |Cp|˜0.4 characteristic for hadronic models of axions.

  11. Axion landscape and natural inflation

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Takahashi, Fuminobu

    2015-05-01

    Multiple axions form a landscape in the presence of various shift symmetry breaking terms. Eternal inflation populates the axion landscape, continuously creating new universes by bubble nucleation. Slow-roll inflation takes place after the tunneling event, if a very flat direction with a super-Planckian decay constant arises due to the alignment mechanism. We study the vacuum structure as well as possible inflationary dynamics in the axion landscape scenario, and find that the inflaton dynamics is given by either natural or multi-natural inflation. In the limit of large decay constant, it is approximated by the quadratic chaotic inflation, which however is disfavored if there is a pressure toward shorter duration of inflation. Therefore, if the spectral index and the tensor-to-scalar ratio turn out to be different from the quadratic chaotic inflation, there might be observable traces of the bubble nucleation. Also, the existence of small modulations to the inflaton potential is a common feature in the axion landscape, which generates a sizable and almost constant running of the scalar spectral index over CMB scales. Non-Gaussianity of equilateral type can also be generated if some of the axions are coupled to massless gauge fields.

  12. Planckian axions in string theory

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.; Long, Cody; McAllister, Liam

    2015-12-01

    We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ i , the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form - π < Q i j θ j < π. We compute the diameter of the fundamental domain in terms of the eigenvalues f 1 2 ≤ … ≤ f N 2 of the metric on field space, and also, crucially, the largest eigenvalue of ( QQ ⊤)-1. At large N, QQ ⊤ approaches a Wishart matrix, due to universality, and we show that the diameter is at least Nf N , exceeding the naive Pythagorean range by a factor > √{N} . This result is robust in the presence of P > N constraints, while for P = N the diameter is further enhanced by eigenvector delocalization to N 3/2 f N . We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h 1,1 = 51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in [1], the largest metric eigenvalue obeys f N ≈ 0.013 M pl. The random matrix analysis then predicts, and we exhibit, axion diameters ≈ M pl for the precise vacuum parameters found in [1]. Our results provide a framework for pursuing large-field axion inflation in well-understood flux vacua.

  13. Axion as a cold dark matter candidate: analysis to third order perturbation for classical axion

    SciTech Connect

    Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung E-mail: jchan@knu.ac.kr

    2015-12-01

    We investigate aspects of axion as a coherently oscillating massive classical scalar field by analyzing third order perturbations in Einstein's gravity in the axion-comoving gauge. The axion fluid has its characteristic pressure term leading to an axion Jeans scale which is cosmologically negligible for a canonical axion mass. Our classically derived axion pressure term in Einstein's gravity is identical to the one derived in the non-relativistic quantum mechanical context in the literature. We present the general relativistic continuity and Euler equations for an axion fluid valid up to third order perturbation. Equations for axion are exactly the same as that of a zero-pressure fluid in Einstein's gravity except for an axion pressure term in the Euler equation. Our analysis includes the cosmological constant.

  14. Theoretical Survey of Higgs Boson and Axions

    SciTech Connect

    Morales, Robert O.

    2000-04-05

    The success as well as the problems of the minimal Standard Model are recalled. The authors survey essentially this Model and the theory of the standard axion (Nambu-Goldstone boson). Possible invisible and visualized (theoretical) axions are discussed as are certain astrophysical aspects of the existence of an axion. They survey also axion cosmology in superstring models and its consequence, in the new anomaly cancellation mechanism to the sense of Green and Schwarz. Recent results for the search of the Higgs boson, and the axion are resumed. A great important is reserved for discussion of the Standard Model.

  15. The photo-philic QCD axion

    DOE PAGES

    Farina, Marco; Pappadopulo, Duccio; Rompineve, Fabrizio; ...

    2017-01-23

    Here, we propose a framework in which the QCD axion has an exponentially large coupling to photons, relying on the “clockwork” mechanism. We discuss the impact of present and future axion experiments on the parameter space of the model. In addition to the axion, the model predicts a large number of pseudoscalars which can be light and observable at the LHC. In the most favorable scenario, axion Dark Matter will give a signal in multiple axion detection experiments and the pseudo-scalars will be discovered at the LHC, allowing us to determine most of the parameters of the model.

  16. The photo-philic QCD axion

    NASA Astrophysics Data System (ADS)

    Farina, Marco; Pappadopulo, Duccio; Rompineve, Fabrizio; Tesi, Andrea

    2017-01-01

    We propose a framework in which the QCD axion has an exponentially large coupling to photons, relying on the "clockwork" mechanism. We discuss the impact of present and future axion experiments on the parameter space of the model. In addition to the axion, the model predicts a large number of pseudoscalars which can be light and observable at the LHC. In the most favorable scenario, axion Dark Matter will give a signal in multiple axion detection experiments and the pseudo-scalars will be discovered at the LHC, allowing us to determine most of the parameters of the model.

  17. Axion dark matter: strings and their cores

    SciTech Connect

    Fleury, Leesa; Moore, Guy D.

    2016-01-04

    Axions constitute a well-motivated dark matter candidate, and if PQ symmetry breaking occurred after inflation, it should be possible to make a clean prediction for the relation between the axion mass and the axion dark matter density. We show that axion (or other global) string networks in 3D have a network density that depends logarithmically on the string separation-to-core ratio. This logarithm would be about 10 times larger in axion cosmology than what we can achieve in numerical simulations. We simulate axion production in the early Universe, finding that, for the separation-to-core ratios we can achieve, the changing density of the network has little impact on the axion production efficiency.

  18. Axion dark matter: strings and their cores

    SciTech Connect

    Fleury, Leesa; Moore, Guy D. E-mail: guy.moore@physik.tu-darmstadt.de

    2016-01-01

    Axions constitute a well-motivated dark matter candidate, and if PQ symmetry breaking occurred after inflation, it should be possible to make a clean prediction for the relation between the axion mass and the axion dark matter density. We show that axion (or other global) string networks in 3D have a network density that depends logarithmically on the string separation-to-core ratio. This logarithm would be about 10 times larger in axion cosmology than what we can achieve in numerical simulations. We simulate axion production in the early Universe, finding that, for the separation-to-core ratios we can achieve, the changing density of the network has little impact on the axion production efficiency.

  19. Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations

    SciTech Connect

    Kitajima, Naoya; Takahashi, Fuminobu E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2015-01-01

    We study in detail MSW-like resonant conversions of QCD axions into hidden axions, including cases where the adiabaticity condition is only marginally satisfied, and where anharmonic effects are non-negligible. When the resonant conversion is efficient, the QCD axion abundance is suppressed by the hidden and QCD axion mass ratio. We find that, when the resonant conversion is incomplete due to a weak violation of the adiabaticity, the CDM isocurvature perturbations can be significantly suppressed, while non-Gaussianity of the isocurvature perturbations generically remain unsuppressed. The isocurvature bounds on the inflation scale can therefore be relaxed by the partial resonant conversion of the QCD axions into hidden axions.

  20. Backreacted axion field ranges in string theory

    NASA Astrophysics Data System (ADS)

    Baume, Florent; Palti, Eran

    2016-08-01

    String theory axions are interesting candidates for fields whose potential might be controllable over super-Planckian field ranges and therefore as possible candidates for inflatons in large field inflation. Axion monodromy scenarios are setups where the axion shift symmetry is broken by some effect such that the axion can traverse a large number of periods potentially leading to super-Planckian excursions. We study such scenarios in type IIA string theory where the axion shift symmetry is broken by background fluxes. In particular we calculate the backreaction of the energy density induced by the axion vacuum expectation value on its own field space metric. We find universal behaviour for all the compactifications studied where up to a certain critical axion value there is only a small backreaction effect. Beyond the critical value the backreaction is strong and implies that the proper field distance as measured by the backreacted metric increases at best logarithmically with the axion vev, thereby placing strong limitations on extending the field distance any further. The critical axion value can be made arbitrarily large by the choice of fluxes. However the backreaction of these fluxes on the axion field space metric ensures a precise cancellation such that the proper field distance up to the critical axion value is flux independent and remains sub-Planckian. We also study an axion alignment scenario for type IIA compactifications on a twisted torus with four fundamental axions mixing to leave an axion with an effective decay constant which is flux dependent. There is a choice of fluxes for which the alignment parameter controlling the effective decay constant is unconstrained by tadpoles and can in principle lead to an arbitrarily large effective decay constant. However we show that these fluxes backreact on the fundamental decay constants so as to precisely cancel any enhancement leaving a sub-Planckian effective decay constant.

  1. Thermalized axion inflation

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo Z.; Notari, Alessio

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton phi to gauge fields of the form phi F tilde F/f, as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= dot phi/(2fH), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H, due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξgtrsim2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξgtrsim3.4 however, observations require ξgtrsim6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of Teq simeq ξ H/bar g where bar g is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if phi is thermal and find that the tensor to scalar ratio is suppressed by H/(2T), if tensors do not thermalize.

  2. Axion overview and the U.S. RF cavity axion search

    SciTech Connect

    Rosenberg, L.J.; van Bibber, K.A.

    1998-01-01

    The axion, a hypothetical elementary particle, originally emerged from a solution to the strong CP problem in QCD. Later, axions were recognized as good dark matter candidates. Dark matter axions have only feeble couplings to matter and radiation, so their detection offers considerable challenge. Nonetheless, a new generation of exquisitely sensitive searches is underway. One such effort, in the United States, has already achieved sensitivity to plausible halo dark matter axion to photon couplings.

  3. Axion, μ term, and supersymmetric hybrid inflation

    NASA Astrophysics Data System (ADS)

    Lazarides, G.; Panagiotakopoulos, C.; Shafi, Q.

    2017-03-01

    We show how successful supersymmetric hybrid inflation is realized in realistic models where the resolution of the minimal supersymmetric standard model μ problem is intimately linked with axion physics. The scalar fields that accompany the axion, such as the saxion, are closely monitored during and after inflation to ensure that the axion isocurvature perturbations lie below the observational limits. The scalar spectral index ns≃0.96 - 0.97 , while the tensor-to-scalar ratio r , a canonical measure of gravity waves, lies well below the observable range in our example. The axion domain walls are inflated away, and depending on the axion decay constant fa and the magnitude of the μ parameter, the axions and/or the lightest supersymmetric particle compose the dark matter in the Universe. Nonthermal leptogenesis is naturally implemented in this class of models.

  4. Black hole formation from axion stars

    NASA Astrophysics Data System (ADS)

    Helfer, Thomas; Marsh, David J. E.; Clough, Katy; Fairbairn, Malcolm; Lim, Eugene A.; Becerril, Ricardo

    2017-03-01

    The classical equations of motion for an axion with potential V(phi)=ma2fa2 [1‑cos (phi/fa)] possess quasi-stable, localized, oscillating solutions, which we refer to as ``axion stars''. We study, for the first time, collapse of axion stars numerically using the full non-linear Einstein equations of general relativity and the full non-perturbative cosine potential. We map regions on an ``axion star stability diagram", parameterized by the initial ADM mass, MADM, and axion decay constant, fa. We identify three regions of the parameter space: i) long-lived oscillating axion star solutions, with a base frequency, ma, modulated by self-interactions, ii) collapse to a BH and iii) complete dispersal due to gravitational cooling and interactions. We locate the boundaries of these three regions and an approximate ``triple point" (MTP,fTP) ~ (2.4 Mpl2/ma,0.3 Mpl). For fa below the triple point BH formation proceeds during winding (in the complex U(1) picture) of the axion field near the dispersal phase. This could prevent astrophysical BH formation from axion stars with fa ll Mpl. For larger fa gtrsim fTP, BH formation occurs through the stable branch and we estimate the mass ratio of the BH to the stable state at the phase boundary to be Script O(1) within numerical uncertainty. We discuss the observational relevance of our findings for axion stars as BH seeds, which are supermassive in the case of ultralight axions. For the QCD axion, the typical BH mass formed from axion star collapse is MBH ~ 3.4 (fa/0.6 Mpl)1.2 Msolar.

  5. R-axion detection at LHC

    SciTech Connect

    Goh, Hock-Seng; Ibe, Masahiro; /SLAC

    2009-06-19

    Supersymmetric models with spontaneously broken approximate R-symmetry contains a light spin 0 particle, the R-axion. The properties of the particle can be a powerful probe of the structure of the new physics. In this paper, we discuss the possibilities of the R-axion detection at the LHC experiments. It is challenge to observe this light particle in the LHC environment. However, for typical values in which the mass of the R-axion is a few hundred MeV, we show that those particles can be detected by searching for displaced vertices from R-axion decay.

  6. A microwave cavity search for axions

    NASA Astrophysics Data System (ADS)

    Tanner, D. B.

    2007-04-01

    The mass of the axion, a hypothetical elementary particle proposed as a solution to the ``strong-CP'' problem, is constrained by experimental and astrophysical considerations to a range where the axion is a very plausible cold dark matter candidate. This weakly-interacting dark matter particle could constitute the halo of our galaxy. In the Axion Dark Matter eXperiment (ADMX), halo axions flow through a microwave resonant cavity permeated by a static magnetic field, where some convert into microwave photons. These photons are detected by an ultralow-noise receiver. The ADMX Collaboration has set limits on the axion-to-photon coupling and/or local axion halo mass density for axion mass between 1.9 and 3.3 μeV. Consideration of phase-space structure of the axion flow, which predicts extremely sharp peaks in the axion kinetic-energy spectrum, improves the limit. Presently underway is an upgrade to the experiment, using SQUID RF amplifiers, which will improve the performance by more than a factor of 10.Work done with L.D. Duffy, P. Sikivie, University of Florida, S.J. Asztalos, G. Carosi, D. Carter, C. Hagmann, D. Kinion, L.J. Rosenberg, K. van Bibber, LLNL, D.B. Yu, MIT, and R.F. Bradley, NRAO.

  7. Axion induced oscillating electric dipole moments

    DOE PAGES

    Hill, Christopher T.

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  8. Axion induced oscillating electric dipole moments

    SciTech Connect

    Hill, Christopher T.

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  9. Neutrino-axion-dilaton interconnection

    NASA Astrophysics Data System (ADS)

    Bertolini, Stefano; Di Luzio, Luca; Kolešová, Helena; Malinský, Michal; Vasquez, Juan Carlos

    2016-01-01

    We show that a recently proposed framework that provides a simple connection between Majorana neutrinos and an invisible axion in minimal scalar extensions of the standard electroweak model can be naturally embedded in a classically scale-invariant setup. The explicit breaking of the scale invariance à la Coleman-Weinberg generates the Peccei-Quinn and electroweak scales. The spontaneous breaking of the chiral U (1 )PQ triggers the generation of neutrino masses via Type-II seesaw and, at the same time, provides a dynamical solution to the strong C P problem as well as the axion as a dark matter candidate. The electroweak and neutrino mass scales are obtained via a technically natural ultraweak limit of the singlet scalar interactions. Accordingly, a realistic and perturbatively stable scalar spectrum, possibly in the reach of the LHC, is naturally obtained. A very light pseudodilaton characterizes such a setting. The vacuum stability of the extended setup is discussed.

  10. Gravitational waves from axion monodromy

    SciTech Connect

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-02

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this “dynamical phase decomposition' phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  11. Vacuum selection on axionic landscapes

    SciTech Connect

    Wang, Gaoyuan; Battefeld, Thorsten E-mail: tbattefe@astro.physik.uni-goettingen.de

    2016-04-01

    We compute the distribution of minima that are reached dynamically on multi-field axionic landscapes, both numerically and analytically. Such landscapes are well suited for inflationary model building due to the presence of shift symmetries and possible alignment effects (the KNP mechanism). The resulting distribution of dynamically reached minima differs considerably from the naive expectation based on counting all vacua. These differences are more pronounced in the presence of many fields due to dynamical selection effects: while low lying minima are preferred as fields roll down the potential, trajectories are also more likely to get trapped by one of the many nearby minima. We show that common analytic arguments based on random matrix theory in the large D-limit to estimate the distribution of minima are insufficient for quantitative arguments pertaining to the dynamically reached ones. This discrepancy is not restricted to axionic potentials. We provide an empirical expression for the expectation value of such dynamically reached minimas' height and argue that the cosmological constant problem is not alleviated in the absence of anthropic arguments. We further comment on the likelihood of inflation on axionic landscapes in the large D-limit.

  12. Gravitational waves from axion monodromy

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-01

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this ``dynamical phase decomposition" phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  13. Axion wormholes in AdS compactifications

    NASA Astrophysics Data System (ADS)

    Hertog, Thomas; Trigiante, Mario; Van Riet, Thomas

    2017-06-01

    We find regular axionic Euclidean wormhole solutions in Type IIB string theory compactified on {AdS}_5× {S}^5/{Z}_k . AdS/CFT enables a precise derivation of the axion content of the Euclidean theory, placing the string theory embedding of the wormholes on firm footing. This further sharpens the paradox posed by these solutions.

  14. Axion string dynamics I: 2+1D

    SciTech Connect

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-03

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  15. Axion string dynamics I: 2+1D

    NASA Astrophysics Data System (ADS)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-01

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  16. Fermion production during and after axion inflation

    SciTech Connect

    Adshead, Peter; Sfakianakis, Evangelos I.

    2015-11-11

    We study derivatively coupled fermions in axion-driven inflation, specifically m{sub ϕ}{sup 2}ϕ{sup 2} and monodromy inflation, and calculate particle production during the inflationary epoch and the post-inflationary axion oscillations. During inflation, the rolling axion acts as an effective chemical potential for helicity which biases the gravitational production of one fermion helicity over the other. This mechanism allows for efficient gravitational production of heavy fermion states that would otherwise be highly suppressed. Following inflation, the axion oscillates and fermions with both helicities are produced as the effective frequency of the fermion field changes non-adiabatically. For certain values of the fermion mass and axion-fermion coupling strength, the two helicity states are produced asymmetrically, resulting in unequal number-densities of left- and right-helicity fermions.

  17. Fermion production during and after axion inflation

    SciTech Connect

    Adshead, Peter; Sfakianakis, Evangelos I. E-mail: esfaki@illinois.edu

    2015-11-01

    We study derivatively coupled fermions in axion-driven inflation, specifically m{sub φ}{sup 2φ2} and monodromy inflation, and calculate particle production during the inflationary epoch and the post-inflationary axion oscillations. During inflation, the rolling axion acts as an effective chemical potential for helicity which biases the gravitational production of one fermion helicity over the other. This mechanism allows for efficient gravitational production of heavy fermion states that would otherwise be highly suppressed. Following inflation, the axion oscillates and fermions with both helicities are produced as the effective frequency of the fermion field changes non-adiabatically. For certain values of the fermion mass and axion-fermion coupling strength, the two helicity states are produced asymmetrically, resulting in unequal number-densities of left- and right-helicity fermions.

  18. Axion BEC: A model beyond CDM

    NASA Astrophysics Data System (ADS)

    Yang, Qiaoli

    I started work on the field of dark matter and cosmology with Dr. Sikivie three years ago with a goal to distinguish observationally axions or axion-like particles (ALPs) from other dark matter candidates such as weakly interacting massive particles (WIMPs) and sterile neutrinos. The subject is exciting because if one can determine the identity of the dark matter, it will be a mile-stone of physics beyond the standard model. On the high energy frontier, the standard model with three generation fermions is firmly established. However, it is not complete because the theory does not contain a plausible dark matter candidate, with properties required from observation, and the theory has fine-tuning problems such as the strong CP problem. On the cosmology and astrophysics frontiers, new observations of the dynamics of galaxy clusters, the rotation curves of galaxies, the abundances of light elements, gravitational lensing, and the anisotropies of the CMBR reach unprecedented accuracy. They imply cold dark matter (CDM) is 23% of the total energy density of the universe. Although many "beyond the standard model" theories may provide proper candidates to serve as CDM particles, the axion is especially compelling because it not only serves as the CDM particle, but also solves the strong CP problem. The axion was initially motivated by the strong CP problem, namely the puzzle why there is no CP violation in the strong interactions. Peccei and Quinn solved the problem by introducing a new UPQ(1) symmetry, and later Weinberg and Wilczek pointed out that the spontaneous breaking of UPQ(1) symmetry leads to a new pseudoscalar particle, the axion[1][2][3]. Axion models were proposed in which the symmetry breaking scale may be much larger than the electroweak scale, in which case the axion is very light and couples extremely weakly to ordinary matter. Furthermore, it was realized [4] that the cold axions, produced by the misalignment mechanism during the QCD phase transition, have

  19. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    DOE PAGES

    Bai, Yang; Barger, Vernon; Berger, Joshua

    2016-12-23

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10-11M⊙ . In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. Here, we study the properties of the HAS and nd that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogenmore » cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 1013W (ma/=5 meV)4, to make these objects luminous point sources. Furthermore, high resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.« less

  20. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Barger, Vernon; Berger, Joshua

    2016-12-01

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10-11 M ⊙. In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. We study the properties of the HAS and find that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 1013 W × ( m a /5 meV)4, to make these objects luminous point sources. High resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.

  1. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    SciTech Connect

    Bai, Yang; Barger, Vernon; Berger, Joshua

    2016-12-23

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10-11M⊙ . In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. Here, we study the properties of the HAS and nd that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 1013W (ma/=5 meV)4, to make these objects luminous point sources. Furthermore, high resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.

  2. CAST: An Inspiring Axion Helioscope ala Sikivie

    SciTech Connect

    Zioutas, K.; Anastassopoulos, V.; Tsagri, M.; Semertzidis, Y.; Papaevangelou, T.

    2010-08-30

    CAST is a data taking axion helioscope using a recycled LHC test magnet, CERN's detector technology and cryogenics expertise. An imaging X-ray telescope improves substantially the detection sensitivity and axion-ID. Massive axion-like particles of the Kaluza-Klein type were first introduced to explain the paradox of the hot corona, which is even hotter at locations overlying magnetic spots. This is suggesting that the CAST detection principle might be at work there, but being somehow modified and performing better. Remarkably, the density profile of the Sun allows for resonance crossing (m{sub axion}c{sup 2{approx_equal}}h{omega}{sub plasma}), which axion helioscopes are aiming to reach. The restless Sun favours this occasionally even further. Then, such processes can give rise to a chimera of converted axions or the like, making the Sun appear, within known physics, as mysterious and unpredictable as it is. CAST axion limits were used to conclude also for the hidden sector paraphotons. This is then suggestive for novel helioscopes for exotica like paraphotons, chameleons, etc. Pierre Sikivie's pioneering idea was to use a magnetic field as a catalyst to transform particles from the dark sector to ours, and vice versa.

  3. Search for axions with the CDMS experiment.

    PubMed

    Ahmed, Z; Akerib, D S; Arrenberg, S; Bailey, C N; Balakishiyeva, D; Baudis, L; Bauer, D A; Beaty, J; Brink, P L; Bruch, T; Bunker, R; Cabrera, B; Caldwell, D O; Cooley, J; Cushman, P; Dejongh, F; Dragowsky, M R; Duong, L; Figueroa-Feliciano, E; Filippini, J; Fritts, M; Golwala, S R; Grant, D R; Hall, J; Hennings-Yeomans, R; Hertel, S; Holmgren, D; Hsu, L; Huber, M E; Kamaev, O; Kiveni, M; Kos, M; Leman, S W; Mahapatra, R; Mandic, V; Moore, D; McCarthy, K A; Mirabolfathi, N; Nelson, H; Ogburn, R W; Pyle, M; Qiu, X; Ramberg, E; Rau, W; Reisetter, A; Saab, T; Sadoulet, B; Sander, J; Schnee, R W; Seitz, D N; Serfass, B; Sundqvist, K M; Tarka, M; Wang, G; Yellin, S; Yoo, J; Young, B A

    2009-10-02

    We report on the first axion search results from the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. An energy threshold of 2 keV for electron-recoil events allows a search for possible solar axion conversion into photons or local galactic axion conversion into electrons in the germanium crystal detectors. The solar axion search sets an upper limit on the Primakov coupling g(agammagamma) of 2.4x10(-9) GeV-1 at the 95% confidence level for an axion mass less than 0.1 keV/c2. This limit benefits from the first precise measurement of the absolute crystal plane orientations in this type of experiment. The galactic axion search analysis sets a world-leading experimental upper limit on the axioelectric coupling g(aee) of 1.4x10(-12) at the 90% confidence level for an axion mass of 2.5 keV/c2.

  4. Experimental searches for galactic halo axions.

    PubMed

    van Bibber, Karl A; Kinion, S Darin

    2003-11-15

    A very light axion would be copiously produced during the Big Bang as a zero-temperature Bose gas, and it would possess vanishingly small couplings to matter and radiation. It thus represents an ideal cold dark matter candidate. Galactic halo axions may be detected by their resonant conversion to microwave photons in a high-Q cavity permeated by a strong magnetic field. A large-scale search for the axion is ongoing in the US with sufficient sensitivity to see axions of plausible model couplings. Dramatic breakthroughs in the development of near-quantum limited superconducting quantum interference device amplifiers promise to improve the sensitivity of the experiment by a factor of 30 in the near future. In Japan, a group has been developing a Rydberg atom single-quantum detector as an alternative to linear amplifiers for a microwave-cavity axion experiment. Should the axion be discovered, the predicted fine structure in the axion signal would be rich in information about the history of galactic formation.

  5. Axion mass estimates from resonant Josephson junctions

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    2015-03-01

    Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass (Beck, 2013). Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electrical current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the formal existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of (110±2) μeV. This mass value is compatible with the recent BICEP2 results and implies that Peccei-Quinn symmetry breaking was taking place after inflation.

  6. Axionic shortcuts for high energy photons

    SciTech Connect

    Nicolaidis, A.

    2010-04-01

    We study the photon axion mixing in the presence of large extra dimensions. The eigenvalues and eigenstates of the mixing matrix are analyzed and we establish the resonance condition for the total conversion of a high energy photon into a Kaluza-Klein (KK) axion state. This resonant transition, a photon transformed into a KK axion traveling freely through the bulk and converting back into a photon, may provide a plausible explanation for the transparency of the universe to energetic photons. If the brane we live in is curved, then there are shortcuts through the bulk, which the axion can take. Within our model, the photons having the appropriate resonance energy are using the axionic shortcut and arrive earlier compared to the photons which follow the geodesic on the brane. We suggest that such axionic shortcuts are at the root of the dispersion of time arrival of photons observed by the MAGIC telescope. We indicate also the cosmological significance of the existence of axionic shortcuts for the photon.

  7. Recent constraints on axion-photon and axion-electron coupling with the CAST experiment

    DOE PAGES

    Ruz, J.; Vogel, J. K.; Pivovaroff, M. J.

    2015-03-24

    The CERN Axion Solar Telescope (CAST) is a helioscope looking for axions arising from the solar core plasma and arriving to Earth. The experiment, located in Geneva (Switzerland) is able to follow the Sun during sunrise and sunset. Four x-ray detectors mounted on both ends of the magnet wait for photons from axion-to-photon conversion due to the Primakoff effect. Up to date, with the completion of Phases I and II, CAST has been looking for axions that could be produced in the Sun by both, hadronic and non-hadronic mechanisms.

  8. The next generation of axion helioscopes: The international axion observatory (IAXO)

    SciTech Connect

    Vogel, J. K.; Armengaud, E.; Avignone, F. T.; Betz, M.; Brax, P.; Brun, P.; Cantatore, G.; Carmona, J. M.; Carosi, G. P.; Caspers, F.; Caspi, S.; Cetin, S. A.; Chelouche, D.; Christensen, F. E.; Dael, A.; Dafni, T.; Davenport, M.; Derbin, A. V.; Desch, K.; Diago, A.; Döbrich, B.; Dratchnev, I.; Dudarev, A.; Eleftheriadis, C.; Fanourakis, G.; Ferrer-Ribas, E.; Galán, J.; García, J. A.; Garza, J. G.; Geralis, T.; Gimeno, B.; Giomataris, I.; Gninenko, S.; Gómez, H.; González-Díaz, D.; Guendelman, E.; Hailey, C. J.; Hiramatsu, T.; Hoffmann, D. H.H.; Horns, D.; Iguaz, F. J.; Irastorza, I. G.; Isern, J.; Imai, K.; Jakobsen, A. C.; Jaeckel, J.; Jakovčić, K.; Kaminski, J.; Kawasaki, M.; Karuza, M.; Krčmar, M.; Kousouris, K.; Krieger, C.; Lakić, B.; Limousin, O.; Lindner, A.; Liolios, A.; Luzón, G.; Matsuki, S.; Muratova, V. N.; Nones, C.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Redondo, J.; Ringwald, A.; Russenschuck, S.; Ruz, J.; Saikawa, K.; Savvidis, I.; Sekiguchi, T.; Semertzidis, Y. K.; Shilon, I.; Sikivie, P.; Silva, H.; ten Kate, H.; Tomas, A.; Troitsky, S.; Vafeiadis, T.; van Bibber, K.; Vedrine, P.; Villar, J. A.; Walckiers, L.; Weltman, A.; Wester, W.; Yildiz, S. C.; Zioutas, K.

    2015-03-24

    The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 – 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling g down to a few ×10⁻¹² GeV⁻¹ for a wide range of axion masses up to ~ 0.25 eV. This is an improvement over the currently best (3rd generation) axion helioscope, the CERN Axion Solar Telescope (CAST), of about 5 orders of magnitude in signal strength, corresponding to a factor ~ 20 in the axion photon coupling. IAXO’s sensitivity relies on the construction of a large superconducting 8-coil toroidal magnet of 20 m length optimized for axion research. Each of the eight 60 cm diameter magnet bores is equipped with x-ray optics focusing the signal photons into ~ 0.2 cm² spots that are imaged by very low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12 hours each day. This contribution is a summary of our papers [1, 2, 3] and we refer to these for further details.

  9. The next generation of axion helioscopes: The international axion observatory (IAXO)

    DOE PAGES

    Vogel, J. K.; Armengaud, E.; Avignone, F. T.; ...

    2015-03-24

    The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 – 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling gaγ down to a few ×10⁻¹² GeV⁻¹ for a wide range of axion masses up to ~ 0.25 eV. This is an improvement over the currently best (3rd generation) axion helioscope, the CERN Axion Solar Telescope (CAST), of about 5 orders of magnitude in signal strength, corresponding to a factor ~ 20more » in the axion photon coupling. IAXO’s sensitivity relies on the construction of a large superconducting 8-coil toroidal magnet of 20 m length optimized for axion research. Each of the eight 60 cm diameter magnet bores is equipped with x-ray optics focusing the signal photons into ~ 0.2 cm² spots that are imaged by very low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12 hours each day. This contribution is a summary of our papers [1, 2, 3] and we refer to these for further details.« less

  10. An Improved RF Cavity Search for Halo Axions

    SciTech Connect

    Asztalos, S; Bradley, R; Duffy, L; Hagmann, C; Kinion, D; Moltz, D; Rosenberg, L; Sikivie, P; Stoeffl, W; Sullivan, N; Tanner, D; van Bibber, K; Yu, D

    2003-11-11

    The axion is a hypothetical elementary particle and cold dark matter candidate. In this RF cavity experiment, halo axions entering a resonant cavity immersed in a static magnetic field convert into microwave photons, with the resulting photons detected by a low-noise receiver. The ADMX Collaboration presents new limits on the axion-to-photon coupling and local axion dark matter halo mass density from a RF cavity axion search in the axion mass range 1.9-2.3 {micro}eV, broadening the search range to 1.9-3.3 {micro}eV. In addition, we report first results from an improved analysis technique.

  11. Search for solar axions: the CAST experiment

    SciTech Connect

    Andriamonje, S.; Aune, S.; Ferrer-Ribas, E.; Giomataris, I.; Barth, K.; Davenport, M.; Lasseur, C.; Papaevangelou, T.; Placci, A.; Stewart, L.; Walckiers, L.; Belov, A.; Gninenko, S.; Beltran, B.; Braeuninger, H.; Englhauser, J.; Friedrich, P.; Carmona, J. M.; Cebrian, S.; Luzon, G.

    2006-11-28

    thetical axion-like particles with a two-photon interaction would be produced in the sun by the Primakoff process. In a laboratory magnetic field they would be transformed into X-rays with energies of a few keV. The CAST experiment at CERN is using a decommissioned LHC magnet as an axion helioscope in order to search for these axion-like particles. The analysis of the 2003 data showed no signal above the background, thus implying an upper limit to the axion-photon coupling of ga{gamma} < 1.16 x 10-10 GeV-1 at 95% CL for ma < or approx. 0.02 eV. The stable operation of the experiment during 2004 data taking allowed us to lower down this parameter to a preliminary value of ga{gamma} < 0.9 x 10-10 GeV-1.

  12. Axions from cosmic string and wall decay

    SciTech Connect

    Hagmann, C A

    2010-03-10

    If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall} {approx} 1-100 (f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.

  13. Axion mass bound in very special relativity

    NASA Astrophysics Data System (ADS)

    Bufalo, R.; Upadhyay, S.

    2017-09-01

    In this paper we propose a very special relativity (VSR)-inspired description of the axion electrodynamics. This proposal is based upon the construction of a proper study of the SIM(2)-VSR gauge-symmetry. It is shown that the VSR nonlocal effects give a health departure from the usual axion field theory. The axionic classical dynamics is analyzed in full detail, first by a discussion of its solution in the presence of an external magnetic field. Next, we compute photon-axion transition in VSR scenario by means of Primakoff interaction, showing the change of a linearly polarized light to a circular one. Afterwards, duality symmetry is discussed in the VSR framework.

  14. Symmetries of field equations of axion electrodynamics

    NASA Astrophysics Data System (ADS)

    Nikitin, A. G.; Kuriksha, Oksana

    2012-07-01

    The group classification of models of axion electrodynamics with arbitrary self-interaction of axionic field is carried out. It is shown that extensions of the basic Poincaré invariance of these models appear only for constant and exponential interactions. The related conservation laws are discussed. The maximal continuous symmetries of the 3d Chern-Simons electrodynamics and Carroll-Field-Jackiw electrodynamics are presented. Using the Inönü-Wigner contraction the nonrelativistic limit of equations of axion electrodynamics is found. Exact solutions for the electromagnetic and axion fields are discussed including those which describe propagation with group velocities faster than the speed of light. However these solutions are causal since the corresponding energy velocities are subluminal.

  15. Nonthermal axion dark radiation and constraints

    NASA Astrophysics Data System (ADS)

    Mazumdar, Anupam; Qutub, Saleh; Saikawa, Ken'ichi

    2016-09-01

    The Peccei-Quinn mechanism presents a neat solution to the strong C P problem. As a by-product, it provides an ideal dark matter candidate, "the axion", albeit with a tiny mass. Axions therefore can act as dark radiation if excited with large momenta after the end of inflation. Nevertheless, the recent measurement of relativistic degrees of freedom from cosmic microwave background radiation strictly constrains the abundance of such extra relativistic species. We show that ultrarelativistic axions can be abundantly produced if the Peccei-Quinn field was initially displaced from the minimum of the potential. This in lieu places an interesting constraint on the axion dark matter window with large decay constant which is expected to be probed by future experiments. Moreover, an upper bound on the reheating temperature can be placed, which further constrains the thermal history of our Universe.

  16. Axions as hot and cold dark matter

    SciTech Connect

    Jeong, Kwang Sik; Kawasaki, Masahiro; Takahashi, Fuminobu E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-02-01

    The presence of a hot dark matter component has been hinted at 3σ by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu-Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f{sub a}∼axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  17. Dark-matter QCD-axion searches

    SciTech Connect

    Rosenberg, Leslie J.

    2015-01-12

    In the late 20th century, cosmology became a precision science. At the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10-(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. But, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. Our paper is a selective overview of the current generation of sensitive axion searches. Finally, not all techniques and

  18. Dark-matter QCD-axion searches.

    PubMed

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  19. Dark-matter QCD-axion searches

    PubMed Central

    Rosenberg, Leslie J

    2015-01-01

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and

  20. Dark-matter QCD-axion searches

    DOE PAGES

    Rosenberg, Leslie J.

    2015-01-12

    In the late 20th century, cosmology became a precision science. At the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the darkmore » matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10-(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. But, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. Our paper is a selective overview of the current generation of sensitive axion searches. Finally, not all techniques and

  1. Update of axion CDM energy density

    SciTech Connect

    Huh, Ji-Haeng

    2008-11-23

    We update cosmological bound on axion model. The contribution from the anharmonic effect and the newly introduced initial overshoot correction are considered. We present an explicit formula for the axion relic density in terms of the QCD scale {lambda}{sub QCD}, the current quark masses m{sub q}'s and the Peccei-Quinn scale F{sub a}, including firstly introduced 1.85 factor which is from the initial overshoot.

  2. Axion Research at CAPP/IBS

    NASA Astrophysics Data System (ADS)

    Youn, Sungwoo

    2016-07-01

    The axion, a hypothetical fundamental particle, was postulated as an attractive solution to the CP problem in quantum chromodynamics and believed to be an ideal candidate for the cold dark matter. The Center for Axion and Precision Physics Research of the Institute for Basic Science has launched a state of the art experiment to search for the hypothesised new particle using microwave resonant cavities. I will discuss R&D efforts at our center and plans for the experiment.

  3. Axions and the galactic angular momentum distribution

    NASA Astrophysics Data System (ADS)

    Banik, N.; Sikivie, P.

    2013-12-01

    We analyze the behavior of axion dark matter before it falls into a galactic gravitational potential well. The axions thermalize sufficiently fast by gravitational self-interactions that almost all go to their lowest-energy state consistent with the total angular momentum acquired from tidal torquing. That state is a state of rigid rotation on the turnaround sphere. It predicts the occurrence and detailed properties of the caustic rings of dark matter for which observational evidence had been found earlier. We show that the vortices in the axion Bose-Einstein condensate (BEC) are attractive, unlike those in superfluid He4 and dilute gases. We expect that a large fraction of the vortices in the axion BEC join into a single big vortex along the rotation axis of the galaxy. The resulting enhancement of caustic rings explains the typical size of the rises in the Milky Way rotation curve attributed to caustic rings. We show that baryons and ordinary cold dark matter particles are entrained by the axion BEC and acquire the same velocity distribution. The resulting baryonic angular momentum distribution gives a good qualitative fit to the distributions observed in dwarf galaxies. We give estimates of the minimum fraction of dark matter that is composed of axions.

  4. Planckian axions and the Weak Gravity Conjecture

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.; Long, Cody; McAllister, Liam

    2016-01-01

    Several recent works [1-3] have claimed that the Weak Gravity Conjecture (WGC) excludes super-Planckian displacements of axion fields, and hence large-field axion inflation, in the absence of monodromy. We argue that in theories with N ≫ 1 axions, super-Planckian axion diameters D are readily allowed by the WGC. We clarify the non-trivial relationship between the kinetic matrix K — unambiguously defined by its form in a Minkowski-reduced basis — and the diameter of the axion fundamental domain, emphasizing that in general the diameter is not solely determined by the eigenvalues f 1 2 ≤ ṡ ṡ ṡ ≤ f N 2 of K: the orientations of the eigenvectors with respect to the identifications imposed by instantons must be incorporated. In particular, even if one were to impose the condition f N < M pl, this would imply neither D < M pl nor D < √{N}{M}_{pl} . We then estimate the actions of instantons that fulfill the WGC. The leading instanton action is bounded from below by S≥ {S}{M}_{pl}/{f}_N , with {S} a fixed constant, but in the universal limit S≳ S√{N} {M}_{pl}/{f}_N . Thus, having f N > M pl does not immediately imply the existence of unsuppressed higher harmonic contributions to the potential. Finally, we argue that in effective axion-gravity theories, the zero-form version of the WGC can be satisfied by gravitational instantons that make negligible contributions to the potential.

  5. Axion response in gapless systems.

    PubMed

    Bergman, Doron L

    2011-10-21

    The strong topological insulator in 3D is expected to realize a quantized magnetoelectric response, the so-called axion response. However, many of the materials predicted to be topological insulators have turned out to be metallic, with bulk Fermi surfaces. Following the result of Bergman and Refael [Phys. Rev. B 82, 195417 (2010)] that the surface states of the topological insulator persist even when the band structure gap is closed, we explore the fate of the magnetoelectric response in such systems. We find that a nonquantized magnetoelectric coupling remains once a bulk Fermi surface opens. More generally, we find higher-dimensional analogs of the intrinsic anomalous Hall effect for all Chern forms-quantized transport coefficients in the gapped case become nonquantized when the gap is closed. In particular, the nonquantized magnetoelectric response in 3D descends from the intrinsic anomalous Hall effect analog in 4D.

  6. Small field axion inflation with sub-Planckian decay constant

    SciTech Connect

    Kadota, Kenji; Kobayashi, Tatsuo; Oikawa, Akane; Omoto, Naoya; Otsuka, Hajime; Tatsuishi, Takuya H.

    2016-10-10

    We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.

  7. CAST - A CERN Experiment to Search for Solar Axions

    SciTech Connect

    Arik, E.; Boydag, F. S.; Cetin, S. A.; Dogan, O. B.; Hikmet, I.; Aune, S.; Dafni, T.; Ferrer-Ribas, E.; Giomataris, I.; Autiero, D.; Barth, K.; Davenport, M.; Di Lella, L.; Lasseur, C.; Papaevangelou, T.; Placci, A.; Riege, H.; Stewart, L.; Walckiers, L.; Belov, A.

    2007-04-23

    The CAST experiment at CERN is the only running solar axion telescope. The first results obtained so far with CAST - PHASE I is presented, which compete with the best astrophysically derived limits of the axion-to-photon coupling. The ongoing PHASE II of the experiment as well as the scheduled upgrades, which improve the axion discovery potential of CAST, are discussed.

  8. Small field axion inflation with sub-Planckian decay constant

    NASA Astrophysics Data System (ADS)

    Kadota, Kenji; Kobayashi, Tatsuo; Oikawa, Akane; Omoto, Naoya; Otsuka, Hajime; Tatsuishi, Takuya H.

    2016-10-01

    We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.

  9. QCD axion star collapse with the chiral potential

    DOE PAGES

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; ...

    2017-06-05

    In a previous study, we analyzed collapsing axion stars using the low-energy instanton potential, showing that the total energy is always bounded and that collapsing axion stars do not form black holes. In this paper, we provide a proof that the conclusions are unchanged when using instead the more general chiral potential for QCD axions.

  10. Windows on the axion. [quantum chromodynamics (QCD)

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the theta vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10(-12)eV is approx. less than m(a) which is approx. less than 10(6)eV, some 18 orders-of-magnitude. Laboratory experiments have excluded masses greater than 10(4)eV, leaving unprobed some 16 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producting detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10(-6)eV is approx. less than m(a) is approx. less than 10(-3)eV and 1eV is approx. less than m(a) is approx. less than 5eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve heavenly axions, are being planned or are underway.

  11. Axion astronomy with microwave cavity experiments

    NASA Astrophysics Data System (ADS)

    O'Hare, Ciaran A. J.; Green, Anne M.

    2017-03-01

    Terrestrial searches for the conversion of dark matter axions or axionlike particles into photons inside magnetic fields are sensitive to the phase space structure of the local Milky Way halo. We simulate signals in a hypothetical future experiment based on the Axion Dark Matter Experiment that could be performed once the axion has been detected and a frequency range containing the axion mass has been identified. We develop a statistical analysis to extract astrophysical parameters, such as the halo velocity dispersion and laboratory velocity, from such data and find that with only a few days integration time a level of precision can be reached, matching that of astronomical observations. For longer experiments lasting up to a year in duration, we find that exploiting the modulation of the power spectrum in time allows accurate measurements of the Solar peculiar velocity with an accuracy that would improve upon astronomical observations. We also simulate signals based on results from N-body simulations and find that finer substructure in the form of tidal streams would show up prominently in future data, even if only a subdominant contribution to the local dark matter distribution. In these cases, it would be possible to reconstruct all the properties of a dark matter stream using the time and frequency dependence of the signal. Finally, we consider the detection prospects for a network of streams from tidally disrupted axion miniclusters. These features appear much more prominently in the resolved spectrum than suggested by calculations based on a scan over a range of resonant frequencies, making the detection of axion minicluster streams more viable than previously thought. These results confirm that haloscope experiments in a postdiscovery era are able to perform "axion astronomy."

  12. Maximum Entropy Inferences on the Axion Mass in Models with Axion-Neutrino Interaction

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Dias, Alex Gomes; da Silva, Roberto

    2017-08-01

    In this work, we use the maximum entropy principle (MEP) to infer the mass of an axion which interacts to photons and neutrinos in an effective low energy theory. The Shannon entropy function to be maximized is defined in terms of the axion branching ratios. We show that MEP strongly constrains the axion mass taking into account the current experimental bounds on the neutrinos masses. Assuming that the axion is massive enough to decay into all the three neutrinos and that MEP fixes all the free parameters of the model, the inferred axion mass is in the interval 0.1 eV < m A < 0.2 eV, which can be tested by forthcoming experiments such as IAXO. However, even in the case where MEP fixes just the axion mass and no other parameter, we found that 0.1 eV < m A < 6.3 eV in the DFSZ model with right-handed neutrinos. Moreover, a light axion, allowed to decay to photons and the lightest neutrino only, is determined by MEP as a viable dark matter candidate.

