Science.gov

Sample records for illumination based detector

  1. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  2. Broadband illumination of superconducting pair breaking photon detectors

    NASA Astrophysics Data System (ADS)

    Guruswamy, T.; Goldie, D. J.; Withington, S.

    2016-04-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η-a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable.

  3. Noise suppression of a differential detector under high levels of illumination, relevant to terahertz electro-optic sampling

    NASA Astrophysics Data System (ADS)

    van der Valk, N. C. J.; Schouten, R. N.; Planken, P. C. M.

    2005-07-01

    In electro-optic detection of terahertz transients, the photodiodes of a differential detector are often illuminated with optical powers on the order of several milliwatts. We present measurements that show that the response of the photodiodes at these power levels is distorted, giving rise to frequency-dependent amplitude and phase changes in the electrical signal from these diodes. We find that these distortions significantly reduce the ability of the detector to suppress laser amplitude noise. Surprisingly, this occurs at power levels at which the dc output of each photodiode shows no sign of saturation. Based on our measurements, we provide experimenters with recommendations to improve the amplitude noise suppression of a differential detector under high levels of illumination.

  4. Synchrotron-based EUV lithography illuminator simulator

    DOEpatents

    Naulleau, Patrick P.

    2004-07-27

    A lithographic illuminator to illuminate a reticle to be imaged with a range of angles is provided. The illumination can be employed to generate a pattern in the pupil of the imaging system, where spatial coordinates in the pupil plane correspond to illumination angles in the reticle plane. In particular, a coherent synchrotron beamline is used along with a potentially decoherentizing holographic optical element (HOE), as an experimental EUV illuminator simulation station. The pupil fill is completely defined by a single HOE, thus the system can be easily modified to model a variety of illuminator fill patterns. The HOE can be designed to generate any desired angular spectrum and such a device can serve as the basis for an illuminator simulator.

  5. An epiiluminator/detector unit permitting arc lamp illumination for fluorescence activated cell sorters.

    PubMed

    Koper, G J; Bonnet, J; Christiaanse, J G; Ploem, J S

    1982-07-01

    The application of arc lamps to flow cytometers is discussed and epiillumination for jet-in-air cell sorters is introduced. An epiilluminator/detector unit equipped with a mercury arc lamp constructed for a commercially available cell sorter is described. Experiments in which laser and mercury arc lamp illumination were compared show that the signal-to-noise ratio for the arc lamp illumination is predominantly limited by shot noise from constant light backgrounds due to reflected excitation light and ambient light. Arc lamp illumination can be used for the sorting of highly fluorescent objects such as cells stained for DNA by for example: ethidium bromide, propidium iodide, or the Hoechst dyes. The simultaneous employment of mercury arc and laser light sources as an inexpensive dual wavelength system is discussed.

  6. Magnetotransport in very long wave infrared quantum cascade detectors: Analyzing the current with and without illumination

    SciTech Connect

    Jasnot, François-Régis; Maëro, Simon; Vaulchier, Louis-Anne de; Guldner, Yves; Carosella, Francesca; Ferreira, Robson; Delga, Alexandre; Doyennette, Laetitia; Berger, Vincent; Carras, Mathieu

    2013-12-04

    Current measurements of current have been performed on a very long wave infrared quantum cascade detector under magnetic field under both dark and light conditions. The analysis of dark current as a function of temperature highlights three regimes of transport. Under illumination, the model developed is in agreement with the oscillatory component of the experimental magnetophotocurrent. It allows to identify the key points controlling the electronic transport: crucial role of extraction, location of ionized impurities and scattering mechanisms involved in the structure. This work is valuable for the future conception of high-performance quantum cascade detectors in the infrared range.

  7. Method for growing a back surface contact on an imaging detector used in conjunction with back illumination

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana (Inventor); Hoenk, Michael Eugene (Inventor); Nikzad, Shouleh (Inventor)

    2010-01-01

    A method is provided for growing a back surface contact on an imaging detector used in conjunction with back illumination. In operation, an imaging detector is provided. Additionally, a back surface contact (e.g. a delta-doped layer, etc.) is grown on the imaging detector utilizing a process that is performed at a temperature less than 450 degrees Celsius.

  8. Exemplar-Based Color Constancy and Multiple Illumination.

    PubMed

    Joze, Hamid Reza Vaezi; Drew, Mark S

    2014-05-01

    Exemplar-based learning or, equally, nearest neighbor methods have recently gained interest from researchers in a variety of computer science domains because of the prevalence of large amounts of accessible data and storage capacity. In computer vision, these types of technique have been successful in several problems such as scene recognition, shape matching, image parsing, character recognition, and object detection. Applying the concept of exemplar-based learning to the problem of color constancy seems odd at first glance since, in the first place, similar nearest neighbor images are not usually affected by precisely similar illuminants and, in the second place, gathering a dataset consisting of all possible real-world images, including indoor and outdoor scenes and for all possible illuminant colors and intensities, is indeed impossible. In this paper, we instead focus on surfaces in the image and address the color constancy problem by unsupervised learning of an appropriate model for each training surface in training images. We find nearest neighbor models for each surface in a test image and estimate its illumination based on comparing the statistics of pixels belonging to nearest neighbor surfaces and the target surface. The final illumination estimation results from combining these estimated illuminants over surfaces to generate a unique estimate. We show that it performs very well, for standard datasets, compared to current color constancy algorithms, including when learning based on one image dataset is applied to tests from a different dataset. The proposed method has the advantage of overcoming multi-illuminant situations, which is not possible for most current methods since they assume the color of the illuminant is constant all over the image. We show a technique to overcome the multiple illuminant situation using the proposed method and test our technique on images with two distinct sources of illumination using a multiple-illuminant color constancy

  9. Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Malakhov, A.; Livengood, T.; Milikh, G. M.; Namkung, M.; Nandikotkur, G.; Neumann, G.; Smith, D.; Sagdeev, R.; Sanin, A. G.; Starr, R. D.; Trombka, J. I.

    2012-01-01

    We correlate Lunar Reconnaisance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer's (LPNS) orbital epithermal neutron maps of the Lunar high-latitudes with co-registered illumination maps derived from the Lunar Orbiter Laser Altimeter (LOLA) topography. Epithermal neutron count rate maps were derived from the LEND: 1) Collimated Sensor for Epithermal Neutrons, CSETNI-4 2) Uncollimated Sensor for Epithermal Neutrons, SETN and the Uncollimated Lunar Prospector: 3) Low-altitude and 4) High-altitude mapping phases. In this abstract we illustrate 1) and 3) and include 2) and 4) in our presentation. The correlative study provides unique perspectives on the regional epithermal neutron fluences from the Lunar polar regions under different detector and altitude configurations.

  10. Research on infrared imaging illumination model based on materials

    NASA Astrophysics Data System (ADS)

    Hu, Hai-he; Feng, Chao-yin; Guo, Chang-geng; Zheng, Hai-jing; Han, Qiang; Hu, Hai-yan

    2013-09-01

    In order to effectively simulate infrared features of the scene and infrared high light phenomenon, Based on the visual light illumination model, according to the optical property of all material types in the scene, the infrared imaging illumination models are proposed to fulfill different materials: to the smooth material with specular characteristic, adopting the infrared imaging illumination model based on Blinn-Phone reflection model and introducing the self emission; to the ordinary material which is similar to black body without highlight feature, ignoring the computation of its high light reflection feature, calculating simply the material's self emission and its reflection to the surrounding as its infrared imaging illumination model, the radiation energy under zero range of visibility can be obtained according to the above two models. The OpenGl rendering technology is used to construct infrared scene simulation system which can also simulate infrared electro-optical imaging system, then gets the synthetic infrared images from any angle of view of the 3D scenes. To validate the infrared imaging illumination model, two typical 3D scenes are made, and their infrared images are calculated to compare and contrast with the real collected infrared images obtained by a long wave infrared band imaging camera. There are two major points in the paper according to the experiment results: firstly, the infrared imaging illumination models are capable of producing infrared images which are very similar to those received by thermal infrared camera; secondly, the infrared imaging illumination models can simulate the infrared specular feature of relative materials and common infrared features of general materials, which shows the validation of the infrared imaging illumination models. Quantitative analysis shows that the simulation images are similar to the collected images in the aspects of main features, but their histogram distribution does not match very well, the

  11. Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In

    SciTech Connect

    Xu, Lingyan; Jie, Wanqi Zha, Gangqiang Feng, Tao; Wang, Ning; Xi, Shouzhi; Fu, Xu; Zhang, Wenlong; Xu, Yadong; Wang, Tao

    2014-06-09

    The effects of sub-bandgap illumination on electrical properties of CdZnTe:In crystals and spectroscopic performances of the fabricated detectors were discussed. The excitation process of charge carriers through thermal and optical transitions at the deep trap could be described by the modified Shockley-Read-Hall model. The ionization probability of the deep donor shows an increase under illumination, which should be responsible for the variation of electrical properties within CdZnTe bulk materials with infrared (IR) irradiation. By applying Ohm's law, diffusion model and interfacial layer-thermionic-diffusion theory, we obtain the decrease of bulk resistivity and the increase of space charge density in the illuminated crystals. Moreover, the illumination induced ionization will further contribute to improving carrier transport property and charge collection efficiency. Consequently, the application of IR irradiation in the standard working environment is of great significance to improve the spectroscopic characteristics of CdZnTe radiation detectors.

  12. Nanowire-based detector

    DOEpatents

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  13. Graphene based GHz detectors

    NASA Astrophysics Data System (ADS)

    Boyd, Anthony K.; El Fatimy, Abdel; Barbara, Paola; Nath, Anindya; Campbell, Paul M.; Myers-Ward, Rachael; Daniels, Kevin; Gaskill, D. Kurt

    Graphene demonstrates great promise as a detector over a wide spectral range especially in the GHz range. This is because absorption is enhanced due to the Drude contribution. In the GHz range there are viable detection mechanisms for graphene devices. With this in mind, two types of GHz detectors are fabricated on epitaxial graphene using a lift off resist-based clean lithography process to produce low contact resistance. Both device types use asymmetry for detection, consistent with recent thoughts of the photothermoelectric effect (PTE) mechanism. The first is an antenna coupled device. It utilizes two dissimilar contact metals and the work function difference produces the asymmetry. The other device is a field effect transistor constructed with an asymmetric top gate that creates a PN junction and facilitates tuning the photovoltaic response. The response of both device types, tested from 100GHz to 170GHz, are reported. This work was sponsored by the U.S. Office of Naval Research (Award Number N000141310865).

  14. Illumination-based synchronization of high-speed vision sensors.

    PubMed

    Hou, Lei; Kagami, Shingo; Hashimoto, Koichi

    2010-01-01

    To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. This paper describes an illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm. Incident light to a vision sensor from an intensity-modulated illumination source serves as the reference signal for synchronization. Analog and digital computation within the vision sensor forms a PLL to regulate the output signal, which corresponds to the vision frame timing, to be synchronized with the reference. Simulated and experimental results show that a 1,000 Hz frame rate vision sensor was successfully synchronized with 32 μs jitters.

  15. Space-based detectors

    NASA Astrophysics Data System (ADS)

    Sesana, A.; Weber, W. J.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Ward, H.; Fitzsimons, E. D.; Bryant, J.; Cruise, A. M.; Dixon, G.; Hoyland, D.; Smith, D.; Bogenstahl, J.; McNamara, P. W.; Gerndt, R.; Flatscher, R.; Hechenblaikner, G.; Hewitson, M.; Gerberding, O.; Barke, S.; Brause, N.; Bykov, I.; Danzmann, K.; Enggaard, A.; Gianolio, A.; Vendt Hansen, T.; Heinzel, G.; Hornstrup, A.; Jennrich, O.; Kullmann, J.; Møller-Pedersen, S.; Rasmussen, T.; Reiche, J.; Sodnik, Z.; Suess, M.; Armano, M.; Sumner, T.; Bender, P. L.; Akutsu, T.; Sathyaprakash, B. S.

    2014-12-01

    The parallel session C5 on Space-Based Detectors gave a broad overview over the planned space missions related to gravitational wave detection. Overviews of the revolutionary science to be expected from LISA was given by Alberto Sesana and Sasha Buchman. The launch of LISA Pathfinder (LPF) is planned for 2015. This mission and its payload "LISA Technology Package" will demonstrate key technologies for LISA. In this context, reference masses in free fall for LISA, and gravitational physics in general, was described by William Weber, laser interferometry at the pico-metre level and the optical bench of LPF was presented by Christian Killow and the performance of the LPF optical metrology system by Paul McNamara. While LPF will not yet be sensitive to gravitational waves, it may nevertheless be used to explore fundamental physics questions, which was discussed by Michele Armano. Some parts of the LISA technology that are not going to be demonstrated by LPF, but under intensive development at the moment, were presented by Oliver Jennrich and Oliver Gerberding. Looking into the future, Japan is studying the design of a mid-frequency detector called DECIGO, which was discussed by Tomotada Akutsu. Using atom interferometry for gravitational wave detection has also been recently proposed, and it was critically reviewed by Peter Bender. In the nearer future, the launch of GRACE Follow-On (for Earth gravity observation) is scheduled for 2017, and it will include a Laser Ranging Interferometer as technology demonstrator. This will be the first inter-spacecraft laser interferometer and has many aspects in common with the LISA long arm, as discussed by Andrew Sutton.

  16. Tests of the Rockwell Si:As Back-Illuminated Blocked-Impurity Band (BIBIB) detectors

    NASA Technical Reports Server (NTRS)

    Wolf, J.; Groezinger, U.; Burgdorf, M.; Salama, A.

    1989-01-01

    Two arrays of Rockwell's Si:As back-illuminated blocked-impurity-band detectors were tested at the Max-Planck-Institute for Astronomy (MPIA) at low background and low temperature for possible use in the astronomical space experiment ISOPHOT. For these measurements special test equipment was put together. A cryostat was mechanically modified to accommodate the arrays and special peripheral electronics was added to a microprocessor system to drive the cold multiplexer and to acquire the output data. The first device, a 16x50 element array on a fan-out board was used to test individual pixels with a trans-impedance-amplifier at a photon background of 10(exp 8) Ph s(-1)cm(-2) and at temperatures of 2.7 to 4.4 K. The noise-equivalent-power NEP is in the range 5 - 7 x 10(exp -18) WHz(exp -1/2), the responsivity is less than or equal to 100 AW(exp -1)(f = 10 Hz). The second device was a 10x50 array including a cold readout electronics of switched FETs (SWIFET). Measurements of this array were done in a background range of 5 x 10(exp 5) to 5 x 10(exp 11) Ph s(exp-1)cm(exp-2) and at operating temperatures between 3.0 and 4.8 K. The NEP ranges from less than 10(exp -18) at the lowest background to 2 x 10(exp -16) WHz(exp -1/2) at the highest flux.

  17. Illumination normalization of face image based on illuminant direction estimation and improved Retinex.

    PubMed

    Yi, Jizheng; Mao, Xia; Chen, Lijiang; Xue, Yuli; Rovetta, Alberto; Caleanu, Catalin-Daniel

    2015-01-01

    Illumination normalization of face image for face recognition and facial expression recognition is one of the most frequent and difficult problems in image processing. In order to obtain a face image with normal illumination, our method firstly divides the input face image into sixteen local regions and calculates the edge level percentage in each of them. Secondly, three local regions, which meet the requirements of lower complexity and larger average gray value, are selected to calculate the final illuminant direction according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model. After knowing the final illuminant direction of the input face image, the Retinex algorithm is improved from two aspects: (1) we optimize the surround function; (2) we intercept the values in both ends of histogram of face image, determine the range of gray levels, and stretch the range of gray levels into the dynamic range of display device. Finally, we achieve illumination normalization and get the final face image. Unlike previous illumination normalization approaches, the method proposed in this paper does not require any training step or any knowledge of 3D face and reflective surface model. The experimental results using extended Yale face database B and CMU-PIE show that our method achieves better normalization effect comparing with the existing techniques. PMID:25906370

  18. Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation

    PubMed Central

    Yao, Ruoyang; Intes, Xavier; Fang, Qianqian

    2015-01-01

    Monte Carlo methods are commonly used as the gold standard in modeling photon transport through turbid media. With the rapid development of structured light applications, an accurate and efficient method capable of simulating arbitrary illumination patterns and complex detection schemes over large surface area is in great need. Here we report a generalized mesh-based Monte Carlo algorithm to support a variety of wide-field illumination methods, including spatial-frequency-domain imaging (SFDI) patterns and arbitrary 2-D patterns. The extended algorithm can also model wide-field detectors such as a free-space CCD camera. The significantly enhanced flexibility of source and detector modeling is achieved via a fast mesh retessellation process that combines the target domain and the source/detector space in a single tetrahedral mesh. Both simulations of complex domains and comparisons with phantom measurements are included to demonstrate the flexibility, efficiency and accuracy of the extended algorithm. Our updated open-source software is provided at http://mcx.space/mmc. PMID:26819826

  19. LED uniform illumination system for DMD-based confocal microscopy

    NASA Astrophysics Data System (ADS)

    Xiao, Kaimin; Hou, Wenmei; Xu, Qixin; Peng, Bofang

    2013-10-01

    Due to the coherence of laser light source it could produce coherent noise in parallel confocal microscopy based on Digital Micromirror Device (DMD) and thus affect the resolution. LED light source instead of the laser light source can give full play because of its incoherence characterization. In this paper, free-form surface lens is used for LED secondary optics design. According to the LED characteristics and the law of refraction, we have established differential equations of free-form surface. We solved equations with the method of Runge-Kutta by Matlab and the model was built in Tracepro for optical simulation. The results show that the uniformity on the DMD is better than 90% and the lighting efficiency is higher than before. The measured data show us a much more uniform illumination on DMD and LED uniform illumination system successfully avoided the gray error which was caused by the uneven illumination. The LED driver circuit using DC power supply provides us a more stable light source. The axial optical tomography is more accurate and the reconstruction of three-dimensional image is more clearer.

  20. Image quality-based adaptive illumination normalisation for face recognition

    NASA Astrophysics Data System (ADS)

    Sellahewa, Harin; Jassim, Sabah A.

    2009-05-01

    Automatic face recognition is a challenging task due to intra-class variations. Changes in lighting conditions during enrolment and identification stages contribute significantly to these intra-class variations. A common approach to address the effects such of varying conditions is to pre-process the biometric samples in order normalise intra-class variations. Histogram equalisation is a widely used illumination normalisation technique in face recognition. However, a recent study has shown that applying histogram equalisation on well-lit face images could lead to a decrease in recognition accuracy. This paper presents a dynamic approach to illumination normalisation, based on face image quality. The quality of a given face image is measured in terms of its luminance distortion by comparing this image against a known reference face image. Histogram equalisation is applied to a probe image if its luminance distortion is higher than a predefined threshold. We tested the proposed adaptive illumination normalisation method on the widely used Extended Yale Face Database B. Identification results demonstrate that our adaptive normalisation produces better identification accuracy compared to the conventional approach where every image is normalised, irrespective of the lighting condition they were acquired.

  1. Energy-Saving Tunnel Illumination System Based on LED's Intelligent Control

    NASA Astrophysics Data System (ADS)

    Guo, Shanshan; Gu, Hanting; Wu, Lan; Jiang, Shuixiu

    2011-02-01

    At present there is a lot of electric energy wastage in tunnel illumination, whose design is based on the maximum brightness outside and the maximum vehicle speed all year round. LED's energy consumption is low, and the control of its brightness is simple and effective. It can be quickly adjusted between 0-100% of its maximum brightness, and will not affect the service life. Therefore, using LED as tunnel's illumination source, we can achieve a good energy saving effect. According to real-time data acquisition of vehicle speed, traffic flow and brightness outside the tunnel, the auto real-time control of tunnel illumination can be achieved. And the system regulated the LED luminance by means of combination of LED power module and intelligent control module. The tunnel information was detected by inspection equipments, which included luminometer, vehicle detector, and received by RTU(Remote Terminal Unit), then synchronously transmitted to PC. After data processing, RTU emitted the dimming signal to the LED driver to adjust the brightness of LED. Despite the relatively high cost of high-power LED lights, the enormous energy-saving effect and the well-behaved controllability is beyond compare to other lighting devices.

  2. Optimal illumination for visual enhancement based on color entropy evaluation.

    PubMed

    Shen, Junfei; Chang, Shengqian; Wang, Huihui; Zheng, Zhenrong

    2016-08-22

    Object visualization is influenced by the spectral distribution of an illuminant impinging upon it. In this paper, we proposed a color entropy evaluation method to provide the optimal illumination that best helps surgeons distinguish tissue features. The target-specific optimal illumination was obtained by maximizing the color entropy value of our sample tissue, whose spectral reflectance was measured using multispectral imaging. Sample images captured under optimal light were compared with that under commercial white light emitting diodes (3000K, 4000K and 5500K). Results showed images under the optimized illuminant had better visual performance such as more subtle details exhibited. PMID:27557255

  3. Adaptive Ambient Illumination Based on Color Harmony Model

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ayano; Hirai, Keita; Nakaguchi, Toshiya; Tsumura, Norimichi; Miyake, Yoichi

    We investigated the relationship between ambient illumination and psychological effect by applying a modified color harmony model. We verified the proposed model by analyzing correlation between psychological value and modified color harmony score. Experimental results showed the possibility to obtain the best color for illumination using this model.

  4. Intra-field overlay correction for illumination based distortion

    NASA Astrophysics Data System (ADS)

    Pike, Michael; Brunner, Timothy; Morgenfeld, Bradley; Jing, Nan; Wiltshire, Timothy

    2015-03-01

    The use of extreme freeform illumination conditions and multi patterning processes used to generate sub 40nm images can result in significant intra-field overlay errors. When levels with differing illumination conditions are aligned to each other, these intra-field distortions can result in overlay errors which are uncorrectable using normal linear feedback corrections. We use a double exposure method, previously described by Minghetti [1] et al. to isolate and measure intra-field overlay distortions caused by tool lens signatures and different illumination conditions. A full field test reticle is used to create a dual level expose pattern. The same pattern is exposed twice, but with two different illumination conditions. The first exposure is done with a standard reference illumination. The second exposure is the target illumination condition. The test reticle has overlay target pairs that are measurable when the 2nd exposure is offset in the Y direction by the designed amount. This allows for a high density, 13x13, intra-field overlay measurement to be collected and modeled to determine 2nd and 3rd order intra-field terms. Since the resulting illumination and scanner lens specific intra field corrections are independent of field size, the sub-recipes can be applied to any product exposure independent of field size, which use the same illumination conditions as the test exposures. When the method is applied to all exposure levels in a product build cycle, the overlay errors contributed by the reference illumination condition cancel out. The remaining errors are due exclusively to the impact of the illumination condition on that scanner lens. Actual results correlated well with the model with more than 80% of the predicted overlay improvement being achieved.

  5. Photoacoustic tomography with integrating fiber-based annular detectors

    NASA Astrophysics Data System (ADS)

    Grün, H.; Altmisdört, H.; Berer, T.; Paltauf, G.; Zangerl, G.; Haltmeier, M.; Burgholzer, P.

    2011-03-01

    Photoacoustic tomography is an emerging technology combining the advantages of optical imaging (high contrast) and ultrasonic imaging (high spatial resolution). Applications for photoacoustic tomography are mainly in imaging soft tissue. For photoacoustic imaging the sample is illuminated by a short pulse of electromagnetic energy. Depending on the specific absorption rate (SAR) the electromagnetic radiation is absorbed and the subsequent thermoelastic expansion launches broadband ultrasonic waves. Usually point like piezo-electric detectors are used. Our group introduced integrating detectors a few years ago. This type of detector integrates the pressure at least along one dimension. Integrating line detectors, which integrate the pressure along one dimension, can be realized by using either free-beam or fiber-based interferometers. The latter approach also allows other detector shapes than a line. In this paper we use a fiber-based annular detector for tomography. Thereby the sample is rotated inside the annular detector on a position different from the symmetry axis of the annular detector. Hence the sample is enclosed by the detector and all data from one plane are collected at once. By moving the detector parallel to the symmetrie axis of the ring one can acquire data for a 3D image reconstruction. Therfore, tomography can be performed with only one rotation axis and one translation axis. For image reconstruction a novel algorithm is necessary which was tested on simulated data. Here we present an imaging setup using such a fiber-based annular detector. First measurements of simple structures and subsequent image reconstruction from these real data are shown in this paper.

  6. Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors

    SciTech Connect

    Gopal, Vishnu E-mail: wdhu@mail.sitp.ac.cn; Qiu, WeiCheng; Hu, Weida E-mail: wdhu@mail.sitp.ac.cn

    2014-11-14

    The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, I{sub excess} = I{sub r0} + K{sub 1} exp (K{sub 2} V), where I{sub r0}, K{sub 1}, and K{sub 2} are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers.

  7. Holographic illuminator for synchrotron-based projection lithography systems

    DOEpatents

    Naulleau, Patrick P.

    2005-08-09

    The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.

  8. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    NASA Astrophysics Data System (ADS)

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-02-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.

  9. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.

    PubMed

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  10. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    PubMed Central

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  11. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.

    PubMed

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.

  12. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    DOE PAGESBeta

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, makingmore » it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Ultimately, simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.« less

  13. Structured illumination temporal compressive microscopy

    PubMed Central

    Yuan, Xin; Pang, Shuo

    2016-01-01

    We present a compressive video microscope based on structured illumination with incoherent light source. The source-side illumination coding scheme allows the emission photons being collected by the full aperture of the microscope objective, and thus is suitable for the fluorescence readout mode. A 2-step iterative reconstruction algorithm, termed BWISE, has been developed to address the mismatch between the illumination pattern size and the detector pixel size. Image sequences with a temporal compression ratio of 4:1 were demonstrated. PMID:27231586

  14. Library-based illumination synthesis for critical CMOS patterning.

    PubMed

    Yu, Jue-Chin; Yu, Peichen; Chao, Hsueh-Yung

    2013-07-01

    In optical microlithography, the illumination source for critical complementary metal-oxide-semiconductor layers needs to be determined in the early stage of a technology node with very limited design information, leading to simple binary shapes. Recently, the availability of freeform sources permits us to increase pattern fidelity and relax mask complexities with minimal insertion risks to the current manufacturing flow. However, source optimization across many patterns is often treated as a design-of-experiments problem, which may not fully exploit the benefits of a freeform source. In this paper, a rigorous source-optimization algorithm is presented via linear superposition of optimal sources for pre-selected patterns. We show that analytical solutions are made possible by using Hopkins formulation and quadratic programming. The algorithm allows synthesized illumination to be linked with assorted pattern libraries, which has a direct impact on design rule studies for early planning and design automation for full wafer optimization.

  15. Content-based fused off-axis object illumination direct-to-digital holography

    DOEpatents

    Price, Jeffery R.

    2006-05-02

    Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  16. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light.

    PubMed

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-28

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm(-2) and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications. PMID:27076202

  17. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light

    NASA Astrophysics Data System (ADS)

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-01

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications.Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00759g

  18. Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    NASA Astrophysics Data System (ADS)

    Diemoz, P. C.; Endrizzi, M.; Vittoria, F. A.; Hagen, C. K.; Kallon, G.; Basta, D.; Marenzana, M.; Delogu, P.; Vincenzi, A.; De Ruvo, L.; Spandre, G.; Brez, A.; Bellazzini, R.; Olivo, A.

    2015-03-01

    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI's achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI.

  19. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  20. Using gradient-based ray and candidate shadow maps for environmental illumination distribution estimation

    NASA Astrophysics Data System (ADS)

    Eem, Changkyoung; Kim, Iksu; Hong, Hyunki

    2015-07-01

    A method to estimate the environmental illumination distribution of a scene with gradient-based ray and candidate shadow maps is presented. In the shadow segmentation stage, we apply a Canny edge detector to the shadowed image by using a three-dimensional (3-D) augmented reality (AR) marker of a known size and shape. Then the hierarchical tree of the connected edge components representing the topological relation is constructed, and the connected components are merged, taking their hierarchical structures into consideration. A gradient-based ray that is perpendicular to the gradient of the edge pixel in the shadow image can be used to extract the shadow regions. In the light source detection stage, shadow regions with both a 3-D AR marker and the light sources are partitioned into candidate shadow maps. A simple logic operation between each candidate shadow map and the segmented shadow is used to efficiently compute the area ratio between them. The proposed method successively extracts the main light sources according to their relative contributions on the segmented shadows. The proposed method can reduce unwanted effects due to the sampling positions in the shadow region and the threshold values in the shadow edge detection.

  1. An Asynchronous Cellular Automata-Based Adaptive Illumination Facility

    NASA Astrophysics Data System (ADS)

    Bandini, Stefania; Bonomi, Andrea; Vizzari, Giuseppe; Acconci, Vito

    The term Ambient Intelligence refers to electronic environments that are sensitive and responsive to the presence of people; in the described scenario the environment itself is endowed with a set of sensors (to perceive humans or other physical entities such as dogs, bicycles, etc.), interacting with a set of actuators (lights) that choose their actions (i.e. state of illumination) in an attempt improve the overall experience of these users. The model for the interaction and action of sensors and actuators is an asynchronous Cellular Automata (CA) with memory, supporting a self-organization of the system as a response to the presence and movements of people inside it. The paper will introduce the model, as well as an ad hoc user interface for the specification of the relevant parameters of the CA transition rule that determines the overall system behaviour.

  2. A source of illumination for low-noise ‘Violin-Mode’ shadow sensors, intended for use in interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.; Strain, K. A.

    2014-12-01

    A low-noise source of illumination is described for shadow sensors having a displacement sensitivity of (69  ±  13) picometres (rms)/√Hz, at 500 Hz, over a measuring span of ±0.1 mm. These sensors were designed to detect ‘Violin-Mode’ resonances in the suspension fibres of the test-masses/mirrors for the Advanced LIGO (Laser Interferometer Gravitational wave Observatory) gravitational wave detectors. The source of illumination (emitter) described here used a single column of 8 × miniature near infrared LEDs (λ = 890 nm). These emitters cast the shadows of 400 μm diameter fused silica suspension fibres onto their complementary shadow-displacement detectors, located at a distance of 74 fibre diameters (29.6 mm) behind the axes of the fibres themselves. Violin-Mode vibrations of each fibre were sensed as differential ac photocurrents in the corresponding ‘split-photodiode’ detector. This paper describes the design, construction, noise analysis, and measures that were taken in the conception of the emitters, in order to produce high-contrast shadows at such distant detectors. In this way it proved possible to obtain, simultaneously, a very high transfer sensitivity to Violin-Mode vibration of the fibres, and a very low level of detection noise—close to the fundamental shot noise limit—whilst remaining within the constraints of this simple design of emitter. The shadow detector is described in an accompanying paper.

  3. Illumination-invariant image matching for autonomous UAV localisation based on optical sensing

    NASA Astrophysics Data System (ADS)

    Wan, Xue; Liu, Jianguo; Yan, Hongshi; Morgan, Gareth L. K.

    2016-09-01

    This paper presents an UAV (Unmanned Aerial Vehicle) localisation algorithm for its autonomous navigation based on matching between on-board UAV image sequences to a pre-installed reference satellite image. As the UAV images and the reference image are not necessarily taken under the same illumination condition, illumination-invariant image matching is essential. Based on the investigation of illumination-invariant property of Phase Correlation (PC) via mathematical derivation and experiments, we propose a PC based fast and robust illumination-invariant localisation algorithm for UAV navigation. The algorithm accurately determines the current UAV position as well as the next UAV position even the illumination condition of UAV on-board images is different from the reference satellite image. A Dirac delta function based registration quality assessment together with a risk alarming criterion is introduced to enable the UAV to perform self-correction in case the UAV deviates from the planned route. UAV navigation experiments using simulated terrain shading images and remote sensing images have demonstrated a robust high performance of the proposed PC based localisation algorithm under very different illumination conditions resulted from solar motion. The superiority of the algorithm, in comparison with two other widely used image matching algorithms, MI (Mutual Information) and NCC (Normalised Correlation Coefficient), is significant for its high matching accuracy and fast processing speed.

  4. Model-based beam control for illumination of remote objects

    NASA Astrophysics Data System (ADS)

    Chandler, Susan M.; Lukesh, Gordon W.; Voelz, David; Basu, Santasri; Sjogren, Jon A.

    2004-11-01

    On September 1, 2003, Nukove Scientific Consulting, together with partner New Mexico State University, began work on a Phase 1 Small Business Technology TRansfer (STTR) grant from the United States Air Force Office of Scientific Research (AFOSR). The purpose of the grant was to show the feasibility of taking Nukove's pointing estimation technique from a post-processing tool for estimation of laser system characteristics to a real-time tool usable in the field. Nukove's techniques for pointing, shape, and OCS estimation do not require an imaging sensor nor a target board, thus estimates may be made very quickly. To prove feasibility, Nukove developed an analysis tool RHINO (Real-time Histogram Interpretation of Numerical Observations) and successfully demonstrated the emulation of real-time, frame-by-frame estimation of laser system characteristics, with data streamed into the tool and the estimates displayed as they are made. The eventual objective will be to use the frame-by-frame estimates to allow for feedback to a fielded system. Closely associated with this, NMSU developed a laboratory testbed to illuminate test objects, collect the received photons, and stream the data into RHINO. The two coupled efforts clearly demonstrate the feasibility of real-time pointing control of a laser system.

  5. SLM-based sinusoidal fringe projection under coherent illumination

    NASA Astrophysics Data System (ADS)

    Berberova, Natalia; Stoykova, Elena; Kang, Hoonjong; Park, Joo Sup; Ivanov, Branimir

    2013-09-01

    The paper is dedicated to SLM implementation of a sinusoidal phase grating for fringe projection profilometry with sinusoidal fringes. A low-contrast sinusoidal phase grating is capable of projecting focused sinusoidal fringes with satisfactory visibility in a large spatial region under coherent divergent illumination. The paper presents analysis of distortions in the projected fringes due to phase quantization when the phase grating is generated by a phase-only 8-bit SLM. We showed by simulation of propagation in the free space that the spread of intensity fluctuations of the projected fringes comprises 4-5 gray levels if an SLM with a 2π phase span is used and is much lower for an SLM with π/2 phase span. In addition, we proved that distortion due to the phase encoding of the grating complex amplitude can be modeled as gamma distortion with an invariable behavior in time at small values of the modulation parameter and removed by a proper correction of fringes after polyspectral analysis. The experiments we made with an 8-bit SLM of π/2 phase span confirmed the ability of this optical element to project sinusoidal fringes with a high spectral purity.

  6. Metal detector technology data base

    SciTech Connect

    Porter, L.K.; Gallo, L.R.; Murray, D.W.

    1990-08-01

    The tests described in this report were conducted to obtain information on the effects target characteristics have on portal type metal detector response. A second purpose of the tests was to determine the effect of detector type and settings on the detection of the targets. Although in some cases comparison performance of different types and makes of metal detectors is found herein, that is not the primary purpose of the report. Further, because of the many variables that affect metal detector performance, the information presented can be used only in a general way. The results of these tests can show general trends in metal detection, but do little for making accurate predictions as to metal detector response to a target with a complex shape such as a handgun. The shape of an object and its specific metal content (both type and treatment) can have a significant influence on detection. Thus it should not be surprising that levels of detection for a small 100g stainless steel handgun are considerably different than for detection of the 100g stainless steel right circular cylinder that was used in these tests. 7 figs., 1 tab.

  7. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    NASA Astrophysics Data System (ADS)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  8. High-nitrogen-based pyrotechnics: perchlorate-free red- and green-light illuminants based on 5-aminotetrazole.

    PubMed

    Sabatini, Jesse J; Moretti, Jared D

    2013-09-16

    Prototype testing of perchlorate-free hand-held signal illuminants for the US Army's M126 A1 red-star and M195 green-star parachute illuminants are described. Although previous perchlorate-free variants for these items have been developed based on high-nitrogen compounds that are not readily available, the new formulations consist of anhydrous 5-aminotetrazole as the suitable perchlorate replacement. Compared to the perchlorate-containing control, the disclosed illuminants exhibited excellent stabilities toward various ignition stimuli and had excellent pyrotechnic performance. The illuminants are important from both military and civil fireworks perspectives, as the perchlorate-free nature of the illuminants adequately address environmental concerns associated with perchlorate-containing red- and green-light-emitting illuminants. PMID:23950104

  9. High-nitrogen-based pyrotechnics: perchlorate-free red- and green-light illuminants based on 5-aminotetrazole.

    PubMed

    Sabatini, Jesse J; Moretti, Jared D

    2013-09-16

    Prototype testing of perchlorate-free hand-held signal illuminants for the US Army's M126 A1 red-star and M195 green-star parachute illuminants are described. Although previous perchlorate-free variants for these items have been developed based on high-nitrogen compounds that are not readily available, the new formulations consist of anhydrous 5-aminotetrazole as the suitable perchlorate replacement. Compared to the perchlorate-containing control, the disclosed illuminants exhibited excellent stabilities toward various ignition stimuli and had excellent pyrotechnic performance. The illuminants are important from both military and civil fireworks perspectives, as the perchlorate-free nature of the illuminants adequately address environmental concerns associated with perchlorate-containing red- and green-light-emitting illuminants.

  10. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy.

    PubMed

    Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R; Yaqoob, Zahid; So, Peter T C

    2015-10-19

    We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems. PMID:26480361

  11. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy

    PubMed Central

    Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.

    2015-01-01

    We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems. PMID:26480361

  12. Evaluating Work-Based Learning: Insights from an Illuminative Evaluation Study of Work-Based Learning in a Vocational Qualification

    ERIC Educational Resources Information Center

    van Rensburg, Estelle

    2008-01-01

    This article outlines an illuminative evaluation study of the work-based module in a vocational qualification in Animal Health offered for the paraveterinary industry by a distance education institution in South Africa. In illuminative evaluation, a programme is studied by qualitative methods to gain an in-depth understanding of its "instructional…

  13. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors

    SciTech Connect

    Seon, C. R.; Choi, S. H.; Cheon, M. S.; Pak, S.; Lee, H. G.; Biel, W.; Barnsley, R.

    2010-10-15

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  14. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors.

    PubMed

    Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2010-10-01

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  15. Smartphone-based fluorescence detector for mHealth.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2015-01-01

    We describe here a compact smartphone-based fluorescence detector for mHealth. A key element to achieving high sensitivity using low sensitivity phone cameras is a capillary array, which increases sensitivity by 100×. The capillary array was combined with a white LED illumination system to enable wide spectra fluorescent excitation in the range of 450-740 nm. The detector utilizes an orthographic projection system to form parallel light projection images from the capillaries at a close distance via an object-space telecentric lens configuration that reduces the total lens-to-object distance while maintaining uniformity in measurement between capillaries. To further increase the limit of detection (LOD), a computational image processing approach was employed to decrease the level of noise. This enables an additional 5-10× decrease in LOD. This smartphone-based detector was used to measure serial dilutions of fluorescein with a LOD of 1 nM with image stacking and 10 nM without image stacking, similar to the LOD obtained with a commercial plate reader. Moreover, the capillary array required a sample volume of less than 10 μl, which is an order of magnitude less than the 100 μl required for the plate reader.As fluorescence detection is widely used in sensitive biomedical assays, the approach described here has the potential to increase mHealth clinical utility, especially for telemedicine and for resource-poor settings in global health applications. PMID:25626543

  16. Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern

    DOEpatents

    Doerry, Armin W.

    2013-04-30

    Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.

  17. An Efficient Ant-Based Edge Detector

    NASA Astrophysics Data System (ADS)

    Aydın, Doğan

    An efficient ant-based edge detector is presented. It is based on the distribution of ants on an image, ants try to find possible edges by using a state transition function based on 5x5 edge structures. Visual comparisons show that the proposed method gives finer details and thinner edges at lesser computational times when compared to earlier ant-based approaches. When compared to standard edge detectors, it shows robustness to Gaussian and Salt & Pepper noise and provides finer details than others with same parameter set in both clear and noisy images.

  18. Ion chamber based neutron detectors

    DOEpatents

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  19. Illuminating the base of the annelid tree using transcriptomics.

    PubMed

    Weigert, Anne; Helm, Conrad; Meyer, Matthias; Nickel, Birgit; Arendt, Detlev; Hausdorf, Bernhard; Santos, Scott R; Halanych, Kenneth M; Purschke, Günter; Bleidorn, Christoph; Struck, Torsten H

    2014-06-01

    Annelida is one of three animal groups possessing segmentation and is central in considerations about the evolution of different character traits. It has even been proposed that the bilaterian ancestor resembled an annelid. However, a robust phylogeny of Annelida, especially with respect to the basal relationships, has been lacking. Our study based on transcriptomic data comprising 68,750-170,497 amino acid sites from 305 to 622 proteins resolves annelid relationships, including Chaetopteridae, Amphinomidae, Sipuncula, Oweniidae, and Magelonidae in the basal part of the tree. Myzostomida, which have been indicated to belong to the basal radiation as well, are now found deeply nested within Annelida as sister group to Errantia in most analyses. On the basis of our reconstruction of a robust annelid phylogeny, we show that the basal branching taxa include a huge variety of life styles such as tube dwelling and deposit feeding, endobenthic and burrowing, tubicolous and filter feeding, and errant and carnivorous forms. Ancestral character state reconstruction suggests that the ancestral annelid possessed a pair of either sensory or grooved palps, bicellular eyes, biramous parapodia bearing simple chaeta, and lacked nuchal organs. Because the oldest fossil of Annelida is reported for Sipuncula (520 Ma), we infer that the early diversification of annelids took place at least in the Lower Cambrian.

  20. Double-exposure phase calculation method in electronic speckle pattern interferometry based on holographic object illumination

    NASA Astrophysics Data System (ADS)

    Séfel, Richárd; Kornis, János

    2011-08-01

    Multiple-exposure phase calculation procedures are widely used in electronic speckle pattern interferometry to calculate phase maps of displacements. We developed a double-exposure process based on holographic illumination of the object and the idea of the spatial carrier phase-shifting method to examine transient displacements. In our work, computer-generated holograms and a spatial light modulator were used to generate proper coherent illuminating masks. In this adjustment all phase-shifted states were at our disposal from one recorded speckle image for phase calculation. This technique can be used in the large scale of transient measurements. In this paper we illustrate the principle through several examples.

  1. Designing LED Array for Uniform Illumination Based on Local Search Algorithm

    NASA Astrophysics Data System (ADS)

    Lei, P.; Wang, Q.; Zou, H.

    2014-03-01

    We propose a numerical optimization method based on local search algorithm to design an LED array for a highly uniform illumination distribution. In the first place, an initial LED array is randomly generated and the corresponding value of the objective function is calculated. In the second place, the value of the objective function is iteratively improved by applying local changes of the LED array until the objective function value can not be improved. This method can automatically design an array of LEDs with different luminous intensity value and distribution. Computer simulations show that the near-optimal LED array with highly uniform illumination distribution on target plane is obtained by this method.

  2. A step-wise steerable source of illumination for low-noise "Violin-Mode" shadow sensors, intended for use in interferometric gravitational wave detectors.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-01-01

    A steerable low-noise source of illumination is described for shadow-sensors having a displacement sensitivity of ∼100 pm (rms)/√Hz, at 500 Hz, over a measuring span of at least ±0.5 mm. These sensors were designed to detect lateral "Violin-Mode" resonances in the highly tensioned fused-silica suspension fibres of the test-masses/mirrors for the Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave detectors. The shadow sensors-one intended for each of the four fibres in a suspension-comprised a source of Near InfraRed (NIR) radiation (emitter) and a differential shadow-displacement sensor (detector), these bracketing the fibre under test. The suspension fibres themselves were approximately 600 mm long by 0.4 mm in diameter, and when illuminated from the side, they cast narrow, vertical, shadows onto their respective detectors-these being located at an effective distance of 50 fibre diameters behind the axes of the fibres themselves. The emitter described here was designed to compensate for a significant degree of mechanical drift or creep over time in the mean position of its suspension fibre. This was achieved by employing five adjacent columns of 8  × miniature NIR LEDs (Light Emitting Diodes, λ = 890 nm), with one column being activated at a time. When used in conjunction with a "reverse Galilean" telescope, the LED sources allowed the collimated beam from the emitter to be steered azimuthally in fine angular increments (0.65°), causing the fibre's shadow to move laterally, in a step-wise manner, across the plane of its facing detector. Each step in shadow position was approximately 0.23 mm in size, and this allowed the fibre's shadow to be re-centred, so as to bridge once again both elements of its photodiode detector-even if the fibre was off-centred by as much as ±0.5 mm. Re-centring allowed Violin-Mode vibrations of the fibre to be sensed once again as differential AC photocurrents, these flowing in anti-phase in the two

  3. A step-wise steerable source of illumination for low-noise "Violin-Mode" shadow sensors, intended for use in interferometric gravitational wave detectors.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-01-01

    A steerable low-noise source of illumination is described for shadow-sensors having a displacement sensitivity of ∼100 pm (rms)/√Hz, at 500 Hz, over a measuring span of at least ±0.5 mm. These sensors were designed to detect lateral "Violin-Mode" resonances in the highly tensioned fused-silica suspension fibres of the test-masses/mirrors for the Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave detectors. The shadow sensors-one intended for each of the four fibres in a suspension-comprised a source of Near InfraRed (NIR) radiation (emitter) and a differential shadow-displacement sensor (detector), these bracketing the fibre under test. The suspension fibres themselves were approximately 600 mm long by 0.4 mm in diameter, and when illuminated from the side, they cast narrow, vertical, shadows onto their respective detectors-these being located at an effective distance of 50 fibre diameters behind the axes of the fibres themselves. The emitter described here was designed to compensate for a significant degree of mechanical drift or creep over time in the mean position of its suspension fibre. This was achieved by employing five adjacent columns of 8  × miniature NIR LEDs (Light Emitting Diodes, λ = 890 nm), with one column being activated at a time. When used in conjunction with a "reverse Galilean" telescope, the LED sources allowed the collimated beam from the emitter to be steered azimuthally in fine angular increments (0.65°), causing the fibre's shadow to move laterally, in a step-wise manner, across the plane of its facing detector. Each step in shadow position was approximately 0.23 mm in size, and this allowed the fibre's shadow to be re-centred, so as to bridge once again both elements of its photodiode detector-even if the fibre was off-centred by as much as ±0.5 mm. Re-centring allowed Violin-Mode vibrations of the fibre to be sensed once again as differential AC photocurrents, these flowing in anti-phase in the two

  4. PET detector modules based on novel detector technologies

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.; Budinger, T.F.

    1994-05-01

    A successful PET detector module must identify 511 keV photons with: high efficiency (>85%), high spatial resolution (<5 mm fwhm), low cost (<$600 / in{sup 2}), low dead time (<4 {mu}s in{sup 2}), good timing resolution (<5 ns fwhm for conventional PET, <200 ps fwhm for time of flight), and good energy resolution (<100 keV fwhm), where these requirements are listed in decreasing order of importance. The ``high efficiency`` requirement also implies that the detector modules must pack together without inactive gaps. Several novel and emerging radiation detector technologies could improve the performance of PET detectors. Avalanche photodiodes, PIN photodiodes, metal channel dynode photomultiplier tubes, and new scintillators all have the potential to improve PET detectors significantly.

  5. Highly sensitive focus monitoring technique based on illumination and target co-optimization

    NASA Astrophysics Data System (ADS)

    Lee, Myungjun; Smith, Mark D.; Subrahmanyan, Pradeep; Levy, Ady

    2016-03-01

    We present a cost-effective focus monitoring technique based on the illumination and the target co-optimization. An advanced immersion scanner can provide the freeform illumination that enables the use of any kind of custom source shape by using a programmable array of thousands of individually adjustable micro-mirrors. Therefore, one can produce non-telecentricity using the asymmetric illumination in the scanner with the optimized focus target on the cost-effective binary OMOG mask. Then, the scanner focus variations directly translate into easily measurable overlay shifts in the printed pattern with high sensitivity (ΔShift/Δfocus = 60nm/100nm). In addition, the capability of using the freeform illumination allows us to computationally co-optimize the source and the focus target, simultaneously, generating not only vertical or horizontal shifts, but also introducing diagonal pattern shifts. The focus-induced pattern shifts can be accurately measured by standard wafer metrology tools such as CD-SEM and overlay metrology tools.

  6. Multipoint side illuminated absorption based optical fiber sensor for relative humidity

    NASA Astrophysics Data System (ADS)

    Egalon, Claudio O.

    2013-09-01

    A side illuminated optical fiber sensor with three sensing points and an absorption-based indicator in the cladding was demonstrated for the first time. This device is easy to manufacture, uses leaky modes as the signal carrier and can measure RH in air, soil, concrete and other environments. So far, only side illuminated fluorescence sensors have been reported. They were thought, erroneously, to have their entire signal generated by evanescent wave coupling when, in fact, leaky modes also play an important role. This, coupled to the prevailing misconception that leaky modes propagate for very short lengths of fiber, prevented the earlier discovery of this absorption-based configuration. A 25 cm long fiber, with a cladding doped with an absorption dye sensitive to Relative Humidity (RH), was used in this demonstration. The fiber was side illuminated by a broadband LED, a fraction of this light was absorbed by the cladding and the remaining light guided to the fiber tip as low loss leaky modes. A total of three sensors, two with three sensing points and one with two, were calibrated using a low cost photometer. The signal was linear, stable, increased with RH and had resolutions between 0.11% and 0.25% in RH. With 5 mm diameter LEDs, devices with at least two sensing points per centimeter of fiber can be easily fabricated resulting in sensors with a very high density of sensing points. Compared to the prevailing axial illumination approach, the side illuminated sensor was found to be far simpler and inexpensive.

  7. Antimonide-based barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Hill, Cory J.; Soibel, Alexander; Nguyen, Jean; Keo, Sam A.; Lee, Michael C.; Mumolo, Jason M.; Liu, John K.; Gunapala, Sarath D.

    2010-04-01

    The nearly lattice-matched InAs/GaSb/AlSb (antimonide) material system offers tremendous flexibility in realizing high-performance infrared detectors. Antimonide-based alloy and superlattice infrared absorbers can be customized to have cutoff wavelengths ranging from the short wave infrared (SWIR) to the very long wave infrared (VLWIR). They can be used in constructing sophisticated heterostructures to enable advanced infrared photodetector designs. In particular, they facilitate the construction of unipolar barriers, which can block one carrier type but allow the unimpeded flow of the other. Unipolar barriers are used to implement the barrier infra-red detector (BIRD) design for increasing the collection efficiency of photo-generated carriers, and reducing dark current generation without impeding photocurrent flow. We report our recent efforts in achieving state-of-the-art performance in antimonide alloy and superlattice based infrared photodetectors using the BIRD architecture. Specifically, we report a 10 μm cutoff superlattice device based on a complementary barrier infrared detector (CBIRD) design. The detector, without antireflection coating or passivation, exhibits a responsivity of 1.5 A/W and a dark current density of 1×10-5 A/cm2 at 77K under 0.2 V bias. It reaches 300 K background limited infrared photodetection (BLIP) operation at 87 K, with a blackbody BLIP D* value of 1.1×1011 cm-Hz1/2/W for f/2 optics under 0.2 V bias.

  8. Light illumination and detection patterns for fluorescence diffuse optical tomography based on compressive sensing.

    PubMed

    Jin, An; Yazici, Birsen; Ntziachristos, Vasilis

    2014-06-01

    Fluorescence diffuse optical tomography (FDOT) is an emerging molecular imaging modality that uses near infrared light to excite the fluorophore injected into tissue; and to reconstruct the fluorophore concentration from boundary measurements. The FDOT image reconstruction is a highly ill-posed inverse problem due to a large number of unknowns and limited number of measurements. However, the fluorophore distribution is often very sparse in the imaging domain since fluorophores are typically designed to accumulate in relatively small regions. In this paper, we use compressive sensing (CS) framework to design light illumination and detection patterns to improve the reconstruction of sparse fluorophore concentration. Unlike the conventional FDOT imaging where spatially distributed light sources illuminate the imaging domain one at a time and the corresponding boundary measurements are used for image reconstruction, we assume that the light sources illuminate the imaging domain simultaneously several times and the corresponding boundary measurements are linearly filtered prior to image reconstruction. We design a set of optical intensities (illumination patterns) and a linear filter (detection pattern) applied to the boundary measurements to improve the reconstruction of sparse fluorophore concentration maps. We show that the FDOT sensing matrix can be expressed as a columnwise Kronecker product of two matrices determined by the excitation and emission light fields. We derive relationships between the incoherence of the FDOT forward matrix and these two matrices, and use these results to reduce the incoherence of the FDOT forward matrix. We present extensive numerical simulation and the results of a real phantom experiment to demonstrate the improvements in image reconstruction due to the CS-based light illumination and detection patterns in conjunction with relaxation and greedy-type reconstruction algorithms.

  9. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  10. Field crop extraction robust to illumination variations based on specularity learning

    NASA Astrophysics Data System (ADS)

    Yu, Zhenghong; Li, Cuina; Zhou, Huabing

    2015-12-01

    In this paper, we proposed an illumination-invariant crop extraction method based on specularity learning. Several useful contextual cues including object appearance and location inspired by recognition mechanism of human beings were introduced and integrated to machine learning architecture, generating a well-trained highlight region classifier. Combing with the Hue-intensity Look-up table and super-pixel techniques, the classifier gives the final extraction result. Comparing experiment confirmed the validity and feasibility of our method.

  11. Design of LED-based reflector-array module for specific illuminance distribution

    NASA Astrophysics Data System (ADS)

    Chen, Enguo; Yu, Feihong

    2013-02-01

    This paper presents an efficient and practical design method for a LED based reflector-array lighting module. Improving on previous designs, this method could offer higher design freedom to achieve specific illuminance distribution for actual lighting application and deal with the LED light intensity distribution while shortening the design time. The detailed design description of the lighting system is thoroughly investigated. To demonstrate the effectiveness of this method, an ultra-compact reflector-array module, which produces a rectangular illumination area with a large aspect ratio, is specially designed to meet the high-demanding requirements of industrial lighting application. Design results show that most LED emitting energy could be collected into the required lighting region while higher-brightness and better-uniformity are simultaneously available within the focus region. It is expected that this method will have great potential for other lighting applications.

