Sample records for illusory motion perception

  1. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    PubMed

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.

  2. Perception of Elasticity in the Kinetic Illusory Object with Phase Differences in Inducer Motion

    PubMed Central

    Masuda, Tomohiro; Sato, Kazuki; Murakoshi, Takuma; Utsumi, Ken; Kimura, Atsushi; Shirai, Nobu; Kanazawa, So; Yamaguchi, Masami K.; Wada, Yuji

    2013-01-01

    Background It is known that subjective contours are perceived even when a figure involves motion. However, whether this includes the perception of rigidity or deformation of an illusory surface remains unknown. In particular, since most visual stimuli used in previous studies were generated in order to induce illusory rigid objects, the potential perception of material properties such as rigidity or elasticity in these illusory surfaces has not been examined. Here, we elucidate whether the magnitude of phase difference in oscillation influences the visual impressions of an object's elasticity (Experiment 1) and identify whether such elasticity perceptions are accompanied by the shape of the subjective contours, which can be assumed to be strongly correlated with the perception of rigidity (Experiment 2). Methodology/Principal Findings In Experiment 1, the phase differences in the oscillating motion of inducers were controlled to investigate whether they influenced the visual impression of an illusory object's elasticity. The results demonstrated that the impression of the elasticity of an illusory surface with subjective contours was systematically flipped with the degree of phase difference. In Experiment 2, we examined whether the subjective contours of a perceived object appeared linear or curved using multi-dimensional scaling analysis. The results indicated that the contours of a moving illusory object were perceived as more curved than linear in all phase-difference conditions. Conclusions/Significance These findings suggest that the phase difference in an object's motion is a significant factor in the material perception of motion-related elasticity. PMID:24205281

  3. Self-motion perception: assessment by real-time computer-generated animations

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Phillips, J. O.

    2001-01-01

    We report a new procedure for assessing complex self-motion perception. In three experiments, subjects manipulated a 6 degree-of-freedom magnetic-field tracker which controlled the motion of a virtual avatar so that its motion corresponded to the subjects' perceived self-motion. The real-time animation created by this procedure was stored using a virtual video recorder for subsequent analysis. Combined real and illusory self-motion and vestibulo-ocular reflex eye movements were evoked by cross-coupled angular accelerations produced by roll and pitch head movements during passive yaw rotation in a chair. Contrary to previous reports, illusory self-motion did not correspond to expectations based on semicircular canal stimulation. Illusory pitch head-motion directions were as predicted for only 37% of trials; whereas, slow-phase eye movements were in the predicted direction for 98% of the trials. The real-time computer-generated animations procedure permits use of naive, untrained subjects who lack a vocabulary for reporting motion perception and is applicable to basic self-motion perception studies, evaluation of motion simulators, assessment of balance disorders and so on.

  4. Illusory visual motion stimulus elicits postural sway in migraine patients

    PubMed Central

    Imaizumi, Shu; Honma, Motoyasu; Hibino, Haruo; Koyama, Shinichi

    2015-01-01

    Although the perception of visual motion modulates postural control, it is unknown whether illusory visual motion elicits postural sway. The present study examined the effect of illusory motion on postural sway in patients with migraine, who tend to be sensitive to it. We measured postural sway for both migraine patients and controls while they viewed static visual stimuli with and without illusory motion. The participants’ postural sway was measured when they closed their eyes either immediately after (Experiment 1), or 30 s after (Experiment 2), viewing the stimuli. The patients swayed more than the controls when they closed their eyes immediately after viewing the illusory motion (Experiment 1), and they swayed less than the controls when they closed their eyes 30 s after viewing it (Experiment 2). These results suggest that static visual stimuli with illusory motion can induce postural sway that may last for at least 30 s in patients with migraine. PMID:25972832

  5. Illusory object motion in the centre of a radial pattern: The Pursuit-Pursuing illusion.

    PubMed

    Ito, Hiroyuki

    2012-01-01

    A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed.

  6. How visual illusions illuminate complementary brain processes: illusory depth from brightness and apparent motion of illusory contours

    PubMed Central

    Grossberg, Stephen

    2014-01-01

    Neural models of perception clarify how visual illusions arise from adaptive neural processes. Illusions also provide important insights into how adaptive neural processes work. This article focuses on two illusions that illustrate a fundamental property of global brain organization; namely, that advanced brains are organized into parallel cortical processing streams with computationally complementary properties. That is, in order to process certain combinations of properties, each cortical stream cannot process complementary properties. Interactions between these streams, across multiple processing stages, overcome their complementary deficiencies to compute effective representations of the world, and to thereby achieve the property of complementary consistency. The two illusions concern how illusory depth can vary with brightness, and how apparent motion of illusory contours can occur. Illusory depth from brightness arises from the complementary properties of boundary and surface processes, notably boundary completion and surface-filling in, within the parvocellular form processing cortical stream. This illusion depends upon how surface contour signals from the V2 thin stripes to the V2 interstripes ensure complementary consistency of a unified boundary/surface percept. Apparent motion of illusory contours arises from the complementary properties of form and motion processes across the parvocellular and magnocellular cortical processing streams. This illusion depends upon how illusory contours help to complete boundary representations for object recognition, how apparent motion signals can help to form continuous trajectories for target tracking and prediction, and how formotion interactions from V2-to-MT enable completed object representations to be continuously tracked even when they move behind intermittently occluding objects through time. PMID:25389399

  7. Illusory object motion in the centre of a radial pattern: The Pursuit–Pursuing illusion

    PubMed Central

    Ito, Hiroyuki

    2012-01-01

    A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed. PMID:23145267

  8. Evidence against the temporal subsampling account of illusory motion reversal

    PubMed Central

    Kline, Keith A.; Eagleman, David M.