  13. Lattice QCD input for axion cosmology

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan; Buchoff, Michael I.; Rinaldi, Enrico

    2015-08-01

    One intriguing beyond-the-Standard-Model particle is the QCD axion, which could simultaneously provide a solution to the Strong C P Problem and account for some, if not all, of the dark matter density in the Universe. This particle is a pseudo-Nambu-Goldstone boson of the conjectured Peccei-Quinn symmetry of the Standard Model. Its mass and interactions are suppressed by a heavy symmetry-breaking scale, fa, the value of which is roughly greater than 109 GeV (or, conversely, the axion mass, ma, is roughly less than 104 μ eV ). The density of axions in the Universe, which cannot exceed the relic dark matter density and is a quantity of great interest in axion experiments like ADMX, is a result of the early Universe interplay between cosmological evolution and the axion mass as a function of temperature. The latter quantity is proportional to the second derivative of the temperature-dependent QCD free energy with respect to the C P -violating phase, θ . However, this quantity is generically nonperturbative, and previous calculations have only employed instanton models at the high temperatures of interest (roughly 1 GeV). In this and future works, we aim to calculate the temperature-dependent axion mass at small θ from first-principle lattice calculations, with controlled statistical and systematic errors. Once calculated, this temperature-dependent axion mass is input for the classical evolution equations of the axion density of the Universe, which is required to be less than or equal to the dark matter density. Due to a variety of lattice systematic effects at the very high temperatures required, we perform a calculation of the leading small-θ cumulant of the theta vacua on large volume lattices for SU(3) Yang-Mills with high statistics as a first proof of concept, before attempting a full QCD calculation in the future. From these pure glue results, the misalignment mechanism yields the axion mass bound ma≥(14.6 ±0.1 ) μ eV when Peccei-Quinn breaking occurs

  14. Effects of axions on Population III stars

    NASA Astrophysics Data System (ADS)

    Choplin, Arthur; Coc, Alain; Meynet, Georges; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth

    2017-09-01

    Aims: Following the renewed interest in axions as a dark matter component, we revisit the effects of energy loss by axion emission on the evolution of the first generation of stars. These stars with zero metallicity are assumed to be massive, more compact, and hotter than subsequent generations. It is hence important to extend previous studies, which were restricted to solar metallicity stars. Methods: Our analysis first compares the evolution of solar metallicity 8, 10, and 12 M⊙ stars to previous work. We then calculate the evolution of 8 zero-metallicity stars with and without axion losses and with masses ranging from 20 to 150 M⊙. Results: For the solar metallicity models, we confirm the disappearance of the blue-loop phase for a value of the axion-photon coupling of gaγ = 10-10 GeV-1. We show that for gaγ = 10-10 GeV-1, the evolution of Population III stars is not much affected by axion losses, except within the range of masses 80-130 M⊙. Such stars show significant differences in both their tracks within the Tc-ρc diagram and their central composition (in particular 20Ne and 24Mg). We discuss the origin of these modifications from the stellar physics point of view, and also their potential observational signatures.

  15. Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Lessa, Andre E-mail: baer@nhn.ou.edu E-mail: serce@ou.edu

    2014-10-01

    The supersymmetrized DFSZ axion model is highly motivated not only because it offers solutions to both the gauge hierarchy and strong CP problems, but also because it provides a solution to the SUSY μ-problem which naturally allows for a Little Hierarchy. We compute the expected mixed axion-neutralino dark matter abundance for the SUSY DFSZ axion model in two benchmark cases—a natural SUSY model with a standard neutralino underabundance (SUA) and an mSUGRA/CMSSM model with a standard overabundance (SOA). Our computation implements coupled Boltzmann equations which track the radiation density along with neutralino, axion, axion CO (produced via coherent oscillations), saxion, saxion CO, axino and gravitino densities. In the SUSY DFSZ model, axions, axinos and saxions go through the process of freeze-in—in contrast to freeze-out or out-of-equilibrium production as in the SUSY KSVZ model—resulting in thermal yields which are largely independent of the re-heat temperature. We find the SUA case with suppressed saxion-axion couplings (ξ=0) only admits solutions for PQ breaking scale f{sub a}∼< 6× 10{sup 12} GeV where the bulk of parameter space tends to be axion-dominated. For SUA with allowed saxion-axion couplings (ξ =1), then f{sub a} values up to ∼ 10{sup 14} GeV are allowed. For the SOA case, almost all of SUSY DFSZ parameter space is disallowed by a combination of overproduction of dark matter, overproduction of dark radiation or violation of BBN constraints. An exception occurs at very large f{sub a}∼ 10{sup 15}–10{sup 16} GeV where large entropy dilution from CO-produced saxions leads to allowed models.

  16. Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Baer, Howard; Lessa, Andre; Serce, Hasan

    2014-10-01

    The supersymmetrized DFSZ axion model is highly motivated not only because it offers solutions to both the gauge hierarchy and strong CP problems, but also because it provides a solution to the SUSY μ-problem which naturally allows for a Little Hierarchy. We compute the expected mixed axion-neutralino dark matter abundance for the SUSY DFSZ axion model in two benchmark cases—a natural SUSY model with a standard neutralino underabundance (SUA) and an mSUGRA/CMSSM model with a standard overabundance (SOA). Our computation implements coupled Boltzmann equations which track the radiation density along with neutralino, axion, axion CO (produced via coherent oscillations), saxion, saxion CO, axino and gravitino densities. In the SUSY DFSZ model, axions, axinos and saxions go through the process of freeze-in—in contrast to freeze-out or out-of-equilibrium production as in the SUSY KSVZ model—resulting in thermal yields which are largely independent of the re-heat temperature. We find the SUA case with suppressed saxion-axion couplings (ξ=0) only admits solutions for PQ breaking scale falesssim 6× 1012 GeV where the bulk of parameter space tends to be axion-dominated. For SUA with allowed saxion-axion couplings (ξ =1), then fa values up to ~ 1014 GeV are allowed. For the SOA case, almost all of SUSY DFSZ parameter space is disallowed by a combination of overproduction of dark matter, overproduction of dark radiation or violation of BBN constraints. An exception occurs at very large fa~ 1015-1016 GeV where large entropy dilution from CO-produced saxions leads to allowed models.

  17. Resonantly Detecting Axion-Mediated Forces with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Geraci, Andrew A.

    2014-10-01

    We describe a method based on precision magnetometry that can extend the search for axion-mediated spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic resonance and short-distance tests of gravity, our approach can substantially improve upon current experimental limits set by astrophysics, and probe deep into the theoretically interesting regime for the Peccei-Quinn (PQ) axion. Our method is sensitive to PQ axion decay constants between 109 and 1012 GeV or axion masses between 10-6 and 10-3 eV, independent of the cosmic axion abundance.

  18. Bose-Einstein condensation of dark matter axions.

    PubMed

    Sikivie, P; Yang, Q

    2009-09-11

    We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.

  19. Discrete Abelian gauge symmetries and axions

    NASA Astrophysics Data System (ADS)

    Honecker, Gabriele; Staessens, Wieland

    2015-07-01

    We combine two popular extensions of beyond the Standard Model physics within the framework of intersecting D6-brane models: discrete ℤn symmetries and Peccei-Quinn axions. The underlying natural connection between both extensions is formed by the presence of massive U(1) gauge symmetries in D-brane model building. Global intersecting D6-brane models on toroidal orbifolds of the type T6/ℤ2N and T6/ℤ2 × ℤ2M with discrete torsion offer excellent playgrounds for realizing these extensions. A generation-dependent ℤ2 symmetry is identified in a global Pati-Salam model, while global left-right symmetric models give rise to supersymmetric realizations of the DFSZ axion model. In one class of the latter models, the axion as well as Standard Model particles carry a non-trivial ℤ3 charge.

  20. Axions as quintessence in string theory

    SciTech Connect

    Panda, Sudhakar; Sumitomo, Yoske; Trivedi, Sandip P.

    2011-04-15

    We construct a model of quintessence in string theory based on the idea of axion monodromy as discussed by McAllister, Silverstein and Westphal [L. McAllister, E. Silverstein, and A. Westphal, Phys. Rev. D 82, 046003 (2010)]. In the model, the quintessence field is an axion whose shift symmetry is broken by the presence of 5-branes which are placed in highly warped throats. This gives rise to a potential for the axion field which is slowly varying, even after incorporating the effects of moduli stabilization and supersymmetry breaking. We find that the resulting time dependence in the equation of state of dark energy is potentially detectable, depending on the initial conditions. The model has many very light extra particles which live in the highly warped throats, but these are hard to detect. A signal in the rotation of the CMB polarization can also possibly arise.

  1. Self-gravitating system made of axions

    SciTech Connect

    Barranco, J.; Bernal, A.

    2011-02-15

    We show that the inclusion of an axionlike effective potential in the construction of a self-gravitating system of scalar fields decreases its compactness when the value of the self-interaction coupling constant is increased. By including the current values for the axion mass m and decay constant f{sub a}, we have computed the mass and the radius for self-gravitating systems made of axion particles. It is found that such objects will have asteroid size masses and radii of a few meters, thus a self-gravitating system made of axions could play the role of scalar mini-MACHOs and mimic a cold dark matter model for the galactic halo.

  2. Isocurvature forecast in the anthropic axion window

    SciTech Connect

    Hamann, J.; Hannestad, S.; Raffelt, G.G.; Wong, Y.Y.Y. E-mail: sth@phys.au.dk E-mail: yvonne.wong@cern.ch

    2009-06-01

    We explore the cosmological sensitivity to the amplitude of isocurvature fluctuations that would be caused by axions in the ''anthropic window'' where the axion decay constant f{sub a} >> 10{sup 12} GeV and the initial misalignment angle Θ{sub i} << 1. In a minimal ΛCDM cosmology extended with subdominant scale-invariant isocurvature fluctuations, existing data constrain the isocurvature fraction to α < 0.09 at 95% C.L. If no signal shows up, Planck can improve this constraint to 0.042 while an ultimate CMB probe limited only by cosmic variance in both temperature and E-polarisation can reach 0.017, about a factor of five better than the current limit. In the parameter space of f{sub a} and H{sub I} (Hubble parameter during inflation) we identify a small region where axion detection remains within the reach of realistic cosmological probes.

  3. Axion cold dark matter in nonstandard cosmologies

    SciTech Connect

    Visinelli, Luca; Gondolo, Paolo

    2010-03-15

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  4. Bump in the blue axion isocurvature spectrum

    NASA Astrophysics Data System (ADS)

    Chung, Daniel J. H.; Upadhye, Amol

    2017-01-01

    Blue axion isocurvature perturbations are both theoretically well motivated and interesting from a detectability perspective. These power spectra generically have a break from the blue region to a flat region. Previous investigations of the power spectra were analytic, which left a gap in the predicted spectrum in the break region due to the nonapplicability of the used analytic techniques. We therefore compute the isocurvature spectrum numerically for an explicit supersymmetric axion model. We find a bump that enhances the isocurvature signal for this class of scenarios. A fitting function of three parameters is constructed that fits the spectrum well for the particular axion model we study. This fitting function should be useful for blue isocurvature signal hunting in data and making experimental sensitivity forecasts.

  5. Axionic suppression of plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Burton, D. A.; Noble, A.; Walton, T. J.

    2016-09-01

    Contemporary attempts to explain the existence of ultra-high energy cosmic rays using plasma-based wakefield acceleration deliberately avoid non-standard model particle physics. However, such proposals exploit some of the most extreme environments in the Universe and it is conceivable that hypothetical particles outside the standard model have significant implications for the effectiveness of the acceleration process. Axions solve the strong CP problem and provide one of the most important candidates for cold dark matter, and their potential significance in the present context should not be overlooked. Our analysis of the field equations describing a plasma augmented with axions uncovers a dramatic axion-induced suppression of the energy gained by a test particle in the wakefield driven by a particle bunch, or an intense pulse of electromagnetic radiation, propagating at ultra-relativistic speeds within the strongest magnetic fields in the Universe.

  6. Detecting solar axions using Earth's magnetic field.

    PubMed

    Davoudiasl, Hooman; Huber, Patrick

    2006-10-06

    We show that solar axion conversion to photons in the Earth's magnetosphere can produce an x-ray flux, with average energy omega approximately 4 keV, which is measurable on the dark side of the Earth. The smallness of the Earth's magnetic field is compensated by a large magnetized volume. For axion masses m(a) less, similar10(-4) eV, a low-Earth-orbit x-ray detector with an effective area of 10(4) cm(2), pointed at the solar core, can probe the photon-axion coupling down to 10(-11) GeV-1, in 1 yr. Thus, the sensitivity of this new approach will be an order of magnitude beyond current laboratory limits.

  7. Electric and magnetic energy at axion haloscopes

    NASA Astrophysics Data System (ADS)

    Ko, B. R.; Themann, H.; Jang, W.; Choi, J.; Kim, D.; Lee, M. J.; Lee, J.; Won, E.; Semertzidis, Y. K.

    2016-12-01

    We review the electro-magnetic energy at axion haloscopes and find that the electric and the corresponding magnetic energy stored in the cavity modes or, equivalently, the mode dependent electric and magnetic form factors are the same regardless of the position of the cavity inside the solenoid. Furthermore, we extend our argument to the cases satisfying ∇→×B→external=0 , where B→external is a static magnetic field provided by a magnet at an axion haloscope. Two typical magnets, solenoidal and toroidal, satisfy ∇→×B→external=0 ; thus, the electric and the corresponding magnetic energy stored in the cavity modes are always the same in both cases. The energy, however, is independent of the position of the cavity in axion haloscopes with a solenoid, and depends on those with a toroidal magnet.

  8. Cosmological perturbations of axion with a dynamical decay constant

    SciTech Connect

    Kobayashi, Takeshi; Takahashi, Fuminobu

    2016-08-25

    A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the number of degenerate vacua along the axion potential.

  9. CAST constraints on the axion-electron coupling

    DOE PAGES

    None, None

    2013-05-09

    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio- recombination, the “BCA processes.” Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling gae and axion-photon interaction strength gaγ using the CAST phase-I data (vacuum phase). For ma ≲ 10 meV/c2 we find gaγ gae < 8.1 × 10–23 GeV–1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellarmore » energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.« less

  10. Axion excursions of the landscape during inflation

    NASA Astrophysics Data System (ADS)

    Palma, Gonzalo A.; Riquelme, Walter

    2017-07-01

    Because of their quantum fluctuations, axion fields had a chance to experience field excursions traversing many minima of their potentials during inflation. We study this situation by analyzing the dynamics of an axion field ψ , present during inflation, with a periodic potential given by v (ψ )=Λ4[1 -cos (ψ /f )]. By assuming that the vacuum expectation value of the field is stabilized at one of its minima, say, ψ =0 , we compute every n -point correlation function of ψ up to first order in Λ4 using the in-in formalism. This computation allows us to identify the distribution function describing the probability of measuring ψ at a particular amplitude during inflation. Because ψ is able to tunnel between the barriers of the potential, we find that the probability distribution function consists of a non-Gaussian multimodal distribution such that the probability of measuring ψ at a minimum of v (ψ ) different from ψ =0 increases with time. As a result, at the end of inflation, different patches of the Universe are characterized by different values of the axion field amplitude, leading to important cosmological phenomenology: (a) Isocurvature fluctuations induced by the axion at the end of inflation could be highly non-Gaussian. (b) If the axion defines the strength of standard model couplings, then one is led to a concrete realization of the multiverse. (c) If the axion corresponds to dark matter, one is led to the possibility that, within our observable Universe, dark matter started with a nontrivial initial condition, implying novel signatures for future surveys.

  11. The Ubiquitous SQUID: From Axions to Cancer

    NASA Astrophysics Data System (ADS)

    Clarke, John

    2011-03-01

    I briefly review the principles, practical implementation and applications of the dc SQUID (Superconducting QUantum Interference Device), an ultrasensitive detector of magnetic flux. Cosmological observations show that a major constituent of the universe is cold dark matter (CDM). A candidate particle for CDM is the axion which, in the presence of a magnetic field, is predicted to decay into a photon with energy given by the axion mass, ranging from 0.001 to 1 meV. The axion detector constructed at LLNL consists of a cooled, tunable cavity surrounded by a 7-T superconducting magnet. Photons from the axion decay would be detected by a cooled semiconductor amplifier. To search for the axion over an octave of frequency, however, would take two centuries. Now at the University of Washington, Seattle the axion detector will be upgraded by cooling it to 50 mK and installing a near-quantum limited SQUID amplifier. The scan time will be reduced by three orders of magnitude to a few months. In medical physics, we use an ultralow-field magnetic resonance imaging (ULFMRI) system with SQUID detection to obtain images in a magnetic field of 0.132 mT, four orders of magnitude lower than in conventional MRI. An advantage of low fields is that different types of tissue exhibit much greater contrast in the relaxation time T1 than in high fields. We have measured T1 in ex vivo specimens of surgically removed healthy and malignant prostate tissue. The percentage of tumor in each specimen is determined with pathology. The MRI contrast between two specimens from a given patient scales with the difference in the percentage of tumor; in healthy tissue T1 is typically 50 percent higher than in a tumor. These results suggest that ULFMRI with T1-weighted contrast may have clinical applications to imaging prostate cancer and potentially other types of cancer. Supported by DOE BES and HEP, and NIH

  12. Holographic Lifshitz superconductors with an axion field

    NASA Astrophysics Data System (ADS)

    Tallarita, Gianni

    2014-05-01

    We use a Yang-Mills field coupled to an axion as probes of a black hole with arbitrary Lifshitz scaling to investigate, via holography, superconducting phase transitions of the dual theory with a ⟨px+ipy⟩ condensate. In the relativistic case with no axion, this phase is known to be unstable, the stable phase corresponding to condensates of the ⟨px⟩ form. We investigate this stability in theories with nonrelativistic scaling. Finally we numerically compute the "Hall" conductivity of these black holes in the nonsuperconducting phase as a function of their Lifshitz scaling.

  13. Axionic band structure of the cosmological constant

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.

    2016-01-01

    We argue that theories with multiple axions generically contain a large number of vacua that can account for the smallness of the cosmological constant. In a theory with N axions, the dominant instantons with charges 풬 determine the discrete symmetry of vacua. Subleading instantons break the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of distinct vacua is given by √{det (풬⊤풬 ) }∝eN. Our construction motivates the existence of a landscape with a vast number of vacua in a large class of four-dimensional effective theories.

  14. Cavity Microwave Searches for Cosmological Axions

    SciTech Connect

    Carosi, G; van Bibber, K

    2007-01-22

    This chapter will cover the search for dark matter axions based on microwave cavity experiments proposed by Pierre Sikivie. We will start with a brief overview of halo dark matter and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described as well as practical considerations in optimizing the experiment as a signal-to-noise problem. A major focus of this chapter will be the two complementary strategies for ultra-low noise detection of the microwave photons--the 'photon-as-wave' approach (i.e. conventional heterojunction amplifiers and soon to be quantum-limited SQUID devices), and 'photon-as-particle' (i.e. Rydberg-atom single-quantum detection). Experimental results will be presented; these experiments have already reached well into the range of sensitivity to exclude plausible axion models, for limited ranges of mass. The section will conclude with a discussion of future plans and challenges for the microwave cavity experiment.

  15. Axion models with high scale inflation

    NASA Astrophysics Data System (ADS)

    Moroi, Takeo; Mukaida, Kyohei; Nakayama, Kazunori; Takimoto, Masahiro

    2014-11-01

    We revisit the cosmological aspects of axion models. In the high-scale inflation scenario, the Peccei-Quinn (PQ) symmetry is likely to be restored during/after inflation. If the curvature of the PQ scalar potential at the origin is smaller than its vacuum expectation value; for instance in a class of SUSY axion models, thermal inflation happens before the radial component of the PQ scalar (saxion) relaxes into the global minimum of the potential and the decay of saxion coherent oscillation would produce too much axion dark radiation. In this paper, we study how to avoid the overproduction of axion dark radiation with some concrete examples. We show that, by taking account of the finite-temperature dissipation effect appropriately, the overproduction constraint can be relaxed since the PQ scalar can take part in the thermal plasma again even after the PQ phase transition. We also show that it can be further relaxed owing to the late time decay of another heavy CP-odd scalar, if it is present.

  16. The pooltable analogy to axion physics

    SciTech Connect

    Sikivie, P.

    1996-01-01

    An imaginary character named TSP finds himself in a playroom whose floor is tilted to one side. However, the pooltable in the playroom is horizontal. TSP wonders how this can be. In doing so, he embarks upon an intellectual journey which parallels that which has been travelled during the past two decades by physicists interested in the Strong CP Problem and axion physics.

  17. Axion hot dark matter bounds after Planck

    SciTech Connect

    Archidiacono, Maria; Hannestad, Steen; Mirizzi, Alessandro; Raffelt, Georg; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk E-mail: raffelt@mpp.mpg.de

    2013-10-01

    We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limit m{sub a} < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H{sub 0} released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H{sub 0} measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m{sub a} has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H{sub 0} and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from Σ m{sub ν} < 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.

  18. Review of dark-matter axion experiments

    SciTech Connect

    van Bibber, K; Kinion, D

    2000-08-30

    We review the status of two ongoing large-scale searches for axions which may constitute the dark matter of our Milky Way halo. The experiments are based on the microwave cavity technique proposed by Sikivie, and marks a 'second-generation' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group.

  19. New confining force solution of the QCD axion domain-wall problem.

    PubMed

    Barr, S M; Kim, Jihn E

    2014-12-12

    The serious cosmological problems created by the axion-string-axion-domain-wall system in standard axion models are alleviated by positing the existence of a new confining force. The instantons of this force can generate an axion potential that erases the axion strings long before QCD effects become important, thus preventing QCD-generated axion walls from ever appearing. Axion walls generated by the new confining force would decay so early as not to contribute significantly to the energy in axion dark matter.

  20. Dynamical Axion Field in a Magnetic Topological Insulator Superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    We propose that the dynamical axion field can be realized in a magnetic topological insulator superlattice or a topological paramagnetic insulator. The magnetic fluctuations of these systems produce a pseudoscalar field which has an axionic coupling to the electromagnetic field, and thus it gives a condensed-matter realization of the axion electrodynamics. Compared to the previously proposed dynamical axion materials where a long range antiferromagnetic order is required, the systems proposed here have the advantage that only an uniform magnetization or a paramagnetic state is needed for the dynamic axion. We further propose several experiments to detect such a dynamical axion field. This work is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515.

  1. Broadband and Resonant Approaches to Axion Dark Matter Detection.

    PubMed

    Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse

    2016-09-30

    When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6}  eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.

  2. Dielectric haloscopes: sensitivity to the axion dark matter velocity

    NASA Astrophysics Data System (ADS)

    Millar, Alexander J.; Redondo, Javier; Steffen, Frank D.

    2017-10-01

    We study the effect of the axion dark matter velocity in the recently proposed dielectric haloscopes, a promising avenue to search for well-motivated high mass (40–400 μeV) axions. We describe non-zero velocity effects for axion-photon mixing in a magnetic field and for the phenomenon of photon emission from interfaces between different dielectric media. As velocity effects are only important when the haloscope is larger than about 20% of the axion de Broglie wavelength, for the planned MADMAX experiment with 80 dielectric disks the velocity dependence can safely be neglected. However, an augmented MADMAX or a second generation experiment would be directionally sensitive to the axion velocity, and thus a sensitive measure of axion astrophysics.

  3. Broadband and Resonant Approaches to Axion Dark Matter Detection

    NASA Astrophysics Data System (ADS)

    Kahn, Yonatan; Safdi, Benjamin R.; Thaler, Jesse

    2016-09-01

    When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10-14-10-6 e V . In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.

  4. An improved RF cavity search for halo axions

    NASA Astrophysics Data System (ADS)

    Yu, D. B.

    2004-10-01

    The axion is a hypothetical elementary particle and cold dark matter candidate. In this RF cavity experiment, halo axions entering a resonant cavity immersed in a static magnetic field convert into microwave photons, with the resulting photons detected by a low-noise receiver. I present new limits on the axion-to-photon coupling and local axion dark matter halo mass density from a RF cavity axion search in the axion mass range 1.9 2.3 μeV, broadening the search range to 1.9 3.3 μeV. In addition, I report first results from an improved analysis technique, which improves the experiment sensitivity by 13%. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  5. Unified models of the QCD axion and supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Harigaya, Keisuke; Leedom, Jacob M.

    2017-08-01

    Similarities between the gauge meditation of supersymmetry breaking and the QCD axion model suggest that they originate from the same dynamics. We present a class of models where supersymmetry and the Peccei-Quinn symmetry are simultaneously broken. The messengers that mediate the effects of these symmetry breakings to the Standard Model are identical. Since the axion resides in the supersymmetry breaking sector, the saxion and the axino are heavy. We show constraints on the axion decay constant and the gravitino mass.

  6. Collisions of dark matter axion stars with astrophysical sources

    DOE PAGES

    Eby, Joshua; Leembruggen, Madelyn; Leeney, Joseph; ...

    2017-04-18

    If QCD axions form a large fraction of the total mass of dark matter, then axion stars could be very abundant in galaxies. As a result, collisions with each other, and with other astrophysical bodies, can occur. We calculate the rate and analyze the consequences of three classes of collisions, those occurring between a dilute axion star and: another dilute axion star, an ordinary star, or a neutron star. In all cases we attempt to quantify the most important astrophysical uncertainties; we also pay particular attention to scenarios in which collisions lead to collapse of otherwise stable axion stars, and possible subsequent decay through number changing interactions. Collisions between two axion stars can occur with a high total rate, but the low relative velocity required for collapse to occur leads to a very low total rate of collapses. On the other hand, collisions between an axion star and an ordinary star have a large rate,more » $$\\Gamma_\\odot \\sim 3000$$ collisions/year/galaxy, and for sufficiently heavy axion stars, it is plausible that most or all such collisions lead to collapse. We identify in this case a parameter space which has a stable region and a region in which collision triggers collapse, which depend on the axion number ($N$) in the axion star, and a ratio of mass to radius cubed characterizing the ordinary star ($$M_s/R_s^3$$). Finally, we revisit the calculation of collision rates between axion stars and neutron stars, improving on previous estimates by taking cylindrical symmetry of the neutron star distribution into account. Finally, collapse and subsequent decay through collision processes, if occurring with a significant rate, can affect dark matter phenomenology and the axion star mass distribution.« less

  7. CMB probes on the correlated axion isocurvature perturbation

    SciTech Connect

    Kadota, Kenji; Gong, Jinn-Ouk; Ichiki, Kiyotomo; Matsubara, Takahiko E-mail: jinn-ouk.gong@apctp.org E-mail: taka@kmi.nagoya-u.ac.jp

    2015-03-01

    We explore the possible cosmological consequence of the gravitational coupling between the inflaton and axion-like fields. In view of the forthcoming cosmic microwave background (CMB) polarization and lensing data, we study the sensitivity of the CMB data on the cross-correlation between the curvature and axion isocurvature perturbations. Through a concrete example, we illustrate the explicit dependence of the scale dependent cross-correlation power spectrum on the axion parameters.

  8. A search for axions at a power reactor

    NASA Astrophysics Data System (ADS)

    Cavaignac, J. F.; Hoummada, A.; Koang, D. H.; Ost, B.; Vignon, B.; Wilson, R.; Declais, Y.; Girardi, G.; de Kerret, H.; Pessard, H.; Thenard, J. M.

    1983-01-01

    A search has been conducted for the axion at the Bugey reactor which is owned and operated by Electricité de France. The axion production should be proportional to the magnetic transition of np capture, and be detectable by its decay into 2γ rays. No signal was observed in this measurement. Also no axion signal was seen from a single proton magnetic transition of 97Nb. Using those two results, the axion can be excluded with a mass up to 1 MeV in the Peccei-Quinn formalism.

  9. Axions and the evolution of structure in the universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Shafi, Q.

    1983-01-01

    A cosmological scenario where axions provide the dark matter in the universe is considered. Fluctuations in the axion-field energy denisty produced by domain walls and strings cause the appearance of 'axion clumps' of masses of order 10 to the 6th solar masses which most likely collapse to black holes by or at the time that the universe becomes axion dominated at T approximately 10 eV. These objects form the building blocks for the clustering hierarchy theory of galaxy and supercluster formation on scales up to about 10 Mpc and 10 to the 15th solar masses.

  10. Limits to the radiative decay of the axion

    NASA Technical Reports Server (NTRS)

    Ressell, M. Ted

    1991-01-01

    An axion with a mass greater than 1 eV should be detectable through its decay into two photons. The astrophysical and cosmological limits which define a small window of allowed axion mass above 3 eV are discussed. A firm upper bound to the axion's mass of M(sub a) less than or equal to 8 eV is derived by considering the effect of decaying axions upon the diffuse extragalactic background radiation and the brightness of the night sky due to axions in the halo of the Milky Way galaxy. The intergalactic light of clusters of galaxies is shown to be an ideal place to search for an emission line arising from the radiative decay of axions. An unsuccessful search for this emission line in three clusters of galaxies is then detailed. Limits to the presence of any intracluster line emission are derived with the result that axions with masses between 3 and 8 eV are excluded by the data, effectively closing this window of axion mass, unless a severe cancellation of axionic decay amplitudes occurs. The intracluster flux limits are then used to constrain the amplitude of any such model dependence.

  11. Axion cold dark matter in view of BICEP2 results.

    PubMed

    Gondolo, Paolo; Visinelli, Luca

    2014-07-04

    The properties of axions that constitute 100% of cold dark matter (CDM) depend on the tensor-to-scalar ratio r at the end of inflation. If r=0.20(-0.05)(+0.07) as reported by the BICEP2 Collaboration, then "half" of the CDM axion parameter space is ruled out. Namely, in the context of single-field slow-roll inflation, for axions to be 100% of the CDM, the Peccei-Quinn symmetry must be broken after the end of inflation, so that axion nonadiabatic primordial fluctuations are compatible with observational constraints. The cosmic axion density is then independent of the tensor-to-scalar ratio r, and the axion mass is expected to be in a narrow range that, however, depends on the cosmological model before primordial nucleosynthesis. In the standard Lambda CDM cosmology, the CDM axion mass range is ma=(71±2  μeV)(αdec+1)6/7, where αdec is the fractional contribution to the cosmic axion density from decays of axionic strings and walls.

  12. Axions and the evolution of structure in the universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Shafi, Q.

    1983-01-01

    A cosmological scenario where axions provide the dark matter in the universe is considered. Fluctuations in the axion-field energy denisty produced by domain walls and strings cause the appearance of 'axion clumps' of masses of order 10 to the 6th solar masses which most likely collapse to black holes by or at the time that the universe becomes axion dominated at T approximately 10 eV. These objects form the building blocks for the clustering hierarchy theory of galaxy and supercluster formation on scales up to about 10 Mpc and 10 to the 15th solar masses.

  13. The evolution of structure in the universe from axions

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Shafi, Q.

    1982-01-01

    A scenario where axions provide the dark matter in the universe is considered. Fluctuations in the axion field density produced by domain walls and strings cause the appearance of axion clumps of masses of order 10 to the 6th power solar mass which most likely collapse to black holes by or at the time that the universe becomes axion dominated at T is approximately 10 eV. These objects form the building blocks for a clustering hierarchy theory of galaxy and supercluster formation on scales up to approximately 10 Mpc and approximately 10 to the 15th power solar mass.

  14. On the possibility of large axion moduli spaces

    SciTech Connect

    Rudelius, Tom

    2015-04-01

    We study the diameters of axion moduli spaces, focusing primarily on type IIB compactifications on Calabi-Yau three-folds. In this case, we derive a stringent bound on the diameter in the large volume region of parameter space for Calabi-Yaus with simplicial Kähler cone. This bound can be violated by Calabi-Yaus with non-simplicial Kähler cones, but additional contributions are introduced to the effective action which can restrict the field range accessible to the axions. We perform a statistical analysis of simulated moduli spaces, finding in all cases that these additional contributions restrict the diameter so that these moduli spaces are no more likely to yield successful inflation than those with simplicial Kähler cone or with far fewer axions. Further heuristic arguments for axions in other corners of the duality web suggest that the difficulty observed in [1] of finding an axion decay constant parametrically larger than M{sub p} applies not only to individual axions, but to the diagonals of axion moduli space as well. This observation is shown to follow from the weak gravity conjecture of [2], so it likely applies not only to axions in string theory, but also to axions in any consistent theory of quantum gravity.

  15. On the possibility of large axion moduli spaces

    SciTech Connect

    Rudelius, Tom

    2015-04-28

    We study the diameters of axion moduli spaces, focusing primarily on type IIB compactifications on Calabi-Yau three-folds. In this case, we derive a stringent bound on the diameter in the large volume region of parameter space for Calabi-Yaus with simplicial Kähler cone. This bound can be violated by Calabi-Yaus with non-simplicial Kähler cones, but additional contributions are introduced to the effective action which can restrict the field range accessible to the axions. We perform a statistical analysis of simulated moduli spaces, finding in all cases that these additional contributions restrict the diameter so that these moduli spaces are no more likely to yield successful inflation than those with simplicial Kähler cone or with far fewer axions. Further heuristic arguments for axions in other corners of the duality web suggest that the difficulty observed in http://dx.doi.org/10.1088/1475-7516/2003/06/001 of finding an axion decay constant parametrically larger than M{sub p} applies not only to individual axions, but to the diagonals of axion moduli space as well. This observation is shown to follow from the weak gravity conjecture of http://dx.doi.org/10.1088/1126-6708/2007/06/060, so it likely applies not only to axions in string theory, but also to axions in any consistent theory of quantum gravity.

  16. Axion dark matter from topological defects

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Saikawa, Ken'ichi; Sekiguchi, Toyokazu

    2015-03-01

    The cosmological scenario where the Peccei-Quinn symmetry is broken after inflation is investigated. In this scenario, topological defects such as strings and domain walls produce a large number of axions, which contribute to the cold dark matter of the Universe. The previous estimations of the cold dark matter abundance are updated and refined based on the field-theoretic simulations with improved grid sizes. The possible uncertainties originated in the numerical calculations are also discussed. It is found that axions can be responsible for the cold dark matter in the mass range ma=(0.9 - 1.4 )×1 0-4 eV for the models with the domain wall number NDW=1 , and ma≈O (1 0-4- 1 0-2) eV with a mild tuning of parameters for the models with NDW>1 . Such higher mass ranges can be probed in future experimental studies.

  17. Mixed axion-wino dark matter

    NASA Astrophysics Data System (ADS)

    Bae, Kyu; Baer, Howard; Lessa, Andre; Serce, Hasan

    2015-07-01

    A variety of supersymmetric models give rise to a split mass spectrum characterized by very heavy scalars but sub-TeV gauginos, usually with a wino-like LSP. Such models predict a thermally-produced underabundance of wino-like WIMP dark matter so that non-thermal DM production mechanisms are necessary. We examine the case where theories with a wino-like LSP are augmented by a Peccei-Quinn sector including an axion-axino-saxion supermultiplet in either the SUSY KSVZ or SUSY DFSZ models and with/without saxion decays to axions/axinos. We show allowed ranges of PQ breaking scale f_a for various cases which are generated by solving the necessary coupled Boltzmann equations. We also present results for a model with radiatively-driven naturalness but with a wino-like LSP.

  18. Massive neutrinos and invisible axion minimally connected

    NASA Astrophysics Data System (ADS)

    Bertolini, Stefano; Di Luzio, Luca; Kolešová, Helena; Malinský, Michal

    2015-03-01

    We survey a few minimal scalar extensions of the standard electroweak model that provide a simple setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U (1 ) à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical solution to the strong C P problem and an axion as a dark matter candidate. We paradigmatically apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino oscillations where the neutrino masses arise at one and two loops, respectively. We comment on the naturalness of the effective setups as well as on their implications for vacuum stability and electroweak baryogenesis.

  19. Large Non-Gaussianity in Axion Inflation

    SciTech Connect

    Barnaby, Neil; Peloso, Marco

    2011-05-06

    The inflationary paradigm has enjoyed phenomenological success; however, a compelling particle physics realization is still lacking. Axions are among the best-motivated inflaton candidates, since the flatness of their potential is naturally protected by a shift symmetry. We reconsider the cosmological perturbations in axion inflation, consistently accounting for the coupling to gauge fields c{phi}FF-tilde, which is generically present in these models. This coupling leads to production of gauge quanta, which provide a new source of inflaton fluctuations, {delta}{phi}. For c > or approx. 10{sup 2}M{sub p}{sup -1}, these dominate over the vacuum fluctuations, and non-Gaussianity exceeds the current observational bound. This regime is typical for concrete realizations that admit a UV completion; hence, large non-Gaussianity is easily obtained in minimal and natural realizations of inflation.

  20. Curvaton and QCD axion in supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Chun, Eung Jin; Dimopoulos, Konstantinos; Lyth, David H.

    2004-11-01

    A pseudo-Nambu-Goldstone boson as curvaton avoids the η problem of inflation which plagues most curvaton candidates. We point out that a concrete realization of the curvaton mechanism with a pseudo-Nambu-Goldstone boson can be found in the supersymmetric Peccei-Quinn mechanism resolving the strong CP problem. In the flaton models of Peccei-Quinn symmetry breaking, the angular degree of freedom associated with the QCD axion can naturally be a flat direction during inflation and provides successful curvature perturbations. In this scheme, the preferred values of the axion scale and the Hubble parameter during inflation turn out to be about 1010 and 1012 GeV, respectively. Moreover, it is found that a significant isocurvature component, (anti)correlated to the overall curvature perturbation, can be generated, which is a smoking gun for the curvaton scenario. Finally, non-Gaussianity in the perturbation spectrum at a potentially observable level is also possible.

  1. PBH dark matter from axion inflation

    NASA Astrophysics Data System (ADS)

    Domcke, Valerie; Muia, Francesco; Pieroni, Mauro; Witkowski, Lukas T.

    2017-07-01

    Protected by an approximate shift symmetry, axions are well motivated candidates for driving cosmic inflation. Their generic coupling to the Chern-Simons term of any gauge theory gives rise to a wide range of potentially observable signatures, including equilateral non-Gaussianites in the CMB, chiral gravitational waves in the range of direct gravitational wave detectors and primordial black holes (PBHs). In this paper we revisit these predictions for axion inflation models non-minimally coupled to gravity. Contrary to the case of minimally coupled models which typically predict scale-invariant mass distributions for the generated PBHs at small scales, we demonstrate how broadly peaked PBH spectra naturally arises in this setup. For specific parameter values, all of dark matter can be accounted for by PBHs.

  2. Black hole mergers and the QCD axion at Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Baryakhtar, Masha; Dimopoulos, Savas; Dubovsky, Sergei; Lasenby, Robert

    2017-02-01

    In the next few years, Advanced LIGO (aLIGO) may see gravitational waves (GWs) from thousands of black hole (BH) mergers. This marks the beginning of a new precision tool for physics. Here we show how to search for new physics beyond the standard model using this tool, in particular the QCD axion in the mass range μa˜10-14 to 10-10 eV . Axions (or any bosons) in this mass range cause rapidly rotating BHs to shed their spin into a large cloud of axions in atomic Bohr orbits around the BH, through the effect of superradiance (SR). This results in a gap in the mass vs spin distribution of BHs when the BH size is comparable to the axion's Compton wavelength. By measuring the spin and mass of the merging objects observed at LIGO, we could verify the presence and shape of the gap in the BH distribution produced by the axion. The axion cloud can also be discovered through the GWs it radiates via axion annihilations or level transitions. A blind monochromatic GW search may reveal up to 1 05 BHs radiating through axion annihilations, at distinct frequencies within ˜3 % of 2 μa . Axion transitions probe heavier axions and may be observable in future GW observatories. The merger events are perfect candidates for a targeted GW search. If the final BH has high spin, a SR cloud may grow and emit monochromatic GWs from axion annihilations. We may observe the SR evolution in real time.

  3. Multiverse dark matter: SUSY or axions

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio

    2014-11-01

    The observed values of the cosmological constant and the abundance of Dark Matter (DM) can be successfully understood, using certain measures, by imposing the anthropic requirement that density perturbations go non-linear and virialize to form halos. This requires a probability distribution favoring low amounts of DM, i.e. low values of the PQ scale f for the QCD axion and low values of the superpartner mass scale for LSP thermal relics. In theories with independent scanning of multiple DM components, there is a high probability for DM to be dominated by a single component. For example, with independent scanning of f and , TeV-scale LSP DM and an axion solution to the strong CP problem are unlikely to coexist. With thermal LSP DM, the scheme allows an understanding of a Little SUSY Hierarchy with multi-TeV superpartners. Alternatively, with axion DM, PQ breaking before (after) inflation leads to f typically below (below) the projected range of the current ADMX experiment of f = (3 - 30) × 1011 GeV, providing strong motivation to develop experimental techniques for probing lower f.

  4. Axion detection via topological Casimir effect

    NASA Astrophysics Data System (ADS)

    Cao, ChunJun; Zhitnitsky, Ariel

    2017-07-01

    We propose a new table-top experimental configuration for the direct detection of dark matter QCD axions in the traditional open mass window 10-6 eV ≲ma≲10-2 eV using nonperturbative effects in a system with nontrivial spatial topology. Different from most experimental setups found in literature on direct dark matter axion detection, which relies on θ ˙ or ∇ → θ , we found that our system is in principle sensitive to a static θ ≥10-14 and can also be used to set limit on the fundamental constant θQED which becomes the fundamental observable parameter of the Maxwell system if some conditions are met. Furthermore, the proposed experiments can probe entire open mass window 10-6 eV ≲ma≲10-2 eV with the same design, which should be contrasted with conventional cavity-type experiments being sensitive to a specific axion mass. Connection with Witten effect when the induced electric charge e' is proportional to θ and the magnetic monopole becomes the dyon with nonvanishing e'=-e θ/2 π is also discussed.

  5. Cosmological properties of a gauged axion

    SciTech Connect

    Coriano, Claudio; Mariano, Antonio; Guzzi, Marco; Lazarides, George

    2010-09-15

    We analyze the most salient cosmological features of axions in extensions of the standard model with a gauged anomalous extra U(1) symmetry. The model is built by imposing the constraint of gauge invariance in the anomalous effective action, which is extended with Wess-Zumino counterterms. These generate axionlike interactions of the axions to the gauge fields and a gauged shift symmetry. The scalar sector is assumed to acquire a nonperturbative potential after inflation, at the electroweak phase transition, which induces a mixing of the Stueckelberg field of the model with the scalars of the electroweak sector, and at the QCD phase transition. We discuss the possible mechanisms of sequential misalignments which could affect the axions of these models, and generated, in this case, at both transitions. We compute the contribution of these particles to dark matter, quantifying their relic densities as a function of the Stueckelberg mass. We also show that models with a single anomalous U(1) in general do not account for the dark energy, due to the presence of mixed U(1)-SU(3) anomalies.

  6. Search For Hadronic Axions Emitted From The Sun

    SciTech Connect

    Ljubicic, A.; Kekez, D.; Krecak, Z.

    2007-10-26

    We made a search for hadronic axions, which could be emitted from the Sun in the axiobremsstrahlung process and absorbed in the HPGe detector by axioelectric effect. An upper limit on hadronic axion mass of 100 eV is obtained at the 95% confidence level.

  7. 3D lumped LC resonators as low mass axion haloscopes

    NASA Astrophysics Data System (ADS)

    McAllister, Ben T.; Parker, Stephen R.; Tobar, Michael E.

    2016-08-01

    The axion is a hypothetical particle considered to be the most economical solution to the strong C P problem. It can also be formulated as a compelling component of dark matter. The haloscope, a leading axion detection scheme, relies on the conversion of galactic halo axions into real photons inside a resonant cavity structure in the presence of a static magnetic field, where the generated photon frequency corresponds to the mass of the axion. For maximum sensitivity it is key that the central frequency of the cavity mode structure coincides with the frequency of the generated photon. As the mass of the axion is unknown, it is necessary to perform searches over a wide range of frequencies. Currently there are substantial regions of the promising preinflationary low-mass axion range without any viable proposals for experimental searches. We show that three-dimensional resonant LC circuits with separated magnetic and electric fields, commonly known as reentrant cavities, can be sensitive dark matter haloscopes in this region, with frequencies inherently lower than those achievable in the equivalent size of empty resonant cavity. We calculate the sensitivity and accessible axion mass range of these experiments, designing geometries to exploit and maximize the separated magnetic and electric coupling of the axion to the cavity mode.

  8. Future cosmological sensitivity for hot dark matter axions

    SciTech Connect

    Archidiacono, Maria; Basse, Tobias; Hannestad, Steen; Hamann, Jan; Raffelt, Georg; Wong, Yvonne Y.Y. E-mail: tb06@phys.au.dk E-mail: sth@phys.au.dk E-mail: yvonne.y.wong@unsw.edu.au

    2015-05-01

    We study the potential of a future, large-volume photometric survey to constrain the axion mass m{sub a} in the hot dark matter limit. Future surveys such as EUCLID will have significantly more constraining power than current observations for hot dark matter. Nonetheless, the lowest accessible axion masses are limited by the fact that axions lighter than ∼ 0.15 eV decouple before the QCD epoch, assumed here to occur at a temperature T{sub QCD} ∼ 170 MeV; this leaves an axion population of such low density that its late-time cosmological impact is negligible. For larger axion masses, m{sub a} ∼> 0.15 eV, where axions remain in equilibrium until after the QCD phase transition, we find that a EUCLID-like survey combined with Planck CMB data can detect m{sub a} at very high significance. Our conclusions are robust against assumptions about prior knowledge of the neutrino mass. Given that the proposed IAXO solar axion search is sensitive to m{sub a}∼<0.2 eV, the axion mass range probed by cosmology is nicely complementary.

  9. Searching for low mass axions with an LC-circuit

    NASA Astrophysics Data System (ADS)

    Crisosto, N.; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; ADMX Collaboration

    2016-03-01

    Axions are a promising cold dark matter candidate. Axion haloscopes such as ADMX, which use the conversion of axions to photons in the presence of a magnetic field, are used to search for axions which decay into microwave photons. To search for lighter, low frequency axions in the unexplored sub 107 eV (50 MHz) range a tunable LC circuit has been proposed. Progress in the development of such an LC circuit based search will be presented. The use of both electrical and mechanical tuning mechanisms will be included. Supported by DOE Grants DE-SC0010280, DE-FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, and the Livermore LDRD program.

  10. Prospects for axion detection in natural SUSY with mixed axion-higgsino dark matter: back to invisible?

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan

    2017-06-01

    Under the expectation that nature is natural, we extend the Standard Model to include SUSY to stabilize the electroweak sector and PQ symmetry to stabilize the QCD sector. Then natural SUSY arises from a Kim-Nilles solution to the SUSY μ problem which allows for a little hierarchy where μ~ fa2/MP~ 100-300 GeV while the SUSY particle mass scale mSUSY~ 1-10 TeV gg μ. Dark matter then consists of two particles: a higgsino-like WIMP and a SUSY DFSZ axion. The range of allowed axion mass values ma depends on the mixed axion-higgsino relic density. The range of ma is actually restricted in this case by limits on WIMPs from direct and indirect detection experiments. We plot the expected axion detection rate at microwave cavity experiments. The axion-photon-photon coupling is severely diminished by charged higgsino contributions to the anomalous coupling. In this case, the axion may retreat, at least temporarily, back into the regime of near invisibility. From our results, we urge new ideas for techniques which probe both deeper and more broadly into axion coupling versus axion mass parameter space.

  11. A Radio Astronomy Search for Cold Dark Matter Axions

    NASA Astrophysics Data System (ADS)

    Kelley, Katharine; Quinn, P. J.