  12. A step-wise steerable source of illumination for low-noise "Violin-Mode" shadow sensors, intended for use in interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-01-01

    A steerable low-noise source of illumination is described for shadow-sensors having a displacement sensitivity of ˜100 pm (rms)/√Hz, at 500 Hz, over a measuring span of at least ±0.5 mm. These sensors were designed to detect lateral "Violin-Mode" resonances in the highly tensioned fused-silica suspension fibres of the test-masses/mirrors for the Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave detectors. The shadow sensors—one intended for each of the four fibres in a suspension—comprised a source of Near InfraRed (NIR) radiation (emitter) and a differential shadow-displacement sensor (detector), these bracketing the fibre under test. The suspension fibres themselves were approximately 600 mm long by 0.4 mm in diameter, and when illuminated from the side, they cast narrow, vertical, shadows onto their respective detectors—these being located at an effective distance of 50 fibre diameters behind the axes of the fibres themselves. The emitter described here was designed to compensate for a significant degree of mechanical drift or creep over time in the mean position of its suspension fibre. This was achieved by employing five adjacent columns of 8 × miniature NIR LEDs (Light Emitting Diodes, λ = 890 nm), with one column being activated at a time. When used in conjunction with a "reverse Galilean" telescope, the LED sources allowed the collimated beam from the emitter to be steered azimuthally in fine angular increments (0.65°), causing the fibre's shadow to move laterally, in a step-wise manner, across the plane of its facing detector. Each step in shadow position was approximately 0.23 mm in size, and this allowed the fibre's shadow to be re-centred, so as to bridge once again both elements of its photodiode detector—even if the fibre was off-centred by as much as ±0.5 mm. Re-centring allowed Violin-Mode vibrations of the fibre to be sensed once again as differential AC photocurrents, these flowing in anti-phase in the

  13. Atomic Layer Deposition of Chemical Passivation Layers and High Performance Anti-Reflection Coatings on Back-Illuminated Detectors

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Nikzad, Shouleh (Inventor)

    2014-01-01

    A back-illuminated silicon photodetector has a layer of Al2O3 deposited on a silicon oxide surface that receives electromagnetic radiation to be detected. The Al2O3 layer has an antireflection coating deposited thereon. The Al2O3 layer provides a chemically resistant separation layer between the silicon oxide surface and the antireflection coating. The Al2O3 layer is thin enough that it is optically innocuous. Under deep ultraviolet radiation, the silicon oxide layer and the antireflection coating do not interact chemically. In one embodiment, the silicon photodetector has a delta-doped layer near (within a few nanometers of) the silicon oxide surface. The Al2O3 layer is expected to provide similar protection for doped layers fabricated using other methods, such as MBE, ion implantation and CVD deposition.

  14. Correlation of Illumination and Topography Factors with Epithermal Neutron measurements at the Lunar Poles using the Lunar Reconnaissance Orbiter (LRO), Lunar Exploration Neutron Detector (LEND)

    NASA Astrophysics Data System (ADS)

    McClanahan, T. P.; Mitrofanov, I.; Boynton, W. V.; Evans, L. G.; Droege, G.; Garvin, J.; Harshman, K.; Litvak, M. L.; Malahov, A.; Nandikotkur, G.; Sagdeev, R.; Sanin, A.; Milikh, G.; Starr, R. D.; Trombka, J.

    2010-12-01

    The Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) is tasked with deriving the spatial distributions of Hydrogen on the lunar surface. Since LRO’s orbital insertion in June 2009, LEND has collected more than [9e+6, 8e+6] detailed epithermal measurements over the South and North poles above +/-75°. Orbital neutron flux measurements from the Moon have been used to quantify H concentrations via the interpretation of the epithermal (medium energy) neutron flux. At the poles, H concentrations are shown to be enhanced in some regions (100’s ppm) relative to the mid-latitudes. Past hypothesis postulated that H sublimation rates are minimal within persistently shadowed regions at the bottoms of polar craters, due to the inherently cold temperatures (< 100°K). However, in smaller regional analysis using LEND, the H spatial distribution has only limited positive correlation with these regions and is elsewhere not seen with consistent effect. Conversely, some higher H concentrations are seen in low illumination regions. Instead, it appears the regional H budget is governed by a complex interplay between depositional processes and geophysical factors at work on the lunar surface. To begin to characterize and isolate these factors, this paper will correlate the results of the LEND orbital mission with topographic and illumination factors.

  15. Chroma key without color restrictions based on asynchronous amplitude modulation of background illumination on retroreflective screens

    NASA Astrophysics Data System (ADS)

    Vidal, Borja; Lafuente, Juan A.

    2016-03-01

    A simple technique to avoid color limitations in image capture systems based on chroma key video composition using retroreflective screens and light-emitting diodes (LED) rings is proposed and demonstrated. The combination of an asynchronous temporal modulation onto the background illumination and simple image processing removes the usual restrictions on foreground colors in the scene. The technique removes technical constraints in stage composition, allowing its design to be purely based on artistic grounds. Since it only requires adding a very simple electronic circuit to widely used chroma keying hardware based on retroreflective screens, the technique is easily applicable to TV and filming studios.

  16. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    PubMed

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  17. DMD-based LED-illumination Super-resolution and optical sectioning microscopy

    NASA Astrophysics Data System (ADS)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×107 pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  18. [Compensation method of broadband illuminant fluctuation based on spectrum linear fitting].

    PubMed

    Qiu, Chao; Sun, Xiao-gang; Luan, Mei-sheng

    2014-06-01

    The intensity of broadband illuminant fluctuates when its' power supply output power changes. Spectral intensities at each wavelength within the band of broadband illuminant fluctuate at different levels. A method based on spectrum linear fitting is proposed to compensate the illuminant spectral intensity in its band when its intensity fluctuates. The spectral intensity fluctuation at each wavelength could be compensated simply by measuring the band intensity with this method. The linear relationship between spectral radiant exitance and whole radiant exitance of ideal blackbody was analysed by researching the radiant exitance at different temperatures. The linear model of broadband illuminant band intensity and spectral intensity was built. Experimental system is composed of a halogen light, a power supply, an aperture, a spectrometer, and a computer mainly. By adjusting the power output of the power supply, we obtained a set of halogen light relative spectral intensities at different power inputs. The spectral intensity of halogen light at different input powers was measured to test the compensation effect of this method. The relationship between spectral intensity and band intensity of halogen light was fitted with linear relation and the fitting errors were analysed. The experimental result shows a linear relationship between spectral intensity and band intensity of halogen light, so the spectral intensity fluctuation can be compensated using the band intensity according to their linear relation. The relative error absolute value of compensated spectral intensity decreases as the halogen light input power increases. Within the range of halogen light input power, the relative error absolute values of spectral intensity compensated with this method are within 5% at vast majority (92%) of the wavelengths.

  19. Ambient illumination revisited: A new adaptation-based approach for optimizing medical imaging reading environments

    SciTech Connect

    Chawla, Amarpreet S.; Samei, Ehsan

    2007-01-15

    Ambient lighting in soft-copy reading rooms is currently kept at low values to preserve contrast rendition in the dark regions of a medical image. Low illuminance levels, however, create inadequate viewing conditions and may also cause eye strain. This eye strain may be potentially attributed to notable variations in the luminance adaptation state of the reader's eyes when moving the gaze intermittently between the brighter display and darker surrounding surfaces. This paper presents a methodology to minimize this variation and optimize the lighting conditions of reading rooms by exploiting the properties of liquid crystal displays (LCDs) with low diffuse reflection coefficients and high luminance ratio. First, a computational model was developed to determine a global luminance adaptation value, L{sub adp}, when viewing a medical image on display. The model is based on the diameter of the pupil size, which depends on the luminance of the observed object. Second, this value was compared with the luminance reflected off surrounding surfaces, L{sub s}, under various conditions of room illuminance, E, different values of diffuse reflection coefficients of surrounding surfaces, R{sub s}, and calibration settings of a typical LCD. The results suggest that for typical luminance settings of current LCDs, it is possible to raise ambient illumination to minimize differences in eye adaptation, potentially reducing visual fatigue while also complying with the TG18 specifications for controlled contrast rendition. Specifically, room illumination in the 75-150 lux range and surface diffuse reflection coefficients in the practical range of 0.13-0.22 sr{sup -1} provide an ideal setup for typical LCDs. Future LCDs with lower diffuse reflectivity and with higher inherent luminance ratios can provide further improvement of ergonomic viewing conditions in reading rooms.

  20. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  1. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report. PMID:25757823

  2. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report.

  3. Deterministic phase retrieval employing spherical illumination

    NASA Astrophysics Data System (ADS)

    Martínez-Carranza, J.; Falaggis, K.; Kozacki, T.

    2015-05-01

    Deterministic Phase Retrieval techniques (DPRTs) employ a series of paraxial beam intensities in order to recover the phase of a complex field. These paraxial intensities are usually generated in systems that employ plane-wave illumination. This type of illumination allows a direct processing of the captured intensities with DPRTs for recovering the phase. Furthermore, it has been shown that intensities for DPRTs can be acquired from systems that use spherical illumination as well. However, this type of illumination presents a major setback for DPRTs: the captured intensities change their size for each position of the detector on the propagation axis. In order to apply the DPRTs, reescalation of the captured intensities has to be applied. This condition can increase the error sensitivity of the final phase result if it is not carried out properly. In this work, we introduce a novel system based on a Phase Light Modulator (PLM) for capturing the intensities when employing spherical illumination. The proposed optical system enables us to capture the diffraction pattern of under, in, and over-focus intensities. The employment of the PLM allows capturing the corresponding intensities without displacing the detector. Moreover, with the proposed optical system we can control accurately the magnification of the captured intensities. Thus, the stack of captured intensities can be used in DPRTs, overcoming the problems related with the resizing of the images. In order to prove our claims, the corresponding numerical experiments will be carried out. These simulations will show that the retrieved phases with spherical illumination are accurate and can be compared with those that employ plane wave illumination. We demonstrate that with the employment of the PLM, the proposed optical system has several advantages as: the optical system is compact, the beam size on the detector plane is controlled accurately, and the errors coming from mechanical motion can be suppressed easily.

  4. Dimming curve based on the detectability and acceptability of illuminance differences.

    PubMed

    Hu, Wenye; Davis, Wendy

    2016-05-16

    In a psychophysical forced-choice experiment, observers' ability to detect illuminance differences was found to be 7.4% of the initial illuminance. When matching the illuminance of one space with another, observers' acceptance of illuminance differences was 17.8% to 19.1%. Lighting control systems with resolutions between 14.8% and 17.7% were found to have greater usability than others. A new approach to step-dimming leverages knowledge of the detectability and acceptability of illuminance differences, as well as usability, to reduce lighting energy consumption. This method can reduce lighting energy consumption more than continuous dimming. PMID:27409961

  5. Dimming curve based on the detectability and acceptability of illuminance differences.

    PubMed

    Hu, Wenye; Davis, Wendy

    2016-05-16

    In a psychophysical forced-choice experiment, observers' ability to detect illuminance differences was found to be 7.4% of the initial illuminance. When matching the illuminance of one space with another, observers' acceptance of illuminance differences was 17.8% to 19.1%. Lighting control systems with resolutions between 14.8% and 17.7% were found to have greater usability than others. A new approach to step-dimming leverages knowledge of the detectability and acceptability of illuminance differences, as well as usability, to reduce lighting energy consumption. This method can reduce lighting energy consumption more than continuous dimming.

  6. Feasibility Study of EO SARs as Opportunity Illuminators in Passive Radars: PAZ-Based Case Study.

    PubMed

    Bárcena-Humanes, Jose-Luis; Gómez-Hoyo, Pedro-José; Jarabo-Amores, Maria-Pilar; Mata-Moya, David; Del-Rey-Maestre, Nerea

    2015-01-01

    Passive radars exploit the signal transmitted by other systems, known as opportunity illuminators (OIs), instead of using their own transmitter. Due to its almost total invulnerability to natural disasters or physical attacks, satellite OIs are of special interest. In this line, a feasibility study of Earth Observation Synthetic Aperture Radar (EO SAR) systems as OIs is carried out taking into consideration signal waveform, availability, bistatic geometry, instrumented coverage area and incident power density. A case study based on the use of PAZ, the first Spanish EO SAR, is presented. PAZ transmitted waveform, operation modes, orbit characteristics and antenna and transmitter parameters are analyzed to estimate potential coverages and resolutions. The study concludes that, due to its working in on-demand operating mode, passive radars based on PAZ-type illuminators can be proposed as complementing tools during the sensor commissioning phase, for system maintenance and for improving its performance by providing additional information about the area of interest and/or increasing the data updating speed, exploiting other sensors during the time PAZ is not available. PMID:26593921

  7. Feasibility Study of EO SARs as Opportunity Illuminators in Passive Radars: PAZ-Based Case Study

    PubMed Central

    Bárcena-Humanes, Jose-Luis; Gómez-Hoyo, Pedro-José; Jarabo-Amores, Maria-Pilar; Mata-Moya, David; De-Rey-Maestre, Nerea

    2015-01-01

    Passive radars exploit the signal transmitted by other systems, known as opportunity illuminators (OIs), instead of using their own transmitter. Due to its almost total invulnerability to natural disasters or physical attacks, satellite OIs are of special interest. In this line, a feasibility study of Earth Observation Synthetic Aperture Radar (EO SAR) systems as OIs is carried out taking into consideration signal waveform, availability, bistatic geometry, instrumented coverage area and incident power density. A case study based on the use of PAZ, the first Spanish EO SAR, is presented. PAZ transmitted waveform, operation modes, orbit characteristics and antenna and transmitter parameters are analyzed to estimate potential coverages and resolutions. The study concludes that, due to its working in on-demand operating mode, passive radars based on PAZ-type illuminators can be proposed as complementing tools during the sensor commissioning phase, for system maintenance and for improving its performance by providing additional information about the area of interest and/or increasing the data updating speed, exploiting other sensors during the time PAZ is not available. PMID:26593921

  8. Feasibility Study of EO SARs as Opportunity Illuminators in Passive Radars: PAZ-Based Case Study.

    PubMed

    Bárcena-Humanes, Jose-Luis; Gómez-Hoyo, Pedro-José; Jarabo-Amores, Maria-Pilar; Mata-Moya, David; Del-Rey-Maestre, Nerea

    2015-11-17

    Passive radars exploit the signal transmitted by other systems, known as opportunity illuminators (OIs), instead of using their own transmitter. Due to its almost total invulnerability to natural disasters or physical attacks, satellite OIs are of special interest. In this line, a feasibility study of Earth Observation Synthetic Aperture Radar (EO SAR) systems as OIs is carried out taking into consideration signal waveform, availability, bistatic geometry, instrumented coverage area and incident power density. A case study based on the use of PAZ, the first Spanish EO SAR, is presented. PAZ transmitted waveform, operation modes, orbit characteristics and antenna and transmitter parameters are analyzed to estimate potential coverages and resolutions. The study concludes that, due to its working in on-demand operating mode, passive radars based on PAZ-type illuminators can be proposed as complementing tools during the sensor commissioning phase, for system maintenance and for improving its performance by providing additional information about the area of interest and/or increasing the data updating speed, exploiting other sensors during the time PAZ is not available.

  9. Analysis of Cadmium Based Neutron Detector Configurations

    NASA Astrophysics Data System (ADS)

    James, Brian; Rees, Lawrence; Czirr, J. Bart

    2012-10-01

    Due to national security concerns pertaining to the smuggling of special nuclear materials and a small supply of He-3 for use in neutron detectors, there is currently a need for a new kind of neutron detector. Using Monte Carlo techniques I have studied the neutron capture efficiency of an array of cadmium wedge detectors in the presence of a californium source. By using varying numbers of wedges and comparing their capture ratios we will be better able to design future detectors.

  10. High-responsivity vertical-illumination Si/Ge uni-traveling-carrier photodiodes based on silicon-on-insulator substrate

    NASA Astrophysics Data System (ADS)

    Li, Chong; Xue, Chunlai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming

    2016-06-01

    Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer.

  11. High-responsivity vertical-illumination Si/Ge uni-traveling-carrier photodiodes based on silicon-on-insulator substrate

    PubMed Central

    Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming

    2016-01-01

    Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer. PMID:27279426

  12. High-responsivity vertical-illumination Si/Ge uni-traveling-carrier photodiodes based on silicon-on-insulator substrate.

    PubMed

    Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming

    2016-01-01

    Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer. PMID:27279426

  13. Hybridization of a sigma-delta-based CMOS hybrid detector

    NASA Astrophysics Data System (ADS)

    Kolb, K. E.; Stoffel, N. C.; Douglas, B.; Maloney, C. W.; Raisanen, A. D.; Ashe, B.; Figer, D. F.; Tamagawa, T.; Halpern, B.; Ignjatovic, Zeljko

    2010-07-01

    The Rochester Imaging Detector Laboratory, University of Rochester, Infotonics Technology Center, and Jet Process Corporation developed a hybrid silicon detector with an on-chip sigma-delta (ΣΔ) ADC. This paper describes the process and reports the results of developing a fabrication process to robustly produce high-quality bump bonds to hybridize a back-illuminated detector with its ΣΔ ADC. The design utilizes aluminum pads on both the readout circuit and the photodiode array with interconnecting indium bumps between them. The development of the bump bonding process is discussed, including specific material choices, interim process structures, and final functionality. Results include measurements of bond integrity, cross-wafer uniformity of indium bumps, and effects of process parameters on the final product. Future plans for improving the bump bonding process are summarized.

  14. Optical interference-based multiple-image encryption using spherical wave illumination and gyrator transform.

    PubMed

    Abuturab, Muhammad Rafiq

    2014-10-10

    A new optical interference-based multiple-image encryption using spherical wave illumination and gyrator transform is proposed. In this proposal, each secret color image is divided into normalized red, green, and blue component images and independently encoded into corresponding phase-only component images. Then each phase-only component image of all the images are combined together to produce a single-phase-only component image as an input component image, which is bounded with a random phase mask to form a complex image. The two phase-only masks are analytically obtained from the inverse Fourier transformation of the complex image. The host image is chosen as the first phase-only mask, and the complex image hidden in the host image is regarded as the second phase-only mask. The spherical wave is generated to simultaneously illuminate phase-only masks. Then two modulated masks are gyrator transformed. The corresponding transformed images are phase truncated to obtain encrypted images and amplitude truncated to construct decryption keys. The decryption keys, angles of gyrator transform, wavelength and radius of the spherical wave, and individual decryption keys for authorized users are sensitive keys, which enhance the security layers of the system. The proposed system can be implemented by using optoelectronic architecture. Numerical simulation results demonstrate the flexibility of the system.

  15. Luminol-based nitrogen dioxide detector

    SciTech Connect

    Wendel, G.J.; Stedman, D.H.; Cantrell, C.A.; Damrauer, L.

    1983-05-01

    An instrument for the continuous detection of NO/sub 2/ in the sub-part-per-billion range is described. The instrument is based upon the chemiluminescent reaction between NO/sub 2/ in air and luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) in alkaline solution. The present detector exhibits a 2-Hz response speed to changes of +/-20 ppB and a field detection limit of 30 parts per trillion. The instrumental technique has been expanded to measure NO by the catalytic oxidation of NO to NO/sub 2/ using CrO/sub 3/ on silica gel as the oxidizing agent; however, at low ambient NO concentrations some drift in the NO zero is observed. Interference from ambient O/sub 3/ is elimated by modification of the inlet system and luminol solution.

  16. SLM-based off-axis Fourier filtering in microscopy with white light illumination.

    PubMed

    Steiger, Ruth; Bernet, Stefan; Ritsch-Marte, Monika

    2012-07-01

    In various microscopy applications spatial light modulators (SLMs) are used as programmable Fourier filters to realize different optical contrast enhancement methods. It is often advantageous to use the SLM in off-axis configuration, where the filtered image wave is sent into the first diffraction order of a blazed grating superposed to the phase mask on the SLM. Because of dispersion this approach is, however, typically limited to spectrally narrowband illumination. Here we suggest a method involving a grating for pre-compensation, which allows one to use spectrally broadband (even thermal) light in SLM-based Fourier filtering. The proposed approach is demonstrated by multicolor imaging of amplitude and phase objects, such as a resolution target, onion epidermal cells and human epithelial cheek cells. PMID:22772234

  17. Colour-Based Binary Discrimination of Scarified Quercus robur Acorns under Varying Illumination

    PubMed Central

    Jabłoński, Mirosław; Tylek, Paweł; Walczyk, Józef; Tadeusiewicz, Ryszard; Piłat, Adam

    2016-01-01

    Efforts to predict the germination ability of acorns using their shape, length, diameter and density are reported in the literature. These methods, however, are not efficient enough. As such, a visual assessment of the viability of seeds based on the appearance of cross-sections of seeds following their scarification is used. This procedure is more robust but demands significant effort from experienced employees over a short period of time. In this article an automated method of acorn scarification and assessment has been announced. This type of automation requires the specific setup of a machine vision system and application of image processing algorithms for evaluation of sections of seeds in order to predict their viability. In the stage of the analysis of pathological changes, it is important to point out image features that enable efficient classification of seeds in respect of viability. The article shows the results of the binary separation of seeds into two fractions (healthy or spoiled) using average components of regular red-green-blue and perception-based hue-saturation-value colour space. Analysis of accuracy of discrimination was performed on sections of 400 scarified acorns acquired using two various setups: machine vision camera under uncontrolled varying illumination and commodity high-resolution camera under controlled illumination. The accuracy of automatic classification has been compared with predictions completed by experienced professionals. It has been shown that both automatic and manual methods reach an accuracy level of 84%, assuming that the images of the sections are properly normalised. The achieved recognition ratio was higher when referenced to predictions provided by professionals. Results of discrimination by means of Bayes classifier have been also presented as a reference. PMID:27548173

  18. Colour-Based Binary Discrimination of Scarified Quercus robur Acorns under Varying Illumination.

    PubMed

    Jabłoński, Mirosław; Tylek, Paweł; Walczyk, Józef; Tadeusiewicz, Ryszard; Piłat, Adam

    2016-01-01

    Efforts to predict the germination ability of acorns using their shape, length, diameter and density are reported in the literature. These methods, however, are not efficient enough. As such, a visual assessment of the viability of seeds based on the appearance of cross-sections of seeds following their scarification is used. This procedure is more robust but demands significant effort from experienced employees over a short period of time. In this article an automated method of acorn scarification and assessment has been announced. This type of automation requires the specific setup of a machine vision system and application of image processing algorithms for evaluation of sections of seeds in order to predict their viability. In the stage of the analysis of pathological changes, it is important to point out image features that enable efficient classification of seeds in respect of viability. The article shows the results of the binary separation of seeds into two fractions (healthy or spoiled) using average components of regular red-green-blue and perception-based hue-saturation-value colour space. Analysis of accuracy of discrimination was performed on sections of 400 scarified acorns acquired using two various setups: machine vision camera under uncontrolled varying illumination and commodity high-resolution camera under controlled illumination. The accuracy of automatic classification has been compared with predictions completed by experienced professionals. It has been shown that both automatic and manual methods reach an accuracy level of 84%, assuming that the images of the sections are properly normalised. The achieved recognition ratio was higher when referenced to predictions provided by professionals. Results of discrimination by means of Bayes classifier have been also presented as a reference. PMID:27548173

  19. Optical image hiding using double-phase retrieval algorithm based on nonlinear cryptosystem under vortex beam illumination

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2015-03-01

    We propose a novel optical image hiding method based on a double-phase retrieval algorithm (DPRA) using iterative nonlinear double random phase encoding (NDRPE) in Fresnel domain under illumination of an optical vortex (OV) beam. The NDRPE-based DPRA is initially extended from the Fourier transform into the Fresnel domain, which makes the system more flexible and more compact. The proposed method has a faster convergence speed compared to its counterparts based on the linear double random phase encoding (LDRPE). A higher level of security also has been achieved by taking an OV mode as the illumination beam. Simulation results demonstrate the feasibility and security of the proposed approach.

  20. Illumination Under Trees

    SciTech Connect

    Max, N

    2002-08-19

    This paper is a survey of the author's work on illumination and shadows under trees, including the effects of sky illumination, sun penumbras, scattering in a misty atmosphere below the trees, and multiple scattering and transmission between leaves. It also describes a hierarchical image-based rendering method for trees.

  1. DETECTORS FOR ACCELERATOR-BASED NUCLEAR SECURITY APPLICATIONS

    SciTech Connect

    Warren, Glen A.; Stave, Sean C.; Miller, Erin A.

    2015-08-31

    We present of review of detector systems used in accelerator-based national security applications. In gen-eral, the detectors used for these applications are also used in passive measurements. The critical difference is that detector systems for accelerator-based applications in general need to discriminate beam-generated background from the intended signal. Typical techniques to remove background include shielding, timing, selection of sensitive materials, and choice of accelerator.

  2. Organic semiconductor nickel phthalocyanine-based photocapacitive and photoresistive detector

    NASA Astrophysics Data System (ADS)

    Shah, Mutabar; Karimov, Kh S.; Sayyad, M. H.

    2010-07-01

    In this study, the photosensitive organic semiconductor nickel phthalocyanine (NiPc) is investigated as a photocapacitive and photoresistive detector. NiPc thin film is grown by vacuum thermal evaporation on an indium tin oxide (ITO)-coated glass substrate. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is deposited as a top electrode by drop-casting to fabricate the ITO/NiPc/PEDOT:PSS light detector. It has been observed that under the unmodulated filament lamp illumination of up to 9720 lux the capacitance of the detectors increased up to 21, 18 and 4% at a frequency of measuring voltage of 120 Hz, 1 kHz and 10 kHz, respectively, under dark conditions. The change in resistance with the variation in the intensity of light is also investigated. The capacitance and resistance of the light detector decrease with an increase in the frequency. It is assumed that the photocapacitive and photoresistive response of the detector is associated with polarization occurring due to the transfer of photo-generated electrons and holes. The calculated results are in reasonable agreement with the experimental results.

  3. Evaluation of expanded uncertainties in luminous intensity and illuminance calibrations

    SciTech Connect

    Sametoglu, Ferhat

    2008-11-01

    Detector-based calibrating methods and expressions for calculation of photometric uncertainties related to uncertainties in the calibrations of luminous intensity of a light source, illuminance responsivity of a photometer head, and calibration factors of an illuminance meter are discussed. These methods permit luminous intensity calibrations of incandescent light sources, luminous responsivity calibrations of photometer heads, and calibration factors of illuminance meters to be carried out with relative expanded uncertainties (with a level of confidence of 95.45%) of 0.4%, 0.4%, and 0.6%, respectively.

  4. Evaluation of expanded uncertainties in luminous intensity and illuminance calibrations.

    PubMed

    Sametoglu, Ferhat

    2008-11-01

    Detector-based calibrating methods and expressions for calculation of photometric uncertainties related to uncertainties in the calibrations of luminous intensity of a light source, illuminance responsivity of a photometer head, and calibration factors of an illuminance meter are discussed. These methods permit luminous intensity calibrations of incandescent light sources, luminous responsivity calibrations of photometer heads, and calibration factors of illuminance meters to be carried out with relative expanded uncertainties (with a level of confidence of 95.45%) of 0.4%, 0.4%, and 0.6%, respectively.

  5. Compton imager based on a single planar segmented HPGe detector

    NASA Astrophysics Data System (ADS)

    Khaplanov, A.; Pettersson, J.; Cederwall, B.

    2007-10-01

    A collimator-free Compton imaging system has been developed based on a single high-purity germanium detector and used to generate images of radioactive sources emitting γ rays. The detector has a planar crystal with one pixellated contact with a total of 25 segments. Pulse shape analysis has been applied to achieve a 3D-position sensitivity of the detector. The first imaging results from this detector are presented, based on the reconstruction of events where a γ ray is fully absorbed after scattering between adjacent segments.

  6. Examining the departure in response of non-point detectors due to non-uniform illumination and displacement of effective center

    NASA Astrophysics Data System (ADS)

    Khabaz, Rahim

    2013-11-01

    A mathematical simulation approach based on the general purpose Monte Carlo N-particle transport code MCNP was developed to calculate the departure in reading of the neutron spectrometer instrument from that expected according to the inverse square law. The calculations were performed to evaluate the effects of beam divergence on the response of a 10 in. spherical device equipped with a long BF3 counter irradiated by 11 mono-energy neutron beams. The necessary geometry correction factor, because of non-uniform illumination, for the calibration of seven polyethylene spheres with several radionuclide neutron sources, i.e. Ra-Be, 241Am-Be, 241Am-B and Po-Be sources was also determined. In all calculations, the displacement of effective center from the geometric center of moderating spheres, when used as an instrument for neutron fluence measurement, was quantified.

  7. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  8. Neutron Detection with Water Cerenkov Based Detectors

    SciTech Connect

    Dazeley, S; Bernstein, A; Bowden, N; Carr, D; Ouedraogo, S; Svoboda, R; Sweany, M; Tripathi, M

    2009-05-13

    Legitimate cross border trade involves the transport of an enormous number of cargo containers. Especially following the September 11 attacks, it has become an international priority to verify that these containers are not transporting Special Nuclear Material (SNM) without impeding legitimate trade. Fission events from SNM produce a number of neutrons and MeV-scale gammas correlated in time. The observation of consistent time correlations between neutrons and gammas emitted from a cargo container could, therefore, constitute a robust signature for SNM, since this time coincident signature stands out strongly against the higher rate of uncorrelated gamma-ray backgrounds from the local environment. We are developing a cost effective way to build very large neutron detectors for this purpose. We have recently completed the construction of two new water Cherenkov detectors, a 250 liter prototype and a new 4 ton detector. We present both the results from our prototype detector and an update on the newly commissioned large detector. We will also present pictures from the construction and outline our future detector development plans.

  9. Off-axis digital holographic microscopy with LED illumination based on polarization filtering.

    PubMed

    Guo, Rongli; Yao, Baoli; Gao, Peng; Min, Junwei; Zhou, Meiling; Han, Jun; Yu, Xun; Yu, Xianghua; Lei, Ming; Yan, Shaohui; Yang, Yanlong; Dan, Dan; Ye, Tong

    2013-12-01

    A reflection mode digital holographic microscope with light emitting diode (LED) illumination and off-axis interferometry is proposed. The setup is comprised of a Linnik interferometer and a grating-based 4f imaging unit. Both object and reference waves travel coaxially and are split into multiple diffraction orders in the Fourier plane by the grating. The zeroth and first orders are filtered by a polarizing array to select orthogonally polarized object waves and reference waves. Subsequently, the object and reference waves are combined again in the output plane of the 4f system, and then the hologram with uniform contrast over the entire field of view can be acquired with the aid of a polarizer. The one-shot nature in the off-axis configuration enables an interferometric recording time on a millisecond scale. The validity of the proposed setup is illustrated by imaging nanostructured substrates, and the experimental results demonstrate that the phase noise is reduced drastically by an order of 68% when compared to a He-Ne laser-based result. PMID:24513823

  10. Coded illumination for motion-blur free imaging of cells on cell-phone based imaging flow cytometer

    NASA Astrophysics Data System (ADS)

    Saxena, Manish; Gorthi, Sai Siva

    2014-10-01

    Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

  11. Illumination effect on electrical characteristics of organic-based Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Uslu, Habibe; Altındal, Şemsettin; Dökme, Ilbilge

    2010-11-01

    The forward and reverse bias capacitance-voltage (C -V) and conductance-voltage (G /ω-V) characteristics of Au/polyvinyl alcohol (Co, Zn-doped)/n-Si Schottky barrier diodes have been investigated depending on illumination intensity at room temperature and 1 MHz. These experimental C -V and G /ω-V characteristics show fairly large illumination dispersion especially in the weak inversion and depletion regions and they increase with the increasing illumination intensity because of the illumination induced interface states and electron-hole pair. The C -V plots show that peaks are the results of the particular distribution density of the interface states (Nss), interfacial polymer layer, and series resistance (Rs) of device. The magnitude of the peaks increases with the increasing illumination intensity and their positions shift from the high forward bias voltage to low forward bias voltages. The C-2-V plots give a straight line in a wide bias voltage region for each illumination intensity. The variation in doping concentration (ND), depletion layer width (WD), and barrier height [ΦB(C -V)] were obtained from these C-2-V plots. In addition, voltage dependent density distribution profile of Nss was obtained from both low-high capacitance (CLF-CHF) and Hill-Coleman methods. It is observed that there is a good agreement between the results obtained by these methods. In addition, voltage dependent Rs profile was obtained from C -V and G /ω-V data by using Nicollian and Brews method.

  12. New neutron detector based on micromegas technology for ADS projects

    NASA Astrophysics Data System (ADS)

    Andriamonje, Samuel; Andriamonje, Grégory; Aune, Stephan; Ban, Gilles; Breaud, Stéphane; Blandin, Christophe; Ferrer, Esther; Geslot, Benoit; Giganon, Arnaud; Giomataris, Ioannis; Jammes, Christian; Kadi, Yacine; Laborie, Philippe; Lecolley, Jean François; Pancin, Julien; Riallot, Marc; Rosa, Roberto; Sarchiapone, Lucia; Steckmeyer, Jean Claude; Tillier, Joel

    2006-06-01

    A new neutron detector based on Micromegas technology has been developed for the measurement of the simulated neutron spectrum in the ADS project. After the presentation of simulated neutron spectra obtained in the interaction of 140 MeV protons with the spallation target inside the TRIGA core, a full description of the new detector configuration is given. The advantage of this detector compared to conventional neutron flux detectors and the results obtained with the first prototype at the CELINA 14 MeV neutron source facility at CEA-Cadarache are presented. The future developments of operational Piccolo-Micromegas for fast neutron reactors are also described.

  13. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  14. A COMPARISON OF ILLUMINATION GEOMETRY-BASED METHODS FOR TOPOGRAPHIC CORRECTION OF QUICKBIRD IMAGES OF AN UNDULANT AREA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The high spatial resolution of QuickBird satellite images makes it possible to show spatial variability at fine details. However, the effect of topography-induced illumination variations become more evident, even in moderately sloped areas. Based on a high resolution (1 m) digital elevation model ge...

  15. Bead-based mosaicing of single plane illumination microscopy images using geometric local descriptor matching

    NASA Astrophysics Data System (ADS)

    Preibisch, Stephan; Saalfeld, Stephan; Rohlfing, Torsten; Tomancak, Pavel

    2009-02-01

    Single Plane Illumination Microscopy (SPIM) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the biological sample from multiple angles, SPIM has the potential to achieve isotropic resolution throughout relatively large biological specimens. For every angle, however, only a shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. Existing intensity-based registration techniques still struggle to robustly and accurately align images that are characterized by limited overlap and/or heavy blurring. To be able to register such images, we add sub-resolution fluorescent beads to the rigid agarose medium in which the imaged specimen is embedded. For each segmented bead, we store the relative location of its n nearest neighbors in image space as rotation-invariant geometric local descriptors. Corresponding beads between overlapping images are identified by matching these descriptors. The bead correspondences are used to simultaneously estimate the globally optimal transformation for each individual image. The final output image is created by combining all images in an angle-independent output space, using volume injection and local content-based weighting of contributing images. We demonstrate the performance of our approach on data acquired from living embryos of Drosophila and fixed adult C.elegans worms. Bead-based registration outperformed intensity-based registration in terms of computation speed by two orders of magnitude while producing bead registration errors below 1 μm (about 1 pixel). It, therefore, provides an ideal tool for processing of long term time-lapse recordings of embryonic development consisting of hundreds of time points.

  16. Holographic display with LED illumination based on phase-only spatial light modulator

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Cao, Liangcai; Zhang, Hao; He, Qingsheng

    2012-11-01

    A new holography display technology based on a phase-only spatial light modulator (SLM) is proposed. The normal use of laser diode (LD) light source led to the inevitable speckle noise introduced by the coherence of the laser beam. Algorithms and special diffractive optical elements have been proposed to reduce the speckle noise. In this paper, a selected light-emitted diode (LED) light source was used in the holographic display system to replace the LD light source. The temporal coherence and spatial coherence of the LED were studied. Though the temporal coherence of LED is short, the spatial coherence of the light field can be improved by optimizing the optical paths such as decreasing the emitting area of the light source and so on. A high-power LED with a narrow band-width was selected. An algorithm to generate computer-generated hologram for the SLM was proposed. The phase-only holograms for the display were computed using the coherent light algorithm. Then the phase holograms were uploaded to the SLM. LED was used as the light source to illuminate the SLM uniformly, and the reconstructions can be observed by naked eye. It is demonstrated that LED is an acceptable light source for holographic display. The reconstruction results showed that the speckle noise and multiple reflections were eliminated when LED was used as the light source.

  17. Cs based photocathodes for gaseous detectors

    SciTech Connect

    Borovick-Romanov, A.; Peskov, V.

    1993-08-01

    We demonstrated that some standard photocathodes SbCs, GaAs(Cs), Au(Cs) can easily be manufactured for use inside gaseous detectors. When filed with clean quenched gases such detectors have a quantum efficiency of a few percent in the visible region of the spectra and can operate at a gain >10{sup 3}. We tried to make these photocathodes more air stable by protecting their surfaces with a thin layer of CsI or liquid TMAE. The most air stable were photocathodes with a CsI protective layer. A wavelengths {le}185 nm such photocathodes have the highest quantum efficiency among all known air stable photocathodes, including CsI. Gaseous detectors with such photocathodes can operate at a gain of 10{sup 5}. Results of first tests of doped CsI photocathode are also presented. Possible fields of application of new photocathodes are discussed.

  18. Metamaterials for Cherenkov Radiation Based Particle Detectors

    SciTech Connect

    Tyukhtin, A. V.; Schoessow, P.; Kanareykin, A.; Antipov, S.

    2009-01-22

    Measurement of Cherenkov radiation (CR) has long been a useful technique for charged particle detection and beam diagnostics. We are investigating metamaterials engineered to have refractive indices tailored to enhance properties of CR that are useful for particle detectors and that cannot be obtained using conventional media. Cherenkov radiation in dispersive media with a large refractive index differs significantly from the same effect in conventional detector media, like gases or aerogel. The radiation pattern of CR in dispersive metamaterials presents lobes at very large angles with respect to particle motion. Moreover, the frequency and particle velocity dependence of the radiated energy can differ significantly from CR in a conventional dielectric medium.

  19. A hybrid radiation detector based on a plasma display panel

    NASA Astrophysics Data System (ADS)

    Cho, Sungho; Lee, Rena; Yun, Min-Seok; Jang, Gi-Won; Park, Jikoon; Choi, Jang-Yong; Nam, Sanghee

    2009-10-01

    Recently, large-area image detectors have been investigated for X-ray imaging in medical diagnostic and other applications. In this paper, a new type of radiation detector is described, based on the integration of a photoconductor into a plasma display panel (PDP). This device, called a hybrid PDP detector, should be quite inexpensive, because it can directly leverage off the fabrication and materials technologies widely used in plasma display panels. Also, these new radiation detectors should operate under the most challenging environmental conditions, because they are inherently rugged and radiation-resistant and insensitive to magnetic fields. In this paper, we describe a hybrid digital radiation detector device, based on plasma display. The PDP panel is 7 in. in size with a 1000-μm pixel pitch, and filled with 700 Torr of Xe gas; the hybrid PDP panel is of the same structure, except for the photoconductor deposit. The glass absorption, dark current, X-ray sensitivity, and linearity as a function of electric field were measured to investigate its electrical properties. From the results, stabilized dark current density and significant X-ray sensitivity were obtained with both panels; however, the hybrid PDP detector showed better characteristics than the PDP detector. It also had good signal response and linearity. The hybrid digital radiation detector device based on a plasma display seems to be a promising technology for use in radiology and dynamic moving imaging.

  20. Infrared imaging using carbon nanotube-based detector

    NASA Astrophysics Data System (ADS)

    Chen, Hongzhi; Xi, Ning; Song, Bo; Chen, Liangliang; Lai, King W. C.; Lou, Jianyong

    2011-06-01

    Using carbon nanotubes (CNT), high performance infrared detectors have been developed. Since the CNTs have extraordinary optoelectronics properties due to its unique one dimensional geometry and structure, the CNT based infrared detectors have extremely low dark current, low noise equivalent temperature difference (NETD), short response time, and high dynamic range. Most importantly, it can detect 3-5 um middle-wave infrared (MWIR) at room temperature. This unique feature can significantly reduce the size and weight of a MWIR imaging system by eliminating a cryogenic cooling system. However, there are two major difficulties that impede the application of CNT based IR detectors for imaging systems. First, the small diameter of the CNTs results in low fill factor. Secondly, it is difficult to fabricate large scale of detector array for high resolution focal plane due to the limitations on the efficiency and cost of the manufacturing. In this paper, a new CNT based IR imaging system will be presented. Integrating the CNT detectors with photonic crystal resonant cavity, the fill factor of the CNT based IR sensor can reach as high as 0.91. Furthermore, using the compressive sensing technology, a high resolution imaging can be achieved by CNT based IR detectors. The experimental testing results show that the new imaging system can achieve the superb performance enabled by CNT based IR detectors, and, at the same time, overcame its difficulties to achieve high resolution and efficient imaging.

  1. DETECTORS AND EXPERIMENTAL METHODS Design and simulations for the detector based on DSSSD

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Bing; Wang, Huan-Yu; Meng, Xiang-Cheng; Wang, Hui; Lu, Hong; Ma, Yu-Qian; Li, Xin-Qiao; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun; Wu, Feng

    2010-12-01

    The present paper describes the design and simulation results of a position-sensitive charged particle detector based on the Double Sided Silicon Strip Detector (DSSSD). Also, the characteristics of the DSSSD and its testing result were are discussed. With the application of the DSSSD, the position-sensitive charged particle detector can not only give particle flux and energy spectra information and identify different types of charged particles, but also measure the location and angle of incident particles. As the detector can make multiparameter measurements of charged particles, it is widely used in space detection and exploration missions, such as charged particle detection related to earthquakes, space environment monitoring and solar activity inspection.

  2. EUV mirror based absolute incident flux detector

    DOEpatents

    Berger, Kurt W.

    2004-03-23

    A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.

  3. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry.

    PubMed

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T; So, Peter T C

    2014-10-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively.

  4. The biological significance of color constancy: an agent-based model with bees foraging from flowers under varied illumination.

    PubMed

    Faruq, Samia; McOwan, Peter W; Chittka, Lars

    2013-08-20

    The perceived color of an object depends on its spectral reflectance and the spectral composition of the illuminant. Thus when the illumination changes, the light reflected from the object also varies. This would result in a different color sensation if no color constancy mechanism is put in place-that is, the ability to form consistent representation of colors across various illuminants and background scenes. We explore the quantitative benefits of various color constancy algorithms in an agent-based model of foraging bees, where agents select flower color based on reward. Each simulation is based on 100 "meadows" with five randomly selected flower species with empirically determined spectral reflectance properties, and each flower species is associated with realistic distributions of nectar rewards. Simulated foraging bees memorize the colors of flowers that they have experienced as most rewarding, and their task is to discriminate against other flower colors with lower rewards, even in the face of changing illumination conditions. We compared the performance of von Kries, White Patch, and Gray World constancy models with (hypothetical) bees with perfect color constancy, and color-blind bees. A bee equipped with trichromatic color vision but no color constancy performed only ∼20% better than a color-blind bee (relative to a maximum improvement at 100% for perfect color constancy), whereas the most powerful recovery of reflectance in the face of changing illumination was generated by a combination of von Kries photoreceptor adaptation and a White Patch calibration (∼30% improvement relative to a bee without color constancy). However, none of the tested algorithms generated perfect color constancy.

  5. A laser beam shaper for homogeneous rectangular illumination based on freeform micro lens array

    NASA Astrophysics Data System (ADS)

    Chen, En-guo; Huang, Jia-min; Guo, Tai-liang; Wu, Reng-mao

    2016-07-01

    An effective design method of freeform micro lens array is presented for shaping varied laser beams into prescribed rectangular illumination. The variable separation mapping is applied to design concave freeform surfaces for constructing a freeform lens array. Several dedicated examples show that the designed freeform optical lens array can achieve a prescribed rectangular illumination pattern, especially without considering the initial states of incident laser beams. Both high collection efficiency and good spatial uniformity can be available simultaneously. Tolerance analysis is also performed to demonstrate that this optical device can well avoid fabricating difficulty in actual applications.

  6. Texture-based visualization of unsteady 3D flow by real-time advection and volumetric illumination.

    PubMed

    Weiskopf, Daniel; Schafhitzel, Tobias; Ertl, Thomas

    2007-01-01

    This paper presents an interactive technique for the dense texture-based visualization of unsteady 3D flow, taking into account issues of computational efficiency and visual perception. High efficiency is achieved by a 3D graphics processing unit (GPU)-based texture advection mechanism that implements logical 3D grid structures by physical memory in the form of 2D textures. This approach results in fast read and write access to physical memory, independent of GPU architecture. Slice-based direct volume rendering is used for the final display. We investigate two alternative methods for the volumetric illumination of the result of texture advection: First, gradient-based illumination that employs a real-time computation of gradients, and, second, line-based lighting based on illumination in codimension 2. In addition to the Phong model, perception-guided rendering methods are considered, such as cool/warm shading, halo rendering, or color-based depth cueing. The problems of clutter and occlusion are addressed by supporting a volumetric importance function that enhances features of the flow and reduces visual complexity in less interesting regions. GPU implementation aspects, performance measurements, and a discussion of results are included to demonstrate our visualization approach.

  7. Analysis of laser jamming to satellite-based detector

    NASA Astrophysics Data System (ADS)

    Wang, Si-wen; Guo, Li-hong; Guo, Ru-hai

    2009-07-01

    The reconnaissance satellite, communication satellite and navigation satellite used in the military applications have played more and more important role in the advanced technique wars and already become the significant support and aid system for military actions. With the development of all kinds of satellites, anti-satellite laser weapons emerge as the times require. The experiments and analyses of laser disturbing CCD (charge coupled detector) in near ground have been studied by many research groups, but their results are not suitable to the case that using laser disturbs the satellite-based detector. Because the distance between the satellite-based detector and the ground is very large, it is difficult to damage it directly. However the optical receive system of satellite detector has large optical gain, so laser disturbing satellite detector is possible. In order to determine its feasibility, the theoretical analyses and experimental study are carried out in the paper. Firstly, the influence factors of laser disturbing satellite detector are analyzed in detail, which including laser power density on the surface of the detector after long distance transmission, and laser power density threshold for disturbing etc. These factors are not only induced by the satellite orbit, but dependence on the following parameters: laser average power in the ground, laser beam quality, tracing and aiming precision and atmospheric transmission. A calculation model is developed by considering all factors which then the power density entering into the detector can be calculated. Secondly, the laser disturbing experiment is performed by using LD (laser diode) with the wavelength 808 nm disturbing CCD 5 kilometer away, which the disturbing threshold value is obtained as 3.55×10-4mW/cm2 that coincides with other researcher's results. Finally, using the theoretical model, the energy density of laser on the photosensitive surface of MSTI-3 satellite detector is estimated as about 100m

  8. A design of optical measurement laboratory for space-based illumination condition emulation

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Zhao, Fei; Yang, Xin

    2015-10-01

    Space Objects Identification(SOI) and related technology have aroused wide attention from spacefaring nations due to the increasingly severe space environment. Multiple ground-based assets have been employed to acquire statistical survey data, detect faint debris, acquire photometric and spectroscopic data. Great efforts have been made to characterize different space objects using the statistical data acquired by telescopes. Furthermore, detailed laboratory data are needed to optimize the characterization of orbital debris and satellites via material composition and potential rotation axes, which calls for a high-precision and flexible optical measurement system. A typical method of taking optical measurements of a space object(or model) is to move light source and sensors through every possible orientation around it and keep the target still. However, moving equipments to accurate orientations in the air is difficult, especially for those large precise instruments sensitive to vibrations. Here, a rotation structure of "3+1" axes, with a three-axis turntable manipulating attitudes of the target and the sensor revolving around a single axis, is utilized to emulate every possible illumination condition in space, which can also avoid the inconvenience of moving large aparatus. Firstly, the source-target-sensor orientation of a real satellite was analyzed with vectors and coordinate systems built to illustrate their spatial relationship. By bending the Reference Coordinate Frame to the Phase Angle plane, the sensor only need to revolve around a single axis while the other three degrees of freedom(DOF) are associated with the Euler's angles of the satellite. Then according to practical engineering requirements, an integrated rotation system of four-axis structure is brought forward. Schemetic diagrams of the three-axis turntable and other equipments show an overview of the future laboratory layout. Finally, proposals on evironment arrangements, light source precautions

  9. OLED-based physiologically-friendly very low-color temperature illumination for night

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Shen, Shih-Ming; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Wang, Yi-Shan; Chen, Chien-Chih; Wang, Ching-Chun; Hsieh, Chun-Yu; Lin, Chin-Chiao; Chen, Chien-Tien

    2012-09-01

    Numerous medical research studies reveal intense white or blue light to drastically suppress at night the secretion of melatonin (MLT), a protective oncostatic hormone. Lighting devices with lower color-temperature (CT) possess lesser MLT suppression effect based on the same luminance, explaining why physicians have long been calling for the development of lighting sources with low CT or free from blue emission for use at night to safeguard human health. We will demonstrate in the presentation the fabrication of OLED devices with very-low CT, especially those with CT much lower than that of incandescent bulbs (2500K) or even candles (2000K). Without any light extraction method, OLEDs with an around 1800K CT are easily obtainable with an efficacy of 30 lm/W at 1,000 nits. To also ensure high color-rendering to provide visual comfort, low CT OLEDs composing long wavelength dominant 5-spectrum emission have been fabricated. While keeping the color-rendering index as high as 85 and CT as low as 2100K, the resulting efficacy can also be much greater than that of incandescent bulbs (15 lm/W), proving these low CT OLED devices to be also capable of being energy-saving and high quality. The color-temperature can be further decreased to 1700K or lower upon removing the undesired short wavelength emission but on the cost of losing some color rendering index. It is hoped that the devised energy-saving, high quality low CT OLED could properly echo the call for a physiologically-friendly illumination for night, and more attention could be drawn to the development of MLT suppression-less non-white light.

  10. Radioiodine detector based on laser induced fluorescence

    DOEpatents

    McDonald, Jimmie R.; Baronavski, Andrew P.

    1980-01-01

    The invention involves the measurement of the concentration of the radioisotope .sup.129 I.sub.2 in the presence of a gas. The invention uses a laser to excite a sample of the .sup.129 I.sub.2 in a sample gas chamber and a reference sample of a known concentration of .sup.129 I.sub.2 in a reference gas chamber. The .sup.129 I.sub.2 in the sample and reference gas chamber each gives off fluorescence emissions which are received by photomultipliers which provide signals to a detector. The detector uses a ratioing technique to determine the concentration of .sup.129 I.sub.2 in the sample gas chamber.

  11. A compensated fission detector based on photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Petit, M.; Ethvignot, T.; Granier, T.; Haight, R. C.; O'Donnell, J. M.; Rochman, D.; Wender, S. A.; Bond, E. M.; Bredeweg, T. A.; Vieira, D. J.; Wilhelmy, J. B.; Danon, Y.

    2005-12-01

    Standard techniques of event-by-event detection of fission may fail when operated in high γ-ray or particle radiation environments. This is the case within the 800 MeV proton-driven lead slowing-down neutron spectrometer at LANSCE where standard fission detectors are found to be inoperable for microseconds to milliseconds after each proton pulse. To overcome this problem, a simple fission fragment detector based on compensated photovoltaic cells has been developed. The compensated detector has lower susceptibility to the strong γ-flash and can recover much faster than an uncompensated detector. This detector is well adapted to applications involving the detection of fission in regions where high intensity γ-ray and/or particle radiation fields exist.

  12. A Passive FPAA-Based RF Scatter Meteor Detector

    NASA Astrophysics Data System (ADS)

    Popowicz, A.; Malcher, A.; Bernacki, K.; Fietkiewicz, K.

    2015-02-01

    In the article, we present a hardware meteor detector. The detection principle is based on the electromagnetic wave reflection from the ionized meteor trail in the atmosphere. The detector uses the ANADIGM field programmable analog array (FPAA), which is an attractive alternative for typically used detecting equipment—a PC computer with dedicated software. We implement an analog signal path using most of available FPAA resources to obtain precise audio signal detection. Our new detector was verified in collaboration with the Polish Fireball Network, the organization which monitors meteor activity in Poland. When compared with currently used signal processing PC software employing real radio meteor scatter signals, our low-cost detector proved to be more precise and reliable. Due to its cost and efficiency superiority over the current solution, the presented module is going to be implemented in the planned distributed detectors system.

  13. Polyaniline-based optical ammonia detector

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2002-01-01

    Electronic absorption spectroscopy of a polyaniline film deposited on a polyethylene surface by chemical oxidation of aniline monomer at room temperature was used to quantitatively detect ammonia gas. The present optical ammonia gas detector was found to have a response time of less than 15 s, a regeneration time of less than 2 min. at room temperature, and a detection limit of 1 ppm (v/v) for ammonia, with a linear dynamic range from 180 ppm to 18,000 ppm.

  14. Natural light illumination system.

    PubMed

    Whang, Allen Jong-Woei; Chen, Yi-Yung; Yang, Shu-Hua; Pan, Po-Hsuan; Chou, Kao-Hsu; Lee, Yu-Chi; Lee, Zong-Yi; Chen, Chi-An; Chen, Cheng-Nan

    2010-12-10

    sources, depending on circumstances. The system is controlled by a light detector. We used optical simulation tools to design and simulate the efficiency of the active module. Finally, we used the natural light illumination system to provide natural illumination for a traffic tunnel. This system will provide a great number of benefits for the people who use it.

  15. Illumination in diverse codimensions

    NASA Technical Reports Server (NTRS)

    Banks, David C.

    1994-01-01

    This paper derives a model of diffuse and specular illumination in arbitrarily large dimensions, based on a few characteristics of material and light in three-space. It then describes how to adjust for the anomaly of excess brightness in large codimensions. If a surface is grooved or furry, it can be illuminated with a hybrid model that incorporates both the one dimensional geometry (the grooves or fur) and the two dimensional geometry (the surface).

  16. Special Nuclear Material Detection with a Water Cherenkov based Detector

    SciTech Connect

    Sweany, M; Bernstein, A; Bowden, N; Dazeley, S; Svoboda, R

    2008-11-10

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, produce a number of neutrons and high energy gamma-rays. Assuming the neutron multiplicity is approximately Poissonian with an average of 2 to 3, the observation of time correlations between these particles from a cargo container would constitute a robust signature of the presence of SNM inside. However, in order to be sensitive to the multiplicity, one would require a high total efficiency. There are two approaches to maximize the total efficiency; maximizing the detector efficiency or maximizing the detector solid angle coverage. The advanced detector group at LLNL is investigating one way to maximize the detector size. We are designing and building a water Cerenkov based gamma and neutron detector for the purpose of developing an efficient and cost effective way to deploy a large solid angle car wash style detector. We report on our progress in constructing a larger detector and also present preliminary results from our prototype detector that indicates detection of neutrons.

  17. A Comparison of the Perceptual Benefits of Linear Perspective and Physically-Based Illumination for Display of Dense 3D Streamtubes

    SciTech Connect

    Banks, David C

    2008-01-01

    Large datasets typically contain coarse features comprised of finer sub-features. Even if the shapes of the small structures are evident in a 3D display, the aggregate shapes they suggest may not be easily inferred. From previous studies in shape perception, the evidence has not been clear whether physically-based illumination confers any advantage over local illumination for understanding scenes that arise in visualization of large data sets that contain features at two distinct scales. In this paper we show that physically- based illumination can improve the perception for some static scenes of complex 3D geometry from flow fields. We perform human- subjects experiments to quantify the effect of physically-based illumination on participant performance for two tasks: selecting the closer of two streamtubes from a field of tubes, and identifying the shape of the domain of a flow field over different densities of tubes. We find that physically-based illumination influences participant performance as strongly as perspective projection, suggesting that physically-based illumination is indeed a strong cue to the layout of complex scenes. We also find that increasing the density of tubes for the shape identification task improved participant performance under physically-based illumination but not under the traditional hardware-accelerated illumination model.

  18. Implementation of an AlGaN-based solar-blind UV four-quadrant detector

    NASA Astrophysics Data System (ADS)

    van Schalkwyk, L.; Meyer, W. E.; Nel, J. M.; Auret, F. D.; Ngoepe, P. N. M.

    2014-04-01

    An AlGaN-based front illuminated intrinsically solar-blind ultraviolet four-quadrant Schottky detector was fabricated and characterized. A layered ohmic structure was deposited followed by a multi-step annealing method. Ultraviolet transmissive iridium oxide was used as the Schottky barrier material and formed by a two-step annealing method. Au contacts were deposited on the Schottky contacts and annealed. The detector was mounted onto a commercial chip carrier and wires were epoxy bonded from the ohmic and Au contacts to the carrier strips. The detector had an average ideality factor of 1.97±0.08, a Schottky barrier height of (1.22±0.07) eV, a reverse leakage current density of (2.1±4) nA/cm2, a series resistance of (120±30) Ω and a free carrier concentration of (1.6±0.3)×1018 cm-3. Spectral characterization on the photosensitive area of 7.3×10-3 cm2 yielded a cut-off wavelength at (275±5)nm (4.59 eV to 4.23 eV) for each quadrant, corresponding to the absorption edge of a (46±3)% Al content AlGaN-based material. The detector had an average responsivity of (28±2) mA/W and a quantum efficiency of (14±1)% at 250 nm. The ultraviolet-to-visible and near-infrared rejection ratio was between 103 and 105 for most of the quadrants. Characterization showed uniformity across the quadrants, proving the detector feasible for implementation in future ultraviolet-sensitive electro-optic devices.

  19. Fast 3D reconstruction of tool wear based on monocular vision and multi-color structured light illuminator

    NASA Astrophysics Data System (ADS)

    Wang, Zhongren; Li, Bo; Zhou, Yuebin

    2014-11-01

    Fast 3D reconstruction of tool wear from 2D images has great importance to 3D measuring and objective evaluating tool wear condition, determining accurate tool change and insuring machined part's quality. Extracting 3D information of tool wear zone based on monocular multi-color structured light can realize fast recovery of surface topography of tool wear, which overcomes the problems of traditional methods such as solution diversity and slow convergence when using SFS method and stereo match when using 3D reconstruction from multiple images. In this paper, a kind of new multi-color structured light illuminator was put forward. An information mapping model was established among illuminator's structure parameters, surface morphology and color images. The mathematical model to reconstruct 3D morphology based on monocular multi-color structured light was presented. Experimental results show that this method is effective and efficient to reconstruct the surface morphology of tool wear zone.

  20. Selective detector of cosmic particles based on diamond sensitive elements

    NASA Astrophysics Data System (ADS)

    Altukhov, A. A.; Zaharchenko, K. V.; Kolyubin, V. A.; Lvov, S. A.; Nedosekin, P. G.; Tyurin, E. M.; Ibragimov, R. F.; Kadilin, V. V.; Nikolaev, I. V.

    2016-02-01

    The article describes the device for selective registration of electrons, protons and heavy ions fluxes from the solar and galactic cosmic rays in the twelve energy ranges, built on a base of diamond detector. The use of the diamond detectors allowed for the creation a device for registration of cosmic particles fluxes at the external spacecraft surface with the resource not less than 20 years. Selective detector is aimed for continuous monitoring of radiation situation on board the spacecrafts, in order to predict the residual life of their work and prompt measures to actively protect the spacecraft when the flow of cosmic particles is sharply increased.

  1. Development of video processing based on coal flame detector system

    SciTech Connect

    He Wanqing; Yu Yuefeng; Xu Weiyong; Ma Liqun

    1999-07-01

    The principle and development of a set of pulverized coal combustion flame detection system, which is called intelligent image flame detector device based on digital video processing, is addressed in this paper. The system realizes multi-burner flame detection and processing using a distributive structure of engineering workstation and flame detectors via multi-serial-port communication. The software can deal with multi-tasks in a parallel way based on multi-thread mechanism. Streaming video capture and storage is provided to safe and playback the accidental Audio and Visual Interfaces (AVI) clips. The layer flame detectors can give the flame on/off signal through image processing. Pseudo-color visualization of flame temperature calculated from chromatic CCD signal is integrated into the system. The image flame detector system has been successfully used in thermal power generation units in China.

  2. Evaluation of a photon-counting x-ray imaging detector based on microchannel plates for mammography applications

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Molloi, Sabee

    2004-05-01

    Experimental prototype of a photon counting scanning slit X-ray imaging system is being evaluated for potential application in digital mammography. This system is based on a recently developed and tested "edge-on" illuminated Microchannel Plate (MCP) detector. The MCP detectors are well known for providing a combination of capabilities such as direct conversion, physical charge amplification, pulse counting, high spatial and temporal resolution, and very low noise. However, their application for medical imaging was hampered by their low detection efficiency. This limitation was addressed using an "edge-on" illumination mode for MCP. The current experimental prototype was developed to investigate the imaging performance of this detector concept for digital mammography. The current prototype provides a 60 mm field of view, 200 kHz count rate with 20% non-paralysable dead time and >7 lp/mm limiting resolution. A 0.3 mm focal spot W target X-ray tube was used for image acquisition. The detector noise is 0.3 count/pixel for 50x50 micron pixels. The count rate of the current prototype is limited by the delay line readout electronics, which causes long scanning times (minutes) and high tube loading. This problem will be addressed using multichannel ASIC electronics for clinical implementation. However, the current readout architecture is adequate for evaluation of the performance parameters of the new detector concept. It is very simple and provides a maximum intrinsic resolution of 28 micron FWHM. The prototype was evaluated using resolution, contrast detail and breast Phantoms. The MTF and DQE of the system are being evaluated at different tube voltages. The design parameters of a scanning multiple slit mammography system are being evaluated. It is concluded that a photon counting, quantum limited and virtually scatter free digital mammography system can be developed based on the proposed detector.

  3. Memory operation devices based on light-illumination ambipolar carbon-nanotube thin-film-transistors

    SciTech Connect

    Aïssa, B.; Nedil, M.; Kroeger, J.; Haddad, T.; Rosei, F.

    2015-09-28

    We report the memory operation behavior of a light illumination ambipolar single-walled carbon nanotube thin film field-effect transistors devices. In addition to the high electronic-performance, such an on/off transistor-switching ratio of 10{sup 4} and an on-conductance of 18 μS, these memory devices have shown a high retention time of both hole and electron-trapping modes, reaching 2.8 × 10{sup 4} s at room temperature. The memory characteristics confirm that light illumination and electrical field can act as an independent programming/erasing operation method. This could be a fundamental step toward achieving high performance and stable operating nanoelectronic memory devices.

  4. Image-based separation of reflective and fluorescent components using illumination variant and invariant color.

    PubMed

    Zhang, Cherry; Sato, Imari

    2013-12-01

    Traditionally, researchers tend to exclude fluorescence from color appearance algorithms in computer vision and image processing because of its complexity. In reality, fluorescence is a very common phenomenon observed in many objects, from gems and corals, to different kinds of writing paper, and to our clothes. In this paper, we provide detailed theories of fluorescence phenomenon. In particular, we show that the color appearance of fluorescence is unaffected by illumination in which it differs from ordinary reflectance. Moreover, we show that the color appearance of objects with reflective and fluorescent components can be represented as a linear combination of the two components. A linear model allows us to separate the two components using images taken under unknown illuminants using independent component analysis (ICA). The effectiveness of the proposed method is demonstrated using digital images of various fluorescent objects. PMID:24136427

  5. FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery.

    PubMed

    Horise, Yuki; He, Xingchi; Gehlbach, Peter; Taylor, Russell; Iordachita, Iulian

    2015-01-01

    In retinal surgery, microsurgical instruments such as micro forceps, scissors and picks are inserted through the eye wall via sclerotomies. A handheld intraocular light source is typically used to visualize the tools during the procedure. Retinal surgery requires precise and stable tool maneuvers as the surgical targets are micro scale, fragile and critical to function. Retinal surgeons typically control an active surgical tool with one hand and an illumination source with the other. In this paper, we present a "smart" light pipe that enables true bimanual surgery via utilization of an active, robot-assisted source of targeted illumination. The novel sensorized smart light pipe measures the contact force between the sclerotomy and its own shaft, thereby accommodating the motion of the patient's eye. Forces at the point of contact with the sclera are detected by fiber Bragg grating (FBG) sensors on the light pipe. Our calibration and validation results demonstrate reliable measurement of the contact force as well as location of the sclerotomy. Preliminary experiments have been conducted to functionally evaluate robotic intraocular illumination. PMID:26736189

  6. QCL-based standoff and proximal chemical detectors

    NASA Astrophysics Data System (ADS)

    Dupuis, Julia R.; Hensley, Joel; Cosofret, Bogdan R.; Konno, Daisei; Mulhall, Phillip; Schmit, Thomas; Chang, Shing; Allen, Mark; Marinelli, William J.

    2016-05-01

    The development of two longwave infrared quantum cascade laser (QCL) based surface contaminant detection platforms supporting government programs will be discussed. The detection platforms utilize reflectance spectroscopy with application to optically thick and thin materials including solid and liquid phase chemical warfare agents, toxic industrial chemicals and materials, and explosives. Operation at standoff (10s of m) and proximal (1 m) ranges will be reviewed with consideration given to the spectral signatures contained in the specular and diffusely reflected components of the signal. The platforms comprise two variants: Variant 1 employs a spectrally tunable QCL source with a broadband imaging detector, and Variant 2 employs an ensemble of broadband QCLs with a spectrally selective detector. Each variant employs a version of the Adaptive Cosine Estimator for detection and discrimination in high clutter environments. Detection limits of 5 μg/cm2 have been achieved through speckle reduction methods enabling detector noise limited performance. Design considerations for QCL-based standoff and proximal surface contaminant detectors are discussed with specific emphasis on speckle-mitigated and detector noise limited performance sufficient for accurate detection and discrimination regardless of the surface coverage morphology or underlying surface reflectivity. Prototype sensors and developmental test results will be reviewed for a range of application scenarios. Future development and transition plans for the QCL-based surface detector platforms are discussed.

  7. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets.

    PubMed

    Vashist, Sandeep Kumar; van Oordt, Thomas; Schneider, E Marion; Zengerle, Roland; von Stetten, Felix; Luong, John H T

    2015-05-15

    A smartphone-based colorimetric reader (SBCR) was developed using a Samsung Galaxy SIII mini, a gadget (iPAD mini, iPAD4 or iPhone 5s), integrated with a custom-made dark hood and base holder assembly. The smartphone equipped with a back camera (5 megapixels resolution) was used for colorimetric imaging via the hood and base-holder assembly. A 96- or 24-well microtiter plate (MTP) was positioned on the gadget's screensaver that provides white light-based bottom illumination only in the specific regions corresponding to the bottom of MTP's wells. The pixel intensity of the captured images was determined by an image processing algorithm. The developed SBCR was evaluated and compared with a commercial MTP reader (MTPR) for three model assays: our recently developed human C-reactive protein sandwich enzyme-linked immunosorbent assay (ELISA), horseradish peroxidase direct ELISA, and bicinchoninic acid protein estimation assay. SBCR had the same precision, dynamic range, detection limit and sensitivity as MTPR for all three assays. With advanced microfabrication and data processing, SBCR will become more compact, lighter, inexpensive and enriched with more features. Therefore, SBCR with a remarkable computing power could be an ideal point-of-care (POC) colorimetric detection device for the next-generation of cost-effective POC diagnostics, immunoassays and diversified bioanalytical applications.

  8. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets.

    PubMed

    Vashist, Sandeep Kumar; van Oordt, Thomas; Schneider, E Marion; Zengerle, Roland; von Stetten, Felix; Luong, John H T

    2015-05-15

    A smartphone-based colorimetric reader (SBCR) was developed using a Samsung Galaxy SIII mini, a gadget (iPAD mini, iPAD4 or iPhone 5s), integrated with a custom-made dark hood and base holder assembly. The smartphone equipped with a back camera (5 megapixels resolution) was used for colorimetric imaging via the hood and base-holder assembly. A 96- or 24-well microtiter plate (MTP) was positioned on the gadget's screensaver that provides white light-based bottom illumination only in the specific regions corresponding to the bottom of MTP's wells. The pixel intensity of the captured images was determined by an image processing algorithm. The developed SBCR was evaluated and compared with a commercial MTP reader (MTPR) for three model assays: our recently developed human C-reactive protein sandwich enzyme-linked immunosorbent assay (ELISA), horseradish peroxidase direct ELISA, and bicinchoninic acid protein estimation assay. SBCR had the same precision, dynamic range, detection limit and sensitivity as MTPR for all three assays. With advanced microfabrication and data processing, SBCR will become more compact, lighter, inexpensive and enriched with more features. Therefore, SBCR with a remarkable computing power could be an ideal point-of-care (POC) colorimetric detection device for the next-generation of cost-effective POC diagnostics, immunoassays and diversified bioanalytical applications. PMID:25168283

  9. EUV detectors based on AlGaN-on-Si Schottky photodiodes

    NASA Astrophysics Data System (ADS)

    Malinowski, P. E.; Duboz, J.-Y.; De Moor, P.; Minoglou, K.; John, J.; Srivastava, P.; Semond, F.; Frayssinet, E.; BenMoussa, A.; Giordanengo, B.; Van Hoof, C.; Mertens, R.

    2011-05-01

    Photodetectors designed for the Extreme Ultraviolet (EUV) range with the Aluminum Gallium Nitride (AlGaN) active layer are reported. AlGaN layers were grown by Molecular Beam Epitaxy (MBE) on Si(111) wafers. Different device structures were designed and fabricated, including single pixel detectors and 2D detector arrays. Sensitivity in different configurations was demonstrated, including front- and backside illumination. The latter was possible after integration of the detector chips with dedicated Si-based readouts using high-density In bump arrays and flip-chip bonding. In order to avoid radiation absorption in silicon, the substrate was removed, leaving a submicron-thin membrane of AlGaN active layer suspended on top of an array of In bumps. Optoelectrical characterization was performed using different UV light sources, also in the synchrotron beamlines providing radiation down to the EUV range. The measured cut-off wavelength of the active layer used was 280 nm, with a rejection ratio of the visible radiation above 3 orders of magnitude. Spectral responsivity and quantum efficiency values

  10. Integrated atom detector based on field ionization near carbon nanotubes

    SciTech Connect

    Gruener, B.; Jag, M.; Stibor, A.; Visanescu, G.; Haeffner, M.; Kern, D.; Guenther, A.; Fortagh, J.

    2009-12-15

    We demonstrate an atom detector based on field ionization and subsequent ion counting. We make use of field enhancement near tips of carbon nanotubes to reach extreme electrostatic field values of up to 9x10{sup 9} V/m, which ionize ground-state rubidium atoms. The detector is based on a carpet of multiwall carbon nanotubes grown on a substrate and used for field ionization, and a channel electron multiplier used for ion counting. We measure the field enhancement at the tips of carbon nanotubes by field emission of electrons. We demonstrate the operation of the field ionization detector by counting atoms from a thermal beam of a rubidium dispenser source. By measuring the ionization rate of rubidium as a function of the applied detector voltage we identify the field ionization distance, which is below a few tens of nanometers in front of nanotube tips. We deduce from the experimental data that field ionization of rubidium near nanotube tips takes place on a time scale faster than 10{sup -10} s. This property is particularly interesting for the development of fast atom detectors suitable for measuring correlations in ultracold quantum gases. We also describe an application of the detector as partial pressure gauge.

  11. Hyperspectral venous image quality assessment for optimum illumination range selection based on skin tone characteristics

    PubMed Central

    2014-01-01

    Background Subcutaneous veins localization is usually performed manually by medical staff to find suitable vein to insert catheter for medication delivery or blood sample function. The rule of thumb is to find large and straight enough vein for the medication to flow inside of the selected blood vessel without any obstruction. The problem of peripheral difficult venous access arises when patient’s veins are not visible due to any reason like dark skin tone, presence of hair, high body fat or dehydrated condition, etc. Methods To enhance the visibility of veins, near infrared imaging systems is used to assist medical staff in veins localization process. Optimum illumination is crucial to obtain a better image contrast and quality, taking into consideration the limited power and space on portable imaging systems. In this work a hyperspectral image quality assessment is done to get the optimum range of illumination for venous imaging system. A database of hyperspectral images from 80 subjects has been created and subjects were divided in to four different classes on the basis of their skin tone. In this paper the results of hyper spectral image analyses are presented in function of the skin tone of patients. For each patient, four mean images were constructed by taking mean with a spectral span of 50 nm within near infrared range, i.e. 750–950 nm. Statistical quality measures were used to analyse these images. Conclusion It is concluded that the wavelength range of 800 to 850 nm serve as the optimum illumination range to get best near infrared venous image quality for each type of skin tone. PMID:25087016

  12. The studies of Schottky-diode based co-plane detector for surface plasmon resonance sensing

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Sheng; Wen, Tsun-Yu; Wang, Da-Shin; Lin, Chii-Wann

    2010-08-01

    The Surface Plasmon Resonance (SPR) is a label-free, highly sensitive and real time sensing technique and has been extensively applied to biosensing and assay for decades. In a conventional SPR biosensor, a prism is used to create the total reflection in which the evanescent wave can excite the surface plasmon mode at the metal-dielectric interface at certain angle, at which condition the reflectivity of incident TM-polarized vanished as measured by a far-field photodetector. This is the optical detection of surface plasmon resonance. In this research, zinc oxide (ZnO) was used as the dielectric thin-film material above the gold surface on the glass substrate to form a co-plane Schottky diode; this structure is designed to be an alternative way to detect SPR. The strength of plasmonic field is possible to be monitored by measuring the photocurrent under the reverse bias. According to our experimental results, the measured photocurrents with TM-polarized illumination (representing the SPR case), TE-polarized illumination (non-SPR case) and no illumination conditions under DC -1.5V bias are -76.158mA (2.5μA), -76.085mA (3.6μA) and -76.089mA (3.4μA), respectively. Based on the results, we have demonstrated this Schottky diode based co-plane device has the potential to be used as the SPR detector and provides a possible solution for the need of a low-cost, miniaturized, electronically integrated, and portable SPR biosensor in the near future.

  13. Post-illumination pupil response after blue light: Reliability of optimized melanopsin-based phototransduction assessment.

    PubMed

    van der Meijden, Wisse P; te Lindert, Bart H W; Bijlenga, Denise; Coppens, Joris E; Gómez-Herrero, Germán; Bruijel, Jessica; Kooij, J J Sandra; Cajochen, Christian; Bourgin, Patrice; Van Someren, Eus J W

    2015-10-01

    Melanopsin-containing retinal ganglion cells have recently been shown highly relevant to the non-image forming effects of light, through their direct projections on brain circuits that regulate alertness, mood and circadian rhythms. A quantitative assessment of functionality of the melanopsin-signaling pathway could be highly relevant in order to mechanistically understand individual differences in the effects of light on these regulatory systems. We here propose and validate a reliable quantification of the melanopsin-dependent Post-Illumination Pupil Response (PIPR) after blue light, and evaluated its sensitivity to dark adaptation, time of day, body posture, and light exposure history. Pupil diameter of the left eye was continuously measured during a series of light exposures to the right eye, of which the pupil was dilated using tropicamide 0.5%. The light exposure paradigm consisted of the following five consecutive blocks of five minutes: baseline dark; monochromatic red light (peak wavelength: 630 nm, luminance: 375 cd/m(2)) to maximize the effect of subsequent blue light; dark; monochromatic blue light (peak wavelength: 470 nm, luminance: 375 cd/m(2)); and post-blue dark. PIPR was quantified as the difference between baseline dark pupil diameter and post-blue dark pupil diameter (PIPR-mm). In addition, a relative PIPR was calculated by dividing PIPR by baseline pupil diameter (PIPR-%). In total 54 PIPR assessments were obtained in 25 healthy young adults (10 males, mean age ± SD: 26.9 ± 4.0 yr). From repeated measurements on two consecutive days in 15 of the 25 participants (6 males, mean age ± SD: 27.8 ± 4.3 yrs) test-retest reliability of both PIPR outcome parameters was calculated. In the presence of considerable between-subject differences, both outcome parameters had very high test-retest reliability: Cronbach's α > 0.90 and Intraclass Correlation Coefficient > 0.85. In 12 of the 25 participants (6 males, mean age ± SD: 26.5

  14. Post-illumination pupil response after blue light: Reliability of optimized melanopsin-based phototransduction assessment.

    PubMed

    van der Meijden, Wisse P; te Lindert, Bart H W; Bijlenga, Denise; Coppens, Joris E; Gómez-Herrero, Germán; Bruijel, Jessica; Kooij, J J Sandra; Cajochen, Christian; Bourgin, Patrice; Van Someren, Eus J W

    2015-10-01

    Melanopsin-containing retinal ganglion cells have recently been shown highly relevant to the non-image forming effects of light, through their direct projections on brain circuits that regulate alertness, mood and circadian rhythms. A quantitative assessment of functionality of the melanopsin-signaling pathway could be highly relevant in order to mechanistically understand individual differences in the effects of light on these regulatory systems. We here propose and validate a reliable quantification of the melanopsin-dependent Post-Illumination Pupil Response (PIPR) after blue light, and evaluated its sensitivity to dark adaptation, time of day, body posture, and light exposure history. Pupil diameter of the left eye was continuously measured during a series of light exposures to the right eye, of which the pupil was dilated using tropicamide 0.5%. The light exposure paradigm consisted of the following five consecutive blocks of five minutes: baseline dark; monochromatic red light (peak wavelength: 630 nm, luminance: 375 cd/m(2)) to maximize the effect of subsequent blue light; dark; monochromatic blue light (peak wavelength: 470 nm, luminance: 375 cd/m(2)); and post-blue dark. PIPR was quantified as the difference between baseline dark pupil diameter and post-blue dark pupil diameter (PIPR-mm). In addition, a relative PIPR was calculated by dividing PIPR by baseline pupil diameter (PIPR-%). In total 54 PIPR assessments were obtained in 25 healthy young adults (10 males, mean age ± SD: 26.9 ± 4.0 yr). From repeated measurements on two consecutive days in 15 of the 25 participants (6 males, mean age ± SD: 27.8 ± 4.3 yrs) test-retest reliability of both PIPR outcome parameters was calculated. In the presence of considerable between-subject differences, both outcome parameters had very high test-retest reliability: Cronbach's α > 0.90 and Intraclass Correlation Coefficient > 0.85. In 12 of the 25 participants (6 males, mean age ± SD: 26.5

  15. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  16. Assessment of metal halide lamp for the illumination of LCD-based projection display

    NASA Astrophysics Data System (ADS)

    Wang, K. C.; Huang, C. H.; Chen, How-More; Chiang, Cyril C.

    1995-04-01

    Apparatus consists of a short-arc metal halide lamp and a dichroic mirror in parabolic-like shape has been widely employed in portable projection TV (PTV) as the light source to illuminate liquid crystal display (LCD) panels. Advantages include high luminous efficacy, near-daylight color temperature, and superior color rendering index. At MRL or ITRI we have successfully developed such light sources of 150 W input power, using Dy-Nd-Cs iodides in appropriate amount. Nominal efficiency exceeds 73 lm/w with color temperature of 6500 K. Higher efficiency better than 80 lm/w was possible at the cost of color temperature. Continuous lifetime test has been conducted for 3000 hours, compared to effective `ON' history in ON/OFF start-ups longer than 2300 hours. Luminous decay in the ON/OFF test was observed lower than 35%. A 70% reduction of the initial value is estimated around 2000 hours, better than most of the commercial counterparts. Quality of image in display is improved by matching illumination spectrum to the characteristics of flat panel devices. Monochromes after being projected are compared using (u,v) coordinates against NTSC data. Computer simulation was integrated to resolve the brightness distribution on a 3.6-inch (diagonal) LCD panel, with which lamp fixture was precisely determined. Know-hows leading to more favorable PTV systems lie in the combination of lamp spectra and color filters that comprises of the core interests in lamp assessment.

  17. Development of a NDVI detector based on optics and spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Li, Minzan; Sun, Hong; Zhao, Ruijiao

    2012-01-01

    A NDVI detector is developed based on ground-based remote sensing, which uses proper wavebands and embeds a new optimization algorithm of nitrogen fertilization. The detector has two main units, optical unit and electronic unit. In optical unit there are four special different photoelectrical sensors used for detecting sunlight incidence and reflect light of plant canopy in red and NIR wavebands, respectively. Analog signals measured by sensors are amplified and then converted to digital in electronic unit. After processing the digital signal, NDVI of the plant can be calculated. Performance and stability experiments are conducted to cucumber plants in greenhouse. The results show that the detector has a good stability. In order to eliminate the error from sunlight a new artificial light source is suggested.

  18. GEM-based detectors for thermal and fast neutrons

    NASA Astrophysics Data System (ADS)

    Croci, G.; Claps, G.; Cazzaniga, C.; Foggetta, L.; Muraro, A.; Valente, P.

    2015-06-01

    Lately the problem of 3He replacement for neutron detection stimulated an intense activity research on alternative technologies based on alternative neutron converters. This paper presents briefly the results obtained with new GEM detectors optimized for fast and thermal neutrons. For thermal neutrons, we realized a side-on GEM detector based on a series of boron-coated alumina sheets placed perpendicularly to the incident neutron beam direction. This prototype has been tested at n@BTF photo-production neutron facilty in order to test its effectiveness under a very high flux gamma background. For fast neutrons, we developed new GEM detectors (called nGEM) for the CNESM diagnostic system of the SPIDER NBI prototype for ITER (RFX-Consortium, Italy) and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a Triple GEM gaseous detector equipped with a polyethylene layer used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a medium size (30 × 25 cm2 active area) nGEM detector at the ISIS spallation source on the VESUVIO beam line.

  19. Preceding Vehicle Detection and Tracking Adaptive to Illumination Variation in Night Traffic Scenes Based on Relevance Analysis

    PubMed Central

    Guo, Junbin; Wang, Jianqiang; Guo, Xiaosong; Yu, Chuanqiang; Sun, Xiaoyan

    2014-01-01

    Preceding vehicle detection and tracking at nighttime are challenging problems due to the disturbance of other extraneous illuminant sources coexisting with the vehicle lights. To improve the detection accuracy and robustness of vehicle detection, a novel method for vehicle detection and tracking at nighttime is proposed in this paper. The characteristics of taillights in the gray level are applied to determine the lower boundary of the threshold for taillights segmentation, and the optimal threshold for taillight segmentation is calculated using the OTSU algorithm between the lower boundary and the highest grayscale of the region of interest. The candidate taillight pairs are extracted based on the similarity between left and right taillights, and the non-vehicle taillight pairs are removed based on the relevance analysis of vehicle location between frames. To reduce the false negative rate of vehicle detection, a vehicle tracking method based on taillights estimation is applied. The taillight spot candidate is sought in the region predicted by Kalman filtering, and the disturbed taillight is estimated based on the symmetry and location of the other taillight of the same vehicle. Vehicle tracking is completed after estimating its location according to the two taillight spots. The results of experiments on a vehicle platform indicate that the proposed method could detect vehicles quickly, correctly and robustly in the actual traffic environments with illumination variation. PMID:25195855

  20. Preceding vehicle detection and tracking adaptive to illumination variation in night traffic scenes based on relevance analysis.

    PubMed

    Guo, Junbin; Wang, Jianqiang; Guo, Xiaosong; Yu, Chuanqiang; Sun, Xiaoyan

    2014-01-01

    Preceding vehicle detection and tracking at nighttime are challenging problems due to the disturbance of other extraneous illuminant sources coexisting with the vehicle lights. To improve the detection accuracy and robustness of vehicle detection, a novel method for vehicle detection and tracking at nighttime is proposed in this paper. The characteristics of taillights in the gray level are applied to determine the lower boundary of the threshold for taillights segmentation, and the optimal threshold for taillight segmentation is calculated using the OTSU algorithm between the lower boundary and the highest grayscale of the region of interest. The candidate taillight pairs are extracted based on the similarity between left and right taillights, and the non-vehicle taillight pairs are removed based on the relevance analysis of vehicle location between frames. To reduce the false negative rate of vehicle detection, a vehicle tracking method based on taillights estimation is applied. The taillight spot candidate is sought in the region predicted by Kalman filtering, and the disturbed taillight is estimated based on the symmetry and location of the other taillight of the same vehicle. Vehicle tracking is completed after estimating its location according to the two taillight spots. The results of experiments on a vehicle platform indicate that the proposed method could detect vehicles quickly, correctly and robustly in the actual traffic environments with illumination variation. PMID:25195855

  1. Vineyard Yield Estimation Based on the Analysis of High Resolution Images Obtained with Artificial Illumination at Night

    PubMed Central

    Font, Davinia; Tresanchez, Marcel; Martínez, Dani; Moreno, Javier; Clotet, Eduard; Palacín, Jordi

    2015-01-01

    This paper presents a method for vineyard yield estimation based on the analysis of high-resolution images obtained with artificial illumination at night. First, this paper assesses different pixel-based segmentation methods in order to detect reddish grapes: threshold based, Mahalanobis distance, Bayesian classifier, linear color model segmentation and histogram segmentation, in order to obtain the best estimation of the area of the clusters of grapes in this illumination conditions. The color spaces tested were the original RGB and the Hue-Saturation-Value (HSV). The best segmentation method in the case of a non-occluded reddish table-grape variety was the threshold segmentation applied to the H layer, with an estimation error in the area of 13.55%, improved up to 10.01% by morphological filtering. Secondly, after segmentation, two procedures for yield estimation based on a previous calibration procedure have been proposed: (1) the number of pixels corresponding to a cluster of grapes is computed and converted directly into a yield estimate; and (2) the area of a cluster of grapes is converted into a volume by means of a solid of revolution, and this volume is converted into a yield estimate; the yield errors obtained were 16% and −17%, respectively. PMID:25860071

  2. Practical structured illumination microscopy.

    PubMed

    Rego, E Hesper; Shao, Lin

    2015-01-01

    Structured illumination microscopy (SIM) is a method that can double the spatial resolution of wide-field fluorescence microscopy in three dimensions by using spatially structured illumination light. In this chapter, we introduce the basic principles of SIM and describe in detail several different implementations based on either a diffraction grating or liquid crystal spatial light modulators. We also describe nonlinear SIM, a method that in theory can achieve unlimited resolution. In addition, we discuss a number of key points important for high-resolution imaging. PMID:25391800

  3. Tailored reflectors for illumination.

    PubMed

    Jenkins, D; Winston, R

    1996-04-01

    We report on tailored reflector design methods that allow the placement of general illumination patterns onto a target plane. The use of a new integral design method based on the edge-ray principle of nonimaging optics gives much more compact reflector shapes by eliminating the need for a gap between the source and the reflector profile. In addition, the reflectivity of the reflector is incorporated as a design parameter. We show the performance of design for constant irradiance on a distant plane, and we show how a leading-edge-ray method may be used to achieve general illumination patterns on nearby targets. PMID:21085288

  4. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  5. Polycrystalline diamond based detector for Z-pinch plasma diagnosis

    SciTech Connect

    Liu Linyue; Zhao Jizhen; Chen Liang; Ouyang Xiaoping; Wang Lan

    2010-08-15

    A detector setup based on polycrystalline chemical-vapor-deposition diamond film is developed with great characteristics: low dark current (lower than 60 pA within 3 V/{mu}m), fast pulsed response time (rise time: 2-3 ns), flat spectral response (3-5 keV), easy acquisition, low cost, and relative large sensitive area. The characterizing data on Qiangguang-I accelerator show that this detector can satisfy the practical requirements in Z-pinch plasma diagnosis very well, which offers a promising prototype for the x-ray detection in Z-pinch diagnosis.

  6. A Weak Value Based QKD Protocol Robust Against Detector Attacks

    NASA Astrophysics Data System (ADS)

    Troupe, James

    2015-03-01

    We propose a variation of the BB84 quantum key distribution protocol that utilizes the properties of weak values to insure the validity of the quantum bit error rate estimates used to detect an eavesdropper. The protocol is shown theoretically to be secure against recently demonstrated attacks utilizing detector blinding and control and should also be robust against all detector based hacking. Importantly, the new protocol promises to achieve this additional security without negatively impacting the secure key generation rate as compared to that originally promised by the standard BB84 scheme. Implementation of the weak measurements needed by the protocol should be very feasible using standard quantum optical techniques.

  7. Uniformity studies in large area triple-GEM based detectors

    NASA Astrophysics Data System (ADS)

    Akl, M. Abi; Bouhali, O.; Castaneda, A.; Maghrbi, Y.; Mohamed, T.

    2016-10-01

    Gas Electron Multiplier (GEM) based detectors have been used in many applications since their introduction in 1997. Large areas, e.g. exceeding 30×30 cm2, of GEM detectors are foreseen in future experiments which puts stringent requirements on the uniformity of response across the detection area. We investigate the effect of small variations of several parameters that could affect the uniformity. Parameters such as the anode pitch, the gas gap, the size and the shape of the holes are investigated. Simulation results are presented and compared to previous experimental data.

  8. Detectors based on silicon photomultiplier arrays for medical imaging applications

    SciTech Connect

    Llosa, G.; Barrio, J.; Cabello, J.; Lacasta, C.; Oliver, J. F.; Stankova, V.; Solaz, C.

    2011-07-01

    Silicon photomultipliers (SiPMs) have experienced a fast development and are now employed in different research fields. The availability of 2D arrays that provide information of the interaction position in the detector has had a high interest for medical imaging. Continuous crystals combined with segmented photodetectors can provide higher efficiency than pixellated crystals and very high spatial resolution. The IRIS group at IFIC is working on the development of detector heads based on continuous crystals coupled to SiPM arrays for different applications, including a small animal PET scanner in collaboration with the Univ. of Pisa and INFN Pisa, and a Compton telescope for dose monitoring in hadron therapy. (authors)

  9. Universal ultrafast detector for short optical pulses based on graphene.

    PubMed

    Mittendorff, Martin; Kamann, Josef; Eroms, Jonathan; Weiss, Dieter; Drexler, Christoph; Ganichev, Sergey D; Kerbusch, Jochen; Erbe, Artur; Suess, Ryan J; Murphy, Thomas E; Chatterjee, Sangam; Kolata, Kolja; Ohser, Joachim; König-Otto, Jacob C; Schneider, Harald; Helm, Manfred; Winnerl, Stephan

    2015-11-01

    Graphene has unique optical and electronic properties that make it attractive as an active material for broadband ultrafast detection. We present here a graphene-based detector that shows 40-picosecond electrical rise time over a spectral range that spans nearly three orders of magnitude, from the visible to the far-infrared. The detector employs a large area graphene active region with interdigitated electrodes that are connected to a log-periodic antenna to improve the long-wavelength collection efficiency, and a silicon carbide substrate that is transparent throughout the visible regime. The detector exhibits a noise-equivalent power of approximately 100 µW·Hz(-½) and is characterized at wavelengths from 780 nm to 500 µm. PMID:26561141

  10. Alternative Packaging for Back-Illuminated Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2009-01-01

    An alternative scheme has been conceived for packaging of silicon-based back-illuminated, back-side-thinned complementary metal oxide/semiconductor (CMOS) and charge-coupled-device image-detector integrated circuits, including an associated fabrication process. This scheme and process are complementary to those described in "Making a Back-Illuminated Imager With Back-Side Connections" (NPO-42839), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 38. To avoid misunderstanding, it should be noted that in the terminology of imaging integrated circuits, "front side" or "back side" does not necessarily refer to the side that, during operation, faces toward or away from a source of light or other object to be imaged. Instead, "front side" signifies that side of a semiconductor substrate upon which the pixel pattern and the associated semiconductor devices and metal conductor lines are initially formed during fabrication, and "back side" signifies the opposite side. If the imager is of the type called "back-illuminated," then the back side is the one that faces an object to be imaged. Initially, a back-illuminated, back-side-thinned image-detector is fabricated with its back side bonded to a silicon handle wafer. At a subsequent stage of fabrication, the front side is bonded to a glass wafer (for mechanical support) and the silicon handle wafer is etched away to expose the back side. The frontside integrated circuitry includes metal input/output contact pads, which are rendered inaccessible by the bonding of the front side to the glass wafer. Hence, one of the main problems is to make the input/output contact pads accessible from the back side, which is ultimately to be the side accessible to the external world. The present combination of an alternative packaging scheme and associated fabrication process constitute a solution of the problem.

  11. Demand illumination control apparatus

    NASA Technical Reports Server (NTRS)

    Warren, Carl (Inventor); Arline, Jimmie (Inventor); LaPalme, Julius (Inventor)

    1981-01-01

    Solar illuminating compensating apparatus is disclosed whereby the interior of a building is illuminated to a substantially constant, predetermined level of light intensity by a combination of natural illumination from the sun and artificial illumination from electricity wherein the intensity of said artificial illumination is controlled by fully electronic means which increases the level of artificial illumination when the natural illumination is inadequate and vice versa.

  12. UV-laser-based longitudinal illuminated diffuser (LID) incorporating diffractive and Lambertian reflectance for the disinfection of beverages

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    A novel laser beam shaping system was designed to demonstrate the potential of using high power UV laser sources for large scale disinfection of liquids used in the production of food products, such as juices, beer, milk and other beverage types. The design incorporates a patented assembly of optical components including a diffractive beam splitting/shaping element and a faceted pyramidal or conically shaped Lambertian diffuser made from a compression molded PTFE compounds. When properly sintered to an appropriate density, as an example between 1.10 and 1.40 grams per cubic centimeter, the compressed PTFE compounds show a ~99% reflectance at wavelengths ranging from 300 nm to 1500 nm, and a ~98.5% refection of wavelengths from 250 nm to 2000 nm [1]. The unique diffuser configuration also benefits from the fact that the PTFE compounds do not degrade when exposed to ultraviolet radiation as do barium sulfate materials and silver or aluminized mirror coatings [2]. These components are contained within a hermetically sealed quartz tube. Once assembled a laser beam is directed through one end of the tube. This window takes the form of a computer generated diffractive splitter or other diffractive shaper element to split the laser beam into a series of spot beamlets, circular rings or other geometric shapes. As each of the split beamlets or rings cascade downward, they illuminate various points along the tapered PTFE cone or faceted pyramidal form. As they strike the surface they each diffuse in a Lambertian reflectance pattern creating a pseudo-uniform circumferential illuminator along the length of the quartz tube enclosing the assembly. The compact tubular structure termed Longitudinal Illuminated Diffuser (LID) provides a unique UV disinfection source that can be placed within a centrifugal reactor or a pipe based reactor chamber. This paper will review the overall design principle, key component design parameters, preliminary analytic and bench operational testing

  13. Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection.

    PubMed

    Joshi, Amit; Bangerth, Wolfgang; Hwang, Kildong; Rasmussen, John C; Sevick-Muraca, Eva M

    2006-05-01

    Using an area-illumination and area-detection scheme, we acquire fluorescence frequency domain measurements from a tissue phantom with an embedded fluorescent target and obtain tomographic reconstructions of the interior fluorescence absorption map with an adaptive finite element based scheme. The tissue phantom consisted of a clear acrylic cubic box (512 ml) filled with 1% Liposyn solution, while the fluorescent targets were 5 mm diameter glass bulbs filled with 1 microM Indocyanine Green dye solution in 1% Liposyn. Frequency domain area illumination and detection employed a planar excitation source using an expanded intensity modulated (100 MHz) 785 nm diode laser light and a gain modulated image intensified charge coupled device camera, respectively. The excitation pattern was characterized by isolating the singly scattered component with cross polarizers and was input into a dual adaptive finite element-based scheme for three dimensional reconstructions of fluorescent targets embedded beneath the phantom surface. Adaptive mesh refinement techniques allowed efficient simulation of the incident excitation light and the reconstruction of fluorescent targets buried at the depths of 1 and 2 cm. The results demonstrate the first clinically relevant noncontact fluorescence tomography with adaptive finite element methods.

  14. Skyrmion based microwave detectors and harvesting

    SciTech Connect

    Finocchio, G.; Giordano, A.; Ricci, M.; Burrascano, P.; Tomasello, R.; Lanuzza, M.; Puliafito, V.; Azzerboni, B.; Carpentieri, M.

    2015-12-28

    Magnetic skyrmions are topologically protected states that are very promising for the design of the next generation of ultra-low-power electronic devices. In this letter, we propose a magnetic tunnel junction based spin-transfer torque diode with a magnetic skyrmion as ground state and a perpendicular polarizer patterned as nano-contact for a local injection of the current. The key result is the possibility to achieve sensitivities (i.e., detection voltage over input microwave power) larger than 2000 V/W for optimized contact diameters. We also pointed out that large enough voltage controlled magnetocrystalline anisotropy could significantly improve the sensitivity. Our results can be very useful for the identification of a class of spin-torque diodes with a non-uniform ground state and to understand the fundamental physics of the skyrmion dynamical properties.

  15. Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective

    PubMed Central

    Kyrish, Matthew; Dobbs, Jessica; Jain, Shalini; Wang, Xiao; Yu, Dihua; Richards-Kortum, Rebecca

    2013-01-01

    Abstract. In order to diagnose cancer, a sample must be removed, prepared, and examined under a microscope, which is expensive, invasive, and time consuming. Fiber optic fluorescence endomicroscopy, where an image guide is used to obtain high-resolution images of tissue in vivo, has shown promise as an alternative to conventional biopsies. However, the resolution of standard endomicroscopy is limited by the fiber bundle sampling frequency and out-of-focus light. A system is presented which incorporates a plastic, achromatic objective to increase the sampling and which provides optical sectioning via structured illumination to reject background light. An image is relayed from the sample by a fiber bundle with the custom 2.1-mm outer diameter objective lens integrated to the distal tip. The objective is corrected for the excitation and the emission wavelengths of proflavine (452 and 515 nm). It magnifies the object onto the fiber bundle to improve the system’s lateral resolution by increasing the sampling. The plastic lenses were fabricated via single-point diamond turning and assembled using a zero alignment technique. Ex vivo images of normal and neoplastic murine mammary tissues stained with proflavine are captured. The system achieves higher contrast and resolves smaller features than standard fluorescence endomicroscopy. PMID:24002190

  16. Time-lapse contact microscopy of cell cultures based on non-coherent illumination

    PubMed Central

    Gabriel, Marion; Balle, Dorothée; Bigault, Stéphanie; Pornin, Cyrille; Gétin, Stéphane; Perraut, François; Block, Marc R.; Chatelain, François; Picollet-D’hahan, Nathalie; Gidrol, Xavier; Haguet, Vincent

    2015-01-01

    Video microscopy offers outstanding capabilities to investigate the dynamics of biological and pathological mechanisms in optimal culture conditions. Contact imaging is one of the simplest imaging architectures to digitally record images of cells due to the absence of any objective between the sample and the image sensor. However, in the framework of in-line holography, other optical components, e.g., an optical filter or a pinhole, are placed underneath the light source in order to illuminate the cells with a coherent or quasi-coherent incident light. In this study, we demonstrate that contact imaging with an incident light of both limited temporal and spatial coherences can be achieved with sufficiently high quality for most applications in cell biology, including monitoring of cell sedimentation, rolling, adhesion, spreading, proliferation, motility, death and detachment. Patterns of cells were recorded at various distances between 0 and 1000 μm from the pixel array of the image sensors. Cells in suspension, just deposited or at mitosis focalise light into photonic nanojets which can be visualised by contact imaging. Light refraction by cells significantly varies during the adhesion process, the cell cycle and among the cell population in connection with every modification in the tridimensional morphology of a cell. PMID:26459014

  17. Time-lapse contact microscopy of cell cultures based on non-coherent illumination

    NASA Astrophysics Data System (ADS)

    Gabriel, Marion; Balle, Dorothée; Bigault, Stéphanie; Pornin, Cyrille; Gétin, Stéphane; Perraut, François; Block, Marc R.; Chatelain, François; Picollet-D'Hahan, Nathalie; Gidrol, Xavier; Haguet, Vincent

    2015-10-01

    Video microscopy offers outstanding capabilities to investigate the dynamics of biological and pathological mechanisms in optimal culture conditions. Contact imaging is one of the simplest imaging architectures to digitally record images of cells due to the absence of any objective between the sample and the image sensor. However, in the framework of in-line holography, other optical components, e.g., an optical filter or a pinhole, are placed underneath the light source in order to illuminate the cells with a coherent or quasi-coherent incident light. In this study, we demonstrate that contact imaging with an incident light of both limited temporal and spatial coherences can be achieved with sufficiently high quality for most applications in cell biology, including monitoring of cell sedimentation, rolling, adhesion, spreading, proliferation, motility, death and detachment. Patterns of cells were recorded at various distances between 0 and 1000 μm from the pixel array of the image sensors. Cells in suspension, just deposited or at mitosis focalise light into photonic nanojets which can be visualised by contact imaging. Light refraction by cells significantly varies during the adhesion process, the cell cycle and among the cell population in connection with every modification in the tridimensional morphology of a cell.

  18. Photoacoustic-based detector for infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Scholz, L.; Palzer, S.

    2016-07-01

    In this contribution, we present an alternative detector technology for use in direct absorption spectroscopy setups. Instead of a semiconductor based detector, we use the photoacoustic effect to gauge the light intensity. To this end, the target gas species is hermetically sealed under excess pressure inside a miniature cell along with a MEMS microphone. Optical access to the cell is provided by a quartz window. The approach is particularly suitable for tunable diode laser spectroscopy in the mid-infrared range, where numerous molecules exhibit large absorption cross sections. Moreover, a frequency standard is integrated into the method since the number density and pressure inside the cell are constant. We demonstrate that the information extracted by our method is at least equivalent to that achieved using a semiconductor-based photon detector. As exemplary and highly relevant target gas, we have performed direct spectroscopy of methane at the R3-line of the 2v3 band at 6046.95 cm-1 using both detector technologies in parallel. The results may be transferred to other infrared-active transitions without loss of generality.

  19. Asymmetric masks for laboratory-based X-ray phase-contrast imaging with edge illumination

    PubMed Central

    Endrizzi, Marco; Astolfo, Alberto; Vittoria, Fabio A.; Millard, Thomas P.; Olivo, Alessandro

    2016-01-01

    We report on an asymmetric mask concept that enables X-ray phase-contrast imaging without requiring any movement in the system during data acquisition. The method is compatible with laboratory equipment, namely a commercial detector and a rotating anode tube. The only motion required is that of the object under investigation which is scanned through the imaging system. Two proof-of-principle optical elements were designed, fabricated and experimentally tested. Quantitative measurements on samples of known shape and composition were compared to theory with good agreement. The method is capable of measuring the attenuation, refraction and (ultra-small-angle) X-ray scattering, does not have coherence requirements and naturally adapts to all those situations in which the X-ray image is obtained by scanning a sample through the imaging system. PMID:27145924

  20. Asymmetric masks for laboratory-based X-ray phase-contrast imaging with edge illumination

    NASA Astrophysics Data System (ADS)

    Endrizzi, Marco; Astolfo, Alberto; Vittoria, Fabio A.; Millard, Thomas P.; Olivo, Alessandro

    2016-05-01

    We report on an asymmetric mask concept that enables X-ray phase-contrast imaging without requiring any movement in the system during data acquisition. The method is compatible with laboratory equipment, namely a commercial detector and a rotating anode tube. The only motion required is that of the object under investigation which is scanned through the imaging system. Two proof-of-principle optical elements were designed, fabricated and experimentally tested. Quantitative measurements on samples of known shape and composition were compared to theory with good agreement. The method is capable of measuring the attenuation, refraction and (ultra-small-angle) X-ray scattering, does not have coherence requirements and naturally adapts to all those situations in which the X-ray image is obtained by scanning a sample through the imaging system.

  1. LED based NMR illumination device for mechanistic studies on photochemical reactions - Versatile and simple, yet surprisingly powerful

    NASA Astrophysics Data System (ADS)

    Feldmeier, C.; Bartling, H.; Riedle, E.; Gschwind, R. M.

    2013-07-01

    An LED based illumination device for mechanistic studies on photochemical reactions by means of NMR spectroscopy is presented. The LEDs are directly switched by the NMR spectrometer with the help of a one-stage electronic circuit. This allows for continuous or alternatively pulsed operation of the LEDs. Continuous operation provides direct comparability with conditions in synthetic chemistry, in pulsed operation the short time light power can be enhanced ninefold. The LEDs are efficiently coupled to a 1000 μm core optical fiber guiding the light into the spectrometer by simply bringing it in close contact to the fiber. The tip of the fiber is roughened by sandblasting and thus emits light in a uniform and efficient way over the full length of the receiver coil. The combination of these techniques tremendously increases the amount of light brought into the NMR sample and makes LEDs an easy, versatile and handy light source for the in situ illumination of NMR samples allowing even for single millisecond time resolved Photo-CIDNP spectroscopy.

  2. Hotsphere illumination

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Kuzyakov, Yakov

    2016-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes at all spatial and temporal scales. Importance of the hotspheres such as rhizosphere, detritusphere, porosphere (including drilosphere and biopores), hyphasphere and spermosphere, calls for spatially explicit methods to illuminate distribution of microbial activities in these hotspheres (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere (Spohn and Kuzyakov, 2014). Here, we further developed soil zymography to obtain a higher resolution of enzyme activities by enabling direct contact of substrate-saturated membranes with soil. For the first time, we aimed at quantitative imaging of enzyme activities in various hotspheres. We calculated and compared percentage of enzymatic hotspots of five hotspheres: spermosphere, rhizosphere, detritusphere, drilosphere and biopores. Spatial distribution of activities of two enzymes: β-glucosidase and leucine amino peptidase were analyzed in the spermosphere, rhizosphere and detritusphere of maize and lentil. Zymography has been done 3 days (spermosphere), 14 days (rhizosphere) after sowing and 21 days after cutting plant (detritusphere). Spatial resolution of fluorescent images was improved by direct application fluorogenically labelled substrates on the soil surface. Such improvement enabled to visualize enzyme distribution of mycorrhiza hypha on the rhizobox surface. Further, to visualize the 2D distribution of the enzyme activities in porosphere, we placed earthworms (Lumbricus terrestris), (drilosphere) and ground beetle species Platynus dorsalis Pont. (Coleoptera; Carabidae), (biopore), in transparent boxes for 2weeks. The developed in situ zymography visualized the heterogeneity of enzyme activities along and across the roots. Spatial patterns of enzyme activities as a function of distance along the

  3. Multi-element double ring infrared detector based on InSb

    NASA Astrophysics Data System (ADS)

    Li, Mo; Lv, Hui; Guo, Li; Liu, Zhu

    2015-10-01

    A multi-element double ring infrared detector based on InSb p-n photodiodes is presented. The presented detector includes an outer ring detector and an inner ring detector. Each ring consist 10 detector elements, five mid-wave infrared detector elements and five short wave infrared detector elements. Two wavebands of 3.5-5 μm and 1.5-3 μm in mid-wave infrared and short wave infrared are adopted. The mid-wave infrared and short wave infrared detector elements are arranged alternately and close to each other to form detection pair. Between the adjacent detector elements, there is an interval to avoid cross talk. Dual band filter thin films are directly coated on the photodiode surface to form a dual band infrared detector. The double ring detector which can perform dual band IR counter-countermeasures can track target effectively under infrared countermeasure conditions.

  4. Block-diagonal representations for covariance-based anomalous change detectors

    SciTech Connect

    Matsekh, Anna M; Theiler, James P

    2010-01-01

    We use singular vectors of the whitened cross-covariance matrix of two hyper-spectral images and the Golub-Kahan permutations in order to obtain equivalent tridiagonal representations of the coefficient matrices for a family of covariance-based quadratic Anomalous Change Detection (ACD) algorithms. Due to the nature of the problem these tridiagonal matrices have block-diagonal structure, which we exploit to derive analytical expressions for the eigenvalues of the coefficient matrices in terms of the singular values of the whitened cross-covariance matrix. The block-diagonal structure of the matrices of the RX, Chronochrome, symmetrized Chronochrome, Whitened Total Least Squares, Hyperbolic and Subpixel Hyperbolic Anomalous Change Detectors are revealed by the white singular value decomposition and Golub-Kahan transformations. Similarities and differences in the properties of these change detectors are illuminated by their eigenvalue spectra. We presented a methodology that provides the eigenvalue spectrum for a wide range of quadratic anomalous change detectors. Table I summarizes these results, and Fig. I illustrates them. Although their eigenvalues differ, we find that RX, HACD, Subpixel HACD, symmetrized Chronochrome, and WTLSQ share the same eigenvectors. The eigen vectors for the two variants of Chronochrome defined in (18) are different, and are different from each other, even though they share many (but not all, unless d{sub x} = d{sub y}) eigenvalues. We demonstrated that it is sufficient to compute SVD of the whitened cross covariance matrix of the data in order to almost immediately obtain highly structured sparse matrices (and their eigenvalue spectra) of the coefficient matrices of these ACD algorithms in the white SVD-transformed coordinates. Converting to the original non-white coordinates, these eigenvalues will be modified in magnitude but not in sign. That is, the number of positive, zero-valued, and negative eigenvalues will be conserved.