    2017-08-01

    The search for axions has gained ground in recent years, with laboratory searches for cold dark matter (CDM) axions, relativistic solar axions, and ultra-light axions as the subject of extensive literature. In particular, the interest in axions as CDM candidates has been motivated by their potential to account for all of the inferred values of {{{Ω }}}{DM}˜ 0.26 in the standard {{Λ }}{CDM} model. Indeed, the value of {{{Ω }}}{DM}˜ 0.26 could be provided by a light axion. We investigate the possibility of complementing existing axion search experiments with radio telescope observations in an attempt to detect axion conversion in astrophysical magnetic fields. Searching for a CDM axion signal from a large-scale astrophysical environment provides new challenges, with the magnetic field structure playing a crucial role in both the rate of interaction and the properties of the observed photon. However, with a predicted frequency in the radio band (200 MHz-200 GHz) and a distinguishable spectral profile, next-generation radio telescopes may offer new opportunities for detection. The SKA-mid telescope has a planned frequency range of 0.4-13.8 GHz with optimal sensitivity in the range of ˜2-7 GHz. Considering observations at ˜500 MHz, the limiting sensitivity is expected to be ˜0.04 mK based on a 24 hr integration time. This compares with a predicted CDM axion all-sky signal temperature of ˜0.04 mK using SKA Phase 1 telescopes and up to ˜1.17 mK using a collecting area of (1 km)2 as planned for Phase 2.

  12. Constraints on the axion-electron coupling for solar axions produced by a Compton process and bremsstrahlung

    SciTech Connect

    Derbin, A. V.; Kayunov, A. S.; Muratova, V. V.; Semenov, D. A.; Unzhakov, E. V.

    2011-01-15

    The search for solar axions produced by Compton ({gamma}+e{sup -}{yields}e{sup -}+A) and bremsstrahlunglike (e{sup -}+Z{yields}Z+e{sup -}+A) processes has been performed. The axion flux in both cases depends on the axion-electron coupling constant. The resonant excitation of the low-lying nuclear level of {sup 169}Tm was looked for: A+{sup 169}Tm{yields}{sup 169}Tm{sup *}{yields}{sup 169}Tm+{gamma} (8.41 keV). The Si(Li) detector and {sup 169}Tm target installed inside the low-background setup were used to detect 8.41 keV {gamma} rays. As a result, a new model-independent restriction on the axion-electron and the axion-nucleon couplings was obtained: g{sub Ae}x|g{sub AN}{sup 0}+g{sub AN}{sup 3}|{<=}2.1x10{sup -14}. In the model of the hadronic axion this restriction corresponds to the upper limit on the axion-electron coupling and on the axion mass g{sub Ae}xm{sub A{<=}}3.1x10{sup -7} eV (90% C.L.). The limits on the axion mass are m{sub A{<=}}105 eV and m{sub A{<=}}1.3 keV for the Dine-Fischler-Srednicki-Zhitnitskii- and Kim-Shifman-Vainstein-Zakharov-axion models, correspondingly (90% C.L.).

  13. Mixed axion/neutralino dark matter in the SUSY DFSZ axion model

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Chun, Eung Jin E-mail: baer@nhn.ou.edu

    2013-12-01

    We examine mixed axion/neutralino cold dark matter production in the SUSY DFSZ axion model where an axion superfield couples to Higgs superfields. We calculate a wide array of axino and saxion decay modes along with their decay temperatures, and thermal and non-thermal production rates. For a SUSY benchmark model with a standard underabundance (SUA) of Higgsino-like dark matter (DM), we find for the PQ scale f{sub a}∼<10{sup 12} GeV that the DM abundance is mainly comprised of axions as the saxion/axino decay occurs before the standard neutralino freeze-out and thus its abundance remains suppressed. For 10{sup 12}∼10{sup 14} GeV, both neutralino dark matter and dark radiation are typically overproduced. For judicious parameter choices, these can be suppressed and the combined neutralino/axion abundance brought into accord with measured values. A SUSY benchmark model with a standard overabundance (SOA) of bino DM is also examined and typically remains excluded due at least to too great a neutralino DM abundance for f{sub a}∼<10{sup 15} GeV. For f{sub a}∼>10{sup 15} GeV and lower saxion masses, large entropy production from saxion decay can dilute all relics and the SOA model can be allowed by all constraints.

  14. Bounds on hadronic axions from stellar evolution

    NASA Astrophysics Data System (ADS)

    Raffelt, Georg G.; Dearborn, David S. P.

    1987-10-01

    We consider in detail the effect of the emission of ``hadronic'' invisible axions (which do not couple to electrons) from the interior of stars on stellar evolution. To this end we calculate plasma emission rates for axions due to the Primakoff process for the full range of conditions encountered in a giant star. Much attention is paid to plasma, degeneracy, and screening effects. We reconsider the solar bound by evolving a 1.0 Msolar star to solar age and lowering the presolar helium abundance so as to obtain the correct present-day luminosity of the Sun. The previous bound on the axion-photon coupling of G9<~2.5 (corresponding to ma<~17 eV R where R is a model-dependent factor of order unity) is confirmed, where G9 is the coupling constant G in units of 10-9 GeV-1. We then follow the evolution of a 1.3Msolar star from zero age to the top of the giant branch. Helium ignites for all values of G consistent with the solar bound; however, the core mass, surface temperature, and luminosity at the helium flash exceed the standard values. The luminosity at the helium flash is larger than about twice the standard value unless G9<~0.3 (corresponding to ma<~2 eV R), in conflict with observational data, which are statistically weak, however. We find our most stringent limits from the helium-burning lifetime. In the absence of axion cooling we calculate a lifetime of 1.2×108 yr which corresponds well with the value 1.5×108 yr derived from the number of red giants in the ``clump'' of the open cluster M67 and with the value 1.3×108 yr derived from the number of such stars in the old galactic disk population. We obtain a conservative limit of G9<0.3 which, at saturation, results in a helium-burning lifetime an order of magnitude low. We believe that G9<~0.1 (ma<~0.7 eV R) is a reasonably safe limit which, if saturated, leads to a calculated helium-burning lifetime a factor of 2 below the observed value. Our results exclude the recently suggested possibility of detecting

  15. CAST constraints on the axion-electron coupling

    SciTech Connect

    None, None

    2013-05-09

    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio- recombination, the “BCA processes.” Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling gae and axion-photon interaction strength g using the CAST phase-I data (vacuum phase). For ma ≲ 10 meV/c2 we find gaγ gae < 8.1 × 10–23 GeV–1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.

  16. CAST constraints on the axion-electron coupling

    SciTech Connect

    Barth, K.; Davenport, M.; Lella, L. Di; Belov, A.; Beltran, B.; Carmona, J.M.; Dafni, T.; Galan, J.; García, J.A.; Braeuninger, H.; Englhauser, J.; Friedrich, P.; Collar, J.I.; Eleftheriadis, C.; Fanourakis, G.; Geralis, T.; Ferrer-Ribas, E.; Giomataris, I.; Fischer, H.; Franz, J. E-mail: Julia.Vogel@cern.ch; and others

    2013-05-01

    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio-recombination, the ''BCA processes.'' Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g{sub ae} and axion-photon interaction strength g{sub aγ} using the CAST phase-I data (vacuum phase). For m{sub a}∼<10 meV/c{sup 2} we find g{sub aγ} g{sub ae} < 8.1 × 10{sup −23} GeV{sup −1} at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.

  17. Constraints on axions from the extragalactic background light

    NASA Technical Reports Server (NTRS)

    Overduin, J. M.; Wesson, P. S.

    1993-01-01

    We consider the effect of dark matter in the form of multi-eV axions on the extragalactic background light. Our treatment differs from that of other workers in that we assume axions to be clustered in Galactic halos, with nonzero velocity dispersions. We also approach the problem in a fully general relativistic manner, treating the axion halos as luminous elements of a pressure-free perfect fluid in a standard Friedmann-Robertson-Walker universe. We find that the ultraviolet extragalactic background light places a firm upper limit of 9 eV on the axion rest energy, and that this drops to 4 eV for the simplest axion models, all but closing the multi-eV axion window (which begins at 3 eV). These results are close to earlier upper limits of 5 and 8 eV derived from the extragalactic background by Turner and Ressell, respectively. Although our methods differ somewhat from theirs, our findings support their conclusion that axions, if they exist, are likely to have rest energies well below the eV range.

  18. Constraints on axions from π0 --> e+e- decay

    NASA Astrophysics Data System (ADS)

    Massó, Eduard

    1986-12-01

    The contribution of axions to π0 --> e+e- decay is considered. It is found that a recently proposed short-lived axion with a mass of 1.8 MeV induces a decay rate inconsistent with experimental observations. More generally, upper limits are placed on the mass of an axion that couples to first-generations fermions. On leave of absence from Department de Física Teòrica, Universitat Autònoma de Barcelona, Bellaterra, Spain.

  19. Dilution of axion dark radiation by thermal inflation

    NASA Astrophysics Data System (ADS)

    Hattori, Hironori; Kobayashi, Tatsuo; Omoto, Naoya; Seto, Osamu

    2015-07-01

    Axions in the Peccei-Quinn (PQ) mechanism provide a promising solution to the strong C P problem in the standard model of particle physics. Coherently generated PQ scalar fields could dominate the energy density in the early Universe and decay into relativistic axions, which would conflict with the current dark radiation constraints. We study the possibility that a thermal inflation driven by a U (1 ) gauged Higgs field dilutes such axions. A well-motivated extra gauged U (1 ) would be the local B -L symmetry. We also discuss the implication for the case of U (1 )B-L and an available baryogenesis mechanism in such cosmology.

  20. Suppressing the QCD axion abundance by hidden monopoles

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Takahashi, Fuminobu; Yamada, Masaki

    2016-02-01

    We study the Witten effect of hidden monopoles on the QCD axion dynamics, and show that its abundance as well as isocurvature perturbations can be significantly suppressed if there is a sufficient amount of hidden monopoles. When the hidden monopoles make up a significant fraction of dark matter, the Witten effect suppresses the abundance of axion with the decay constant smaller than 1012GeV. The cosmological domain wall problem of the QCD axion can also be avoided, relaxing the upper bound on the decay constant when the Peccei-Quinn symmetry is spontaneously broken after inflation.

  1. The cern axion solar telescope (CAST): an update

    NASA Astrophysics Data System (ADS)

    Andriamonje, S.; Arsov, V.; Aune, S.; Aune, T.; Avignone, F. T.; Barth, K.; Belov, A.; Beltran, B.; Bräuninger, H.; Carmona, J.; Cebrián, S.; Chesi, E.; Cipolla, G.; Collar, J.; Creswick, R.; Dafni, T.; Davenport, M.; Dedousis, S.; Delattre, M.; Delbart, A.; Deoliveira, R.; Dilella, L.; Eleftheriadis, C.; Engelhauser, J.; Fanourakis, G.; Farach, H.; Ferrer, E.; Fischer, H.; Formenti, F.; Franz, J.; Friedrich, P.; Geralis, T.; Giomataris, I.; Gninenko, S.; Golubev, N.; Hartmann, R.; Hasinoff, M.; Heinsius, F.-H.; Hoffmann, D. H. H.; Irastorza, I.; Jacoby, J.; Joux, J.-N.; Kang, D.; Königsmann, K.; Kotthaus, R.; Krcmar, M.; Kuster, M.; Lakic, B.; Lasseur, C.; Liolios, A.; Lippitsch, A.; Ljubicic, A.; Lutz, G.; Luzon, G.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; de Solorzano, A. Ortiz; Papaevangelou, T.; Placci, A.; Raffelt, G.; Rammos, P.; Robert, J. P.; Ruz, J.; Sarsa, M.; Schill, C.; Serber, W.; Semertzidis, Y.; Vieira, J.; Villar, J.; Vullierme, B.; Walckiers, L.; Zioutas, K.

    2005-01-01

    The CERN Axion Solar Telescope (CAST), a 10 meter long LHC, 9 Tesla, test magnet is mounted on a moving platform that tracks the sun about 1.5 hours during sunrise, again during sunset. It moves ±80 vertically and ±400 horizontally. It has been taking data continuously since July 10, 2003. Data analyzed thus far yield an upper bound on the photon-axion coupling constant, gaγγ ⩽ 3 × 10-10 GeV-1 for axion masses less than 5 × 10-2 eV.

  2. Electromagnetic memory effect induced by axion dark matter

    NASA Astrophysics Data System (ADS)

    Yoshida, Daiske; Soda, Jiro

    2017-09-01

    Memory effects of gravitational waves from astronomical events or a primordial universe might have the information of new physics. It is intriguing to observe that the memory effect exists in electrodynamics as a net momentum kick, while the memory effect in gravity appears as a net relative displacement. In particular, Winicour has shown that the B-mode memory, which characterizes parity-odd global distribution of memory, does not exist. We study the memory effect in axion electrodynamics and find that the B-mode memory effect can exist, provided the existence of coherently oscillating axion background field. Moreover, we examine the detectability of the axion dark matter using this effect.

  3. Calculation of axion-photon-photon coupling in string theory

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.

    2014-07-01

    The axion search experiments invite a plausible estimation of the axion-photon-photon coupling constant cbaraγγ in string models with phenomenologically acceptable visible sectors. We present the calculation of cbaraγγ with an exact Peccei-Quinn symmetry. In the Huh-Kim-Kyae Z12-I orbifold compactification, we obtain cbaraγγ =1123/388, and the low-temperature axion search experiments will probe the QCD corrected coupling, caγγ ≃cbaraγγ - 1.98 ≃ 0.91.

  4. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  5. Vacuum statistics and stability in axionic landscapes

    SciTech Connect

    Masoumi, Ali; Vilenkin, Alexander E-mail: vilenkin@cosmos.phy.tufts.edu

    2016-03-01

    We investigate vacuum statistics and stability in random axionic landscapes. For this purpose we developed an algorithm for a quick evaluation of the tunneling action, which in most cases is accurate within 10%. We find that stability of a vacuum is strongly correlated with its energy density, with lifetime rapidly growing as the energy density is decreased. On the other hand, the probability P(B) for a vacuum to have a tunneling action B greater than a given value declines as a slow power law in B. This is in sharp contrast with the studies of random quartic potentials, which found a fast exponential decline of P(B). Our results suggest that the total number of relatively stable vacua (say, with B>100) grows exponentially with the number of fields N and can get extremely large for N∼> 100. The problem with this kind of model is that the stable vacua are concentrated near the absolute minimum of the potential, so the observed value of the cosmological constant cannot be explained without fine-tuning. To address this difficulty, we consider a modification of the model, where the axions acquire a quadratic mass term, due to their mixing with 4-form fields. This results in a larger landscape with a much broader distribution of vacuum energies. The number of relatively stable vacua in such models can still be extremely large.

  6. Periodic signatures for the detection of cosmic axions

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1990-01-01

    In a Sikivie-type cosmic-axion detector, both the width and position of the microwave signal due to axion-photon conversion depend upon the motions of the earth. Due to the orbital and rotational motions of the earth they will be modulated with periods of 1 sidereal day and 1 sidereal year, with amplitudes of about 0.1 percent and 5 percent respectively. Because of the intrinsically-high energy resolution of Sikivie-type detectors such periodic variations should be detectable. Such modulations would not only aid in confirming the detection of cosmic axions, but, if found, would also provide important information about the distribution of axions in the halo.

  7. High-scale axions without isocurvature from inflationary dynamics

    NASA Astrophysics Data System (ADS)

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-01

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation HI . If the scale of Peccei-Quinn (PQ) breaking fa is greater than H/I 2 π , CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation fI require either late-time dilution of the axion abundance or highly super-Planckian fI that somehow does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow fa close to the Planck scale. Avoiding disruption of inflationary dynamics provides important limits on the parameter space.

  8. The spectral index and its running in axionic curvaton

    SciTech Connect

    Takahashi, Fuminobu

    2013-06-01

    We show that a sizable running spectral index suggested by the recent SPT data can be explained in the axionic curvaton model with a potential that consists of two sinusoidal contributions of different height and period. We find that the running spectral index is generically given by dn{sub s}/dln k ∼ 2π/ΔN (n{sub s}−1), where ΔN is the e-folds during one period of modulations. In the string axiverse, axions naturally acquire a mass from multiple contributions, and one of the axions may be responsible for the density perturbations with a sizable running spectral index via the curvaton mechanism. We note that the axionic curvaton model with modulations can also accommodate the red-tilted spectrum with a negligible running, without relying on large-field inflation.

  9. The electroweak axion, dark energy, inflation and baryonic matter

    SciTech Connect

    McLerran, L.

    2015-03-15

    In a previous paper [1], the standard model was generalized to include an electroweak axion which carries baryon plus lepton number, B + L. It was shown that such a model naturally gives the observed value of the dark energy, if the scale of explicit baryon number violation A was chosen to be of the order of the Planck mass. In this paper, we consider the effect of the modulus of the axion field. Such a field must condense in order to generate the standard Goldstone boson associated with the phase of the axion field. This condensation breaks baryon number. We argue that this modulus might be associated with inflation. If an additional B − L violating scalar is introduced with a mass similar to that of the modulus of the axion field, we argue that decays of particles associated with this field might generate an acceptable baryon asymmetry.

  10. Constraints on axion inflation from the weak gravity conjecture

    SciTech Connect

    Rudelius, Tom

    2015-09-08

    We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and ‘anti-alignment’ of C{sub 4} axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the ‘generalized’ weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C{sub 4} axions in type IIB compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.

  11. Constraints on axion inflation from the weak gravity conjecture

    SciTech Connect

    Rudelius, Tom

    2015-09-01

    We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and 'anti-alignment' of C{sub 4} axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the 'generalized' weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C{sub 4} axions in type IIB compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.

  12. Updating the axion cold dark matter energy density

    SciTech Connect

    Bae, Kyu Jung; Huh, Ji-Haeng; Kim, Jihn E E-mail: jhhuh@phya.snu.ac.kr

    2008-09-15

    We improve the estimate of the axion cold dark matter energy density by considering the new values of current quark masses, the quantum chromodynamics phase transition effect and a possible anharmonic effect.

  13. Dielectric Haloscopes: A New Way to Detect Axion Dark Matter.

    PubMed

    Caldwell, Allen; Dvali, Gia; Majorovits, Béla; Millar, Alexander; Raffelt, Georg; Redondo, Javier; Reimann, Olaf; Simon, Frank; Steffen, Frank

    2017-03-03

    We propose a new strategy to search for dark matter axions in the mass range of 40-400 μeV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10-100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1  m^{2} area contained in a 10 T field.

  14. High-scale axions without isocurvature from inflationary dynamics

    DOE PAGES

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-31

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation HI. If the scale of Peccei-Quinn (PQ) breaking fa is greater than HI/2π, CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation fI require either late-time dilution of the axion abundance or highly super-Planckian fI that somehowmore » does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow fa close to the Planck scale. Lastly, avoiding disruption of inflationary dynamics provides important limits on the parameter space.« less

  15. First results from the CERN axion solar telescope.

    PubMed

    Zioutas, K; Andriamonje, S; Arsov, V; Aune, S; Autiero, D; Avignone, F T; Barth, K; Belov, A; Beltrán, B; Bräuninger, H; Carmona, J M; Cebrián, S; Chesi, E; Collar, J I; Creswick, R; Dafni, T; Davenport, M; Di Lella, L; Eleftheriadis, C; Englhauser, J; Fanourakis, G; Farach, H; Ferrer, E; Fischer, H; Franz, J; Friedrich, P; Geralis, T; Giomataris, I; Gninenko, S; Goloubev, N; Hasinoff, M D; Heinsius, F H; Hoffmann, D H H; Irastorza, I G; Jacoby, J; Kang, D; Königsmann, K; Kotthaus, R; Krcmar, M; Kousouris, K; Kuster, M; Lakić, B; Lasseur, C; Liolios, A; Ljubicić, A; Lutz, G; Luzón, G; Miller, D W; Morales, A; Morales, J; Mutterer, M; Nikolaidis, A; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Ruz, J; Riege, H; Sarsa, M L; Savvidis, I; Serber, W; Serpico, P; Semertzidis, Y; Stewart, L; Vieira, J D; Villar, J; Walckiers, L; Zachariadou, K

    2005-04-01

    Hypothetical axionlike particles with a two-photon interaction would be produced in the sun by the Primakoff process. In a laboratory magnetic field ("axion helioscope"), they would be transformed into x-rays with energies of a few keV. Using a decommissioned Large Hadron Collider test magnet, the CERN Axion Solar Telescope ran for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling g(agamma)<1.16x10(-10) GeV-1 at 95% C.L. for m(a) less, similar 0.02 eV. This limit, assumption-free, is comparable to the limit from stellar energy-loss arguments and considerably more restrictive than any previous experiment over a broad range of axion masses.

  16. Multiple-cavity detector for axion dark matter search

    NASA Astrophysics Data System (ADS)

    Jeong, Junu; Ahn, Saebyeok; Youn, Sungwoo; Semertzidis, Yannis

    2017-01-01

    Exploring higher frequency regions in axion dark matter searches using microwave cavity detectors requires a smaller size of the cavity as the TM010 frequency scales inversely with the cavity radius. One of the intuitive ways to make a maximal use of a given magnet volume, and thereby to increase the experimental sensitivity, is to bundle multiple cavities together and combine their individual outputs ensuring phase-matching of the coherent axion signal. The Experiment of Axion Search aT CAPP (EAST-C) is a dedicated project to develop multiple-cavity systems at the Centre for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS). In this poster, the conceptual design of the phase-matching mechanism and experimental feasibility using a quadruple-cavity system will be presented.

  17. Prospects for solar axion searches with crystals via Bragg scattering

    NASA Astrophysics Data System (ADS)

    Irastorza, I. G.; Cebrián, S.; García, E.; González, D.; Morales, A.; Morales, J.; de Solórzano, A. Ortiz; Peruzzi, A.; Puimedón, J.; Sarsa, M. L.; Scopel, S.; Villar, J. A.

    2000-06-01

    A calculation of the expected signal due to Primakov coherent conversion of solar axions into photons via Bragg scattering in several solid-state detectors is presented and compared with present and future experimental sensitivities. The axion window ma >~ 0.03 eV (not accessible at present by other techniques) could be explored in the foreseeable future with crystal detectors to constrain the axion-photon coupling constant gaγγ below the latest bounds coming from helioseismology. On the contrary a positive signal in the sensitivity region of such devices would imply revisiting other more stringent astrophysical limits derived for the same range of the axion mass. The application of this technique to the COSME germanium detector which is taking data at the Canfranc Underground Laboratory leads to a 95% C.L. limit gaγγ <= 2.8 × 10-9 GeV-1

  18. Axion cosmology and the energy scale of inflation

    SciTech Connect

    Hertzberg, Mark P.; Tegmark, Max; Wilczek, Frank

    2008-10-15

    We survey observational constraints on the parameter space of inflation and axions and map out two allowed windows: the classic window and the inflationary anthropic window. The cosmology of the latter is particularly interesting; inflationary axion cosmology predicts the existence of isocurvature fluctuations in the cosmic microwave background, with an amplitude that grows with both the energy scale of inflation and the fraction of dark matter in axions. Statistical arguments favor a substantial value for the latter, and so current bounds on isocurvature fluctuations imply tight constraints on inflation. For example, an axion Peccei-Quinn scale of 10{sup 16} GeV excludes any inflation model with energy scale >3.8x10{sup 14} GeV (r>2x10{sup -9}) at 95% confidence, and so implies negligible gravitational waves from inflation, but suggests appreciable isocurvature fluctuations.

  19. Dielectric haloscopes to search for axion dark matter: theoretical foundations

    NASA Astrophysics Data System (ADS)

    Millar, Alexander J.; Raffelt, Georg G.; Redondo, Javier; Steffen, Frank D.

    2017-01-01

    We study the underlying theory of dielectric haloscopes, a new way to detect dark matter axions. When an interface between different dielectric media is inside a magnetic field, the oscillating axion field acts as a source of electromagnetic waves, which emerge in both directions perpendicular to the surface. The emission rate can be boosted by multiple layers judiciously placed to achieve constructive interference and by a large transverse area. Starting from the axion-modified Maxwell equations, we calculate the efficiency of this new dielectric haloscope approach. This technique could potentially search the unexplored high-frequency range of 10–100 GHz (axion mass 40–400 μeV), where traditional cavity resonators have difficulties reaching the required volume.

  20. Dielectric Haloscopes: A New Way to Detect Axion Dark Matter

    NASA Astrophysics Data System (ADS)

    Caldwell, Allen; Dvali, Gia; Majorovits, Béla; Millar, Alexander; Raffelt, Georg; Redondo, Javier; Reimann, Olaf; Simon, Frank; Steffen, Frank; Madmax Working Group

    2017-03-01

    We propose a new strategy to search for dark matter axions in the mass range of 40 - 400 μ eV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10-100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1 m2 area contained in a 10 T field.

  1. Proposal for Axion Dark Matter Detection Using an LC Circuit

    DOE PAGES

    Sikivie, P.; Sullivan, N.; Tanner, D. B.

    2014-03-01

    Here, we show that dark matter axions cause an oscillating electric current to flow along magnetic field lines. The oscillating current induced in a strong magnetic field B→ 0 produces a small magnetic field B→ a. We propose to amplify and detect B→ a using a cooled LC circuit and a very sensitive magnetometer. This appears to be a suitable approach to searching for axion dark matter in the 10–7 to 10–9 eV mass range.

  2. Dark radiation constraints on mixed Axion/Neutralino dark matter

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Lessa, Andre E-mail: baer@nhn.ou.edu

    2013-04-01

    Recent analyses of CMB data combined with the measurement of BAO and H{sub 0} show that dark radiation — parametrized by the apparent number of additional neutrinos ΔN{sub eff} contributing to the cosmic expansion — is bounded from above by about ΔN{sub eff}∼<1.6 at 95% CL. We consider the mixed axion/neutralino cold dark matter scenario which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by hadronic axions with a concommitant axion(a)/saxion(s)/axino(ã) supermultiplet. Our new results include improved calculations of thermal axion and saxion production and include effects of saxion decay to axinos and axions. We show that the above bound on ΔN{sub eff} is easily satisfied if saxions are mainly thermally produced and m{sub LSP} < m{sub ã}∼axions. Furthermore we show that scenarios with mixed neutralino/axion dark matter are highly constrained by combined CMB, BBN and Xe-100 constraints. In particular, supersymmetric models with a standard overabundance of neutralino dark matter are excluded for all values of the Peccei-Quinn breaking scale. Next generation WIMP direct detection experiments may be able to discover or exclude mixed axion-neutralino CDM scenarios where s → aa is the dominant saxion decay mode.

  3. Search for axion production in UPSILON(1S) decays

    SciTech Connect

    Fairfield, K.H.

    1988-06-01

    We present a search for axion production in radiative UPSILON(1S) decays using the Crystal Ball detector. We find no evidence for a signal and give a new upper limit, Br(UPSILON(1S)..-->..a/degree/..gamma..) < 4 /times/ 10/sup /minus/5/, for m/sub a/ < 2m/sub e/. Results from previous axion searches in both the UPSILON and J//psi/ systems are discussed and compared to theoretical predictions.

  4. Class of Einstein-Maxwell-dilaton-axion space-times

    SciTech Connect

    Matos, Tonatiuh; Miranda, Galaxia; Sanchez-Sanchez, Ruben; Wiederhold, Petra

    2009-06-15

    We use the harmonic maps ansatz to find exact solutions of the Einstein-Maxwell-dilaton-axion (EMDA) equations. The solutions are harmonic maps invariant to the symplectic real group in four dimensions Sp(4,R){approx}O(5). We find solutions of the EMDA field equations for the one- and two-dimensional subspaces of the symplectic group. Specially, for illustration of the method, we find space-times that generalize the Schwarzschild solution with dilaton, axion, and electromagnetic fields.

  5. Second-generation dark-matter axion search

    SciTech Connect

    Sikivie, P.; Sullivan, N.S.; Tanner, D.B.

    1996-12-01

    This research project is a collaboration with the axion search experiment at Lawrence Livermore National Laboratory. The axion is a particle that affects two important issues in particle physics and astrophysics: the origin of CP symmetry in the strong interactions, and the composition of the dark-matter of the universe. First predicted in 1978, present laboratory, astrophysical, and cosmological constraints suggest axions have a mass in the 1 {mu}eV-1 meV range. Axions are especially significant as dark matter if their mass is in the range 1-10 {mu}eV. These dark matter axions may be detected by their coupling to photons through the E - B interaction in a tunable high-Q microwave cavity permeated by a strong external magnetic field. The present experiment is the first cavity experiment with the sensitivity to possibly observe cosmic axions. It has recently begun taking data and will operate for the next several years. The University of Florida plans to contribute to the operation of this detector and to the design and prototyping of cavities for the experiment.

  6. Supersymmetric axion grand unified theories and their predictions

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; D'Eramo, Francesco; Hall, Lawrence J.

    2016-10-01

    We introduce a class of unified supersymmetric axion theories with unified and Peccei-Quinn (PQ) symmetries broken by the same set of fields at a scale ˜2 ×1 016 GeV . A typical domain wall number of order 30 leads to an axion decay constant fa of order 1 015 GeV . Inflation generates a large saxion condensate, giving a reheat temperature TR below the QCD scale for supersymmetry breaking of order 1-10 TeV. Axion field oscillations commence in the saxion matter-dominated era near the QCD scale, and recent lattice computations of the temperature dependence of the axion mass in this era allow a controlled calculation of the axion dark matter abundance. The observed abundance can be successfully explained by an initial axion misalignment angle of order unity, θi˜1 . A highly correlated set of predictions is discussed for fa, TR, the supersymmetric Higgs mass parameter μ , the amount of dark radiation Δ Neff, the proton decay rate Γ (p →e+π0), isocurvature density perturbations and the B mode of the cosmic microwave background. The last two are particularly interesting when the energy scale of inflation is also of order 1 016 GeV .

  7. Direct detection of dark matter axions with directional sensitivity

    SciTech Connect

    Irastorza, Igor G.; García, Juan A. E-mail: jagarpas@unizar.es

    2012-10-01

    We study the directional effect of the expected axion dark matter signal in a resonant cavity of an axion haloscope detector, for cavity geometries not satisfying the condition that the axion de Broglie wavelength λ{sub a} is sufficiently larger than the cavity dimensions L for a fully coherent conversion, i.e. λ{sub a}∼>2πL. We focus on long thin cavities immersed in dipole magnets and find, for appropriately chosen cavity lengths, an O(1) modulation of the signal with the cavity orientation with respect the momentum distribution of the relic axion background predicted by the isothermal sphere model for the galactic dark matter halo. This effect can be exploited to design directional axion dark matter detectors, providing an unmistakable signature of the extraterrestrial origin of a possible positive detection. Moreover, the precise shape of the modulation may give information of the galactic halo distribution and, for specific halo models, give extra sensitivity for higher axion masses.

  8. Searching for the QCD Axion with Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Fairbairn, Malcolm; Marsh, David J. E.; Quevillon, Jérémie

    2017-07-01

    The phase transition responsible for axion dark matter (DM) production can create large amplitude isocurvature perturbations, which collapse into dense objects known as axion miniclusters. We use microlensing data from the EROS survey and from recent observations with the Subaru Hyper Suprime Cam to place constraints on the minicluster scenario. We compute the microlensing event rate for miniclusters, treating them as spatially extended objects. Using the published bounds on the number of microlensing events, we bound the fraction of DM collapsed into miniclusters fMC. For an axion with temperature-dependent mass consistent with the QCD axion, we find fMC<0.083 (ma/100 μ eV )0.12 , which represents the first observational constraint on the minicluster fraction. We forecast that a high-efficiency observation of around ten nights with Subaru would be sufficient to constrain fMC≲0.004 over the entire QCD axion mass range. We make various approximations to derive these constraints, and dedicated analyses by the observing teams of EROS and Subaru are necessary to confirm our results. If accurate theoretical predictions for fMC can be made in the future, then microlensing can be used to exclude or discover the QCD axion. Further details of our computations are presented in a companion paper [M. Fairbairn, D. J. E. Marsh, J. Quevillon, and S. Rozier (to be published)].

  9. Can gravitational instantons really constrain axion inflation?

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Mangat, Patrick; Theisen, Stefan; Witkowski, Lukas T.

    2017-02-01

    Axions play a central role in inflationary model building and other cosmological applications. This is mainly due to their flat potential, which is protected by a global shift symmetry. However, quantum gravity is known to break global symmetries, the crucial effect in the present context being gravitational instantons or Giddings-Strominger wormholes. We attempt to quantify, as model-independently as possible, how large a scalar potential is induced by this general quantum gravity effect. We pay particular attention to the crucial issue which solutions can or cannot be trusted in the presence of a moduli-stabilisation and a Kaluza-Klein scale. An important conclusion is that, due to specific numerical prefactors, the effect is surprisingly small even in UV-completions with the highest possible scale offered by string theory.

  10. Axion production from primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Kamada, Kohei; Nakai, Yuichiro

    2017-07-01

    Production of axionlike particles (ALPs) by primordial magnetic fields may have significant impacts on cosmology. We discuss the production of ALPs in the presence of the primordial magnetic fields. We find a region of the ALP mass and photon coupling which realizes the observed properties of the dark matter with appropriate initial conditions for the magnetic fields. This region may be interesting in light of recent indications for the 3.5 keV lines from galaxy clusters. For a small axion mass, a region of previously allowed parameter spaces is excluded by overproduction of ALPs as a hot/warm dark matter component. Since the abundance of ALPs strongly depends on the initial conditions of primordial magnetic fields, our results provide implications for scenarios of magnetogenesis.

  11. GammeV: Fermilab axion-like particle photon regeneration results

    SciTech Connect

    Wester, William; /Fermilab

    2008-09-01

    GammeV is an axion-like particle photon regeneration experiment conducted at Fermilab that employs the light shining through a wall technique. They obtain limits on the coupling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar axion-like particles in the milli-eV mass range. They are able to exclude the axion-like particle interpretation of the anomalous PVLAS 2006 result by more than 5 standard deviations.

  12. Axion dark matter, solitons and the cusp-core problem

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.; Pop, Ana-Roxana

    2015-08-01

    Self-gravitating bosonic fields can support stable and localized (solitonic) field configurations. Such solitons should be ubiquitous in models of axion dark matter, with their characteristic mass and size depending on some inverse power of the axion mass, ma. Using a scaling symmetry and the uncertainty principle, the soliton core size can be related to the central density and axion mass in a universal way. Solitons have a constant central density due to pressure support, unlike the cuspy profile of cold dark matter (CDM). Consequently, solitons composed of ultralight axions (ULAs) may resolve the `cusp-core' problem of CDM. In dark matter (DM) haloes, thermodynamics will lead to a CDM-like Navarro-Frenk-White (NFW) profile at large radii, with a central soliton core at small radii. Using Monte Carlo techniques to explore the possible density profiles of this form, a fit to stellar kinematical data of dwarf spheroidal galaxies is performed. The data favour cores, and show no preference concerning the NFW part of the halo. In order for ULAs to resolve the cusp-core problem (without recourse to baryon feedback, or other astrophysical effects) the axion mass must satisfy ma < 1.1 × 10-22 eV at 95 per cent C.L. However, ULAs with ma ≲ 1 × 10-22 eV are in some tension with cosmological structure formation. An axion solution to the cusp-core problem thus makes novel predictions for future measurements of the epoch of reionization. On the other hand, improved measurements of structure formation could soon impose a Catch 22 on axion/scalar field DM, similar to the case of warm DM.

  13. Probing eV-scale axions with CAST

    SciTech Connect

    Arik, E.; Boydag, F.S.; Cetin, S.A.; Dogan, O.B.; Aune, S.; Autiero, D.; Barth, K.; Borghi, S.; Davenport, M.; Lella, L. Di; Elias, N.; Belov, A.; Beltran, B.; Carmona, J.M.; Cebrian, S.; Dafni, T.; Bourlis, G.; Braeuninger, H.; Collar, J.I.; Eleftheriadis, C.; and others

    2009-02-15

    We have searched for solar axions or other pseudoscalar particles that couple to two photons by using the CERN Axion Solar Telescope (CAST) setup. Whereas we previously have reported results from CAST with evacuated magnet bores (Phase I), setting limits on lower mass axions, here we report results from CAST where the magnet bores were filled with {sup 4}He gas (Phase II) of variable pressure. The introduction of gas generates a refractive photon mass m{sub {gamma}}, thereby achieving the maximum possible conversion rate for those axion masses m{sub a} that match m{sub {gamma}}. With 160 different pressure settings we have scanned m{sub a} up to about 0.4 eV, taking approximately 2 h of data for each setting. From the absence of excess x-rays when the magnet was pointing to the Sun, we set a typical upper limit on the axion-photon coupling of g{sub a{gamma}}{approx}<2.2 Multiplication-Sign 10{sup -10} GeV{sup -1} at 95% CL for m{sub a}{approx}<0.4 eV, the exact result depending on the pressure setting. The excluded parameter range covers realistic axion models with a Peccei-Quinn scale in the neighborhood of f{sub a} {approx} 10{sup 7} GeV. Currently in the second part of CAST Phase II, we are searching for axions with masses up to about 1.2 eV using {sup 3}He as a buffer gas.

  14. Cosmological perturbations of extreme axion in the radiation era

    NASA Astrophysics Data System (ADS)

    Zhang, Ui-Han; Chiueh, Tzihong

    2017-09-01

    Subhorizon perturbations under the extreme initial condition of the axion model are investigated, where initial axion angles start near the potential maximum and the mass oscillation is substantially delayed. This work focuses on a few new features found in the extreme axion model but absent in the free-particle model. A particularly novel new feature is the spectral excess relative to the cold dark matter model in some wave number range, where the excess may be so large that landscapes of high-redshift universe beyond z =10 can be significantly altered. For axions of particle mass 10-22 eV , this range of wave number corresponds to first galaxies of few times 1 09- 1010 M⊙ . We demonstrate that subhorizon perturbations are accurately described by Mathieu's equation and subject to parametric instability, which explains this novel feature. Actually the axion model is not a special one; perturbations in a wide range of scalar field models can share the similar characteristic.

  15. Hunting for axion dark matter with the ADMX project

    NASA Astrophysics Data System (ADS)

    Carosi, Gianpaolo; ADMX Collaboration

    2016-03-01

    The axion is a hypothetical particle that explains why the strong force is CP invariant and could also account for the cold dark matter in the universe. The Axion Dark Matter eXperiment (ADMX) directly searches for dark-matter axions by looking for their resonant conversion into detectable photons in a microwave cavity permeated by a strong magnetic field. This experiment, currently a ``Generation 2'' DOE Dark Matter Project, is now preparing for operations with enough sensitivity to either detect the ``QCD axion'' or reject that hypothesis at high confidence over a large range of potential axion masses. This talk will give an overview of the ADMX project and technology, its search plan and some of the various R&D projects that are being undertaken to extend its sensitivity. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, and the Livermore LDRD program.

  16. Neutrino and axion hot dark matter bounds after WMAP-7

    SciTech Connect

    Hannestad, Steen; Mirizzi, Alessandro; Raffelt, Georg G.; Wong, Yvonne Y.Y. E-mail: alessandro.mirizzi@desy.de E-mail: yvonne.wong@physik.rwth-aachen.de

    2010-08-01

    We update cosmological hot dark matter constraints on neutrinos and hadronic axions. Our most restrictive limits use 7-year data from the Wilkinson Microwave Anisotropy Probe for the cosmic microwave background anisotropies, the halo power spectrum (HPS) from the 7th data release of the Sloan Digital Sky Survey, and the Hubble constant from Hubble Space Telescope observations. We find 95% CL upper limits of Σm{sub ν} < 0.44 eV (no axions), m{sub a} < 0.91 eV (assuming Σm{sub ν} = 0), and Σm{sub ν} < 0.41 eV and m{sub a} < 0.72 eV for two hot dark matter components after marginalising over the respective other mass. CMB data alone yield Σm{sub ν} < 1.19 eV (no axions), while for axions the HPS is crucial for deriving m{sub a} constraints. This difference can be traced to the fact that for a given hot dark matter fraction axions are much more massive than neutrinos.

  17. A SQUID-based microwave cavity search for dark-matter axions

    SciTech Connect

    Asztalos, S J; Carosi, G; Hagmann, C; Kinion, D; van Bibber, K; Hotz, M; Rosenberg, L; Rybka, G; Hoskins, J; Hwang, J; Sikivie, P; Tanner, D B; Bradley, R; Clarke, J

    2009-10-21

    Axions in the {mu}eV mass range are a plausible cold dark matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. The first result from such an axion search using a superconducting first-stage amplifier (SQUID) is reported. The SQUID amplifier, replacing a conventional GaAs field-effect transistor amplifier, successfully reached axion-photon coupling sensitivity in the band set by present axion models and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.

  18. Quality of the Peccei-Quinn symmetry in the aligned QCD axion and cosmological implications

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Jeong, Kwang Sik; Kitajima, Naoya; Takahashi, Fuminobu

    2016-06-01

    We show that the required high quality of the Peccei-Quinn symmetry can be naturally explained in the aligned QCD axion models where the QCD axion arises from multiple axions with decay constants much smaller than the axion window, e.g., around the weak scale. Even in the presence of general Planck-suppressed Peccei-Quinn symmetry breaking operators, the effective strong CP phase remains sufficiently small in contrast to the standard axion models without the alignment. The QCD axion potential has small or large modulations due to the symmetry breaking operators, which can significantly affect the axion cosmology. When the axions are trapped in different minima, domain walls appear and their scaling behavior suppresses the axion isocurvature perturbations at super-horizon scales. Our scenario predicts many axions and saxions coupled to gluons, and they may be searched for at collider experiments. In particular, the recently found diphoton excess at 750 GeV could be due to one of such (s)axions.

  19. Effects of axions on nucleosynthesis in massive stars

    NASA Astrophysics Data System (ADS)

    Aoyama, Shohei; Suzuki, Takeru K.

    2015-09-01

    We investigate the effect of axion cooling on nucleosynthesis in a massive star with 16 M⊙ by a standard stellar evolution calculation. We find that axion cooling suppresses nuclear reactions in carbon, oxygen, and silicon burning phases because of the extraction of the energy. As a result, larger amounts of the already synthesized neon and magnesium remain without being consumed to produce further, heavier elements. Even in the case with axion-photon coupling constant ga γ=10-11 GeV-1 , which is six times smaller than the current upper limit, the amount of neon and magnesium that remain just before the core-collapse supernova explosion is considerably larger than the standard value. This implies that we could give a more stringent constraint on ga γ from the nucleosynthesis of heavy elements in massive stars.

  20. Level crossing between the QCD axion and an axionlike particle

    NASA Astrophysics Data System (ADS)

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu

    2016-04-01

    We study a level crossing between the QCD axion and an axionlike particle, focusing on the recently found phenomenon, the axion roulette, where the axionlike particle runs along the potential, passing through many crests and troughs, until it gets trapped in one of the potential minima. We perform detailed numerical calculations to determine the parameter space where the axion roulette takes place, and as a result domain walls are likely formed. The domain wall network without cosmic strings is practically stable, and it is nothing but a cosmological disaster. In a certain case, one can make domain walls unstable and decay quickly by introducing an energy bias without spoiling the Peccei-Quinn solution to the strong charge parity problem.

  1. Cosmological bounds on sub-MeV mass axions

    SciTech Connect

    Cadamuro, Davide; Raffelt, Georg; Redondo, Javier; Hannestad, Steen E-mail: sth@phys.au.dk E-mail: redondo@mppmu.mpg.de

    2011-02-01

    Axions with mass m{sub a} ∼> 0.7 eV are excluded by cosmological precision data because they provide too much hot dark matter. While for m{sub a} ∼> 20 eV the a → 2γ lifetime drops below the age of the universe, we show that the cosmological exclusion range can be extended to 0.7eV ∼< m{sub a} ∼< 300 keV, primarily by the cosmic deuterium abundance: axion decays would strongly modify the baryon-to-photon ratio at BBN relative to the one at CMB decoupling. Additional arguments include neutrino dilution relative to photons by axion decays and spectral CMB distortions. Our new cosmological constraints complement stellar-evolution and laboratory bounds.

  2. Axion-Assisted Production of Sterile Neutrino Dark Matter

    SciTech Connect

    Berlin, Asher; Hooper, Dan

    2016-10-12

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this letter, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axion-like field. As the energy density of the axion-like particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.

  3. Gravity Waves and Linear Inflation From Axion Monodromy

    SciTech Connect

    McAllister, Liam; Silverstein, Eva; Westphal, Alexander; /SLAC /Stanford U., Phys. Dept.

    2010-08-26

    Wrapped branes in string compactifications introduce a monodromy that extends the field range of individual closed-string axions to beyond the Planck scale. Furthermore, approximate shift symmetries of the system naturally control corrections to the axion potential. This suggests a general mechanism for chaotic inflation driven by monodromy-extended closed-string axions. We systematically analyze this possibility and show that the mechanism is compatible with moduli stabilization and can be realized in many types of compactifications, including warped Calabi-Yau manifolds and more general Ricci-curved spaces. In this broad class of models, the potential is linear in the canonical inflaton field, predicting a tensor to scalar ratio r {approx} 0.07 accessible to upcoming cosmic microwave background (CMB) observations.

  4. Searching for galactic axions through magnetized media: The QUAX proposal

    NASA Astrophysics Data System (ADS)

    Barbieri, R.; Braggio, C.; Carugno, G.; Gallo, C. S.; Lombardi, A.; Ortolan, A.; Pengo, R.; Ruoso, G.; Speake, C. C.

    2017-03-01

    We present a proposal to search for QCD axions with mass in the 200 μeV range, assuming that they make a dominant component of dark matter. Due to the axion-electron spin coupling, their effect is equivalent to the application of an oscillating rf field with frequency and amplitude fixed by the axion mass and coupling respectively. This equivalent magnetic field would produce spin flips in a magnetic sample placed inside a static magnetic field, which determines the resonant interaction at the Larmor frequency. Spin flips would subsequently emit radio frequency photons that can be detected by a suitable quantum counter in an ultra-cryogenic environment. This new detection technique is crucial to keep under control the thermal photon background which would otherwise produce a too large noise.