  5. A risk-based approach to flammable gas detector spacing.

    PubMed

    Defriend, Stephen; Dejmek, Mark; Porter, Leisa; Deshotels, Bob; Natvig, Bernt

    2008-11-15

    Flammable gas detectors allow an operating company to address leaks before they become serious, by automatically alarming and by initiating isolation and safe venting. Without effective gas detection, there is very limited defense against a flammable gas leak developing into a fire or explosion that could cause loss of life or escalate to cascading failures of nearby vessels, piping, and equipment. While it is commonly recognized that some gas detectors are needed in a process plant containing flammable gas or volatile liquids, there is usually a question of how many are needed. The areas that need protection can be determined by dispersion modeling from potential leak sites. Within the areas that must be protected, the spacing of detectors (or alternatively, number of detectors) should be based on risk. Detector design can be characterized by spacing criteria, which is convenient for design - or alternatively by number of detectors, which is convenient for cost reporting. The factors that influence the risk are site-specific, including process conditions, chemical composition, number of potential leak sites, piping design standards, arrangement of plant equipment and structures, design of isolation and depressurization systems, and frequency of detector testing. Site-specific factors such as those just mentioned affect the size of flammable gas cloud that must be detected (within a specified probability) by the gas detection system. A probability of detection must be specified that gives a design with a tolerable risk of fires and explosions. To determine the optimum spacing of detectors, it is important to consider the probability that a detector will fail at some time and be inoperative until replaced or repaired. A cost-effective approach is based on the combined risk from a representative selection of leakage scenarios, rather than a worst-case evaluation. This means that probability and severity of leak consequences must be evaluated together. In marine and

  6. High-nitrogen-based pyrotechnics: development of perchlorate-free green-light illuminants for military and civilian applications.

    PubMed

    Sabatini, Jesse J; Raab, James M; Hann, Ronald K; Damavarapu, Reddy; Klapötke, Thomas M

    2012-06-01

    The development of perchlorate-free hand-held signal illuminants for the US Army's M195 green star parachute is described. Compared with the perchlorate-containing control, the optimized perchlorate-free illuminants were less sensitive toward various ignition stimuli while offering comparable burn times and visible-light outputs. The results were also important from the perspective of civilian fireworks because the development of perchlorate-free illuminants remains an important objective of the commercial fireworks industry.

  7. A VXIbus based trigger for the CLAS detector at CEBAF

    SciTech Connect

    D.C. Doughty, Jr.; J. Englert; R. Hale; S. Lemon; P. Leung; C. Cuevas; D. Joyce

    1992-04-01

    A VXIbus based first level triggering system for the CLAS detector at CEBAF has been designed and prototyped. It uses pipelining and a triple memory lookup to produce a dead-timeless trigger decision with an average latency of 110 nS and a jitter of 20 nS. The VXIbus Extended Start/Stop triggering protocols allow sub-nanosecond time synchronization.

  8. A VXIbus based trigger for the CLAS detector at CEBAF

    SciTech Connect

    Doughty, D.C. Jr.; Englert, J.; Hale, R.; Lemon, S. ); Leung, P. ); Cuevas, C.; Joyce, D. )

    1992-04-01

    This paper discusses a VXIbus based first level triggering system for the CLAS detector at CEBAF which has been designed and prototyped. It uses pipelining and a triple memory lookup to produce a dead-timeless trigger decision with an average latency of 110 ns and a jitter of 20 ns. The VXIbus Extended Start/Stop triggering protocols allow sub-nanosecond time synchronization.

  9. Vehicle passes detector based on multi-sensor analysis

    NASA Astrophysics Data System (ADS)

    Bocharov, D.; Sidorchuk, D.; Konovalenko, I.; Koptelov, I.

    2015-02-01

    The study concerned deals with a new approach to the problem of detecting vehicle passes in vision-based automatic vehicle classification system. Essential non-affinity image variations and signals from induction loop are the events that can be considered as detectors of an object presence. We propose several vehicle detection techniques based on image processing and induction loop signal analysis. Also we suggest a combined method based on multi-sensor analysis to improve vehicle detection performance. Experimental results in complex outdoor environments show that the proposed multi-sensor algorithm is effective for vehicles detection.

  10. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-01-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  11. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  12. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination.

  13. Gamma detectors for spectroscopy and imaging based on scintillators coupled to semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Fiorini, Carlo

    2000-11-01

    Silicon photodetectors have been successfully employed for scintillation detection in gamma-ray spectroscopy and imaging applications. When compared to photomultiplier tubes (PMTs), silicon photodetectors are characterized by higher quantum efficiency to the scintillation light. Moreover, these devices are more compact, immune to magnetic fields and can be easily integrated in monolithic arrays of units whose size could range from few mm2 up to some cm2. New gamma-ray detection systems based on scintillators coupled to silicon photodetectors have been recently developed for astrophysics experiments as well as for imaging systems in nuclear medicine. Among silicon detectors, conventional silicon PN photodiodes (PDs), avalanche photodiodes (APDs) and silicon drift detectors (SDDs) have been used with scintillators both as single units and as monolithic arrays. In the paper, the main features of silicon photodetectors used with scintillators for gamma detection are shortly described and the more recent achievements in their development are overviewed. Finally, a comparison of the achievable performances with PDs, APDs, and SDDs is reported.

  14. Studying inflation with future space-based gravitational wave detectors

    SciTech Connect

    Jinno, Ryusuke; Moroi, Takeo; Takahashi, Tomo E-mail: moroi@phys.s.u-tokyo.ac.jp

    2014-12-01

    Motivated by recent progress in our understanding of the B-mode polarization of cosmic microwave background (CMB), which provides important information about the inflationary gravitational waves (IGWs), we study the possibility to acquire information about the early universe using future space-based gravitational wave (GW) detectors. We perform a detailed statistical analysis to estimate how well we can determine the reheating temperature after inflation as well as the amplitude, the tensor spectral index, and the running of the inflationary gravitational waves. We discuss how the accuracies depend on noise parameters of the detector and the minimum frequency available in the analysis. Implication of such a study on the test of inflation models is also discussed.

  15. Heterodyne detection with mismatch correction base on array detector

    NASA Astrophysics Data System (ADS)

    Hongzhou, Dong; Guoqiang, Li; Ruofu, Yang; Chunping, Yang; Mingwu, Ao

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  16. Undersampling Correction for Array Detector-Based Satellite Spectrometers

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas P.; Sioris, Christopher E.

    2004-01-01

    Array detector-based instruments are now fundamental to measurements of ozone and other atmospheric trace gases from space in the ultraviolet, visible, and infrared. The present generation of such instruments suffers, to a greater or lesser degree, from undersampling of the spectra, leading to difficulties in the analysis of atmospheric radiances. We provide extended analysis of the undersampling suffered by modem satellite spectrometers, which include Global Ozone Monitoring Experiment (GOME), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), Ozone Monitoring Instrument (OMI), and Ozone Mapping and Profiler Suite (OMPS). The analysis includes basic undersampling, the effects of binning into separate detector pixels, and the application of high-resolution Fraunhofer spectral data to correct for undersampling in many useful cases.

  17. Nanobolometer: silicon-based uncooled multi-spectral IR detector

    NASA Astrophysics Data System (ADS)

    Lee, Hyesog; Verma, Ravi

    2012-06-01

    By utilizing the band-selective nature of optically resonant nanoparticles, Tanner Research is developing a room temperature multi-spectral IR detection technology termed Nanobolometer. Because the device physics is not based on photodiode/photoconductive (cooled IR detectors) operation, it does not require cooling. It is also not a heat sensing (Microbolometers) scheme and is capable of multi-spectral detection from NIR to LWIR. A nanobolometer is built on a Si substrate for the entire detection bands (NIR-LWIR), which enables low material and fabrication costs, with an added advantage of being able to integrate UV/Vis detector pixels in the same platform. We present the theory and working principle of Tanner's Nanobolomter technology and report a proof-of-concept demonstration that achieved IR detection at 1.5 μm. Tanner's on-going R&D effort aims to extend the detection bands to MWIR/LWIR.

  18. Heterodyne detection with mismatch correction based on array detector

    NASA Astrophysics Data System (ADS)

    Dong, Hongzhou; Li, Guoqiang; Yang, Ruofu; Yang, Chunping; Ao, Mingwu

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  19. Advanced Fluorescence Protein-Based Synapse-Detectors

    PubMed Central

    Lee, Hojin; Oh, Won Chan; Seong, Jihye; Kim, Jinhyun

    2016-01-01

    The complex information-processing capabilities of the central nervous system emerge from intricate patterns of synaptic input-output relationships among various neuronal circuit components. Understanding these capabilities thus requires a precise description of the individual synapses that comprise neural networks. Recent advances in fluorescent protein engineering, along with developments in light-favoring tissue clearing and optical imaging techniques, have rendered light microscopy (LM) a potent candidate for large-scale analyses of synapses, their properties, and their connectivity. Optically imaging newly engineered fluorescent proteins (FPs) tagged to synaptic proteins or microstructures enables the efficient, fine-resolution illumination of synaptic anatomy and function in large neural circuits. Here we review the latest progress in fluorescent protein-based molecular tools for imaging individual synapses and synaptic connectivity. We also identify associated technologies in gene delivery, tissue processing, and computational image analysis that will play a crucial role in bridging the gap between synapse- and system-level neuroscience. PMID:27445785

  20. Advanced Fluorescence Protein-Based Synapse-Detectors.

    PubMed

    Lee, Hojin; Oh, Won Chan; Seong, Jihye; Kim, Jinhyun

    2016-01-01

    The complex information-processing capabilities of the central nervous system emerge from intricate patterns of synaptic input-output relationships among various neuronal circuit components. Understanding these capabilities thus requires a precise description of the individual synapses that comprise neural networks. Recent advances in fluorescent protein engineering, along with developments in light-favoring tissue clearing and optical imaging techniques, have rendered light microscopy (LM) a potent candidate for large-scale analyses of synapses, their properties, and their connectivity. Optically imaging newly engineered fluorescent proteins (FPs) tagged to synaptic proteins or microstructures enables the efficient, fine-resolution illumination of synaptic anatomy and function in large neural circuits. Here we review the latest progress in fluorescent protein-based molecular tools for imaging individual synapses and synaptic connectivity. We also identify associated technologies in gene delivery, tissue processing, and computational image analysis that will play a crucial role in bridging the gap between synapse- and system-level neuroscience. PMID:27445785

  1. Large area radiation detectors based on II VI thin films

    NASA Astrophysics Data System (ADS)

    Quevedo-Lopez, Manuel

    2015-03-01

    The development of low temperature device technologies that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible, low metal content, sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, neutron/gamma-ray/x-ray detectors, etc. In this talk, our efforts to develop novel CMOS integration schemes, circuits, memory, sensors as well as novel contacts, dielectrics and semiconductors for flexible electronics are presented. In particular, in this presentation we discuss fundamental materials properties including crystalline structure, interfacial reactions, doping, etc. defining performance and reliability of II-VI-based radiation sensors. We investigate the optimal thickness of a semiconductor diode for thin-film solid state thermal neutron detectors. Besides II-VI materials, we also evaluated several diode materials, Si, CdTe,GaAs, C (diamond), and ZnO, and two neutron converter materials,10B and 6LiF. We determine the minimum semiconductor thickness needed to achieve maximum neutron detection efficiency. By keeping the semiconductor thickness to a minimum, gamma rejection is kept as high as possible. In this way, we optimize detector performance for different thin-film semiconductor materials.

  2. The Effect of Personalization on Smartphone-Based Fall Detectors

    PubMed Central

    Medrano, Carlos; Plaza, Inmaculada; Igual, Raúl; Sánchez, Ángel; Castro, Manuel

    2016-01-01

    The risk of falling is high among different groups of people, such as older people, individuals with Parkinson's disease or patients in neuro-rehabilitation units. Developing robust fall detectors is important for acting promptly in case of a fall. Therefore, in this study we propose to personalize smartphone-based detectors to boost their performance as compared to a non-personalized system. Four algorithms were investigated using a public dataset: three novelty detection algorithms—Nearest Neighbor (NN), Local Outlier Factor (LOF) and One-Class Support Vector Machine (OneClass-SVM)—and a traditional supervised algorithm, Support Vector Machine (SVM). The effect of personalization was studied for each subject by considering two different training conditions: data coming only from that subject or data coming from the remaining subjects. The area under the receiver operating characteristic curve (AUC) was selected as the primary figure of merit. The results show that there is a general trend towards the increase in performance by personalizing the detector, but the effect depends on the individual being considered. A personalized NN can reach the performance of a non-personalized SVM (average AUC of 0.9861 and 0.9795, respectively), which is remarkable since NN only uses activities of daily living for training. PMID:26797614

  3. The Effect of Personalization on Smartphone-Based Fall Detectors.

    PubMed

    Medrano, Carlos; Plaza, Inmaculada; Igual, Raúl; Sánchez, Ángel; Castro, Manuel

    2016-01-18

    The risk of falling is high among different groups of people, such as older people, individuals with Parkinson's disease or patients in neuro-rehabilitation units. Developing robust fall detectors is important for acting promptly in case of a fall. Therefore, in this study we propose to personalize smartphone-based detectors to boost their performance as compared to a non-personalized system. Four algorithms were investigated using a public dataset: three novelty detection algorithms--Nearest Neighbor (NN), Local Outlier Factor (LOF) and One-Class Support Vector Machine (OneClass-SVM)--and a traditional supervised algorithm, Support Vector Machine (SVM). The effect of personalization was studied for each subject by considering two different training conditions: data coming only from that subject or data coming from the remaining subjects. The area under the receiver operating characteristic curve (AUC) was selected as the primary figure of merit. The results show that there is a general trend towards the increase in performance by personalizing the detector, but the effect depends on the individual being considered. A personalized NN can reach the performance of a non-personalized SVM (average AUC of 0.9861 and 0.9795, respectively), which is remarkable since NN only uses activities of daily living for training.

  4. The Effect of Personalization on Smartphone-Based Fall Detectors.

    PubMed

    Medrano, Carlos; Plaza, Inmaculada; Igual, Raúl; Sánchez, Ángel; Castro, Manuel

    2016-01-01

    The risk of falling is high among different groups of people, such as older people, individuals with Parkinson's disease or patients in neuro-rehabilitation units. Developing robust fall detectors is important for acting promptly in case of a fall. Therefore, in this study we propose to personalize smartphone-based detectors to boost their performance as compared to a non-personalized system. Four algorithms were investigated using a public dataset: three novelty detection algorithms--Nearest Neighbor (NN), Local Outlier Factor (LOF) and One-Class Support Vector Machine (OneClass-SVM)--and a traditional supervised algorithm, Support Vector Machine (SVM). The effect of personalization was studied for each subject by considering two different training conditions: data coming only from that subject or data coming from the remaining subjects. The area under the receiver operating characteristic curve (AUC) was selected as the primary figure of merit. The results show that there is a general trend towards the increase in performance by personalizing the detector, but the effect depends on the individual being considered. A personalized NN can reach the performance of a non-personalized SVM (average AUC of 0.9861 and 0.9795, respectively), which is remarkable since NN only uses activities of daily living for training. PMID:26797614

  5. Predicting Ground Illuminance

    NASA Astrophysics Data System (ADS)

    Lesniak, Michael V.

    2014-01-01

    Our Sun outputs 3.85 × 1026 W of radiation, of which ≈37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather. Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types. Ground illuminance data from an observing run at the White Sands missile range were obtained from the United Kingdom Meteorology Office. Based on available weather reports, five days of clear sky observations were selected. These data are compared to the predictions of the two models. We find that neither of the models provide an accurate treatment during twilight conditions when the Sun is at or a few degrees below the horizon. When the Sun is above the horizon, the Shapiro model straddles the observed data, ranging between 90% and 120% of the recorded illuminance. During the same times, the Brown model is between 70% and 90% of the

  6. The MAPS based PXL vertex detector for the STAR experiment

    NASA Astrophysics Data System (ADS)

    Contin, G.; Anderssen, E.; Greiner, L.; Schambach, J.; Silber, J.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Vu, C.; Wieman, H.; Woodmansee, S.

    2015-03-01

    The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 μ m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m2. Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 μ m pixel pitch, providing a sensitive area of ~ 3.8 cm2. The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 μ s readout time and 170 mW/cm2 power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run.In addition to a detailed description of the detector characteristics, the experience of the first months of data taking will be presented in this paper, with a particular focus on sensor threshold calibration, latch-up protection procedures and general system operations aimed at stabilizing the running conditions. Issues faced during the 2014 run will be discussed together with the implemented solutions. A preliminary analysis of the detector performance

  7. A signal normalization technique for illumination-based synchronization of 1,000-fps real-time vision sensors in dynamic scenes.

    PubMed

    Hou, Lei; Kagami, Shingo; Hashimoto, Koichi

    2010-01-01

    To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. In this paper, an illumination-based synchronization derived from the phase-locked loop (PLL) mechanism based on the signal normalization method is proposed and evaluated. To eliminate the system dependency due to the amplitude fluctuation of the reference illumination, which may be caused by the moving objects or relative positional distance change between the light source and the observed objects, the fluctuant amplitude of the reference signal is normalized framely by the estimated maximum amplitude between the reference signal and its quadrature counterpart to generate a stable synchronization in highly dynamic scenes. Both simulated results and real world experimental results demonstrated successful synchronization result that 1,000-Hz frame rate vision sensors can be successfully synchronized to a LED illumination or its reflected light with satisfactory stability and only 28-μs jitters.

  8. Photon-Noise Limited Direct Detector Based on Disorder-Controlled Electron Heating

    NASA Technical Reports Server (NTRS)

    Karasik, B.; McGrath, W.; Gershenson, M.; Sergeev, A.

    1999-01-01

    We present a new concept for a hot-electron direct detector (HEDD) capable of counting single millimeter-wave photons. The detector is based on a transition edge sensor (1-meu size bridge) made form a disordered superconducting film.

  9. A field lens design of illumination and projection optics for dynamic infrared scene generator based on DMD

    NASA Astrophysics Data System (ADS)

    Jian, Yi; Pan, Zhaoxin

    2012-10-01

    Dynamic infrared scene generator is an essential means for testing the performance of infrared imaging systems. DMD(Digital Micromirror Device) is widely adopted as spatial light modulator for the dynamic infrared scene generator. We present a new optical architecture for illumination and projection, in which a relatively large aperture lens both contributing focal power in illumination and projection. At present, the rotation of each micromirror array of DMD is limited to +/-12 deg. The narrow tilt angle of micromirror of DMD makes it difficult to separate the incident and the reflected light beams when telecentric architecture is applied. A TIR (total internal reflection) prism is commonly introduced to avoid this interference of illumination system and projection system. In this article, a field lens is introduced to replace the TIR prism to do the separation, in respect that the TIR prism for infrared is not available normally and has a great energy loss during the beams travelling through the prism. The matching of exit pupil of illumination and entrance pupil of projection is a basic requirement for DMD illumination and projection system design. This lens reused structure makes exit pupil of illumination and entrance pupil of projection at infinity from the device surface, since we locate the position of stops of illumination and projection system at the focal plane of the field lens. This architecture with fold mirror added could offer a relatively compact optical mechanic structure.

  10. Active illumination based 3D surface reconstruction and registration for image guided medialization laryngoplasty

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Lee, Sang-Joon; Hahn, James K.; Bielamowicz, Steven; Mittal, Rajat; Walsh, Raymond

    2007-03-01

    The medialization laryngoplasty is a surgical procedure to improve the voice function of the patient with vocal fold paresis and paralysis. An image guided system for the medialization laryngoplasty will help the surgeons to accurately place the implant and thus reduce the failure rates of the surgery. One of the fundamental challenges in image guided system is to accurately register the preoperative radiological data to the intraoperative anatomical structure of the patient. In this paper, we present a combined surface and fiducial based registration method to register the preoperative 3D CT data to the intraoperative surface of larynx. To accurately model the exposed surface area, a structured light based stereo vision technique is used for the surface reconstruction. We combined the gray code pattern and multi-line shifting to generate the intraoperative surface of the larynx. To register the point clouds from the intraoperative stage to the preoperative 3D CT data, a shape priori based ICP method is proposed to quickly register the two surfaces. The proposed approach is capable of tracking the fiducial markers and reconstructing the surface of larynx with no damage to the anatomical structure. We used off-the-shelf digital cameras, LCD projector and rapid 3D prototyper to develop our experimental system. The final RMS error in the registration is less than 1mm.

  11. Illuminant color estimation based on pigmentation separation from human skin color

    NASA Astrophysics Data System (ADS)

    Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi

    2015-03-01

    Human has the visual system called "color constancy" that maintains the perceptive colors of same object across various light sources. The effective method of color constancy algorithm was proposed to use the human facial color in a digital color image, however, this method has wrong estimation results by the difference of individual facial colors. In this paper, we present the novel color constancy algorithm based on skin color analysis. The skin color analysis is the method to separate the skin color into the components of melanin, hemoglobin and shading. We use the stationary property of Japanese facial color, and this property is calculated from the components of melanin and hemoglobin. As a result, we achieve to propose the method to use subject's facial color in image and not depend on the individual difference among Japanese facial color.

  12. Micro flame-based detector suite for universal gas sensing.

    SciTech Connect

    Hamilton, Thomas Warren; Washburn, Cody M.; Moorman, Matthew Wallace; Manley, Robert George; Lewis, Patrick Raymond; Miller, James Edward; Clem, Paul Gilbert; Shelmidine, Gregory J.; Manginell, Ronald Paul; Okandan, Murat

    2005-11-01

    A microflame-based detector suit has been developed for sensing of a broad range of chemical analytes. This detector combines calorimetry, flame ionization detection (FID), nitrogen-phosphorous detection (NPD) and flame photometric detection (FPD) modes into one convenient platform based on a microcombustor. The microcombustor consists in a micromachined microhotplate with a catalyst or low-work function material added to its surface. For the NPD mode a low work function material selectively ionizes chemical analytes; for all other modes a supported catalyst such as platinum/alumina is used. The microcombustor design permits rapid, efficient heating of the deposited film at low power. To perform calorimetric detection of analytes, the change in power required to maintain the resistive microhotplate heater at a constant temperature is measured. For FID and NPD modes, electrodes are placed around the microcombustor flame zone and an electrometer circuit measures the production of ions. For FPD, the flame zone is optically interrogated to search for light emission indicative of deexcitation of flame-produced analyte compounds. The calorimetric and FID modes respond generally to all hydrocarbons, while sulfur compounds only alarm in the calorimetric mode, providing speciation. The NPD mode provides 10,000:1 selectivity of nitrogen and phosphorous compounds over hydrocarbons. The FPD can distinguish between sulfur and phosphorous compounds. Importantly all detection modes can be established on one convenient microcombustor platform, in fact the calorimetric, FID and FPD modes can be achieved simultaneously on only one microcombustor. Therefore, it is possible to make a very universal chemical detector array with as little as two microcombustor elements. A demonstration of the performance of the microcombustor in each of the detection modes is provided herein.

  13. Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources

    NASA Astrophysics Data System (ADS)

    Narendran, Nadarajah; Maliyagoda, Nishantha; Deng, Lei; Pysar, Richard M.

    2001-12-01

    The rapid development of high-brightness light emitting diodes (LEDs) has made this technology a potential candidate for architectural lighting applications. There are two distinct approaches for creating white light. The first is combining blue LEDs with a phosphor and the second is mixing monochromatic LEDs in appropriate proportions. This manuscript presents some of the critical issues involved in creating a good quality, stable white light source using the color mixture approach for LEDs. Some sample calculations for mixing different colored LEDs to obtain specific color appearance (CCT) and color rendering properties (CRI) are shown in this paper. Calculations show that the CRI values of mixed-color white LEDs can be changed significantly by shifting the wavelengths of the LEDs by a small amount. It is also shown that small amplitude and wavelength shifts can cause perceivable color differences in the mixed-color white LEDs. Therefore, circuits must be properly designed to power these types of white light sources so that they are acceptable for architectural lighting applications. Because the light output variation as a function of time at different drive currents was not readily available, an experiment was conducted to quantify the light output change as a function of time for red, green, blue and white 5-mm LEDs, at fiber different constant current values (20,30,40,50 and 50 mA). The light output of the different colored LEDs depreciated at different rates. The depreciation rates increased in the following order: red, green, blue, and white. Furthermore, the light output depreciation increased with increasing drive current. The red LEDs has the least amount of light output depreciation rate variation as function of drive current, green and blue LEDs ranked after that, and white LEDs had the most variation for the same drive current variation. A group of twelve new high-powered phosphor-based white LEDs were tested at their rated current, (which is much

  14. Real-time 3D measurement based on structured light illumination considering camera lens distortion

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, ShiLing

    2014-12-01

    Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. In traditional 3-D measurement system where the processing time is not a key factor, camera lens distortion correction is performed directly. However, for the time-critical high-speed applications, the time-consuming correction algorithm is inappropriate to be performed directly during the real-time process. To cope with this issue, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. And a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the merit of the LUT, the 3-D reconstruction can be achieved at 92.34 frames per second.

  15. Phylogeny-based developmental analyses illuminate evolution of inflorescence architectures in dogwoods (Cornus s. l., Cornaceae).

    PubMed

    Feng, Chun-Miao; Xiang, Qiu-Yun Jenny; Franks, Robert G

    2011-08-01

    • Inflorescence architecture is important to angiosperm reproduction, but our knowledge of the developmental basis underlying the evolution of inflorescence architectures is limited. Using a phylogeny-based comparative analysis of developmental pathways, we tested the long-standing hypothesis that umbel evolved from elongated inflorescences by suppression of inflorescence branches, while head evolved from umbels by suppression of pedicels. • The developmental pathways of six species of Cornus producing different inflorescence types were characterized by scanning electron microscopy (SEM) and histological analysis. Critical developmental events were traced over the molecular phylogeny to identify evolutionary changes leading to the formation of umbels and heads using methods accounting for evolutionary time and phylogenetic uncertainty. • We defined 24 developmental events describing the developmental progression of the different inflorescence types. The evolutionary transition from paniculate cymes to umbels and heads required alterations of seven developmental events occurring at different evolutionary times. • Our results indicate that heads and umbels evolved independently in Cornus from elongated forms via an umbellate dichasium ancestor and this process involved several independent changes. Our findings shed novel insights into head and umbel evolution concealed by outer morphology. Our work illustrates the importance of combining developmental and phylogenetic data to better define morphological evolutionary processes.

  16. Development of a soil detector based on an optical sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Lihua; Pan, Luan; Li, Minzan; An, Xiaofei

    2008-12-01

    An estimation model of the soil organic matter content has been built based on NIR spectroscopy and a portable soil organic matter detector based on optical sensor is developed. The detector uses a micro processor 89S52 as the Micro Controller Unit (MCU) and consists of an optical system and a control system. The optical system includes a 850nm near-infrared lamp-house, a lamp-house driving-circuit, a Y type optical fiber, a probe, and a photoelectric sensor. The control system includes an amplified circuit, an A/D circuit, a display circuit with LCD, and a storage circuit with USB interface. Firstly the single waveband optical signal from the near-infrared lamp-house is transferred to the surface of the target soil via the incidence fibers. Then the reflected optical signal is collected and transferred to photoelectric sensor, where the optical signal is conveyed to the electrical signal. Subsequently, the obtained electrical signal is processed by 89S52 MCU. Finally, the calculated soil organic matter content is displayed on the LCD and stored in the USB disk. The calibration experiment using the estimation model of the soil organic matter is conducted. The decision coefficient (R2) reaches 0.9839 between the measured data by the soil organic matter sensor and by the laboratory chemistry method.

  17. Block diagonal representations for covariance based anomalous change detectors

    SciTech Connect

    Matsekh, Anna; Theiler, James

    2009-01-01

    Change detection methods are of crucial importance in many remote sensing applications such as monitoring and surveillance, where the goal is to identify and separate changes of interest from pervasive changes inevitably present in images taken at different times and in different environmental and illumination conditions. Anomalous change detection (ACD) methods aim to identify rare, unusual, or anomalous changes among the changes of interest. Covariance-based ACD methods provide a powerful tool for detection of unusual changes in hyper-spectral images. In this paper we study the properties of the eigenvalue spectra of a family of ACD matrices in order to better understand the algebraic and numerical behavior of the covariance-based quadratic ACD methods. We propose to use singular vectors of covariance matrices of two hyper-spectral images in whitened coordinates for obtaining block-diagonal representations of the matrices of quadratic ACD methods. SVD transformation gives an equivalent representation of ACD matrices in compact block-diagonal form. In the paper we show that the eigenvalue spectrum of a block-diagonal ACD matrix can be identified analytically as a function of the singular value spectrum of the corresponding covariance matrix in whitened coordinates.

  18. Photon-counting detectors for space-based laser receivers

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Yang, Guangning; Li, Steven X.; Sun, Xiaoli

    2010-01-01

    Photon-counting detectors are required for numerous NASA future space-based laser receivers including science instruments and free-space optical communication terminals. Silicon avalanche photodiode (APD) single photon counting modules (SPCMs) are used in the Geoscience Laser Altimeter System (GLAS) on Ice, Cloud, and land Elevation Satellite (ICESat) launched in 2003, currently in orbit measuring the Earth surface elevation and atmosphere backscattering. To measure cloud and aerosol backscattering, the SPCMs detect the GLAS laser light at 532-nm wavelength, with quantum efficiencies of 60 to 70% and maximum count rates greater than 13 million per second. The performance of the SPCMs has been monitored since ICESat launch on January 12, 2003. There has been no measurable change in the quantum efficiency, linearity or after-pulsing. The detector dark counts rates monitored while the spacecraft was in the dark side of the Earth have increased linearly at about 60 counts/s per day due to space radiation damage. As the ICESat mission nears completion, we have proposed ground-to-space optical and quantum communication experiments to utilize the on-orbit 1-meter optical receiver telescope with multiple SPCMs in the focal plane. NASA is preparing a follow-on mission to ICESat, called ICESat-2, with a launch date of late 2014. The major candidate photon-counting detectors under evaluation for ICESat-2 include 532 nm and 1064 nm wavelength-sensitive photomultiplier tubes and Geiger-mode avalanche photodiode arrays. Key specifications are high maximum count rate, detection efficiency, photon number resolution, radiation tolerance, power consumption, operating temperature and reliability. Future NASA science instruments and free-space laser communication terminals share a number of these requirements.

  19. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; Fang, Ning; Ho Kang, Seong

    2015-06-01

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending on the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable sub-diffraction limit images.

  20. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    DOE PAGESBeta

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; Fang, Ning; Ho Kang, Seong

    2015-06-15

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less

  1. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    SciTech Connect

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; Fang, Ning; Ho Kang, Seong

    2015-06-15

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending on the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.

  2. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    PubMed Central

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; Fang, Ning; Ho Kang, Seong

    2015-01-01

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending on the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable sub-diffraction limit images. PMID:26074302

  3. Advantages of gated silicon single photon detectors

    NASA Astrophysics Data System (ADS)

    Legré, Matthieu; Lunghi, Tommaso; Stucki, Damien; Zbinden, Hugo

    2013-05-01

    We present gated silicon single photon detectors based on two commercially available avalanche photodiodes (APDs) and one customised APD from ID Quantique SA. This customised APD is used in a commercially available device called id110. A brief comparison of the two commercial APDs is presented. Then, the charge persistence effect of all of those detectors that occurs just after a strong illumination is shown and discussed.

  4. Gamma detectors based on high pressure xenon: their development and application

    NASA Astrophysics Data System (ADS)

    Ulin, Sergey E.; Dmitrenko, Valery V.; Grachev, V. M.; Uteshev, Z. M.; Vlasic, K. F.; Chernysheva, I. V.; Duhvalov, A. G.; Kotler, F. G.; Pushkin, K. N.

    2004-01-01

    Various modifications of xenon detectors and their parameters in comparison with gamma-detectors of other types are considered. Prospects of xenon detectors' applications in gamma-spectroscopy based on experimental results are discussed including detection and control of radioactive and fissile materials displacement, definition of uranium enrichment rate, and measurements of nuclear reactor radioactive gas waste concentration. Possibilities for xenon detector use for environmental control and measurement of cosmic gamma radiation on orbital stations are considered.

  5. Gamma detectors based on high-pressure xenon: their development and application

    NASA Astrophysics Data System (ADS)

    Ulin, Sergey E.; Dmitrenko, Valery V.; Grachev, V. M.; Uteshev, Z. M.; Vlasik, K. F.; Chernysheva, I. V.; Dukhvalov, A. G.; Kotler, F. G.; Pushkin, K. N.

    2004-10-01

    Various modifications of xenon detectors and their parameters in comparison with gamma-detectors of other types are considered. Prospects of xenon detectors' applicatins in gamma-spectroscopy based on experimental results are discussed including detection and control of radioactive and fissile materials displacement, definition of uranium enrichment rate, and measurements of nuclear reactor radioactive gas waste concentration. Possibilities for xenon detector use for environmental control and measurement of cosmic gamma radiation on orbital stations are considered.

  6. [Design and Implementation of the Multi-Channel Meridian Impedance Detector Based on Current Driving].

    PubMed

    Cao, Chenghu; Chen, Xin

    2015-03-01

    A multi-channel meridian impedance detector used to the 3D meridian visualization positioning is presented. The detector is designed with the four-electrode method based on current driving according to low impedance of the meridian. The detector consists of power-supply module, sinusoidal signal generator, voltage-controlled current source, isolation amplifiers, filter circuit, amplitude detectors and so on. PMID:26204737

  7. Lunar South Pole Illumination

    NASA Video Gallery

    Simulated illumination conditions over the lunar South Pole region, from ~80°S to the pole. The movie runs for 28 days, centered on the LCROSS impact date on October 9th, 2009. The illumination ca...

  8. Time-based position estimation in monolithic scintillator detectors

    NASA Astrophysics Data System (ADS)

    Tabacchini, Valerio; Borghi, Giacomo; Schaart, Dennis R.

    2015-07-01

    Gamma-ray detectors based on bright monolithic scintillation crystals coupled to pixelated photodetectors are currently being considered for several applications in the medical imaging field. In a typical monolithic detector, both the light intensity and the time of arrival of the earliest scintillation photons can be recorded by each of the photosensor pixels every time a gamma interaction occurs. Generally, the time stamps are used to determine the gamma interaction time while the light intensities are used to estimate the 3D position of the interaction point. In this work we show that the spatio-temporal distribution of the time stamps also carries information on the location of the gamma interaction point and thus the time stamps can be used as explanatory variables for position estimation. We present a model for the spatial resolution obtainable when the interaction position is estimated using exclusively the time stamp of the first photon detected on each of the photosensor pixels. The model is shown to be in agreement with experimental measurements on a 16 mm  ×  16 mm  ×  10 mm LSO : Ce,0.2%Ca crystal coupled to a digital photon counter (DPC) array where a spatial resolution of 3 mm (root mean squared error) is obtained. Finally we discuss the effects of the main parameters such as scintillator rise and decay time, light output and photosensor single photon time resolution and pixel size.

  9. Illicit material detector based on gas sensors and neural networks

    NASA Astrophysics Data System (ADS)

    Grimaldi, Vincent; Politano, Jean-Luc

    1997-02-01

    In accordance with its missions, le Centre de Recherches et d'Etudes de la Logistique de la Police Nationale francaise (CREL) has been conducting research for the past few years targeted at detecting drugs and explosives. We have focused our approach of the underlying physical and chemical detection principles on solid state gas sensors, in the hope of developing a hand-held drugs and explosives detector. The CREL and Laboratory and Scientific Services Directorate are research partners for this project. Using generic hydrocarbon, industrially available, metal oxide sensors as illicit material detectors, requires usage precautions. Indeed, neither the product's concentrations, nor even the products themselves, belong to the intended usage specifications. Therefore, the CREL is currently investigating two major research topics: controlling the sensor's environment: with environmental control we improve the detection of small product concentration; determining detection thresholds: both drugs and explosives disseminate low gas concentration. We are attempting to quantify the minimal concentration which triggers detection. In the long run, we foresee a computer-based tool likely to detect a target gas in a noisy atmosphere. A neural network is the suitable tool for interpreting the response of heterogeneous sensor matrix. This information processing structure, alongside with proper sensor environment control, will lessen the repercussions of common MOS sensor sensitivity characteristic dispersion.

  10. Lights illuminate surfaces superluminally

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.; Zhong, Qi; Lilleskov, Elias

    2016-07-01

    When a light bulb is turned on, light moves away from it at speed c, by definition. When light from this bulb illuminates a surface, however, this illumination front is not constrained to move at speed c. A simple proof is given that this illumination front always moves faster than c. Generalized, when any compact light source itself varies, this information spreads across all of the surfaces it illuminates at speeds faster than light.

  11. Application of Wireless Intelligent Control System for HPS Lamps and LEDs Combined Illumination in Road Tunnel

    PubMed Central

    Lai, Jinxing; Qiu, Junling; Chen, Jianxun; Wang, Yaqiong; Fan, Haobo

    2014-01-01

    Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel. PMID:25587266

  12. Front-side illuminated CdS/CdSe quantum dots co-sensitized solar cells based on TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Guan, Xiao-Fang; Huang, Shu-Qing; Zhang, Quan-Xin; Shen, Xi; Sun, Hui-Cheng; Li, Dong-Mei; Luo, Yan-Hong; Yu, Ri-Cheng; Meng, Qing-Bo

    2011-11-01

    We fabricated a front-side illuminated CdS/CdSe quantum dots co-sensitized solar cell based on TiO2 nanotube arrays. The freestanding TiO2 nanotube arrays were first detached from anodic oxidized Ti foils and then transferred to the fluorine-doped tin oxide to form photoanodes. An opaque Cu2S with high electrochemical activity was used as the counter electrode. A photovoltaic conversion efficiency as high as 3.01% under one sun illumination has been achieved after optimizing the deposition time of CdSe quantum dots and the length of the TiO2 nanotube arrays. It is observed that the power conversion efficiency of quantum dots sensitized solar cells from the front-side illumination mode (3.01%) is much higher than that of the back-side illumination mode (1.32%) owing to the poor catalytic activity of Pt to polysulfide electrolytes and light absorption by the electrolytes for the latter.

  13. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  14. Digital micro-mirror device-based detector for particle-sizing instruments via Fraunhofer diffraction.

    PubMed

    Zhou, Jiayi; Cao, Zhang; Xie, Heng; Xu, Lijun

    2015-06-20

    In this paper, a digital micro-mirror device (DMD)-based detector is proposed for the detection of light intensity in particle-sizing instruments using Fraunhofer diffraction. The detector consists of only one photodiode, which eliminates the distortions caused by the nonuniformity of the detector arrays used in traditional instruments. The center of the diffraction pattern was accurately located to distribute the optimized arc-shaped mirror arrays for the intensity detection. Both simulated and experimental results showed that the proposed detector was superior to the classical one as it was less sensitive to noise than the detector arrays used in traditional systems.

  15. VME-based data acquisition system for the India-based Neutrino Observatory prototype detector

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Chandratre, V. B.; Dasgupta, S.; Datar, V. M.; Kalmani, S. D.; Lahamge, S. M.; Mondal, N. K.; Nagaraj, P.; Pal, S.; Rao, S. K.; Redij, A.; Samuel, D.; Saraf, M. N.; Satyanarayana, B.; Shinde, R. R.; Upadhya, S. S.

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration has proposed to build a 50 kton Iron-Calorimeter (ICAL) to study neutrino oscillations. About 28,800 Resistive Plate Chambers will be used as active detector elements in this experiment. Preliminary studies are currently underway and as a part of it, a prototype detector was developed which now serves as a cosmic-ray telescope and as a test-bench to study the indigenously built RPCs. A VME-based data acquisition system was designed for this prototype system. Modern software tools were used in the designing of the DAQ software. The design and development of this DAQ system are discussed.

  16. Dynamic template-matching-based processing for handheld landmine detector

    NASA Astrophysics Data System (ADS)

    Ho, K. C.; Gader, Paul D.

    2003-09-01

    This paper investigates the use of landmine templates in the GPR data to improve the detection accuracy for a hand-held mine detection unit. The proposed algorithm applies to the discrimination operating mode after the initial detection from the search mode. The proposed template matching-based algorithm extracts the mine templates from the data acquired during the first few sweeps, and correlates the templates from the data at subsequent sweeps to enhance the detection of landmine. The proposed technique does not have a time lag in producing detection values and a detection value is generated at each sample location. Experimental results show that the proposed template matching-based detector is able to increase the detection especially for low-metal anti-personnel mines. Based on the experiment performed over the data set collected at a test site, at 95% Pd, the proposed algorithm reduces the probability of false alarms by 66% for the low-metal anti-personnel mines and 30% for the low-metal anti-tank mines.

  17. Polar-grids based source-target mapping construction method for designing freeform illumination system for a lighting target with arbitrary shape.

    PubMed

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2015-02-23

    The freeform optical system plays a key role in illumination engineering, and several methods have been reported to manage the design of such system. In this paper, an approach to generate the polar-grids based flux transportation mapping for an arbitrarily-shaped target is proposed based on the conventional variable separation method. The source emitting grid is divided along the azimuth angle and the zenith angle respectively under the spherical coordinate system. Then, the target grid is achieved by solving the flux integral equations in polar coordinates using separation of variables method. When establishing the target grid along the polar radius, a strategy based on uniformly scaling down the external contour of the target is introduced. According to the mapping, a smooth freeform surface is then generated using the geometric construction method according to Snell's law. Finally, an iterative feedback process is adopted to compensate the deterioration of the target distribution caused by surface construction errors and the extension of a real source. Based on this method, a series of freeform lenses are designed for a 1 × 1 mm(2) LED source to generate uniform, Gaussian and multiple-rings illumination distributions within different target regions. High-performance optical systems with the light utilization efficiency η over 0.8 and the relative standard deviation (RSD) of the simulated illumination distribution less than 0.1 are obtained simultaneously for all the cases. PMID:25836468

  18. Characterization of the KID-Based Light Detectors of CALDER

    NASA Astrophysics Data System (ADS)

    Casali, N.; Bellini, F.; Cardani, L.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2016-07-01

    The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution (CALDER) project is the development of light detectors with active area of 5 × 5 cm2 and noise energy resolution smaller than 20 eV RMS, implementing phonon-mediated kinetic inductance detectors. The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double read-out of the light and the heat released by particles interacting in the bolometers. In this work, we present the characterization of the first light detectors developed by CALDER. We describe the analysis tools to evaluate the resonator parameters (resonant frequency and quality factors) taking into account simultaneously all the resonance distortions introduced by the read-out chain (as the feed-line impedance and its mismatch) and by the power stored in the resonator itself. We detail the method for the selection of the optimal point for the detector operation (maximizing the signal-to-noise ratio). Finally, we present the response of the detector to optical pulses in the energy range of 0{-}30 keV.

  19. Study of a nTHGEM-based thermal neutron detector

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhou, Jian-Rong; Wang, Xiao-Dong; Xiong, Tao; Zhang, Ying; Xie, Yu-Guang; Zhou, Liang; Xu, Hong; Yang, Gui-An; Wang, Yan-Feng; Wang, Yan; Wu, Jin-Jie; Sun, Zhi-Jia; Hu, Bi-Tao

    2016-07-01

    With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in 3He gas supply, research on new types of neutron detector as an alternative to 3He is a research hotspot in the field of particle detection. GEM (Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic nTHGEM (neutron THick GEM) for neutron detection. The performance of the nTHGEM working in different Ar/CO2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single nTHGEM has been tested for 2-D imaging using a 252Cf neutron source. The key parameters of the performance of the nTHGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector. Supported by National Natural Science Foundation of China (11127508, 11175199, 11205253, 11405191), Key Laboratory of Neutron Physics, CAEP (2013DB06, 2013BB04) and CAS (YZ201512)

  20. Silicon photomultiplier based photon detector module as a detector of Cherenkov photons

    NASA Astrophysics Data System (ADS)

    Korpar, Samo; Chagani, Hassan; Dolenec, Rok; Križan, Peter; Pestotnik, Rok; Stanovnik, Aleš

    2010-11-01

    We have constructed and tested a module, consisting of 64 (= 8×8) Hamamatsu MPPC S10362-11-100P silicon photomultipliers, for position sensitive detection of Cherenkov photons. Suitable light concentrators were produced to increase the efficiency and to improve the signal to noise ratio. The results of our measurements indicate that the performance of such a Cherenkov counter with aerogel radiator could meet the requirements of particle identification at the foreseen upgraded Belle detector.

  1. Information encryption and compression based on random polarization modulation in a joint transform correlator scheme under vector beam illumination

    NASA Astrophysics Data System (ADS)

    Lin, Chao; Shen, Xueju; Hu, Wengang

    2015-07-01

    We demonstrate that a vectorial beam with a random polarization state can be used as the illumination source in a joint transform correlator configuration to encrypt and compress images. Illumination light featuring both space-variant phase and a space-variant polarization distribution can be generated using a common-path interferometric arrangement. A hybrid joint power spectrum is registered using an array of linear micro-polarizers that is closely attached to a charge-coupled device in the recording plane. Introduction of the vectorial beam into a security application enables simultaneous manipulation of multiple light wave parameters, which will significantly enlarge the key dimensions and key space of the cryptosystem. This vectorial optical cryptosystem may also provoke interest in probing optical vector encryption methods.

  2. Electronics and data acquisition system for the ICAL prototype detector of India-based neutrino observatory

    NASA Astrophysics Data System (ADS)

    Behere, A.; Bhuyan, M.; Chandratre, V. B.; Dasgupta, S.; Datar, V. M.; Kalmani, S. D.; Lahamge, S. M.; Mondal, N. K.; Mukhopadhyay, P. K.; Nagaraj, P.; Nagesh, B. K.; Pal, S.; Rao, Shobha K.; Samuel, D.; Saraf, M. N.; Satyanarayana, B.; Shastrakar, R. S.; Shinde, R. R.; Sudheer, K. M.; Upadhya, S. S.; Verma, P.

    2013-02-01

    The India-based Neutrino Observatory (INO) collaboration has proposed to build a 50 kton magnetized Iron Calorimeter (ICAL) detector with the primary goal to study neutrino oscillations, employing Resistive Plate Chambers (RPCs) as active detector elements. A prototype of the ICAL detector has been built in order to develop and characterize the intrinsic sub-systems, like RPCs, gas system, electronics and data acquisition system, etc. This paper describes in detail the readout electronics as well as the VME-based data acquisition system for the prototype detector.

  3. Simulation for Iron Calorimeter prototype detector of India-based Neutrino Observatory

    SciTech Connect

    Ghosh, Tapasi; Chattopadhyay, Subhasis

    2010-03-30

    The India-based Neutrino Observatory (INO) collaboration is proposing to build a 50 kton magnetized iron calorimeter (ICAL) detector in an underground laboratory to be located in South India. As a first step towards building the ICAL detector, a 35 ton prototype of the same design has been set up on the surface to track cosmic ray muons. This paper discusses the prototype detector geometry simulation by GEANT4, and the detector response to the cosmic muons. We have developed a track fitting procedure based on the Kalman Filter technique for the prototype detector when the detector is exposed to single muon tracks. The relevant track parameters i.e., momentum, direction and charge are reconstructed and analyzed. Finally we show the resolution of reconstructed momenta.

  4. An LFMCW detector with new structure and FRFT based differential distance estimation method.

    PubMed

    Yue, Kai; Hao, Xinhong; Li, Ping

    2016-01-01

    This paper describes a linear frequency modulated continuous wave (LFMCW) detector which is designed for a collision avoidance radar. This detector can estimate distance between the detector and pedestrians or vehicles, thereby it will help to reduce the likelihood of traffic accidents. The detector consists of a transceiver and a signal processor. A novel structure based on the intermediate frequency signal (IFS) is designed for the transceiver which is different from the traditional LFMCW transceiver using the beat frequency signal (BFS) based structure. In the signal processor, a novel fractional Fourier transform (FRFT) based differential distance estimation (DDE) method is used to detect the distance. The new IFS based structure is beneficial for the FRFT based DDE method to reduce the computation complexity, because it does not need the scan of the optimal FRFT order. Low computation complexity ensures the feasibility of practical applications. Simulations are carried out and results demonstrate the efficiency of the detector designed in this paper. PMID:27386366

  5. Millikelvin cryocooler for space- and ground-based detector systems

    NASA Astrophysics Data System (ADS)

    Bartlett, J.; Hardy, G.; Hepburn, I.; Milward, S.; Coker, P.; Theobald, C.

    2012-09-01

    This paper describes the design of a continuously operating millikelvin cryocooler (mKCC) and its origins. It takes heritage from the double adiabatic demagnetization refrigerator (dADR) which was built for the European Space Agency (ESA). The compact design is based on a tandem configuration continuous ADR which alternately cycles two dADRs. The mKCC is a single module (dimensions 355 x 56 x120 mm) which operates from a 4 K bath (liquid or cryocooler) and provides an interface to the user which is settable from < 100 mK to 4 K. Predicted maximum cooling power at 100 mK is 7μW. It will use only single crystal tungsten magnetoresistive heat switches (the first ADR cooler to do so) and the measured thermal performance of these heat switches is presented. The mKCC uses ten shielded 2 Tesla superconducting magnets capable of ramping to full field in 20 - 30 seconds. This has been demonstrated in the lab and the results are given for the successful performance of a prototype Chromium Potassium Alum (CPA) pill using one of these magnets. The mKCC has been designed to be fully automated and user friendly with the aim of expanding the use of millikelvin cryogenics and providing a good testing and operating platform for detector systems.

  6. Low Power Adder Based Digital Filter for QRS Detector

    PubMed Central

    Murali, L.; Chitra, D.; Manigandan, T.

    2014-01-01

    Most of the Biomedical applications use dedicated processors for the implementation of complex signal processing. Among them, sensor network is also a type, which has the constraint of low power consumption. Since the processing elements are the most copiously used operations in the signal processors, the power consumption of this has the major impact on the system level application. In this paper, we introduce low power concept of transistor stacking to reduce leakage power; and new architectures based on stacking to implement the full adder and its significance at the digital filter level for QRS detector are implemented. The proposed concept has lesser leakage power at the adder as well as filter level with trade-off in other quality metrics of the design. This enabled the design to be dealt with as the low-power corner and can be made adaptable to any level of hierarchical abstractions as per the requirement of the application. The proposed architectures are designed, modeled at RTL level using the Verilog-HDL, and synthesized in Synopsys Design Compiler by mapping the design to 65 nm technology library standard cells. PMID:24895649

  7. Low power adder based digital filter for QRS detector.

    PubMed

    Murali, L; Chitra, D; Manigandan, T

    2014-01-01

    Most of the Biomedical applications use dedicated processors for the implementation of complex signal processing. Among them, sensor network is also a type, which has the constraint of low power consumption. Since the processing elements are the most copiously used operations in the signal processors, the power consumption of this has the major impact on the system level application. In this paper, we introduce low power concept of transistor stacking to reduce leakage power; and new architectures based on stacking to implement the full adder and its significance at the digital filter level for QRS detector are implemented. The proposed concept has lesser leakage power at the adder as well as filter level with trade-off in other quality metrics of the design. This enabled the design to be dealt with as the low-power corner and can be made adaptable to any level of hierarchical abstractions as per the requirement of the application. The proposed architectures are designed, modeled at RTL level using the Verilog-HDL, and synthesized in Synopsys Design Compiler by mapping the design to 65 nm technology library standard cells.

  8. Stochastic resonance-enhanced laser-based particle detector.

    PubMed

    Dutta, A; Werner, C

    2009-01-01

    This paper presents a Laser-based particle detector whose response was enhanced by modulating the Laser diode with a white-noise generator. A Laser sheet was generated to cast a shadow of the object on a 200 dots per inch, 512 x 1 pixels linear sensor array. The Laser diode was modulated with a white-noise generator to achieve stochastic resonance. The white-noise generator essentially amplified the wide-bandwidth (several hundred MHz) noise produced by a reverse-biased zener diode operating in junction-breakdown mode. The gain in the amplifier in the white-noise generator was set such that the Receiver Operating Characteristics plot provided the best discriminability. A monofiber 40 AWG (approximately 80 microm) wire was detected with approximately 88% True Positive rate and approximately 19% False Positive rate in presence of white-noise modulation and with approximately 71% True Positive rate and approximately 15% False Positive rate in absence of white-noise modulation.

  9. MEMS-based infrared detector for body thermometer

    NASA Astrophysics Data System (ADS)

    Yoo, Kum-Pyo; Kim, Yun-Ho; Min, Nam-Ki

    2005-12-01

    Infrared detectors have many application fields. One of those, MEMS based thermopile is attractive for many low-cost commercial and industrial applications, mainly because it does not require cooling for operation and the process technologies are relatively simple. The MEMS thermopile fabricated on a silicon nitride microbridge structure was proposed. Using microbridge rather conventional membrane makes it possible to fabricate much smaller micro thermopile and to reduce heat loss because of small contact area at silicon rim. The bridge material is only composed of Si3N4. The thermocouple was used a poly-Si and an aluminum. The characteristic of electromotive force (EMF) generation was evaluated for various patterns at hot junction. Aluminum thermocouple shape on bridge structure was designed two patterns. One was a square shape and the other shape was a hollow square. The output voltage of hollow square-type electrode was increased in compared with square-type electrode from 3.03uV/°C to 4.609uV/°C at body temperature (37°C). With the same membrane dimensions and the same overall thickness of the chip a thermopile on microbridge is almost 53% smaller a conventional thermopile chip.

  10. The Scientific Potential of Space-Based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.

    The millihertz gravitational wave band can only be accessed with a space-based interferometer, but it is one of the richest in potential sources. Observations in this band have amazing scientific potential. The mergers between massive black holes with mass in the range 104-107M_{⊙}, which are expected to occur following the mergers of their host galaxies, produce strong millihertz gravitational radiation. Observations of these systems will trace the hierarchical assembly of structure in the Universe in a mass range that is very difficult to probe electromagnetically. Stellar mass compact objects falling into such black holes in the centres of galaxies generate detectable gravitational radiation for several years prior to the final plunge and merger with the central black hole. Measurements of these systems offer an unprecedented opportunity to probe the predictions of general relativity in the strong-field and dynamical regime. Millihertz gravitational waves are also generated by millions of ultra-compact binaries in the Milky Way, providing a new way to probe galactic stellar populations. ESA has recognised this great scientific potential by selecting The Gravitational Universe as its theme for the L3 large satellite mission, scheduled for launch in ˜ 2034. In this article we will review the likely sources for millihertz gravitational wave detectors and describe the wide applications that observations of these sources could have for astrophysics, cosmology and fundamental physics.

  11. A course in illumination engineering

    NASA Astrophysics Data System (ADS)

    Koshel, R. John

    2007-09-01

    Illumination engineering is the novel field of more general field of optical design and engineering. A seminar, project-based course has been started at the College of Optical Science, The Univ. of Arizona. Topics include lightpipes, sources, sampling, modeling methods, reflectors, and displays. Guest lecturers from industry provide a wealth of additional content. The goal is to education our next generation of optical designers about this intriguing, complex, yet understudied field. Other goals are to provide training in nonsequential optical design software, connections between experimental data and modeling, and the non-technical aspects of the illumination field.

  12. Prototype of a porous ZnO SPV-based sensor for PCB detection at room temperature under visible light illumination.

    PubMed

    Li, Mingtao; Meng, Guowen; Huang, Qing; Yin, Zhijun; Wu, Mingzai; Zhang, Zhuo; Kong, Mingguang

    2010-08-17

    To detect polychlorinated biphenyls (PCBs), a prototype of a porous ZnO sensor based on the surface photovoltage (SPV) mechanism working under visible light illumination at room temperature has been presented. The SPV of the porous ZnO sensor can be remarkably reduced under visible light illumination after PCB adsorption, and the reduction of amplitude is proportional to the population of adsorbed PCB molecules. We propose that the reduction of SPV response is due to trapping of the electrons in the surface states by the adsorbed PCBs. The lower detection limits of this new prototype sensor reach at least 2.2 micromol/L for PCB29 and 1.1 micromol/L for PCB101, respectively. So, it demonstrates great potential for practical application in trace detection of PCBs.

  13. Airplane Ice Detector Based on a Microwave Transmission Line

    NASA Technical Reports Server (NTRS)

    Ngo, Phong; Arndt, G. Dickey; Carl, James R.

    2004-01-01

    An electronic instrument that could detect the potentially dangerous buildup of ice on an airplane wing is undergoing development. The instrument is based on a microwave transmission line configured as a capacitance probe: at selected spots, the transmission-line conductors are partly exposed to allow any ice and/or liquid water present at those spots to act as predominantly capacitive electrical loads on the transmission line. These loads change the input impedance of the transmission line, as measured at a suitable excitation frequency. Thus, it should be possible to infer the presence of ice and/or liquid water from measurements of the input impedance and/or electrical parameters related to the input impedance. The sensory transmission line is of the microstrip type and thus thin enough to be placed on an airplane wing without unduly disturbing airflow in flight. The sensory spots are small areas from which the upper layer of the microstrip has been removed to allow any liquid water or ice on the surface to reach the transmission line. The sensory spots are spaced at nominal open-circuit points, which are at intervals of a half wavelength (in the transmission line, not in air) at the excitation frequency. The excitation frequency used in the experiments has been 1 GHz, for which a half wavelength in the transmission line is .4 in. (.10 cm). The figure depicts a laboratory prototype of the instrument. The impedance-related quantities chosen for use in this version of the instrument are the magnitude and phase of the scattering parameter S11 as manifested in the in-phase (I ) and quadrature (Q) outputs of the phase detector. By careful layout of the transmission line (including the half-wavelength sensor spacing), one can ensure that the amplitude and phase of the input to the phase detector keep shifting in the same direction as ice forms on one or more of the sensor areas. Although only one transmission-line sensor strip is used in the laboratory version, in a

  14. Performance of a PSPMT based detector for scintimammography.

    PubMed

    Williams, M B; Williams, M B; Goode, A R; Galbis-Reig, V; Majewski, S; Weisenberger, A G; Wojcik, R

    2000-03-01

    In breast scintigraphy, compact detectors with high intrinsic spatial resolution and small inactive peripheries can provide improvements in extrinsic spatial resolution, efficiency and contrast for small lesions relative to larger conventional cameras. We are developing a pixelated small field-of-view gamma camera for scintimammography. Extensive measurements of the imaging properties of a prototype system have been made, including spatial resolution, sensitivity, uniformity of response, geometric linearity and energy resolution. An anthropomorphic torso phantom providing a realistic breast exit gamma spectrum has been used in a qualitative study of lesion detectability. A new type of breast imaging system that combines scintimammography and digital mammography in a single upright unit has also been developed. The system provides automatic co-registration between the scintigram and the digital mammogram, obtained with the breast in a single configuration. Intrinsic spatial resolution was evaluated via calculation of the phase-dependent modulation transfer function (MTF). Measurements of extrinsic spatial resolution, sensitivity and uniformity of response were made for two types of parallel hole collimator using NEMA (National Electrical Manufacturers Association) protocols. Geometric linearity was quantified using a line input and least squares analysis of the measured line shape. Energy resolution was measured for seven different crystal types, and the effectiveness of optical grease coupling was assessed. Exit gamma spectra were obtained using a cadmium zinc telluride based spectrometer. These were used to identify appropriate radioisotope concentrations for the various regions of an anthropomorphic torso phantom, such that realistic scatter conditions could be obtained during phantom measurements. For prone scintimammography, a special imaging table was constructed that permits simultaneous imaging of both breasts, as well as craniocaudal views. A dedicated

  15. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-09-08

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be

  16. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-01-01

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be

  17. Illuminance of neonatal units.

    PubMed

    Robinson, J; Moseley, M J; Fielder, A R

    1990-07-01

    We have measured the illuminance (brightness) of seven neonatal units during both the day and the night. When the units were lit solely by fluorescent tubes the mean illuminance was 348 lux (range 192-690). During the day the mean illuminance was 470 lux (range 236-905). The high dependency regions in four of the seven units were significantly brighter than the corresponding low dependency nurseries at all times. In two of these units there is a policy of reducing the amount of artificial light in the low dependency areas at night, and in these the normal mean illuminance was 50 lux. We have measured the general levels of illumination to which a neonate might be exposed; the ocular exposure to light of a neonate depends, however, on both physical and biological factors and more research is required before an accurate estimate can be made.

  18. Illumination system characterization for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Katrašnik, Jaka; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    Near-infrared hyperspectral imaging is becoming a popular tool in the biomedical field, especially for detection and analysis of different types of cancers, analysis of skin burns and bruises, imaging of blood vessels and for many other applications. As in all imaging systems, proper illumination is crucial to attain optimal image quality that is needed for best performance of image analysis algorithms. In hyperspectral imaging based on filters (AOTF, LCTF and filter wheel) the acquired spectral signature has to be representative in all parts of the imaged object. Therefore, the whole object must be equally well illuminated - without shadows and specular reflections. As there are no restrictions imposed on the material and geometry of the object, the desired object illumination can only be achieved with completely diffuse illumination. In order to minimize shadows and specular reflections in diffuse illumination the light illuminating the object must be spatially, angularly and spectrally uniform. We present and test two diffuse illumination system designs that try to achieve optimal uniformity of the above mentioned properties. The illumination uniformity properties were measured with an AOTF based hyperspectral imaging system utilizing a standard white diffuse reflectance target and a specially designed calibration target for estimating the spatial and angular illumination uniformity.

  19. Development of wide-ranged diamond-based detector unit for gamma radiation measurement

    NASA Astrophysics Data System (ADS)

    Baranova, M. A.; Boyko, A. V.; Chebyshev, S. B.; Cherkashin, I. I.; Kireev, V. P.; Petrov, V. I.

    2016-02-01

    In the article the description of wide-ranged diamond-based detector unit is given. Characteristics of the diamond detector were studied in current and in impulse mode. As well it was studied how detector's sensitivity depends on power doze within the limits from 10-3 to 0,4Gy/h (impulse mode) and from 10-1to 2 104Gy/h (current mode). On the basis of the obtained data it is possible to estimate about the possibility of using the detector to prevent emergency accident on a nuclear power plant and for everyday control at a nuclear power plant.

  20. A Selenium-Based Detector System For Digital Slot-Radiography

    NASA Astrophysics Data System (ADS)

    Hillen, W.; Schiebel, U.; Zaengel, T.

    1988-06-01

    A research system for digital radiography is described, which is based on a selenium detector with capacitive probe readout. The detector, in which a selenium drum is used as the primary image receptor, is exposed by a scanning fan beam. Scatter reduction and primary transmission by slot-radiography as well as the imaging properties of the selenium detector are discussed. The spatial resolution and the noise behaviour of the detector are analysed. The signal-to-noise ratios expressed in terms of noise equivalent quanta and detective quantum efficiency are calculated and compared with competitive systems.

  1. Review of amorphous silicon based particle detectors: the quest for single particle detection

    NASA Astrophysics Data System (ADS)

    Wyrsch, N.; Ballif, C.

    2016-10-01

    Hydrogenated amorphous silicon (a-Si:H) is attractive for radiation detectors because of its radiation resistance and processability over large areas with mature Si microfabrication techniques. While the use of a-Si:H for medical imaging has been very successful, the development of detectors for particle tracking and minimum-ionizing-particle detection has lagged, with almost no practical implementation. This paper reviews the development of various types of a-Si:H-based detectors and discusses their respective achievements and limitations. It also presents more recent developments of detectors that could potentially achieve single particle detection and be integrated in a monolithic fashion into a variety of applications.

  2. Study of aging of nuclear detector based on n-silicon/copper phthalocyanine heterojunction

    SciTech Connect

    Ray, A.; Gupta, S. K.

    2013-02-05

    Nuclear detectors based on n-silicon/copper-phthalocyanine (CuPc) heterojunction were fabricated using thermally evaporated CuPc thin film. These detectors exhibited stable electrical and {alpha}-particle characteristics for prolonged periods of time under ordinary laboratory conditions and also exposing to {alpha}- particles (during {alpha}- spectroscopic measurements). The electrical and alpha particle characteristics of these detectors were studied after a long gap of 3 - 5 years and the best result obtained from one detector (five year old) is reported here. Degradation in electrical and alpha particle characteristics were not found to be very significant over the period.

  3. Flexible infrared detectors based on p-n junctions of multi-walled carbon nanotubes.

    PubMed

    Huang, Zhenlong; Gao, Min; Yan, Zhuocheng; Pan, Taisong; Liao, Feiyi; Lin, Yuan

    2016-05-14

    Different types of multi-walled carbon nanotubes (CNTs), synthesized by chemical vapor deposition, are used to fabricate infrared (IR) detectors on flexible substrates based on CNT p-n junctions. It is found that this kind of detector is sensitive to infrared signals with a power density as low as 90 μW mm(-2) even at room temperature. Besides, unlike other devices, the detector with this unique structure can be bent for 100 cycles without any damage and its functionality does not degenerate once it recovers to the initial state. The results give a good reference for developing efficient, low-cost, and flexible IR detectors. PMID:27101973

  4. A measurement method of a detector response function for monochromatic electrons based on the Compton scattering

    NASA Astrophysics Data System (ADS)

    Bakhlanov, S. V.; Bazlov, N. V.; Derbin, A. V.; Drachnev, I. S.; Kayunov, A. S.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.

    2016-06-01

    In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered photon in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.

  5. [Calorimeter based detectors for high energy hadron colliders]. [Progress report

    SciTech Connect

    Not Available

    1992-08-04

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun.

  6. Position resolution of a double junction superconductive detector based on a single material

    NASA Astrophysics Data System (ADS)

    Samedov, V. V.

    2008-02-01

    The Naples group from Istituto Nazionale di Fisica Nucleare presented the results of theoretical investigations of a new class of superconductive radiation detectors - double junction superconductive detector based on a single material [1]. In such detectors, the absorption of energy occurs in a long superconductive strip while two superconductive tunnel junctions positioned at the ends of the strip provide the readout of the signals. The main peculiarity of this type of detectors is that they are based on a single superconducting material, i.e., without trapping layers at the ends of the strip. In this paper, general approach to the position resolution of this type of detectors has been attempted. The formula for the position resolution is derived. It is shown that the application of the aluminium for the absorber may be the best possible way not only due to the small gap energy, but also mainly for STJ fabrication technology based on the aluminium oxide tunnel barrier.

  7. Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation

    NASA Astrophysics Data System (ADS)

    Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.

    2016-08-01

    Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.

  8. A robot-based detector manipulator system for a hard x-ray nanoprobe instrument.

    SciTech Connect

    Shu, D., Maser, J., Holt, M. , Winarski, R., Preissner, C.,Lai, B., Vogt, S., Stephenson, G.B.

    2007-11-11

    This paper presents the design of a robot-based detector manipulator for microdiffraction applications with a hard X-ray nanoprobe instrument system being constructed at the Advanced Photon Source (APS) for the Center for Nanoscale Materials (CNM) being constructed at Argonne National Laboratory (ANL). Applications for detectors weighing from 1.5 to 100 kg were discussed in three configurations.

  9. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber.

    PubMed

    Zhang, Binzhen; Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun

    2016-07-23

    The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic "I" shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process.

  10. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber

    PubMed Central

    Zhang, Binzhen; Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun

    2016-01-01

    The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic “I” shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process. PMID:27455280

  11. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber.

    PubMed

    Zhang, Binzhen; Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun

    2016-01-01

    The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic "I" shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process. PMID:27455280

  12. Microplasma-based atomic emission detectors for gas chromatography.

    PubMed

    Miclea, M; Okruss, M; Kunze, K; Ahlman, N; Franzke, J

    2007-08-01

    This paper is an update on the development of microplasmas as detectors for gas chromatography. Direct current (dc), alternating current (ac), and radio frequency (rf) microplasmas developed in recent years will be described with their significant analytical results, which mostly concern the detection of halogens and sulfur. New results will be added which employ a microhollow cathode discharge (MHCD) as excitation source. Emphasis will be given to this microplasma which has already been implemented as an element-selective detector for emission spectrometry and as ionization source for mass spectrometry. The possibility to use it as a multielement-selective detector for gas chromatography will be presented. A discussion of the published detection limits of all these microplasmas is given.

  13. InAs/AlAsSb based quantum cascade detector

    SciTech Connect

    Reininger, Peter Zederbauer, Tobias; Schwarz, Benedikt; MacFarland, Donald; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Detz, Hermann

    2015-08-24

    In this letter, we introduce the InAs/AlAsSb material system for quantum cascade detectors (QCDs). InAs/AlAsSb can be grown lattice matched to InAs and exhibits a conduction band offset of approximately 2.1 eV, enabling the design of very short wavelength quantum cascade detectors. Another benefit using this material system is the low effective mass of the well material that improves the total absorption of the detector and decreases the intersubband scattering rates, which increases the device resistance and thus enhances the noise behavior. We have designed, grown, and measured a QCD that detects at a wavelength of λ = 4.84 μm and shows a peak specific detectivity of approximately 2.7 × 10{sup 7 }Jones at T = 300 K.

  14. Dead-time effects in microchannel-plate imaging detectors

    NASA Technical Reports Server (NTRS)

    Zombeck, Martin V.; Fraser, George W.

    1991-01-01

    The observed counting rates of microchannel plate (MCP) based detectors for high resolution observations of celestial EUV and X-ray sources vary over many orders of magnitude; the counting capability of an individual channel, however, is not high, and is associated with dead-times ranging from 0.1 msec to 1 sec. The dead-time increases with the area illuminated; attention is presently given to laboratory determinations of the count rate characteristics of a MCP detector as a function of illuminated area, and a model is developed for these results' use in the interpretation of space observations.

  15. Resonant metamaterial detectors based on THz quantum-cascade structures

    NASA Astrophysics Data System (ADS)

    Benz, A.; Krall, M.; Schwarz, S.; Dietze, D.; Detz, H.; Andrews, A. M.; Schrenk, W.; Strasser, G.; Unterrainer, K.

    2014-03-01

    We present the design, fabrication and characterisation of an intersubband detector employing a resonant metamaterial coupling structure. The semiconductor heterostructure relies on a conventional THz quantum-cascade laser design and is operated at zero bias for the detector operation. The same active region can be used to generate or detect light depending on the bias conditions and the vertical confinement. The metamaterial is processed directly into the top metal contact and is used to couple normal incidence radiation resonantly to the intersubband transitions. The device is capable of detecting light below and above the reststrahlenband of gallium-arsenide corresponding to the mid-infrared and THz spectral region.

  16. Resonant metamaterial detectors based on THz quantum-cascade structures

    PubMed Central

    Benz, A.; Krall, M.; Schwarz, S.; Dietze, D.; Detz, H.; Andrews, A. M.; Schrenk, W.; Strasser, G.; Unterrainer, K.

    2014-01-01

    We present the design, fabrication and characterisation of an intersubband detector employing a resonant metamaterial coupling structure. The semiconductor heterostructure relies on a conventional THz quantum-cascade laser design and is operated at zero bias for the detector operation. The same active region can be used to generate or detect light depending on the bias conditions and the vertical confinement. The metamaterial is processed directly into the top metal contact and is used to couple normal incidence radiation resonantly to the intersubband transitions. The device is capable of detecting light below and above the reststrahlenband of gallium-arsenide corresponding to the mid-infrared and THz spectral region. PMID:24608677

  17. Wood's lamp illumination (image)

    MedlinePlus

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  18. Illuminating black holes

    NASA Astrophysics Data System (ADS)

    Barr, Ian A.; Bull, Anne; O’Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.

    2016-07-01

    Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.

  19. Shackleton Crater Illumination

    NASA Video Gallery

    Simulated illumination conditions near the lunar South Pole. The 30km x 30km region highlights the Shackleton crater. The movie runs for 28 days, centered on the LCROSS impact date on October 9th, ...

  20. Flexible infrared detectors based on p-n junctions of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Huang, Zhenlong; Gao, Min; Yan, Zhuocheng; Pan, Taisong; Liao, Feiyi; Lin, Yuan

    2016-05-01

    Different types of multi-walled carbon nanotubes (CNTs), synthesized by chemical vapor deposition, are used to fabricate infrared (IR) detectors on flexible substrates based on CNT p-n junctions. It is found that this kind of detector is sensitive to infrared signals with a power density as low as 90 μW mm-2 even at room temperature. Besides, unlike other devices, the detector with this unique structure can be bent for 100 cycles without any damage and its functionality does not degenerate once it recovers to the initial state. The results give a good reference for developing efficient, low-cost, and flexible IR detectors.Different types of multi-walled carbon nanotubes (CNTs), synthesized by chemical vapor deposition, are used to fabricate infrared (IR) detectors on flexible substrates based on CNT p-n junctions. It is found that this kind of detector is sensitive to infrared signals with a power density as low as 90 μW mm-2 even at room temperature. Besides, unlike other devices, the detector with this unique structure can be bent for 100 cycles without any damage and its functionality does not degenerate once it recovers to the initial state. The results give a good reference for developing efficient, low-cost, and flexible IR detectors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08791k

  1. Performance characteristics of a silicon photomultiplier based compact radiation detector for Homeland Security applications

    NASA Astrophysics Data System (ADS)

    Park, Hye Min; Joo, Koan Sik

    2015-05-01

    A next-generation compact radiation detector was studied for more accurate measurement of radiation and for improvement of detector reliability for the purpose of developing radiation protection technology and military applications. The previously used radiation detector had some limitations due to its bulky size, limited range and its environment for radiation measurement. On the other hand, the compact radiation detector examined in this study utilizes a silicon photomultiplier which appears to be more suitable for this application because of its physical superiority characterized by its small size, high sensitivity, and durability. Accordingly, a SiPM based scintillation detector has been developed as part of this basic study of military radiation detectors. The detector has been tested for its ability to obtain the operating characteristics of a sensor and analyzed with variations of parameter values and for efficiency of detection in accordance with its ability to measure radiation in the environment. Two SiPM based Scintillation detectors with LYSO, BGO and CsI:Tl scintillators were developed and the detectors were analyzed by a number of operating characteristics such as reverse bias, operating temperature and high magnetic field, that depend on environmental changes in radiation measurement. The Photon count rate and spectra were compared for these three scintillators. We found that there were variations in the radiation detection which were characterized by reverse bias, temperature and high magnetic field. It was also found that there was an 11.9% energy resolution for the LYSO, 15.5% for BGO and 13.5% for CsI:Tl using Array SiPM, and 18% for CsI:Tl energy resolution using single SiPM when we measured energy resolution of 511 keV for 22Na. These results demonstrate the potential widespread use of SiPM based compact radiation detectors for Homeland Security applications.

  2. A GEM-based thermal neutron detector for high counting rate applications

    NASA Astrophysics Data System (ADS)

    Perelli Cippo, E.; Croci, G.; Muraro, A.; Menelle, A.; Albani, G.; Cavenago, M.; Cazzaniga, C.; Claps, G.; Grosso, G.; Murtas, F.; Rebai, M.; Tardocchi, M.; Gorini, G.

    2015-10-01

    Among other neutron detector systems proposed as a possible substitute for 3He tubes, GEM-based ones have shown appealing characteristics, when coupled with suitable neutron-converter cathodes. In this paper, we present the results of a GEM-based neutron detector in a high-flux environment (the ORPHÉE reactor in Saclay), especially in terms of maximum rate capability and linearity. Recorded data show that the detector can manage neutron counting rates in the order of 50 × 106 counts/sec cm2 while maintaining a reasonable linearity and with no sign of instability.

  3. Porous Silicon-Based Quantum Dot Broad Spectrum Radiation Detector.

    PubMed

    Urdaneta, M; Stepanov, P; Weinberg, I N; Pala, I R; Brock, S

    2011-01-11

    Silicon is a convenient and inexpensive platform for radiation detection, but has low stopping power for x-rays and gamma-rays with high energy (e.g., 100 keV, as used in computed tomography and digital radiography, or 1 MeV, as desired for detection of nuclear materials). We have effectively increased the stopping power of silicon detectors by producing a layer of porous or micro-machined silicon, and infusing this layer with semiconductor quantum dots made of electron-dense materials. Results of prototype detectors show sensitivity to infrared, visible light, and x-rays, with dark current of less than 1 nA/mm(2). PMID:24432047

  4. Organic Position-Sensitive Detectors Based on ZnO:Al and CuPc:C60.

    PubMed

    Morimune, Taichiro; Kajii, Hirotake; Nishimaru, Hiroki; Ono, Shinji

    2016-04-01

    Organic position-sensitive detector (OPSD) based on copper phthalocyanine CuPc:fullerene C60 bulk-heterojunction with an inverted structure have been fabricated using aluminum doped ZnO (ZnO:Al) as a resistive layer, which is prepared by sol-gel method. The resistance length of the one-dimensional PSD is fixed at 5 mm, and the Ag common electrode is fabricated by vacuum evaporation within the 100-µm width. The current density-voltage characteristics with different structures of photodetector, the influence of ZnO:Al resistivity on the thickness and the position characteristics of PSDs are investigated. The experimental results indicate that the architecture, which uses an inverted structure, increases sensitivity under red light illumination compared to the conventional structure. In addition, the thickness of the ZnO:Al has influence on the position characteristics. The resistivity of ZnO:A film with Al doping concentration of 2 mol% prepared in this study is around 150 Ωcm and it increases from less than approximately 400 nm-thickness. These characteristics seem to be correlated with the properties of ZnO:AI resistive layer. For a device with a 620 nm-thick ZnO:Al layer, the measured position values obtained from the output photocurrent agree with the actual position values under red laser light illumination. CuPc:C60 OPSD with an inverted structure exhibits red light sensitivity, high incident-photon-to-current conversion efficiency of above 80% at -3 V and linearity error of 5.9% at -2 V. PMID:27451643

  5. Development of a cold-neutron imaging detector based on thick gaseous electron multiplier.

    PubMed

    Cortesi, M; Zboray, R; Kaestner, A; Prasser, H-M

    2013-02-01

    We present the results of our recent studies on a cold-neutron imaging detector prototype based on THick Gaseous Electron Multiplier (THGEM). The detector consists of a thin Boron layer, for neutron-to-charged particle conversion, coupled to two THGEM electrodes in cascade for charge amplification and a position-sensitive charge-readout anode. The detector operates in Ne∕(5%)CF4, at atmospheric pressure, in a stable condition at a gain of around 10(4). Due to the geometrical structure of the detector elements (THGEM geometry and charge read-out anode), the image of detector active area shows a large inhomogeneity, corrected using a dedicated flat-filed correction algorithm. The prototype provides a detection efficiency of 5% and an effective spatial resolution of the order of 1.3 mm.

  6. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene.

    PubMed

    Zak, Audrey; Andersson, Michael A; Bauer, Maris; Matukas, Jonas; Lisauskas, Alvydas; Roskos, Hartmut G; Stake, Jan

    2014-10-01

    We present terahertz (THz) detectors based on top-gated graphene field effect transistors (GFETs) with integrated split bow-tie antennas. The GFETs were fabricated using graphene grown by chemical vapor deposition (CVD). The THz detectors are capable of room-temperature rectification of a 0.6 THz signal and achieve a maximum optical responsivity better than 14 V/W and minimum optical noise-equivalent power (NEP) of 515 pW/Hz(0.5). Our results are a significant improvement over previous work on graphene direct detectors and are comparable to other established direct detector technologies. This is the first time room-temperature direct detection has been demonstrated using CVD graphene, which introduces the potential for scalable, wafer-level production of graphene detectors. PMID:25203787

  7. Development of a cold-neutron imaging detector based on thick gaseous electron multiplier

    SciTech Connect

    Cortesi, M.; Zboray, R.; Kaestner, A.; Prasser, H.-M.

    2013-02-15

    We present the results of our recent studies on a cold-neutron imaging detector prototype based on THick Gaseous Electron Multiplier (THGEM). The detector consists of a thin Boron layer, for neutron-to-charged particle conversion, coupled to two THGEM electrodes in cascade for charge amplification and a position-sensitive charge-readout anode. The detector operates in Ne/(5%)CF{sub 4}, at atmospheric pressure, in a stable condition at a gain of around 10{sup 4}. Due to the geometrical structure of the detector elements (THGEM geometry and charge read-out anode), the image of detector active area shows a large inhomogeneity, corrected using a dedicated flat-filed correction algorithm. The prototype provides a detection efficiency of 5% and an effective spatial resolution of the order of 1.3 mm.

  8. Instruments, Detectors and the Future of Astronomy with Large Ground Based Telescopes

    NASA Astrophysics Data System (ADS)

    Simons, Douglas A.; Amico, Paola; Baade, Dietrich; Barden, Sam; Campbell, Randall; Finger, Gert; Gilmore, Kirk; Gredel, Roland; Hickson, Paul; Howell, Steve; Hubin, Norbert; Kaufer, Andreas; Kohley, Ralf; MacQueen, Philip; Markelov, Sergej; Merrill, Mike; Miyazaki, Satoshi; Nakaya, Hidehiko; O'Donoghue, Darragh; Oliva, Tino; Richichi, Andrea; Salmon, Derrick; Schmidt, Ricardo; Su, Hongjun; Tulloch, Simon; García Vargas, Maria Luisa; Wagner, R. Mark; Wiecha, Olivier; Ye, Binxun

    2005-01-01

    Results of a survey of instrumentation and detector systems, either currently deployed or planned for use at telescopes larger than 3.5 m, in ground based observatories world-wide, are presented. This survey revealed a number of instrumentation design trends at optical, near, and mid-infrared wavelengths. Some of the most prominent trends include the development of vastly larger optical detector systems (> 109 pixels) than anything built to date, and the frequent use of mosaics of near-infrared detectors - something that was quite rare only a decade ago in astronomy. Some future science applications for detectors are then explored, in an attempt to build a bridge between current detectors and what will be needed to support the research ambitions of astronomers in the future.

  9. HgZnTe-based detectors for LWIR NASA applications

    NASA Technical Reports Server (NTRS)

    Patten, Elizabeth A.; Kalisher, Murray H.

    1990-01-01

    The initial goal was to grow and characterize HgZnTe and determine if it indeed had the advantageous properties that were predicted. Researchers grew both bulk and liquid phase epitaxial HgZnTe. It was determined that HgZnTe had the following properties: (1) microhardness at least 50 percent greater than HgCdTe of equivalent bandgap; (2) Hg annealing rates of at least 2 to 4 times longer than HgCdTe; and (3) higher Hg vacancy formation energies. This early work did not focus on one specific composition (x-value) of HgZnTe since NASA was interested in HgZnTe's potential for a variety of applications. Since the beginning of 1989, researchers have been concentrating, however, on the liquid phase growth of very long wavelength infrared (VLWIR) HgZnTe (cutoff approx. equals 17 microns at 65K) to address the requirements of the Earth Observing System (EOS). Since there are no device models to predict the advantages in reliability one can gain with increased microhardness, surface stability, etc., one must fabricate HgZnTe detectors and assess their relative bake stability (accelerated life test behavior) compared with HgCdTe devices fabricated in the same manner. Researchers chose to fabricate HIT detectors as a development vehicle for this program because high performance in the VLWIR has been demonstrated with HgCdTe HIT detectors and the HgCdTe HIT process should be applicable to HgZnTe. HIT detectors have a significant advantage for satellite applications since these devices dissipate much less power than conventional photoconductors to achieve the same responsivity.

  10. Novel semiconductor radiation detector based on mercurous halides

    NASA Astrophysics Data System (ADS)

    Chen, Henry; Kim, Joo-Soo; Amarasinghe, Proyanthi; Palosz, Withold; Jin, Feng; Trivedi, Sudhir; Burger, Arnold; Marsh, Jarrod C.; Litz, Marc S.; Wiejewarnasuriya, Priyalal S.; Gupta, Neelam; Jensen, Janet; Jensen, James

    2015-08-01

    The three most important desirable features in the search for room temperature semiconductor detector (RTSD) candidate as an alternative material to current commercially off-the-shelf (COTS) material for gamma and/or thermal neutron detection are: low cost, high performance and long term stability. This is especially important for pager form application in homeland security. Despite years of research, no RTSD candidate so far can satisfy the above 3 features simultaneously. In this work, we show that mercurous halide materials Hg2X2 (X= I, Cl, Br) is a new class of innovative compound semiconductors that is capable of delivering breakthrough advances to COTS radiation detector materials. These materials are much easier to grow thicker and larger volume crystals. They can detect gamma and potentially neutron radiation making it possible to detect two types of radiation with just one crystal material. The materials have wider bandgaps (compared to COTS) meaning higher resistivity and lower leakage current, making this new technology more compatible with available microelectronics. The materials also have higher atomic number and density leading to higher stopping power and better detector sensitivity/efficiency. They are not hazardous so there are no environmental and health concerns during manufacturing and are more stable making them more practical for commercial deployment. Focus will be on Hg2I2. Material characterization and detector performance will be presented and discussed. Initial results show that an energy resolution better than 2% @ 59.6 keV gamma from Am-241 and near 1% @ 662 keV from Cs-137 source can be achieved at room temperature.

  11. Development of a Microcantilever-Based Pathogen Detector

    SciTech Connect

    Weeks, B L; Camarero, J; Noy, A; Miller, A E; De Yoreo, J J

    2002-11-18

    The ability to detect small amounts of materials, especially whole organisms, is important for medical diagnostics and national security issues. Engineered micro-mechanical systems can serve as multifunctional, highly sensitive, real time, immunospecific biological detectors under certain circumstances. We present qualitative detection of specific Salmonella strains using a functionalized silicon nitride microcantilever. Detection is achieved due to differential surface stress on the cantilever surface in-situ. Scanning electron micrographs indicate that less than 25 adsorbed bacteria are required for detection.

  12. Performances of a HGCDTE APD Based Detector with Electric Cooling for 2-μm DIAL/IPDA Applications

    NASA Astrophysics Data System (ADS)

    Dumas, A.; Rothman, J.; Gibert, F.; Lasfargues, G.; Zanatta, J.-P.; Edouart, D.

    2016-06-01

    In this work we report on design and testing of an HgCdTe Avalanche Photodiode (APD) detector assembly for lidar applications in the Short Wavelength Infrared Region (SWIR : 1,5 - 2 μm). This detector consists in a set of diodes set in parallel -making a 200 μm large sensitive area- and connected to a custom high gain TransImpedance Amplifier (TIA). A commercial four stages Peltier cooler is used to reach an operating temperature of 185K. Crucial performances for lidar use are investigated : linearity, dynamic range, spatial homogeneity, noise and resistance to intense illumination.

  13. FPGA-based electronics for confocal line scanners with linear detector arrays

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2009-02-01

    One-dimensional linear detector arrays have been used in the development of microscopes. Our confocal line scanning microscope electronics incorporate two printed circuit boards: control board and detector board. This architecture separates control electronics from detection electronics allowing us to minimize the footprint at microscope detector head. The Field Programmable Gate array (FPGA) on the control board generates timing and synchronization signals to three systems: detector board, frame grabber and galvanometric mirror scanner. The detector is kept away from its control electronics, and the clock and control signals are sent over a differential twisted-pair cable. These differential signals are translated to single ended signals and forwarded to the detector at the microscope detector head. The synchronization signals for the frame grabber are sent over a shielded cable. The control board also generates a saw tooth analog ramp to drive the galvanometric mirror scanner. The analog video output of the detector is fed into an operational amplifier where the white and the black levels are adjusted. Finally the analog video is send to the frame grabber via a shielded cable. FPGA-based electronics offer an inexpensive convenient means to control and synchronize simple line-scanning confocal microscopes.

  14. Miniature Trace Gas Detector Based on Microfabricated Optical Resonators

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Yu, Nan; Thompson, Robert J.; Strekalov, Dmitry V.

    2013-01-01

    While a variety of techniques exist to monitor trace gases, methods relying on absorption of laser light are the most commonly used in terrestrial applications. Cavity-enhanced absorption techniques typically use high-reflectivity mirrors to form a resonant cavity, inside of which a sample gas can be analyzed. The effective absorption length is augmented by the cavity's high quality factor, or Q, because the light reflects many times between the mirrors. The sensitivity of such mirror-based sensors scales with size, generally making them somewhat bulky in volume. Also, specialized coatings for the high-reflectivity mirrors have limited bandwidth (typically just a few nanometers), and the delicate mirror surfaces can easily be degraded by dust or chemical films. As a highly sensitive and compact alternative, JPL is developing a novel trace gas sensor based on a monolithic optical resonator structure that has been modified such that a gas sample can be directly injected into the cavity. This device concept combines ultra-high Q optical whispering gallery mode resonators (WGMR) with microfabrication technology used in the semiconductor industry. For direct access to the optical mode inside a resonator, material can be precisely milled from its perimeter, creating an open gap within the WGMR. Within this open notch, the full optical mode of the resonator can be accessed. While this modification may limit the obtainable Q, calculations show that the reduction is not significant enough to outweigh its utility for trace gas detection. The notch can be milled from the high- Q crystalline WGMR with a focused ion beam (FIB) instrument with resolution much finer than an optical wavelength, thereby minimizing scattering losses and preserving the optical quality. Initial experimental demonstrations have shown that these opened cavities still support high-Q whispering gallery modes. This technology could provide ultrasensitive detection of a variety of molecular species in an

  15. Generalization of color-difference formulas for any illuminant and any observer by assuming perfect color constancy in a color-vision model based on the OSA-UCS system.

    PubMed

    Oleari, Claudio; Melgosa, Manuel; Huertas, Rafael

    2011-11-01

    The most widely used color-difference formulas are based on color-difference data obtained under D65 illumination or similar and for a 10° visual field; i.e., these formulas hold true for the CIE 1964 observer adapted to D65 illuminant. This work considers the psychometric color-vision model based on the Optical Society of America-Uniform Color Scales (OSA-UCS) system previously published by the first author [J. Opt. Soc. Am. A 21, 677 (2004); Color Res. Appl. 30, 31 (2005)] with the additional hypothesis that complete illuminant adaptation with perfect color constancy exists in the visual evaluation of color differences. In this way a computational procedure is defined for color conversion between different illuminant adaptations, which is an alternative to the current chromatic adaptation transforms. This color conversion allows the passage between different observers, e.g., CIE 1964 and CIE 1931. An application of this color conversion is here made in the color-difference evaluation for any observer and in any illuminant adaptation: these transformations convert tristimulus values related to any observer and illuminant adaptation to those related to the observer and illuminant adaptation of the definition of the color-difference formulas, i.e., to the CIE 1964 observer adapted to the D65 illuminant, and then the known color-difference formulas can be applied. The adaptations to the illuminants A, C, F11, D50, Planckian and daylight at any color temperature and for CIE 1931 and CIE 1964 observers are considered as examples, and all the corresponding transformations are given for practical use.

  16. Model-based beam control for illumination of remote objects, part I: theory and near real-time feasibility

    NASA Astrophysics Data System (ADS)

    Chandler, Susan M.; Lukesh, Gordon W.; Voelz, David; Basu, Santasri; Sjogren, Jon

    2004-10-01

    On September 1, 2003, Nukove Scientific Consulting, together with partner New Mexico State University (NMSU), began work on a Phase I Small Business Technology TRansfer (STTR) grant from the Air Force Office of Scientific Research (AFOSR). The purpose of the grant was to show the feasibility of taking Nukove's pointing estimation technique from a post-processing tool for estimation of laser system characteristics to a real-time tool usable in the field. Nukove's techniques for pointing, shape, and OCS estimation do not require an imaging sensor nor a target board, thus estimates may be made very quickly. To prove feasibility, Nukove developed an analysis tool RHINO (Real-time Histogram Interpretation of Numerical Observations) and successfully demonstrated the emulation of real-time, frame-by-frame estimation of laser system charcteristics, with data streamed into the tool and the estimates displayed as they are made. The eventual objective will be to use the frame-by-frame estimates to allow for feedback to a fielded system. Closely associated with this, NMSU has developed a laboratory testbed to illuminate test objects, collect the received photons, and stream the data into RHINO. The two coupled efforts clearly demonstrate the feasibility of real-time pointing control of a laser system.

  17. Bright field illumination system

    NASA Technical Reports Server (NTRS)

    Huber, Edward D. (Inventor)

    1998-01-01

    A Bright Field Illumination system for inspecting a range of characteristically different kinds of defects, depressions, and ridges in a selected material surface. The system has an illumination source placed near a first focus of an elliptical reflector. In addition, a camera facing the inspected area is placed near the illumination source and the first focus. The second focus of the elliptical reflector is located at a distance approximately twice the elliptical reflector's distance above the inspected surface. The elliptical reflector directs the light from the source onto the inspected surface. Due to the shape of the elliptical reflector, light that is specularly reflected from the inspected surface is directed into the camera is which located at the position of the reflected second focus of the ellipse. This system creates a brightly lighted background field against which damage sites appear as high contrast dark objects which can be easily detected by a person or an automated inspection system. In addition, the Bright Field Illumination system and method can be used in combination with a vision inspection system providing for multiplexed illumination and data handling of multiple kinds of surface characteristics including abrupt and gradual surface variations and differences between measured characteristics of different kinds and prior instruments.

  18. AQUARIUS, the next generation mid-IR detector for ground-based astronomy

    NASA Astrophysics Data System (ADS)

    Ives, Derek; Finger, Gert; Jakob, Gerd; Eschbaumer, Siegfried; Mehrgan, Leander; Meyer, Manfred; Steigmeier, Joerg

    2012-07-01

    ESO has recently funded the development of the AQUARIUS detector at Raytheon Vision Systems, a new mega-pixel Si:As Impurity Band Conduction array for use in ground based astronomical applications at wavelengths between 3 - 28 μm. The array has been designed to have low noise, low dark current, switchable gain and be read out at very high frame rates. It has 64 individual outputs capable of pixel read rates of 3MHz, implying continuous data-rates in excess of 300 Mbytes/second. It is scheduled for deployment into the VISIR instrument at the VLT in 2012, for next generation VLTI instruments and base-lined for METIS, the mid-IR candidate instrument for the E-ELT. A new mid-IR test facility has been developed for AQUARIUS detector development which includes a low thermal background cryostat, high speed cryogenic pre-amplification and high speed data acquisition and detector operation at 5K. We report on all the major performance aspects of this new detector including conversion gain, read noise, dark generation rate, linearity, well capacity, pixel operability, low frequency noise, persistence and electrical cross-talk. We describe the many possible readout modes of this detector and their application. We also report on external issues with the operation of these detectors at such low temperatures. Finally we report on the electronic developments required to operate such a detector at the required high data rates and in a typical mid-IR instrument.

  19. Evolution in boron-based GEM detectors for diffraction measurements: from planar to 3D converters

    NASA Astrophysics Data System (ADS)

    Albani, Giorgia; Perelli Cippo, Enrico; Croci, Gabriele; Muraro, Andrea; Schooneveld, Erik; Scherillo, Antonella; Hall-Wilton, Richard; Kanaki, Kalliopi; Höglund, Carina; Hultman, Lars; Birch, Jens; Claps, Gerardo; Murtas, Fabrizio; Rebai, Marica; Tardocchi, Marco; Gorini, Giuseppe

    2016-11-01

    The so-called ‘3He-crisis’ has motivated the neutron detector community to undertake an intense R&D programme in order to develop technologies alternative to standard 3He tubes and suitable for neutron detection systems in future spallation sources such as the European spallation source (ESS). Boron-based GEM (gas electron multiplier) detectors are a promising ‘3He-free’ technology for thermal neutron detection in neutron scattering experiments. In this paper the evolution of boron-based GEM detectors from planar to 3D converters with an application in diffraction measurements is presented. The use of 3D converters coupled with GEMs allows for an optimization of the detector performances. Three different detectors were used for diffraction measurements on the INES instrument at the ISIS spallation source. The performances of the GEM-detectors are compared with those of conventional 3He tubes installed on the INES instrument. The conceptual detector with the 3D converter used in this paper reached a count rate per unit area of about 25% relative to the currently installed 3He tube. Its timing resolution is similar and the signal-to-background ratio (S/B) is 2 times lower.

  20. Smartphone based point-of-care detector of urine albumin

    NASA Astrophysics Data System (ADS)

    Cmiel, Vratislav; Svoboda, Ondrej; Koscova, Pavlina; Provaznik, Ivo

    2016-03-01

    Albumin plays an important role in human body. Its changed level in urine may indicate serious kidney disorders. We present a new point-of-care solution for sensitive detection of urine albumin - the miniature optical adapter for iPhone with in-built optical filters and a sample slot. The adapter exploits smart-phone flash to generate excitation light and camera to measure the level of emitted light. Albumin Blue 580 is used as albumin reagent. The proposed light-weight adapter can be produced at low cost using a 3D printer. Thus, the miniaturized detector is easy to use out of lab.

  1. Terahertz hot electron bolometric detectors based on graphene quantum dots

    NASA Astrophysics Data System (ADS)

    El Fatimy, A.; Myers-Ward, R. L.; Boyd, A. K.; Daniels, K. M.; Gaskill, D. K.; Barbara, P.

    2015-03-01

    We study graphene quantum dots patterned from epitaxial graphene on SiC with a resistance strongly dependent on temperature. The combination of weak electron-phonon coupling and small electronic heat capacity in graphene makes these quantum dots ideal hot-electron bolometers. We measure and characterize the THz optical response of devices with different dot sizes, at operating temperatures from 2.5K to 80K. The high responsivity, the potential for operation above 80 K and the process scalability show great promise towards practical applications of graphene quantum dot THz detectors. This work was sponsored by the U.S. Office of Naval Research (Award Number N000141310865).

  2. Reproducibility and calibration of MMC-based high-resolution gamma detectors

    DOE PAGESBeta

    Bates, C. R.; Pies, C.; Kempf, S.; Hengstler, D.; Fleischmann, A.; Gastaldo, L.; Enss, C.; Friedrich, S.

    2016-07-15

    Here, we describe a prototype γ-ray detector based on a metallic magnetic calorimeter with an energy resolution of 46 eV at 60 keV and a reproducible response function that follows a simple second-order polynomial. The simple detector calibration allows adding high-resolution spectra from different pixels and different cool-downs without loss in energy resolution to determine γ-ray centroids with high accuracy. As an example of an application in nuclear safeguards enabled by such a γ-ray detector, we discuss the non-destructive assay of 242Pu in a mixed-isotope Pu sample.

  3. A Multi-Anode Photomultiplier Tube Based Wavelength-Shifting-Fiber Detector for neutron diffraction

    SciTech Connect

    Berry, Kevin D; Clonts, Lloyd G; Crow, Lowell; Diawara, Yacouba; Funk, Loren L; Hannan, Bruce W; Hodges, Jason P; Riedel, Richard A; Wang, Cai-Lin

    2012-01-01

    The wavelength-shifting (WLS) fiber scintillator neutron detectors were developed for two time-of-flight (TOF) neutron powder diffractometers (POWGEN, VULCAN) at Spallation Neutron Source (SNS). In a recent module (v3.0), however, there are 32 1-inch-diameter photomultiplier tubes (PMTs) which are bulky and expensive. We built a new detector module (v3.1) based on four multi-anode (MA) PMTs, and tested its performance including detection efficiency, count rate capability, spatial resolution, ghosting properties, and gamma-ray sensitivity. The v3.1 module was compared with two prior v3.0 modules, and 3He tube detectors.

  4. Reproducibility and calibration of MMC-based high-resolution gamma detectors

    NASA Astrophysics Data System (ADS)

    Bates, C. R.; Pies, C.; Kempf, S.; Hengstler, D.; Fleischmann, A.; Gastaldo, L.; Enss, C.; Friedrich, S.

    2016-07-01

    We describe a prototype γ-ray detector based on a metallic magnetic calorimeter with an energy resolution of 46 eV at 60 keV and a reproducible response function that follows a simple second-order polynomial. The simple detector calibration allows adding high-resolution spectra from different pixels and different cool-downs without loss in energy resolution to determine γ-ray centroids with high accuracy. As an example of an application in nuclear safeguards enabled by such a γ-ray detector, we discuss the non-destructive assay of 242Pu in a mixed-isotope Pu sample.

  5. High dynamic range CMOS-based mammography detector for FFDM and DBT

    NASA Astrophysics Data System (ADS)

    Peters, Inge M.; Smit, Chiel; Miller, James J.; Lomako, Andrey

    2016-03-01

    Digital Breast Tomosynthesis (DBT) requires excellent image quality in a dynamic mode at very low dose levels while Full Field Digital Mammography (FFDM) is a static imaging modality that requires high saturation dose levels. These opposing requirements can only be met by a dynamic detector with a high dynamic range. This paper will discuss a wafer-scale CMOS-based mammography detector with 49.5 μm pixels and a CsI scintillator. Excellent image quality is obtained for FFDM as well as DBT applications, comparing favorably with a-Se detectors that dominate the X-ray mammography market today. The typical dynamic range of a mammography detector is not high enough to accommodate both the low noise and the high saturation dose requirements for DBT and FFDM applications, respectively. An approach based on gain switching does not provide the signal-to-noise benefits in the low-dose DBT conditions. The solution to this is to add frame summing functionality to the detector. In one X-ray pulse several image frames will be acquired and summed. The requirements to implement this into a detector are low noise levels, high frame rates and low lag performance, all of which are unique characteristics of CMOS detectors. Results are presented to prove that excellent image quality is achieved, using a single detector for both DBT as well as FFDM dose conditions. This method of frame summing gave the opportunity to optimize the detector noise and saturation level for DBT applications, to achieve high DQE level at low dose, without compromising the FFDM performance.

  6. 25 Gb/s photoreceiver based on vertical-illumination type Ge-on-Si photodetector and CMOS amplifier circuit for optical interconnects

    NASA Astrophysics Data System (ADS)

    Joo, Jiho; Jang, Ki-Seok; Kim, Sanghoon; Kim, In Gyoo; Oh, Jin Hyuk; Kim, Sun Ae; Kim, Gyungock; Jeong, Gyu-Seob; Chi, Hankyu; Jeong, Deog-Kyoon

    2015-02-01

    We report the silicon photonic receivers based on the hybrid-integrated vertical-illumination-type germanium-on-silicon photodetector and CMOS amplifier circuit, for optical interconnects. The high-speed vertical-illumination-type Ge-on-Si photodetector is defined on a bulk-silicon wafer, and the CMOS amplifier chip was designed with 65nm ground rule. The PCB-packaged 4 channel 25 Gb/s photoreceiver exhibits a resposivity of 0.68A/W. The sensitivity measured at a BER of 10-12 is -8.3 dBm and -2.4dBm for 25Gb/s and 32Gb/s, respectively. The energy efficiency is 2.19 pJ/bit at 25 Gb/s. The single-channel butterfly-packaged photoreceiver exhibits the sensitivity of -11dBm for 25 Gb/s at a BER of 10-12. The energy efficiency is 2.67 pJ/bit at 25 Gb/s.

  7. OLED area illumination source

    DOEpatents

    Foust, Donald Franklin; Duggal, Anil Raj; Shiang, Joseph John; Nealon, William Francis; Bortscheller, Jacob Charles

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  8. Nonimaging optical illumination system

    DOEpatents

    Winston, R.; Ries, H.

    1998-10-06

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source a light reflecting surface, and a family of light edge rays defined along a reference line with the reflecting surface defined in terms of the reference lines a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line, and D is a distance from a point on the reference line to the reflection surface along the desired edge ray through the point. 35 figs.

  9. Nonimaging optical illumination system

    DOEpatents

    Winston, R.; Ries, H.

    1996-12-17

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source, a light reflecting surface, and a family of light edge rays defined along a reference line with the reflecting surface defined in terms of the reference line as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line, and D is a distance from a point on the reference line to the reflection surface along the desired edge ray through the point. 35 figs.

  10. Stability of thin-film Cu/sub 2/S-based solar cells at V/SUB oc/ under continuous illumination

    SciTech Connect

    Phillips, J.E.; Birkmire, W.B.; Lasswell, P.G.

    1982-09-01

    Thin-film Cu/sub 2/S-based solar cells have been developed which are free of the shunting defects that cause the electrochemical decomposition of the Cu/sub 2/S. These cells have been held at open-circuit voltage under continuous illumination in an inert or reducing atmosphere for over 500 hours with no degradation in efficiency, short-circuit current, or open-circuit voltage. Laser scanning techniques have been developed as a tool for detecting cell defects and recently these techniques have been used to locate shunting defects in ungridded Cu/sub 2/S-based cells. By using the laser scanner, it has been possible to detect and eliminate defects that cause electrochemical decomposition of the Cu/sub 2/S.

  11. LET Estimation of Heavy Ion Particles based on a Timepix-Based Si Detector

    NASA Astrophysics Data System (ADS)

    Hoang, S.; Pinsky, L.; Vilalta, R.; Jakubek, J.

    2012-12-01

    Linear Energy Transfer (LET) is a measure of the energy transferred into a material as an ionizing particle passes through it. This quantity is useful in estimating the biological effects of ionizing radiation as expressed in dosimetric endpoints such as Dose-equivalent. Pixel detectors with silicon sensors -like the Medipix2 Collaboration's Timepix-based devices- are ideal instruments to measure the total energy deposited by a transiting ionizing particle. In this paper we propose an approach for determining the amount of LET from track images obtained with a Timepix-based Si pixel detector. In particular, we have developed a method to calculate the angle of incidence for a heavy ion particle as it passes through a 300 μm thick Si sensor layer based on an analysis of the information in the cluster of pixel hits. Using that angle information, the path length traversed by the particle can be computed, which then facilitates estimating the degree of LET. Results from experiments with data taken at the HIMAC (Heavy Ion Medical Accelerator) facility in Chiba, Japan, and NASA Space Radiation Laboratory at Brookhaven in USA, demonstrate the effectiveness and resolution of our method to determine the angle of incidence and LET of heavy ion particles.

  12. Gamma-Free Neutron Detector Based upon Lithium Phosphate Nanoparticles

    SciTech Connect

    Steven Wallace

    2007-08-28

    A gamma-free neutron-sensitive scintillator is needed to enhance radiaition sensing and detection for nonproliferation applications. Such a scintillator would allow very large detectors to be placed at the perimeter of spent-fuel storage facilities at commercial nuclear power plants, so that any movement of spontaneously emitted neutrons from spent nuclear fuel or weapons grade plutonium would be noted in real-time. This task is to demonstrate that the technology for manufacturing large panels of fluor-doped plastic containing lithium-6 phosphate nanoparticles can be achieved. In order to detect neutrons, the nanoparticles must be sufficiently small so that the plastic remains transparent. In this way, the triton and alpha particles generated by the capture of the neutron will result in a photon burst that can be coupled to a wavelength shifting fiber (WLS) producing an optical signal of about ten nanoseconds duration signaling the presence of a neutron emitting source.

  13. A large area, silicon photomultiplier-based PET detector module

    NASA Astrophysics Data System (ADS)

    Raylman, R. R.; Stolin, A.; Majewski, S.; Proffitt, J.

    2014-01-01

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26×58 array of 1.5×1.5 mm2 LYSO elements (spanning 41×91 mm2) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ~45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (~2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3 T clinical magnetic resonance imaging scanner.

  14. A large area, silicon photomultiplier-based PET detector module.

    PubMed

    Raylman, Rr; Stolin, A; Majewski, S; Proffitt, J

    2014-01-21

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26 × 58 array of 1.5 × 1.5mm(2) LYSO elements (spanning 41 × 91mm(2)) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3T clinical magnetic resonance imaging scanner. PMID:24319305

  15. A large area, silicon photomultiplier-based PET detector module.

    PubMed

    Raylman, Rr; Stolin, A; Majewski, S; Proffitt, J

    2014-01-21

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26 × 58 array of 1.5 × 1.5mm(2) LYSO elements (spanning 41 × 91mm(2)) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3T clinical magnetic resonance imaging scanner.

  16. Predicting Ground Illuminance

    NASA Astrophysics Data System (ADS)

    Lesniak, Michael V.; Tregoning, Brett D.; Hitchens, Alexandra E.