  5. Couplings between QCD axion and photon from string compactification

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.; Nam, Soonkeon

    2016-08-01

    The QCD axion couplings of various invisible axion models are presented. In particular, the exact global symmetry U(1)PQ in the superpotential is possible for the anomalous U(1) from string compactification, broken only by the gauge anomalies at one loop level, and is shown to have the resultant invisible axion coupling to photon, caγγ ≥8/3 - caγγch br where caγγch br ≃ 2. However, this bound is not applicable in approximate U(1)PQ models with sufficiently suppressed U(1)PQ-breaking superpotential terms. We also present a simple method to obtain caγγ0 which is the value obtained above the electroweak scale.

  6. Modular inflation and the orthogonal axion as the curvaton

    SciTech Connect

    Dimopoulos, K.; Lazarides, G.

    2006-01-15

    We study a particular supersymmetric realization of the Peccei-Quinn symmetry which provides a suitable candidate for the curvaton field. The class of models considered also solves the {mu} problem, while generating the Peccei-Quinn scale dynamically. The curvaton candidate is a pseudo-Nambu-Goldstone boson corresponding to an angular degree of freedom orthogonal to the axion field. Its order parameter increases substantially following a phase transition during inflation. This results in a drastic amplification of the curvaton perturbations. Consequently, the mechanism is able to accommodate low-scale inflation with Hubble parameter at the TeV scale. Hence, we investigate modular inflation using a string axion field as the inflaton with inflation scale determined by gravity mediated soft supersymmetry breaking. We find that modular inflation with the orthogonal axion as curvaton can indeed account for the observations for natural values of the parameters.

  7. Backreaction issues in axion monodromy and Minkowski 4-forms

    NASA Astrophysics Data System (ADS)

    Valenzuela, Irene

    2017-06-01

    We clarify the differences between the usual Kaloper-Sorbo description of axion monodromy and the effective axionic potential in terms of Minkowski 4-forms derived in string compactifications. The fact that the metric of the 3-form fields coming from string theory is field dependent (unlike in Kaloper-Sorbo) leads to the backreaction issues recently studied in axion monodromy models within string theory. We reanalyse these problems in terms of the 4-forms focusing on the case in which the non-periodic scalars backreact on the Kahler metric of the inflaton reducing the physical field range. In the closed string sector of Type II Calabi-Yau compactifications with fluxes the metric becomes field dependent precisely when Δ ϕ ˜ M p , independently of the choice of fluxes. We propose, however, some counter-examples to this universal behaviour by including open string fields.

  8. The swampland conjecture and F-term axion monodromy inflation

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Valenzuela, Irene; Wolf, Florian

    2017-07-01

    We continue the investigation of F-term axion monodromy inflation in string theory, while seriously taking the issue of moduli stabilization into account. For a number of closed and open string models, we show that they suffer from serious control issues once one is trying to realize trans-Planckian field excursions. More precisely, the flux tuning required to delay the logarithmic scaling of the field distance to a trans-Planckian value cannot be done without leaving the regime where the employed effective supergravity theory is under control. Our findings are consistent with the axionic extension of the Refined Swampland Conjecture, stating that in quantum gravity the effective theory breaks down for a field excursion beyond the Planck scale. Our analysis suggests that models of F-term axion monodromy inflation with a tensor-to-scalar ratio r ≥ O(10-3) cannot be parametrically controlled.

  9. On the 3-form formulation of axion potentials from D-brane instantons

    NASA Astrophysics Data System (ADS)

    García-Valdecasas, Eduardo; Uranga, Angel

    2017-02-01

    The study of axion models and quantum corrections to their potential has experienced great progress by phrasing the axion potential in terms of a 3-form field eating up the 2-form field dual to the axion. Such reformulation of the axion potential has been described for axion monodromy models and for axion potentials from non-perturbative gauge dynamics. In this paper we propose a 3-form description of the axion potentials from non-gauge D-brane instantons. Interestingly, the required 3-form field does not arise in the underlying geometry, but rather shows up in the KK compactification in the generalized geometry obtained when the backreaction of the D-brane instanton is taken into account.

  10. Constraints on neutrinos and axions from cosmology

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1981-01-01

    A review is made of the astrophysical arguments with regard to neutrino properties. It is shown that the best fit to the present baryon density and He-4 abundance is obtained with three neutrino species. It is also shown that astrophysical constraints on neutrino and axion lifetime-mass combinations rule out weakly interacting particles with lifetimes between 1/1000 to 10 to the 23rd sec for M up to 10 MeV. There is an allowed astrophysical window for neutrinos with M up to 10 MeV and tau less than 1000 sec. The possible role of massive neutrinos in the dark mass of galaxies is discussed. It is shown that the baryon density in the universe is comparable to the density obtained from the dynamics of binary galaxies. Therefore, massive neutrinos are only required if the cosmological mass density is greater than that implied by binaries and small groups of galaxies. The only objects which might imply such high densities are large clusters. For neutrinos to cluster with these large clusters requires a neutrino mass of at least 3 eV.

  11. Flux flattening in axion monodromy inflation

    NASA Astrophysics Data System (ADS)

    Landete, Aitor; Marchesano, Fernando; Shiu, Gary; Zoccarato, Gianluca

    2017-06-01

    String theory models of axion monodromy inflation exhibit scalar potentials which are quadratic for small values of the inflaton field and evolve to a more complicated function for large field values. Oftentimes the large field behaviour is gentler than quadratic, lowering the tensor-to-scalar ratio. This effect, known as flattening, has been observed in the string theory context through the properties of the DBI+CS D-brane action. We revisit such flattening effects in type IIB flux compactifications with mobile D7-branes, with the inflaton identified with the D7-brane position. We observe that, with a generic choice of background fluxes, flattening effects are larger than previously observed, allowing to fit these models within current experimental bounds. In particular, we compute the cosmological observables in scenarios compatible with closed-string moduli stabilisation, finding tensor-to-scalar ratios as low as r ˜ 0 .04. These are models of single field inflation in which the inflaton is much lighter than the other scalars through a mild tuning of the compactification data.

  12. Mixed axion/neutralino cold dark matter in supersymmetric models

    SciTech Connect

    Baer, Howard; Lessa, Andre; Rajagopalan, Shibi; Sreethawong, Warintorn E-mail: lessa@nhn.ou.edu E-mail: wstan@nhn.ou.edu

    2011-06-01

    We consider supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/axino supermultiplet. We examine R-parity conserving models where the neutralino is the lightest SUSY particle, so that a mixture of neutralinos and axions serve as cold dark matter (a Z-tilde {sub 1} CDM). The mixed a Z-tilde {sub 1} CDM scenario can match the measured dark matter abundance for SUSY models which typically give too low a value of the usual thermal neutralino abundance, such as models with wino-like or higgsino-like dark matter. The usual thermal neutralino abundance can be greatly enhanced by the decay of thermally-produced axinos (ã) to neutralinos, followed by neutralino re-annihilation at temperatures much lower than freeze-out. In this case, the relic density is usually neutralino dominated, and goes as ∼ (f{sub a}/N)/m{sub ã}{sup 3/2}. If axino decay occurs before neutralino freeze-out, then instead the neutralino abundance can be augmented by relic axions to match the measured abundance. Entropy production from late-time axino decays can diminish the axion abundance, but ultimately not the neutralino abundance. In a Z-tilde {sub 1} CDM models, it may be possible to detect both a WIMP and an axion as dark matter relics. We also discuss possible modifications of our results due to production and decay of saxions. In the appendices, we present expressions for the Hubble expansion rate and the axion and neutralino relic densities in radiation, matter and decaying-particle dominated universes.

  13. Cavity design for high-frequency axion dark matter detectors

    DOE PAGES

    Stern, I.; Chisholm, A. A.; Hoskins, J.; ...

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  14. Recent progress on QCD inputs for axion phenomenology

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; D'Elia, Massimo; Mariti, Marco; Martinelli, Guido; Mesiti, Michele; Negro, Francesco; Sanfilippo, Francesco; Villadoro, Giovanni

    2017-03-01

    The properties of the QCD axion are strictly related to the dependence of strong interactions on the topological parameter theta. We present a determination of the topological properties of QCD for temperatures up to around 600 MeV, obtained by lattice QCD simulations with 2+1 flavors and physical quark masses. Numerical results for the topological susceptibility, when compared to instanton gas computations, differ both in size and in the temperature dependence. We discuss the implications of such findings for axion phenomenology, also in comparison to similar studies in the literature, and the prospects for future investigations.

  15. Cavity design for high-frequency axion dark matter detectors

    SciTech Connect

    Stern, I.; Chisholm, A. A.; Hoskins, J.; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Carosi, G.; van Bibber, K.

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  16. Quantized scalar field as DM: the axion's case

    SciTech Connect

    Barranco, J.; Bernal, A.

    2008-12-04

    We derive a rough estimation of the radius and the mass of a self-gravitating system made of axions. The system is a stationary solution of the Einstein-Klein-Gordon equations with a source term given by the vacuum expectation value of the energy-momentum operator constructed from the axion field. We found that such system would have masses of the order of asteroids ({approx}10{sup -10} M{sub {center_dot}}) and radius of the order of few centimeters. Some implications of such type of objects are discussed.

  17. Calculation of the axion magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Coh, Sinisa; Vanderbilt, David; Malashevich, Andrei; Souza, Ivo

    2010-03-01

    Recently it was shown [X.-L. Qi et al., PRB 78, 195424 (2008); A.M. Essin et al., PRL 102, 146805 (2009)] that there exists a purely isotropic (``axionic'') component θ to the magnetoelectric coupling (MEC). Furthermore, this θ arises only from the electron orbital motion, and in strong Z2 topological insulators it is unusually large and equals exactly half a quantum (θ=π). Experimental observation of this large MEC would require some peculiar breaking of the time-reversal (T) symmetry at the surfaces, but θ might be observed in normal insulators that have T already broken in the bulk. Since there are by now several examples of strong Z2 topological insulators having θ=π, we believe there is no strong reason why θ should necessarily be small in a normal insulator with broken T. For this reason, we have used density-functional theory to calculate θ in various materials. We first consider Cr2O3, a widely studied magnetoelectric material, but we find θ to be very small there. We attribute this to a weak spin-orbit effect in Cr (and to the fact that even a strong spin-orbit effect by itself does not guarantee a large θ). To calculate θ we express it in terms of well localized Wannier functions to ensure smoothness of the gauge and also to allow for decomposition of contributions to θ coming from various electronic bands. The calculation of θ for BiFeO3 and other materials is currently ongoing.

  18. Minkowski 3-forms, flux string vacua, axion stability and naturalness

    NASA Astrophysics Data System (ADS)

    Bielleman, Sjoerd; Ibáñez, Luis E.; Valenzuela, Irene

    2015-12-01

    We discuss the role of Minkowski 3-forms in flux string vacua. In these vacua all internal closed string fluxes are in one to one correspondence with quantized Minkowski 4-forms. By performing a dimensional reduction of the D = 10 Type II supergravity actions we find that the 4-forms act as auxiliary fields of the Kahler and complex structure moduli in the effective action. We show that all the RR and NS axion dependence of the flux scalar potential appears through the said 4-forms. Gauge invariance of these forms then severely restricts the structure of the axion scalar potentials. Combined with duality symmetries it suggests that all perturbative corrections to the leading axion scalar potential V 0 should appear as an expansion in powers of V 0 itself. These facts could have an important effect e.g. on the inflaton models based on F-term axion monodromy. We also suggest that the involved multi-branched structure of string vacua provides for a new way to maintain interacting scalar masses stable against perturbative corrections.

  19. Axions, SN 1987A, and one pion exchange

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Kang, Ho-Shik; Steigman, Gary

    1988-01-01

    Nucleon-nucleon, axion bremsstrahlung is the primary mechanism for axion emission from the nascent neutron star associated with SN 1987A, and the rate for this process has been calculated in the one pion exchange approximation (OPE). The axion mass limit which follows from SN 1987A, m sub a less than or approx equal to 10 to the -3 eV, is the most stringent astrophysical bound, and has received much scrutiny. It has been suggested that by using OPE to calculate the cross section for the analog process, pp yields pp + pi sup o, and comparing the result of the experimental data one can test the validity of this approximation, and further, that such a comparison indicates that OPE leads to a value for this cross section which is a factor of 30 to 40 too large. If true, this would suggest that the axion mass limit should be revised upward by a factor of approximately 6. The cross section for pp yields pp + pi sup o using OPE is carefully evaluated, and excellent agreement found (to better than a factor of 2) with the experimental data.

  20. The Weak Gravity Conjecture and the axionic black hole paradox

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Soler, Pablo

    2017-09-01

    In theories with a perturbatively massless 2-form (dual to an axion), a paradox may arise in the process of black hole evaporation. Schwarzschild black holes can support a non-trivial Wilson-line-type field, the integral of the 2-form around their horizon. After such an `axionic black hole' evaporates, the Wilson line must be supported by the corresponding 3-form field strength in the region formerly occupied by the black hole. In the limit of small axion decay-constant f, the energy required for this field configuration is too large. Thus, energy cannot be conserved in the process of black hole evaporation. The natural resolution of this paradox is through the presence of light strings, which allow the black hole to "shed" its axionic hair sufficiently early. This gives rise to a new Weak-Gravity-type argument in the 2-form context: small coupling, in this case f , enforces the presence of light strings or a low cutoff. We also discuss how this argument may be modified in situations where the weak coupling regime is achieved in the low-energy effective theory through an appropriate gauging of a model with a vector field and two 2-forms.

  1. Oblique corrections in the Dine-Fischler-Srednicki axion model

    NASA Astrophysics Data System (ADS)

    Katanaeva, Alisa; Espriu, Domènec

    2016-11-01

    In the Minimal Standard Model (MSM) there is no degree of freedom for dark matter. There are several extensions of the MSM introducing a new particle - an invisible axion, which can be regarded as a trustworthy candidate at least for a part of the dark matter component. However, as it is extremely weakly coupled, it cannot be directly measured at the LHC. We propose to explore the electroweak sector indirectly by considering a particular model that includes the axion and derive consequences that could be experimentally tested. We discuss the Dine-Fischler-Srednicki (DFS) model, which extends the two-Higgs doublet model with an additional Peccei-Quinn symmetry and leads to a physically acceptable axion. The non-linear parametrization of the DFS model is exploited in the generic case where all scalars except the lightest Higgs and the axion have masses at or beyond the TeV scale. We compute the oblique corrections and use their values from the electroweak experimental fits to put constraints on the mass spectrum of the DFS model.

  2. The Axion Dark Matter eXperiment Cryogenic System

    NASA Astrophysics Data System (ADS)

    Letourneau, Hannah; ADMX Collaboration

    2016-03-01

    The Axion Dark Matter eXperiment (ADMX) searches for dark matter axions by looking for their resonant conversion to photons in a microwave cavity in a high magnetic field. The mass of the axion (unknown) determines the frequency at which the axion couples to the magnetic field, so the cavity is tuned through a wide range of frequencies while measuring the power deposited in it with ultra-sensitive quantum electronics. The dominant systematic noise is from the noise temperature of the electronics; during the last data run they were cooled to 1.5K with a pumped He-4 refrigerator. Currently, we are installing a large dilution refrigerator, which will cool the cavity and first stage amplifiers to ~100 mK. I will discuss our progress, describe some of the challenges we have faced and how we have overcome them, and describe our plans for operation. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE- AC52-07NA27344, DE-AC03-76SF00098, and the Livermore LDRD program.

  3. Axion Induced Oscillating Electric Dipole Moment of the Electron

    SciTech Connect

    Hill, Christopher T.

    2016-01-12

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10-32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ta(t) ∝ mα → 0. The analysis is subtle, and we find the general form of the action involves a local contact interaction and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (me >> ma). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.

  4. High-scale axions without isocurvature from inflationary dynamics

    SciTech Connect

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-31

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation HI. If the scale of Peccei-Quinn (PQ) breaking fa is greater than HI/2π, CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation fI require either late-time dilution of the axion abundance or highly super-Planckian fI that somehow does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow fa close to the Planck scale. Lastly, avoiding disruption of inflationary dynamics provides important limits on the parameter space.

  5. Large-scale search for dark-matter axions

    SciTech Connect

    Kinion, D; van Bibber, K

    2000-08-30

    We review the status of two ongoing large-scale searches for axions which may constitute the dark matter of our Milky Way halo. The experiments are based on the microwave cavity technique proposed by Sikivie, and marks a ''second-generation'' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group.

  6. High-scale axions without isocurvature from inflationary dynamics

    SciTech Connect

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-31

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation HI. If the scale of Peccei-Quinn (PQ) breaking fa is greater than HI/2π, CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation fI require either late-time dilution of the axion abundance or highly super-Planckian fI that somehow does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow fa close to the Planck scale. Lastly, avoiding disruption of inflationary dynamics provides important limits on the parameter space.

  7. Axion Induced Oscillating Electric Dipole Moment of the Electron

    DOE PAGES

    Hill, Christopher T.

    2016-01-12

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10-32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ta(t) ∝ mα → 0. The analysis is subtle, and we find the general form of the action involves a local contact interaction and a nonlocalmore » contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (me >> ma). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less

  8. Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Kitajima, Naoya; Takahashi, Fuminobu

    2014-12-01

    Hidden axions may be coupled to the standard model particles through a kinetic or mass mixing with QCD axion. We study a scenario in which a hidden axion constitutes a part of or the whole of dark matter and decays into photons through the mixing, explaining the 3.5 keV X-ray line signal. Interestingly, the required long lifetime of the hidden axion dark matter can be realized for the QCD axion decay constant at an intermediate scale, if the mixing is sufficiently small. In such a two component dark matter scenario, the primordial density perturbations of the hidden axion can be highly non-Gaussian, leading to a possible dispersion in the X-ray line strength from various galaxy clusters and near-by galaxies. We also discuss how the parallel and orthogonal alignment of two axions affects their couplings to gauge fields. In particular, the QCD axion decay constant can be much larger than the actual Peccei-Quinn symmetry breaking.

  9. Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line

    SciTech Connect

    Higaki, Tetsutaro; Kitajima, Naoya; Takahashi, Fuminobu E-mail: kitajima@tuhep.phys.tohoku.ac.jp

    2014-12-01

    Hidden axions may be coupled to the standard model particles through a kinetic or mass mixing with QCD axion. We study a scenario in which a hidden axion constitutes a part of or the whole of dark matter and decays into photons through the mixing, explaining the 3.5 keV X-ray line signal. Interestingly, the required long lifetime of the hidden axion dark matter can be realized for the QCD axion decay constant at an intermediate scale, if the mixing is sufficiently small. In such a two component dark matter scenario, the primordial density perturbations of the hidden axion can be highly non-Gaussian, leading to a possible dispersion in the X-ray line strength from various galaxy clusters and near-by galaxies. We also discuss how the parallel and orthogonal alignment of two axions affects their couplings to gauge fields. In particular, the QCD axion decay constant can be much larger than the actual Peccei-Quinn symmetry breaking.

  10. A model for halo formation with axion mixed dark matter

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.; Silk, Joseph

    2014-01-01

    There are several issues to do with dwarf galaxy predictions in the standard Λ cold dark matter (ΛCDM) cosmology that have suscitated much recent debate about the possible modification of the nature of dark matter as providing a solution. We explore a novel solution involving ultralight axions that can potentially resolve the missing satellites problem, the cusp-core problem and the `too big to fail' problem. We discuss approximations to non-linear structure formation in dark matter models containing a component of ultralight axions across four orders of magnitude in mass, 10-24 ≲ ma ≲ 10-20 eV, a range too heavy to be well constrained by linear cosmological probes such as the cosmic microwave background and matter power spectrum, and too light/non-interacting for other astrophysical or terrestrial axion searches. We find that an axion of mass ma ≈ 10-21 eV contributing approximately 85 per cent of the total dark matter can introduce a significant kpc scale core in a typical Milky Way satellite galaxy in sharp contrast to a thermal relic with a transfer function cut off at the same scale, while still allowing such galaxies to form in significant number. Therefore, ultralight axions do not suffer from the Catch 22 that applies to using a warm dark matter as a solution to the small-scale problems of CDM. Our model simultaneously allows formation of enough high-redshift galaxies to allow reconciliation with observational constraints, and also reduces the maximum circular velocities of massive dwarfs so that baryonic feedback may more plausibly resolve the predicted overproduction of massive Milky Way Galaxy dwarf satellites.

  11. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-07

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  12. Early-universe thermal production of not-so-invisible axions

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1987-01-01

    It is found that, for Peccei-Quinn symmetry-breaking scales of less than about 4 x 10 to the 8th GeV (corresponding to axion masses of greater than about 0.03 eV) thermal production of axions in the early universe (via the Primakoff and photoproduction processes) dominates coherent production by a factor of about 1200/m sub a/(1 eV)/ exp 2.175. The photon luminosity from the decays of these relic axions leads to an upper limit to the axion mass of order 2-5 eV. If the axion mass saturates this bound, relic axion decays may well be detectable.

  13. QCD axion as a bridge between string theory and flavor physics

    NASA Astrophysics Data System (ADS)

    Ahn, Y. H.

    2016-04-01

    We construct a string-inspired model, motivated by the flavored Peccei-Quinn (PQ) axions, as a useful bridge between flavor physics and string theory. The key feature is two anomalous gauged U (1 ) symmetries, responsible for both the fermion mass hierarchy problem of the standard model and the strong C P problem, that combine string theory with flavor physics and severely constrain the form of the F- and D-term contributions to the potential. In the context of supersymmetric moduli stabilization we stabilize the size moduli with positive masses while leaving two axions massless and one axion massive. We demonstrate that, while the massive gauge bosons eat the two axionic degrees of freedom, two axionic directions survive to low energies as the flavored PQ axions.

  14. Thermal production of not so invisible axions in the early universe

    SciTech Connect

    Turner, M.S.

    1986-10-01

    We find that for Peccei-Quinn symmetry-breaking scales less than or equal to 2 x 10/sup 8/ GeV (corresponding to axion masses greater than or equal to 3 x 10/sup -2/eV) thermal production of axions in the early Universe (via the Primakoff and photoproduction processes) dominates coherent production by a factor of about 1200 (m/sub a//eV)/sup 2.175/. The photon luminosity from the decays of these relic axions leads to a model-independent upper limit to the axion mass of order 2 to 5eV. If the axion mass saturates this bound, relic axion decays may well be detectable. 14 refs., 3 figs.

  15. The GammeV suite of experimental searches for axion-like particles

    SciTech Connect

    Steffen, Jason H.; Upadhye, Amol; /KICP, Chicago /Chicago U., EFI

    2009-08-01

    We report on the design and results of the GammeV search for axion-like particles and for chameleon particles. We also discuss plans for an improved experiment to search for chameleon particles, one which is sensitive to both cosmological and power-law chameleon models. Plans for an improved axion-like particle search using coupled resonant cavities are also presented. This experiment will be more sensitive to axion-like particles than stellar astrophysical models or current helioscope experiments.

  16. Cosmological constraints on neutrino plus axion hot dark matter: update after WMAP-5

    SciTech Connect

    Hannestad, S; Mirizzi, A; Raffelt, G G; Wong, Y Y Y E-mail: amirizzi@mppmu.mpg.de E-mail: ywong@mppmu.mpg.de

    2008-04-15

    We update our previous constraints on two-component hot dark matter (axions and neutrinos), including the recent WMAP five-year data release. Marginalizing over {Sigma}m{sub {nu}} provides m{sub a}<1.02 eV (95% C.L.) for the axion mass. In the absence of axions we find {Sigma}m{sub {nu}}<0.63 eV (95% C.L.)

  17. Axion decay constants at special points in type II string theory

    NASA Astrophysics Data System (ADS)

    Honda, Masaki; Oikawa, Akane; Otsuka, Hajime

    2017-01-01

    We propose the mechanism to disentangle the decay constant of closed string axion from the string scale in the framework of type II string theory on Calabi-Yau manifold. We find that the quantum and geometrical corrections in the prepotential that arise at some special points in the moduli space widen the window of axion decay constant. In particular, around the small complex structure points, the axion decay constant becomes significantly lower than the string scale. We also discuss the moduli stabilization leading to the phenomenologically attractive low-scale axion decay constant.

  18. Axion-photon conversion in space and in low symmetrical dielectric crystals

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.

    2016-07-01

    The opportunities of axions detection as the result of axion-photon conversion processes in the space and in low symmetrical dielectric crystals are discussed. In accordance with the modern theory predictions, axions are pseudoscalar vacuum particles having very small (0.001-1.0 meV) rest energy. The possibility of axions conversion into photons and vice-versa processes in vacuum at the presence of outer magnetic field has been analyzed before. Pseudoscalar (axion type) modes are existing in some types of crystals. Polar pseudoscalar lattice and exciton modes in low symmetrical crystals are strongly interacted with axions. In this work, optical excitation of axion-type modes in low symmetrical crystals is proposed for observation of axion - photon conversion processes. Instead of outer magnetic field, the crystalline field of such crystals may be used. The experimental schemes for axion-photon conversion processes observation with recording the secondary emission of luminescence, infrared or Stimulated Raman Scattering in some dielectric crystals are discussed.

  19. SQUID-Based Microwave Cavity Search for Dark-Matter Axions

    SciTech Connect

    Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; Bibber, K. van; Hotz, M.; Rosenberg, L. J; Rybka, G.; Hoskins, J.; Hwang, J.; Sikivie, P.; Tanner, D. B.; Bradley, R.; Clarke, J.

    2010-01-29

    Axions in the mueV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3 mueV and 3.53 mueV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.

  20. SQUID-Based Microwave Cavity Search for Dark-Matter Axions

    NASA Astrophysics Data System (ADS)

    Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hotz, M.; Rosenberg, L. J.; Rybka, G.; Hoskins, J.; Hwang, J.; Sikivie, P.; Tanner, D. B.; Bradley, R.; Clarke, J.; ADMX Collaboration

    2010-01-01

    Axions in the μeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3μeV and 3.53μeV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.

  1. The axion dark matter search at CAPP: a comprehensive approach

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis

    2017-01-01

    Axions are the result of a dynamic field, similar to Higgs field, invented to solve the so-called Strong CP-problem, i.e., why the electric dipole moment (EDM) of the neutron and proton has not been observed so far even though the theory of QCD predicts values by about ten order of magnitude larger than current experimental limits. Axions as dark matter can be thought of as an oscillatory field interacting extremely weakly with normal matter. The oscillation frequency is unknown, it can be anywhere between f = 200MHz to 200GHz and it's expected to be at a very narrow line, about d f/ f = 10-6. A strong magnetic field can be used to convert part of that field into a very weak electric field oscillating at the same frequency and phase as the axion field. In the coming years we plan to develop our experimental sensitivity to either observe or refute the axions as a viable dark matter candidate in a wide axion mass range. That approach includes the development of ultra strong magnets, high quality resonators in the presence of strong B-fields, new resonator geometries, low noise cryo-amplifiers and new techniques of detecting axions. Another related subject, through the strong CP-problem, is the search for the EDM of the proton, improving the present sensitivity on hadronic EDMs by more than three orders of magnitude to better than 10-29 e-cm. Usually the study of EDM involves the application of strong electric fields and originally neutral systems were thought to be easier to work with. Recently it became clear that charged particles in all-electric storage rings can be used for sensitive EDM searches by using techniques similar to the muon g-2 experiment. The high sensitivity study of the proton EDM is possible due to the high intensity polarized proton beams readily available today, making possible to reach 103 TeV in New Physics scale.

  2. A SQUID-Based RF Cavity Search for Dark Matter Axions

    NASA Astrophysics Data System (ADS)

    Hotz, Michael T.

    The axion is a hypothetical elementary particle resulting from a solution to the "Strong-CP" problem. This serious problem in the standard model of particle physics is manifested as a 1010 discrepancy between the measured upper limit and the calculated value of the neutron's electric dipole moment. Furthermore, a light (~mueV) axion is an ideal dark matter candidate: axions would have been copiously produced during the Big Bang and would be the primary component of the dark matter in the universe. The resolution of the Strong-CP problem and the discovery of the composition of dark matter are two of the most pressing problems in physics. The observation of a light, dark-matter axion would resolve both of these problems. The Axion Dark Matter eXperiment (ADMX) is the most sensitive search for dark-matter axions. Axions in our Milky Way Galaxy may scatter off a magnetic field and convert into microwave photons. ADMX consists of a tunable high-Q RF cavity within the bore of a large, 8.5 Tesla superconducting solenoidal magnet. When the cavity's resonant frequency matches the axion's total energy, the probability of axion-to-photon conversion is enhanced. The cavity's narrow bandwidth requires ADMX to slowly scan possible axion masses. A receiver amplifies, mixes, and digitizes the power developed in the cavity from possible axion-to-photon conversions. This is the most sensitive spectral receiver of microwave radiation in the world. The resulting data is scrutinized for an axion signal above the thermal background. ADMX first operated from 1995-2005 and produced exclusion limits on the energy of dark-matter axions from 1.9 mueV to 3.3 mueV. In order to improve on these limits and continue the search for plausible dark-matter axions, the system was considerably upgraded from 2005 until 2008. In the upgrade, the key technical advance was the use of a dc Superconducting QUantum Interference Device (SQUID) as a microwave amplifier. The SQUID amplifier's noise level is near

  3. Search for Sub-eV Mass Solar Axions by the CERN Axion Solar Telescope with {sup 3}He Buffer Gas

    SciTech Connect

    Arik, M.; Cetin, S. A.; Ezer, C.; Yildiz, S. C.; Aune, S.; Ferrer-Ribas, E.; Giomataris, I.; Papaevangelou, T.; Barth, K.; Borghi, S.; Davenport, M.; Elias, N.; Haug, F.; Laurent, J. M.; Niinikoski, T.; Silva, P. S.; Stewart, L.; Belov, A.; Gninenko, S.; Braeuninger, H.

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using {sup 3}He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with {sup 4}He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV < or approx. m{sub a} < or approx. 0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g{sub a}{gamma} < or approx. 2.3x10{sup -10} GeV{sup -1} at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m{sub a} < or approx. 1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  4. Constraining the axion-photon coupling with massive stars.

    PubMed

    Friedland, Alexander; Giannotti, Maurizio; Wise, Michael

    2013-02-08

    We point out that stars in the mass window ~8-12M([circumpunct]) can serve as sensitive probes of the axion-photon interaction, g(Aγγ). Specifically, for these stars axion energy losses from the helium-burning core would shorten and eventually eliminate the blue loop phase of the evolution. This would contradict observational data, since the blue loops are required, e.g., to account for the existence of Cepheid stars. Using the MESA stellar evolution code, modified to include the extra cooling, we conservatively find g(Aγγ)

  5. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field.

    PubMed

    McAllister, Ben T; Parker, Stephen R; Tobar, Michael E

    2016-04-22

    We show that the magnetic component of the photon field produced by dark matter axions via the two-photon coupling mechanism in a Sikivie haloscope is an important parameter passed over in previous analysis and experiments. The interaction of the produced photons will be resonantly enhanced as long as they couple to the electric or magnetic mode structure of the haloscope cavity. For typical haloscope experiments the electric and magnetic couplings are equal, and this has implicitly been assumed in past sensitivity calculations. However, for future planned searches such as those at high frequency, which synchronize multiple cavities, the sensitivity will be altered due to different magnetic and electric couplings. We define the complete electromagnetic form factor and discuss its implications for current and future dark matter axion searches over a wide range of masses.

  6. Observable dark radiation from a cosmologically safe QCD axion

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Yamada, Masaki; Yanagida, Tsutomu T.

    2015-06-01

    We propose a QCD axion model that avoids the cosmological domain wall problem, introducing a global S U (3 )f family symmetry in which we embed the unwanted Peccei-Quinn (PQ) discrete symmetry. The spontaneous breaking of S U (3 )f and PQ symmetry predicts eight NG bosons as well as axion, all of which contribute to the energy density of the Universe as dark radiation. The deviation from the standard model prediction of dark radiation can be observed by future observations of cosmic microwave background fluctuations. Our model also predicts a sizable exotic kaon decay rate, which is marginally consistent with the present collider data and would be tested by future collider experiments.

  7. Cosmologically Safe QCD Axion without Fine-Tuning

    NASA Astrophysics Data System (ADS)

    Yamada, Masaki; Yanagida, Tsutomu T.; Yonekura, Kazuya

    2016-02-01

    Although QCD axion models are widely studied as solutions to the strong C P problem, they generically confront severe fine-tuning problems to guarantee the anomalous Peccei-Quinn (PQ) symmetry. In this Letter, we propose a simple QCD axion model without any fine-tunings. We introduce an extra dimension and a pair of extra quarks living on two branes separately, which is also charged under a bulk Abelian gauge symmetry. We assume a monopole condensation on our brane at an intermediate scale, which implies that the extra quarks develop chiral symmetry breaking and the PQ symmetry is broken. In contrast to Kim's original model, our model explains the origin of the PQ symmetry thanks to the extra dimension and avoids the cosmological domain wall problem because of chiral symmetry breaking in Abelian gauge theory.

  8. Axionic dark matter signatures in various halo models

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Semertzidis, Y. K.

    2017-02-01

    In the present work we study possible signatures in the Axion Dark Matter searches. We focus on the dependence of the expected width in resonant cavities for various popular halo models, leading to standard velocity distributions, e.g. Maxwell-Boltzmann, as well as phase-mixed and non-virialized axionic dark matter (flows, caustic rings). We study, in particular, the time dependence of the resonance width (modulation) arising from such models. We find that the difference between the maximum (in June) and the minimum (in December) can vary by about 10% in the case of standard halos. In the case of mixed phase halos the variation is a bit bigger and for caustic rings the maximum is expected to occur a bit later. Experimentally such a modulation is observable with present technology.

  9. Subleading effects and the field range in axion inflation

    SciTech Connect

    Parameswaran, Susha; Tasinato, Gianmassimo; Zavala, Ivonne E-mail: g.tasinato2208@gmail.com

    2016-04-01

    An attractive candidate for the inflaton is an axion slowly rolling down a flat potential protected by a perturbative shift symmetry. Realisations of this idea within large field, natural and monomial inflation have been disfavoured by observations and are difficult to embed in string theory. We show that subleading, but significant non-perturbative corrections can superimpose sharp cliffs and gentle plateaus into the potential, whose overall effect is to enhance the number of e-folds of inflation. Sufficient e-folds are therefore achieved for smaller field ranges compared to the potential without such corrections. Thus, both single-field natural and monomial inflation in UV complete theories like string theory, can be restored into the favour of current observations, with distinctive signatures. Tensor modes result un-observably small, but there is a large negative running of the spectral index. Remarkably, natural inflation can be achieved with a single field whose axion decay constant is sub-Planckian.

  10. Cosmologically Safe QCD Axion without Fine-Tuning.

    PubMed

    Yamada, Masaki; Yanagida, Tsutomu T; Yonekura, Kazuya

    2016-02-05

    Although QCD axion models are widely studied as solutions to the strong CP problem, they generically confront severe fine-tuning problems to guarantee the anomalous Peccei-Quinn (PQ) symmetry. In this Letter, we propose a simple QCD axion model without any fine-tunings. We introduce an extra dimension and a pair of extra quarks living on two branes separately, which is also charged under a bulk Abelian gauge symmetry. We assume a monopole condensation on our brane at an intermediate scale, which implies that the extra quarks develop chiral symmetry breaking and the PQ symmetry is broken. In contrast to Kim's original model, our model explains the origin of the PQ symmetry thanks to the extra dimension and avoids the cosmological domain wall problem because of chiral symmetry breaking in Abelian gauge theory.

  11. Baryogenesis from strong CP violation and the QCD axion.

    PubMed

    Servant, Géraldine

    2014-10-24

    We show that strong CP violation from the QCD axion can be responsible for the matter antimatter asymmetry of the Universe in the context of cold electroweak baryogenesis if the electroweak phase transition is delayed below the GeV scale. This can occur naturally if the Higgs couples to a O(100)  GeV dilaton, as expected in some models where the Higgs is a pseudo-Nambu-Goldstone boson of a new strongly interacting sector at the TeV scale. The existence of such a second scalar resonance with a mass and properties similar to the Higgs boson will soon be tested at the LHC. In this context, the QCD axion would not only solve the strong CP problem, but also the matter antimatter asymmetry and dark matter.

  12. Axion search by laser-based experiment OSQAR

    NASA Astrophysics Data System (ADS)

    Sulc, M.; Pugnat, P.; Ballou, R.; Deferne, G.; Duvillaret, L.; Flekova, L.; Finger, M.; Finger, M.; Hosek, J.; Husek, T.; Jost, R.; Kral, M.; Kunc, S.; Macuchova, K.; Meissner, K. A.; Morville, J.; Romanini, D.; Schott, M.; Siemko, A.; Slunecka, M.; Vitrant, G.; Zicha, J.

    2013-08-01

    Laser-based experiment OSQAR in CERN is aimed to the search of the axions by two methods. The photon regeneration experiment is using two LHC dipole magnets of the length 14.3 m and magnetic field 9.5 T equipped with an optical barrier at the end of the first magnet. It looks as light shining through the wall. No excess of events above the background was detected at this arrangement. Nevertheless, this result extends the exclusion region for the axion mass. The second method wants to measure the ultra-fine vacuum magnetic birefringence for the first time. An optical scheme with electro-optical modulator has been proposed, validated and subsequently improved. Cotton-Mouton constant for air was determined in this experiment setup.

  13. Reply to "Comment on `Axion induced oscillating electric dipole moments'"

    NASA Astrophysics Data System (ADS)

    Hill, Christopher T.

    2017-03-01

    We respond to a paper of Flambaum et al. [Phys. Rev. D 95, 058701 (2017).], claiming there is no effective induced oscillating electric dipole moment, e.g., for the electron, arising from interaction with an oscillating cosmic axion background via the anomaly. The relevant Feynman amplitude, Fig. 1, as computed by Flambaum et al., becomes a total divergence, and vanishes. Contrary to this result, we obtained a nonvanishing amplitude that yields physical electric dipole radiation for an electron (or any magnetic dipole moment) immersed in a cosmic axion field. We argue that Flambaum et al.'s counterclaim is incorrect, and is based upon a misunderstanding of a physics choice vs gauge choice, and an assumption that electric dipoles be defined only by coupling to static (constant in time) electric fields.

  14. Reply to "Comment on `Axion Induced Oscillating Electric Dipole Moments' "

    SciTech Connect

    Hill, Christopher T.

    2015-10-19

    A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, in an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.

  15. The topological susceptibility in finite temperature QCD and axion cosmology

    DOE PAGES

    Petreczky, Peter; Schadler, Hans-Peter; Sharma, Sayantan

    2016-10-06

    We study the topological susceptibility in 2+1 flavor QCD above the chiral crossover transition temperature using Highly Improved Staggered Quark action and several lattice spacings corresponding to temporal extent of the lattice, Nτ=6,8,10 and 12. We observe very distinct temperature dependences of the topological susceptibility in the ranges above and below 250MeV. While for temperatures above 250MeV, the dependence is found to be consistent with dilute instanton gas approximation, at lower temperatures the fall-off of topological susceptibility is milder. We discuss the consequence of our results for cosmology wherein we estimate the bounds on the axion decay constant and themore » oscillation temperature if indeed the QCD axion is a possible dark matter candidate.« less

  16. Chaotic inflation with kinetic alignment of axion fields

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.; Dias, Mafalda; Frazer, Jonathan; McAllister, Liam

    2015-01-01

    N-flation is a radiatively stable scenario for chaotic inflation in which the displacements of N ≫1 axions with decay constants f1≤…≤fNaxion kinetic term generically leads to the phenomenon of kinetic alignment, allowing for effective displacements as large as √{N }fN≥fPy, even if f1,…,fN -1 are arbitrarily small. At the level of kinematics, the necessary alignment occurs with very high probability, because of eigenvector delocalization. We present conditions under which inflation can take place along an aligned direction. Our construction sharply reduces the challenge of realizing N-flation in string theory.

  17. The topological susceptibility in finite temperature QCD and axion cosmology

    NASA Astrophysics Data System (ADS)

    Petreczky, Peter; Schadler, Hans-Peter; Sharma, Sayantan

    2016-11-01

    We study the topological susceptibility in 2 + 1 flavor QCD above the chiral crossover transition temperature using Highly Improved Staggered Quark action and several lattice spacings corresponding to temporal extent of the lattice, Nτ = 6 , 8 , 10 and 12. We observe very distinct temperature dependences of the topological susceptibility in the ranges above and below 250 MeV. While for temperatures above 250 MeV, the dependence is found to be consistent with dilute instanton gas approximation, at lower temperatures the fall-off of topological susceptibility is milder. We discuss the consequence of our results for cosmology wherein we estimate the bounds on the axion decay constant and the oscillation temperature if indeed the QCD axion is a possible dark matter candidate.

  18. Axion monodromy inflation with multi-natural modulations

    SciTech Connect

    Higaki, Tetsutaro; Kobayashi, Tatsuo; Yamaguchi, Yuya; Seto, Osamu E-mail: kobayashi@particle.sci.hokudai.ac.jp E-mail: yy@particle.sci.hokudai.ac.jp

    2014-10-01

    We study parameter space in the axion monodromy inflation corrected by dynamically generated terms involving with the axion. The potential has the linear term with multiple sinusoidal functions, which play a role in generating modulations. We show that this potential leads both to a large tensor-to-scalar ratio r{sub T} ∼ 0.16 and to a large negative running of spectral index α{sub s} ∼ - (0.02 -0.03), ameliorating the tension between the result of the PLANCK and that of the BICEP2. To realize these results, a small hierarchy among dynamical scales is required whereas the decay constants in sinusoidal functions remain sub-Planckian in this model. We discuss also reheating process after the inflation in a bottom-up approach.

  19. Gravitational leptogenesis in axion inflation with SU(2) gauge field

    NASA Astrophysics Data System (ADS)

    Maleknejad, Azadeh

    2016-12-01

    We present an intrinsic leptogenesis mechanism in models of axion inflation with a classical SU(2) gauge field. The gauge field is coupled to the axion with a Chern-Simons interaction and comprises a tiny fraction of the total energy, ρYM/ρtot lesssim epsilon2. However, it has spin-2 fluctuations which breaks the parity and leads to the generation of chiral gravitational waves during inflation. By the gravitational anomaly in SM, it naturally creates a net lepton number density, sufficient to explain the matter asymmetry. We show that this mechanism can generate the observed value of baryon to photon number density in a natural range of parameters and yet has a small chiral tensor power spectrum on large scales.

  20. Grand unification, axion, and inflation in Intermediate Scale Supersymmetry

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence J.; Nomura, Yasunori; Shirai, Satoshi

    2014-06-01

    A class of supersymmetric grand unified theories is introduced that has a single scale below the cutoff, that of the supersymmetry breaking masses . For a wide range of the dimensionless parameters, agreement with the observed mass of the Higgs boson determines ~ 109-1013 GeV, yielding Intermediate Scale Supersymmetry. We show that within this framework it is possible for seesaw neutrino masses, axions, and inflation to be described by the scale m, offering the possibility of a unified origin of disparate phenomena. Neutrino masses allowing for thermal leptogenesis can be obtained, and the axion decay constant lies naturally in the range f a ~ 109-1011 GeV, consistent with a recent observational suggestion of high scale inflation. A minimal SU(5) model is presented that illustrates these features. In this model, the only states at the grand unified scale are those of the heavy gauge supermultiplet. The grand unified partners of the Higgs doublets have a mass of order m, leading to the dominant proton decay mode p → K +, which may be probed in upcoming experiments. Dark matter may be winos, with mass environmentally selected to the TeV scale, and/or axions. Gauge coupling unification is found to be successful, especially if the wino is at the TeV scale.

  1. Solar axion search technique with correlated signals from multiple detectors

    DOE PAGES

    Xu, Wenqin; Elliott, Steven R.

    2017-01-25

    The coherent Bragg scattering of photons converted from solar axions inside crystals would boost the signal for axion-photon coupling enhancing experimental sensitivity for these hypothetical particles. Knowledge of the scattering angle of solar axions with respect to the crystal lattice is required to make theoretical predications of signal strength. Hence, both the lattice axis angle within a crystal and the absolute angle between the crystal and the Sun must be known. In this paper, we examine how the experimental sensitivity changes with respect to various experimental parameters. We also demonstrate that, in a multiple-crystal setup, knowledge of the relative axismore » orientation between multiple crystals can improve the experimental sensitivity, or equivalently, relax the precision on the absolute solar angle measurement. However, if absolute angles of all crystal axes are measured, we find that a precision of 2°–4° will suffice for an energy resolution of σE = 0.04E and a flat background. Lastly, we also show that, given a minimum number of detectors, a signal model averaged over angles can substitute for precise crystal angular measurements, with some loss of sensitivity.« less

  2. All extremal instantons in Einstein-Maxwell-dilaton-axion theory

    NASA Astrophysics Data System (ADS)

    Azreg-Aïnou, Mustapha; Clément, Gérard; Gal'Tsov, Dmitri V.

    2011-11-01

    We construct explicitly all extremal instanton solutions to N=4, D=4 supergravity truncated to one vector field (Einstein-Maxwell-dilaton-axion theory). These correspond to null geodesics of the target space of the sigma-model G/H=Sp(4,R)/GL(2,R) obtained by compactification of four-dimensional Euclidean Einstein-Maxwell-dilaton-axion on a circle. They satisfy a no-force condition in terms of the asymptotic charges and part of them (corresponding to nilpotent orbits of the Sp(4,R) U-duality) are presumably supersymmetric. The space of finite action solutions is found to be unexpectedly large and includes, besides the Euclidean versions of known Lorentzian solutions, a number of new asymptotically locally flat instantons endowed with electric, magnetic, dilaton and axion charges. We also describe new classes of charged asymptotically locally Euclidean instantons as well as some exceptional solutions. Our classification scheme is based on the algebraic classification of matrix generators according to their rank, according to the nature of the charge vectors, and according to the number of independent harmonic functions with unequal charges. Besides the nilpotent orbits of G, we find solutions which satisfy the asymptotic no-force condition, but are not supersymmetric. The renormalized on-shell action for instantons is calculated using the method of matched background subtraction.

  3. An Improved Signal Model for Axion Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Lentz, Erik; ADMX Collaboration

    2017-01-01

    To date, most direct detection searches for axion dark matter, such as those by the Axion Dark Matter eXperiment (ADMX) microwave cavity search, have assumed a signal shape based on an isothermal spherical model of the Milky Way halo. Such a model is not capable of capturing contributions from realistic infall, nor from a baryonic disk. Modern N-Body simulations of structure formation can produce realistic Milky Way-like halos which include the influences of baryons, infall, and environmental influences. This talk presents an analysis of the Romulus25 N-Body simulation in the context of direct dark matter axion searches. An improved signal shape and an account of the relevant halo dynamics are given. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.