    2015-01-01

    Our Sun outputs 3.85 x 1026 W of radiation, of which roughly 37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather.Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types.In this paper we compare the models' predictions to ground illuminance data from an observing run at the White Sands missile range (data was obtained from the United Kingdom's Meteorology Office). Continuous illuminance readings were recorded under various cloud conditions, during both daytime and nighttime hours. We find that under clear skies, the Shapiro model tends to better fit the observations during daytime hours with typical discrepancies under 10%. Under cloudy skies, both models tend to poorly predict ground illuminance. However, the Shapiro model, with typical average daytime discrepancies of 25% or less in many cases

  17. Near midplane scintillator-based fast ion loss detector on DIII-D

    SciTech Connect

    Chen, X.; Heidbrink, W. W.; Fisher, R. K.; Pace, D. C.; Chavez, J. A.; Van Zeeland, M. A.; Garcia-Munoz, M.

    2012-10-15

    A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities ({<=}500 kHz). Combined with the first FILD at {approx}45 Degree-Sign below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010)], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius r{sub L}{approx}[1.5-8] cm and pitch angle {alpha}{approx}[35 Degree-Sign -85 Degree-Sign ]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.

  18. Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane

    SciTech Connect

    Meister, H.; Eich, T.; Endstrasser, N.; Giannone, L.; Kannamueller, M.; Kling, A.; Koll, J.; Trautmann, T.; Detemple, P.; Schmitt, S.; Collaboration: ASDEX Upgrade Team

    2010-10-15

    Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 deg. C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 {mu}m thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 deg. C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.

  19. Near midplane scintillator-based fast ion loss detector on DIII-D.

    PubMed

    Chen, X; Fisher, R K; Pace, D C; García-Muñoz, M; Chavez, J A; Heidbrink, W W; Van Zeeland, M A

    2012-10-01

    A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities (≤500 kHz). Combined with the first FILD at ∼45° below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010)], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius r(L) ∼ [1.5-8] cm and pitch angle α ∼ [35°-85°]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.

  20. Near midplane scintillator-based fast ion loss detector on DIII-Da)

    NASA Astrophysics Data System (ADS)

    Chen, X.; Fisher, R. K.; Pace, D. C.; García-Muñoz, M.; Chavez, J. A.; Heidbrink, W. W.; Van Zeeland, M. A.

    2012-10-01

    A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities (≤500 kHz). Combined with the first FILD at ˜45° below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010), 10.1063/1.3490020], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius rL ˜ [1.5-8] cm and pitch angle α ˜ [35°-85°]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.

  1. Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane.

    PubMed

    Meister, H; Eich, T; Endstrasser, N; Giannone, L; Kannamüller, M; Kling, A; Koll, J; Trautmann, T; Detemple, P; Schmitt, S

    2010-10-01

    Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 °C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 μm thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 °C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.

  2. GaN-Based Detector Enabling Technology for Next Generation Ultraviolet Planetary Missions

    NASA Technical Reports Server (NTRS)

    Aslam, S.; Gronoff, G.; Hewagama, T.; Janz, S.; Kotecki, C.

    2012-01-01

    The ternary alloy AlN-GaN-InN system provides several distinct advantages for the development of UV detectors for future planetary missions. First, (InN), (GaN) and (AlN) have direct bandgaps 0.8, 3.4 and 6.2 eV, respectively, with corresponding wavelength cutoffs of 1550 nm, 365 nm and 200 nm. Since they are miscible with each other, these nitrides form complete series of indium gallium nitride (In(sub l-x)Ga(sub x)N) and aluminum gallium nitride (Al(sub l-x)Ga(sub x)N) alloys thus allowing the development of detectors with a wavelength cut-off anywhere in this range. For the 2S0-365 nm spectral wavelength range AlGaN detectors can be designed to give a 1000x solar radiation rejection at cut-off wavelength of 325 nm, than can be achieved with Si based detectors. For tailored wavelength cut-offs in the 365-4S0 nm range, InGaN based detectors can be fabricated, which still give 20-40x better solar radiation rejection than Si based detectors. This reduced need for blocking filters greatly increases the Detective Quantum efficiency (DQE) and simplifies the instrument's optical systems. Second, the wide direct bandgap reduces the thermally generated dark current to levels allowing many observations to be performed at room temperature. Third, compared to narrow bandgap materials, wide bandgap semiconductors are significantly more radiation tolerant. Finally, with the use of an (AI, In)GaN array, the overall system cost is reduced by eliminating stringent Si CCD cooling systems. Compared to silicon, GaN based detectors have superior QE based on a direct bandgap and longer absorption lengths in the UV.

  3. Exploring Weak and Overlapped Returns of a LIDAR Waveform with a Wavelet-Based Echo Detector

    NASA Astrophysics Data System (ADS)

    Wang, C. K.

    2012-08-01

    Full waveform data recording the reflected laser signal from ground objects have been provided by some commercial airborne LIDAR systems in the last few years. Waveform data enable users to explore more information and characteristics of the earth surface than conventional LIDAR point cloud. An important application is to extract extra point clouds from waveform data in addition to the point cloud generated by the online process of echo detection. Some difficult-to-detect points, which may be important to topographic mapping, can be rediscovered from waveform data. The motivation of this study is to explore weak and overlapped returns of a waveform. This paper presents a wavelet-based echo detection algorithm, which is compared with the zero-crossing detection method for evaluation. Some simulated waveforms deteriorated with different noises are made to test the limitations of the detector. The experimental results show that the wavelet-based detector outperformed the zero-crossing detector in both difficult-to-detect cases. The detector is also applied to a real waveform dataset. In addition to the total number of echoes provided by the instrument, the detector found 18% more of echoes. The proposed detector is significant in finding weak and overlapped returns from waveforms.

  4. Illumination optimization for 65nm technology node

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Heng; Liu, Qingwei; Zhang, Liguo; Hung, Chi-Yuan

    2006-10-01

    The most important task of the microlithography process is to make the manufacturable process latitude/window, including dose latitude and Depth of Focus, as wide as possible. Thus, to perform a thorough source optimization during process development is becoming more critical as moving to high NA technology nodes. Furthermore, Optical proximity correction (OPC) are always used to provide a common process window for structures that would, otherwise, have no overlapping windows. But as the critical dimension of the IC design shrinks dramatically, the flexibility for applying OPC also decreases. So a robust microlithography process should also be OPC-friendly. This paper demonstrates our work on the illumination optimization during the process development. The Calibre ILO (Illumination Optimization) tool was used to perform the illumination optimization and provided plots of DOF vs. various parametric illumination settings. This was used to screen the various illumination settings for the one with optimum process margins. The resulting illumination conditions were then implemented and analyzed at a real wafer level on our 90/65nm critical layers, such as Active, Poly, Contact and Metal. In conclusion, based on these results, a summary is provided highlighting how OPC can get benefit from proper illumination optimization.

  5. Chord-based image reconstruction in cone-beam CT with a curved detector

    SciTech Connect

    Zuo Nianming; Xia Dan; Zou Yu; Jiang Tianzi; Pan Xiaochuan

    2006-10-15

    Modern computed tomography (CT) scanners use cone-beam configurations for increasing volume coverage, improving x-ray-tube utilization, and yielding isotropic spatial resolution. Recently, there have been significant developments in theory and algorithms for exact image reconstruction from cone-beam projections. In particular, algorithms have been proposed for image reconstruction on chords; and advantages over the existing algorithms offered by the chord-based algorithms include the high flexibility of exact image reconstruction for general scanning trajectories and the capability of exact reconstruction of images within a region of interest from truncated data. These chord-based algorithms have been developed only for flat-panel detectors. Many cone-beam CT scanners employ curved detectors for important practical considerations. Therefore, in this work, we have derived chord-based algorithms for a curved detector so that they can be applied to reconstructing images directly from data acquired by use of a CT scanner with a curved detector. We have also conducted preliminary numerical studies to demonstrate and evaluate the reconstruction properties of the derived chord-based algorithms for curved detectors.

  6. Adaptive non-uniformity correction method based on temperature for infrared detector array

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijie; Yue, Song; Hong, Pu; Jia, Guowei; Lei, Bo

    2013-09-01

    The existence of non-uniformities in the responsitivity of the element array is a severe problem typical to common infrared detector. These non-uniformities result in a "curtain'' like fixed pattern noises (FPN) that appear in the image. Some random noise can be restrained by the method kind of equalization method. But the fixed pattern noise can only be removed by .non uniformity correction method. The produce of non uniformities of detector array is the combined action of infrared detector array, readout circuit, semiconductor device performance, the amplifier circuit and optical system. Conventional linear correction techniques require costly recalibration due to the drift of the detector or changes in temperature. Therefore, an adaptive non-uniformity method is needed to solve this problem. A lot factors including detectors and environment conditions variety are considered to analyze and conduct the cause of detector drift. Several experiments are designed to verify the guess. Based on the experiments, an adaptive non-uniformity correction method is put forward in this paper. The strength of this method lies in its simplicity and low computational complexity. Extensive experimental results demonstrate the disadvantage of traditional non-uniformity correct method is conquered by the proposed scheme.

  7. Development of a personnel fast-neutron dosimeter based on CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Mutiullah; Durrani, S. A.

    1987-07-01

    An energy- and direction-independent fast neutron dosimeter based on electrochemically etched (ECE) CR-39 detectors is presented. We describe, first, our theoretical and experimental work to achieve a nearly flat detector response (in terms of energy) over the range 0.1 to 19 MeV for normally incident neutrons. Here, we have used CR-39 detectors with an optimized front radiator stack consisting of polymers with different hydrogenous contents. Such a detector assembly is, however, found to have a response which is strongly dependent upon the neutron angle of incidence. The paper then proceeds to describe a method developed by us to overcome this problem by attaching a detector assembly to each of the three adjacent sides of a perspex support cube (of side ˜ 2.5 cm). By aggregating (or averaging) the response of all three detectors it is found that these cubical assemblies yield a response that is virtually independent of the orientation of the cube with respect to the neutron incidence direction.

  8. Characterization of InGaAs-based cameras for astronomical applications using a new VIS-NIR-SWIR detector test bench

    NASA Astrophysics Data System (ADS)

    Schindler, Karsten; Wolf, Jürgen; Krabbe, Alfred

    2014-07-01

    A new test bench for detector and camera characterization in the visible and near-infrared spectral range between 350 -2500 nm has been setup at the Max Planck Institute for Solar System Research (MPS). The detector under study is illuminated by an integrating sphere that is fed by a Czerny-Turner monochromator with quasi-monochromatic light. A quartz tungsten halogen lamp is used as a light source for the monochromator. Si- and InGaAs-based photodiodes have been calibrated against secondary reference standards at PTB (Germany), NPL (UK) and NRC (Canada) for precise spectral flux measurements. The test bench allows measurements of fundamental detector properties such as linearity of response, conversion gain, full well capacity, quantum efficiency (QE), fixed pattern noise and pixel response non-uniformity. The article will focus on the commissioning of the test bench and subsequent performance evaluation and characterization of a commercial camera system with a 640 x 480 InGaAs-detector, sensitive between 900 to 1650 nm. The study aimed at the potential use of InGaAs cameras in ground-based and airborne astronomical observations or as target acquisition and tracking cameras in the NIR supporting infrared observations at longer wavelengths, e.g. on SOFIA. An intended future application of the test bench in combination with an appropriate test dewar is the characterization of focal plane assemblies for imaging spectrometers on spacecraft missions, such as the VIS-SWIR channel of MAJIS, the Moons and Jupiter Imaging Spectrometer aboard JUICE (Jupiter Icy Moons Explorer).

  9. Development of a detector based on Silicon Drift Detectors for gamma-ray spectroscopy and imaging applications

    NASA Astrophysics Data System (ADS)

    Busca, P.; Butt, A. D.; Fiorini, C.; Marone, A.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Bombelli, L.; Giacomini, G.; Piemonte, C.; Camera, F.; Giaz, A.; Million, B.; Nelms, N.; Shortt, B.

    2014-05-01

    This work deals with the development of a new gamma detector based on Silicon Drift Detectors (SDDs) to readout large LaBr3:Ce scintillators for gamma-ray spectroscopy and imaging applications. The research is supported by the European Space Agency through the Technology Research Programme (TRP) and by Istituto Nazionale di Fisica Nucleare (INFN) within the Gamma project. The SDDs, produced at Fondazione Bruno Kessler (FBK) semiconductor laboratories, are designed as monolithic arrays of 3 × 3 units, each one of an active area of 8 mm × 8 mm (overall area of 26 mm × 26 mm). The readout electronics and the architecture of the camera are briefly described and then first experimental results coupling the SDD array with a 1'' × 1'' LaBr3:Ce scintillator are reported. An energy resolution of 3% FWHM at 662 keV has been measured at -20°C, better than coupling the same scintillator with a photomultiplier tube. The same scintillator is also used to evaluate position sensitivity with a 1 mm collimated Cs-137 source. The main difficulty in determining the position of the gamma-ray interaction in the crystal is associated to the high thickness/diameter ratio of the crystal (1:1) and the use of reflectors on all lateral and top sides the crystal. This last choice enhances energy resolution but makes imaging capability more challenging because light is spread over all photodetectors. Preliminary results show that the camera is able to detect shifts in the measured signals, when the source is moved with steps of 5 mm. A modified version of the centroid method is finally implemented to evaluate the imaging capability of the system.

  10. AQUARIUS: the next generation mid-IR detector for ground-based astronomy, an update.

    NASA Astrophysics Data System (ADS)

    Ives, Derek; Finger, Gert; Jakob, Gerd; Beckmann, Udo

    2014-07-01

    ESO has already published data from a preliminary laboratory analysis on the new mid-IR detector, AQUARIUS, at the previous SPIE conference of 2012, held in Amsterdam2. This data analysis indicated that this new mid-IR Si:As IBC detector, from Raytheon Vision Systems, was an excellent astronomical detector when compared to previous generations of this detector type, specifically in terms of stability, read noise and cosmetic quality. Since that time, the detector has been deployed into the VISIR1 instrument at the VLT, with very mixed performance results, especially when used with the telescope secondary mirror, to chop between two areas of sky to do background subtraction and at the same time when many frames are co-added to improve the signal to noise performance. This is the typical mode of operation for a mid-IR instrument on a ground based telescope. Preliminary astronomical data analysis indicated that the new detector was a factor of two to three times less sensitive in terms of its signal to noise per unit time performance when directly compared to the old DRS detector that AQUARIUS was designed to replace. To determine the reason for this loss of sensitivity, the instrument was removed from the telescope and not offered to the ESO user community. A detector testing campaign was then initiated in our laboratory to determine the reasons for this loss of sensitivity, assuming that it was an issue with the new detector itself. This paper reports on our latest laboratory measurements to determine the reasons for this loss of sensitivity. We specifically report on indirect measurements made to measure the quantum efficiency of the detector, which can be difficult to measure directly. We also report on a little known source of noise, called Excess Low Frequency Noise (ELFN). Detailed analysis and testing has confirmed that this ELFN is the reason for the loss of instrument sensitivity. This has been proven by a re-commissioning phase at the telescope with the

  11. Nonimaging Optical Illumination System

    DOEpatents

    Winston, Roland

    1994-02-22

    A nonimaging illumination or concentration optical device. An optical device is provided having a light source, a light reflecting surface with an opening and positioned partially around the light source which is opposite the opening of the light reflecting surface. The light reflecting surface is disposed to produce a substantially uniform intensity output with the reflecting surface defined in terms of a radius vector R.sub.i in conjunction with an angle .phi..sub.i between R.sub.i, a direction from the source and an angle .theta..sub.i between direct forward illumination and the light ray reflected once from the reflecting surface. R.sub.i varies as the exponential of tan (.phi..sub.i -.theta..sub.i)/2 integrated over .phi..sub.i.

  12. Nonimaging optical illumination system

    DOEpatents

    Winston, Roland; Ries, Harald

    2000-01-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  13. Nonimaging optical illumination system

    DOEpatents

    Winston, Roland; Ries, Harald

    1998-01-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  14. Nonimaging optical illumination system

    DOEpatents

    Winston, Roland; Ries, Harald

    1996-01-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  15. DDG4 A Simulation Framework based on the DD4hep Detector Description Toolkit

    NASA Astrophysics Data System (ADS)

    Frank, M.; Gaede, F.; Nikiforou, N.; Petric, M.; Sailer, A.

    2015-12-01

    The detector description is an essential component that has to be used to analyse and simulate data resulting from particle collisions in high energy physics experiments. Based on the DD4hep detector description toolkit a flexible and data driven simulation framework was designed using the Geant4 tool-kit. We present this framework and describe the guiding requirements and the architectural design, which was strongly driven by ease of use. The goal was, given an existing detector description, to simulate the detector response to particle collisions in high energy physics experiments with minimal effort, but not impose restrictions to support enhanced or improved behaviour. Starting from the ROOT based geometry implementation used by DD4hep an automatic conversion mechanism to Geant4 was developed. The physics response and the mechanism to input particle data from generators was highly formalized and can be instantiated on demand using known factory patterns. A palette of components to model the detector response is provided by default, but improved or more sophisticated components may easily be added using the factory pattern. Only the final configuration of the instantiated components has to be provided by end-users using either C++ or python scripting or an XML based description.

  16. Software-Based Real-Time Acquisition and Processing of PET Detector Raw Data.

    PubMed

    Goldschmidt, Benjamin; Schug, David; Lerche, Christoph W; Salomon, André; Gebhardt, Pierre; Weissler, Bjoern; Wehner, Jakob; Dueppenbecker, Peter M; Kiessling, Fabian; Schulz, Volkmar

    2016-02-01

    In modern positron emission tomography (PET) readout architectures, the position and energy estimation of scintillation events (singles) and the detection of coincident events (coincidences) are typically carried out on highly integrated, programmable printed circuit boards. The implementation of advanced singles and coincidence processing (SCP) algorithms for these architectures is often limited by the strict constraints of hardware-based data processing. In this paper, we present a software-based data acquisition and processing architecture (DAPA) that offers a high degree of flexibility for advanced SCP algorithms through relaxed real-time constraints and an easily extendible data processing framework. The DAPA is designed to acquire detector raw data from independent (but synchronized) detector modules and process the data for singles and coincidences in real-time using a center-of-gravity (COG)-based, a least-squares (LS)-based, or a maximum-likelihood (ML)-based crystal position and energy estimation approach (CPEEA). To test the DAPA, we adapted it to a preclinical PET detector that outputs detector raw data from 60 independent digital silicon photomultiplier (dSiPM)-based detector stacks and evaluated it with a [(18)F]-fluorodeoxyglucose-filled hot-rod phantom. The DAPA is highly reliable with less than 0.1% of all detector raw data lost or corrupted. For high validation thresholds (37.1 ± 12.8 photons per pixel) of the dSiPM detector tiles, the DAPA is real time capable up to 55 MBq for the COG-based CPEEA, up to 31 MBq for the LS-based CPEEA, and up to 28 MBq for the ML-based CPEEA. Compared to the COG-based CPEEA, the rods in the image reconstruction of the hot-rod phantom are only slightly better separable and less blurred for the LS- and ML-based CPEEA. While the coincidence time resolution (∼ 500 ps) and energy resolution (∼12.3%) are comparable for all three CPEEA, the system sensitivity is up to 2.5 × higher for the LS- and ML-based CPEEA

  17. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Villa, E.; Aja, B.; de la Fuente, L.; Artal, E.

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  18. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.

    PubMed

    Villa, E; Aja, B; de la Fuente, L; Artal, E

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  19. Nonlocal-means-based smallest univalue segment assimilating nucleus edge detector

    NASA Astrophysics Data System (ADS)

    Zhan, Yi; Ding, Mingyue; Zhang, Xuming

    2013-01-01

    To improve the antinoise performance of the smallest univalue segment assimilating nucleus (SUSAN) edge detector, a nonlocal means-based SUSAN edge detector is proposed. The proposed method first determines the initial SUSAN edge response based on the image patch convolved with an adaptive kernel instead of the single pixel. Then it computes the final edge response using the weighted sum of the initial edge responses of the pixels with their structures similar to the considered pixel. Extensive simulations on natural and real images demonstrate that compared with state-of-the-art detectors, the proposed method performs much better in terms of robustness to noise and edge detection and it provides significantly higher values of Pratt's figure of merit and performance measure.

  20. High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Nguyen, Jean; Rafol, Sir B.; Liao, Anna; Hoeglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Ting, David Z.-Y.; Gunapala, Sarath D.

    2011-01-01

    We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of focal plane arrays based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-wavelength infrared focal plane array utilizing CBIRD design. An 11.5 micrometer cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 micrometer cutoff focal plane array are also presented. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.

  1. High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Nguyen, Jean; Rafol, Sir B.; Liao, Anna; Hoeglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Ting, David Z.-Y.; Gunapala, Sarath D.

    2011-01-01

    We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of focal plane arrays based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-waveleng thinfrared focal plane array utilizing CBIRD design. An 11.5 micrometer cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 micrometer cutoff focal plane array are also presented. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.

  2. [Analysis of the effect of detector's operating temperature on SNR in space-based remote sensor].

    PubMed

    Li, Zhan-feng; Wang, Shu-rong; Huang, Yu

    2012-03-01

    Limb viewing is a new viewing geometry for space-based atmospheric remote sensing, but the spectral radiance of atmosphere scattering reduces rapidly with limb height. So the signal-noise-ratio (SNR) is a key performance parameter of limb remote sensor. A SNR model varying with detector's temperature is proposed, based on analysis of spectral radiative transfer and noise' source in representative instruments. The SNR at limb height 70 km under space conditions was validated by simulation experiment on limb remote sensing spectrometer prototype. Theoretic analysis and experiment's results indicate congruously that when detector's temperature reduces to some extent, a maximum SNR will be reached. After considering the power consumption, thermal conductivity and other issues, optimal operating temperature of detector can be decided.

  3. Gamma-ray superconducting detector based on Abrikosov vortices: Principle of operation

    SciTech Connect

    Lisitskiy, M. P.

    2009-11-15

    The high atomic number of some superconducting elements such as niobium (Z=41) and tantalum (Z=73) and a high material thickness (e.g., t=300 mum) are emphasized as essential properties for development of a gamma-ray solid state detector with high intrinsic detection efficiency in the energy range up to 100 keV. To exploit these properties, a new detection principle based on the interaction of a single gamma-ray photon with Abrikosov vortex is proposed. The interaction of gamma-ray photon with a superconductor is discussed in terms of the photoelectric absorption and a hot-spot formation, the last acts as a short-time pinning center on an Abrikosov vortex and activates its motion, namely, a jump or damped vibration. Both types of vortex motion lead to variation (either static or dynamic) in the magnetic field on the absorber surface. The high sensitivity of the Josephson tunneling to weak magnetic field can be exploited for revealing the magnetic field variation and to make the readout of the detector. Main intrinsic properties of a gamma-ray detector based on Abrikosov vortices are evaluated, including the possibility to measure the energy deposited in the detector. A single Josephson tunnel junction configuration or a superconducting quantum interference device (SQUID) configuration is proposed and discussed as possible realization of working gamma-ray detector both in the counter operation mode and in the radiation spectroscopy operation mode.

  4. Low-dose performance of wafer-scale CMOS-based X-ray detectors

    NASA Astrophysics Data System (ADS)

    Maes, Willem H.; Peters, Inge M.; Smit, Chiel; Kessener, Yves; Bosiers, Jan

    2015-03-01

    Compared to published amorphous-silicon (TFT) based X-ray detectors, crystalline silicon CMOS-based active-pixel detectors exploit the benefits of low noise, high speed, on-chip integration and featuring offered by CMOS technology. This presentation focuses on the specific advantage of high image quality at very low dose levels. The measurement of very low dose performance parameters like Detective Quantum Efficiency (DQE) and Noise Equivalent Dose (NED) is a challenge by itself. Second-order effects like defect pixel behavior, temporal and quantization noise effects, dose measurement accuracy and limitation of the x-ray source settings will influence the measurements at very low dose conditions. Using an analytical model to predict the low dose behavior of a detector from parameters extracted from shot-noise limited dose levels is presented. These models can also provide input for a simulation environment for optimizing the performance of future detectors. In this paper, models for predicting NED and the DQE at very low dose are compared to measurements on different CMOS detectors. Their validity for different sensor and optical stack combinations as well as for different x-ray beam conditions was validated.

  5. Timing in the NOvA detectors with atomic clock based time transfers between Fermilab, the Soudan mine and the NOvA Far detector

    NASA Astrophysics Data System (ADS)

    Norman, A.; Niner, E.; Habig, A.

    2015-12-01

    The NOvA experiment uses a GPS based timing system both to internally synchronize the readout of the DAQ components and to establish an absolute wall clock reference which can be used to link the Fermilab accelerator complex with the neutrino flux that crosses the NOvA detectors. We describe the methods that were used during the commissioning of the NOvA DAQ and Timing systems to establish the synchronization between the Fermilab beam and the NOvA far detector. We present how high precision atomic clocks were trained and transported between the MINOS and NOvA detectors during a Northern Minnesota blizzard to validate the absolute time offsets of the experiments and make the first observation of beam neutrinos in the NOvA far detector.

  6. Terrestrial detector for low frequency gravitational waves based on full tensor measurement

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Mok; Paik, Hojung; Majorana, Ettore; Vol Moody, M.; Griggs, Cornelius E.; Nielsen, Alex; Kim, Chumglee

    2015-08-01

    Terrestrial gravitational wave (GW) detectors are mostly based on Michelson-type laser interferometers with arm lengths of a few km to reach a strain sensitivity of 10-23 Hz-1/2 in the frequency range of a few 100 to a few 1000 Hz. There should be a large variety of sources generating GWs at lower frequencies below 10 Hz. However, seismic and Newtonian noise has been serious obstacle in realizing terrestrial low-frequency GW detectors. Here we describe a new GW detector concept by adopting new measurement techniques and configurations to overcome the present low-frequency barrier due to seismic and Newtonian noise. The detector is an extension of the superconducting gravity gradiometer (SGG) that has been developed at the University of Maryland to measure all components of the gravity gradient tensor by orthogonally combining three bars with test masses at each end. The oscillating component of the gravity gradient tensor is the GW strain tensor, but the actual signal is likely to be dominated by Newtonian and seismic noise, whose amplitudes are several orders of magnitude larger than the GWs. We propose to mitigate seismic noise by (a) constructing detector in deep underground, (b) applying passive isolation with pendulum suspension, and (c) using the common-mode rejection characteristic of the detector. The Newtonian noise can be suppressed by combining the components of the gradient tensor with signals detected by seismometers and microphones. By constructing a detector of 100-m long bars cooled to 0.1 K, a strain sensitivity of a few times 10-21 Hz-1/2 can be achieved in the frequency range between 0.1 to 10 Hz. Binaries composed of intermediate mass black holes of 1000 to 10,000 M¤ could be detected at distances up to a few Gpc with this detector. Detectable range for the merging white dwarf binaries is up to a few Mpc. Unlike current two-dimensional detectors, our single detector is able to determine the polarization of GWs and the direction to sources on

  7. A MAPS Based Micro-Vertex Detector for the STAR Experiment

    SciTech Connect

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; Greiner, Leo; Silber, Joe; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal; Videbaek, Flemming; Vu, Chinh; Wieman, Howard; Woodmansee, Sam

    2015-06-18

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensor (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm2. This sensor architecture features 185.6 μs readout time and 170 mW/cm2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.

  8. A MAPS Based Micro-Vertex Detector for the STAR Experiment

    DOE PAGESBeta

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; Greiner, Leo; Silber, Joe; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal; Videbaek, Flemming; Vu, Chinh; et al

    2015-06-18

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm2. This sensor architecture features 185.6 μs readout time and 170 mW/cm2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less

  9. Performance of standard fluoroscopy antiscatter grids in flat-detector-based cone-beam CT

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Bertram, Matthias; Schaefer, Dirk; Conrads, Norbert; Timmer, Jan; Aach, Til; Rose, Georg

    2004-05-01

    In this paper, the performance of focused lamellar anti-scatter grids, which are currently used in fluoroscopy, is studied in order to determine guidelines of grid usage for flat detector based cone beam CT. The investigation aims at obtaining the signal to noise ratio improvement factor by the use of anti-scatter grids. First, the results of detailed Monte Carlo simulations as well as measurements are presented. From these the general characteristics of the impinging field of scattered and primary photons are derived. Phantoms modeling the head, thorax and pelvis regions have been studied for various imaging geometries with varying phantom size, cone and fan angles and patient-detector distances. Second, simulation results are shown for ideally focused and vacuum spaced grids as best case approach as well as for grids with realistic spacing materials. The grid performance is evaluated by means of the primary and scatter transmission and the signal to noise ratio improvement factor as function of imaging geometry and grid parameters. For a typical flat detector cone beam CT setup, the grid selectivity and thus the performance of anti-scatter grids is much lower compared to setups where the grid is located directly behind the irradiated object. While for small object-to-grid distances a standard grid improves the SNR, the SNR for geometries as used in flat detector based cone beam CT is deteriorated by the use of an anti-scatter grid for many application scenarios. This holds even for the pelvic region. Standard fluoroscopy anti-scatter grids were found to decrease the SNR in many application scenarios of cone beam CT due to the large patient-detector distance and have, therefore, only a limited benefit in flat detector based cone beam CT.

  10. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    NASA Astrophysics Data System (ADS)

    Nakanishi, Kouhei; Yamamoto, Seiichi

    2016-11-01

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  11. High-nitrogen-based pyrotechnics: longer- and brighter-burning, perchlorate-free, red-light illuminants for military and civilian applications.

    PubMed

    Sabatini, Jesse J; Nagori, Amita V; Chen, Gary; Chu, Phillip; Damavarapu, Reddy; Klapötke, Thomas M

    2012-01-01

    The full-up prototype testing of perchlorate-free, hand-held, signal illuminants for the US Army's M126A1 red star parachute hand-held signal is described. Compared to the perchlorate-containing control, the disclosed illuminants yielded excellent stabilities toward various ignition stimuli while offering superior pyrotechnic performance. Militarily, the illuminants provided further evidence that development of smaller hand-held signal items in an environmentally conscious way is a realistic and obtainable goal. The results are also important from the perspective of civilian fireworks, as the development of brighter, longer-burning, and environmentally compatible red-light-emitting pyrotechnics is now possible.

  12. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    SciTech Connect

    Heath, Robert M. Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H.; Webster, Mark G.; San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H.; Warburton, Richard J.

    2014-02-10

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime.

  13. Evolution of Some Particle Detectors Based On the Discharge in Gases

    DOE R&D Accomplishments Database

    Charpak, G.

    1969-11-19

    Summary of the properties of some of the detectors that are commonly used in counter experiments to localize charged particles, and which are based on discharge in gases under the influence of electric fields and some basic facts of gaseous amplification in homogeneous and inhomogeneous fields.

  14. A Low-Cost Liquid-Chromatography System Using a Spectronic 20-Based Detector.

    ERIC Educational Resources Information Center

    Jezorek, John R.; And Others

    1986-01-01

    Describes the design and evaluation of a Spectronic 20-based detector as well as a simple system for postcolumn derivatization useful for metal-ion chromatographic detection. Both detection and derivatization can be performed in the ultra-violet (UV) mode using a low-cost UV-visible spectrophotometer and UV-region derivatization reagents. (JN)

  15. Mixed ionic-electronic conductor-based radiation detectors and methods of fabrication

    DOEpatents

    Conway, Adam; Beck, Patrick R; Graff, Robert T; Nelson, Art; Nikolic, Rebecca J; Payne, Stephen A; Voss, Lars; Kim, Hadong

    2015-04-07

    A method of fabricating a mixed ionic-electronic conductor (e.g. TlBr)-based radiation detector having halide-treated surfaces and associated methods of fabrication, which controls polarization of the mixed ionic-electronic MIEC material to improve stability and operational lifetime.

  16. Development of a thermal neutron detector based on scintillating fibers and silicon photomultipliers

    SciTech Connect

    Barbagallo, Massimo; Greco, Giuseppe; Scire, Carlotta; Scire, Sergio; Cosentino, Luigi; Pappalardo, Alfio; Finocchiaro, Paolo; Montereali, Rosa Maria; Vincenti, Maria Aurora

    2010-09-15

    We propose a technique for thermal neutron detection, based on a {sup 6}Li converter placed in front of scintillating fibers readout by means of silicon photomultipliers. Such a technique allows building cheap and compact detectors and dosimeters, thus possibly opening new perspectives in terms of granular monitoring of neutron fluxes as well as space-resolved neutron detection.

  17. A Real Valued Neural Network Based Autoregressive Energy Detector for Cognitive Radio Application.

    PubMed

    Onumanyi, A J; Onwuka, E N; Aibinu, A M; Ugweje, O C; Salami, M J E

    2014-01-01

    A real valued neural network (RVNN) based energy detector (ED) is proposed and analyzed for cognitive radio (CR) application. This was developed using a known two-layered RVNN model to estimate the model coefficients of an autoregressive (AR) system. By using appropriate modules and a well-designed detector, the power spectral density (PSD) of the AR system transfer function was estimated and subsequent receiver operating characteristic (ROC) curves of the detector generated and analyzed. A high detection performance with low false alarm rate was observed for varying signal to noise ratio (SNR), sample number, and model order conditions. The proposed RVNN based ED was then compared to the simple periodogram (SP), Welch periodogram (WP), multitaper (MT), Yule-Walker (YW), Burg (BG), and covariance (CV) based ED techniques. The proposed detector showed better performance than the SP, WP, and MT while providing better false alarm performance than the YW, BG, and CV. Data provided here support the effectiveness of the proposed RVNN based ED for CR application.

  18. A transputer-based list mode parallel system for digital radiography with 2D silicon detectors

    SciTech Connect

    Conti, M.; Russo, P.; Scarlatella, A. . Dipt. di Scienze Fisiche and INFN); Del Guerra, A. . Dipt. di Fisica and INFN); Mazzeo, A.; Mazzocca, N.; Russo, S. . Dipt. di Informatica e Sistemistica)

    1993-08-01

    The authors believe that a dedicated parallel computer system can represent an effective and flexible approach to the problem of list mode acquisition and reconstruction of digital radiographic images obtained with a double-sided silicon microstrip detector. They present a Transputer-based implementation of a parallel system for the data acquisition and image reconstruction from a silicon crystal with 200[mu]m read-out pitch. They are currently developing a prototype of the system connected to a detector with a 10mm[sup 2] sensitive area.

  19. Modeling of radiation damage recovery in particle detectors based on GaN

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Ceponis, T.; Pavlov, J.

    2015-12-01

    The pulsed characteristics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the commercial software package Synopsys TCAD Sentaurus. The bipolar drift regime has been analyzed. The possible internal gain in charge collection through carrier multiplication processes determined by impact ionization has been considered in order to compensate carrier lifetime reduction due to radiation defects introduced into GaN material of detector.

  20. ILLUMINATION RESPONSE OF CDZNTE

    SciTech Connect

    Teague, L.; Washington, A.; Duff, M.

    2011-08-02

    CdZnTe (CZT) semiconducting crystals are of interest for use as room temperature X- and {gamma}-ray spectrometers. Several studies have focused on understanding the various electronic properties of these materials, such as the surface and bulk resistivities and the distribution of the electric field within the crystal. Specifically of interest is how these properties are influenced by a variety of factors including structural heterogeneities, such as secondary phases (SPs) and line defects as well as environmental effects. Herein, we report the bulk current, surface current, electric field distribution and performance of a spectrometer-grade CZT crystal exposed to above band-gap energy illumination.

  1. Microchip capillary electrophoresis coupled with a boron-doped diamond electrode-based electrochemical detector.

    PubMed

    Wang, Joseph; Chen, Gang; Chatrathi, Madhu Prakash; Fujishima, Akira; Tryk, Donald A; Shin, Dongchan

    2003-02-15

    The attractive behavior and advantages of a diamond electrode detector for a micromachined capillary electrophoresis (CE) system are discussed. A chemically vapor-deposited boron-doped diamond (BDD) film band (0.3 x 6.0 mm) electrode is used for end-column amperomettic detection. The favorable performance of the diamond electrode microchip detector is indicated from comparison to a commonly used thick-film carbon detector. The diamond electrode offers enhanced sensitivity, lower noise levels, and sharper peaks for several groups of important anaytes (nitroaromatic explosives, organophosphate nerve agents, phenols). The favorable signal-to-background characteristics of the BDD-based CE detector are coupled with a greatly improved resistance to surface fouling and greater isolation from high separation voltages. The enhanced stability is indicated from a RSD of 0.8% for 60 repetitive measurements of 5 ppm 2,4,6-trinitrotoluene (vs RSD of 10.8% at the thick-film carbon electrode). A highly linear response is obtained for the explosives 1,3-dinitrobenzene and 2,4-dinitrotoluene over the 200-1,400 ppb range, with detection limits of 70 and 110 ppb, respectively. Factors influencing the performance of the BDD detector are assessed and optimized. The attractive properties of BDD make it very promising material for electrochemical detection in CE microchip systems and other micromachined flow analyzers.

  2. Remote chemical biological and explosive agent detection using a robot-based Raman detector

    NASA Astrophysics Data System (ADS)

    Gardner, Charles W.; Wentworth, Rachel; Treado, Patrick J.; Batavia, Parag; Gilbert, Gary

    2008-04-01

    Current practice for the detection of chemical, biological and explosive (CBE) agent contamination on environmental surfaces requires a human to don protective gear, manually take a sample and then package it for subsequent laboratory analysis. Ground robotics now provides an operator-safe way to make these critical measurements. We describe the development of a robot-deployed surface detection system for CBE agents that does not require the use of antibodies or DNA primers. The detector is based on Raman spectroscopy, a reagentless technique that has the ability to simultaneously identify multiple chemical and biological hazards. Preliminary testing showed the ability to identify CBE simulants in 10 minutes or less. In an operator-blind study, this detector was able to correctly identify the presence of trace explosive on weathered automobile body panels. This detector was successfully integrated on a highly agile robot platform capable of both high speed and rough terrain operation. The detector is mounted to the end of five-axis arm that allows precise interrogation of the environmental surfaces. The robot, arm and Raman detector are JAUS compliant, and are controlled via a radio link from a single operator control unit. Results from the integration testing and from limited field trials are presented.

  3. Simulated performance of a small-animal PET scanner based on monolithic scintillation detectors

    NASA Astrophysics Data System (ADS)

    van der Laan, D. J.; Maas, M. C.; de Jong, H. W. A. M.; Schaart, D. R.; Bruyndonckx, P.; Lemaître, C.; van Eijk, C. W. E.

    2007-02-01

    The performance of a small-animal positron emission tomography (PET) scanner based on monolithic scintillation detectors read-out by avalanche photo-diode arrays has been investigated by simulation. By minimizing dead space, both within and between the modules, these detectors offer increased detection efficiency compared to pixellated detectors. The spatial resolution of the scanner was investigated in 2-D by simulating a point source at various radial distances from the center. To model the detector response, measured detector line-spread functions were used. An optimum value of approximately 1 mm FWHM was found at 10 mm radial distance from the scanner central axis. Point-source sensitivity profiles in the radial and axial directions were simulated at 1 MBq activity using the Monte-Carlo code GATE. They indicated that monolithic designs increase the sensitivity roughly by a factor of two compared to pixellated designs. NECR curves simulated for these scanner designs show no significant degradation of the performance for activities up to 40 MBq.

  4. Further advancements for large area-detector based computed tomography system

    SciTech Connect

    Davis, A. W.; Keating, S. C.; Claytor, T. N.

    2001-01-01

    We present advancements made to a large area-detector based system for industrial x-ray computed tomography. Past performance improvements in data acquisition speeds were made by use of high-resolution large area, flat-panel amorphous-silicon (a-Si) detectors. The detectors have proven, over several years, to be a robust alternative to CCD-optics and image intensifier CT systems. These detectors also provide the advantage of area detection as compared with the single slice geometry of linear array systems. New advancements in this system include parallel processing of sinogram reconstructions, improved visualization software and migration to frame-rate a-Si detectors. Parallel processing provides significant speed improvements for data reconstruction, and is implemented for parallel-beam, fan-beam and Feldkamp cone-beam reconstruction algorithms. Reconstruction times are reduced by an order of magnitude by use of a cluster of ten or more equal-speed computers. Advancements in data visualization are made through interactive software, which allows interrogation of the full three-dimensional dataset. Inspection examples presented in this paper include an electromechanical device, a nonliving biological specimen and a press-cast plastic specimen. We also present a commonplace item for the benefit of the layperson.

  5. Assembling and Using an LED-Based Detector to Monitor Absorbance Changes during Acid-Base Titrations

    ERIC Educational Resources Information Center

    Santos, Willy G.; Cavalheiro, E´der T. G.

    2015-01-01

    A simple photometric assembly based in an LED as a light source and a photodiode as a detector is proposed in order to follow the absorbance changes as a function of the titrant volume added during the course of acid-base titrations in the presence of a suitable visual indicator. The simplicity and low cost of the electronic device allow the…

  6. Illumination-compensated non-contact imaging photoplethysmography via dual-mode temporally coded illumination

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.

    2015-03-01

    Non-contact camera-based imaging photoplethysmography (iPPG) is useful for measuring heart rate in conditions where contact devices are problematic due to issues such as mobility, comfort, and sanitation. Existing iPPG methods analyse the light-tissue interaction of either active or passive (ambient) illumination. Many active iPPG methods assume the incident ambient light is negligible to the active illumination, resulting in high power requirements, while many passive iPPG methods assume near-constant ambient conditions. These assumptions can only be achieved in environments with controlled illumination and thus constrain the use of such devices. To increase the number of possible applications of iPPG devices, we propose a dual-mode active iPPG system that is robust to changes in ambient illumination variations. Our system uses a temporally-coded illumination sequence that is synchronized with the camera to measure both active and ambient illumination interaction for determining heart rate. By subtracting the ambient contribution, the remaining illumination data can be attributed to the controlled illuminant. Our device comprises a camera and an LED illuminant controlled by a microcontroller. The microcontroller drives the temporal code via synchronizing the frame captures and illumination time at the hardware level. By simulating changes in ambient light conditions, experimental results show our device is able to assess heart rate accurately in challenging lighting conditions. By varying the temporal code, we demonstrate the trade-off between camera frame rate and ambient light compensation for optimal blood pulse detection.

  7. A flood map based DOI decoding method for block detector: a GATE simulation study.

    PubMed

    Shi, Han; Du, Dong; Su, Zhihong; Peng, Qiyu

    2014-01-01

    Positron Emission Tomography (PET) systems using detectors with Depth of Interaction (DOI) capabilities could achieve higher spatial resolution and better image quality than those without DOI. Up till now, most DOI methods developed are not cost-efficient for a whole body PET system. In this paper, we present a DOI decoding method based on flood map for low-cost conventional block detector with four-PMT readout. Using this method, the DOI information can be directly extracted from the DOI-related crystal spot deformation in the flood map. GATE simulations are then carried out to validate the method, confirming a DOI sorting accuracy of 85.27%. Therefore, we conclude that this method has the potential to be applied in conventional detectors to achieve a reasonable DOI measurement without dramatically increasing their complexity and cost of an entire PET system.

  8. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  9. Fabrication of Gamma Detectors Based on Magnetic Ag:Er Microcalorimeters

    SciTech Connect

    Friedrich, Stephan; Boyd, Stephen; Cantor, Robin

    2015-11-25

    This report discusses the photolithographic fabrication of ultra-high resolution gamma-ray detectors based on magnetic microcalorimeters (MMCs). The MMC uses a novel Er-doped silver sensor (Ag:Er) that is expected to have higher sensitivity than the Er-doped gold (Au:Er) sensors currently in use. The MMC also integrates the first-stage SQUID preamplifier on the same chip as the MMC gamma detector to increase its signal-to-noise ratio. In addition, the MMC uses a passive Ta-Nb heat switch to replace one of the common long-term failure points in earlier detectors. This report discusses the fabrication process we have developed to implement the proposed improvements.

  10. Python based integration of GEM detector electronics with JET data acquisition system

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dalley, Simon; Hogben, Colin; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek; Shumack, Amy

    2014-11-01

    This paper presents the system integrating the dedicated measurement and control electronic systems for Gas Electron Multiplier (GEM) detectors with the Control and Data Acquisition system (CODAS) in the JET facility in Culham, England. The presented system performs the high level procedures necessary to calibrate the GEM detector and to protect it against possible malfunctions or dangerous changes in operating conditions. The system also allows control of the GEM detectors from CODAS, setting of their parameters, checking their state, starting the plasma measurement and to reading the results. The system has been implemented using the Python language, using the advanced libraries for implementation of network communication protocols, for object based hardware management and for data processing.

  11. 6:1 aspect ratio silicon pillar based thermal neutron detector filled with {sup 10}B

    SciTech Connect

    Nikolic, R. J.; Conway, A. M.; Reinhardt, C. E.; Graff, R. T.; Wang, T. F.; Deo, N.; Cheung, C. L.

    2008-09-29

    Current helium-3 tube based thermal neutron detectors have shortcomings in achieving simultaneously high efficiency and low voltage while maintaining adequate fieldability performance. By using a three-dimensional silicon p-i-n diode pillar array filled with boron-10 these constraints can be overcome. The fabricated pillar structured detector reported here is composed of 2 {mu}m diameter silicon pillars with a 4 {mu}m pitch and height of 12 {mu}m. A thermal neutron detection efficiency of 7.3+/-0.6% and a neutron-to-gamma discrimination of 10{sup 5} at 2 V reverse bias were measured for this detector. When scaled to larger aspect ratio, a high efficiency device is possible.

  12. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    NASA Astrophysics Data System (ADS)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  13. Signal processing for a single detector MOEMS based NIR micro spectrometer

    NASA Astrophysics Data System (ADS)

    Heberer, Andreas; Grüger, Heinrich; Zimmer, Fabian; Schenk, Harald; Kenda, Andreas; Frank, Albert; Scherf, Werner

    2005-10-01

    The examination of spectra in the NIR range is necessary for applications like process control, element analysis or medical systems. Typically integrated NIR spectrometers are based on optical setups with diffraction grating and detector arrays. The main disadvantage is price and availability of NIR array InGaAs-based detectors. The implementation of a scanning grating chip realized in a MOEMS technology which integrates the diffractive element makes it possible to detect spectra with single detectors time resolved. Either simple InGaAs photodiodes or cooled detectors may be used. The set up is a shrinked Czerny-Turner spectrometer. The light is coupled in by an optical fibre. After focussing the light passes the scanning grating moving at 150-500 Hz in a sinusoidal way. There it is split off in the different wavelength, the monochrome intensity is caught by a second mirror and led to the detector. The detector signal is amplified by a transimpedance stage and converted to digital with 12 bit resolution. The main part of the signal processing is done by a digital signal processor, which is used to unfold the sinusoidal position and calculate the final spectra. The data rate can be up to 3 MHz, then a spectrum is acquired every 2ms by using a 500Hz Mirror. Using the DSP, the spectrometer can operate autarkic without any PC. Then the spectrum is display on a 160 x 80 pixel graphic LCD. A keypad is used to control the functions. For communication a USB port is included, additional interfaces can be realized by a 16-pin expansion port, which is freely programmable, by the system firmware.

  14. Human emotion detector based on genetic algorithm using lip features

    NASA Astrophysics Data System (ADS)

    Brown, Terrence; Fetanat, Gholamreza; Homaifar, Abdollah; Tsou, Brian; Mendoza-Schrock, Olga

    2010-04-01

    We predicted human emotion using a Genetic Algorithm (GA) based lip feature extractor from facial images to classify all seven universal emotions of fear, happiness, dislike, surprise, anger, sadness and neutrality. First, we isolated the mouth from the input images using special methods, such as Region of Interest (ROI) acquisition, grayscaling, histogram equalization, filtering, and edge detection. Next, the GA determined the optimal or near optimal ellipse parameters that circumvent and separate the mouth into upper and lower lips. The two ellipses then went through fitness calculation and were followed by training using a database of Japanese women's faces expressing all seven emotions. Finally, our proposed algorithm was tested using a published database consisting of emotions from several persons. The final results were then presented in confusion matrices. Our results showed an accuracy that varies from 20% to 60% for each of the seven emotions. The errors were mainly due to inaccuracies in the classification, and also due to the different expressions in the given emotion database. Detailed analysis of these errors pointed to the limitation of detecting emotion based on the lip features alone. Similar work [1] has been done in the literature for emotion detection in only one person, we have successfully extended our GA based solution to include several subjects.

  15. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.

  16. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy. PMID:25768743

  17. Parallel hierarchical global illumination

    SciTech Connect

    Snell, Q.O.

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  18. Diagnosis of pneumothorax using a microwave-based detector

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Riechers, Ronald G., Sr.; Pasala, Krishna M.; Blanchard, Jeremy; Nozaki, Masako; Ramage, Anthony; Jackson, William; Rosner, Michael; Garcia-Pinto, Patricia; Yun, Catherine; Butler, Nathan; Riechers, Ronald G., Jr.; Williams, Daniel; Zeidman, Seth M.; Rhee, Peter; Ecklund, James M.; Fitzpatrick, Thomas; Lockhart, Stephen

    2001-08-01

    A novel method for identifying pneumothorax is presented. This method is based on a novel device that uses electromagnetic waves in the microwave radio frequency (RF) region and a modified algorithm previously used for the estimation of the angle of arrival of radar signals. In this study, we employ this radio frequency triage tool (RAFT) to the clinical condition of pneumothorax, which is a collapsed lung. In anesthetized pigs, RAFT can detect changes in the RF signature from a lung that is 20 percent or greater collapsed. These results are compared to chest x-ray. Both studies are equivalent in their ability to detect pneumothorax in pigs.

  19. EIT Based Gas Detector Design by Using Michelson Interferometer

    SciTech Connect

    Abbasian, K.; Rostami, A.; Abdollahi, M. H.

    2011-12-26

    Electromagnetically induced transparency (EIT) is one of the interesting phenomena of light-matter interaction which modifies matter properties for propagation of light. In other words, we can change the absorption and refractive index (RI) in neighborhood of the resonant frequency using EIT. In this paper, we have doped 3-level quantum dots in one of the Michelson Interferometer's mirror and used EIT to change its RI. So, a controllable phase difference between lights in two arms of interferometer is created. Long response time is the main drawback of Michelson interferometer based sensor, which is resolved by this technique.

  20. Radioactive threat detection using scintillant-based detectors

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2004-09-01

    An update to the performance of AS&E's Radioactive Threat Detection sensor technology. A model is presented detailing the components of the scintillant-based RTD system employed in AS&E products aimed at detecting radiological WMD. An overview of recent improvements in the sensors, electrical subsystems and software algorithms are presented. The resulting improvements in performance are described and sample results shown from existing systems. Advanced and future capabilities are described with an assessment of their feasibility and their application to Homeland Defense.

  1. Standoff gas leak detectors based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Frish, M. B.; Wainner, R. T.; Green, B. D.; Laderer, M. C.; Allen, M. G.

    2005-11-01

    Trace gas sensing and analysis by Tunable Diode Laser Absorption Spectroscopy (TDLAS) has become a robust and reliable technology accepted for industrial process monitoring and control, quality assurance, environmental sensing, plant safety, and infrastructure security. Sensors incorporating well-packaged wavelength-stabilized near-infrared (1.2 to 2.0 μm) laser sources sense over a dozen toxic or industrially-important gases. A large emerging application for TDLAS is standoff sensing of gas leaks, e.g. from natural gas pipelines. The Remote Methane Leak Detector (RMLD), a handheld standoff TDLAS leak survey tool that we developed, is replacing traditional leak detection tools that must be physically immersed within a leak to detect it. Employing a 10 mW 1.6 micron DFB laser, the RMLD illuminates a non-cooperative topographic surface, up to 30 m distant, and analyzes returned scattered light to deduce the presence of excess methane. The eye-safe, battery-powered, 6-pound handheld RMLD enhances walking pipeline survey rates by more than 30%. When combined with a spinning or rastering mirror, the RMLD serves as a platform for mobile leak mapping systems. Also, to enable high-altitude surveying and provide aerial disaster response, we are extending the standoff range to 3000 m by adding an EDFA to the laser transmitter.

  2. Gamma thermometer based reactor core liquid level detector

    SciTech Connect

    Burns, T.J.

    1983-09-20

    A system is provided which employs a modified gamma thermometer for determining the liquid coolant level within a nuclear reactor core. The gamma thermometer which normally is employed to monitor local core heat generation rate (reactor power), is midified by thermocouple junctions and leads to obtain an unambiguous indication of the presence or absence of coolant liquid at the gamma thermometer location. A signal processor generates a signal based on the thermometer surface heat transfer coefficient by comparing the signals from the thermocouples at the thermometer location. The generated signal is a direct indication of loss of coolant due to the change in surface heat transfer when coolant liquid drops below the thermometer location. The loss of coolant indication is independent of reactor power at the thermometer location. Further, the same thermometer may still be used for the normal power monitoring function.

  3. Gamma thermometer based reactor core liquid level detector

    DOEpatents

    Burns, Thomas J.

    1983-01-01

    A system is provided which employs a modified gamma thermometer for determining the liquid coolant level within a nuclear reactor core. The gamma thermometer which normally is employed to monitor local core heat generation rate (reactor power), is modified by thermocouple junctions and leads to obtain an unambiguous indication of the presence or absence of coolant liquid at the gamma thermometer location. A signal processor generates a signal based on the thermometer surface heat transfer coefficient by comparing the signals from the thermocouples at the thermometer location. The generated signal is a direct indication of loss of coolant due to the change in surface heat transfer when coolant liquid drops below the thermometer location. The loss of coolant indication is independent of reactor power at the thermometer location. Further, the same thermometer may still be used for the normal power monitoring function.

  4. Bioaerosol collection and concentration for microseparations-based detectors.

    SciTech Connect

    Cummings, Eric B. (Sandia National Laboratories, Livermore, CA); Ellis, C. R. Bowe (Sandia National Laboratories, Livermore, CA); Kanouff, Michael P. (Sandia National Laboratories, Livermore, CA); Rader, Daniel John; Wally, Karl

    2005-03-01

    The ability to detect Weapons of Mass Destruction biological agents rapidly and sensitively is vital to homeland security, spurring development of compact detection systems at Sandia and elsewhere. One such system is Sandia's microseparations-based pChemLab. Many bio-agents are serious health threats even at extremely low concentrations. Therefore, a universal challenge for detection systems is the efficient collection and selective transport of highly diffuse bio-agents against the enormous background of benign particles and species ever present in the ambient environment. We have investigated development of a ''front end'' system for the collection, preconcentration, and selective transport of aerosolized biological agents from dilute (1-10 active particles per liter of air) atmospheric samples, to ultimate concentrations of {approx}20 active particles per microliter of liquid, for interface with microfluidic-based analyses and detection systems. Our approach employs a Sandia-developed aerosol particle-focusing microseparator array to focus size-selected particles into a mating microimpinger array of open microfluidic transport channels. Upon collection (i.e., impingement, submergence, and liquid suspension), microfluidic dielectrophoretic particle concentrators and sorters can be employed to further concentrate and selectively transport bio-agent particles to the sample preparation stages of microfluidic analyses and detection systems. This report documents results in experimental testing, modeling and analysis, component design, and materials fabrication critical to establishing proof-of-principle for this collection ''front end''. Outstanding results have been achieved for the aerodynamic microseparator, and for the post-collection dielectrophoretic concentrator and sorter. Results have been obtained for the microimpinger, too, but issues of particle-trapping by surface tension in liquid surfaces have proven difficult. Subsequent particle submergence into

  5. The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance

    NASA Astrophysics Data System (ADS)

    Contin, Giacomo

    2016-09-01

    The PiXeL detector (PXL) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. The PXL, together with the Intermediate Silicon Tracker (IST) and the Silicon Strip Detector (SSD), form the Heavy Flavor Tracker (HFT), which has been designed to improve the vertex resolution and extend the STAR measurement capabilities in the heavy flavor domain, providing a clean probe for studying the Quark-Gluon Plasma. The two PXL layers are placed at a radius of 2.8 and 8 cm from the beam line, respectively, and is based on ultra-thin high resolution MAPS sensors. The sensor features 20.7 μm pixel pitch, 185.6 μs readout time and 170 mW/cm2 power dissipation. The detector is air-cooled, allowing a global material budget of 0.4% radiation length on the innermost layer. A novel mechanical approach to detector insertion allows for fast installation and integration of the pixel sub detector. The HFT took data in Au+Au collisions at 200 GeV during the 2014 RHIC run. Modified during the RHIC shutdown to improve its reliability, material budget, and tracking capabilities, the HFT took data in p+p and p+Au collisions at √sNN=200 GeV in the 2015 RHIC run. In this paper we present detector specifications, experience from the construction and operations, and lessons learned. We also show preliminary results from 2014 Au+Au data analyses, demonstrating the capabilities of charm reconstruction with the HFT.

  6. High-flux ptychographic imaging using the new 55 µm-pixel detector ‘Lambda’ based on the Medipix3 readout chip

    SciTech Connect

    Wilke, R. N. Wallentin, J.; Osterhoff, M.; Pennicard, D.; Zozulya, A.; Sprung, M.; Salditt, T.

    2014-11-01

    The Large Area Medipix-Based Detector Array (Lambda) has been used in a ptychographic imaging experiment on solar-cell nanowires. By using a semi-transparent central stop, the high flux density provided by nano-focusing Kirkpatrick–Baez mirrors can be fully exploited for high-resolution phase reconstructions. Suitable detection systems that are capable of recording high photon count rates with single-photon detection are instrumental for coherent X-ray imaging. The new single-photon-counting pixel detector ‘Lambda’ has been tested in a ptychographic imaging experiment on solar-cell nanowires using Kirkpatrick–Baez-focused 13.8 keV X-rays. Taking advantage of the high count rate of the Lambda and dynamic range expansion by the semi-transparent central stop, a high-dynamic-range diffraction signal covering more than seven orders of magnitude has been recorded, which corresponds to a photon flux density of about 10{sup 5} photons nm{sup −2} s{sup −1} or a flux of ∼10{sup 10} photons s{sup −1} on the sample. By comparison with data taken without the semi-transparent central stop, an increase in resolution by a factor of 3–4 is determined: from about 125 nm to about 38 nm for the nanowire and from about 83 nm to about 21 nm for the illuminating wavefield.

  7. An ultrasensitive universal detector based on neutralizer displacement

    NASA Astrophysics Data System (ADS)

    Das, Jagotamoy; Cederquist, Kristin B.; Zaragoza, Alexandre A.; Lee, Paul E.; Sargent, Edward H.; Kelley, Shana O.

    2012-08-01

    Diagnostic technologies that can provide the simultaneous detection of nucleic acids for gene expression, proteins for host response and small molecules for profiling the human metabolome will have a significant advantage in providing comprehensive patient monitoring. Molecular sensors that report changes in the electrostatics of a sensor's surface on analyte binding have shown unprecedented sensitivity in the detection of charged biomolecules, but do not lend themselves to the detection of small molecules, which do not carry significant charge. Here, we introduce the neutralizer displacement assay that allows charge-based sensing to be applied to any class of molecule irrespective of the analyte charge. The neutralizer displacement assay starts with an aptamer probe bound to a neutralizer. When analyte binding occurs the neutralizer is displaced, which results in a dramatic change in the surface charge for all types of analytes. We have tested the sensitivity, speed and specificity of this system in the detection of a panel of molecules: (deoxy)ribonucleic acid, ribonucleic acid, cocaine, adenosine triphosphate and thrombin.

  8. LBHNC: A lunar-based heavy nucleus detector

    NASA Astrophysics Data System (ADS)

    Salamon, M. H.; Price, P. B.; Tarlé, G.

    1990-03-01

    A passive, large-area experiment for the detection of cosmic ray actinides on the lunar surface is discussed. Due to the absence of a geomagnetic cutoff, a 100 m2 array of nuclear-track-detecting glass plates in 5 years will detect ~300-1000 U and Th cosmic ray nuclei of energies >~0.85 GeV/u (compared to the present world's total of 4 actinides). With a charge resolution at uranium of ~0.25e, the U/Th ratio can be accurately determined, thereby dating the r-process component of the cosmic rays; the presence of a fresh r-process component would be corroborated by the likely detection of transuranics as well. In addition, abundances in the Pt/Pb and sub-Pt/Pb regions and abundances of secondary actinides would provide detailed data on the 0-1 g/cm2 region of the cosmic ray path length distribution, hence on the astrophysical site of origin of these cosmic rays. Finally, should a fresh r-process component exist, the dection of postulated suerheavy nuclei is conceivable. With an analysis station at the Lunar Base, glass plates could periodically be harvested, analyzed, annealed/remelted, and replaced onto the lunar surface.

  9. Studying radiation hardness of a cadmium tungstate crystal based radiation detector

    NASA Astrophysics Data System (ADS)

    Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu

    2016-06-01

    The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.

  10. A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System

    PubMed Central

    Yoo, Seong-eun

    2013-01-01

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy. PMID:23344388

  11. Development of Ta-based STJ X-ray Detector Arrays for Synchrotron Science

    NASA Astrophysics Data System (ADS)

    Carpenter, M. H.; Friedrich, S.; Hall, J. A.; Harris, J.; Cantor, R.

    2014-08-01

    We are developing a cryogen-free Ta-based superconducting tunnel junction (STJ) detector for soft X-ray spectroscopy at synchrotrons. With an energy resolution 10 times higher than conventional solid-state X-ray detectors and count-rate capabilities above 5 kHz/pixel, STJ detectors offer potentially increased sensitivity for fluorescence-yield X-ray absorption spectroscopy (FY-XAS). We have developed 36-pixel arrays of 208 208 m Ta STJs with an energy resolution of 9 eV FWHM at the 525 eV oxygen K line. Compared to earlier Nb-based STJs, Ta-STJs offer improved energy resolution and absorption efficiency and extend the operating range to several keV. Here we describe the integration of the 36-pixel arrays into a cryogen-free, user-friendly X-ray spectrometer. A computer-controlled adiabatic demagnetization refrigerator coupled to a two-stage pulse tube refrigerator allows operation below 100 mK. The detector chip is located at the end of a 42 cm shielded snout for insertion into the analysis chamber. The system is currently being commissioned at the Advanced Light Source synchrotron.

  12. APD-based PET detector for simultaneous PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Grazioso, Ronald; Zhang, Nan; Corbeil, James; Schmand, Matthias; Ladebeck, Ralf; Vester, Markus; Schnur, Günter; Renz, Wolfgang; Fischer, Hubertus

    2006-12-01

    Two, APD-based, PET modules have been evaluated for use in combined PET/MR imaging. Each module consists of 4 independent, optically isolated detectors. Each detector consists of an 8×8 array of 2×2×20 mm LSO crystals read out by a 2×2 array of 5×5 mm Hamamatsu S8664-55 APDs. The average crystal energy resolution and time resolution (against a plastic scintillator on a PMT) of the detectors was 17% and 1.8 ns, respectively. The modules were positioned in the tunnel of a 1.5 T Siemens Symphony MR scanner. The presence of the PET modules decreased the MR signal-to-noise ratio by about 15% but no image interference was observed. The gradient and RF pulse sequences of the MR produced adverse effects on the PET event signals. These high-frequency pulses did not affect the true PET events but did increase the dead time of the PET system. Simultaneous, artifact-free, images were acquired with the PET and MR system using a small Derenzo phantom. These results show that APD-based PET detectors can be used for a high-resolution and cost-effective integrated PET/MR system.

  13. Radon monitoring using long-range alpha detector-based technology

    SciTech Connect

    Bolton, R.D.

    1994-11-01

    Long-Range Alpha Detector (LRAD) technology is being studied for monitoring radon gas concentrations. LRAD-based instruments collect and measure the ionization produced in air by alpha decays. These ions can be moved to a collection grid via electrostatic ion-transport design collected approximately 95% of the radon produced ions, while instruments using an airflow transport design collected from 44% to 77% of these ions, depending on detector geometry. The current produced by collecting this ionization is linear with respect to {sup 222}Rn concentration over the available test range of 0.07 to 820 pCi/L. In the absence of statistical limitations due to low radon concentrations, the speed of response of LRAD-based instruments is determined by the air exchange rate, and therefore changes in radon concentration can be detected in just a few seconds. Recent tests show that at radon concentrations below 20 pCi/L current pulses produced by individual alpha decays can be counted, thus improving detector sensitivity and stability even further. Because these detectors are simple, rugged, and do not consume much power, they are natural candidates for portable, battery operation.

  14. GATE simulation of a LYSO-based SPECT imager: Validation and detector optimization

    NASA Astrophysics Data System (ADS)

    Li, Suying; Zhang, Qiushi; Xie, Zhaoheng; Liu, Qi; Xu, Baixuan; Yang, Kun; Li, Changhui; Ren, Qiushi

    2015-02-01

    This paper presents a small animal SPECT system that is based on cerium doped lutetium-yttrium oxyorthosilicate (LYSO) scintillation crystal, position sensitive photomultiplier tubes (PSPMTs) and parallel hole collimator. Spatial resolution test and animal experiment were performed to demonstrate the imaging performance of the detector. Preliminary results indicated a spatial resolution of 2.5 mm at FWHM that cannot meet our design requirement. Therefore, we simulated this gamma camera using GATE (GEANT 4 Application for Tomographic Emission) aiming to make detector spatial resolution less than 2 mm. First, the GATE simulation process was validated through comparison between simulated and experimental data. This also indicates the accuracy and effectiveness of GATE simulation for LYSO-based gamma camera. Then the different detector sampling methods (crystal size with 1.5, and 1 mm) and collimator design (collimator height with 30, 34.8, 38, and 43 mm) were studied to figure out an optimized parameter set. Detector sensitivity changes were also focused on with different parameters set that generated different spatial resolution results. Tradeoff curves of spatial resolution and sensitivity were plotted to determine the optimal collimator height with different sampling methods. Simulation results show that scintillation crystal size of 1 mm and collimator height of 38 mm, which can generate a spatial resolution of ~1.8 mm and sensitivity of ~0.065 cps/kBq, can be an ideal configuration for our SPECT imager design.

  15. Integrated USB based readout interface for silicon strip detectors of the ATLAS SCT module

    NASA Astrophysics Data System (ADS)

    Masek, P.; Linhart, V.; Granja, C.; Pospisil, S.; Husak, M.

    2011-12-01

    An integrated portable USB based readout interface for the ATLAS semiconductor trackers (SCT) has been built. The ATLAS SCT modules are large area silicon strip detectors designed for tracking of high-energy charged particles resulting in collisions on Large Hadron Collider (LHC) in CERN. These modules can be also used on small accelerators for medical or industry applications where a compact and configurable readout interface would be useful. A complete custom made PC-host software tool was written for Windows platform for control and DAQ with build-in online visualization. The new constructed interface provides integrated power, control and DAQ and configurable communication between the detector module and the controlling PC. The interface is based on the Field Programmable Gate Array (FPGA) and the high speed USB 2.0 standard. This design permits to operate the modules under high particle fluence while minimizing the dead time of the whole detection system. Utilization of the programmable device simplifies the operation and permits future expansion of the functionality without any hardware changes. The device includes the high voltage source for detector bias up to 500 V and it is equipped with number of devices for monitoring the operation and conditions of measurement (temperature, humidity, voltage). These features are particularly useful as the strip detector must be operated in a well controlled environment. The operation of the interface will be demonstrated on data measured with different particles from radiation sources.

  16. A novel optical apparatus for the study of rolling contact wear/fatigue based on a high-speed camera and multiple-source laser illumination.

    PubMed

    Bodini, I; Sansoni, G; Lancini, M; Pasinetti, S; Docchio, F

    2016-08-01

    Rolling contact wear/fatigue tests on wheel/rail specimens are important to produce wheels and rails of new materials for improved lifetime and performance, which are able to operate in harsh environments and at high rolling speeds. This paper presents a novel non-invasive, all-optical system, based on a high-speed video camera and multiple laser illumination sources, which is able to continuously monitor the dynamics of the specimens used to test wheel and rail materials, in a laboratory test bench. 3D macro-topography and angular position of the specimen are simultaneously performed, together with the acquisition of surface micro-topography, at speeds up to 500 rpm, making use of a fast camera and image processing algorithms. Synthetic indexes for surface micro-topography classification are defined, the 3D macro-topography is measured with a standard uncertainty down to 0.019 mm, and the angular position is measured on a purposely developed analog encoder with a standard uncertainty of 2.9°. The very small camera exposure time enables to obtain blur-free images with excellent definition. The system will be described with the aid of end-cycle specimens, as well as of in-test specimens. PMID:27587125

  17. A novel optical apparatus for the study of rolling contact wear/fatigue based on a high-speed camera and multiple-source laser illumination.

    PubMed

    Bodini, I; Sansoni, G; Lancini, M; Pasinetti, S; Docchio, F

    2016-08-01

    Rolling contact wear/fatigue tests on wheel/rail specimens are important to produce wheels and rails of new materials for improved lifetime and performance, which are able to operate in harsh environments and at high rolling speeds. This paper presents a novel non-invasive, all-optical system, based on a high-speed video camera and multiple laser illumination sources, which is able to continuously monitor the dynamics of the specimens used to test wheel and rail materials, in a laboratory test bench. 3D macro-topography and angular position of the specimen are simultaneously performed, together with the acquisition of surface micro-topography, at speeds up to 500 rpm, making use of a fast camera and image processing algorithms. Synthetic indexes for surface micro-topography classification are defined, the 3D macro-topography is measured with a standard uncertainty down to 0.019 mm, and the angular position is measured on a purposely developed analog encoder with a standard uncertainty of 2.9°. The very small camera exposure time enables to obtain blur-free images with excellent definition. The system will be described with the aid of end-cycle specimens, as well as of in-test specimens.

  18. Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain.

    PubMed

    Liansheng, Sui; Bei, Zhou; Xiaojuan, Ning; Ailing, Tian

    2016-01-11

    A novel multiple-image encryption scheme using the nonlinear iterative phase retrieval algorithm in the gyrator transform domain under the illumination of an optical vortex beam is proposed. In order to increase the randomness, the chaotic structured phase mask based on the logistic map, Fresnel zone plate and radial Hilbert mask is proposed. With the help of two chaotic phase masks, each plain image is encoded into two phase-only masks that are considered as the private keys by using the iterative phase retrieval process in the gyrator domain. Then, the second keys of all plain images are modulated into the ciphertext, which has the stationary white noise distribution. Due to the use of the chaotic structured phase masks, the problem of axis alignment in the optical setup can easily be solved. Two private keys are directly relative to the plain images, which makes that the scheme has high resistance against various potential attacks. Moreover, the use of the vortex beam that can integrates more system parameters as the additional keys into one phase mask can improve the security level of the cryptosystem, which makes the key space enlarged widely. Simulation results are given to verify the feasibility and robustness of the proposed encryption scheme.

  19. A novel optical apparatus for the study of rolling contact wear/fatigue based on a high-speed camera and multiple-source laser illumination

    NASA Astrophysics Data System (ADS)

    Bodini, I.; Sansoni, G.; Lancini, M.; Pasinetti, S.; Docchio, F.

    2016-08-01

    Rolling contact wear/fatigue tests on wheel/rail specimens are important to produce wheels and rails of new materials for improved lifetime and performance, which are able to operate in harsh environments and at high rolling speeds. This paper presents a novel non-invasive, all-optical system, based on a high-speed video camera and multiple laser illumination sources, which is able to continuously monitor the dynamics of the specimens used to test wheel and rail materials, in a laboratory test bench. 3D macro-topography and angular position of the specimen are simultaneously performed, together with the acquisition of surface micro-topography, at speeds up to 500 rpm, making use of a fast camera and image processing algorithms. Synthetic indexes for surface micro-topography classification are defined, the 3D macro-topography is measured with a standard uncertainty down to 0.019 mm, and the angular position is measured on a purposely developed analog encoder with a standard uncertainty of 2.9°. The very small camera exposure time enables to obtain blur-free images with excellent definition. The system will be described with the aid of end-cycle specimens, as well as of in-test specimens.

  20. MSIM: multistage illumination modeling of dermatological photographs for illumination-corrected skin lesion analysis.

    PubMed

    Glaister, Jeffrey; Amelard, Robert; Wong, Alexander; Clausi, David A

    2013-07-01

    Melanoma is the most deadly form of skin cancer and it is costly for dermatologists to screen every patient for melanoma. There is a need for a system to assess the risk of melanoma based on dermatological photographs of a skin lesion. However, the presence of illumination variation in the photographs can have a negative impact on lesion segmentation and classification performance. A novel multistage illumination modeling algorithm is proposed to correct the underlying illumination variation in skin lesion photographs. The first stage is to compute an initial estimate of the illumination map of the photograph using a Monte Carlo nonparametric modeling strategy. The second stage is to obtain a final estimate of the illumination map via a parametric modeling strategy, where the initial nonparametric estimate is used as a prior. Finally, the corrected photograph is obtained using the final illumination map estimate. The proposed algorithm shows better visual, segmentation, and classification results when compared to three other illumination correction algorithms, one of which is designed specifically for lesion analysis.

  1. Lunar Polar Illumination for Power Analysis

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    This paper presents illumination analyses using the latest Earth-based radar digital elevation model (DEM) of the lunar south pole and an independently developed analytical tool. These results enable the optimum sizing of solar/energy storage lunar surface power systems since they quantify the timing and durations of illuminated and shadowed periods. Filtering and manual editing of the DEM based on comparisons with independent imagery were performed and a reduced resolution version of the DEM was produced to reduce the analysis time. A comparison of the DEM with lunar limb imagery was performed in order to validate the absolute heights over the polar latitude range, the accuracy of which affects the impact of long range, shadow-casting terrain. Average illumination and energy storage duration maps of the south pole region are provided for the worst and best case lunar day using the reduced resolution DEM. Average illumination fractions and energy storage durations are presented for candidate low energy storage duration south pole sites. The best site identified using the reduced resolution DEM required a 62 hr energy storage duration using a fast recharge power system. Solar and horizon terrain elevations as well as illumination fraction profiles are presented for the best identified site and the data for both the reduced resolution and high resolution DEMs compared. High resolution maps for three low energy storage duration areas are presented showing energy storage duration for the worst case lunar day, surface height, and maximum absolute surface slope.

  2. Color rendering indices in global illumination methods

    NASA Astrophysics Data System (ADS)

    Geisler-Moroder, David; Dür, Arne

    2009-02-01

    Human perception of material colors depends heavily on the nature of the light sources used for illumination. One and the same object can cause highly different color impressions when lit by a vapor lamp or by daylight, respectively. Based on state-of-the-art colorimetric methods we present a modern approach for calculating color rendering indices (CRI), which were defined by the International Commission on Illumination (CIE) to characterize color reproduction properties of illuminants. We update the standard CIE method in three main points: firstly, we use the CIELAB color space, secondly, we apply a Bradford transformation for chromatic adaptation, and finally, we evaluate color differences using the CIEDE2000 total color difference formula. Moreover, within a real-world scene, light incident on a measurement surface is composed of a direct and an indirect part. Neumann and Schanda1 have shown for the cube model that interreflections can influence the CRI of an illuminant. We analyze how color rendering indices vary in a real-world scene with mixed direct and indirect illumination and recommend the usage of a spectral rendering engine instead of an RGB based renderer for reasons of accuracy of CRI calculations.

  3. Model-based detector and extraction of weak signal frequencies from chaotic data.

    PubMed

    Zhou, Cangtao; Cai, Tianxing; Heng Lai, Choy; Wang, Xingang; Lai, Ying-Cheng

    2008-03-01

    Detecting a weak signal from chaotic time series is of general interest in science and engineering. In this work we introduce and investigate a signal detection algorithm for which chaos theory, nonlinear dynamical reconstruction techniques, neural networks, and time-frequency analysis are put together in a synergistic manner. By applying the scheme to numerical simulation and different experimental measurement data sets (Henon map, chaotic circuit, and NH(3) laser data sets), we demonstrate that weak signals hidden beneath the noise floor can be detected by using a model-based detector. Particularly, the signal frequencies can be extracted accurately in the time-frequency space. By comparing the model-based method with the standard denoising wavelet technique as well as supervised principal components analysis detector, we further show that the nonlinear dynamics and neural network-based approach performs better in extracting frequencies of weak signals hidden in chaotic time series.

  4. New Developments in the Position Sensitive Detectors Based on Microchannel Plates

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Siegmund, O. H. W.

    2002-11-01

    We report on the latest developments in position sensitive photon counting detectors based on microchannel plates. Substantial improvement of the spatial resolution was achieved with introduction of new readout technology, namely crossed strip (XS) anode, and corresponding processing electronics. The spatial resolution of XS readout appeared to be as small as ~3-4 μm FWHM. Reduction of the total detector gain (down to 106 and potentially lower) without compromising the spatial accuracy allows detector operation at much higher local and global counting rates since the microchannel recharge time becomes smaller. Recent developments of novel microchannel plate technologies provide basis for substantial increase of the spectral sensitivity and quantum efficiency of MCP detectors. We have tested a number of new Silicon micromachined MCPs The new MCP technologies should allow deposition of completely new photocathode materials directly on the front surface of microchannel plates (opaque photocathodes). Opposite to standard glass MCPs new Silicon MCPs can sustain high temperatures (-800 C°) required for the photocathode deposition and activation processes.

  5. Ultracold neutron detectors based on 10B converters used in the qBounce experiments☆

    PubMed Central

    Jenke, Tobias; Cronenberg, Gunther; Filter, Hanno; Geltenbort, Peter; Klein, Martin; Lauer, Thorsten; Mitsch, Kevin; Saul, Heiko; Seiler, Dominik; Stadler, David; Thalhammer, Martin; Abele, Hartmut

    2013-01-01

    Gravity experiments with very slow, so-called ultracold neutrons connect quantum mechanics with tests of Newton's inverse square law at short distances. These experiments face a low count rate and hence need highly optimized detector concepts. In the frame of this paper, we present low-background ultracold neutron counters and track detectors with micron resolution based on a 10B converter. We discuss the optimization of 10B converter layers, detector design and concepts for read-out electronics focusing on high-efficiency and low-background. We describe modifications of the counters that allow one to detect ultracold neutrons selectively on their spin-orientation. This is required for searches of hypothetical forces with spin–mass couplings. The mentioned experiments utilize a beam-monitoring concept which accounts for variations in the neutron flux that are typical for nuclear research facilities. The converter can also be used for detectors, which feature high efficiencies paired with high spatial resolution of 1–2μm. They allow one to resolve the quantum mechanical wave function of an ultracold neutron bound in the gravity potential above a neutron mirror. PMID:25843998

  6. Study on the technology of mutual alignment based on the four-quadrant photo electric detector

    NASA Astrophysics Data System (ADS)

    Hu, Ya-bin; Wang, Miao

    2015-11-01

    Panoramic stereo cameras and laser radars have their own coordinate system in the dynamic spatial sensing area and they have to determine the position relationship between each other through joint calibration. As using the traditional technology of mutual alignment based on the telescope cross wire is tedious and requires high operating skills, a new method of mutual alignment using lasers and four-quadrant photo electric detectors is provided after analyzing the working principle of four-quadrant photo electric detectors. Firstly make the laser beam irradiate the active area of the four-quadrant photo electric detector through coarse aiming. Then the center of a light spot offset relative to the center of the active area can be obtained according to the output voltage of four quadrants. The pose of two instruments can be adjusted properly to realize mutual alignment. The experimental results indicate that the alignment accuracy of four-quadrant detectors can meet the requirements of mutual alignment, which provides a new idea for joint calibration.

  7. Ultracold neutron detectors based on 10B converters used in the qBounce experiments

    NASA Astrophysics Data System (ADS)

    Jenke, Tobias; Cronenberg, Gunther; Filter, Hanno; Geltenbort, Peter; Klein, Martin; Lauer, Thorsten; Mitsch, Kevin; Saul, Heiko; Seiler, Dominik; Stadler, David; Thalhammer, Martin; Abele, Hartmut

    2013-12-01

    Gravity experiments with very slow, so-called ultracold neutrons connect quantum mechanics with tests of Newton's inverse square law at short distances. These experiments face a low count rate and hence need highly optimized detector concepts. In the frame of this paper, we present low-background ultracold neutron counters and track detectors with micron resolution based on a 10B converter. We discuss the optimization of 10B converter layers, detector design and concepts for read-out electronics focusing on high-efficiency and low-background. We describe modifications of the counters that allow one to detect ultracold neutrons selectively on their spin-orientation. This is required for searches of hypothetical forces with spin-mass couplings. The mentioned experiments utilize a beam-monitoring concept which accounts for variations in the neutron flux that are typical for nuclear research facilities. The converter can also be used for detectors, which feature high efficiencies paired with high spatial resolution of 1-2 μm. They allow one to resolve the quantum mechanical wave function of an ultracold neutron bound in the gravity potential above a neutron mirror.

  8. A spectroscopy-based detector to monitor tomato growth condition in greenhouse

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Li, Minzan; Cui, Di

    2008-12-01

    A spectroscopy-based detector is developed to measure the nitrogen and chlorophyll content of tomato leaves and then to predict the growth condition of tomato plants in greenhouse. The detector uses two wavebands, 527 nm and 762 nm, since it is proved that these wavebands are sensitive to nitrogen and chlorophyll content in plant leaves by previous field test. The detector contains: A Y-type optic fiber, two silicon photocells, a signal processing unit, and a MCU. Light reflection from tomato leaves is transmitted by the Y-type optic fiber to the surface of the silicon photo cells, which transfer optical signal into electrical signal. Then the analog signal is amplified to conform to the TTL level signal standard and finally converted to digital signal by MAX186. After that, the MCU carries on a series of actions, including data calculating, displaying and storage. Using the measured data, the Normalized Difference Vegetation Index (NDVI) is calculated to estimate the nitrogen and chlorophyll content in plant leaves. The result is directly displayed on an LCD screen. Users have an option in saving data, either into a USB-memory stick or into a database over the PC serial port. The detector is portable, inexpensive, and convenient, which make it meet farmers' need in China. The performance test shows that the growth model works very well, and the device has high accuracy in predicting the growth condition of tomato plants in greenhouse.

  9. Development of high-resolution muon tracking systems based on micro-pattern detectors

    SciTech Connect

    Bortfeldt, J.; Biebel, O.; Heereman, D.; Hertenberger, R.

    2011-07-01

    A muon tracking system consisting of four 9 cm x 10 cm sized bulk Micromegas detectors with 128 {mu}m amplification-gap and two 10 cm x 10 cm triple GEM detectors is foreseen for high-precision tracking of 140 GeV muons at the H8 beamline at CERN with a rate of up to 10 kHz and an overall resolution below 40 {mu}m. Larger detectors with an active area of 0.5 m{sup 2} and more are under development for detector studies in high neutron or gamma ray background environments at the Gamma Irradiation Facility at CERN and the Munich tandem accelerator. Signal studies of both detector types have been performed by recording cosmic muon and 5.9 keV X-ray signals with a single charge-sensitive preamplifier using several gas-mixtures of Ar:CO{sub 2}. The signals were digitized using 1 GHz VME based flashADCs with 2520 sampling points. The analysis of the complete signal-cycles allows for the determination of rise times, pulse heights, timing fluctuations and discrimination of background, resulting in a FWHM energy resolution of about 20% and detection efficiencies of 99% and more. Models for signal formation in both detector types will be presented. The single detector spatial resolution of 80 {mu}m was measured using a fast Gassiplex based strip readout with readout strips of 150 {mu}m width and a pitch of 250 {mu}m. The Gassiplex readout, formerly used at the HERMES experiment, had to be substantially adapted. No more crosstalk or non-linearities were observed after reconfiguration of the multiplexing amplifier on the front-end boards. The observed spatial resolution is limited by multiple scattering of the cosmic muons used in the laboratory. We also report on the sensitivity to gamma- and neutron background and on the behaviour of spatial resolution as a function of background rates. (authors)

  10. Split-illumination electron holography

    SciTech Connect

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-07-23

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  11. Design and analysis of illumination systems

    NASA Astrophysics Data System (ADS)

    Zoechling, Guenter

    1991-01-01

    Illuminance at a detector is calculated by means of raytracing. A method of synthesis already known from related fields - is demonstrated: the Edge Ray Principle. 1. 1 Concepts of photometry 1. ANALYSIS We have to recall the basic physical concepts of photometry namely luminance light intensity light flux and illuminance [21 The definition of a Lambertian Source is given here again due to its fundamental importance: we call a radiating surface a Lambertian Source its luminance is independent of surface coordinates and viewing angle. An equivalent formulation is: the source obeys ''Lamberts cosine law of intensity'' for any surface element dA and any angle B dl L * cos B * dA (1) L luminance dA surface element at source I intensity B angle between surface normal and viewing direction The Lambertian Source has several interesting attributes for instance that we cannot judge its position or shape by just looking at it. A more precise formulation of this phenomenon can be stated as following: 1. 2 Pseudo luminance of the hole Let D be some area on a detector H be a hole in an opaque screen (both not necessarily small) and Si and S2 be lambertian radiating surfaces (alternatively existing) then the following theorem holds: SPIE Vol. 1354 International Lens Design Conference (1990) / 617 y D (p y H (p Fig. i

  12. Optimization-based image reconstruction from sparse-view data in offset-detector CBCT

    NASA Astrophysics Data System (ADS)

    Bian, Junguo; Wang, Jiong; Han, Xiao; Sidky, Emil Y.; Shao, Lingxiong; Pan, Xiaochuan

    2013-01-01

    The field of view (FOV) of a cone-beam computed tomography (CBCT) unit in a single-photon emission computed tomography (SPECT)/CBCT system can be increased by offsetting the CBCT detector. Analytic-based algorithms have been developed for image reconstruction from data collected at a large number of densely sampled views in offset-detector CBCT. However, the radiation dose involved in a large number of projections can be of a health concern to the imaged subject. CBCT-imaging dose can be reduced by lowering the number of projections. As analytic-based algorithms are unlikely to reconstruct accurate images from sparse-view data, we investigate and characterize in the work optimization-based algorithms, including an adaptive steepest descent-weighted projection onto convex sets (ASD-WPOCS) algorithms, for image reconstruction from sparse-view data collected in offset-detector CBCT. Using simulated data and real data collected from a physical pelvis phantom and patient, we verify and characterize properties of the algorithms under study. Results of our study suggest that optimization-based algorithms such as ASD-WPOCS may be developed for yielding images of potential utility from a number of projections substantially smaller than those used currently in clinical SPECT/CBCT imaging, thus leading to a dose reduction in CBCT imaging.

  13. Optimization-based image reconstruction from sparse-view data in offset-detector CBCT.

    PubMed

    Bian, Junguo; Wang, Jiong; Han, Xiao; Sidky, Emil Y; Shao, Lingxiong; Pan, Xiaochuan

    2013-01-21

    The field of view (FOV) of a cone-beam computed tomography (CBCT) unit in a single-photon emission computed tomography (SPECT)/CBCT system can be increased by offsetting the CBCT detector. Analytic-based algorithms have been developed for image reconstruction from data collected at a large number of densely sampled views in offset-detector CBCT. However, the radiation dose involved in a large number of projections can be of a health concern to the imaged subject. CBCT-imaging dose can be reduced by lowering the number of projections. As analytic-based algorithms are unlikely to reconstruct accurate images from sparse-view data, we investigate and characterize in the work optimization-based algorithms, including an adaptive steepest descent-weighted projection onto convex sets (ASD-WPOCS) algorithms, for image reconstruction from sparse-view data collected in offset-detector CBCT. Using simulated data and real data collected from a physical pelvis phantom and patient, we verify and characterize properties of the algorithms under study. Results of our study suggest that optimization-based algorithms such as ASD-WPOCS may be developed for yielding images of potential utility from a number of projections substantially smaller than those used currently in clinical SPECT/CBCT imaging, thus leading to a dose reduction in CBCT imaging.

  14. Optimal color temperature adjustment for mobile devices under varying illuminants

    NASA Astrophysics Data System (ADS)

    Choi, Kyungah; Suk, Hyeon-Jeong

    2014-01-01

    With the wide use of mobile devices, display color reproduction has become extremely important. The purpose of this study is to investigate the optimal color temperature for mobile displays under varying illuminants. The effect of the color temperature and the illuminance of ambient lighting on user preferences were observed. For a visual examination, a total of 19 nuanced whites were examined under 20 illuminants. A total of 19 display stimuli with different color temperatures (2,500 K ~ 19,600 K) were presented on an iPad3 (New iPad). The ambient illuminants ranged in color temperature from 2,500 K to 19,800 K and from 0 lx to 3,000 lx in illuminance. Supporting previous studies of color reproduction, there was found to be a positive correlation between the color temperature of illuminants and that of optimal whites. However, the relationship was not linear. Based on assessments by 56 subjects, a regression equation was derived to predict the optimal color temperature adjustment under varying illuminants, as follows: [Display Tcp = 5138.93 log(Illuminant Tcp) - 11956.59, p<.001, R2=0.94]. Moreover, the influence of an illuminant was positively correlated with the illuminance level, confirming the findings of previous studies. It is expected that the findings of this study can be used as the theoretical basis when designing a color strategy for mobile display devices.

  15. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.; Vallisneri, Michele; Larson, Shane L.; Baker, John G.

    2013-09-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ˜ 10(-5) - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  16. An HEMT-Based Cryogenic Charge Amplifier for Sub-kelvin Semiconductor Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Juillard, A.; Jin, Y.

    2016-07-01

    We present the design and noise performance of a fully cryogenic (T=4 K) high-electron mobility transistor (HEMT)-based charge amplifier for readout of sub-kelvin semiconductor radiation detectors. The amplifier is being developed for use in direct detection dark matter searches such as the cryogenic dark matter search and will allow these experiments to probe weakly interacting massive particle masses below 10 GeV/c^2 while retaining background discrimination. The amplifier dissipates ≈ 1 mW of power and provides an open loop voltage gain of several hundreds. The measured noise performance is better than that of JFET-based charge amplifiers and is dominated by the noise of the input HEMT. An optimal filter calculation using the measured closed loop noise and typical detector characteristics predicts a charge resolution of σ _q=106 eV (35 electrons) for leakage currents below 4 × 10^{-15} A.

  17. Operating point stabilization of fiber-based line detectors for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Felbermayer, Karoline; Grün, Hubert; Berer, Thomas; Burgholzer, Peter

    2011-07-01

    Photoacoustic imaging is an upcoming technique in the field of biomedical imaging. Our group introduced fiber-based line detectors, which are used to acquire broad-band ultrasonic signals, several years ago. Up to now operating point stabilization of fiber-based line detectors was realized by tuning the wavelength of the detection laser. This is, because of the high costs, not applicable for parallel detection. An alternative stabilization method, the change of the optical path length, is presented in this paper. Changing of the optical path length is realized by stretching the fiber with piezoelectric tubes. Fringe patterns and operation point stabilization of both stabilization schemes are compared. Next, signal detection utilizing a polymer optical fiber in a Mach-Zehnder and Fabry-Perot interferometer is demonstrated, and the influence of the detection wavelength (633nm and 1550nm) is examined. Finally, two-dimensional imaging by utilizing a perfluorinated polymer fiber is demonstrated.

  18. Resolution enhancement using simultaneous couple illumination

    NASA Astrophysics Data System (ADS)

    Hussain, Anwar; Martínez Fuentes, José Luis

    2016-10-01

    A super-resolution technique based on structured illumination created by a liquid crystal on silicon spatial light modulator (LCOS-SLM) is presented. Single and simultaneous pairs of tilted beams are generated to illuminate a target object. Resolution enhancement of an optical 4f system is demonstrated by using numerical simulations. The resulting intensity images are recorded at a charged couple device (CCD) and stored in the computer memory for further processing. One dimension enhancement can be performed with only 15 images. Two dimensional complete improvement requires 153 different images. The resolution of the optical system is extended three times compared to the band limited system.

  19. Broadband spectrally dynamic solid state illumination source

    NASA Astrophysics Data System (ADS)

    Nicol, David B.; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming; Strassburg, Martin; Summers, Chris; Ferguson, Ian T.

    2006-06-01

    Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well.

  20. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors.

    PubMed

    Niklas, M; Bartz, J A; Akselrod, M S; Abollahi, A; Jäkel, O; Greilich, S

    2013-09-21

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo. PMID:23965401

  1. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Bartz, J. A.; Akselrod, M. S.; Abollahi, A.; Jäkel, O.; Greilich, S.

    2013-09-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo.

  2. Development of Ta-based Superconducting Tunnel Junction X-ray Detectors for Fluorescence XAS

    SciTech Connect

    Friedrich, S; Drury, O; Hall, J; Cantor, R

    2009-09-23

    We are developing superconducting tunnel junction (STJ) soft X-ray detectors for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS). Our 36-pixel Nb-based STJ spectrometer covers a solid angle {Omega}/4{pi} {approx} 10{sup -3}, offers an energy resolution of {approx}10-20 eV FWHM for energies up to {approx}1 keV, and can be operated at total count rates of {approx}10{sup 6} counts/s. For increased quantum efficiency and cleaner response function, we have now started the development of Ta-based STJ detector arrays. Initial devices modeled after our Nb-based STJs have an energy resolution below 10 eV FWHM for X-ray energies below 1 keV, and pulse rise time discrimination can be used to improve their response function for energies up to several keV. We discuss the performance of the Ta-STJs and outline steps towards the next-generation of large STJ detector arrays with higher sensitivity.

  3. Fluence-based dosimetry of proton and heavier ion beams using single track detectors

    NASA Astrophysics Data System (ADS)

    Klimpki, G.; Mescher, H.; Akselrod, M. S.; Jäkel, O.; Greilich, S.

    2016-02-01

    Due to their superior spatial resolution, small and biocompatible fluorescent nuclear track detectors (FNTDs) open up the possibility of characterizing swift heavy charged particle fields on a single track level. Permanently stored spectroscopic information such as energy deposition and particle field composition is of particular importance in heavy ion radiotherapy, since radiation quality is one of the decisive predictors for clinical outcome. Findings presented within this paper aim towards single track reconstruction and fluence-based dosimetry of proton and heavier ion fields. Three-dimensional information on individual ion trajectories through the detector volume is obtained using fully automated image processing software. Angular distributions of multidirectional fields can be measured accurately within  ±2° uncertainty. This translates into less than 5% overall fluence deviation from the chosen irradiation reference. The combination of single ion tracking with an improved energy loss calibration curve based on 90 FNTD irradiations with protons as well as helium, carbon and oxygen ions enables spectroscopic analysis of a detector irradiated in Bragg peak proximity of a 270 MeV u-1 carbon ion field. Fluence-based dosimetry results agree with treatment planning software reference.

  4. Geometric filtration of classification-based object detectors in realtime road scene recognition systems

    NASA Astrophysics Data System (ADS)

    Prun, Viktor; Bocharov, Dmitry; Koptelov, Ivan; Sholomov, Dmitry; Postnikov, Vassily

    2015-12-01

    We study the issue of performance improvement of classification-based object detectors by including certain geometric-oriented filters. Configurations of the observed 3D scene may be used as a priori or a posteriori information for object filtration. A priori information is used to select only those object parameters (size and position on image plane) that are in accordance with the scene, restricting implausible combinations of parameters. On the other hand the detection robustness can be enhanced by rejecting detection results using a posteriori information about 3D scene. For example, relative location of detected objects can be used as criteria for filtration. We have included proposed filters in object detection modules of two different industrial vision-based recognition systems and compared the resulting detection quality before detectors improving and after. Filtering with a priori information leads to significant decrease of detector's running time per frame and increase of number of correctly detected objects. Including filter based on a posteriori information leads to decrease of object detection false positive rate.

  5. Development of Ta-based Superconducting Tunnel Junction X-ray Detectors for Fluorescence XAS

    SciTech Connect

    Friedrich, Stephan; Drury, Owen B.; Hall, John; Cantor, Robin

    2010-06-23

    We are developing superconducting tunnel junction (STJ) soft X-ray detectors for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS). Our 36-pixel Nb-based STJ spectrometer covers a solid angle {Omega}/4{pi}{approx_equal}10{sup -3}, offers an energy resolution of {approx}10-20 eV FWHM for energies up to {approx}1 keV, and can be operated at total count rates of {approx}10{sup 6} counts/s. For increased quantum efficiency and cleaner response function, we have now started the development of Ta-based STJ detector arrays. Initial devices modeled after our Nb-based STJs have an energy resolution below 10 eV FWHM for X-ray energies below 1 keV, and pulse rise time discrimination can be used to improve their response function for energies up to several keV. We discuss the performance of the Ta-STJs and outline steps towards the next-generation of large STJ detector arrays with higher sensitivity.

  6. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors.

    PubMed

    Calderón, Y; Chmeissani, M; Kolstein, M; De Lorenzo, G

    2014-06-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm(2) area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm(3). The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 10(4) Bq source activities with equal efficiency and is completely saturated at 10(9) Bq. The efficiency of the system is evaluated using a simulated (18)F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8.

  7. High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Nguyen, Jean; Khoshakhlagh, Arezou; Rafol, Sir B.; Hoeglund, Linda; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Liao, Anna; Ting, David Z.-Y.; Gunapala, Sarath D.

    2012-01-01

    We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of Focal Plane Arrays (FPA) based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-wavelength infrared focal plane array utilizing CBIRD design. An 11.5 ?m cutoff FPA without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. In addition, we demonstrated 320x256 format FPA based on the n-CBIRD design. The resulting FPAs yielded noise equivalent differential temperature of 26 mK at operating temperature of 80 K, with 300 K background and cold-stop. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.

  8. Edge-on illumination photon-counting for medical imaging

    NASA Astrophysics Data System (ADS)

    Doni, M.; Visser, J.; Koffeman, E.; Herrmann, C.

    2015-08-01

    In medical X-ray Computed Tomography (CT) a silicon based sensor (300-1000 μm) in face-on configuration does not collect the incoming X-rays effectively because of their high energy (40-140 keV). For example, only 2% of the incoming photons at 100 keV are stopped by a 500 μm thick silicon layer. To increase the efficiency, one possibility is to use materials with higher Z (e.g. GaAs, CZT), which have some drawbacks compared to silicon, such as short carrier lifetime or low mobility. Therefore, we investigate whether illuminating silicon edge-on instead of face-on is a solution. Aim of the project is to find and take advantage of the benefits of this new geometry when used for a pixel detector. In particular, we employ a silicon hybrid pixel detector, which is read out by a chip from the Medipix family. Its capabilities to be energy selective will be a notable advantage in energy resolved (spectral) X-ray CT.

  9. Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm.

    PubMed

    Zhang, Peng; Kim, Kyungsoo; Lee, Seungah; Chakkarapani, Suresh Kumar; Fang, Ning; Kang, Seong Ho

    2016-09-13

    Augmented three-dimensional (3D) subdiffraction-limited resolution of fluorescence-free single-nanoparticles was achieved with wavelength-dependent enhanced dark-field (EDF) illumination and a least-cubic algorithm. Various plasmonic nanoparticles on a glass slide (i.e., gold nanoparticles, GNPs; silver nanoparticles, SNPs; and gold nanorods, GNRs) were imaged and sliced in the z-direction to a thickness of 10 nm. Single-particle images were then compared with simulation data. The 3D coordinates of individual GNP, SNP, and GNR nanoparticles (x, y, z) were resolved by fitting the data with 3D point spread functions using a least-cubic algorithm and collation. Final, 3D super-resolution microscopy (SRM) images were obtained by resolving 3D coordinates and their Cramér-Rao lower bound-based localization precisions in an image space (530 nm × 530 nm × 300 nm) with a specific voxel size (2.5 nm × 2.5 nm × 5 nm). Compared with the commonly used least-square method, the least-cubic method was more useful for finding the center in asymmetric cases (i.e., nanorods) with high precision and accuracy. This novel 3D fluorescence-free SRM technique was successfully applied to resolve the positions of various nanoparticles on glass and gold nanospots (in vitro) as well as in a living single cell (in vivo) with subdiffraction limited resolution in 3D.

  10. Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Kim, Kyungsoo; Lee, Seungah; Chakkarapani, Suresh Kumar; Fang, Ning; Kang, Seong Ho

    2016-09-01

    Augmented three-dimensional (3D) subdiffraction-limited resolution of fluorescence-free single-nanoparticles was achieved with wavelength-dependent enhanced dark-field (EDF) illumination and a least-cubic algorithm. Various plasmonic nanoparticles on a glass slide (i.e., gold nanoparticles, GNPs; silver nanoparticles, SNPs; and gold nanorods, GNRs) were imaged and sliced in the z-direction to a thickness of 10 nm. Single-particle images were then compared with simulation data. The 3D coordinates of individual GNP, SNP, and GNR nanoparticles (x, y, z) were resolved by fitting the data with 3D point spread functions using a least-cubic algorithm and collation. Final, 3D super-resolution microscopy (SRM) images were obtained by resolving 3D coordinates and their Cramér-Rao lower bound-based localization precisions in an image space (530 nm × 530 nm × 300 nm) with a specific voxel size (2.5 nm × 2.5 nm × 5 nm). Compared with the commonly used least-square method, the least-cubic method was more useful for finding the center in asymmetric cases (i.e., nanorods) with high precision and accuracy. This novel 3D fluorescence-free SRM technique was successfully applied to resolve the positions of various nanoparticles on glass and gold nanospots (in vitro) as well as in a living single cell (in vivo) with subdiffraction limited resolution in 3D.

  11. Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm.

    PubMed

    Zhang, Peng; Kim, Kyungsoo; Lee, Seungah; Chakkarapani, Suresh Kumar; Fang, Ning; Kang, Seong Ho

    2016-01-01

    Augmented three-dimensional (3D) subdiffraction-limited resolution of fluorescence-free single-nanoparticles was achieved with wavelength-dependent enhanced dark-field (EDF) illumination and a least-cubic algorithm. Various plasmonic nanoparticles on a glass slide (i.e., gold nanoparticles, GNPs; silver nanoparticles, SNPs; and gold nanorods, GNRs) were imaged and sliced in the z-direction to a thickness of 10 nm. Single-particle images were then compared with simulation data. The 3D coordinates of individual GNP, SNP, and GNR nanoparticles (x, y, z) were resolved by fitting the data with 3D point spread functions using a least-cubic algorithm and collation. Final, 3D super-resolution microscopy (SRM) images were obtained by resolving 3D coordinates and their Cramér-Rao lower bound-based localization precisions in an image space (530 nm × 530 nm × 300 nm) with a specific voxel size (2.5 nm × 2.5 nm × 5 nm). Compared with the commonly used least-square method, the least-cubic method was more useful for finding the center in asymmetric cases (i.e., nanorods) with high precision and accuracy. This novel 3D fluorescence-free SRM technique was successfully applied to resolve the positions of various nanoparticles on glass and gold nanospots (in vitro) as well as in a living single cell (in vivo) with subdiffraction limited resolution in 3D. PMID:27619347

  12. Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm

    PubMed Central

    Zhang, Peng; Kim, Kyungsoo; Lee, Seungah; Chakkarapani, Suresh Kumar; Fang, Ning; Kang, Seong Ho

    2016-01-01

    Augmented three-dimensional (3D) subdiffraction-limited resolution of fluorescence-free single-nanoparticles was achieved with wavelength-dependent enhanced dark-field (EDF) illumination and a least-cubic algorithm. Various plasmonic nanoparticles on a glass slide (i.e., gold nanoparticles, GNPs; silver nanoparticles, SNPs; and gold nanorods, GNRs) were imaged and sliced in the z-direction to a thickness of 10 nm. Single-particle images were then compared with simulation data. The 3D coordinates of individual GNP, SNP, and GNR nanoparticles (x, y, z) were resolved by fitting the data with 3D point spread functions using a least-cubic algorithm and collation. Final, 3D super-resolution microscopy (SRM) images were obtained by resolving 3D coordinates and their Cramér-Rao lower bound-based localization precisions in an image space (530 nm × 530 nm × 300 nm) with a specific voxel size (2.5 nm × 2.5 nm × 5 nm). Compared with the commonly used least-square method, the least-cubic method was more useful for finding the center in asymmetric cases (i.e., nanorods) with high precision and accuracy. This novel 3D fluorescence-free SRM technique was successfully applied to resolve the positions of various nanoparticles on glass and gold nanospots (in vitro) as well as in a living single cell (in vivo) with subdiffraction limited resolution in 3D. PMID:27619347

  13. Scene Illumination as an Indicator of Image Manipulation

    NASA Astrophysics Data System (ADS)

    Riess, Christian; Angelopoulou, Elli

    The goal of blind image forensics is to distinguish original and manipulated images. We propose illumination color as a new indicator for the assessment of image authenticity. Many images exhibit a combination of multiple illuminants (flash photography, mixture of indoor and outdoor lighting, etc.). In the proposed method, the user selects illuminated areas for further investigation. The illuminant colors are locally estimated, effectively decomposing the scene in a map of differently illuminated regions. Inconsistencies in such a map suggest possible image tampering. Our method is physics-based, which implies that the outcome of the estimation can be further constrained if additional knowledge on the scene is available. Experiments show that these illumination maps provide a useful and very general forensics tool for the analysis of color images.

  14. A carbon nanotubes photoconductive detector for middle and far infrared regions based on porous silicon and a polyamide nylon polymer

    NASA Astrophysics Data System (ADS)

    Saleh, Wasan R.

    2015-06-01

    Sensitive and good response photoconductive detectors working in the middle and far infrared regions were fabricated. These detectors were fabricated based on multi and double walled carbon nanotube films and works at room temperature. The films were deposited on a porous silicon (PSi) nanosurface. The surfaces were functionalized by a thin layer of polyamide nylon polymer to improve the photoresponsivity of the fabricated detectors. The response time of the fabricated MWCNTs-PSi detectors were 30 and 0.22 ms for the middle and far IR region respectively. The functionalisation of the MWCNTs-PSi film surface by the polyamide nylon polymer improved the photoconductive gain, photoresponsivity, and specific conductivity in both MWCNTs-PSi and DWCNTs-PSi detectors. The designed carbon nanotube (CNT) based photodetector has low cost, high sensitivity and reasonable speed for the middle and far IR spectral range without cooling.

  15. An indicator device for monitoring of room illuminance level in the radiological image viewing environment.

    PubMed

    Azlan, C A; Ng, K H; Anandan, S; Nizam, M S

    2006-09-01

    Illuminance level in the softcopy image viewing room is a very important factor to optimize productivity in radiological diagnosis. In today's radiological environment, the illuminance measurements are normally done during the quality control procedure and performed annually. Although the room is equipped with dimmer switches, radiologists are not able to decide the level of illuminance according to the standards. The aim of this study is to develop a simple real-time illuminance detector system to assist the radiologists in deciding an adequate illuminance level during radiological image viewing. The system indicates illuminance in a very simple visual form by using light emitting diodes. By employing the device in the viewing room, illuminance level can be monitored and adjusted effectively.

  16. Illuminated push-button switch

    NASA Technical Reports Server (NTRS)

    Iwagiri, T.

    1983-01-01

    An illuminated push-button switch is described. It is characterized by the fact that is consists of a switch group, an operator button opening and closing the switch group, and a light-emitting element which illuminates the face of the operator button.

  17. A pixellated γ-camera based on CdTe detectors clinical interests and performances

    NASA Astrophysics Data System (ADS)

    Chambron, J.; Arntz, Y.; Eclancher, B.; Scheiber, Ch; Siffert, P.; Hage Hali, M.; Regal, R.; Kazandjian, A.; Prat, V.; Thomas, S.; Warren, S.; Matz, R.; Jahnke, A.; Karman, M.; Pszota, A.; Nemeth, L.

    2000-07-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cm×15 cm detection matrix of 2304 CdTe detector elements, 2.83 mm×2.83 mm×2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the γ-camera performances. But their use as γ detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed of 256 detectors shared in 16 modules. Each module consists in a thin ceramic plate holding a line of 16 detectors, in four groups of four for an easy replacement, and holding a special 16 channels integrated circuit designed by CLRC (UK). A detection and acquisition logic based on a DSP card and a PC has been programmed by Eurorad for spectral and counting acquisition modes. Collimators LEAP and LEHR from commercial design, mobile gantry and clinical software were provided by Siemens (Germany). The γ-camera head housing, its general mounting and the electric connections were performed by Phase Laboratory (CNRS, France). The compactness of the γ-camera head, thin detectors matrix, electronic readout and collimator, facilitates the detection of close γ sources with the advantage of a high spatial resolution. Such an equipment is intended to bedside explorations. There is a growing clinical requirement in nuclear cardiology to early assess the extent of an

  18. Development of energy compensated Geiger Muller detector based on the T2416A Canberra Co. GM detector

    NASA Astrophysics Data System (ADS)

    Mohamed Noor, Omar

    Geiger Muller counters have been a fundamental device in radiation detection for decades due to their simplicity and low cost. Canberra Company has been designing and manufacturing Geiger Muller detectors in various designs for radiation monitoring and field characterization. However, these devices have a draw back when it comes to radiation activity measurements due to the over response of the detector in low energy range i.e., 20 -- 250 keV. One of the widely used Geiger Muller counter in the industrial sector is the T2416A. This device is used not only as a survey meter in high intensity gamma radiation fields, but also as a detection device employed in different survey meters for calibration purposes. Among such instruments one can cite the Inspector 1000 and the RadiaGem system. The T2416A GM detector has an over response in the low energy region of about a factor of 6 to 40 relative to 137Cs energy (i.e. 662 keV). In an attempt to flatten this response, in this study, the counter has been redesigned to be an energy compensated Geiger Muller counter. To achieve this goal, a special filtering material has been designed with a composition of different materials and in different thicknesses. The work has been carried out by adopting an approach of simulating the response of the detector with different materials as well as measurements at different photon energies up to 250 keV with and without filtering materials. A series of experimental and simulation data has been analyzed and compared against each other.