  4. New constraints for heavy axion-like particles from supernovae

    SciTech Connect

    Giannotti, M.; Nita, R.; Duffy, L.D. E-mail: ldd@lanl.gov

    2011-01-01

    We derive new constraints on the coupling of heavy pseudoscalar (axion-like) particles to photons, based on the gamma ray flux expected from the decay of these particles into photons. After being produced in the supernova core, these heavy axion-like particles would escape and a fraction of them would decay into photons before reaching the Earth. We have calculated the expected flux on Earth of these photons from the supernovae SN 1987A and Cassiopeia A and compared our results to data from the Fermi Large Area Telescope. This analysis provides strong constraints on the parameter space for axion-like particles. For a particle mass of 100 MeV, we find that the Peccei-Quinn constant, f{sub a}, must be greater than about 10{sup 15} GeV. Alternatively, for f{sub a} = 10{sup 12} GeV, we exclude the mass region between approximately 100 eV and 1 GeV.

  5. Solar axion search technique with correlated signals from multiple detectors

    NASA Astrophysics Data System (ADS)

    Xu, Wenqin; Elliott, Steven R.

    2017-03-01

    The coherent Bragg scattering of photons converted from solar axions inside crystals would boost the signal for axion-photon coupling enhancing experimental sensitivity for these hypothetical particles. Knowledge of the scattering angle of solar axions with respect to the crystal lattice is required to make theoretical predications of signal strength. Hence, both the lattice axis angle within a crystal and the absolute angle between the crystal and the Sun must be known. In this paper, we examine how the experimental sensitivity changes with respect to various experimental parameters. We also demonstrate that, in a multiple-crystal setup, knowledge of the relative axis orientation between multiple crystals can improve the experimental sensitivity, or equivalently, relax the precision on the absolute solar angle measurement. However, if absolute angles of all crystal axes are measured, we find that a precision of 2∘ -4∘ will suffice for an energy resolution of σE = 0.04 E and a flat background. Finally, we also show that, given a minimum number of detectors, a signal model averaged over angles can substitute for precise crystal angular measurements, with some loss of sensitivity.

  6. Gauge-preheating and the end of axion inflation

    SciTech Connect

    Adshead, Peter; Sfakianakis, Evangelos I.; Giblin, John T. Jr.; Scully, Timothy R. E-mail: giblinj@kenyon.edu E-mail: esfaki@illinois.edu

    2015-12-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, U(1), gauge field via a Chern-Simons interaction term. We focus primarily on m{sup 2φ2} inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton transfers all of its energy to the gauge fields within a few oscillations. In most cases, we find that the gauge fields on sub-horizon scales end preheating in an unpolarized state due to the existence of strong rescattering between the inflaton and gauge-field modes. We also present a preliminary study of an axion monodromy model coupled to U(1) gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons.

  7. Oscillations in the CMB from Axion Monodromy Inflation

    SciTech Connect

    Flauger, Raphael; McAllister, Liam; Pajer, Enrico; Westphal, Alexander; Xu, Gang; /Cornell U., Phys. Dept.

    2011-12-01

    We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axion monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.

  8. Exotic axion cosmology in theories with phase transitions below the QCD scale.

    PubMed

    Kaplan, David B; Zurek, Kathryn M

    2006-02-03

    We show that axion phenomenology may be significantly different than conventionally assumed in theories which exhibit late phase transitions (below the QCD scale). In such theories, one can find multiple pseudoscalars with axionlike couplings to matter, including a string scale axion, whose decay constant far exceeds the conventional cosmological bound. Such theories have several dark matter candidates.

  9. Constraints on axions and axionlike particles from Fermi Large Area Telescope observations of neutron stars

    NASA Astrophysics Data System (ADS)

    Berenji, B.; Gaskins, J.; Meyer, M.

    2016-02-01

    We present constraints on the nature of axions and axionlike particles (ALPs) by analyzing gamma-ray data from neutron stars using the Fermi Large Area Telescope. In addition to axions solving the strong C P problem of particle physics, axions and ALPs are also possible dark matter candidates. We investigate axions and ALPs produced by nucleon-nucleon bremsstrahlung within neutron stars. We derive a phenomenological model for the gamma-ray spectrum arising from subsequent axion decays. By analyzing five years of gamma-ray data (between 60 and 200 MeV) for a sample of four nearby neutron stars, we do not find evidence for an axion or ALP signal; thus we obtain a combined 95% confidence level upper limit on the axion mass of 7.9 ×10-2 eV , which corresponds to a lower limit for the Peccei-Quinn scale fa of 7.6 ×107 GeV . Our constraints are more stringent than previous results probing the same physical process, and are competitive with results probing axions and ALPs by different mechanisms.

  10. Constraints on axions and axionlike particles from Fermi Large Area Telescope observations of neutron stars

    SciTech Connect

    Berenji, B.; Gaskins, J.; Meyer, M.

    2016-02-16

    We present constraints on the nature of axions and axion–like particles (ALPs) by analyzing gamma–ray data from neutron stars using the Fermi Large Area Telescope. In addition to axions solving the strong CP problem of particle physics, axions and ALPs are also possible dark matter candidates. We investigate axions and ALPs produced by nucleon–nucleon bremsstrahlung within neutron stars. We derive a phenomenological model for the gamma–ray spectrum arising from subsequent axion decays. By analyzing 5 years of gamma-ray data (between 60 MeV and 200 MeV) for a sample of 4 nearby neutron stars, we do not find evidence for an axion or ALP signal, thus we obtain a combined 95% confidence level upper limit on the axion mass of 7.9×10-2 eV, which corresponds to a lower limit for the Peccei-Quinn scale fa of 7.6×107 GeV. Our constraints are more stringent than previous results probing the same physical process, and are competitive with results probing axions and ALPs by different mechanisms.

  11. Constraints on axions and axionlike particles from Fermi Large Area Telescope observations of neutron stars

    DOE PAGES

    Berenji, B.; Gaskins, J.; Meyer, M.

    2016-02-16

    We present constraints on the nature of axions and axion–like particles (ALPs) by analyzing gamma–ray data from neutron stars using the Fermi Large Area Telescope. In addition to axions solving the strong CP problem of particle physics, axions and ALPs are also possible dark matter candidates. We investigate axions and ALPs produced by nucleon–nucleon bremsstrahlung within neutron stars. We derive a phenomenological model for the gamma–ray spectrum arising from subsequent axion decays. By analyzing 5 years of gamma-ray data (between 60 MeV and 200 MeV) for a sample of 4 nearby neutron stars, we do not find evidence for anmore » axion or ALP signal, thus we obtain a combined 95% confidence level upper limit on the axion mass of 7.9×10-2 eV, which corresponds to a lower limit for the Peccei-Quinn scale fa of 7.6×107 GeV. Our constraints are more stringent than previous results probing the same physical process, and are competitive with results probing axions and ALPs by different mechanisms.« less

  12. Axion as a Cold Dark Matter Candidate: Proof to Fully Nonlinear Order

    NASA Astrophysics Data System (ADS)

    Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung

    2017-09-01

    We present proof of the axion as a cold dark matter (CDM) candidate to the fully nonlinear order perturbations based on Einstein’s gravity. We consider the axion as a coherently oscillating massive classical scalar field without interaction. We present the fully nonlinear and exact, except for ignoring the transverse-tracefree tensor-type perturbation, hydrodynamic equations for an axion fluid in Einstein’s gravity. We show that the axion has the characteristic pressure and anisotropic stress; the latter starts to appear from the second-order perturbation. But these terms do not directly affect the hydrodynamic equations in our axion treatment. Instead, what behaves as the effective pressure term in relativistic hydrodynamic equations is the perturbed lapse function and the relativistic result coincides exactly with the one known in the previous non-relativistic studies. The effective pressure term leads to a Jeans scale that is of the solar-system scale for conventional axion mass. As the fully nonlinear and relativistic hydrodynamic equations for an axion fluid coincide exactly with the ones of a zero-pressure fluid in the super-Jeans scale, we have proved the CDM nature of such an axion in that scale.

  13. The search for axion-like dark matter using magnetic resonance

    NASA Astrophysics Data System (ADS)

    Sushkov, Alexander; Casper Collaboration

    2016-05-01

    The nature of dark matter is one of the most important open problems in modern physics, and it is necessary to develop techniques to search for a wide class of dark-matter candidates. Axions, originally introduced to resolve the strong CP problem in quantum chromodynamics (QCD), and axion-like particles (ALPs) are strongly motivated dark matter candidates. Nuclear spins interacting with axion-like background dark matter experience an energy shift, oscillating at the frequency equal to the axion Compton frequency. The Cosmic Axion Spin Precession Experiments (CASPEr) use precision magnetometry and nuclear magnetic resonance techniques to search for the effects of this interaction. The experimental signature is precession of the nuclear spins under the condition of magnetic resonance: when the bias magnetic field is tuned such that the nuclear spin sublevel splitting is equal to the axion Compton frequency. These experiments have the potential to detect axion-like dark matter in a wide mass range (10-12 eV to 10-6 eV, scanned by changing the bias magnetic field from approximately 1 gauss to 20 tesla) and with coupling strengths many orders of magnitude beyond the current astrophysical and laboratory limits, and all the way down to those corresponding to the QCD axion. Supported by the Heising-Simons Foundation.

  14. Exploring 0.1–10 eV axions with a new helioscope concept

    SciTech Connect

    Galán, J.; Dafni, T.; Iguaz, F.J. E-mail: Theopisti.Dafni@cern.ch; and others

    2015-12-01

    We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbar to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10{sup −11} GeV{sup −1} for a 5 T, m{sup 3} scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0∼> 10 meV.

  15. Determination of effective axion masses in the helium-3 buffer of CAST

    SciTech Connect

    Ruz, J

    2011-11-18

    The CERN Axion Solar Telescope (CAST) is a ground based experiment located in Geneva (Switzerland) searching for axions coming from the Sun. Axions, hypothetical particles that not only could solve the strong CP problem but also be one of the favored candidates for dark matter, can be produced in the core of the Sun via the Primakoff effect. They can be reconverted into X-ray photons on Earth in the presence of strong electromagnetic fields. In order to look for axions, CAST points a decommissioned LHC prototype dipole magnet with different X-ray detectors installed in both ends of the magnet towards the Sun. The analysis of the data acquired during the first phase of the experiment yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV/c{sup 2}. During the second phase, CAST extends its mass sensitivity by tuning the electron density present in the magnetic field region. Injecting precise amounts of helium gas has enabled CAST to look for axion masses up to 1.2 eV/c{sup 2}. This paper studies the determination of the effective axion masses scanned at CAST during its second phase. The use of a helium gas buffer at temperatures of 1.8 K has required a detailed knowledge of the gas density distribution. Complete sets of computational fluid dynamic simulations validated with experimental data have been crucial to obtain accurate results.

  16. Large-scale microwave cavity search for dark-matter axions

    NASA Astrophysics Data System (ADS)

    Asztalos, S.; Daw, E.; Peng, H.; Rosenberg, L. J.; Hagmann, C.; Kinion, D.; Stoeffl, W.; van Bibber, K.; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Nezrick, F.; Turner, M. S.; Moltz, D. M.; Powell, J.; André, M.-O.; Clarke, J.; Mück, M.; Bradley, Richard F.

    2001-11-01

    We have built and operated a large-scale axion detector, based on a method originally proposed by Sikivie, to search for halo axions. The apparatus consists of a cylindrical tunable high-Q microwave cavity threaded axially by a static high magnetic field. This field stimulates axions that enter the cavity to convert into single microwave photons. The conversion is resonantly enhanced when the cavity resonant frequency is near the axion rest mass energy. The experiment is cooled to 1.5 K and the electromagnetic power spectrum emitted by the cavity is measured by an ultra-low-noise microwave receiver. The axion would be detected as excess power in a narrow line within the cavity resonance. The apparatus has achieved a power sensitivity better than 10-23 W in the mass range 2.9-3.3 μeV. For the first time the rf cavity technique has explored plausible axion models, assuming axions make up a significant fraction of the local halo density. The experiment continues to operate and will explore a large part of the mass in the range of 1-10 μeV in the near future. An upgrade of the experiment is planned with dc superconducting quantum interference device microwave amplifiers operating at a lower physical temperature. This next generation detector would be sensitive to even more weakly coupled axions contributing only fractionally to the local halo density.

  17. Chiral primordial blue tensor spectra from the axion-gauge couplings

    NASA Astrophysics Data System (ADS)

    Obata, Ippei

    2017-06-01

    We suggest the new feature of primordial gravitational waves sourced by the axion-gauge couplings, whose forms are motivated by the dimensional reduction of the form field in the string theory. In our inflationary model, as an inflaton we adopt two types of axion, dubbed the model-independent axion and the model-dependent axion, which couple with two gauge groups with different sign combination each other. Due to these forms both polarization modes of gauge fields are amplified and enhance both helicies of tensor modes during inflation. We point out the possibility that a primordial blue-tilted tensor power spectra with small chirality are provided by the combination of these axion-gauge couplings, intriguingly both amplitudes and chirality are potentially testable by future space-based gravitational wave interferometers such as DECIGO and BBO project.

  18. Gamma-ray boxes from axion-mediated dark matter

    SciTech Connect

    Ibarra, Alejandro; Gehler, Sergio López; Pato, Miguel; Lee, Hyun Min; Park, Wan-Il E-mail: hyun.min.lee@cern.ch E-mail: wipark@kias.re.kr

    2013-05-01

    We compute the gamma-ray output of axion-mediated dark matter and derive the corresponding constraints set by recent data. In such scenarios the dark matter candidate is a Dirac fermion that pair-annihilates into axions and/or scalars. Provided that the axion decays (at least partly) into photons, these models naturally give rise to a box-shaped gamma-ray spectrum that may present two distinct phenomenological behaviours: a narrow box, resembling a line at half the dark matter mass, or a wide box, spanning an extensive energy range up to the dark matter mass. Remarkably, we find that in both cases a sizable gamma-ray flux is predicted for a thermal relic without fine-tuning the model parameters nor invoking boost factors. This large output is in line with recent Fermi-LAT observations towards the galactic centre region and is on the verge of being excluded. We then make use of the Fermi-LAT and H.E.S.S. data to derive robust, model-independent upper limits on the dark matter annihilation cross section for the narrow and wide box scenarios. H.E.S.S. constraints, in particular, turn out to match the ones from Fermi-LAT at hundreds of GeV and extend to multi-TeV masses. Future Čerenkov telescopes will likely probe gamma-ray boxes from thermal dark matter relics in the whole multi-TeV range, a region hardly accessible to direct detection, collider searches and other indirect detection strategies.

  19. Systematics of axion inflation in Calabi-Yau hypersurfaces

    NASA Astrophysics Data System (ADS)

    Long, Cody; McAllister, Liam; Stout, John

    2017-02-01

    We initiate a comprehensive survey of axion inflation in compactifications of type IIB string theory on Calabi-Yau hypersurfaces in toric varieties. For every threefold with h 1,1 ≤ 4 in the Kreuzer-Skarke database, we compute the metric on Kähler moduli space, as well as the matrix of four-form axion charges of Euclidean D3-branes on rigid divisors. These charges encode the possibility of enlarging the field range via alignment. We then determine an upper bound on the inflationary field range Δ ϕ that results from the leading instanton potential, in the absence of monodromy. The bound on the field range in this ensemble is Δ ϕ ≲ 0 .3 M pl, in a compactification where the smallest curve volume is (2 π)2 α', and we argue that the sigma model expansion is adequately controlled. The largest increase resulting from alignment is a factor ≈ 2 .6. We also examine a set of threefolds with h 1,1 up to 100 and characterize their axion charge matrices. While we find modest alignment in this ensemble, the maximum field range is ultimately suppressed by the volume of the internal space, which typically grows quickly with h 1,1. Furthermore, we find that many toric divisors are rigid — and the corresponding charge matrices are relatively trivial — at large h 1,1. It is therefore challenging to realize alignment via superpotentials generated only by Euclidean D3-branes, without taking into account the effects of flux, D7-branes, and orientifolding.

  20. Status of the large-scale dark-matter axion search

    SciTech Connect

    Van Bibber, K.; Hagmann, C.; Stoeffl, W.; Daw, E.; Rosenberg, L.; Sikivie, P.; Sullivan, N.; Tanner, D.; Moltz, D.; Tighe, R.

    1994-09-01

    If axions constitute the dark matter of our galactic halo they can be detected by their conversion into monochromatic microwave photons in a high-Q microwave cavity permeated by a strong magnetic field. A large-scale experiment is under construction at LLNL to search for halo axions in the mass range 1.3 - 13 {mu}eV, where axions may constitute closure density of the universe. The search builds upon two pilot efforts at BNL and the University of Florida in the late 1980`s, and represents a large improvement in power sensitivity ({approximately}50) both due to the increase in magnetic volume (B{sup 2}V = 14 T{sup 2}m{sup 3}), and anticipated total noise temperature (T{sub n} {approximately}3K). This search will also mark the first use of multiple power-combined cavities to extend the mass range accessible by this technique. Data will be analyzed in two parallel streams. In the first, the resolution of the power spectrum will be sufficient to resolve the expected width of the overall axion line, {approximately}{bigcirc} (1kHz). In the second, the resolution will be {bigcirc}(O.01-1 Hz) to look for extremely narrow substructure reflecting the primordial phase-space of the axions during infall. This experiment will be the first to have the required sensitivity to detect axions, for plausible axion models.

  1. Detailed design of a resonantly enhanced axion-photon regeneration experiment

    SciTech Connect

    Mueller, Guido; Sikivie, Pierre; Tanner, D. B.; Bibber, Karl van

    2009-10-01

    A resonantly enhanced photon-regeneration experiment to search for the axion or axionlike particles is described. This experiment is a shining light through walls study, where photons traveling through a strong magnetic field are (in part) converted to axions; the axions can pass through an opaque wall and convert (in part) back to photons in a second region of strong magnetic field. The photon regeneration is enhanced by employing matched Fabry-Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon-regeneration magnet. Compared to simple single-pass photon regeneration, this technique would result in a gain of (F/{pi}){sup 2}, where F is the finesse of each cavity. This gain could feasibly be as high as 10{sup 10}, corresponding to an improvement in the sensitivity to the axion-photon coupling, g{sub a{gamma}}{sub {gamma}}, of order (F/{pi}){sup 1/2}{approx}300. This improvement would enable, for the first time, a purely laboratory experiment to probe axion-photon couplings at a level competitive with, or superior to, limits from stellar evolution or solar axion searches. This report gives a detailed discussion of the scheme for actively controlling the two Fabry-Perot cavities and the laser frequencies, and describes the heterodyne signal detection system, with limits ultimately imposed by shot noise.

  2. Axion-photon conversion caused by dielectric interfaces: quantum field calculation

    NASA Astrophysics Data System (ADS)

    Ioannisian, Ara N.; Kazarian, Narine; Millar, Alexander J.; Raffelt, Georg G.

    2017-09-01

    Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ("Garibian wave function") and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagnetic fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unperturbed axion and photon wave functions, in analogy to the usual treatment of microwave-cavity haloscopes.

  3. 130 GeV gamma-ray line through axion conversion

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masato; Kohri, Kazunori; Ioka, Kunihito; Nojiri, Mihoko M.

    2015-03-01

    We apply the axion-photon conversion mechanism to the 130 GeV γ -ray line observed by the Fermi satellite. Near the Galactic center, some astrophysical sources and/or particle dark matter can produce energetic axions (or axionlike particles), and the axions convert to γ rays in Galactic magnetic fields along their flight to the Earth. Since continuum γ -ray and antiproton productions are sufficiently suppressed in axion production, the scenario fits the 130 GeV γ -ray line without conflicting with cosmic ray measurements. We derive the axion production cross section and the decay rate of dark matter to fit the γ -ray excess as functions of axion parameters. In the scenario, the γ -ray spatial distributions depend on both the dark matter profile and the magnetic field configuration, which will be tested by future γ -ray observations, e.g., H.E.S.S. II, CTA, and GAMMA-400. As an illustrative example, we study realistic supersymmetric axion models, and show the favored parameters that nicely fit the γ -ray excess.

  4. Improved Constraints on an Axion-Mediated Force

    SciTech Connect

    Hoedl, S. A.; Fleischer, F.; Adelberger, E. G.; Heckel, B. R.

    2011-01-28

    Low mass pseudoscalars, such as the axion, can mediate macroscopic parity and time-reversal symmetry-violating forces. We searched for such a force between polarized electrons and unpolarized atoms using a novel, magnetically unshielded torsion pendulum. We improved the laboratory bounds on this force by more than 10 orders of magnitude for pseudoscalars heavier than 1 meV and have constrained this force over a broad range of astrophysically interesting masses (10 {mu}eV to 10 meV).

  5. Preheating and entropy perturbations in axion monodromy inflation

    SciTech Connect

    McDonough, Evan; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert H.

    2016-05-04

    We study the preheating of gauge fields in a simple axion monodromy model and compute the induced entropy perturbations and their effect on the curvature fluctuations. We find that the correction to the spectrum of curvature perturbations has a blue spectrum with index n{sub s}=5/2. Hence, these induced modes are harmless for the observed structure of the universe. Since the spectrum is blue, there is the danger of overproduction of primordial black holes. However, we show that the observational constraints are easily satisfied.

  6. Recombination era magnetic fields from axion dark matter

    NASA Astrophysics Data System (ADS)

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-01

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ˜10 kpc and have a magnitude of the order of B ˜1 0-23G today. The field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  7. A Torsion-Balance Search for Axion-Like Particles

    NASA Astrophysics Data System (ADS)

    Fleischer, Frank; Hoedl, Seth; Adelberger, Eric; Heckel, Blayne; Hoyle, C. D.; Shook, David; Swanson, Erik

    2012-03-01

    Axion-like particles can mediate macroscopic parity and time-reversal symmetry violating forces. We will present a search for such a force between polarized electrons and unpolarized atoms using a novel torsion pendulum operating in the unshielded magnetic field of an electromagnet. Laboratory bounds on this force were improved by more than 10 orders of magnitude for pseudoscalars heavier than 1,, and constraints on this force were established over a broad range of astrophysically interesting masses from 10,eV to 10,. Plans for a next generation of this experiment will be discussed.

  8. Improved Constraints on an Axion-Mediated Force

    NASA Astrophysics Data System (ADS)

    Hoedl, S. A.; Fleischer, F.; Adelberger, E. G.; Heckel, B. R.

    2011-01-01

    Low mass pseudoscalars, such as the axion, can mediate macroscopic parity and time-reversal symmetry-violating forces. We searched for such a force between polarized electrons and unpolarized atoms using a novel, magnetically unshielded torsion pendulum. We improved the laboratory bounds on this force by more than 10 orders of magnitude for pseudoscalars heavier than 1 meV and have constrained this force over a broad range of astrophysically interesting masses (10μeV to 10 meV).

  9. Effective cosmological constant within the expanding axion universe

    NASA Astrophysics Data System (ADS)

    Pierpoint, M. P.; Kusmartsev, F. V.

    2014-09-01

    We show that the value of an effective cosmological constant, Λeff, is influenced by the dimensionality of the space. Results were obtained in the framework of the axion model describing expansion of the inhomogeneous universe. Λeff determines the tension of the space (i.e. elasticity), and is relaxed when extra dimensions are accessible. We demonstrate that the effective value of the cosmological constant may be tuned to be consistent with experimental observation. Inhomogeneities considered are representative of temperature fluctuations observed within the cosmic microwave background radiation.

  10. On axionic field ranges, loopholes and the weak gravity conjecture

    DOE PAGES

    Brown, Jon; Cottrell, William; Shiu, Gary; ...

    2016-04-05

    Here, we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. In particular we address certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work. We also point out the difficulties faced by attempts to evade these constraints. Furthermore, these new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.

  11. The large scale U.S. dark matter axion search

    NASA Astrophysics Data System (ADS)

    Kinion, D.; van Bibber, K.

    1999-03-01

    We describe the instrumentation and operations of the microwave cavity axion detector presently taking data at Lawrence Livermore National Laboratory. This experiment, a collaboration of LLNL, MIT, Univ. of Florida, LBNL, Univ. of Chicago, FNAL, and INR/Moscow, has been operating with greater than 90% live time since February 1996 with the objective of exploring the region from 0.3 to 3.0GHz (1.2 to 12.4μeV) at greater than KSVZ sensitivity. In a companion paper (E. Daw) in these proceedings, the data analysis and first results will be described. (See also [1]).

  12. Large scale U.S. dark matter Axion search

    SciTech Connect

    Kinion, D

    1998-08-01

    We describe the instrumentation and operations of the microwave cavity axion detector presently taking data at Lawrence Livermore National Laboratory This experiment, in collaboration of LLNL, MIT, Univ of Florida, LBNL, Univ of Chicago, FNAL, and INR/Moscow, has been operating with greater than 90% live time since February 1996 with the objective of exploring the region from 0 5 to 1 9 GHz (2 1 to 7 9 µeV) at greater than KSVZ sensitivitv In a com~&on paper (E Daw) in these proceedings, the data analysis and Iirst results will be described (See also

  13. Wilson Fermions and Axion Electrodynamics in Optical Lattices

    SciTech Connect

    Bermudez, A.; Martin-Delgado, M. A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.

    2010-11-05

    We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.

  14. On axionic field ranges, loopholes and the weak gravity conjecture

    SciTech Connect

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo

    2016-04-05

    Here, we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. In particular we address certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work. We also point out the difficulties faced by attempts to evade these constraints. Furthermore, these new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.

  15. Recombination era magnetic fields from axion dark matter

    SciTech Connect

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-04

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10–23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  16. Recombination era magnetic fields from axion dark matter

    DOE PAGES

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-04

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10–23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  17. Wilson fermions and axion electrodynamics in optical lattices.

    PubMed

    Bermudez, A; Mazza, L; Rizzi, M; Goldman, N; Lewenstein, M; Martin-Delgado, M A

    2010-11-05

    We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.

  18. Axion-like-particle search with high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Döbrich, Babette; Gies, Holger

    2010-10-01

    We study ALP -photon-conversion within strong inhomogeneous electromagnetic fields as provided by contemporary high-intensity laser systems. We observe that probe photons traversing the focal spot of a superposition of Gaussian beams of a single high-intensity laser at fundamental and frequency-doubled mode can experience a frequency shift due to their intermittent propagation as axion-like-particles. This process is strongly peaked for resonant masses on the order of the involved laser frequencies. Purely laser-based experiments in optical setups are sensitive to ALPs in the eV mass range and can thus complement ALP searches at dipole magnets.

  19. Potential solar axion signatures in X-ray observations with the XMM-Newton observatory

    NASA Astrophysics Data System (ADS)

    Fraser, G. W.; Read, A. M.; Sembay, S.; Carter, J. A.; Schyns, E.

    2014-12-01

    The soft X-ray flux produced by solar axions in the Earth's magnetic field is evaluated in the context of the European Space Agency's XMM-Newton observatory. Recent calculations of the scattering of axion-conversion X-rays suggest that the sunward magnetosphere could be an observable source of 0.2-10 keV photons. For XMM-Newton, any conversion X-ray intensity will be seasonally modulated by virtue of the changing visibility of the sunward magnetic field region. A simple model of the geomagnetic field is combined with the ephemeris of XMM-Newton to predict the seasonal variation of the conversion X-ray intensity. This model is compared with stacked XMM-Newton blank sky datasets from which point sources have been systematically removed. Remarkably, a seasonally varying X-ray background signal is observed. The European Photon Imaging Camera count rates are in the ratio of their X-ray grasps, indicating a non-instrumental, external photon origin, with significances of 11σ (pn), 4σ (MOS1) and 5σ (MOS2). After examining the distribution of the constituent observations spatially, temporally and in terms of the accepted representation of the cosmic X-ray background, we conclude that this variable signal is consistent with the conversion of solar axions in the Earth's magnetic field, assuming the resultant photons are not strictly forward-directed, and enter the field of view of XMM-Newton. The spectrum is consistent with a solar axion spectrum dominated by bremsstrahlung- and Compton-like processes, distinct from a Primakoff spectrum, i.e. axion-electron coupling dominates over axion-photon coupling and the peak of the axion spectrum is below 1 keV. A value of 2.2 × 10-22 GeV-1 is derived for the product of the axion-photon and axion-electron coupling constants, for an axion mass in the μeV range. Comparisons, e.g., with limits derived from white dwarf cooling may not be applicable, as these refer to axions in the ˜0.01 eV range. Preliminary results are given of a

  20. Finding the Axion: The Search for the Dark Matter of the Universe

    SciTech Connect

    Carosi, G

    2006-11-03

    The nature of dark matter has been a mystery for over 70 years. One plausible candidate is the axion, an extremely light and weakly interacting particle, which results from the Peccei-Quinn solution to the strong CP problem. In this proceedings I will briefly review the evidence for dark matter as well as the motivation for the existence of the axion as a prime dark matter candidate. I will then discuss the experimental methods to search for axion dark matter focusing on a sensitive cavity experiment (ADMX) being run at Lawrence Livermore National Laboratory.

  1. The Einstein-Maxwell-aether-axion theory: Dynamo-optical anomaly in the electromagnetic response

    NASA Astrophysics Data System (ADS)

    Alpin, Timur Yu.; Balakin, Alexander B.

    2016-03-01

    We consider a pp-wave symmetric model in the framework of the Einstein-Maxwell-aether-axion theory. Exact solutions to the equations of axion electrodynamics are obtained for the model, in which pseudoscalar, electric and magnetic fields were constant before the arrival of a gravitational pp-wave. We show that dynamo-optical interactions, i.e. couplings of electromagnetic field to a dynamic unit vector field, attributed to the velocity of a cosmic substratum (aether, vacuum, dark fluid…), provide the response of axionically active electrodynamic system to display anomalous behavior.

  2. First Results from a Microwave Cavity Axion Search at 24 μ eV

    NASA Astrophysics Data System (ADS)

    Brubaker, B. M.; Zhong, L.; Gurevich, Y. V.; Cahn, S. B.; Lamoreaux, S. K.; Simanovskaia, M.; Root, J. R.; Lewis, S. M.; Al Kenany, S.; Backes, K. M.; Urdinaran, I.; Rapidis, N. M.; Shokair, T. M.; van Bibber, K. A.; Palken, D. A.; Malnou, M.; Kindel, W. F.; Anil, M. A.; Lehnert, K. W.; Carosi, G.

    2017-02-01

    We report on the first results from a new microwave cavity search for dark matter axions with masses above 20 μ eV . We exclude axion models with two-photon coupling ga γ γ≳2 ×10-14 GeV-1 over the range 23.55 axion search.

  3. Nonlinear resonant oscillation of gravitational potential induced by ultralight axion in f (R ) gravity

    NASA Astrophysics Data System (ADS)

    Aoki, Arata; Soda, Jiro

    2017-07-01

    We study the ultralight axion dark matter with mass around 10-22 eV in f (R ) gravity which might resolve the dark energy problem. In particular, we focus on the fact that the pressure of the axion field oscillating in time produces oscillations of gravitational potentials. We show that the oscillation of the gravitational potential is sensitive to the model of gravity. Remarkably, we find that the detectability of the oscillation through the gravitational wave detectors can be significantly enhanced due to the nonlinear resonance between the ultralight axion and the scalaron.

  4. The sign of the dipole-dipole potential by axion exchange

    NASA Astrophysics Data System (ADS)

    Daido, Ryuji; Takahashi, Fuminobu

    2017-09-01

    We calculate a dipole-dipole potential between fermions mediated by a light pseudoscalar, axion, paying a particular attention to the overall sign. While the sign of the potential is physical and important for experiments to discover or constrain the axion coupling to fermions, there is often a sign error in the literature. The purpose of this short note is to clarify the sign issue of the axion-mediated dipole-dipole potential. As a by-product, we find a sign change of the dipole-dipole potenital due to the different spin of the mediating particle.

  5. Axionic field theory of (3+1)-dimensional Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Tewari, Sumanta

    2013-12-01

    From a direct calculation of the anomalous Hall conductivity and an effective electromagnetic action obtained via Fujikawa's chiral rotation technique, we conclude that an axionic field theory with a nonquantized coefficient describes the electromagnetic response of the (3+1)-dimensional Weyl semimetal. The coefficient is proportional to the momentum space separation of the Weyl nodes. Akin to the Chern-Simons field theory of quantum Hall effect, the axion field theory violates gauge invariance in the presence of the boundary, which is cured by the chiral anomaly of the surface states via the Callan-Harvey mechanism. This provides a unique solution for the radiatively induced CPT-odd term in the electromagnetic polarization tensor of the Lorentz violating spinor electrodynamics, where the source of the Lorentz violation is a constant axial 4-vector term for the Dirac fermion. A direct linear response calculation also establishes anomalous thermal Hall effect and a Wiedemann-Franz law, but thermal Hall conductivity does not directly follow from the well known formula for the gravitational chiral anomaly.

  6. Magnetic catalysis and axionic charge density wave in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Sau, Jay D.

    2015-09-01

    Three-dimensional Weyl and Dirac semimetals can support a chiral-symmetry-breaking, fully gapped, charge-density-wave order even for sufficiently weak repulsive electron-electron interactions, when placed in strong magnetic fields. In the former systems, due to the natural momentum space separation of Weyl nodes the ordered phase lacks the translational symmetry and represents an axionic phase of matter, while that in a Dirac semimetal (neglecting the Zeeman coupling) is only a trivial insulator. We present the scaling of this spectral gap for a wide range of subcritical (weak) interactions as well as that of the diamagnetic susceptibility with the magnetic field. A similar mechanism for charge-density-wave ordering at weak coupling is shown to be operative in double- and triple-Weyl semimetals, where the dispersion is linear (quadratic and cubic, respectively) for the z (planar) component(s) of the momentum. We here also address the competition between the charge-density-wave and a spin-density-wave orders, both of which breaks the chiral symmetry and leads to gapped spectrum, and show that at least in the weak coupling regime the former is energetically favored. The anomalous surface Hall conductivity, role of topological defects such as axion strings, existence of one-dimensional gapless dispersive modes along the core of such defects, and anomaly cancellation through the Callan-Harvey mechanism are discussed.

  7. New model of axion monodromy inflation and its cosmological implications

    SciTech Connect

    Cai, Yi-Fu; Chen, Fang; Ferreira, Elisa G.M.; Quintin, Jerome

    2016-06-10

    We propose a new realization of axion monodromy inflation in which axion monodromy arises from torsional cycles in a type IIB compactification. A class of monomial potentials is obtained with specific values for the power index. Moreover, the inflaton mass changes profile due to the couplings between various fields after compactification. Consequently, the potential obtains a step-like profile at some critical scale. We study the cosmological implications of one concrete realization of this model. At the background level, it realizes a sufficiently long inflationary stage, which allows for the violation of the slow-roll conditions for a short period of time when the inflaton is close to the critical scale. Accordingly, the Hubble horizon is perturbed and affects the dynamics of primordial cosmological perturbations. In particular, we analyze the angular power spectrum of B-mode polarization and find a boost on very large scales. We also find that the amplitude of scalar perturbations is suppressed near the critical scale. Thus our model provides an interpretation for the low-ℓ suppression of temperature anisotropies in the CMB power spectrum. We examine these effects and confront the model to observations.

  8. Axion monodromy inflation with warped KK-modes

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Moritz, Jakob; Westphal, Alexander; Witkowski, Lukas T.

    2016-03-01

    We present a particularly simple model of axion monodromy inflation: Our axion is the lowest-lying KK-mode of the RR-2-form-potential C2 in the standard Klebanov-Strassler throat. One can think of this inflaton candidate as being defined by the integral of C2 over the S2 cycle of the throat. It obtains an exponentially small mass from the IR-region in which the S2 shrinks to zero size. Crucially, the S2 cycle has to be shared between two throats, such that the second locus where the S2 shrinks is also in a warped region. Well-known problems like the potentially dangerous back-reaction of brane/antibrane pairs and explicit supersymmetry breaking are not present in our scenario. The inflaton back-reaction on the geometry turns out to be controlled by the string coupling gs. We hope that our setting is simple enough for many critical consistency issues of large-field inflation in string theory to be addressed at a quantitative level.

  9. Dark matter candidates in a visible heavy QCD axion model

    NASA Astrophysics Data System (ADS)

    Fukuda, Hajime; Ibe, Masahiro; Yanagida, Tsutomu T.

    2017-05-01

    In this paper, we discuss dark matter candidates in a visible heavy QCD axion model. There, a mirror copied sector of the Standard Model with mass scales larger than the Standard Model is introduced. By larger mass scales of the mirrored sector, the QCD axion is made heavy via the axial anomaly in the mirrored sector without spoiling the Peccei-Quinn mechanism to solve the strong C P problem. Since the mirror copied sector possesses the same symmetry structure with the Standard Model sector, the model predicts multiple stable particles. As we will show, the mirrored charged pion and the mirrored electron can be viable candidates for dark matter. They serve as self-interacting dark matter with a long-range force. We also show that the mirrored neutron can be lighter than the mirrored proton in a certain parameter region. There, the mirrored neutron can also be a viable dark matter candidate when its mass is around 100 TeV. It is also shown that the mirrored neutrino can also be a viable candidate for dark matter.

  10. Roulette inflation with Kaehler moduli and their axions

    SciTech Connect

    Bond, J. Richard; Kofman, Lev; Prokushkin, Sergey; Vaudrevange, Pascal M.

    2007-06-15

    We study 2-field inflation models based on the 'large-volume' flux compactification of type IIB string theory. The role of the inflaton is played by a Kaehler modulus {tau} corresponding to a 4-cycle volume and its axionic partner {theta}. The freedom associated with the choice of Calabi-Yau manifold and the nonperturbative effects defining the potential V({tau},{theta}) and kinetic parameters of the moduli brings an unavoidable statistical element to theory prior probabilities within the low-energy landscape. The further randomness of ({tau},{theta}) initial conditions allows for a large ensemble of trajectories. Features in the ensemble of histories include 'roulette trajectories', with long-lasting inflations in the direction of the rolling axion, enhanced in the number of e-foldings over those restricted to lie in the {tau}-trough. Asymptotic flatness of the potential makes possible an eternal stochastic self-reproducing inflation. A wide variety of potentials and inflaton trajectories agree with the cosmic microwave background and large scale structure data. In particular, the observed scalar tilt with weak or no running can be achieved in spite of a nearly critical de Sitter deceleration parameter and consequently a low gravity wave power relative to the scalar curvature power.

  11. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources

    SciTech Connect

    Hochmuth, Kathrin A.; Sigl, Guenter

    2007-12-15

    Astrophysical {gamma}-ray sources come in a variety of sizes and magnetizations. We deduce general conditions under which {gamma}-ray spectra from such sources would be significantly affected by axion-photon mixing. We show that, depending on strength and coherence of the magnetic field, axion couplings down to {approx}(10{sup 13}GeV){sup -1} can give rise to significant axion-photon conversions in the environment of accreting massive black holes. Resonances can occur between the axion mass term and the plasma frequency term as well as between the plasma frequency term and the vacuum Cotton-Mouton shift. Both resonances and nonresonant transitions could induce detectable features or even strong suppressions in finite energy intervals of {gamma}-ray spectra from active galactic nuclei. Such effects can occur at keV to TeV energies for couplings that are currently allowed by all experimental constraints.

  12. More on critical collapse of axion-dilaton system in dimension four

    SciTech Connect

    Álvarez-Gaumé, Luis; Hatefi, Ehsan E-mail: ehsan.hatefi@cern.ch

    2013-10-01

    We complete our previous study of critical gravitational collapse in the axion-dilaton system by analysing the hyperbolic and parabolic ansaetze. As could be expected, the corresponding Choptuik exponents in four-dimensions differ from the elliptic case.

  13. First results from a microwave cavity axion search at 25 μeV : Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Ling; ADMX-HF Collaboration

    2017-01-01

    ADMX-HF searches for dark matter axions via Primakoff conversion into microwave photons in the gigahertz domain. Since 2012, tremendous effort has been made to build an axion detector working in this frequency range. By operating the system in a cryogen-free dilution refrigerator (T = 127 mK) and integrating a Josephson Parametric Amplifier (JPA), we obtain a sufficiently low system noise temperature to exclude axion models with gaγγ > 2 ×10-14GeV-1 over the mass range 23 . 55 μeV axion signals. Supported by NSF Grants PHY-1362305 and PHY-1306729, Heising-Simons Foundation Grant 2014-182, and DOE Grant DE-AC52-07NA27344.

  14. Einstein-Maxwell-axion theory: dyon solution with regular electric field

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Zayats, Alexei E.

    2017-08-01

    In the framework of the Einstein-Maxwell-axion theory we consider static spherically symmetric solutions which describe a magnetic monopole in the axionic environment. These solutions are interpreted as the solutions for an axionic dyon, the electric charge of which is composite, i.e. in addition to the standard central electric charge it includes an effective electric charge induced by the axion-photon coupling. We focus on the analysis of those solutions which are characterized by the electric field regular at the center. Special attention is paid to the solutions with the electric field that is vanishing at the center, and that has the Coulombian asymptote, and thus displays an extremum at some distant sphere. Constraints on the electric and effective scalar charges of such an object are discussed.

  15. Bose-Einstein condensation of the classical axion field in cosmology?

    SciTech Connect

    Davidson, Sacha; Elmer, Martin E-mail: m.elmer@ipnl.in2p3.fr

    2013-12-01

    The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a Bose-Einstein condensate, and argues that ''gravitational thermalisation'' drives them to a Bose-Einstein condensate during the radiation dominated era. Using classical equations of motion during linear structure formation, we explore whether the gravitational interactions of axions can generate enough entropy. At linear order in G{sub N}, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. To quantify the rate of entropy creation we use the anisotropic stress to estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.

  16. Probing the eV-Mass Range for Solar Axions with CAST

    SciTech Connect

    Vogel, J K; Pivovaroff, M J; Soufli, R; van Bibber, K; CAST, C

    2010-11-11

    The CERN Axion Solar Telescope (CAST) is searching for solar axions which could be produced in the core of the Sun via the so-called Primakoff effect. Not only would these hypothetical particles solve the strong CP problem, but they are also one of the favored candidates for dark matter. In order to look for axions originating from the Sun, CAST uses a decommissioned LHC prototype magnet. In its 10 m long magnetic field region of 9 Tesla, axions could be reconverted into X-ray photons. Different X-ray detectors are installed on both ends of the magnet, which is mounted on a structure built to follow the Sun during sunrise and sunset for a total of about 3 hours per day. The analysis of the data acquired during the first phase of the experiment with vacuum in the magnetic field region yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV. In order to extend the sensitivity of the experiment to a wider mass range, the CAST experiment continues its search for axions with helium in the magnet bores. In this way it is possible to restore coherence of conversion for larger masses. Changing the pressure of the helium gas enables the experiment to scan different axion masses in the range of up to about 1.2 eV. Especially at high pressures, a precise knowledge of the gas density distribution is crucial to obtain accurate results. In the first part of this second phase of CAST, {sup 4}He was used and the axion mass region was extended up to 0.39 eV, a part of phase space favored by axion models. In CAST's ongoing {sup 3}He phase the studied mass range is now being extended further. In this contribution the final results of CAST's {sup 4}He phase will be presented and the current status of the {sup 3}He run will be given. This includes latest results as well as prospects of future axion experiments.

  17. Revisiting the axion bounds from the Galactic white dwarf luminosity function

    SciTech Connect

    Bertolami, M.M. Miller; Melendez, B.E.; Althaus, L.G.

    2014-10-01

    It has been shown that the shape of the luminosity function of white dwarfs (WDLF) is a powerful tool to check for the possible existence of DFSZ-axions, a proposed but not yet detected type of weakly interacting particles. With the aim of deriving new constraints on the axion mass, we compute in this paper new theoretical WDLFs on the basis of WD evolving models that incorporate the feedback of axions on the thermal structure of the white dwarf. We find that the impact of the axion emission into the neutrino emission can not be neglected at high luminosities M{sub  Bol}∼< 8) and that the axion emission needs to be incorporated self-consistently into the evolution of the white dwarfs when dealing with axion masses larger than m{sub a} cos {sup 2}β∼> 5 meV (i.e. axion-electron coupling constant g{sub ae}∼> 1.4× 10{sup -13}). We went beyond previous works by including 5 different derivations of the WDLF in our analysis. Then we have performed χ{sup 2}-tests to have a quantitative measure of the agreement between the theoretical WDLFs — computed under the assumptions of different axion masses and normalization methods --- and the observed WDLFs of the Galactic disk. While all the WDLF studied in this work disfavour axion masses in the range suggested by asteroseismology m{sub a} cos {sup 2}β∼> 10 meV; g{sub ae}∼> 2.8× 10{sup -13}) lower axion masses can not be discarded from our current knowledge of the WDLF of the Galactic Disk. A larger set of completely independent derivations of the WDLF of the galactic disk as well as a detailed study of the uncertainties of the theoretical WDLFs is needed before quantitative constraints on the axion-electron coupling constant can be made.

  18. First axion bounds from a pulsating helium-rich white dwarf star

    NASA Astrophysics Data System (ADS)

    Battich, T.; Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.

    2016-08-01

    The Peccei-Quinn mechanism proposed to solve the CP problem of Quantum Chromodynamics has as consequence the existence of axions, hypothetical weakly interacting particles whose mass is constrained to be on the sub-eV range. If these particles exist and interact with electrons, they would be emitted from the dense interior of white dwarfs, becoming an important energy sink for the star. Due to their well known physics, white dwarfs are good laboratories to study the properties of fundamental particles such as the axions. We study the general effect of axion emission on the evolution of helium-rich white dwarfs and on their pulsational properties. To this aim, we calculate evolutionary helium-rich white dwarf models with axion emission, and assess the pulsational properties of this models. Our results indicate that the rates of change of pulsation periods are significantly affected by the existence of axions. We are able for the first time to independently constrain the mass of the axion from the study of pulsating helium-rich white dwarfs. To do this, we use an estimation of the rate of change of period of the pulsating white dwarf PG 1351+489 corresponding to the dominant pulsation period. From an asteroseismological model of PG 1351+489 we obtain gae < 3.3 × 10-13 for the axion-electron coupling constant, or macos2β lesssim 11.5 meV for the axion mass. This constraint is relaxed to gae < 5.5 × 10-13 (macos2β lesssim 19.5 meV), when no detailed asteroseismological model is adopted for the comparison with observations.

  19. Density gradients and absorption effects in gas-filled magnetic axion helioscopes

    SciTech Connect

    Creswick, R. J.; Avignone, F. T. III; Nussinov, S

    2008-07-01

    The effects of absorption in the gas, and of density variations on the sensitivity of gas-filled solar-axion helioscopes, are theoretically investigated. It is concluded that the 10-meter long CAST helioscope, the most sensitive experiment to date, is near the limit of sensitivity in axion mass. Increasing the length, gas density, or tilt angle all have negative influences and will not improve the sensitivity.

  20. Constraints on Bose-Einstein-condensed axion dark matter from the Hi nearby galaxy survey data

    NASA Astrophysics Data System (ADS)

    Li, Ming-Hua; Li, Zhi-Bing

    2014-05-01

    One of the leading candidates for dark matter is the axion or axionlike particle in the form of a Bose-Einstein condensate (BEC). In this paper, we present an analysis of 17 high-resolution galactic rotation curves from the Hi nearby galaxy survey (THINGS) data [F. Walter et al., Astron. J. 136, 2563 (2008)] in the context of the axionic Bose-Einstein condensed dark matter model. Assuming a repulsive two-body interaction, we solve the nonrelativistic Gross-Pitaevskii equation for N gravitationally trapped bosons in the Thomas-Fermi approximation. We obtain the maximum possible radius R and the mass profile M(r) of a dilute axionic Bose-Einstein condensed gas cloud. A standard least- χ2 method is employed to find the best-fit values of the total mass M of the axion BEC and its radius R. The local mass density of BEC axion dark matter is ρa ≃0.02 GeV /cm3, which agrees with that presented by Beck [C. Beck, Phys. Rev. Lett. 111, 231801 (2013)]. The axion mass ma we obtain depends not only on the best-fit value of R, but also on the s-wave scattering length a (ma∝a1/3). The transition temperature Ta of an axion BEC on galactic scales is also estimated. Comparing the calculated Ta with the ambient temperature of galaxies and galaxy clusters implies that a ˜10-3 fm. The corresponding axion mass is ma≃0.58 meV. We compare our results with others.

  1. Axion Decay and Anisotropy of Near-IR Extragalactic Background Light

    NASA Astrophysics Data System (ADS)

    Gong, Yan; Cooray, Asantha; Mitchell-Wynne, Ketron; Chen, Xuelei; Zemcov, Michael; Smidt, Joseph

    2016-07-01

    The extragalactic background light (EBL) is composed of the cumulative radiation from all galaxies and active galactic nuclei over cosmic history. In addition to point sources, the EBL also contains information from diffuse sources of radiation. The angular power spectra of the near-infrared intensities could contain additional signals, and a complete understanding of the nature of the infrared (IR) background is still lacking in the literature. Here we explore the constraints that can be placed on particle decays, especially candidate dark matter (DM) models involving axions that trace DM halos of galaxies. Axions with a mass around a few electronvolts will decay via two photons with wavelengths in the near-IR band and will leave a signature in the IR background intensity power spectrum. Using recent power spectra measurements from the Hubble Space Telescope and the Cosmic Infrared Background Experiment, we find that the 0.6-1.6 μm power spectra can be explained by axions with masses around 4 eV. The total axion abundance Ω a ≃ 0.05, and it is comparable to the baryon density of the universe. The suggested mean axion mass and abundance are not ruled out by existing cosmological observations. Interestingly, the axion model with a mass distribution is preferred by the data, which cannot be explained by the standard quantum chromodynamics theory and needs further discussion.

  2. 750 GeV diphoton resonance in a visible heavy QCD axion model

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Fukuda, Hajime; Ibe, Masahiro; Yanagida, Tsutomu T.

    2016-05-01

    In this paper, we revisit a visible heavy QCD axion model in light of the recent reports on the 750 GeV diphoton resonance by the ATLAS and CMS experiments. In this model, the axion is made heavy with the help of the mirror copied sector of the Standard Model, while the successful Peccei-Quinn mechanism is kept intact. We identify the 750 GeV resonance as the scalar boson associated with spontaneous breaking of the Peccei-Quinn symmetry, which mainly decays into a pair of axions. We find that the mixing between the axion and η and η' plays important roles in its decays and the resultant branching ratio into two photons. The axion decay length can be suitable for explaining the diphoton excess by the di-axion production when its decay constant fa≃1 TeV . We also find that our model allows multiple sets of the extra fermions without causing the domain wall problem, which is advantageous to explain the diphoton signal.

  3. Dark photon relic dark matter production through the dark axion portal

    NASA Astrophysics Data System (ADS)

    Kaneta, Kunio; Lee, Hye-Sung; Yun, Seokhoon

    2017-06-01

    We present a new mechanism to produce the dark photon (γ') in the early Universe with the help of the axion (a ) using a recently proposed dark axion portal. The dark photon, a light gauge boson in the dark sector, can be relic dark matter if its lifetime is long enough. The main process we consider is a variant of the Primakoff process f a →f γ' mediated by a photon, which is possible with the axion-photon-dark photon coupling. The axion is thermalized in the early Universe because of the strong interaction and it can contribute to the nonthermal dark photon production through the dark axion portal coupling. It provides a two-component dark matter sector, and the relic density deficit issue of the axion dark matter can be addressed by the compensation with the dark photon. The dark photon dark matter can also address the reported 3.5 keV x-ray excess via the γ'→γ a decay.

  4. New superconducting toroidal magnet system for IAXO, the international AXion observatory

    SciTech Connect

    Shilon, I.; Dudarev, A.; Silva, H.; Wagner, U.; Kate, H. H. J. ten

    2014-01-29

    Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of magnitude beyond the limits of the current state-of-the-art detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into X-ray photons. Inspired by the successful realization of the ATLAS barrel and end-cap toroids, a very large superconducting toroid is currently designed at CERN to provide the required magnetic field. This toroid will comprise eight, one meter wide and twenty one meter long, racetrack coils. The system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization process to arrive at maximum detector yield is described. In addition, materials selection and their structure and sizing has been determined by force and stress calculations. Thermal loads are estimated to size the necessary cryogenic power and the concept of a forced flow supercritical helium based cryogenic system is given. A quench simulation confirmed the quench protection scheme.

  5. Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures

    SciTech Connect

    Graf, Peter; Steffen, Frank Daniel E-mail: steffen@mpp.mpg.de

    2013-02-01

    We calculate the rate for thermal production of axions and saxions via scattering of quarks, gluons, squarks, and gluinos in the primordial supersymmetric plasma. Systematic field theoretical methods such as hard thermal loop resummation are applied to obtain a finite result in a gauge-invariant way that is consistent to leading order in the strong gauge coupling. We calculate the thermally produced yield and the decoupling temperature for both axions and saxions. For the generic case in which saxion decays into axions are possible, the emitted axions can constitute extra radiation already prior to big bang nucleosynthesis and well thereafter. We update associated limits imposed by recent studies of the primordial helium-4 abundance and by precision cosmology of the cosmic microwave background and large scale structure. We show that the trend towards extra radiation seen in those studies can be explained by late decays of thermal saxions into axions and that upcoming Planck results will probe supersymmetric axion models with unprecedented sensitivity.

  6. Dark radiation and dark matter in supersymmetric axion models with high reheating temperature

    SciTech Connect

    Graf, Peter; Steffen, Frank Daniel E-mail: steffen@mpp.mpg.de

    2013-12-01

    Recent studies of the cosmic microwave background, large scale structure, and big bang nucleosynthesis (BBN) show trends towards extra radiation. Within the framework of supersymmetric hadronic axion models, we explore two high-reheating-temperature scenarios that can explain consistently extra radiation and cold dark matter (CDM), with the latter residing either in gravitinos or in axions. In the gravitino CDM case, axions from decays of thermal saxions provide extra radiation already prior to BBN and decays of axinos with a cosmologically required TeV-scale mass can produce extra entropy. In the axion CDM case, cosmological constraints are respected with light eV-scale axinos and weak-scale gravitinos that decay into axions and axinos. These decays lead to late extra radiation which can coexist with the early contributions from saxion decays. Recent results of the Planck satellite probe extra radiation at late times and thereby both scenarios. Further tests are the searches for axions at ADMX and for supersymmetric particles at the LHC.

  7. Searching for Solar Axions using the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Christopher; Majorana Collaboration

    2015-10-01

    The choice of P-Type Point Contact (PPC) detectors for the Majorana Demonstrator (MJD) was driven by the high energy resolution and superb pulse shape analysis capability of this technology. Due to its low-capacitance this technology also boasts good energy resolution even at low energy, at the keV scale or better. This opens up an ensemble of searches for new physics that can be pursued in parallel with the main goals of searching for neutrinoless double beta decay. Here I will discuss the efforts toward measuring crystal axes in the as-built detector units of MJD to improve sensitivity to the detection of solar axions. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.

  8. Optical gyrotropy from axion electrodynamics in momentum space.

    PubMed

    Zhong, Shudan; Orenstein, Joseph; Moore, Joel E

    2015-09-11

    Several emergent phenomena and phases in solids arise from configurations of the electronic Berry phase in momentum space that are similar to gauge field configurations in real space such as magnetic monopoles. We show that the momentum-space analogue of the "axion electrodynamics" term E·B plays a fundamental role in a unified theory of Berry-phase contributions to optical gyrotropy in time-reversal invariant materials and the chiral magnetic effect. The Berry-phase mechanism predicts that the rotatory power along the optic axes of a crystal must sum to zero, a constraint beyond that stipulated by point-group symmetry, but observed to high accuracy in classic experimental observations on alpha quartz. Furthermore, the Berry mechanism provides a microscopic basis for the surface conductance at the interface between gyrotropic and nongyrotropic media.

  9. Constraining resonant photon-axion conversions in the early universe

    SciTech Connect

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Günter E-mail: javier.redondo@desy.de

    2009-08-01

    The presence of a primordial magnetic field would have induced resonant conversions between photons and axion-like particles (ALPs) during the thermal history of the Universe. These conversions would have distorted the blackbody spectrum of the cosmic microwave background (CMB). In this context, we derive bounds on the photon-ALP resonant conversions using the high precision CMB spectral data collected by the FIRAS instrument on board of the Cosmic Background Explorer. We obtain upper limits on the product of the photon-ALP coupling constant g times the magnetic field strength B down to gB ∼< 10{sup −13} GeV{sup −1} nG for ALP masses below the eV scale.

  10. Status and Future of Microwave Cavity Axion Searches

    SciTech Connect

    van Bibber, K; Kinion, D

    1999-12-08

    We review the status of an ongoing large-scale search for axions which may constitute the dark matter of our Milky Way halo. The experiment is based on the microwave cavity technique proposed by Sikivie, and marks a ''second-generation'' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group. Sensitivity to galactic asions has been achieved, at least for one important model coupling. A remarkable breakthrough in making near-quantum Limited dc SQUID amplifiers in the several hundred megahertz range has provided the enabling technology for a major upgrade of this effort. By improving the noise temperature by more than an order of magnitude, a much more sensitive search may be carried out, greatly improving the prospects for discovering the asion.

  11. Axion-assisted production of sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Hooper, Dan

    2017-04-01

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our Universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this paper, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axionlike field. As the energy density of the axionlike particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.

  12. Axion like particles and the inverse seesaw mechanism

    SciTech Connect

    Carvajal, C. D. R.; Dias, Alex G.; Nishi, C. C.; Sanchez-Vega, Bruce L.

    2015-05-13

    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft -ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. In conclusion, the anomalous U(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.

  13. Axion like particles and the inverse seesaw mechanism

    DOE PAGES

    Carvajal, C. D. R.; Dias, Alex G.; Nishi, C. C.; ...

    2015-05-13

    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft -ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomalymore » cancellation imposes strong constraints on the order of the group. In conclusion, the anomalous U(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.« less

  14. Training

    EPA Pesticide Factsheets

    The Drinking Water Academy provides online training and information to ensure that water professionals, public officials, and involved citizens have the knowledge and skills necessary to protect our drinking water supply.

  15. Theorem: A Static Magnetic N-pole Becomes an Oscillating Electric N-pole in a Cosmic Axion Field

    SciTech Connect

    Hill, Christopher T.

    2016-06-15

    We show for the classical Maxwell equations, including the axion electromagnetic anomaly source term, that a cosmic axion field induces an oscillating electric N-moment for any static magnetic N-moment. This is a straightforward result, accessible to anyone who has taken a first year graduate course in electrodynamics.

  16. A class of invisible axion models with FCNCs at tree level

    NASA Astrophysics Data System (ADS)

    Celis, Alejandro; Fuentes-Martín, Javier; Serôdio, Hugo

    2014-12-01

    We build a class of invisible axion models with tree-level Flavor Changing Neutral Currents completely controlled by the fermion mixing matrices. The scalar sector of these models contains three-Higgs doublets and a complex scalar gauge singlet, with the same fermionic content as in the Standard Model. A horizontal Peccei-Quinn symmetry provides a solution to the strong CP problem and predicts the existence of a very light and weakly coupled pseudo-Goldstone boson, the invisible axion or familon. A phenomenological analysis is performed taking into account familon searches in rare kaon and muon decays, astrophysical considerations and axion searches via axion-photon conversion. Drastic differences are found in the axion properties of different models due to the strong hierarchy of the CKM matrix, making some of the models considered much more constrained than others. We also obtain that a rich variety of these models avoid the domain wall problem. A possible mechanism to protect the solution to the strong CP problem against gravitational effects is also discussed.

  17. Improving axion detection sensitivity in high purity germanium detector based experiments

    NASA Astrophysics Data System (ADS)

    Xu, Wenqin; Elliott, Steven

    2015-04-01

    Thanks to their excellent energy resolution and low energy threshold, high purity germanium (HPGe) crystals are widely used in low background experiments searching for neutrinoless double beta decay, e.g. the MAJORANA DEMONSTRATOR and the GERDA experiments, and low mass dark matter, e.g. the CDMS and the EDELWEISS experiments. A particularly interesting candidate for low mass dark matter is the axion, which arises from the Peccei-Quinn solution to the strong CP problem and has been searched for in many experiments. Due to axion-photon coupling, the postulated solar axions could coherently convert to photons via the Primakeoff effect in periodic crystal lattices, such as those found in HPGe crystals. The conversion rate depends on the angle between axions and crystal lattices, so the knowledge of HPGe crystal axis is important. In this talk, we will present our efforts to improve the HPGe experimental sensitivity to axions by considering the axis orientations in multiple HPGe crystals simultaneously. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  18. Unifying inflation and dark matter with the Peccei-Quinn field: Observable axions and observable tensors

    NASA Astrophysics Data System (ADS)

    Fairbairn, Malcolm; Hogan, Robert; Marsh, David J. E.

    2015-01-01

    A model of high scale inflation is presented where the radial part of the Peccei-Quinn (PQ) field with a non-minimal coupling to gravity plays the role of the inflaton, and the QCD axion is the dark matter. A quantum fluctuation of O (H /2 π ) in the axion field will result in a smaller angular fluctuation if the PQ field is sitting at a larger radius during inflation than in the vacuum. This changes the effective axion decay constant, fa, during inflation and dramatically reduces the production of isocurvature modes. This mechanism opens up a new window in parameter space where an axion decay constant in the range 1 012 GeV ≲fa≲1 015 GeV is compatible with observably large r . The exact range allowed for fa depends on the efficiency of reheating. This model also predicts a minimum possible value of r =1 0-3. The new window can be explored by a measurement of r possible with SPIDER and the proposed CASPEr experiment search for high fa axions.

  19. Large-field inflation with multiple axions and the weak gravity conjecture

    NASA Astrophysics Data System (ADS)

    Junghans, Daniel

    2016-02-01

    In this note, we discuss the implications of the weak gravity conjecture (WGC) for general models of large-field inflation with a large number of axions N. We first show that, from the bottom-up perspective, such models admit a variety of different regimes for the enhancement of the effective axion decay constant, depending on the amount of alignment and the number of instanton terms that contribute to the scalar potential. This includes regimes of no enhancement, power-law enhancement and exponential enhancement with respect to N. As special cases, we recover the Pythagorean enhancement of N-flation, the N and N 3/2 enhancements derived by Bachlechner, Long and McAllister and the exponential enhancement by Choi, Kim and Yun. We then analyze which top-down constraints are put on such models from the requirement of consistency with quantum gravity. In particular, the WGC appears to imply that the enhancement of the effective axion decay constant must not grow parametrically with N for N ≫ 1. On the other hand, recent works proposed that axions might be able to violate this bound under certain circumstances. Our general expression for the enhancement allows us to translate this possibility into a condition on the number of instantons that couple to the axions. We argue that, at large N , models consistent with quantum gravity must either allow super-Planckian field excursions or have an enormous, possibly even exponentially large, number of dominant instanton terms in the scalar potential.

  20. Axion mass limit from observations of the neutron star in Cassiopeia A

    SciTech Connect

    Leinson, Lev B.

    2014-08-01

    Direct Chandra observations of a surface temperature of isolated neutron star in Cassiopeia A (Cas A NS) and its cooling scenario which has been recently simultaneously suggested by several scientific teams put stringent constraints on poorly known properties of the superfluid neutron star core. It was found also that the thermal energy losses from Cas A NS are approximately twice more intensive than it can be explained by the neutrino emission. We use these unique data and well-defined cooling scenario to estimate the strength of KSVZ axion interactions with neutrons. We speculate that enlarged energy losses occur owing to emission of axions from superfluid core of the neutron star. If the axion and neutrino losses are comparable we find c{sub n}{sup 2}m{sub a}{sup 2}∼ 5.7× 10{sup -6} eV{sup 2}, where m{sub a} is the axion mass, and c{sub n} is the effective Peccei-Quinn charge of the neutron. (Given the QCD uncertainties of the hadronic axion models, the dimensionless constant c{sub n} could range from -0.05 to  0.14.)

  1. Calculation of the axion mass based on high-temperature lattice quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Borsanyi, S.; Fodor, Z.; Guenther, J.; Kampert, K.-H.; Katz, S. D.; Kawanai, T.; Kovacs, T. G.; Mages, S. W.; Pasztor, A.; Pittler, F.; Redondo, J.; Ringwald, A.; Szabo, K. K.

    2016-11-01

    Unlike the electroweak sector of the standard model of particle physics, quantum chromodynamics (QCD) is surprisingly symmetric under time reversal. As there is no obvious reason for QCD being so symmetric, this phenomenon poses a theoretical problem, often referred to as the strong CP problem. The most attractive solution for this requires the existence of a new particle, the axion—a promising dark-matter candidate. Here we determine the axion mass using lattice QCD, assuming that these particles are the dominant component of dark matter. The key quantities of the calculation are the equation of state of the Universe and the temperature dependence of the topological susceptibility of QCD, a quantity that is notoriously difficult to calculate, especially in the most relevant high-temperature region (up to several gigaelectronvolts). But by splitting the vacuum into different sectors and re-defining the fermionic determinants, its controlled calculation becomes feasible. Thus, our twofold prediction helps most cosmological calculations to describe the evolution of the early Universe by using the equation of state, and may be decisive for guiding experiments looking for dark-matter axions. In the next couple of years, it should be possible to confirm or rule out post-inflation axions experimentally, depending on whether the axion mass is found to be as predicted here. Alternatively, in a pre-inflation scenario, our calculation determines the universal axionic angle that corresponds to the initial condition of our Universe.

  2. A New Signal Model for Axion Cavity Searches from N-body Simulations

    NASA Astrophysics Data System (ADS)

    Lentz, Erik W.; Quinn, Thomas R.; Rosenberg, Leslie J.; Tremmel, Michael J.

    2017-08-01

    Signal estimates for direct axion dark matter (DM) searches have used the isothermal sphere halo model for the last several decades. While insightful, the isothermal model does not capture effects from a halo’s infall history nor the influence of baryonic matter, which has been shown to significantly influence a halo’s inner structure. The high resolution of cavity axion detectors can make use of modern cosmological structure-formation simulations, which begin from realistic initial conditions, incorporate a wide range of baryonic physics, and are capable of resolving detailed structure. This work uses a state-of-the-art cosmological N-body+Smoothed-Particle Hydrodynamics simulation to develop an improved signal model for axion cavity searches. Signal shapes from a class of galaxies encompassing the Milky Way are found to depart significantly from the isothermal sphere. A new signal model for axion detectors is proposed and projected sensitivity bounds on the Axion DM eXperiment (ADMX) data are presented.

  3. Exploring the hadronic axion window via delayed neutralino decay to axinos at the LHC

    NASA Astrophysics Data System (ADS)

    Redino, C. S.; Wackeroth, D.

    2016-04-01

    The addition of the QCD axion to the minimal supersymmetric standard model (MSSM) not only solves the strong C P problem but also modifies the dark sector with new dark matter candidates. While supersymmetry (SUSY) axion phenomenology is usually restricted to searches for the axion itself or searches for the ordinary SUSY particles, this work focuses on scenarios where the axion's superpartner, the axino, may be detectable at the Large Hadron Collider (LHC) in the decays of neutralinos displaced from the primary vertex. In particular, we focus on the Kim-Shifman-Vainshtein-Zhakharov (KSVZ) axino within the hadronic axion window. The decay length of neutralinos in this scenario easily fits the ATLAS detector for SUSY spectra expected to be testable at the 14 TeV LHC. We compare this signature of displaced decays to axinos to other well motivated scenarios containing a long lived neutralino which decays inside the detector. These alternative scenarios can in some cases very closely mimic the expected axino signature, and the degree to which they are distinguishable is discussed. We also briefly comment on the cosmological viability of such a scenario.

  4. A magnetic heterostructure of topological insulators as a candidate for an axion insulator

    NASA Astrophysics Data System (ADS)

    Mogi, M.; Kawamura, M.; Yoshimi, R.; Tsukazaki, A.; Kozuka, Y.; Shirakawa, N.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y.

    2017-05-01

    The axion insulator which may exhibit an exotic quantized magnetoelectric effect is one of the most interesting quantum phases predicted for the three-dimensional topological insulator (TI). The axion insulator state is expected to show up in magnetically doped TIs with magnetizations pointing inwards and outwards from the respective surfaces. Towards the realization of the axion insulator, we here engineered a TI heterostructure in which magnetic ions (Cr) are modulation-doped only in the vicinity of the top and bottom surfaces of the TI ((Bi,Sb)2Te3) film. A separation layer between the two magnetic layers weakens interlayer coupling between them, enabling the magnetization reversal of individual layers. We demonstrate the realization of the axion insulator by observing a zero Hall plateau (ZHP) (where both the Hall and longitudinal conductivity become zero) in the electric transport properties, excluding the other possible origins for the ZHP. The manifestation of the axion insulator can lead to a new stage of research on novel magnetoelectric responses in topological matter.

  5. A magnetic heterostructure of topological insulators as a candidate for an axion insulator.

    PubMed

    Mogi, M; Kawamura, M; Yoshimi, R; Tsukazaki, A; Kozuka, Y; Shirakawa, N; Takahashi, K S; Kawasaki, M; Tokura, Y

    2017-05-01

    The axion insulator which may exhibit an exotic quantized magnetoelectric effect is one of the most interesting quantum phases predicted for the three-dimensional topological insulator (TI). The axion insulator state is expected to show up in magnetically doped TIs with magnetizations pointing inwards and outwards from the respective surfaces. Towards the realization of the axion insulator, we here engineered a TI heterostructure in which magnetic ions (Cr) are modulation-doped only in the vicinity of the top and bottom surfaces of the TI ((Bi,Sb)2Te3) film. A separation layer between the two magnetic layers weakens interlayer coupling between them, enabling the magnetization reversal of individual layers. We demonstrate the realization of the axion insulator by observing a zero Hall plateau (ZHP) (where both the Hall and longitudinal conductivity become zero) in the electric transport properties, excluding the other possible origins for the ZHP. The manifestation of the axion insulator can lead to a new stage of research on novel magnetoelectric responses in topological matter.

  6. Constraining the photon-axion coupling constant with magnetic white dwarfs

    SciTech Connect

    Gill, Ramandeep; Heyl, Jeremy S.

    2011-10-15

    The light pseudoscalar particle, dubbed the axion, borne out of the Peccei-Quinn solution to the strong CP problem in QCD remains elusive. One avenue of inferring its existence is through its coupling to electromagnetic radiation. So far, laboratory experiments have dedicated all efforts to detect the axion in the mass range 10{sup -6}axion coupling strength g{sub a}{gamma}{gamma}<10{sup -10} GeV{sup -1}, where the limits are derived from astrophysical considerations. In this study, we present a novel way of constraining g{sub a}{gamma}{gamma} by looking at the level of linear polarization in the radiation emerging from magnetic white dwarfs. We find that photon-axion oscillations in white dwarf magnetospheres can enhance the degree of linear polarization. Observing that most magnetic white dwarfs show only 5% linear polarization, we derive upper limits on g{sub a}{gamma}{gamma} for different axion masses.

  7. Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Giusarma, Elena; Lattanzi, Massimiliano; Mena, Olga; Melchiorri, Alessandro; Silk, Joseph

    2016-01-01

    Axions currently provide the most compelling solution to the strong CP problem. These particles may be copiously produced in the early universe, including via thermal processes. Therefore, relic axions constitute a hot dark matter component and their masses are strongly degenerate with those of the three active neutrinos, as they leave identical signatures in the different cosmological observables. In addition, thermal axions, while still relativistic states, also contribute to the relativistic degrees of freedom, parameterized via Neff. We present the cosmological bounds on the relic axion and neutrino masses, exploiting the full Planck mission data, which include polarization measurements. In the mixed hot dark matter scenario explored here, we find the tightest and more robust constraint to date on the sum of the three active neutrino masses, ∑mν < 0.136 eV at 95% CL, as it is obtained in the very well-known linear perturbation regime. The Planck Sunyaev-Zeldovich cluster number count data further tightens this bound, providing a 95% CL upper limit of ∑mν < 0.126 eV in this very same mixed hot dark matter model, a value which is very close to the expectations in the inverted hierarchical neutrino mass scenario. Using this same combination of data sets we find the most stringent bound to date on the thermal axion mass, ma < 0.529 eV at 95% CL.

  8. Mixed axion/gravitino dark matter from SUSY models with heavy axinos

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Baer, Howard; Chun, Eung Jin; Shin, Chang Sub

    2015-04-01

    We examine dark matter production rates in supersymmetric (SUSY) axion models typified by the mass hierarchy m3 /2≪m (neutralino)≪m (axino) . In such models, one expects the dark matter to be composed of an axion/gravitino admixture. After presenting motivation for how such a mass hierarchy might arise, we examine dark matter production in the SUSY Kim-Shifman-Vainshtein-Zakharov (KSVZ) model, the SUSY Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model and a hybrid model containing contributions from both KSVZ and DFSZ. Gravitinos can be produced thermally and also nonthermally from axino, saxion or neutralino decay. We obtain upper bounds on TR due to overproduction of gravitinos including both the thermal and nonthermal processes. For TR near the upper bound, dark matter tends to be gravitino dominated, but for TR well below the upper bounds, axion domination is more typical although in many cases we find a comparable mixture of both axions and gravitinos. In this class of models, we ultimately expect detection of relic axions but no weakly interacting massive particle signal, although SUSY should ultimately be discovered at colliders.

  9. Characterization of nonlinear dielectric films for the tuning of microwave cavities for axion searches

    NASA Astrophysics Data System (ADS)

    Salemi, Chiara; Bowring, Daniel; Sonnenschein, Andrew

    2016-09-01

    The axion is a hypothetical particle that can solve the strong CP problem and that may be the primary component of dark matter in the universe. Experiments such as the Axion Dark Matter eXperiment (ADMX) hope to find the axion through its coupling to photons in the presence of a strong magnetic field. This coupling can be detected using a microwave cavity whose fundamental resonance frequency is matched to that of the photons. By tuning the cavity resonance frequency, the corresponding axion mass range can be scanned. For axion searches above 1GHz, future generations of ADMX may use an array of small cavities locked to the same frequency. These cavities will be coarsely tuned using a tuning rod as is done in the current generation of ADMX, but fine tuning of individual resonators will be necessary for multi-cavity arrays. A candidate fine tuning method uses nonlinear dielectric films inside the cavities. DC-biasing the films changes their dielectric constant, affecting the frequencies of the cavity modes. This method makes frequency-matched resonator arrays more practical by saving space and minimizing heat load inside the cryostat. This poster presents RF design and simulation and preliminary measurements on the coplanar waveguide resonators used to test the films.

  10. Recent progress on the Axion Dark Matter eXperiment (ADMX)

    NASA Astrophysics Data System (ADS)

    Khatiwada, Rakshya; ADMX Collaboration

    2017-01-01

    The Axion Dark Matter eXperiment (ADMX) is one of the three ``Generation-2'' direct dark matter searches and the only one dedicated to finding the axion. It looks for axions that convert into photons through the Primakoff process in the presence of a strong magnetic field. The mass of the axion is unknown but expected to be few to tens of μeV, which corresponds to photons in the GHz range. The expected signal power is of the order 10-24 W, which puts stringent requirements on the system's noise level. ADMX has recently started its Generation-2 data run with the recent upgrades of a dilution refrigerator, which cools the system to sub-K temperature suppressing the thermal background noise and tunable, near quantum noise-limited SQUID amplifiers. This talk will summarize the current status and operation of ADMX experiment as it searches for dark matter axions. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.

  11. Constraints on axion couplings from the CDEX-1 experiment at the China Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Liu, S. K.; Yue, Q.; Kang, K. J.; Cheng, J. P.; Wong, H. T.; Li, Y. J.; Li, H. B.; Lin, S. T.; Chang, J. P.; Chen, J. H.; Chen, N.; Chen, Q. H.; Chen, Y. H.; Deng, Z.; Du, Q.; Gong, H.; He, H. J.; He, Q. J.; Huang, H. X.; Jiang, H.; Li, J. M.; Li, J.; Li, J.; Li, X.; Li, X. Q.; Li, X. Y.; Li, Y. L.; Lin, F. K.; Lü, L. C.; Ma, H.; Ma, J. L.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Sharma, V.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Wang, J. M.; Wang, L.; Wang, Q.; Wu, S. Y.; Wu, Y. C.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, C. W.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhao, W.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration

    2017-03-01

    We report the results of searches for solar axions and galactic dark matter axions or axionlike particles with the CDEX-1 experiment at the China Jinping Underground Laboratory, using 335.6 kg days of data from a p -type point-contact germanium detector. The data are compatible with the background model, and no excess signals are observed. Limits of solar axions on the model-independent coupling gA e<2.5 ×10-11 from Compton, bremsstrahlung, atomic-recombination, and deexcitation channels and gAN eff×gA e<6.4 ×10-17 from a 57Fe M1 transition at 90% confidence level are derived. Within the framework of the Dine-Fischler-Srednicki-Zhitnitskiy and Kim-Shifman-Vainshtein-Zakharov models, our results exclude the axion mass heavier than 0.9 and 177 eV /c2 , respectively. The derived constraints for dark matter axions below 1 keV improve over the previous results.

  12. Bulk axions, brane back-reaction and fluxes

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.

    2011-02-01

    Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs) whose shift symmetry is explicitly broken only by physics localized on branes. Reliable calculation of their low-energy potential is often difficult because it requires an understanding of the dynamics that stabilizes the geometry of the extra dimensions. Rugby ball solutions provide simple examples of extra-dimensional configurations for which two compact extra dimensions are stabilized in the presence of only positive-tension brane sources. The effects of brane back-reaction can be computed explicitly for these systems, allowing the calculation of the shape of the low-energy pGB potential, V 4 D ( φ), as a function of the perturbing brane properties, as well as the response of both the extra dimensional and on-brane geometries to this stabilization. If the φ-dependence is a small part of the total brane tension a very general analysis is possible, permitting an exploration of how the system responds to frustration when the two branes disagree on what the proper scalar vacuum should be. We show how the low-energy potential is given by the sum of brane tensions (in agreement with common lore) when only the brane tensions couple to φ. We also show how a direct brane coupling to the flux stabilizing the extra dimensions corrects this result in a way that does not simply amount to the contribution of the flux to the brane tensions. The mass of the low-energy pseudo-Goldstone mode is of order m a ˜ ( μ/ F)2 m KK (where μ is the energy scale associated with the brane symmetry breaking and F < M p is the extra-dimensional axion decay constant). In principle this can be larger or smaller than the Kaluza-Klein scale, m KK, but when it is larger axion properties cannot be computed purely within a 4D approximation (as they usually are). We briefly describe several potential applications, including a brane realization of `natural inflation,' and a dynamical mechanism for suppressing the couplings

  13. a Next-Generation Cavity Microwave Experiment to Search for Dark-Matter Axions

    NASA Astrophysics Data System (ADS)

    Bibber, K. Van; Stöffl, W.; Anthony, P. L.; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Železný, V.; Golubev, N. A.; Kazachenko, O. V.; Kravchuk, L. V.; Kuzmin, V.; Romanov, G. V.; Sekachev, I. V.; Rosenberg, L. J.; Hagmann, C.; Moltz, D. M.; Nezrick, F.; Turner, M. S.; Villa, F.

    We propose a large-scale experimental search for dark-matter axions which may constitute an important fraction of our own galactic halo. As shown by Sikivie,1 dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. The principal improvement in power sensitivity over two earlier pilot experiments (×25) derives from the large-volume high field superconducting magnet (the NASA SUMMA coils). The improvement in mass range (1.5 to 12.6 μeV) will result from the use of several microwave cavity arrays, of 2n cavities each, over the course of the experimental program, rather than a single cavity. We are participating in a joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search.

  14. First Results from a Microwave Cavity Axion Search at 24  μeV.

    PubMed

    Brubaker, B M; Zhong, L; Gurevich, Y V; Cahn, S B; Lamoreaux, S K; Simanovskaia, M; Root, J R; Lewis, S M; Al Kenany, S; Backes, K M; Urdinaran, I; Rapidis, N M; Shokair, T M; van Bibber, K A; Palken, D A; Malnou, M; Kindel, W F; Anil, M A; Lehnert, K W; Carosi, G

    2017-02-10

    We report on the first results from a new microwave cavity search for dark matter axions with masses above 20  μeV. We exclude axion models with two-photon coupling g_{aγγ}≳2×10^{-14}  GeV^{-1} over the range 23.55axion search.

  15. Effective aligned 2HDM with a DFSZ-like invisible axion

    NASA Astrophysics Data System (ADS)

    Celis, Alejandro; Fuentes-Martín, Javier; Serôdio, Hugo

    2014-10-01

    We discuss the possibility of having a non-minimal scalar sector at the weak scale within the framework of invisible axion models. To frame our discussion we consider an extension of the Dine-Fischler-Srednicki-Zhitnitsky invisible axion model with two additional Higgs doublets blind under the Peccei-Quinn symmetry. Due to mixing effects among the scalar fields, it is possible to obtain a rich scalar sector at the weak scale in certain decoupling limits of the theory. In particular, this framework provides an ultraviolet completion of the so-called aligned two-Higgs-doublet model and solves the strong CP problem. The axion properties and the smallness of active neutrino masses are also discussed.

  16. About the isocurvature tension between axion and high scale inflationary models

    NASA Astrophysics Data System (ADS)

    Estevez, M.; Santillán, O.

    2016-07-01

    The present work suggests that the isocurvature tension between axion and high energy inflationary scenarios may be avoided by considering a double field inflationary model involving the hidden Peccei-Quinn Higgs and the Standard Model one. Some terms in the lagrangian we propose explicitly violate the Peccei-Quinn symmetry but, at the present era, their effect is completely negligible. The resulting mechanism allows for a large value for the axion constant, of the order f_a˜ M_p, thus the axion isocurvature fluctuations are suppressed even when the scale of inflation H_{inf} is very high, of the order of H_{inf}˜ M_{gut}. This numerical value is typical in Higgs inflationary models. An analysis about topological defect formation in this scenario is also performed, and it is suggested that, under certain assumptions, their effect is not catastrophic from the cosmological point of view.

  17. Photon-axion conversion as a mechanism for supernova dimming: Limits from CMB spectral distortion

    SciTech Connect

    Mirizzi, Alessandro; Raffelt, Georg G.; Serpico, Pasquale D.

    2005-07-15

    Axion-photon conversion induced by intergalactic magnetic fields has been proposed as an explanation for the dimming of distant supernovae of type Ia (SNe Ia) without cosmic acceleration. The effect depends on the intergalactic electron density n{sub e} as well as the B-field strength and domain size. We show that for n{sub e} < or approx. 10{sup -9} cm{sup -3} the same mechanism would cause excessive spectral distortion of the cosmic microwave background (CMB). This small-n{sub e} parameter region had been left open by the most restrictive previous constraints based on the dispersion of quasar (QSO) spectra. The combination of CMB and QSO limits suggests that the photon-axion conversion mechanism can only play a subleading role for SN Ia dimming. A combined analysis of all the observables affected by the photon-axion oscillations would be required to give a final verdict on the viability of this model.

  18. Theoretical estimate of the sensitivity of the CUORE detector to solar axions

    SciTech Connect

    Li, Dawei; Creswick, R.J.; III, F.T. Avignone; Wang, Yuanxu E-mail: creswick.rj@sc.edu E-mail: wangyx@henu.edu

    2015-10-01

    In this paper we calculate the potential sensitivity of the CUORE detector to axions produced in the Sun through the Primakoff process and detected by the inverse coherent Bragg-Primakoff process. The conversion rate is calculated using density functional theory for the electron density and realistic expectations for the energy resolution and background of CUORE. Monte Carlo calculations for 5 y × 741 kg = 3705 kg y of exposure are analyzed using time correlation of individual events with the theoretical time-dependent counting rate and lead to an expected limit on the axion-photon coupling g{sub aγγ}<3.83 × 10{sup −10} GeV{sup −1} for axion masses less than 100 eV.

  19. Improving the quality factor of microwave cavities for axion search experiments

    NASA Astrophysics Data System (ADS)

    Ahn, Saebyeok; Jung, Junu; Youn, Sungwoo; Semertzidis, Yannis

    2017-01-01

    In cavity-based axion search experiments, the quality factor (Q) of microwave resonant cavities is an important parameter to be sensitive to faint signal from the axion-to-photon conversion. One of the R&D efforts conducted at the Center for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS) is to improve the quality factor of resonant cavities by employing two approaches - pure material and heat treatment. Using a 4K cryocooler and liquid helium, we measure the temperature dependence of Q value to find the effect of material purity and an optimal condition of heat treatment. The measurements are performed on Cu and Al cavities and the results are shown in this presentation.

  20. Phases of planar AdS black holes with axionic charge

    NASA Astrophysics Data System (ADS)

    Caldarelli, Marco M.; Christodoulou, Ariana; Papadimitriou, Ioannis; Skenderis, Kostas

    2017-04-01

    Planar AdS black holes with axionic charge have finite DC conductivity due to momentum relaxation. We obtain a new family of exact asymptotically AdS4 black branes with scalar hair, carrying magnetic and axion charge, and we study the thermodynamics and dynamic stability of these, as well as of a number of previously known electric and dyonic solutions with axion charge and scalar hair. The scalar hair for all solutions satisfy mixed boundary conditions, which lead to modified holographic Ward identities, conserved charges and free energy, relative to those following from the more standard Dirichlet boundary conditions. We show that properly accounting for the scalar boundary conditions leads to well defined first law and other thermodynamic relations. Finally, we compute the holographic quantum effective potential for the dual scalar operator and show that dynamical stability of the hairy black branes is equivalent to positivity of the energy density.

  1. Axion-Like particles from extragalactic High Energy sources

    NASA Astrophysics Data System (ADS)

    Conrad, J.; Meyer, M.; Montanino, D.

    2016-05-01

    Background radiation fields (such as Extragalactic Background Light, EBL, or Cosmic Microwave Background, CMB) pervade the Universe. Above a certain energy any gamma ray flux emitted by an extragalactic source should be attenuated by the process γ+ γ(bgk) → e + + e - pair production. We have considered a scenario in which the photons are partly converted into light Axion Like Particles (ALPs) in the local magnetic field of an (extragalactic) source. Then, while the unconverted fraction of photons undergo absorption, the ALP component travel to our galaxy where is converted back to photons by the galactic magnetic field resulting in a sort of cosmic light shining through wall effect. In particular, we have considered two scenarios: 1) conversion in the turbulent magnetic field inside a galaxy cluster; and 2) conversion of photons in the coherent magnetic field at parsec scales in a Blazar jet. Afterwards, we have also analyzed mock data coming from a hypothetical Imaging Air Cherenkov Telescopes (IACT) array with characteristics similar to the Cherenkov Telescope Array (CTA) and we have investigated the dependence of the sensitivity to detect a gamma ray excess on the magnetic field parameters.

  2. Axion-assisted production of sterile neutrino dark matter

    DOE PAGES

    Berlin, Asher; Hooper, Dan

    2017-04-12

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our Universe’s dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. Here in this paper, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axionlike field. As the energy density of the axionlike particles is diluted by Hubble expansion, the degree of mixing is reduced at late times,more » suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. Lastly, we present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.« less

  3. Z2 massive axions, domain walls and inflation

    NASA Astrophysics Data System (ADS)

    Assyyaee, Shahrokh; Riazi, Nematollah

    2017-01-01

    We have analyzed a U(1) model which is broken explicitly to a Z2 model. The proposal results in generating two types of stable domain walls, in contrast with the more common NDW = 1 version which is already used to explain axion invisibility for the UPQ(1) model. We have tried to take into account any possible relation with previous studies. We have studied some of the domain properties, proposing an approximate solution which satisfies boundary conditions and the static virial theorem, simultaneously. Invoking the mentioned approximation, we have been able to obtain an analytical insight about the effect of parameters on the domain wall features, particularly on their surface energy density which is of great importance in cosmological studies when one tries to avoid domain wall energy domination problem. Next, we have mainly focused on the likely inflationary scenarios resulting from the model, including saddle point inflation, again insisting on analytical discussions to be able to follow the role of parameters. We have tried to relate inflationary scenarios to the known categories to take advantage of the previous detailed studies under the inflationary topic over the decades. We have concluded that any successful inflationary scenario requires large fields within the present model. Calculations are mainly done analytically, although numerical results are also obtained to reinforce the analytical results.

  4. Primordial gravitational waves from axion-gauge fields dynamics

    NASA Astrophysics Data System (ADS)

    Dimastrogiovanni, Emanuela; Fasiello, Matteo; Fujita, Tomohiro

    2017-01-01

    Inspired by the chromo-natural inflation model of Adshead&Wyman, we reshape its scalar content to relax the tension with current observational bounds. Besides an inflaton, the setup includes a spectator sector in which an axion and SU(2) gauge fields are coupled via a Chern-Simons-type term. The result is a viable theory endowed with an alternative production mechanism for gravitational waves during inflation. The gravitational wave signal sourced by the spectator fields can be much larger than the contribution from standard vacuum fluctuations, it is distinguishable from the latter on the basis of its chirality and, depending on the theory parameters values, also its tilt. This production process breaks the well-known relation between the tensor-to-scalar ratio and the energy scale of inflation. As a result, even if the Hubble rate is itself too small for the vacuum to generate a tensor amplitude detectable by upcoming experiments, this model still supports observable gravitational waves.

  5. Observational constraints on gauge field production in axion inflation

    SciTech Connect

    Meerburg, P.D.; Pajer, E. E-mail: enrico.pajer@gmail.com

    2013-02-01

    Models of axion inflation are particularly interesting since they provide a natural justification for the flatness of the potential over a super-Planckian distance, namely the approximate shift-symmetry of the inflaton. In addition, most of the observational consequences are directly related to this symmetry and hence are correlated. Large tensor modes can be accompanied by the observable effects of a the shift-symmetric coupling φF F-tilde to a gauge field. During inflation this coupling leads to a copious production of gauge quanta and consequently a very distinct modification of the primordial curvature perturbations. In this work we compare these predictions with observations. We find that the leading constraint on the model comes from the CMB power spectrum when considering both WMAP 7-year and ACT data. The bispectrum generated by the non-Gaussian inverse-decay of the gauge field leads to a comparable but slightly weaker constraint. There is also a constraint from μ-distortion using TRIS plus COBE/FIRAS data, but it is much weaker. Finally we comment on a generalization of the model to massive gauge fields. When the mass is generated by some light Higgs field, observably large local non-Gaussianity can be produced.

  6. SU(3) family gauge symmetry and the axion

    SciTech Connect

    Appelquist, Thomas; Bai Yang; Piai, Maurizio

    2007-04-01

    We analyze the structure of a recently proposed effective field theory (EFT) for the generation of quark and lepton mass ratios and mixing angles, based on the spontaneous breaking of an SU(3) family gauge symmetry at a high scale F. We classify the Yukawa operators necessary to seed the masses, making use of the continuous global symmetries that they preserve. One global U(1), in addition to baryon number and electroweak hypercharge, remains unbroken after the inclusion of all operators required by standard model fermion phenomenology. An associated vacuum symmetry insures the vanishing of the first-family quark and charged-lepton masses in the absence of the family gauge interaction. If this U(1) symmetry is taken to be exact in the EFT, broken explicitly by only the QCD-induced anomaly, and if the breaking scale F is taken to lie in the range 10{sup 9}-10{sup 12} GeV, then the associated Nambu-Goldstone boson is a potential QCD axion.

  7. Reionization during the dark ages from a cosmic axion background

    NASA Astrophysics Data System (ADS)

    Evoli, Carmelo; Leo, Matteo; Mirizzi, Alessandro; Montanino, Daniele

    2016-05-01

    Recently it has been pointed out that a cosmic background of relativistic axion-like particles (ALPs) would be produced by the primordial decays of heavy fields in the post-inflation epoch, contributing to the extra-radiation content in the Universe today. Primordial magnetic fields would trigger conversions of these ALPs into sub-MeV photons during the dark ages. This photon flux would produce an early reionization of the Universe, leaving a significant imprint on the total optical depth to recombination τ. Using the current measurement of τ and the limit on the extra-radiation content Δ Neff by the Planck experiment we put a strong bound on the ALP-photon conversions. Namely we obtain upper limits on the product of the photon-ALP coupling constant gaγ times the magnetic field strength B down to gaγ B gtrsim 6 × 10-18 GeV-1 nG for ultralight ALPs.