  19. Do humans discount the illuminant?

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2005-03-01

    In constancy experiments, humans report very small changes in appearance with substantial illumination changes. Hermann von Helmholtz introduced the term "discounting the illuminant" to describe 19th century thinking about underlying mechanisms of constancy. It uses an indirect approach. Since observers see objects as constant, observers "must" be able to detect the spatial and spectral changes in illumination and automatically compensate by altering the signals from the quanta catches of retinal receptors. Instead of solving the problem directly by calculating an object"s reflectance from the array of scene radiances, Helmholtz chose to solve the problem of identifying the illumination. Twentieth century experiments by Hubel and Wiesel, Campbell, Land, and Gibson demonstrate the power of mechanisms using spatial comparisons. This paper analyses a series of different experiments looking for unequivocal evidence that either supports "discounting the illuminant" or supports spatial comparisons as the underlying mechanism of constancy.

  20. Low-power adaptive spike detector based on a sigma-delta control loop.

    PubMed

    Gagnon-Turcotte, G; Sawan, M; Gosselin, B

    2015-08-01

    This paper presents a resources-optimized digital action potential (AP) detector featuring an adaptive threshold based on a new Sigma-delta control loop. The proposed AP detector is optimized for utilizing low hardware resources, which makes it suitable for implementation on most popular low-power microcontrollers units (MCU). The adaptive threshold is calculated using a digital control loop based on a Sigma-delta modulator that precisely estimates the standard deviation of the amplitude of the neuronal signal. The detector was implemented on a popular low-power MCU and fully characterized experimentally using previously recorded neural signals with different signal-to-noise ratios. A comparison of the obtained results with other thresholding approaches shows that the proposed method can compete with high performance and highly resources demanding spike detection approaches while achieving up to 100% of true positive detection rate at high SNR, and up to 63% for an SNR as low as 0 dB, while necessitating an execution time as low as 11 μs with the MCU operating at 8 MHz. PMID:26736719

  1. A multiuser detector based on artificial bee colony algorithm for DS-UWB systems.

    PubMed

    Yin, Zhendong; Liu, Xiaohui; Wu, Zhilu

    2013-01-01

    Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity. PMID:23983638

  2. Photon-statistics-based classical ghost imaging with one single detector.

    PubMed

    Kuhn, Simone; Hartmann, Sébastien; Elsäßer, Wolfgang

    2016-06-15

    We demonstrate a novel ghost imaging (GI) scheme based on one single-photon-counting detector with subsequent photon statistics analysis. The key idea is that instead of measuring correlations between the object and reference beams such as in standard GI schemes, the light of the two beams is superimposed. The photon statistics analysis of this mixed light allows us to determine the photon number distribution as well as to calculate the central second-order correlation coefficient. The image information is obtained as a function of the spatial resolution of the reference beam. The performance of this photon-statistics-based GI system with one single detector (PS-GI) is investigated in terms of visibility and resolution. Finally, the knowledge of the complete photon statistics allows easy access to higher correlation coefficients such that we are able to perform here third- and fourth-order GI. The PS-GI concept can be seen as a complement to already existing GI technologies thus enabling a broader dissemination of GI as a superior metrology technique, paving the road for new applications in particular with advanced photon counting detectors.

  3. Detectability and Parameter Estimation of Gravitational Waves from Cosmic String with Ground-Based Detectors

    NASA Astrophysics Data System (ADS)

    Yuzurihara, Hirotaka; Kanda, Nobuyuki

    Cosmic string is one dimensional topological defects which might be formed at the phase transition in the early universe. Gravitational Wave (GW) waveform and its power spectrum from structure in closed cosmic string loop that is called as "cusp" are theoretically predicted. Cosmic string is thought to be described with two characteristic parameters: string tension μ and initial loop size α. We demonstrate numerical simulation for GWs from closed comic string loops to study detectability and parameter decision with ground-based detectors, such as KAGRA, advanced LIGO, advanced Virgo and LIGO-India. We employ characteristic parameters 10 - 13 < Gμ < 10 - 7 and 10 - 16 < α < 10 - 1, assuming uniform distribution of cosmic string in isotropic direction, at time epochs of loop forming and GW emission according to the universe model. We calculate waveform numerically in time domain of each GW from these distributed cosmic strings, and superpose waveforms to generate continuously observational signal on the ground-based GW detectors, including detector responses. We consider data analysis for stochastic background type gravitational wave signatures in the observation.

  4. Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering

    SciTech Connect

    Kim, Dong Sik; Lee, Sanggyun

    2013-06-15

    Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequencies are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.

  5. A 1200 element detector system for synchrotron-based coronary angiography

    SciTech Connect

    Thompson, A.C.; Lavender, W.M.; Rubenstein, E.; Giacomini, J.C.; Rosso, V.; Schulze, C.; Chapman, D.; Thomlinson, W.

    1993-08-23

    A 1200 channel Si(Li) detector system has been developed for transvenous coronary angiography experiments using synchrotron radiation. It is part of the synchrotron medical imaging facility at the National Synchrotron Light Source. The detector is made from a single crystal of lithium-drifted silicon with an active area 150 mm long {times} 11 mm high {times} 5 mm thick. The elements are arranged in two parallel rows of 600 elements with a center-to-center spacing of 0.25 mm. All 1200 elements are read out simultaneously every 4 ms. A Intel 80486 based computer with a high speed digital signal processing interface is used to control the beamline hardware and to acquire a series of images. The signal-to-noise, linearity and resolution of the system have been measured. Human images have been taken with this system.

  6. Fabrication and Characterization of Linear Terahertz Detector Arrays Based on Lithium Tantalate Crystal

    NASA Astrophysics Data System (ADS)

    Li, Weizhi; Wang, Jun; Gou, Jun; Huang, Zehua; Jiang, Yadong

    2015-01-01

    Two samples of 30-pixel linear terahertz detector arrays (TDAs) were fabricated based on lithium tantalate (LT) crystals. Pixel readout circuit (ROC) was designed to extract the weak current signal of TDAs. A test platform was established for performance evaluation of TDA+ROC components. By using a 2.52THz laser as radiation source, the test results reveal that average voltage responsivities of the components were larger than 7000V/W and non-uniformity no more than 2.1%. Average noise equivalent power ( NEP) of one sample was measured to be 1.5×10-9 W/Hz1/2, which is low enough and desirable for high performance THz detector.

  7. Statistical analysis of ground based magnetic field measurements with the field line resonance detector

    NASA Astrophysics Data System (ADS)

    Plaschke, F.; Glassmeier, K.-H.; Constantinescu, O. D.; Mann, I. R.; Milling, D. K.; Motschmann, U.; Rae, I. J.

    2008-11-01

    In this paper we introduce the field line resonance detector (FLRD), a wave telescope technique which has been specially adapted to estimate the spectral energy density of field line resonance (FLR) phase structures in a superposed wave field. The field line resonance detector is able to detect and correctly characterize several superposed FLR structures of a wave field and therefore constitutes a new and powerful tool in ULF pulsation studies. In our work we derive the technique from the classical wave telescope beamformer and present a statistical analysis of one year of ground based magnetometer data from the Canadian magnetometer network CANOPUS, now known as CARISMA. The statistical analysis shows that the FLRD is capable of detecting and characterizing superposed or hidden FLR structures in most of the detected ULF pulsation events; the one year statistical database is therefore extraordinarily comprehensive. The results of this analysis confirm the results of previous FLR characterizations and furthermore allow a detailed generalized dispersion analysis of FLRs.

  8. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    NASA Astrophysics Data System (ADS)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  9. Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors.

    PubMed

    Baker, John G; Thorpe, J I

    2012-05-25

    We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. PMID:23003235

  10. Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  11. Comparative Sensitivities of Gravitational Wave Detectors Based on Atom Interferometers and Light Interferometers

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Thorpe, J. I.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.

  12. A passive neutron dosemeter based on a CR-39 track detector with multi-field evaluation

    NASA Astrophysics Data System (ADS)

    Savvidis, E.; Alberts, W. G.; Luszik-Bhadra, M.; Zamani, M.

    1994-11-01

    A passive neutron personal dosemeter is proposed which is based on a single CR-39 track detector, covered at four positions with different converters and absorbers. Its dose equivalent response has been investigated with respect to its energy and angle dependence, covering energies from thermal up to 15 MeV and angles of incidence up to 85°. A position-related readout of the electrochemically etched CR-39 detector resulted in four response functions with significant differences for thermal, intermediate and fast neutrons. By an appropriate linear combination of the readings a dose equivalent response has been achieved which varies only within a factor of 2 for thermal neutrons and in the energy range from 20 keV to 15 MeV and shows an acceptable over-response of a factor of 4 for intermediate energy neutrons.

  13. Micro-controller based fall detector to assist recovering patients or senior citizens

    NASA Astrophysics Data System (ADS)

    Páez, Francisco; Asplund, Lars

    2010-09-01

    Senior citizens and patients recovering from surgery or using strong medications with severe side effects tend to fall unexpectedly. The consequences of such an uncontrolled fall could be worse than the original malady, especially when there is no communication with the care-takers. We describe a fall-detector device capable of distinguishing falls from normal daily activities. Based on three-axis accelerometer and advanced data processing, the microcontroller emits an alarm requesting help in the case of a physical fall. We design and construct the fall-detector prototype for either inside or outside use. In order to determine the device performance, fifty instances of each fall event have been evaluated; all of them detected as fall event. In the case of daily activities, the only movement that produces an alarm is the transition from standing up to lying in 5% of the occurrences.

  14. Time over threshold based multi-channel LuAG-APD PET detector

    NASA Astrophysics Data System (ADS)

    Shimazoe, Kenji; Orita, Tadashi; Nakamura, Yasuaki; Takahashi, Hiroyuki

    2013-12-01

    To achieve efficient signal processing, several time-based positron emission tomography (PET) systems using a large number of granulated gamma-ray detectors have recently been proposed. In this work described here, a 144-channel Pr:LuAG avalanche photodiode (APD) PET detector that uses time over threshold (ToT) and pulse train methods was designed and fabricated. The detector is composed of 12×12 Pr:LuAG crystals, each of which produces a 2 mm×2 mm×10 mm pixel individually coupled to a 12×12 APD array, which in turn is connected pixel-by-pixel with one channel of a time over threshold based application-specific integrated circuit (ToT-ASIC) that was designed and fabricated using a 0.25 μm 3.3 V Taiwan Semiconductor Company complementary metal oxide semiconductor (TSMC CMOS) process. The ToT outputs are connected through a field-programmable gate array (FPGA) to a data acquisition (DAQ) system. Three front-end ASIC boards-each incorporating a ToT-ASIC chip, threshold control digital-to-analog converters (DACs), and connectors, and dissipating power at about 230 mW per board-are used to read from the 144-channel LuAG-APD detector. All three boards are connected through an FPGA board that is programmed to calibrate the individual thresholds of the ToT circuits to allow digital multiplexing to form an integrated PET module with a measured timing resolution of 4.2 ns. Images transmitted by this PET system can be successfully acquired through collimation masks. As a further implementation of this technology, an animal PET system consisting of eight gamma pixel modules forming a ring is planned.

  15. Non-local means-based nonuniformity correction for infrared focal-plane array detectors

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Chen, Fu-sheng; Wang, Chen-sheng

    2014-11-01

    The infrared imaging systems are normally based on the infrared focal-plane array (IRFPA) which can be considered as an array of independent detectors aligned at the focal plane of the imaging system. Unfortunately, every detector on the IRFPA may have a different response to the same input infrared signal which is known as the nonuniformity problem. Then we can observe the fixed pattern noise (FPN) from the resulting images. Standard nonuniformity correction (NUC) methods need to be recalibrated after a short period of time due the temporal drift of the FPN. Scene-based nonuniformity correction (NUC) techniques eliminate the need for calibration by correction coefficients based on the scene being viewed. However, in the scene-based NUC method the problem of ghosting artifacts widely seriously decreases the image quality, which can degrade the performance of many applications such as target detection and track. This paper proposed an improved scene-based method based on the retina-like neural network approach. The method incorporates the use of non-local means (NLM) method into the estimation of the gain and the offset of each detector. This method can not only estimates the accurate correction coefficient but also restrict the ghosting artifacts efficiently. The proposed method relies on the use of NLM method which is a very successful image denoising method. And then the NLM used here can preserve the image edges efficiently and obtain a reliable spatial estimation. We tested the proposed NUC method by applying it to an IR sequence of frames. The performance of the proposed method was compared the other well-established adaptive NUC techniques.

  16. A Comparison of Video-Based and Interaction-Based Affect Detectors in Physics Playground

    ERIC Educational Resources Information Center

    Kai, Shiming; Paquette, Luc; Baker, Ryan S.; Bosch, Nigel; D'Mello, Sidney; Ocumpaugh, Jaclyn; Shute, Valerie; Ventura, Matthew

    2015-01-01

    Increased attention to the relationships between affect and learning has led to the development of machine-learned models that are able to identify students' affective states in computerized learning environments. Data for these affect detectors have been collected from multiple modalities including physical sensors, dialogue logs, and logs of…

  17. Parameter correction method for dual position-sensitive-detector-based unit.

    PubMed

    Mao, Shuai; Hu, Pengcheng; Ding, XueMei; Tan, JiuBin

    2016-05-20

    A dual position-sensitive-detector (PSD)-based unit can be used for angular measurements of a multi-degree-of-freedom measurement system and a laser interferometry-based sensing and tracking system. In order to ensure the precision of incident beam direction measurement for a PSD-based unit, model and autoreflection alignment methods for correction of PSD-based unit parameters are proposed. Experimental results demonstrate the deviations between the angular measurements obtained using a dual PSD-based unit and an autocollimator varied by 70″, 20″, and 1″ for three runs of the autoreflection alignment method, respectively, and the model method deviations all varied by 1″ in the 1000″ measurement range for three runs. It is therefore concluded that the model method is more reliable than the autoreflection alignment method for ensuring the accuracy of a dual PSD-based unit. PMID:27411134

  18. Parameter correction method for dual position-sensitive-detector-based unit.

    PubMed

    Mao, Shuai; Hu, Pengcheng; Ding, XueMei; Tan, JiuBin

    2016-05-20

    A dual position-sensitive-detector (PSD)-based unit can be used for angular measurements of a multi-degree-of-freedom measurement system and a laser interferometry-based sensing and tracking system. In order to ensure the precision of incident beam direction measurement for a PSD-based unit, model and autoreflection alignment methods for correction of PSD-based unit parameters are proposed. Experimental results demonstrate the deviations between the angular measurements obtained using a dual PSD-based unit and an autocollimator varied by 70″, 20″, and 1″ for three runs of the autoreflection alignment method, respectively, and the model method deviations all varied by 1″ in the 1000″ measurement range for three runs. It is therefore concluded that the model method is more reliable than the autoreflection alignment method for ensuring the accuracy of a dual PSD-based unit.

  19. Design Principles of Nonimaging Waveguide Illumination Systems

    NASA Astrophysics Data System (ADS)

    Hough, Thomas Arthur

    1995-01-01

    Optical systems that illuminate objects or filter planes with light exiting thick waveguides are called waveguide illumination systems. In this dissertation, we develop the optical theory that describes flux transport in waveguide illumination systems. We constructed three computer-controlled light detection systems to measure and map the flux exiting waveguide illumination system components. The goniophotometer measures and maps the intensity distributions of waveguide illumination system light sources. As an example, we use the goniophotometer to measure the intensity distribution from an incandescent light bulb. We then model the intensity pattern according to radiometric theory. The translational photometer measures and maps the existence of thick waveguides. Data from the translational photometer is evaluated for uniformity with the output uniformity index (OUI). The OUI is a statistical figure of merit based on the standard deviation. The transrotational photometer measures the angular distribution of the flux exiting thick waveguides. By applying Snell's law to the transrotational photometer data, we determine the angular distribution of the flux propagating in the waveguide. We use imaging optics theory to show that thick waveguides are nonimaging systems. We then expand existing nonimaging optics theory to describe flux transport in thick waveguides. We define the angular edge rays, and use the angular edge ray concept to develop the flux confinement properties of a thick waveguide in terms of its geometry and index of refraction. We use FCD analysis to develop a closed-form functional solution for the flux lost due to a bend in a thick rectangular waveguide. We perform an experiment that verifies the predictions of this model. In the experiment, we use the translational photometer to measure the total flux exiting a series of waveguides with bends in them. The bends range from zero to 90 degrees. Finally, we present a new streamlined technique for the

  20. Reflectance and illuminant estimation for digital cameras

    NASA Astrophysics Data System (ADS)

    Dicarlo, Jeffrey Michael

    Several important problems in color imaging can be traced to differences in how cameras and humans sample the spectral properties of light. Color processing within the imaging pipeline, loosely referred to as color correction, transforms the sampled camera responses to a form that matches the human responses. The accuracy of the color correction transformation is limited for two reasons. First, the human visual system and most color acquisition devices critically undersample the spectral information, making the differences in their sampling functions quite significant. Second, the human visual system derives a relatively constant surface color appearance despite variations in the illuminant, complicating color correction with the need to estimate the illuminant. Assuming complete knowledge of the illuminant, we formulate color correction as an input-referred estimation problem. In particular, we analyze how a small number of camera measurements can be used to estimate a complete spectral surface reflectance function. We introduce conventional linear color transformations, and then extend these transformations using forms of local linear regression that we refer to as submanifold estimation methods. These methods are based on the observation that for many data sets the deviations between the signal and the linear estimate is systematic; submanifold methods incorporate knowledge of these systematic deviations to improve upon linear estimation methods. We describe the geometric intuition of these methods and evaluate the submanifold method on printed material data and hyperspectral image data. Next, we discard the assumption of complete knowledge of the illuminant and analyze a technique to estimate the illuminant. Conventional algorithms rely on statistical assumptions about the scene properties (surface reflectance functions and geometry) to estimate the ambient illuminant. We introduce a new illuminant estimation paradigm that uses an active imaging method to

  1. Geographical Detector-Based Risk Assessment of the Under-Five Mortality in the 2008 Wenchuan Earthquake, China

    PubMed Central

    Hu, Yi; Wang, Jinfeng; Li, Xiaohong; Ren, Dan; Zhu, Jun

    2011-01-01

    On 12 May, 2008, a devastating earthquake registering 8.0 on the Richter scale occurred in Sichuan Province, China, taking tens of thousands of lives and destroying the homes of millions of people. Many of the deceased were children, particular children less than five years old who were more vulnerable to such a huge disaster than the adult. In order to obtain information specifically relevant to further researches and future preventive measures, potential risk factors associated with earthquake-related child mortality need to be identified. We used four geographical detectors (risk detector, factor detector, ecological detector, and interaction detector) based on spatial variation analysis of some potential factors to assess their effects on the under-five mortality. It was found that three factors are responsible for child mortality: earthquake intensity, collapsed house, and slope. The study, despite some limitations, has important implications for both researchers and policy makers. PMID:21738660

  2. Application of covert illumination to intrusion surveillance, assessment, and detection

    NASA Astrophysics Data System (ADS)

    Maki, Melvin C.; Scherbarth, Stefan

    1995-05-01

    Covert illumination is an important element in providing surveillance, detection, and assessment for security applications. IR illumination is increasingly providing this function; however, conventional filament-based illuminators have limited performance and life. A new variety of light emitting diode (LED) illuminators is described that provides long life at low power. A further advance is to use a planar array of LED's with lenses to optimize the uniformity of scene illumination and maximize the illumination range. Modern CCD cameras have an inherently high IR sensitivity so are well matched to work with this illumination. Further enhancements are to integrate the combination of low-light camera and LED illuminator in a discrete column type package to make the overall illumination and assessment system unobtrusive. Finally, these components can be further combined with automated assessment aids to turn the surveillance device into a true detection sensor that can operate stand-alone without active personnel monitoring. A review of the major IR design considerations is included, along with several examples of systems to illustrate potential applications.

  3. Creation and testing of an artificial neural network based carbonate detector for Mars rovers

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin; Castano, Rebecca; Gilmore, Martha S.; Merrill, Matthew; Greenwood, James P.

    2005-01-01

    We have developed an artificial neural network (ANN) based carbonate detector capable of running on current and future rover hardware. The detector can identify calcite in visible/NIR (350-2500 nm) spectra of both laboratory specimens covered by ferric dust and rocks in Mars analogue field environments. The ANN was trained using the Backpropagation algorithm with sigmoid activation neurons. For the training dataset, we chose nine carbonate and eight non-carbonate representative mineral spectra from the USGS spectral library. Using these spectra as seeds, we generated 10,000 variants with up to 2% Gaussian noise in each reflectance measurement. We cross-validated several ANN architectures, training on 9,900 spectra and testing on the remaining 100. The best performing ANN correctly detected, with perfect accuracy, the presence (or absence) of carbonate in spectral data taken on field samples from the Mojave desert and clean, pure marbles from CT. Sensitivity experiments with JSC Mars-1 simulant dust suggest the carbonate detector would perform well in aeolian Martian environments.

  4. Development and application of a luminol-based nitrogen dioxide detector

    SciTech Connect

    Wendel, G.J.

    1985-01-01

    An instrument for the continuous measurement of nitrogen dioxide (NO/sub 2/) at all atmospheric concentration ranges and conditions was developed. The detector is based on the chemiluminescent reaction between 5-amino-2,3-dihydro-1,4-phthalazinedione (luminol) and NO/sub 2/ in alkaline aqueous solution. Development included the optimization of the cell design and the solution composition. Sodium sulfite (Na/sub 2/SO/sub 3/) and methanol (CH/sub 3/OH) were added to the solution to improve sensitivity and specificity. The detector was favorably compared to two different instruments measuring NO/sub 2/ by NO + O/sub 3/ chemiluminescent and by a tunable diode laser absorption spectrometry system. The detector has demonstrated a detection limit of 30 parts-per-trillion by volume (ppt) and a frequency response of 0.3 Hz. The instrument was operated for two one-month periods on Bermuda. The purpose was to study air masses from the East Coast of the United States after transport over the ocean. Average daily values were 400 ppt with values as low as 100 ppt measured. Other field experiments involved monitoring of NO/sub 2/ in ambient air in the range of 1 to 60 parts-per-billion by volume.

  5. Superconducting detector of IR single-photons based on thin WSi films

    NASA Astrophysics Data System (ADS)

    Seleznev, V. A.; Divochiy, A. V.; Vakhtomin, Yu B.; Morozov, P. V.; Zolotov, P. I.; Vasil'ev, D. D.; Moiseev, K. M.; Malevannaya, E. I.; Smirnov, K. V.

    2016-08-01

    We have developed the deposition technology of WSi thin films 4 to 9 nm thick with high temperature values of superconducting transition (Tc~4 K). Based on deposed films there were produced nanostructures with indicative planar sizes ~100 nm, and the research revealed that even on nanoscale the films possess of high critical temperature values of the superconducting transition (Tc~3.3-3.7 K) which certifies high quality and homogeneity of the films created. The first experiments on creating superconducting single-photon detectors showed that the detectors’ SDE (system detection efficiency) with increasing bias current (I b) reaches a constant value of ~30% (for X=1.55 micron) defined by infrared radiation absorption by the superconducting structure. To enhance radiation absorption by the superconductor there were created detectors with cavity structures which demonstrated a practically constant value of quantum efficiency >65% for bias currents Ib>0.6-Ic. The minimal dark counts level (DC) made 1 s-1 limited with background noise. Hence WSi is the most promising material for creating single-photon detectors with record SDE/DC ratio and noise equivalent power (NEP).

  6. Tragaldabas: a muon ground-based detector for the study of the solar activity; first observations

    NASA Astrophysics Data System (ADS)

    José Blanco, Juan

    2016-04-01

    A new RPC-based cosmic ray detector, TRAGALDABAS (acronym of "TRAsGo for the AnaLysis of the nuclear matter Decay, the Atmosphere, the earth's B-field And the Solar activity") has been installed at the Univ. of Santiago de Compostela, Spain (N:42°52'34",W:8°33'37"). The detector, in its present layout, consists of three 1.8 m2 planes of three 1mm-gap glass RPCs. Each plane is readout with 120 pads with grounded guard electrodes between them to minimize the crosstalk noise. The main performances of the detectors are: an arrival time resolution of about ~300 ps, a tracking angular resolution below 3°, a detection efficiency close to 1, and a solid angle acceptance of ~5 srad. TRAGALDABAS will be able to monitor the cosmic ray low energy component strongly modulated by solar activity by mean the observation of secondary muons from the interaction between cosmic rays and atmospheric molecules. Its cadence and its angular resolution will allow to study in detail, small variations in cosmic ray anisotropy. These variations can be a key parameter to understand the effect of solar disturbances on the propagation of cosmic ray in the inner heliosphere and, maybe, provide a new tool for space weather analysis. In this work first TRAGALDABAS observations of solar events are shown

  7. A serial dual-electrode detector based on electrogenerated bromine for capillary electrophoresis.

    PubMed

    Du, Fuying; Cao, Shunan; Fung, Ying-Sing

    2014-12-01

    A new serial dual-electrode detector for CE has been designed and fabricated for postcolumn reaction detection based on electrogenerated bromine. A coaxial postcolumn reactor was employed to introduce bromide reagent and facilitate the fabrication of upstream generation electrode by simply sputtering Pt film onto the outer surface of the separation capillary. Bromide introduced could be efficiently converted to bromine at this Pt film electrode and subsequently detected by the downstream Pt microdisk detection electrode. Analytes that react with bromine could be determined by the decrease of bromine reduction current at the downstream electrode resulting from the reaction between analytes and bromine. The effects of serial dual-electrode detector working conditions including electrode potentials, bromide flow rate, and bromide concentration on analytical performance were investigated using glutathione (GSH) and glutathione disulfide (GSSG) as test analytes. Under the optimal conditions, detection limits down to 0.16 μM for GSH and 0.14 μM for GSSG (S/N = 3) as well as linear working ranges of two orders of magnitude for GSH and GSSG were achieved. Furthermore, the separation efficiency obtained by our dual-electrode detector design was greatly improved compared with previous reported design. The developed method has been successfully applied to determine the GSH and GSSG impurity in commercial GSH supplement.

  8. Two-micron Detector Development using Sb-based Material Systems

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Ismail, S.; Singh, U. N.

    2006-01-01

    NASA Langley Research Center (LaRC), in partnership with the University of Delaware (UD), developed AlGaAsSb/InGaAsSb custom-designed phototransistors in the 0.6-2.5 micron wavelength range for applications to laser remote sensing. The phototransistor s performance greatly exceeds the previously reported results at this wavelength range in the literature. The performances of the custom-designed phototransistor, such as responsivity, detectivity, and gain, are improved significantly as compared to the previously published detectors as well as commercial detectors. Detection in the 0.6- to 2.5- micron broadband with a single phototransistor will result in reduction or elimination of heavy and complex optical components now required for multiple wavelength detection in atmospheric remote sensors resulting in smaller, lighter, simpler instruments with higher performance. This high performance broadband phototransistor will eliminate the need for high power laser for active remote sensing and also the Si (1.0- micron cutoff) and InGaAs (extended 2.3- micron cutoff) detectors. The developed broadband phototransistor will be applicable for the next generation of space-based Earth observations and other planetary instruments for active and passive remote sensing with substantial reduction in size, complexity, and weight to measure water vapor, methane, and carbon dioxide in planetary atmospheres as well as aerosol, cloud, water vapor, O2, CO, and CO2 for a broad range of applications to Earth and Space Science Missions under Science Mission Directorate (SMD) research programs.

  9. A region segmentation based algorithm for building a crystal position lookup table in a scintillation detector

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Peng; Yun, Ming-Kai; Liu, Shuang-Quan; Fan, Xin; Cao, Xue-Xiang; Chai, Pei; Shan, Bao-Ci

    2015-03-01

    In a scintillation detector, scintillation crystals are typically made into a 2-dimensional modular array. The location of incident gamma-ray needs be calibrated due to spatial response nonlinearity. Generally, position histograms-the characteristic flood response of scintillation detectors-are used for position calibration. In this paper, a position calibration method based on a crystal position lookup table which maps the inaccurate location calculated by Anger logic to the exact hitting crystal position has been proposed. Firstly, the position histogram is preprocessed, such as noise reduction and image enhancement. Then the processed position histogram is segmented into disconnected regions, and crystal marking points are labeled by finding the centroids of regions. Finally, crystal boundaries are determined and the crystal position lookup table is generated. The scheme is evaluated by the whole-body positron emission tomography (PET) scanner and breast dedicated single photon emission computed tomography scanner developed by the Institute of High Energy Physics, Chinese Academy of Sciences. The results demonstrate that the algorithm is accurate, efficient, robust and applicable to any configurations of scintillation detector. Supported by National Natural Science Foundation of China (81101175) and XIE Jia-Lin Foundation of Institute of High Energy Physics (Y3546360U2)

  10. Measurement of image plane illumination uniformity of photoelectric imaging system

    NASA Astrophysics Data System (ADS)

    Kang, Deng-kui; Yang, Hong; Sha, Ding-guo; Jiang, Chang-lu; Chen, Min; Zhong, Xing-hui; Ma, Shi-bang; Yuan, Liang

    2014-09-01

    The image plane illumination nonuniformity caused by optical system or detector will affect the detection precision of photoelectric imaging system, especially in image guidance, positioning and recognition. An image plane illumination uniformity measurement device was set up, which was characteristiced of high uniformity and wide dynamic range. The device was composed of an asymmetric integrating sphere,the image collection and processing system, as well as the electrical control system.The asymmetric integrating sphere had two different radius,which was respectively 800mm and 1000mm.The spectral region was (0.4~1.1)μm, the illumination range was (1×10-4~2×104)lx. The image collection and processing system had two different acquisition card,which were respectively used for analog and digital signals. The software can process for dynamic image or static image. The TracePro software was used to make a internal ray tracing of integrating sphere, the illumination uniformity at the export was simulated for the size of 330mm×230mm and Φ 100mm export, the results were respectively 97.95% and 98.33%. Then,an illuminometer was used to measure the actual illumination uniformity of integrating sphere, the result was shown the actual illumination uniformity was 98.8%. Finally, a visible photoelectric imaging system was tested ,and three different uniformity indicators results were given.

  11. Determination of detector rotation angle in the experiment based on the total internal reflection using an equilateral right angle prism

    NASA Astrophysics Data System (ADS)

    Hendro, Viridi, S.; Pratama, Y.

    2015-04-01

    We present a relation between incident angle and rotation angle detector in the Total Internal Reflection (TIR) experiments when using a right angle prism. In the TIR method, the light coming toward the prism will experience reflection and out of the prism at a certain angle direction. Results of analysis of the geometry and Snell's law shows that the angular position of the detector is not only determined by the angle of incidence of light alone but also by the size of the prism and the detector position from the rotation axis of goniometer. The experimental results show relation between the angle of detector and angle of goniometer. When the prism rotated 45 °, position of goniometer detector is 2×45 °. However, when the prism rotated at an angle instead of 45 °, detector position µ is not always equal to twice the rotation angle goniometer ψ, so that this relationship needs to be corrected. This correction is also determined by the value of the refractive index of the prism is used. By knowing the relationship between detector position and the incident angle of light, this formulation can be used to control the position of the sample and the detector in the experiments based on ATR.

  12. Flexible structured illumination microscope with a programmable illumination array.

    PubMed

    Křížek, Pavel; Raška, Ivan; Hagen, Guy M

    2012-10-22

    Structured illumination microscopy (SIM) has grown into a family of methods which achieve optical sectioning, resolution beyond the Abbe limit, or a combination of both effects in optical microscopy. SIM techniques rely on illumination of a sample with patterns of light which must be shifted between each acquired image. The patterns are typically created with physical gratings or masks, and the final optically sectioned or high resolution image is obtained computationally after data acquisition. We used a flexible, high speed ferroelectric liquid crystal microdisplay for definition of the illumination pattern coupled with widefield detection. Focusing on optical sectioning, we developed a unique and highly accurate calibration approach which allowed us to determine a mathematical model describing the mapping of the illumination pattern from the microdisplay to the camera sensor. This is important for higher performance image processing methods such as scaled subtraction of the out of focus light, which require knowledge of the illumination pattern position in the acquired data. We evaluated the signal to noise ratio and the sectioning ability of the reconstructed images for several data processing methods and illumination patterns with a wide range of spatial frequencies. We present our results on a thin fluorescent layer sample and also on biological samples, where we achieved thinner optical sections than either confocal laser scanning or spinning disk microscopes. PMID:23187221

  13. Aspects of illumination system optimization

    NASA Astrophysics Data System (ADS)

    Koshel, R. John

    2004-09-01

    This paper focuses on the facets of illumination system optimization, in particular parameterization of objects, the number of rays that must be traced to sample properly its properties, and the optimization algorithm with the associated merit function designation. Non-interference ensures that the parameterized objects do not erroneously intersect each other or leave gaps during the steps of the optimization procedure. The required number of rays is based on a model developed for television cameras during their initial days of development. Using signal to noise ratio, it provides the number of rays based on the desired contrast, feature size, and allowed error probability. A lightpipe is used to highlight the nuances of this model. The utility of using system symmetry to increase ray count is also discussed. A modified simplex method of optimization is described. This algorithm provides quicker convergence than the standard simplex method, while it is also robust, accurate, and convergent. A previous example using a compound parabolic concentrator highlights the utility of this improvement.

  14. Hourly Illumination of Shackleton Crater

    NASA Video Gallery

    Illumination of Shackleton crater, a 21-km-diameter (12.5 mile-diameter) structure situated adjacent to the Moon’s south pole. The resolution is 30 meters (approximately 100 feet) per pixel. Fra...

  15. Laser sources for object illumination

    SciTech Connect

    Albrecht, G.F.

    1994-11-15

    The considerations which formulate the specifications for a laser illuminator are explained, using the example of an underwater object. Depending on the parameters which define the scenario, widely varying laser requirements result.

  16. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    NASA Astrophysics Data System (ADS)

    Chaudhari, Pradip; Singh, Arvind; Topkar, Anita; Dusane, Rajiv

    2015-04-01

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and 10B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 μm and 0.5 μm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors.

  17. Dual function armchair graphene nanoribbon-based spin-photodetector: Optical spin-valve and light helicity detector

    SciTech Connect

    Ostovari, Fatemeh; Moravvej-Farshi, Mohammad Kazem

    2014-08-18

    We show an armchair graphene nanoribbon channel connected between asymmetric ferromagnetic source-drain structure—i.e., p-type Co/Au/graphene source and n-type Co/Cu/graphene drain—can operate as dual function spin-photodetector, under zero external biases at room temperature. It can function as an optical spin-valve with magnetoresistance of greater than 60% and responsivity as high as 25.12 A/mW, when irradiated by an un-polarized light of energy ∼3.03 eV. Under a circularly polarized illumination, this optical spin-valve can also operate as a light helicity detector. The calculated magnetoresistances for right and left circularly polarized lights are both greater than 60%.

  18. An X-ray imaging device based on a GEM detector with delay-line readout

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Cheng; Sun, Yong-Jie; Shao, Ming

    2010-01-01

    An X-ray imaging device based on a triple-GEM (Gas Electron Multiplier) detector, a fast delay-line circuit with 700 MHz cut-off frequency and two dimensional readout strips with 150 μm width on the top and 250 μm width on the bottom, is designed and tested. The localization information is derived from the propagation time of the induced signals on the readout strips. This device has a good spatial resolution of 150 μm and works stably at an intensity of 105 Hz/mm2 with 8 keV X-rays.

  19. Modernization of the X-Ray Tomographic Scanner Based on Gas-Discharge Linear Detector

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Batranin, A. V.; Miloichikova, I. A.

    2016-01-01

    In this paper, we describe the modernization of the tomographic scanner based on multi-channel linear gas-discharge detector. We have changed the principle of acquisition the projection data, which allowed to receive a bulk three-dimensional tomographic data instead of single slices of the studied samples. Modified scanner has shown increasing contrast and spatial resolution of single slices. The volume of interest in studied objects has been significantly increased and are as high as 25 000 cubic cm, which is determined by 1536 pixels in high

  20. Medical image reconstruction algorithm based on the geometric information between sensor detector and ROI

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Roh, Seungkuk

    2016-05-01

    In this paper, we propose a new image reconstruction algorithm considering the geometric information of acoustic sources and senor detector and review the two-step reconstruction algorithm which was previously proposed based on the geometrical information of ROI(region of interest) considering the finite size of acoustic sensor element. In a new image reconstruction algorithm, not only mathematical analysis is very simple but also its software implementation is very easy because we don't need to use the FFT. We verify the effectiveness of the proposed reconstruction algorithm by showing the simulation results by using Matlab k-wave toolkit.

  1. Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors.

    PubMed

    Godin, Thomas; Fromager, Michael; Cagniot, Emmanuel; Brunel, Marc; Aït-Ameur, Kamel

    2013-12-01

    We propose a new device that is able to perform highly sensitive wavefront measurements based on the use of continuous position sensitive detectors and without resorting to any reconstruction process. We demonstrate experimentally its ability to measure small wavefront distortions through the characterization of pump-induced refractive index changes in laser material. In addition, it is shown using computer-generated holograms that this device can detect phase discontinuities as well as improve the quality of sharp phase variations measurements. Results are compared to reference Shack-Hartmann measurements, and dramatic enhancements are obtained.

  2. Towards monolithic scintillator based TOF-PET systems: practical methods for detector calibration and operation

    NASA Astrophysics Data System (ADS)

    Borghi, Giacomo; Tabacchini, Valerio; Schaart, Dennis R.

    2016-07-01

    Gamma-ray detectors based on thick monolithic scintillator crystals can achieve spatial resolutions  <2 mm full-width-at-half-maximum (FWHM) and coincidence resolving times (CRTs) better than 200 ps FWHM. Moreover, they provide high sensitivity and depth-of-interaction (DOI) information. While these are excellent characteristics for clinical time-of-flight (TOF) positron emission tomography (PET), the application of monolithic scintillators has so far been hampered by the lengthy and complex procedures needed for position- and time-of-interaction estimation. Here, the algorithms previously developed in our group are revised to make the calibration and operation of a large number of monolithic scintillator detectors in a TOF-PET system practical. In particular, the k-nearest neighbor (k-NN) classification method for x,y-position estimation is accelerated with an algorithm that quickly preselects only the most useful reference events, reducing the computation time for position estimation by a factor of ~200 compared to the previously published k-NN 1D method. Also, the procedures for estimating the DOI and time of interaction are revised to enable full detector calibration by means of fan-beam or flood irradiations only. Moreover, a new technique is presented to allow the use of events in which some of the photosensor pixel values and/or timestamps are missing (e.g. due to dead time), so as to further increase system sensitivity. The accelerated methods were tested on a monolithic scintillator detector specifically developed for clinical PET applications, consisting of a 32 mm  ×  32 mm  ×  22 mm LYSO : Ce crystal coupled to a digital photon counter (DPC) array. This resulted in a spatial resolution of 1.7 mm FWHM, an average DOI resolution of 3.7 mm FWHM, and a CRT of 214 ps. Moreover, the possibility of using events missing the information of up to 16 out of 64 photosensor pixels is shown. This results in only a small

  3. A new pad-based neutron detector for stereo coded aperture thermal neutron imaging

    NASA Astrophysics Data System (ADS)

    Dioszegi, I.; Yu, B.; Smith, G.; Schaknowski, N.; Fried, J.; Vanier, P. E.; Salwen, C.; Forman, L.

    2014-09-01

    A new coded aperture thermal neutron imager system has been developed at Brookhaven National Laboratory. The cameras use a new type of position-sensitive 3He-filled ionization chamber, in which an anode plane is composed of an array of pads with independent acquisition channels. The charge is collected on each of the individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The new design has several advantages for coded-aperture imaging applications in the field, compared to the previous generation of wire-grid based neutron detectors. Among these are its rugged design, lighter weight and use of non-flammable stopping gas. The pad-based readout occurs in parallel circuits, making it capable of high count rates, and also suitable to perform data analysis and imaging on an event-by-event basis. The spatial resolution of the detector can be better than the pixel size by using a charge sharing algorithm. In this paper we will report on the development and performance of the new pad-based neutron camera, describe a charge sharing algorithm to achieve sub-pixel spatial resolution and present the first stereoscopic coded aperture images of thermalized neutron sources using the new coded aperture thermal neutron imager system.

  4. High spectral response of self-driven GaN-based detectors by controlling the contact barrier height

    PubMed Central

    Sun, Xiaojuan; Li, Dabing; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren; Miao, Guoqing; Zhang, Zhiwei

    2015-01-01

    High spectral response of self-driven GaN-based ultraviolet detectors with interdigitated finger geometries were realized using interdigitated Schottky and near-ohmic contacts. Ni/GaN/Cr, Ni/GaN/Ag, and Ni/GaN/Ti/Al detectors were designed with zero bias responsivities proportional to the Schottky barrier difference between the interdigitated contacts of 0.037 A/W, 0.083 A/W, and 0.104 A/W, respectively. Voltage-dependent photocurrent was studied, showing high gain under forward bias. Differences between the electron and hole mobility model and the hole trapping model were considered to be the main photocurrent gain mechanism. These detectors operate in photoconductive mode with large photocurrent gain and depletion mode with high speed, and can extend GaN-based metal-semiconductor-metal detector applications.

  5. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    SciTech Connect

    Cherry, H B.B.

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.

  6. The Underwater Spectrometric System Based on CZT Detector for Survey of the Bottom of MR Reactor Pool - 13461

    SciTech Connect

    Potapov, Victor; Safronov, Alexey; Ivanov, Oleg; Smirnov, Sergey; Stepanov, Vyacheslav

    2013-07-01

    The underwater spectrometer system for detection of irradiated nuclear fuel on the pool bottom of the reactor was elaborated. During the development process metrological studies of CdZnTe (CZT) detectors were conducted. These detectors are designed for spectrometric measurements in high radiation fields. A mathematical model based on the Monte Carlo method was created to evaluate the capability of such a system. A few experimental models were realized and the characteristics of the spectrometric system are represented. (authors)

  7. Scattered radiation in flat-detector based cone-beam CT: analysis of voxelized patient simulations

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Bertram, Matthias

    2006-03-01

    This paper presents a systematic assessment of scattered radiation in flat-detector based cone-beam CT. The analysis is based on simulated scatter projections of voxelized CT images of different body regions allowing to accurately quantify scattered radiation of realistic and clinically relevant patient geometries. Using analytically computed primary projection data of high spatial resolution in combination with Monte-Carlo simulated scattered radiation, practically noise-free reference data sets are computed with and without inclusion of scatter. The impact of scatter is studied both in the projection data and in the reconstructed volume for the head, thorax, and pelvis regions. Currently available anti-scatter grid geometries do not sufficiently compensate scatter induced cupping and streak artifacts, requiring additional software-based scatter correction. The required accuracy of scatter compensation approaches increases with increasing patient size.

  8. A model-based, multichannel, real-time capable sawtooth crash detector

    NASA Astrophysics Data System (ADS)

    van den Brand, H.; de Baar, M. R.; van Berkel, M.; Blanken, T. C.; Felici, F.; Westerhof, E.; Willensdorfer, M.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2016-07-01

    Control of the time between sawtooth crashes, necessary for ITER and DEMO, requires real-time detection of the moment of the sawtooth crash. In this paper, estimation of sawtooth crash times is demonstrated using the model-based interacting multiple model (IMM) estimator, based on simplified models for the sawtooth crash. In contrast to previous detectors, this detector uses the spatial extent of the sawtooth crash as detection characteristic. The IMM estimator is tuned and applied to multiple ECE channels at once. A model for the sawtooth crash is introduced, which is used in the IMM algorithm. The IMM algorithm is applied to seven datasets from the ASDEX Upgrade tokamak. Five crash models with different mixing radii are used. All sawtooth crashes that have been identified beforehand by visual inspection of the data, are detected by the algorithm. A few additional detections are made, which upon closer inspection are seen to be sawtooth crashes, which show a partial reconnection. A closer inspection of the detected normal crashes shows that about 42% are not well fitted by any of the full reconnection models and show some characteristics of a partial reconnection. In some case, the measurement time is during the sawtooth crashes, which also results in an incorrect estimate of the mixing radius. For data provided at a sampling rate of 1 kHz, the run time of the IMM estimator is below 1 ms, thereby fulfilling real-time requirements.

  9. A laser diode based system for calibration of fast time-of-flight detectors

    NASA Astrophysics Data System (ADS)

    Bertoni, R.; Bonesini, M.; de Bari, A.; Rossella, M.

    2016-05-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range ~ 400 nm, and multimode fiber patches, fused fiber splitters and optical switches may be assembled, for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range (λ ~ 850, 1300-1500 nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution (σ) in the range 20-30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50-100 ps, may be easily calibrated in time. Results on tested optical components may be of interest also for time calibration of different light detection systems based on PMTs, as the ones used for detection of the vacuum ultraviolet scintillation light emitted by ionizing particles in large LAr TPCs.

  10. Effect of an alcohol-based caries detector on the surface tension of sodium hypochlorite preparations.

    PubMed

    Rossi-Fedele, Giampiero; Guastalli, Andrea R

    2015-01-01

    The purpose of this study was to evaluate the effect of an alcohol-based caries detector (Kurakay) on the surface tension of a conventional sodium hypochlorite (NaOCl) preparation, and a product containing a surface-active agent (Chlor-XTRA). The surface tensions of the following solutions were tested: NaOCl, a mixture of NaOCl and Kurakay 9:1 w/w, Chlor-XTRA, a mixture of Chlor-XTRA and Kurakay 9:1 w/w. Ten measurements per test solution were made at 20°C, using an optical method called the "Pendant drop method", with a commercially available apparatus. The addition of Kurakay reduced the surface tension for NaOCl (p<0.05) whilst no significant difference was detected for Chlor-XTRA (p>0.05). Statistically significant differences between the NaOCl and Chlor-XTRA groups were found (p<0.05). The addition of an alcohol-based caries detector resulted in a reduction of the original surface tension values for NaOCl only. Taking into account the fact that mixtures of NaOCl and Kurakay have been used to assess the penetration of root canal irrigants in vitro, the related changes in surface tension are a possible source of bias.

  11. A laser diode based system for calibration of fast time-of-flight detectors

    NASA Astrophysics Data System (ADS)

    Bertoni, R.; Bonesini, M.; de Bari, A.; Rossella, M.

    2016-05-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range ~ 400 nm, and multimode fiber patches, fused fiber splitters and optical switches may be assembled, for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range (λ ~ 850, 1300–1500 nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution (σ) in the range 20–30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50–100 ps, may be easily calibrated in time. Results on tested optical components may be of interest also for time calibration of different light detection systems based on PMTs, as the ones used for detection of the vacuum ultraviolet scintillation light emitted by ionizing particles in large LAr TPCs.

  12. VO x-based uncooled micrbolometric detectors: recent developments at SCD

    NASA Astrophysics Data System (ADS)

    Fraenkel, A.; Mizrahi, U.; Bikov, L.; Adin, A.; Malkinson, E.; Giladi, A.; Seter, D.; Kopolovich, Z.

    2006-05-01

    Last year SCD presented an un-cooled detector product line based on the high-end VO x microbolometer technology. The first PFA (BIRD384) launched was a 384x288 software configurable (to 320x240 or other) format with 25μm pitch1. NETD values for these FPAs are better then 50mK with an F/1 aperture and 60 Hz frame rate. Since then SCD has concentrated in improving both spatial and temporal performance. In order to reduce the Residual Non-Uniformity (RNU) and increase the time span between shutter operations, SCD has incorporated various features within the FPA and supporting algorithms2. Improved temporal performance was achieved by optimizing concurrently the membrane structure and ROIC electronics. SCD has demonstrated temporal NETD of ~ 20mK @ F/1 at 30Hz on a 160x120 BIRD compatible array. This figure of merit, accompanied by the superior stability and reduced power consumption, makes SCD's VOx based detectors suitable candidates for a broad range of "high-end" military and commercial applications.

  13. Effect of Clouds on Apertures of Space-based Air Fluorescence Detectors

    NASA Technical Reports Server (NTRS)

    Sokolsky, P.; Krizmanic, J.

    2003-01-01

    Space-based ultra-high-energy cosmic ray detectors observe fluorescence light from extensive air showers produced by these particles in the troposphere. Clouds can scatter and absorb this light and produce systematic errors in energy determination and spectrum normalization. We study the possibility of using IR remote sensing data from MODIS and GOES satellites to delimit clear areas of the atmosphere. The efficiency for detecting ultra-high-energy cosmic rays whose showers do not intersect clouds is determined for real, night-time cloud scenes. We use the MODIS SST cloud mask product to define clear pixels for cloud scenes along the equator and use the OWL Monte Carlo to generate showers in the cloud scenes. We find the efficiency for cloud-free showers with closest approach of three pixels to a cloudy pixel is 6.5% exclusive of other factors. We conclude that defining a totally cloud-free aperture reduces the sensitivity of space-based fluorescence detectors to unacceptably small levels.

  14. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    NASA Astrophysics Data System (ADS)

    Annovazzi, A.; Amendolia, S. R.; Bigongiari, A.; Bisogni, M. G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M. E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-06-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18×24 cm 2), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma "La Sapienza", Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  15. Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation

    NASA Astrophysics Data System (ADS)

    Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Chabot, M.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L. D.; Sudiwala, R.

    2014-09-01

    The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent (from 11 to 40 aW Hz-1), but the rate of cosmic-ray impacts on the HFI detectors was unexpectedly higher than in other instruments. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics and a rate of about one glitch per second. A study of cosmic-ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper evaluates the physical origins of glitches observed by the HFI detectors. To better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact energies. The bolometer modules were exposed to 23 MeV protons from the Orsay IPN Tandem accelerator, and to 241Am and 244Cm α-particle and 55Fe radioactive X-ray sources. The calibration data from the HFI ground-based preflight tests were used to further characterize the glitches and compare glitch rates with statistical expectations under laboratory conditions. Test results provide strong evidence that the dominant family of glitches observed in flight are due to cosmic-ray absorption by the silicon die substrate on which the HFI detectors reside. Glitch energy is propagated to the thermistor by ballistic phonons, while thermal diffusion also contributes. The average ratio between the energy absorbed, per glitch, in the silicon die and thatabsorbed in the bolometer is equal to 650. We discuss the implications of these results for future satellite missions, especially those in the far

  16. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    SciTech Connect

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  17. Source polarization and OPC effects on illumination optimization

    NASA Astrophysics Data System (ADS)

    Brist, Travis; Bailey, George E.; Drozdov, Alexander; Torres, Andres; Estroff, Andrew; Hendrickx, Eric

    2005-11-01

    To perform a thorough source optimization during process development is becoming more critical as we move to leading edge-technology nodes. With each new node the acceptable process margin continues to shrink as a result of lowering k1 factors. This drives the need for thorough source optimization prior to locking down a process in order to attain the maximum common depth of focus (DOF) the process will allow. Optical proximity correction (OPC) has become a process-enabling tool in lithography by providing a common process window for structures that would otherwise not have overlapping windows. But what effect does this have on the source optimization? With the introduction of immersion lithography there is yet another parameter, namely source polarization, that may need to be included in an illumination optimization process. This paper explored the effect polarization and OPC have on illumination optimization. The Calibre ILO (Illumination Optimization) tool was used to perform the illumination optimization and provided plots of DOF vs. various parametric illumination settings. This was used to screen the various illumination settings for the one with optimum process margins. The resulting illumination conditions were then implemented and analyzed at a full chip level. Based on these results, a conclusion was made on the impact source polarization and OPC would have on the illumination optimization process.

  18. Specimen illumination apparatus with optical cavity for dark field illumination

    DOEpatents

    Pinkel, Daniel; Sudar, Damir; Albertson, Donna

    1999-01-01

    An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.

  19. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    SciTech Connect

    Jing, T

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N {approximately}20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 {micro}s. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth.

  20. Investigations into the chemical structure based selectivity of the microfabricated nitrogen-phosphorus detector

    DOE PAGESBeta

    Brocato, Terisse A.; Hess, Ryan F.; Moorman, Matthew; Simonson, Robert J.

    2015-10-28

    The nitrogen and phosphorus atoms are constituents of some of the most toxic chemical vapors. Nitrogen-phosphorus gas chromatograph detectors (NPDs) rely on selective ionization of such compounds using ionization temperatures typically greater than 600 °C. NPDs have previously been reported to be 7*104× and 105× more sensitive for nitrogen and phosphorus, respectively, than for carbon. Presented here is an investigation of the structure-based selectivity of a microfabricated nitrogen-phosphorus detector (μNPD). The μNPD presented here is smaller than a dime and can be placed in a system that is 1/100th the size of a commercial NPD. Comparison of responses of suchmore » devices to homologous anilines (p-methoxyaniline, p-fluoroaniline, and aniline) revealed that detection selectivity, determined by the ratio of μNPD to nonselective flame ionization detector (FID) peak areas, is correlated with acid disassociation pKa values for the respective analine. Selectivity was determined to be greatest for p-methoxyaniline, followed by p-fluoroaniline, with aniline having the smallest response. The limit of detection for a nitrogen containing chemical, p-methoxyaniline, using the μNPD was determined to be 0.29 ng compared to 59 ng for a carbon chemical containing no nitrogen or phosphorus, 1,3,5-trimethybenzene. The μNPD presented here has increased detection for nitrogen and phosphorus compared to the FID and with a slight increase in detection of carbon compounds compared to commercial NPD's sensitivity to nitrogen and carbon.« less