  8. Surface theorem for the Chern-Simons axion coupling

    NASA Astrophysics Data System (ADS)

    Olsen, Thomas; Taherinejad, Maryam; Vanderbilt, David; Souza, Ivo

    2017-02-01

    The Chern-Simons axion coupling of a bulk insulator is only defined modulo a quantum of e2/h . The quantized part of the coupling is uniquely defined for a bounded insulating sample, but it depends on the specific surface termination. Working in a slab geometry and representing the valence bands in terms of hybrid Wannier functions, we show how to determine that quantized part from the excess Chern number of the hybrid Wannier sheets located near the surface of the slab. The procedure is illustrated for a tight-binding model consisting of coupled quantum anomalous Hall layers. By slowly modulating the model parameters it is possible to transfer one unit of Chern number from the bottom to the top surface over the course of a cyclic evolution of the bulk Hamiltonian, changing the surface anomalous Hall conductivity by a quantum of conductance e2/h . When the evolution of the surface Hamiltonian is also cyclic, the Chern pumping is obstructed by chiral touchings between valence and conduction surface bands.

  9. Signatures of Planck corrections in a spiralling axion inflation model

    SciTech Connect

    McDonald, John

    2015-05-01

    The minimal sub-Planckian axion inflation model accounts for a large scalar-to-tensor ratio via a spiralling trajectory in the field space of a complex field Φ. Here we consider how the predictions of the model are modified by Planck scale-suppressed corrections. In the absence of Planck corrections the model is equivalent to a φ{sup 4/3} chaotic inflation model. Planck corrections become important when the dimensionless coupling ξ of |Φ|{sup 2} to the topological charge density of the strongly-coupled gauge sector F  F-tilde satisfies ξ ∼ 1. For values of |Φ| which allow the Planck corrections to be understood via an expansion in powers of |Φ|{sup 2}/M{sub Pl}{sup 2}, we show that their effect is to produce a significant modification of the tensor-to-scalar ratio from its φ{sup 4/3} chaotic inflation value without strongly modifying the spectral index. In addition, to leading order in |Φ|{sup 2}/M{sub Pl}{sup 2}, the Planck modifications of n{sub s} and r satisfy a consistency relation, Δ n{sub s} = −Δr/16. Observation of these modifications and their correlation would allow the model to be distinguished from a simple φ{sup 4/3} chaotic inflation model and would also provide a signature for the influence of leading-order Planck corrections.

  10. Signatures of Planck corrections in a spiralling axion inflation model

    SciTech Connect

    McDonald, John

    2015-05-08

    The minimal sub-Planckian axion inflation model accounts for a large scalar-to-tensor ratio via a spiralling trajectory in the field space of a complex field Φ. Here we consider how the predictions of the model are modified by Planck scale-suppressed corrections. In the absence of Planck corrections the model is equivalent to a ϕ{sup 4/3} chaotic inflation model. Planck corrections become important when the dimensionless coupling ξ of |Φ|{sup 2} to the topological charge density of the strongly-coupled gauge sector FF{sup ~} satisfies ξ∼1. For values of |Φ| which allow the Planck corrections to be understood via an expansion in powers of |Φ|{sup 2}/M{sub Pl}{sup 2}, we show that their effect is to produce a significant modification of the tensor-to-scalar ratio from its ϕ{sup 4/3} chaotic inflation value without strongly modifying the spectral index. In addition, to leading order in |Φ|{sup 2}/M{sub Pl}{sup 2}, the Planck modifications of n{sub s} and r satisfy a consistency relation, Δn{sub s}=−Δr/16. Observation of these modifications and their correlation would allow the model to be distinguished from a simple ϕ{sup 4/3} chaotic inflation model and would also provide a signature for the influence of leading-order Planck corrections.

  11. An axion-induced SM/MSSM Higgs landscape and the Weak Gravity Conjecture

    NASA Astrophysics Data System (ADS)

    Herráez, Alvaro; Ibáñez, Luis E.

    2017-02-01

    We construct models in which the SM Higgs mass scans in a landscape. This is achieved by coupling the SM to a monodromy axion field through Minkowski 3-forms. The Higgs mass scans with steps given by δm H 2 ≃ ημf, where μ and f are the axion mass and periodicity respectively, and η measures the coupling of the Higgs to the associated 3-form. The observed Higgs mass scale could then be selected on anthropic grounds. The monodromy axion may have a mass μ in a very wide range depending on the value of η, and the axion periodity f . For η ≃ 1 and f ≃ 1010 GeV , one has 10-3 eV ≲ μ ≲ 103 eV, but ultralight axions with e.g. μ ≃ 10-17 eV are also possible. In a different realization we consider landscape models coupled to the MSSM. In the context of SUSY, 4-forms appear as being part of the auxiliary fields of SUSY multiplets. The scanning in the 4-forms thus translate into a landscape of vevs for the N = 1 auxiliary fields and hence as a landscape for the soft terms. This could provide a rationale for the MSSM fine-tuning suggested by LHC data. In all these models there are 3-forms coupling to membranes which induce transitions between different vacua through bubble nucleation. The Weak Gravity Conjecture (WGC) set limits on the tension of these membranes and implies new physics thresholds well below the Planck scale. More generaly, we argue that in the case of string SUSY vacua in which the Goldstino multiplet contains a monodromy axion the WGC suggests a lower bound on the SUSY breaking scale m 3/2 ≳ M s 2 / M p .

  12. Soft X-ray excess in the Coma cluster from a Cosmic Axion Background

    SciTech Connect

    Angus, Stephen; Conlon, Joseph P.; Marsh, M.C. David; Powell, Andrew J.; Witkowski, Lukas T. E-mail: j.conlon1@physics.ox.ac.uk E-mail: andrew.powell2@physics.ox.ac.uk

    2014-09-01

    We show that the soft X-ray excess in the Coma cluster can be explained by a cosmic background of relativistic axion-like particles (ALPs) converting into photons in the cluster magnetic field. We provide a detailed self-contained review of the cluster soft X-ray excess, the proposed astrophysical explanations and the problems they face, and explain how a 0.1- 1 keV axion background naturally arises at reheating in many string theory models of the early universe. We study the morphology of the soft excess by numerically propagating axions through stochastic, multi-scale magnetic field models that are consistent with observations of Faraday rotation measures from Coma. By comparing to ROSAT observations of the 0.2- 0.4 keV soft excess, we find that the overall excess luminosity is easily reproduced for g{sub aγγ} ∼ 2 × 10{sup -13} Ge {sup -1}. The resulting morphology is highly sensitive to the magnetic field power spectrum. For Gaussian magnetic field models, the observed soft excess morphology prefers magnetic field spectra with most power in coherence lengths on O(3 kpc) scales over those with most power on O(12 kpc) scales. Within this scenario, we bound the mean energy of the axion background to 50 eV∼< ( E{sub a} ) ∼< 250 eV, the axion mass to m{sub a} ∼< 10{sup -12} eV, and derive a lower bound on the axion-photon coupling g{sub aγγ} ∼> √(0.5/Δ N{sub eff}) 1.4 × 10{sup -13} Ge {sup -1}.

  13. Axion and neutrino physics in a U (1 )-enhanced supersymmetric model

    NASA Astrophysics Data System (ADS)

    Ahn, Y. H.

    2017-07-01

    Motivated by the flavored Peccei-Quinn symmetry for unifying the flavor physics and string theory, we construct an explicit model by introducing a U (1 ) symmetry such that the U (1 )X-[gravity]2 anomaly-free condition together with the standard model flavor structure demands additional sterile neutrinos as well as no axionic domain-wall problem. Such additional sterile neutrinos play the role of realizing baryogenesis via a new Affleck-Dine leptogenesis. We provide grounds for interpreting the U (1 )X symmetry as a fundamental symmetry of nature. The model will resolve rather recent but fast-growing issues in astroparticle physics, including leptonic mixings and C P violation in neutrino oscillation, high-energy neutrinos, QCD axions, and axion cooling of stars. The QCD axion decay constant, through its connection to the astrophysical constraints of stellar evolution and the SM fermion masses, is shown to be fixed at FA=1.30-0.54+0.66×1 09 GeV (consequently, its mass is ma=4.3 4-1.49+3.37 meV and the axion-photon coupling is |ga γ γ|=1.30-0.45+1.01×10-12 GeV-1 ). Interestingly enough, we show that neutrino oscillations at low energies could be connected to astronomical-scale baseline neutrino oscillations. The model predicts the nonobservational neutrinoless double beta (0 ν β β ) decay rate as well as a remarkable pattern between the leptonic Dirac C P phase (δC P) and the atmospheric mixing angle (θ23); e.g., δC P≃22 0 ° - 24 0 ° , 120°-140° for θ23=42.3 ° for normal mass ordering, and δC P≃28 3 ° , 250°, 100°, 70° for θ23=49.5 ° for the inverted one. We stress that future measurements on the θ23, 0 ν β β decay rate, the sum of active neutrino masses, the track-to-shower ratio of a cosmic neutrino, astrophysical constraints on axions, QCD axion mass, and the axion-photon coupling are of importance to test the model in the near future.

  14. Bounds on galactic cold dark matter particle candidates and solar axions from a Ge-spectrometer

    SciTech Connect

    Gelmini, G.

    1986-11-01

    The ultralow background Ge spectrometer developed by the USC/PNL group is used as a detector of cold dark matter candidates from the halo of our galaxy and of solar axions (and other light bosons), yielding interesting bounds. Some of them are: heavy standard Dirac neutrinos with mass 20 GeV less than or equal to m less than or equal to 1 TeV are excluded as main components of the halo of our galaxy; Dine-Fischler-Srednicki axion models with F/2x/sub e/' less than or equal to 0.5 x 10/sup 7/ GeV are excluded. 22 refs., 7 figs.

  15. Axion-like particle dark matter in the linear regime of structure formation

    NASA Astrophysics Data System (ADS)

    Yang, Qiaoli; di, Haoran

    2017-04-01

    If axion-like particles (ALPs) constitute a major part of dark matter (DM), due to their bosonic nature and a relatively small mass, they could behave differently from the pointlike dark matter particles on the formation of the cosmic structures. When studying the structure formation, it is often useful to consider DM as a special fluid with a given density and a given velocity. ALP fluid obeys the same continuity equation compared to the pointlike collisionless DM, but has a different first-order velocity equation. In the linear regime of structure formation, the resulted observational differences are negligible for the QCD axions but can be interesting for very light ALPs.

  16. New generation low-energy probes for ultralight axion and scalar dark matter

    NASA Astrophysics Data System (ADS)

    Stadnik, Yevgeny V.; Flambaum, Victor V.

    2017-05-01

    We present a brief overview of a new generation of high-precision laboratory and astrophysical measurements to search for ultralight (sub-eV) axion, axion-like pseudoscalar and scalar dark matter (DM), which form either a coherently oscillating classical field or topological defects (solitons). In these new detection methods, the sought effects are linear in the interaction constant between DM and ordinary matter, which is in stark contrast to traditional searches for DM, where the sought effects are quadratic or higher order in the underlying interaction constants (which are extremely small).

  17. A Model for Axions Producing Extended gamma-ray Emission from Neutron Star J0108-1431

    NASA Astrophysics Data System (ADS)

    Berenji, Bijan; Fermi LAT Collaboration

    2017-01-01

    Axions are hypothetical particles proposed to solve the strong CP problem in QCD and may constitute a significant fraction of the dark matter in the Universe. Axions are expected to be produced in neutron stars and subsequently decay, producing gamma-rays detectable by the Fermi Large Area Telescope (Fermi-LAT). Considering that light axions may travel a long range before they decay into gamma rays, neutron stars may appear as a spatially-extended source of gamma rays. We extend our previous search for gamma rays from axions, based on a point source model, to consider the neutron star as an extended source of gamma rays.We investigate the spatial emission of gamma rays using phenomenological models. We present models including the fundamental astrophysics and relativistic, extended gamma-ray emission from axions around neutron stars. A Monte Carlo simulation of the LAT gives us an expectation for the extended angular profile and spectrum. We predict a mean angular spread of 0.8 degrees with energies in the range 30-200 MeV. We consider projected sensitivities for mass limits on axions from J0108-1431, a neutron star at a distance of 240 pc. We demonstrate the feasibility of setting more stringent limits for axions in this mass range, excluding a range not probed by observations before. Based on the extended angular profile of the source, the expected sensitivity of the 95% CL upper limit on the axion mass from J0108-1431 is >10 meV. We also consider observational strategies in the search for axions from J0108-1431 with the Fermi-LAT.

  18. (In)dependence of 𝜃 in the Higgs regime without axions

    NASA Astrophysics Data System (ADS)

    Shifman, Mikhail; Vainshtein, Arkady

    2017-05-01

    We revisit the issue of the vacuum angle 𝜃 dependence in weakly coupled (Higgsed) Yang-Mills theories. Two most popular mechanisms for eliminating physical 𝜃 dependence are massless quarks and axions. Anselm and Johansen noted that the vacuum angle 𝜃EW, associated with the electroweak SU(2) in the Glashow-Weinberg-Salam model (Standard Model, SM), is unobservable although all fermion fields obtain masses through Higgsing and there is no axion. We generalize this idea to a broad class of Higgsed Yang-Mills theories. In the second part, we consider the consequences of Grand Unification. We start from a unifying group, e.g. SU(5), at a high ultraviolet scale and evolve the theory down within the Wilson procedure. If on the way to infrared the unifying group is broken down into a few factors, all factor groups inherit one and the same 𝜃 angle — that of the unifying group. We show that embedding the SM in SU(5) drastically changes the Anselm-Johansen conclusion: the electroweak vacuum angle 𝜃EW, equal to 𝜃QCD becomes in principle observable in ΔB = ΔL = ±1 processes. We also note in passing that if the axion mechanism is set up above the unification scale, we have one and the same axion in the electroweak theory and QCD, and their impacts are interdependent.

  19. Topological defects and nano-Hz gravitational waves in aligned axion models

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Jeong, Kwang Sik; Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2016-08-01

    We study the formation and evolution of topological defects in an aligned axion model with multiple Peccei-Quinn scalars, where the QCD axion is realized by a certain combination of the axions with decay constants much smaller than the conventional Peccei-Quinn breaking scale. When the underlying U(1) symmetries are spontaneously broken, the aligned structure in the axion field space exhibits itself as a complicated string-wall network in the real space. We find that the string-wall network likely survives until the QCD phase transition if the number of the Peccei-Quinn scalars is greater than two. The string-wall system collapses during the QCD phase transition, producing a significant amount of gravitational waves in the nano-Hz range at present. The typical decay constant is constrained to be below O(100) TeV by the pulsar timing observations, and the constraint will be improved by a factor of 2 in the future SKA observations.

  20. Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism

    NASA Astrophysics Data System (ADS)

    Ballesteros, Guillermo; Redondo, Javier; Ringwald, Andreas; Tamarit, Carlos

    2017-02-01

    A minimal extension of the standard model (SM) with a single new mass scale and providing a complete and consistent picture of particle physics and cosmology up to the Planck scale is presented. We add to the SM three right-handed SM-singlet neutrinos, a new vectorlike color triplet fermion, and a complex SM-singlet scalar σ that stabilizes the Higgs potential and whose vacuum expectation value at ˜1 011 GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously. Primordial inflation is produced by a combination of σ (nonminimally coupled to the scalar curvature) and the SM Higgs boson. Baryogenesis proceeds via thermal leptogenesis. At low energies, the model reduces to the SM, augmented by seesaw-generated neutrino masses, plus the axion, which solves the strong C P problem and accounts for the dark matter in the Universe. The model predicts a minimum value of the tensor-to-scalar ratio r ≃0.004 , running of the scalar spectral index α ≃-7 × 10-4, the axion mass mA˜100 μ eV , and cosmic axion background radiation corresponding to an increase of the effective number of relativistic neutrinos of ˜0.03 . It can be probed decisively by the next generation of cosmic microwave background and axion dark matter experiments.

  1. Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Zhang, Yi-Fan

    2016-01-01

    Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ~ 100-300 GeV . Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μll m3/2 may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the TR vs. m3/2 plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices fa. These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale fa~ 1010-1012 GeV which is also favored by naturalness: fa ~ √μMP/λμ ~ 1010-1012 GeV . These fa values correspond to axion masses somewhat above the projected ADMX search regions.

  2. Axion-Higgs interplay in the two-Higgs-doublet model

    NASA Astrophysics Data System (ADS)

    Espriu, Domènec; Mescia, Federico; Renau, Albert

    2015-11-01

    The Zhitnitsky and Dine, Fischler and Srednicki (DFSZ) model is a natural extension of the two-Higgs-doublet model containing an additional singlet, endowed with a Peccei-Quinn symmetry, and leading to a physically acceptable axion. In this paper we reexamine this model in the light of some new developments. For generic couplings the model reproduces the minimal Standard Model showing only tiny deviations (extreme decoupling scenario) and all additional degrees of freedom (with the exception of the axion) are very heavy. Recently it has been remarked that the limit where the coupling between the singlet and the two doublets becomes very small is technically natural. Combining this limit with the requirement of exact or approximate custodial symmetry, we may obtain an additional 0+ Higgs at the weak scale, accompanied by relatively light charged and neutral pseudoscalars. The mass spectrum would then resemble that of a generic two-Higgs-doublet model, with naturally adjustable masses in spite of the large scale that the axion introduces. However, the couplings are nongeneric in this model. We use the recent constraints derived from the Higgs-W W coupling together with oblique corrections to constrain the model as much as possible. As an additional result, we work out the nonlinear parametrization of the DFSZ model in the generic case where all scalars except the lightest Higgs and the axion have masses at or beyond the TeV scale.

  3. Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism.

    PubMed

    Ballesteros, Guillermo; Redondo, Javier; Ringwald, Andreas; Tamarit, Carlos

    2017-02-17

    A minimal extension of the standard model (SM) with a single new mass scale and providing a complete and consistent picture of particle physics and cosmology up to the Planck scale is presented. We add to the SM three right-handed SM-singlet neutrinos, a new vectorlike color triplet fermion, and a complex SM-singlet scalar σ that stabilizes the Higgs potential and whose vacuum expectation value at ∼10^{11}  GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously. Primordial inflation is produced by a combination of σ (nonminimally coupled to the scalar curvature) and the SM Higgs boson. Baryogenesis proceeds via thermal leptogenesis. At low energies, the model reduces to the SM, augmented by seesaw-generated neutrino masses, plus the axion, which solves the strong CP problem and accounts for the dark matter in the Universe. The model predicts a minimum value of the tensor-to-scalar ratio r≃0.004, running of the scalar spectral index α≃-7×10^{-4}, the axion mass m_{A}∼100  μeV, and cosmic axion background radiation corresponding to an increase of the effective number of relativistic neutrinos of ∼0.03. It can be probed decisively by the next generation of cosmic microwave background and axion dark matter experiments.

  4. First results from a microwave cavity axion search at 25 μeV : Overview

    NASA Astrophysics Data System (ADS)

    Brubaker, Benjamin; ADMX-HF Collaboration

    2017-01-01

    The axion is a well-motivated cold dark matter candidate first postulated to explain the absence of CP violation in strong interactions. Dark matter axions may be detected via their resonant conversion into photons in a high- Q microwave cavity permeated by a strong magnetic field. In this talk I will present an overview of a newly operational cavity detector at Yale, which is the first such detector to incorporate a dilution refrigerator and Josephson parametric amplifier and thereby approach quantum-limited noise performance. I will discuss the first results from this experiment, which has excluded axion models with two-photon coupling gaγγ > 2 ×10-14GeV-1 , a factor of = 2 . 3 above the benchmark KSVZ model, over the mass range 23 . 55 μeV axion model band in the 10 μeV mass decade. Supported by NSF Grants PHY-1362305 and PHY-1306729, Heising-Simons Foundation Grant 2014-182, and DOE Grant DE-AC52-07NA27344.

  5. New axion and hidden photon constraints from a solar data global fit

    SciTech Connect

    Vinyoles, N.; Serenelli, A.; Isern, J.; Villante, F.L.; Basu, S.; Redondo, J. E-mail: aldos@ice.csic.es E-mail: sarbani.basu@yale.edu E-mail: isern@ice.csic.es

    2015-10-01

    We present a new statistical analysis that combines helioseismology (sound speed, surface helium and convective radius) and solar neutrino observations (the {sup 8}B and {sup 7}Be fluxes) to place upper limits to the properties of non standard weakly interacting particles. Our analysis includes theoretical and observational errors, accounts for tensions between input parameters of solar models and can be easily extended to include other observational constraints. We present two applications to test the method: the well studied case of axions and axion-like particles and the more novel case of low mass hidden photons. For axions we obtain an upper limit at 3σ for the axion-photon coupling constant of g{sub aγ} < 4.1 · 10{sup −10} GeV{sup −1}. For hidden photons we obtain the most restrictive upper limit available accross a wide range of masses for the product of the kinetic mixing and mass of χ m < 1.8 ⋅ 10{sup −12} eV at 3σ. Both cases improve the previous solar constraints based on the Standard Solar Models showing the power of using a global statistical approach.

  6. Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Zhang, Yi-Fan

    2016-01-07

    Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ∼100–300 GeV. Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μ≪m{sub 3/2} may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the T{sub R} vs. m{sub 3/2} plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices f{sub a}. These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale f{sub a}∼10{sup 10}–10{sup 12} GeV which is also favored by naturalness: f{sub a}∼√(μM{sub P}/λ{sub μ})∼10{sup 10}–10{sup 12} GeV. These f{sub a} values correspond to axion masses somewhat above the projected ADMX search regions.

  7. First Searches for Axions and Axionlike Particles with the LUX Experiment.

    PubMed

    Akerib, D S; Alsum, S; Aquino, C; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Beltrame, P; Bernard, E P; Bernstein, A; Biesiadzinski, T P; Boulton, E M; Brás, P; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chiller, A A; Chiller, C; Currie, A; Cutter, J E; Davison, T J R; Dobi, A; Dobson, J E Y; Druszkiewicz, E; Edwards, B N; Faham, C H; Fallon, S R; Fiorucci, S; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C R; Hanhardt, M; Haselschwardt, S J; Hertel, S A; Hogan, D P; Horn, M; Huang, D Q; Ignarra, C M; Jacobsen, R G; Ji, W; Kamdin, K; Kazkaz, K; Khaitan, D; Knoche, R; Larsen, N A; Lee, C; Lenardo, B G; Lesko, K T; Lindote, A; Lopes, M I; Manalaysay, A; Mannino, R L; Marzioni, M F; McKinsey, D N; Mei, D-M; Mock, J; Moongweluwan, M; Morad, J A; Murphy, A St J; Nehrkorn, C; Nelson, H N; Neves, F; O'Sullivan, K; Oliver-Mallory, K C; Palladino, K J; Pease, E K; Reichhart, L; Rhyne, C; Shaw, S; Shutt, T A; Silva, C; Solmaz, M; Solovov, V N; Sorensen, P; Stephenson, S; Sumner, T J; Szydagis, M; Taylor, D J; Taylor, W C; Tennyson, B P; Terman, P A; Tiedt, D R; To, W H; Tripathi, M; Tvrznikova, L; Uvarov, S; Velan, V; Verbus, J R; Webb, R C; White, J T; Whitis, T J; Witherell, M S; Wolfs, F L H; Xu, J; Yazdani, K; Young, S K; Zhang, C

    2017-06-30

    The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons g_{Ae} is tested using data collected in 2013 with an exposure totaling 95 live days ×118  kg. A double-sided, profile likelihood ratio statistic test excludes g_{Ae} larger than 3.5×10^{-12} (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12  eV/c^{2}, while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6  eV/c^{2} are excluded. For galactic axionlike particles, values of g_{Ae} larger than 4.2×10^{-13} are excluded for particle masses in the range 1-16  keV/c^{2}. These are the most stringent constraints to date for these interactions.

  8. On the validity of the perturbative description of axions during inflation

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo Z.; Ganc, Jonathan; Noreña, Jorge; Sloth, Martin S.

    2016-04-01

    Axions play a central role in many realizations of large field models of inflation and in recent alternative mechanisms for generating primordial tensor modes in small field models. If these axions couple to gauge fields, the coupling produces a tachyonic instability that leads to an exponential enhancement of the gauge fields, which in turn can decay into observable scalar or tensor curvature perturbations. Thus, a fully self-consistent treatment of axions during inflation is important, and in this work we discuss the perturbative constraints on axions coupled to gauge fields. We show how the recent proposal of generating tensor modes through these alternative mechanisms is in tension with perturbation theory in the in-in formalism. Interestingly, we point out that the constraints are parametrically weaker than one would estimate based on naive power counting of propagators of the gauge field. In the case of non-Abelian gauge fields, we derive new constraints on the size of the gauge coupling, which apply also in certain models of natural large field inflation, such as alignment mechanisms.

  9. First Searches for Axions and Axionlike Particles with the LUX Experiment

    DOE PAGES

    Akerib, D. S.; Alsum, S.; Aquino, C.; ...

    2017-06-29

    The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons gAe is tested using data collected in 2013 with an exposure totaling 95 live days ×118 kg. A double-sided, profile likelihood ratio statistic test excludes gAe larger than 3.5 × 10–12 (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12 eV/c2, while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6 eV/c2 are excluded.more » For galactic axionlike particles, values of gAe larger than 4.2 × 10–13 are excluded for particle masses in the range 1–16 keV/c2. As a result, these are the most stringent constraints to date for these interactions.« less

  10. First Searches for Axions and Axionlike Particles with the LUX Experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Aquino, C.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-06-01

    The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons gAe is tested using data collected in 2013 with an exposure totaling 95 live days ×118 kg . A double-sided, profile likelihood ratio statistic test excludes gAe larger than 3.5 ×10-12 (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12 eV /c2 , while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6 eV /c2 are excluded. For galactic axionlike particles, values of gAe larger than 4.2 ×10-13 are excluded for particle masses in the range 1 - 16 keV /c2 . These are the most stringent constraints to date for these interactions.

  11. Cosmological magnetic fields as string dynamo seeds and axion fields in torsioned spacetime

    SciTech Connect

    De Andrade, L.C. Garcia

    2014-08-01

    In this paper two examples of the generation cosmological magnetic fields (CMF) are given. The first is the string dynamo seed cosmological magnetic field estimated as B{sub seed}∼10{sup -24} Gauss from a static spin polarised cylinder in Einstein-Cartan-Maxwell spacetime. The string dynamo seeds from a static spin polarised cylinder is given by B∼σ{sup 2}R{sup 2} where σ is the spin-torsion density while R is the string radius. The B-field value above is able to seed galactic dynamo. In the BBN the magnetic fields around 10{sup 12} Gauss give rise to a string radius as small as 10{sup 17}l{sub P} where l{sub P} is the Planck length. The second is the CMF from axionic torsion field which is given by B{sub seed}∼10{sup -27} Gauss which is stronger than the primordial magnetic field B{sub BICEP2}∼10{sup -30} Gauss from the BICEP2 recent experiment on primordial gravitational waves and cosmological inflation to axionic torsion. The interaction Lagrangean between axionic torsion scalar φ and magnetic fields used in this last example is given by f{sup 2}(φ)F{sub μν}F{sup μν}. A similar lagrangean has been used by K. Bamba et al. [JCAP 10 (2012) 058] so generate magnetic fields without dynamo action. Since axionic torsion can be associated with axionic domain walls both examples discussed here could be consider as topological defects examples of the generation of primordial magnetic fields in universes endowed with spacetime torsion.

  12. A proposed search for dark-matter axions in the 0.6-16 micro-eV range

    NASA Technical Reports Server (NTRS)

    Vanbibber, Karl; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Turner, Michael S.; Moltz, D. M.

    1991-01-01

    A proposed experiment is described to search for dark matter axions in the mass range 0.6 to 16 micro-eV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet, as described by Sikivie. This proposal capitalizes on the availability of two Axicell magnets from the decommissioned Mirror Fusion Test Facility (MFTF-B) fusion machine at LLNL. Assuming a local dark matter density in axions of rho = 0.3 GeV/cu cm, the axion would be found or ruled out at the 97 pct. c.l. in the above mass range in 48 months.

  13. First result of the experimental search for the 9.4 keV solar axion reactions with 83Kr in the copper proportional counter

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Derbin, A. V.; Kazalov, V. V.; Kim, H. J.; Kim, Y. D.; Kobychev, V. V.; Kuzminov, V. V.; Ali, Luqman; Muratova, V. N.; Panasenko, S. I.; Ratkevich, S. S.; Semenov, D. A.; Tekueva, D. A.; Yakimenko, S. P.; Unzhakov, E. V.

    2015-03-01

    The experimental search for solar hadronic axions is started at the Baksan Neutrino Observatory of the Institute for Nuclear Researches of Russian Academy of Science (BNO INR RAS). It is assumed that axions are created in the Sun during M1 transition between the first thermally excited level at 9.4 keV and the ground state in 83Kr. The experiment is based on axion detection via resonant absorption process by the same nucleus in the detector. The big copper proportional counter filled with krypton is used to detect signals from axions. The experimental setup is situated in the deep underground low background laboratory. No evidence of axion detection were found after the 26.5 days data collection. Resulting new upper limit on axion mass is m A ≤ 130 eV at 95% C.L.

  14. Core-halo mass relation of ultralight axion dark matter from merger history

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Behrens, Christoph; Niemeyer, Jens C.; Schwabe, Bodo

    2017-02-01

    In the context of structure formation with ultralight axion dark matter, we offer an alternative explanation for the mass relation of solitonic cores and their host halos observed in numerical simulations. Our argument is based entirely on the mass gain that occurs during major mergers of binary cores and largely independent of the initial core-halo mass relation assigned to hosts that have just collapsed. We find a relation between the halo mass Mh and corresponding core mass Mc, Mc∝Mh2 β -1, where (1 -β ) is the core mass loss fraction. Following the evolution of core masses in stochastic merger trees, we find empirical evidence for our model. Our results are useful for statistically modeling the effects of dark matter cores on the properties of galaxies and their substructures in axion dark matter cosmologies.

  15. Far from equilibrium dynamics of Bose-Einstein condensation for axion dark matter

    NASA Astrophysics Data System (ADS)

    Berges, Jürgen; Jaeckel, Joerg

    2015-01-01

    Axions and similar very weakly interacting particles are increasingly compelling candidates for the cold dark matter of the Universe. Having very low mass and being produced nonthermally in the early universe, axions feature extremely high occupation numbers. It has been suggested that this leads to the formation of a Bose-Einstein condensate with potentially significant impact on observation and direct detection experiments. In this paper we aim to clarify that if Bose-Einstein condensation occurs for light and very weakly interacting dark matter particles, it does not happen in thermal equilibrium but is described by a far from equilibrium state. In particular we point out that the dynamics is characterized by two very different time scales, such that condensation occurs on a much shorter time scale than full thermalization.

  16. A search for the coherent production of axions in the milli eV range

    SciTech Connect

    Cameron, R.; Melissinos, A.C.; Semertzidis, Y. ); Cantatore, G.; Rizzo, C.; Ruoso, P.; Zavattini, E. Istituto Nazionale di Fisica Nucleare, Trieste ); Halama, H.; Lazarus, D.M.; Prodell, A. ); Nezrick, F. )

    1991-01-01

    Axions provide a natural explanation for the absence of CP violation in the strong interaction. As weakly interacting light particles they are also candidates for the much sought after dark matter allegedly responsible for our lack of understanding of galactic dynamics. Beam dump, particle decay and astrophysical measurements carried out over the past decade have failed to provide positive evidence for their existence over a wide range of masses and coupling strengths. This experiment attempts to produce and detect scalar and pseudoscalar particles coherently produced through the interaction of laser photons with the virtual photons of the magnetic fields of superconducting dipole magnets as manifested by small changes in the polarization state of the laser light. A limit on the coupling of the axion to 2 photons of g{sub a{gamma}{gamma}} < 6.67 {times} 10{sup {minus}7} GeV{sup {minus} 1} was achieved. 8 refs., 3 figs.

  17. Polarization-operator approach to optical signatures of axion-like particles in strong laser pulses

    NASA Astrophysics Data System (ADS)

    Villalba-Chávez, S.; Podszus, T.; Müller, C.

    2017-06-01

    Hypothetical oscillations of probe photons into axion-like particles might be revealed by exploiting the strong fields of high-intensity laser pulses. Considering an arbitrary plane-wave background, we determine the polarization tensor induced by the quantum fluctuations of the axion field and use it to calculate how the polarimetric properties of an initially linear-polarized probe beam are modified. We find that various experimental setups based on contemporary facilities and instrumentation might lead to new exclusion bounds on the parameter space of these particle candidates. The impact of the pulse shape on the discovery potential is studied via a comparison between the cases in which the wave is modulated by a Gaussian envelope and a sin2 profile. This analysis shows that the upper limits resulting from the ellipticity are relatively insensitive to this change, whereas those arising from the rotation of the polarization plane turn out to be more dependent on the field shape.

  18. Mixed Axion/Axino Dark Matter in mSUGRA and Yukawa-unified SUSY

    SciTech Connect

    Ann Summy, Heaya

    2010-02-10

    Axion/axino dark matter (DM) is explored in the minimal supergravity (mSUGRA) and Yukawa-unified supersymmetric grand-unified theory (SUSY GUT) models with surprising results. For this type of scenario, relic DM abundance has three components: i.) cold axions, ii.) warm axinos from neutralino decay, and iii.) cold or warm thermally produced axinos. Reheat temperatures T{sub R} exceeding 10{sup 6} GeV are required in order to solve the gravitino/Big Bang Nucleosynthesis (BBN) problem while also allowing for baryogensis via non-thermal leptogenesis. In order to attain high enough reheat temperatures, we also need high values of the Peccei-Quinn (PQ) breaking scale f{sub a} on the order 10{sup 11}-10{sup 12} GeV.

  19. Results from the large-scale U.S. dark matter axion search

    NASA Astrophysics Data System (ADS)

    Daw, Edward J.

    1999-03-01

    A collaboration of M.I.T., L.L.N.L., the University of Florida, F.N.A.L, L.B.N.L., and I.N.R., Moscow is conducting a high-sensitivity search for light axions in the galactic halo. I discuss the search method, the sensitivity of the detector, and data analysis. I then present the first results of the experiment. Assuming a local dark matter density of 0.45GeV/cc, these results exclude at 90% confidence Kim-Shifman-Vainshtein-Zakhaxov axions of mass 2.9x10-6 to 3.3x10-6eV as the halo dark matter.

  20. Note on the stability of axionic D-term s-strings

    SciTech Connect

    Achucarro, Ana; Sousa, Kepa

    2006-10-15

    We investigate the stability of a new class of BPS cosmic strings in N=1 supergravity with D-terms recently proposed by Blanco-Pillado, Dvali and Redi. These have been conjectured to be the low energy manifestation of D-strings that might form from tachyon condensation after D- anti-D-brane annihilation in type IIB superstring theory. There are three one-parameter families of cylindrically symmetric one-vortex solutions to the BPS equations (tachyonic, axionic and hybrid). We find evidence that the zero mode in the axionic case, or s-strings, can be excited. Its evolution leads to the decompactification of four-dimensional spacetime at late times, with a rate that decreases with decreasing brane tension.

  1. Cosmological particle-in-cell simulations with ultralight axion dark matter

    NASA Astrophysics Data System (ADS)

    Veltmaat, Jan; Niemeyer, Jens C.

    2016-12-01

    We study cosmological structure formation with ultralight axion dark matter, or "fuzzy dark matter" (FDM), using a particle-mesh scheme to account for the quantum pressure arising in the Madelung formulation of the Schrödinger-Poisson equations. Subpercent-level energy conservation and correct linear behavior are demonstrated. Whereas the code gives rise to the same core-halo profiles as direct simulations of the Schrödinger equation, it does not reproduce the detailed interference patterns. In cosmological simulations with FDM initial conditions, we find a maximum relative difference of O(10%) in the power spectrum near the quantum Jeans length compared to using a standard N -body code with identical initial conditions. This shows that the effect of quantum pressure during nonlinear structure formation cannot be neglected for precision constraints on a dark matter component consisting of ultralight axions.

  2. Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale.

    PubMed

    Espinosa, J R; Grojean, C; Panico, G; Pomarol, A; Pujolàs, O; Servant, G

    2015-12-18

    Recently, a new mechanism to generate a naturally small electroweak scale has been proposed. It exploits the coupling of the Higgs boson to an axionlike field and a long era in the early Universe where the axion unchains a dynamical screening of the Higgs mass. We present a new realization of this idea with the new feature that it leaves no sign of new physics at the electroweak scale, and up to a rather large scale, 10^{9}  GeV, except for two very light and weakly coupled axionlike states. One of the scalars can be a viable dark matter candidate. Such a cosmological Higgs-axion interplay could be tested with a number of experimental strategies.

  3. Supersymmetry and dark matter post LHC8: Why we may expect both axion and WIMP detection

    SciTech Connect

    Baer, Howard

    2014-01-01

    In the post-LHC8 era, it is perceived that what is left of SUSY model parameter space is highly finetuned in the EW sector (EWFT). We discuss how conventional measures overestimate EWFT in SUSY theory. Radiatively-driven natural SUSY (RNS) models maintain the SUSY GUT paradigm with low EWFT at 10% level, but are characterized by light higgsinos ~100–300 GeV and a thermal underabundance of WIMP dark matter. Implementing the SUSY DFSZ solution to the strong CP problem explains the small μ parameter but indicates dark matter should be comprised mainly of axions with a small admixture of higgsino-like WIMPs. While RNS might escape LHC14 searches, we would expect ultimately direct detection of both WIMPs and axions. An e⁺e⁻ collider with √(s)~500–600 GeV should provide a thorough search for the predicted light higgsinos.

  4. Two-field axion-monodromy hybrid inflation model: Dante's Waterfall

    NASA Astrophysics Data System (ADS)

    Carone, Christopher D.; Erlich, Joshua; Sensharma, Anuraag; Wang, Zhen

    2015-02-01

    We describe a hybrid axion-monodromy inflation model motivated by the Dante's Inferno scenario. In Dante's Inferno, a two-field potential features a stable trench along which a linear combination of the two fields slowly rolls, rendering the dynamics essentially identical to that of single-field chaotic inflation. A shift symmetry allows for the Lyth bound to be effectively evaded as in other axion-monodromy models. In our proposal, the potential is concave downward near the origin and the inflaton trajectory is a gradual downward spiral, ending at a point where the trench becomes unstable. There, the fields begin falling rapidly towards the minimum of the potential and inflation terminates as in a hybrid model. We find parameter choices that reproduce observed features of the cosmic microwave background, and discuss our model in light of recent results from the BICEP2 and Planck experiments.

  5. Nuclear effects on axions emission rates from nucleon-nucleon bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Pastrav, B.; Scafes, A. C.

    2010-11-01

    The rates of axion emissions by nucleon-nucleon bremsstrahlung from neutron stars obtained with the inclusion of the full angular momentum contribution from a nuclear one-pion-exchange potential (OPEP), are studied in different conditions of temperature and degeneracy in both, non degenerate (ND) and degenerate (D) regimes. The comparison with the previous results obtained in literature, where only the high momentum limit of the OPEP expressions are used, is done and the differences discussed.

  6. Natural Higgs-Flavor-Democracy Solution of the μ Problem of Supersymmetry and the QCD Axion

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.

    2013-07-01

    We show that the hierarchically small μ term in supersymmetric theories is a consequence of two identical pairs of Higgs doublets taking a democratic form for their mass matrix. We briefly discuss the discrete symmetry S2×S2 toward the democratic mass matrix. Then, we show that there results an approximate Peccei-Quinn symmetry and hence the value μ is related to the axion decay constant.

  7. Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Zhang, Yi-Fan E-mail: baer@nhn.ou.edu E-mail: zyf@ou.edu

    2016-01-01

    Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ∼ 100–300 GeV . Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μ|| m{sub 3/2} may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the T{sub R} vs. m{sub 3/2} plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices f{sub a}. These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale f{sub a∼} 10{sup 10}–10{sup 12} GeV which is also favored by naturalness: f{sub a} ∼ √μM{sub P}/λ{sub μ} ∼ 10{sup 10}–10{sup 12} GeV . These f{sub a} values correspond to axion masses somewhat above the projected ADMX search regions.

  8. 750 GeV composite axion as the LHC diphoton resonance

    NASA Astrophysics Data System (ADS)

    Barrie, Neil D.; Kobakhidze, Archil; Talia, Matthew; Wu, Lei

    2016-04-01

    We propose that the 750 GeV resonance, presumably observed in the early LHC Run 2 data, could be a heavy composite axion that results from condensation of a hypothetical quark in a high-colour representation of conventional QCD. The model, motivated by a recently proposed solution to the strong CP problem, is very economical and is essentially defined by the properties of the additional quark - its colour charge, hypercharge and mass. The axion mass and its coupling to two photons (via axial anomaly) can be computed in terms of these parameters. The axion is predominantly produced via photon fusion (γγ → A) which is followed by Z vector boson fusion and associated production at the LHC. We find that the total diphoton cross section of the axion can be fitted with the observed excess. Combining the requirement on the cross-section, such that it reproduces the diphoton excess events, with the bounds on the total width (Γtot ⩽ 45 GeV), we obtain the effective coupling in the range 1.6 ×10-4 GeV-1 ≳CA ≳ 6.5 ×10-5 GeV-1. Within this window of allowed couplings the model favours a narrow width resonance and yQ2 ∼ O (10). In addition, we observe that the associated production q q bar → Aγ → γγγ can potentially produce a sizeable number of three photon events at future LHC. However, the rare decay Z →A* γ → γγγ is found to be too small to be probed at the LHC and e+e- colliders.

  9. Resonant plasmon-axion excitations induced by charge density wave order in a Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Redell, Matthew D.; Mukherjee, Shantanu; Lee, Wei-Cheng

    2016-06-01

    We investigate the charge excitations of a Weyl semimetal in the axionic charge density wave (axionic CDW) state. While it has been shown that the topological response (anomalous Hall conductivity) is protected against the CDW state, we find that the long-wavelength plasmon excitation is radically influenced by the dynamics of the CDW order parameter. In the normal state, we show that an undamped collective mode should exist at q ⃗≈Q⃗CDW if there is an attractive interaction favoring the formation of the CDW state. The undamped nature of this collective mode is attributed to a gaplike feature in the particle-hole continuum at q ⃗≈Q⃗CDW due to the chirality of the Weyl nodes, which is not seen in other materials with CDW instability. In the CDW state, the long-wavelength plasmon excitations become more dispersive due to the additional interband scattering not allowed in the normal state. Moreover, because the translational symmetry is spontaneously broken, umklapp scattering, the process conserving the total momentum only up to n Q⃗CDW , with n an integer and Q⃗CDW the ordering wave vector, emerges in the CDW state. We find that the plasmon excitation couples to the phonon mode of the CDW order via the umklapp scattering, leading to two branches of resonant collective modes observable in the density-density correlation function at q ⃗≈0 and q ⃗≈Q⃗CDW . Based on our analysis, we propose that measuring these resonant plasmon-axion excitations around q ⃗≈0 and q ⃗≈Q⃗CDW by momentum-resolved electron energy loss spectroscopy could serve as a reliable way to detect the axionic CDW state in Weyl semimetals.

  10. Conformally coupled scalar black holes admit a flat horizon due to axionic charge

    NASA Astrophysics Data System (ADS)

    Bardoux, Yannis; Caldarelli, Marco M.; Charmousis, Christos

    2012-09-01

    Static, charged black holes in the presence of a negative cosmological constant and with a planar horizon are found in four dimensions. The solutions have scalar secondary hair. We claim that these constitute the planar version of the Martínez-Troncoso-Zanelli black holes, only known up to now for a curved event horizon in four dimensions. Their planar version is rendered possible due to the presence of two, equal and homogeneously distributed, axionic charges dressing the flat horizon. The solutions are presented in the conformal and minimal frame and their basic properties and thermodynamics analysed. Entertaining recent applications to holographic superconductors, we expose two branches of solutions: the undressed axionic Reissner-Nordström-AdS black hole, and the novel black hole carrying secondary hair. We show that there is a critical temperature at which the (bald) axionic Reissner-Nordström-AdS black hole undergoes a second order phase transition to the hairy black hole spontaneously acquiring scalar hair.

  11. Cosmological C P -odd axion field as the coherent Berry's phase of the Universe

    NASA Astrophysics Data System (ADS)

    Ge, Shuailiang; Liang, Xunyu; Zhitnitsky, Ariel

    2017-09-01

    We consider a dark matter model offering a very natural explanation of the observed relation, Ωdark˜Ωvisible. This generic consequence of the model is a result of the common origin of both types of matter (dark and visible) which are formed during the same QCD transition. The masses of both types of matter in this framework are proportional to one and the same dimensional parameter of the system, ΛQCD. The focus of the present work is the detailed study of the dynamics of the C P -odd coherent axion field a (x ) just before the QCD transition. We argue that the baryon charge separation effect on the largest possible scales inevitably occurs as a result of merely the existence of the coherent axion field in the early Universe. It leads to preferential formation of one species of nuggets on the scales of the visible Universe where the axion field a (x ) is coherent. A natural outcome of this preferential evolution is that only one type of the visible baryons remains in the system after the nuggets complete their formation. This represents a specific mechanism of how the baryon charge separation mechanism (when the Universe is neutral, but the visible part of matter consists of the baryons only) replaces the conventional "baryogenesis" scenario.

  12. Torsion Bounds from CP Violation α2-DYNAMO in Axion-Photon Cosmic Plasma

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.

    Years ago Mohanty and Sarkar [Phys. Lett. B 433, 424 (1998)] have placed bounds on torsion mass from K meson physics. In this paper, associating torsion to axions a la Campanelli et al. [Phys. Rev. D 72, 123001 (2005)], it is shown that it is possible to place limits on spacetime torsion by considering an efficient α2-dynamo CP violation term. Therefore instead of Kostelecky et al. [Phys. Rev. Lett. 100, 111102 (2008)] torsion bounds from Lorentz violation, here torsion bounds are obtained from CP violation through dynamo magnetic field amplification. It is also shown that oscillating photon-axion frequency peak is reduced to 10-7 Hz due to torsion mass (or Planck mass when torsion does not propagate) contribution to the photon-axion-torsion action. Though torsion does not couple to electromagnetic fields at classical level, it does at the quantum level. Recently, Garcia de Andrade [Phys. Lett. B 468, 28 (2011)] has shown that the photon sector of Lorentz violation (LV) Lagrangian leads to linear nonstandard Maxwell equations where the magnetic field decays slower giving rise to a seed for galactic dynamos. Torsion constraints of the order of K0≈10-42 GeV can be obtained which are more stringent than the value obtained by Kostelecky et al. A lower bound for the existence of galactic dynamos is obtained for torsion as K0≈10-37 GeV.

  13. Searching for the QCD Axion with Black Holes and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Baryakhtar, Masha

    2017-01-01

    The LIGO detection of gravitational waves has opened a new window on the universe. I will discuss how the process of superradiance, combined with gravitational wave measurements, makes black holes into nature's laboratories to search for new light bosons. When a bosonic particle's Compton wavelength is comparable to the horizon size of a black hole, superradiance of these bosons into bound ``Bohr orbitals'' extracts energy and angular momentum from the black hole. The occupation number of the levels grows exponentially and the black hole spins down. For efficient superradiance of stellar black holes, the particle must be ultralight, with mass below 10-10 eV; one candidate for such an ultralight boson is the QCD axion with decay constant above the GUT scale. Measurements of BH spins in X-ray binaries and in mergers at Advanced LIGO can exclude or provide evidence for an ultralight axion. Axions transitioning between levels of the gravitational ``atom'' and annihilating to gravitons may produce thousands of monochromatic gravitational wave signals, turning LIGO into a particle detector.

  14. Light axion-like dark matter must be present during inflation

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca

    2017-07-01

    Axion-like particles (ALPs) might constitute the totality of the cold dark matter (CDM) observed. The parameter space of ALPs depends on the mass of the particle m and on the energy scale of inflation HI, the latter being bound by the nondetection of primordial gravitational waves. We show that the bound on HI implies the existence of a mass scale m¯ χ=10 n eV - 0.5 peV , depending on the ALP susceptibility χ , such that the energy density of ALPs of mass smaller than m¯χ is too low to explain the present CDM budget, if the ALP field has originated after the end of inflation. This bound affects ultra-light axions (ULAs), which have recently regained popularity as CDM candidates. Light (m axion isocurvature fluctuations. We comment on the effects on these bounds from additional physics beyond the standard model, besides ALPs.

  15. Axion inflation with an SU(2) gauge field: detectable chiral gravity waves

    NASA Astrophysics Data System (ADS)

    Maleknejad, Azadeh

    2016-07-01

    We study a single field axion inflation model in the presence of an SU(2) gauge field with a small vev. In order to make the analysis as model-independent as possible, we consider an arbitrary potential for the axion that is able to support the slow-roll inflation. The gauge field is coupled to the axion with a Chern-Simons interaction λ /f{F}_{μ ν}^a{tilde{F}}_a^{μ ν } where λ /f˜ {O}(10)/M_{pl} . It has a negligible effect on the background evolution, ρ YM/M_{pl^2{H}^2}≲ {ɛ}^2 . However, its quantum fluctuations make a significant contribution to the cosmic perturbation. In particular, the gauge field has a spin-2 fluctuation which explicitly breaks the parity between the left- and right-handed polarization states. The chiral tensor modes are linearly coupled to the gravitational waves and lead to a circularly polarized tensor power spectrum comparable to the unpolarized vacuum power spectrum. Moreover, the scalar sector is modified by the linear scalar fluctuations of the gauge field. Since the spin-0 and spin-2 fluctuations of the SU(2) gauge field are independent, the gauge field can, at the same time, generate a detectable chiral gravitational wave signal and have a negligible contribution to the scalar fluctuations, in agreement with the current CMB observations.

  16. Photon-axion conversion, magnetic field configuration, and polarization of photons

    NASA Astrophysics Data System (ADS)

    Masaki, Emi; Aoki, Arata; Soda, Jiro

    2017-08-01

    We study the evolution of photon polarization during the photon-axion conversion process with focusing on the magnetic field configuration dependence. Most previous studies have been carried out in a conventional model where a network of magnetic domains is considered and each domain has a constant magnetic field. We investigate a more general model where a network of domains is still assumed, but each domain has a helical magnetic field. We find that the asymptotic behavior does not depend on the configuration of magnetic fields. Remarkably, we analytically obtain the asymptotic values of the variance of polarization in the conventional model. When the helicity is small, we show that there appears the damped oscillating behavior in the early stage of evolution. Moreover, we see that the constraints on the axion coupling and the cosmological magnetic fields using polarization observations are affected by the magnetic field configuration. This is because the different transient behavior of polarization dynamics is caused by the different magnetic field configuration. Recently, [C. Wang and D. Lai, J. Cosmol. Astropart. Phys. 06 (2016) 006., 10.1088/1475-7516/2016/06/006] claimed that the photon-axion conversion in helical model behaves peculiarly. However, our helical model gives much closer predictions to the conventional discontinuous magnetic field configuration model.

  17. Axion field and the quark nugget's formation at the QCD phase transition

    NASA Astrophysics Data System (ADS)

    Liang, Xunyu; Zhitnitsky, Ariel

    2016-10-01

    We study a testable dark-matter (DM) model outside of the standard weakly interacting massive particle paradigm in which the observed ratio Ωdark≃Ωvisible for visible and dark-matter densities finds its natural explanation as a result of their common QCD origin when both types of matter (DM and visible) are formed at the QCD phase transition and both are proportional to ΛQCD. Instead of the conventional "baryogenesis" mechanism, we advocate a paradigm when the "baryogenesis" is actually a charge separation process which always occurs in the presence of the C P odd axion field a (x ). In this scenario, the global baryon number of the Universe remains zero, while the unobserved antibaryon charge is hidden in the form of heavy nuggets, similar to Witten's strangelets and compromise the DM of the Universe. In the present work, we study in great detail a possible formation mechanism of such macroscopically large heavy objects. We argue that the nuggets will be inevitably produced during the QCD phase transition as a result of Kibble-Zurek mechanism on formation of the topological defects during a phase transition. Relevant topological defects in our scenario are the closed bubbles made of the NDW=1 axion domain walls. These bubbles, in general, accrete the baryon (or antibaryon) charge, which eventually results in the formation of the nuggets and antinuggets carrying a huge baryon (antibaryon) charge. A typical size and the baryon charge of these macroscopically large objects are mainly determined by the axion mass ma. However, the main consequence of the model, Ωdark≈Ωvisible, is insensitive to the axion mass which may assume any value within the observationally allowed window 10-6 eV ≲ma≲10-3 eV . We also estimate the baryon-to-entropy ratio η ≡nB/nγ˜10-10 within this scenario. Finally, we comment on implications of these results to the axion search experiments, including the microwave cavity and the Orpheus experiments.

  18. Hypothetical Dark Matter/Axion rockets: What can be said about Dark Matter in terms of space physics propulsion

    SciTech Connect

    Beckwith, Andrew

    2009-03-16

    This paper discusses dark matter (DM) particle candidates from non-supersymmetry (SUSY) processes and explores how a DM candidate particle in the 100-400 GeV range could be created. Thrust from DM particles is also proposed for Photon rocket and Axion rockets. It would use a magnetic field to convert DM particles to near photonlike particles in a chamber to create thrust from the discharge of the near-photon-like particles. The presence of DM particles would suggest that thrust from the emerging near-photon-like particle would be greater than with conventional photon rockets. This amplifies and improves on an 'axion rocket ramjet' for interstellar travel. It is assumed that the same methodology used in an axion ramjet could be used with DM, with perhaps greater thrust/power conversion efficiencies.

  19. Hypothetical Dark Matter/Axion rockets: What can be said about Dark Matter in terms of space physics propulsion

    NASA Astrophysics Data System (ADS)

    Beckwith, Andrew

    2009-03-01

    This paper discusses dark matter (DM) particle candidates from non-supersymmetry (SUSY) processes and explores how a DM candidate particle in the 100-400 GeV range could be created. Thrust from DM particles is also proposed for Photon rocket and Axion rockets. It would use a magnetic field to convert DM particles to near photonlike particles in a chamber to create thrust from the discharge of the near-photon-like particles. The presence of DM particles would suggest that thrust from the emerging near-photon-like particle would be greater than with conventional photon rockets. This amplifies and improves on an "axion rocket ramjet" for interstellar travel. It is assumed that the same methodology used in an axion ramjet could be used with DM, with perhaps greater thrust/power conversion efficiencies.

  20. Particle dark matter and solar axion searches with a small germanium detector at the Canfranc Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Morales, A.; Avignone, F. T., III; Brodzinski, R. L.; Cebrián, S.; García, E.; González, D.; Irastorza, I. G.; Miley, H. S.; Morales, J.; de Solórzano, A. Ortiz; Puimedón, J.; Reeves, J. H.; Sarsa, M. L.; Scopel, S.; Villar, J. A.

    2002-01-01

    A small, natural abundance, germanium detector (COSME) has been operating recently at the Canfranc Underground Laboratory (Spanish Pyrenees) in improved conditions of shielding and overburden with respect to a previous operation of the same detector (Nucl. Instrum. Meth. A 321 (1992) 410; Phys. Rev. D 51 (1995) 1458). An exposure of 72.7 kg day in these conditions has at present a background improvement of about one order of magnitude compared to the former operation of the detector. These new data have been applied to a direct search for weakly interacting massive particles (WIMPs) and solar axions. New WIMP exclusion plots improving the current bounds for low masses are reported. The paper also presents a limit on the axion-photon coupling obtained from the analysis of the data looking for a Primakoff axion-to-photon conversion and Bragg scattering inside the crystal.

  1. Proposal for Axion Dark Matter Detection Using an LC Circuit

    SciTech Connect

    Sikivie, P.; Sullivan, N.; Tanner, D. B.

    2014-03-01

    Here, we show that dark matter axions cause an oscillating electric current to flow along magnetic field lines. The oscillating current induced in a strong magnetic field B0 produces a small magnetic field Ba. We propose to amplify and detect Ba using a cooled LC circuit and a very sensitive magnetometer. This appears to be a suitable approach to searching for axion dark matter in the 10–7 to 10–9 eV mass range.

  2. Design and operational experience of a microwave cavity axion detector for the 20–100μeV range

    DOE PAGES

    Al Kenany, S.; Anil, M. A.; Backes, K. M.; ...

    2017-02-09

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  3. Limits to the radiative decays of neutrinos and axions from gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1989-01-01

    Gamma-ray observations obtained by the SMM gamma-ray spectrometer in the energy range 4.1-6.4 MeV are used to provide limits on the possible radiative decay of neutrinos and axions emitted by SN 1987A. For branching ratio values for the radiative decay modes of less than about 0.0001, the present limits are more stringent than those based upon the photon flux from decaying relic neutrinos. The data are also used to set an axion mass limit.

  4. Limits to the radiative decays of neutrinos and axions from gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1989-01-01

    Gamma-ray observations obtained by the SMM gamma-ray spectrometer in the energy range 4.1-6.4 MeV are used to provide limits on the possible radiative decay of neutrinos and axions emitted by SN 1987A. For branching ratio values for the radiative decay modes of less than about 0.0001, the present limits are more stringent than those based upon the photon flux from decaying relic neutrinos. The data are also used to set an axion mass limit.

  5. Design and operational experience of a microwave cavity axion detector for the 20 - 100 μeV range

    NASA Astrophysics Data System (ADS)

    Al Kenany, S.; Anil, M. A.; Backes, K. M.; Brubaker, B. M.; Cahn, S. B.; Carosi, G.; Gurevich, Y. V.; Kindel, W. F.; Lamoreaux, S. K.; Lehnert, K. W.; Lewis, S. M.; Malnou, M.; Palken, D. A.; Rapidis, N. M.; Root, J. R.; Simanovskaia, M.; Shokair, T. M.; Urdinaran, I.; van Bibber, K. A.; Zhong, L.

    2017-05-01

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (∼ 20 - 100 μeV) . The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  6. Testing the ultra-light axion hypothesis with CMB-SIV

    NASA Astrophysics Data System (ADS)

    Grin, Daniel; Hlozek, Renee; Marsh, David

    2017-01-01

    Measurements of cosmic microwave background (CMB) anisotropies provide strong evidence for the existence of dark matter and dark energy. They can also test its composition, probing the energy density and particle mass of different dark-matter and dark-energy components. CMB data have already shown that ultra-light axions (ULAs) with mass in the range 10-32 eV→10-26 eV compose a fraction <0.01 of the cosmological critical density. Here, the sensitivity of a proposed CMB-Stage IV (CMB-S4) experiment (assuming a 1 arcmin beam and <1 μK-arcmin noise levels over a sky fraction of 0.4) to the density of ULAs and other dark-sector components is assessed. CMB-S4 data should be ˜10 times more sensitive to the ULA energy-density than Planck data alone, across a wide range of ULA masses 10-32axion decay constants of fa≈1016 GeV, at the grand unified scale. CMB-S4 could improve the CMB lower bound on the ULA mass from ˜10-25 eV to 10-23 eV, nearing the mass range probed by dwarf galaxy abundances and dark-matter halo density profiles. These improvements will allow for a multi-σ detection of percent-level departures from CDM over a wide range of masses. Much of this improvement is driven by the effects of weak gravitational lensing on the CMB, which breaks degeneracies between ULAs and neutrinos. We also find that the addition of ULA parameters does not significantly degrade the sensitivity of the CMB to neutrino masses. These results were obtained using the axionCAMB code (a modification to the CAMB Boltzmann code), presented here for public use.

  7. Future CMB tests of dark matter: Ultralight axions and massive neutrinos

    NASA Astrophysics Data System (ADS)

    Hložek, Renée; Marsh, David J. E.; Grin, Daniel; Allison, Rupert; Dunkley, Jo; Calabrese, Erminia

    2017-06-01

    Measurements of cosmic microwave background (CMB) anisotropies provide strong evidence for the existence of dark matter and dark energy. They can also test its composition, probing the energy density and particle mass of different dark-matter and dark-energy components. CMB data have already shown that ultralight axions (ULAs) with mass in the range 10-32 eV →10-26 eV compose a fraction ≲0.01 of the cosmological critical density. The next Stage-IV CMB experiment (CMB-S4) (assuming a 1 arcmin beam and ˜1 μ K -arcmin noise levels over a sky fraction of 0.4) to the density of ULAs and other dark-sector components is assessed. CMB-S4 data should be ˜10 times more sensitive to the ULA energy density than Planck data alone, across a wide range of ULA masses 10-32≲ma≲10-23 eV , and will probe axion decay constants of fa≈1 016 GeV , at the grand unified scale. CMB-S4 could improve the CMB lower bound on the ULA mass from ˜10-25 eV to 10-23 eV , nearing the mass range probed by dwarf galaxy abundances and dark-matter halo density profiles. These improvements will allow for a multi-σ detection of percent-level departures from CDM over a wide range of masses. Much of this improvement is driven by the effects of weak gravitational lensing on the CMB, which breaks degeneracies between ULAs and neutrinos. We also find that the addition of ULA parameters does not significantly degrade the sensitivity of the CMB to neutrino masses. These results were obtained using the axionCAMB code (a modification to the CAMB Boltzmann code), presented here for public use.

  8. Axions, neutrinos and strings: The formation of structure in an SO(10) universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1984-01-01

    In a class of grand unified theories containing SO(10), cosmologically significant axion and neutrino energy densities are obtainable naturally. To obtain large scale structure, both components of dark matter are considered to exist with comparable energy densities. To obtain large scale structure, inflationary and non-inflationary scenarios are considered, as well as scenarios with and without vacuum strings. It is shown that inflation may be compatible with recent observations of the mass density within galaxy clusters and superclusters, especially if strings are present.

  9. R-Axion: A New LHC Physics Signature Involving Muon Pairs

    SciTech Connect

    Goh, Hock-Seng; Ibe, Masahiro; /SLAC

    2012-04-12

    In a class of models with gauge mediated supersymmetry breaking, the existence of a light pseudo scalar particle, R-axion, with a mass in hundreds MeV range is predicted. The striking feature of such a light R-axion is that it mainly decays into a pair of muons and leaves a displaced vertex inside detectors once it is produced. In this talk, we show how we can search for the R-axion at the coming LHC experiments. The one main goal of the LHC experiments is discovering supersymmetry which has been anticipated for a long time to solve the hierarchy problem. Once the supersymmetric standard model (SSM) is confirmed experimentally, the next question is how the supersymmetry is broken and how the effects of symmetry breaking are mediated to the SSM sector. In most cases, such investigations on 'beyond the SSM physics' rely on arguments based on extrapolations of the observed supersymmetry mass parameters to higher energies. However, there is one class of models of supersymmetry breaking where we can get a direct glimpse of the structure of the hidden sector with the help of the R-symmetry. The R-symmetry plays an important role in rather generic models of spontaneous supersymmetry breaking. At the same time, however, it must be broken in some way in order for the gauginos in the SSM sector to have non-vanishing masses. One possibility of the gaugino mass generation is to consider models where the gaugino masses are generated as a result of the explicit breaking of the R-symmetries. Unfortunately, in those models, the R-symmetry leaves little trace for the collider experiments, since the mass of the R-axion is typically heavy and beyond the reach of the LHC experiments. In this talk, instead, we consider a class of models with gauge mediation where the R-symmetry in the hidden/messenger sectors is exact in the limit of the infinite reduced Planck scale, i.e. M{sub PL} {yields} {infinity}. In this case, the gaugino masses are generated only after the R-symmetry is broken

  10. Axions, neutrinos and strings - The formation of structure in an SO(10) universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1986-01-01

    In a class of grand unified theories containing SO(10), cosmologically significant axion and neutrino energy densities are obtainable naturally. To obtain large scale structure, both components of dark matter are considered to exist with comparable energy densities. To obtain large scale structure, inflationary and non-inflationary scenarios are considered, as well as scenarios with and without vacuum strings. It is shown that inflation may be compatible with recent observations of the mass density within galaxy clusters and superclusters, especially if strings are present.

  11. Solar neutrino limit on axions and keV-mass bosons

    SciTech Connect

    Gondolo, Paolo; Raffelt, Georg G.

    2009-05-15

    The all-flavor solar neutrino flux measured by the Sudbury Neutrino Observatory constrains nonstandard energy losses to less than about 10% of the Sun's photon luminosity, superseding a helioseismological argument and providing new limits on the interaction strength of low-mass particles. For the axion-photon coupling strength we find g{sub a{gamma}}<7x10{sup -10} GeV{sup -1}. We also derive explicit limits on the Yukawa coupling to electrons of pseudoscalar, scalar, and vector bosons with keV-scale masses.

  12. Axions, neutrinos and strings - The formation of structure in an SO(10) universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1986-01-01

    In a class of grand unified theories containing SO(10), cosmologically significant axion and neutrino energy densities are obtainable naturally. To obtain large scale structure, both components of dark matter are considered to exist with comparable energy densities. To obtain large scale structure, inflationary and non-inflationary scenarios are considered, as well as scenarios with and without vacuum strings. It is shown that inflation may be compatible with recent observations of the mass density within galaxy clusters and superclusters, especially if strings are present.

  13. Repeating pulsed magnet system for axion-like particle searches and vacuum birefringence experiments

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Inada, T.; Namba, T.; Asai, S.; Kobayashi, T.; Matsuo, A.; Kindo, K.; Nojiri, H.

    2016-10-01

    We have developed a repeating pulsed magnet system which generates magnetic fields of about 10 T in a direction transverse to an incident beam over a length of 0.8 m with a repetition rate of 0.2 Hz. Its repetition rate is by two orders of magnitude higher than usual pulsed magnets. It is composed of four low resistance racetrack coils and a 30 kJ transportable capacitor bank as a power supply. The system aims at axion-like particle searches with a pulsed light source and vacuum birefringence measurements. We report on the details of the system and its performances.

  14. Axion-like particles and the propagation of gamma rays over astronomical distances

    NASA Astrophysics Data System (ADS)

    Troitsky, S. V.

    2017-01-01

    In this brief review, possible manifestations of mixing between axion-like particles (ALPs) and energetic photons propagating over astronomical distances are considered. We discuss the evidence for the anomalous transparency of the Universe from observations of ensembles of distant gamma-ray sources, present the general formalism for the ALP-photon mixing and explain how this mechanism may remove the anomaly. We present relevant values of ALP parameters and discuss future ways to verify the scenario and to discover the particle in question.

  15. Mass, angular momentum, and charge inequalities for black holes in Einstein-Maxwell-axion-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek

    2014-02-01

    Mass, angular momentum, and charge inequalities for axisymmetric maximal time-symmetric initial data invariant under an action of U(1) group, in Einstein-Maxwell-axion-dilaton gravity being the low-energy limit of the heterotic string theory, is established. We assume that a data set with two asymptotically flat regions is given on a smooth simply connected manifold. We also pay attention to the area momentum charge inequalities for a closed orientable two-dimensional spacelike surface embedded in the spacetime of the considered theory.

  16. Axion-like particles and the propagation of gamma rays over astronomical distances

    NASA Astrophysics Data System (ADS)

    Troitsky, S. V.

    2017-01-01

    In this mini-review, possible manifestations of mixing between axion-like particles (ALPs) and energetic photons propagating over astronomical distances are considered. We discuss the evidence for the anomalous transparency of the Universe from observations of ensembles of distant gamma-ray sources, present the general formalism for the ALP-photon mixing and explain how this mechanism may remove the anomaly. We present relevant values of ALP parameters and discuss future ways to verify the scenario and to discover the particle in question.

  17. Computational Design of Axion Insulators Based on 5d Spinel Compounds

    NASA Astrophysics Data System (ADS)

    Wan, Xiangang; Vishwanath, Ashvin; Savrasov, Sergey Y.

    2012-04-01

    Based on density functional calculation using the local density approximation+U method, we predict that osmium compounds such as CaOs2O4 and SrOs2O4 can be stabilized in the geometrically frustrated spinel crystal structure. They show ferromagnetic order in a reasonable range of the on-site Coulomb correlation U and exotic electronic properties, in particular, a large magnetoelectric coupling characteristic of axion electrodynamics. Depending on U, other electronic phases including a 3D Weyl semimetal and Mott insulator are also shown to occur.

  18. Impacto de la emisión de axiones sobre las propiedades evolutivas y pulsacionales de enanas blancas DB

    NASA Astrophysics Data System (ADS)

    Battich, T.; Althaus, L. G.; Córsico, A. H.

    2016-08-01

    White dwarfs are found to be good laboratories for studying the properties of fundamental particles such as the hypothetical axions. If these particles exist and interact with electrons, they would be emitted from the dense interior of white dwarfs, abandoning these stars without interact again, becoming an important energy sink. This would have a detectable effect on the evolutionary and pulsational properties of white dwarfs. This effect was already studied for DA white dwarfs (white dwarfs with a surface rich in hydrogen), but not for DB white dwarfs (hydrogen-deficient white dwarfs). We studied the general effect of axion emission on the evolution of DB white dwarfs and on the pulsational properties of DBV white dwarfs (pulsating DBs) with the aim of determining the potential of these stars to study the physics of axions. Moreover, we use an estimation of the rate of change of period of the DBV white dwarf PG 1351489 corresponding to the dominant period to derive a new limit on axion mass.

  19. On the mass of the world-sheet 'axion' in SU(N) gauge theories in 3 + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Athenodorou, Andreas; Teper, Michael

    2017-08-01

    There is numerical evidence that the world sheet action of the confining flux tube in D = 3 + 1 SU (N) gauge theories contains a massive excitation with 0- quantum numbers whose mass shows some decrease as one goes from SU (3) to SU (5). Moreover it has been shown that the natural coupling of this pseudoscalar has a topological interpretation making it natural to call it the world-sheet 'axion'. Recently it has been pointed out that if the mass of this 'axion' vanishes as N → ∞ then it becomes possible for the world sheet theory to be integrable in the planar limit. In this paper we perform lattice calculations of this 'axion' mass from SU (2) to SU (12), which allows us to make a controlled extrapolation to N = ∞ and so test this interesting possibility. We find that the 'axion' does not in fact become massless as N → ∞. So if the theory is to possess planar integrability then it must be some other world sheet excitation that becomes massless in the planar limit.

  20. Progress on the Axion Dark Matter eXperiment - High Frequency (ADMX-HF)

    NASA Astrophysics Data System (ADS)

    van Bibber, Karl

    2014-03-01

    The Axion Dark Matter eXperiment - High Frequency (ADMX-HF) is a microwave cavity experiment at Yale specifically designed to be both a pathfinder for first data in the 4-10 GHz (20-100 microelectronvolt) range, and an innovation test-bed for new concepts with promise to dramatically increase the sensitivity, mass range and scanning rate, with the aim to migrate technology developments to ADMX. Built around a 9T superconducting magnet (16.5 cm I.D. x 40 cm long) and dilution refrigerator, ADMX-HF will utilize Josephson Parametric Amplifiers (JPA) from the outset, and is projected to achieve sensitivity within the axion model band, despite its small volume. It will explore concepts such as hybrid superconducting cavities to improve the cavity Q by an order of magnitude, and operation in squeezed-state mode to reduce the amplifier noise temperature below the quantum limit. The experiment, a collaboration of Yale, UC Berkeley, JILA/Colorado and LLNL is in final stages of integration and nearing commissioning phase. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, NSF grants PHY-1067242 and PHY-1306729, and the Livermore LDRD program.

  1. The Axion Dark Matter Experiment: Big Science with a (relatively) Small Team

    NASA Astrophysics Data System (ADS)

    Carosi, Gianpaolo

    2016-03-01

    The idea of the solitary physicist tinkering alone in a lab was my image of how science was done growing up (mostly influenced by popular culture). Of course this is not generally how experimental physics is done now days with examples of experiments at the LHC now involving thousands of scientists. In this talk I will describe my experience in a relatively modest project, the Axion Dark Matter eXperiment (ADMX), which involves only a few dozen scientists at various universities and national labs. I will outline ADMX's humble beginnings at Lawrence Livermore National Laboratory (LLNL), where it began in the mid-1990s, and describe how the collaboration has evolved and grown throughout the years, as we pursue our elusive quarry: the dark-matter axion. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE- AC52-07NA27344, DE-AC03-76SF00098, and the Livermore LDRD program.

  2. Tunable microstrip SQUID amplifiers for the Gen 2 Axion Dark Matter eXperiment (ADMX)

    NASA Astrophysics Data System (ADS)

    O'Kelley, Sean; Hilton, Gene; Clarke, John

    We present a series of tunable microstrip SQUID amplifiers (MSAs) for installation in ADMX. The axion dark matter candidate is detected via Primakoff conversion to a microwave photon in a high-Q (~100,000) tunable microwave cavity cooled with a dilution refrigerator in the presence of a 7-tesla magnetic field. The microwave photon frequency ν is a function of the unknown axion mass, so both the cavity and amplifier must be scanned over a wide frequency range. An MSA is a linear, phase-preserving amplifier consisting of a superconducting, resonant microstrip flux-coupled to a resistively-shunted dc SQUID biased into the voltage state. Tunability is achieved by terminating the microstrip with low inductance GaAs varactor diodes that operate below 100 mK. By varying the bias voltage of the varactors we vary their capacitance, allowing a reflected phase varying from nearly 0 to π, thus achieving a tunability close to a factor of 2. We demonstrate several devices operating below 100 mK, matched to the discrete operating bands of ADMX at frequencies ranging from 560 MHz to 1 GHz, that exhibit gains exceeding 20 dB. The associated noise temperatures, measured with a hot/cold load, approach the standard quantum limit (hν/kB) for a linear phase-preserving amplifier.

  3. Gravitational waves at interferometer scales and primordial black holes in axion inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Peloso, Marco; Unal, Caner

    2016-12-01

    We study the prospects of detection at terrestrial and space interferometers, as well as at pulsar timing array experiments, of a stochastic gravitational wave background which can be produced in models of axion inflation. This potential signal, and the development of these experiments, open a new window on inflation on scales much smaller than those currently probed with Cosmic Microwave Background and Large Scale Structure measurements. The sourced signal generated in axion inflation is an ideal candidate for such searches, since it naturally grows at small scales, and it has specific properties (chirality and non-gaussianity) that can distinguish it from an astrophysical background. We study under which conditions such a signal can be produced at an observable level, without the simultaneous overproduction of scalar perturbations in excess of what is allowed by the primordial black hole limits. We also explore the possibility that scalar perturbations generated in a modified version of this model may provide a distribution of primordial black holes compatible with the current bounds, that can act as a seeds of the present black holes in the universe.

  4. Photon-axion mixing within the jets of active galactic nuclei and prospects for detection

    SciTech Connect

    Harris, J.; Chadwick, P.M. E-mail: p.m.chadwick@durham.ac.uk

    2014-10-01

    Very high energy γ-ray observations of distant active galactic nuclei (AGN) generally result in higher fluxes and harder spectra than expected, resulting in some tension with the level of the extragalactic background light (EBL). If hypothetical axions or axion-like particles (ALPs) were to exist, this tension could be relieved since the oscillation of photons to ALPs would mitigate the effects of EBL absorption and lead to softer inferred intrinsic AGN spectra. In this paper we consider the effect of photon-ALP mixing on observed spectra, including the photon-ALP mixing that would occur within AGN jets. We then simulate observations of three AGN with the Cherenkov Telescope Array (CTA), a next generation γ-ray telescope, to determine its prospects for detecting the signatures of photon-ALP mixing on the spectra. We conclude that prospects for CTA detecting these signatures or else setting limits on the ALP parameter space are quite promising. We find that prospects are improved if photon-ALP mixing within the jet is properly considered and that the best target for observations is PKS 2155-304.

  5. Unitarity bounds for gauged axionic interactions and the Green-Schwarz mechanism

    NASA Astrophysics Data System (ADS)

    Corianò, C.; Guzzi, M.; Morelli, S.

    2008-06-01

    We analyze the effective actions of anomalous models in which a four-dimensional version of the Green-Schwarz mechanism is invoked for the cancellation of the anomalies, and we compare it with those models in which gauge invariance is restored by the presence of a Wess-Zumino term. Some issues concerning an apparent violation of unitarity of the mechanism, which requires Dolgov-Zakharov poles, are carefully examined, using a class of amplitudes studied in the past by Bouchiat-Iliopoulos-Meyer (BIM), and elaborating on previous studies. In the Wess-Zumino case we determine explicitly the unitarity bound using a realistic model of intersecting branes (the Madrid model) by studying the corresponding BIM amplitudes. This is shown to depend significantly on the Stückelberg mass and on the coupling of the extra anomalous gauge bosons and allows one to identify standard-model-like regions (which are anomaly-free) from regions where the growth of certain amplitudes is dominated by the anomaly, separated by an inflection point, which could be studied at the LHC. The bound can even be around 5-10 TeV for a Z’ mass around 1 TeV and varies sensitively with the anomalous coupling. The results for the WZ case are quite general and apply to all the models in which an axion-like interaction is introduced as a generalization of the Peccei-Quinn mechanism, with a gauged axion.

  6. Search for 14.4 keV solar axions emitted in the M1-transition of 57Fe nuclei with CAST

    NASA Astrophysics Data System (ADS)

    CAST Collaboration; Andriamonje, S.; Aune, S.; Autiero, D.; Barth, K.; Belov, A.; Beltrán, B.; Bräuninger, H.; Carmona, J. M.; Cebrián, S.; Collar, J. I.; Dafni, T.; Davenport, M.; Di Lella, L.; Eleftheriadis, C.; Englhauser, J.; Fanourakis, G.; Ferrer-Ribas, E.; Fischer, H.; Franz, J.; Friedrich, P.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gómez, H.; Hasinoff, M.; Heinsius, F. H.; Hoffmann, D. H. H.; Irastorza, I. G.; Jacoby, J.; Jakovčić, K.; Kang, D.; Königsmann, K.; Kotthaus, R.; Krcmar, M.; Kousouris, K.; Kuster, M.; Lakić, B.; Lasseur, C.; Liolios, A.; Ljubičić, A.; Lutz, G.; Luzón, G.; Miller, D.; Morales, J.; Ortiz, A.; Papaevangelou, T.; Placci, A.; Raffelt, G.; Riege, H.; Rodríguez, A.; Ruz, J.; Savvidis, I.; Semertzidis, Y.; Serpico, P.; Stewart, L.; Vieira, J.; Villar, J.; Vogel, J.; Walckiers, L.; Zioutas, K.

    2009-12-01

    We have searched for 14.4 keV solar axions or more general axion-like particles (ALPs), that may be emitted in the M1 nuclear transition of 57Fe, by using the axion-to-photon conversion in the CERN Axion Solar Telescope (CAST) with evacuated magnet bores (Phase I). From the absence of excess of the monoenergetic X-rays when the magnet was pointing to the Sun, we set model-independent constraints on the coupling constants of pseudoscalar particles that couple to two photons and to a nucleon gaγ|-1.19gaN0+gaN3| < 1.36 × 10-16 GeV-1 for ma < 0.03 eV at the 95% confidence level.

  7. Search for 14.4 keV solar axions emitted in the M1-transition of {sup 57}Fe nuclei with CAST

    SciTech Connect

    Andriamonje, S.; Aune, S.; Dafni, T.; Ferrer-Ribas, E.; Autiero, D.; Barth, K.; Davenport, M.; Lella, L. Di; Belov, A.; Beltrán, B.; Carmona, J.M.; Cebrián, S.; Bräuninger, H.; Englhauser, J.; Friedrich, P.; Collar, J.I.; Eleftheriadis, C.; Fanourakis, G.; Fischer, H.; Franz, J.; Collaboration: CAST collaboration; and others

    2009-12-01

    We have searched for 14.4 keV solar axions or more general axion-like particles (ALPs), that may be emitted in the M1 nuclear transition of {sup 57}Fe, by using the axion-to-photon conversion in the CERN Axion Solar Telescope (CAST) with evacuated magnet bores (Phase I). From the absence of excess of the monoenergetic X-rays when the magnet was pointing to the Sun, we set model-independent constraints on the coupling constants of pseudoscalar particles that couple to two photons and to a nucleon g{sub aγ}|−1.19g{sub aN}{sup 0}+g{sub aN}{sup 3}| < 1.36 × 10{sup −16} GeV{sup −1} for m{sub a} < 0.03 eV at the 95% confidence level.

  8. Search for 14.4-KeV Solar Axions Emitted in the M1-Transition of Fe-57 Nuclei with CAST

    SciTech Connect

    Andriamonje, S.; Aune, S.; Autiero, D.; Barth, K.; Belov, A.; Beltran, B.; Brauninger, H.; Carmona, J.M.; Cebrian, S.; Collar, J.I.; Dafni, T.; Davenport, M.; Di Lella, L.; Eleftheriadis, C.; Englhauser, J.; Fanourakis, G.; Ferrer-Ribas, E.; Fischer, H.; Franz, J.; Friedrich, P.; Geralis, T.; /Democritos Nucl. Res. Ctr. /DAPNIA, Saclay /Moscow, INR /Zaragoza U. /British Columbia U. /Freiburg U. /Darmstadt, Tech. Hochsch. /DAPNIA, Saclay /Zaragoza U. /Frankfurt U. /Boskovic Inst., Zagreb /Freiburg U. /Munich, Max Planck Inst. /Boskovic Inst., Zagreb /Democritos Nucl. Res. Ctr. /Darmstadt, Tech. Hochsch. /Garching, Max Planck Inst., MPE /Boskovic Inst., Zagreb /CERN /Aristotle U., Thessaloniki /Boskovic Inst., Zagreb /Munich, Max Planck Inst. /Zaragoza U. /Chicago U., EFI /Chicago U., KICP /Stanford U., Phys. Dept. /SLAC /Zaragoza U. /CERN /DAPNIA, Saclay /CERN /Munich, Max Planck Inst. /Darmstadt, Tech. Hochsch. /Zaragoza U. /Aristotle U., Thessaloniki /Patras U. /Brookhaven /CERN /Munich, Max Planck Inst. /CERN /Chicago U., EFI /Chicago U., KICP /Zaragoza U. /Freiburg U. /CERN /CERN /Patras U.

    2011-12-02

    We have searched for 14.4 keV solar axions or more general axion-like particles (ALPs), that may be emitted in the M1 nuclear transition of 57Fe, by using the axion-to-photon conversion in the CERN Axion Solar Telescope (CAST) with evacuated magnet bores (Phase I). From the absence of excess of the monoenergetic X-rays when the magnet was pointing to the Sun, we set model-independent constraints on the coupling constants of pseudoscalar particles that couple to two photons and to a nucleon g{sub ay}|-1.19g{sub aN}{sup 0}+g{sub aN}{sup 3}| < 1.36 x 10{sup -16} GeV{sup -1} for ma < 0.03 eV at the 95% confidence level.

  9. Constraints on Axion-like Particles from X-Ray Observations of NGC1275

    NASA Astrophysics Data System (ADS)

    Berg, Marcus; Conlon, Joseph P.; Day, Francesca; Jennings, Nicholas; Krippendorf, Sven; Powell, Andrew J.; Rummel, Markus

    2017-10-01

    Axion-like particles (ALPs) can induce localized oscillatory modulations in the spectra of photon sources passing through astrophysical magnetic fields. Ultra-deep Chandra observations of the Perseus cluster contain over 5× {10}5 counts from the active galactic nucleus (AGN) of the central cluster galaxy NGC1275 and represent a data set of extraordinary quality for ALP searches. We use this data set to search for X-ray spectral irregularities from the AGN. The absence of irregularities at the { O }(30 % ) level allows us to place leading constraints on the ALP-photon mixing parameter {g}aγ γ ≲ 1.4{--}4.0× {10}-12 {{GeV}}-1 for {m}a≲ {10}-12 {eV}, depending on assumptions on the magnetic field realization along the line of sight.

  10. Neutrino and axion bounds from the globular cluster M5 (NGC 5904).

    PubMed

    Viaux, N; Catelan, M; Stetson, P B; Raffelt, G G; Redondo, J; Valcarce, A A R; Weiss, A

    2013-12-06

    The red-giant branch (RGB) in globular clusters is extended to larger brightness if the degenerate helium core loses too much energy in "dark channels." Based on a large set of archival observations, we provide high-precision photometry for the Galactic globular cluster M5 (NGC 5904), allowing for a detailed comparison between the observed tip of the RGB with predictions based on contemporary stellar evolution theory. In particular, we derive 95% confidence limits of g(ae)<4.3×10(-13) on the axion-electron coupling and μ(ν)<4.5×10(-12)μ(B) (Bohr magneton μ(B)=e/2m(e)) on a neutrino dipole moment, based on a detailed analysis of statistical and systematic uncertainties. The cluster distance is the single largest source of uncertainty and can be improved in the future.

  11. Manifestation of axion electrodynamics through magnetic ordering on edges of a topological insulator.

    PubMed

    Lee, Yea-Lee; Park, Hee Chul; Ihm, Jisoon; Son, Young-Woo

    2015-09-15

    Because topological surface states of a single-crystal topological insulator can exist on all surfaces with different crystal orientations enclosing the crystal, mutual interactions among those states contiguous to each other through edges can lead to unique phenomena inconceivable in normal insulators. Here we show, based on a first-principles approach, that the difference in the work function between adjacent surfaces with different crystal-face orientations generates a built-in electric field around facet edges of a prototypical topological insulator such as Bi2Se3. Owing to the topological magnetoelectric coupling for a given broken time-reversal symmetry in the crystal, the electric field, in turn, forces effective magnetic dipoles to accumulate along the edges, realizing the facet-edge magnetic ordering. We demonstrate that the predicted magnetic ordering is in fact a manifestation of the axion electrodynamics in real solids.

  12. Kerr-Sen dilaton-axion black hole lensing in the strong deflection limit

    SciTech Connect

    Gyulchev, Galin N.; Yazadjiev, Stoytcho S.

    2007-01-15

    In the present work we study numerically quasiequatorial lensing by the charged, stationary, axially symmetric Kerr-Sen dilaton-axion black hole in the strong deflection limit. In this approximation we compute the magnification and the positions of the relativistic images. The most outstanding effect is that the Kerr-Sen black hole caustics drift away from the optical axis and shift in the clockwise direction with respect to the Kerr caustics. The intersections of the critical curves on the equatorial plane as a function of the black hole angular momentum are found, and it is shown that they decrease with the increase of the parameter Q{sup 2}/M. All of the lensing quantities are compared to particular cases as Schwarzschild, Kerr, and Gibbons-Maeda black holes.

  13. Search for axion-like particles using a variable baseline photon regeneration technique

    SciTech Connect

    Chou, A.S.; Wester, William Carl, III; Baumbaugh, A.; Gustafson, D.; Irizarry-Valle, Y.; Mazur, P.O.; Steffen, Jason H.; Tomlin, R.; Yang, X.; Yoo, J.; /Fermilab

    2007-10-01

    We report the first results of the GammeV experiment, a search for milli-eV mass particles with axion-like couplings to two photons. The search is performed using a 'light shining through a wall' technique where incident photons oscillate into new weakly interacting particles that are able to pass through the wall and subsequently regenerate back into detectable photons. The oscillation baseline of the apparatus is variable, thus allowing probes of different values of particle mass. We find no excess of events above background and are able to constrain the two-photon couplings of possible new scalar (pseudoscalar) particles to be less than 3.1 x 10 {sup -7} GeV {sup -1} (3.5 x 10{sup -7} GeV{sup -1}) in the limit of massless particles.

  14. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.

    2016-12-01

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.

  15. Axionic superconductivity in three-dimensional doped narrow-gap semiconductors

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Roy, Bitan

    2014-07-01

    We consider the competition between the conventional s-wave and the triplet Balian-Werthamer or the B-phase pairings in doped three-dimensional narrow-gap semiconductors, such as CuxBi2Se3 and Sn1-xInxTe. When the coupling constants of the two contending channels are comparable, we find a simultaneously time-reversal and parity violating p +is state at low temperatures, which provides an example of a dynamic axionic state of matter. In contradistinction to the time-reversal invariant, topological B phase, the p +is state possesses gapped Majorana fermions as surface Andreev bound states, which give rise to an anomalous surface thermal Hall effect. The anomalous gravitational and electrodynamic responses of the p +is state can be described by the θ vacuum structure, where θ ≠0 or π.

  16. Thermal transport and quasi-normal modes in Gauss-Bonnet-axions theory

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Mei; Wu, Jian-Pin

    2017-07-01

    We obtain the black brane solution in arbitrary dimensional Gauss-Bonnet-axions (GBA) gravity theory. And then the thermal conductivity of the boundary theory dual to this neutral black brane is explored. We find that the momentum dissipation suppresses the DC thermal conductivity while it is enhanced by larger GB parameter. The analytical and numerical results of DC thermal conductivity match very well. Also we study the effect of the momentum dissipation and the GB coupling on the AC thermal conductivity and fit the results by Drude-like behavior for low frequency. Finally, we analytical compute the quasi-normal modes (QNM) frequency of the perturbative master field in large dimensions limit. Our analytical QNM frequencies agree well with the numerical results in large enough finite dimensions.

  17. Radiation and energy release in a background field of axion-like dark matter

    NASA Astrophysics Data System (ADS)

    Liao, Wei

    2017-09-01

    We find that a fuzzy dark matter background and the mG scale magnetic field in the galactic center can give rise to a radiation with a very large energy release. The frequency of the radiation field is the same as the frequency of the oscillating axion-like background field. We show that there is an energy transfer between the fuzzy dark matter sector and the electromagnetic sector because of the presence of the generated radiation field and the galactic magnetic field. The energy release rate of radiation is found to be very slow in comparison with the energy of fuzzy dark matter but could be significant comparing with the energy of galactic magnetic field in the source region. Using this example, we show that the fuzzy dark matter together with a large scale magnetic field is possible to give rise to fruitful physics.

  18. Simulations of solitonic core mergers in ultralight axion dark matter cosmologies

    NASA Astrophysics Data System (ADS)

    Schwabe, Bodo; Niemeyer, Jens C.; Engels, Jan F.

    2016-08-01

    Using three-dimensional simulations, we study the dynamics and final structure of merging solitonic cores predicted to form in ultralight axion dark matter halos. The classical, Newtonian equations of motion of a self-gravitating scalar field are described by the Schrödinger-Poisson equations. We investigate mergers of ground state (boson star) configurations with varying mass ratios, relative phases, orbital angular momenta and initial separation with the primary goal to understand the mass loss of the emerging core by gravitational cooling. Previous results showing that the final density profiles have solitonic cores and Navarro-Frenk-White-like tails are confirmed. In binary mergers, the final core mass does not depend on initial phase difference or angular momentum and only depends on mass ratio, total initial mass, and total energy of the system. For nonzero angular momenta, the otherwise spherical cores become rotating ellipsoids. The results for mergers of multiple cores are qualitatively identical.

  19. Axion-like particle imprint in cosmological very-high-energy sources

    SciTech Connect

    Domínguez, A.; Sánchez-Conde, M.A.; Prada, F. E-mail: masc@stanford.edu

    2011-11-01

    Discoveries of very high energy (VHE) photons from distant blazars suggest that, after correction by extragalactic background light (EBL) absorption, there is a flatness or even a turn-up in their spectra at the highest energies that cannot be easily explained by the standard framework. Here, it is shown that a possible solution to this problem is achieved by assuming the existence of axion-like particles (ALPs) with masses ∼ 1 neV. The ALP scenario is tested making use of observations of the highest redshift blazars known in the VHE energy regime, namely 3C 279, 3C 66A, PKS 1222+216 and PG 1553+113. In all cases, better fits to the observed spectra are found when including ALPs rather than considering EBL only. Interestingly, quite similar critical energies for photon/ALP conversions are also derived, independently of the source considered.

  20. Axion-Like Particle Imprint in Cosmological Very-High-Energy Sources

    SciTech Connect

    Dominguez, A.; Sanchez-Conde, M.A.; Prada, F.; /IAA, Granada

    2012-06-13

    Discoveries of very high energy (VHE) photons from distant blazars suggest that, after correction by extragalactic background light (EBL) absorption, there is a flatness or even a turn-up in their spectra at the highest energies that cannot be easily explained by the standard framework. Here, it is shown that a possible solution to this problem is achieved by assuming the existence of axion-like particles (ALPs) with masses {approx} 1 neV. The ALP scenario is tested making use of observations of the highest redshift blazars known in the VHE energy regime, namely 3C 279, 3C 66A, PKS 1222+216 and PG 1553+113. In all cases, better fits to the observed spectra are found when including ALPs rather than considering EBL only. Interestingly, quite similar critical energies for photon/ALP conversions are also derived, independently of the source considered.