    2010-01-01

    An illusion of reversed motion may occur sporadically while viewing continuous smooth motion. This has been suggested as evidence of discrete temporal sampling by the visual system in analogy to the sampling that generates the wagon–wheel effect on film. In an alternative theory, the illusion is not the result of discrete sampling but instead of perceptual rivalry between appropriately activated and spuriously activated motion detectors. Results of the current study demonstrate that illusory reversals of two spatially overlapping and orthogonal motions often occur separately, providing evidence against the possibility that illusory motion reversal (IMR) is caused by temporal sampling within a visual region. Further, we find that IMR occurs with non-uniform and non-periodic stimuli—an observation that is not accounted for by the temporal sampling hypothesis. We propose, that a motion aftereffect is superimposed on the moving stimulus, sporadically allowing motion detectors for the reverse direction to dominate perception. PMID:18484852

  9. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction

    PubMed Central

    Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta

    2018-01-01

    The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research. PMID:29599739

  10. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.

    PubMed

    Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta

    2018-01-01

    The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.

  11. Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field.

    PubMed

    Kline, Keith; Holcombe, Alex O; Eagleman, David M

    2004-10-01

    In stroboscopic conditions--such as motion pictures--rotating objects may appear to rotate in the reverse direction due to under-sampling (aliasing). A seemingly similar phenomenon occurs in constant sunlight, which has been taken as evidence that the visual system processes discrete "snapshots" of the outside world. But if snapshots are indeed taken of the visual field, then when a rotating drum appears to transiently reverse direction, its mirror image should always appeared to reverse direction simultaneously. Contrary to this hypothesis, we found that when observers watched a rotating drum and its mirror image, almost all illusory motion reversals occurred for only one image at a time. This result indicates that the motion reversal illusion cannot be explained by snapshots of the visual field. The same result is found when the two images are presented within one visual hemifield, further ruling out the possibility that discrete sampling of the visual field occurs separately in each hemisphere. The frequency distribution of illusory reversal durations approximates a gamma distribution, suggesting perceptual rivalry as a better explanation for illusory motion reversal. After adaptation of motion detectors coding for the correct direction, the activity of motion-sensitive neurons coding for motion in the reverse direction may intermittently become dominant and drive the perception of motion.

  12. Paranormal believers are more prone to illusory agency detection than skeptics.

    PubMed

    van Elk, Michiel

    2013-09-01

    It has been hypothesized that illusory agency detection is at the basis of belief in supernatural agents and paranormal beliefs. In the present study a biological motion perception task was used to study illusory agency detection in a group of skeptics and a group of paranormal believers. Participants were required to detect the presence or absence of a human agent in a point-light display. It was found that paranormal believers had a lower perceptual sensitivity than skeptics, which was due to a response bias to 'yes' for stimuli in which no agent was present. The relation between paranormal beliefs and illusory agency detection held only for stimuli with low to intermediate ambiguity, but for stimuli with a high number of visual distractors responses of believers and skeptics were at the same level. Furthermore, it was found that illusory agency detection was unrelated to traditional religious belief and belief in witchcraft, whereas paranormal beliefs (i.e. Psi, spiritualism, precognition, superstition) were strongly related to illusory agency detection. These findings qualify the relation between illusory pattern perception and supernatural and paranormal beliefs and suggest that paranormal beliefs are strongly related to agency detection biases. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Vection Modulates Emotional Valence of Autobiographical Episodic Memories

    ERIC Educational Resources Information Center

    Seno, Takeharu; Kawabe, Takahiro; Ito, Hiroyuki; Sunaga, Shoji

    2013-01-01

    We examined whether illusory self-motion perception ("vection") induced by viewing upward and downward grating motion stimuli can alter the emotional valence of recollected autobiographical episodic memories. We found that participants recollected positive episodes more often while perceiving upward vection. However, when we tested a small moving…

  14. Type of featural attention differentially modulates hMT+ responses to illusory motion aftereffects.

    PubMed

    Castelo-Branco, Miguel; Kozak, Lajos R; Formisano, Elia; Teixeira, João; Xavier, João; Goebel, Rainer

    2009-11-01

    Activity in the human motion complex (hMT(+)/V5) is related to the perception of motion, be it either real surface motion or an illusion of motion such as apparent motion (AM) or motion aftereffect (MAE). It is a long-lasting debate whether illusory motion-related activations in hMT(+) represent the motion itself or attention to it. We have asked whether hMT(+) responses to MAEs are present when shifts in arousal are suppressed and attention is focused on concurrent motion versus nonmotion features. Significant enhancement of hMT(+) activity was observed during MAEs when attention was focused either on concurrent spatial angle or color features. This observation was confirmed by direct comparison of adapting (MAE inducing) versus nonadapting conditions. In contrast, this effect was diminished when subjects had to report on concomitant speed changes of superimposed AM. The same finding was observed for concomitant orthogonal real motion (RM), suggesting that selective attention to concurrent illusory or real motion was interfering with the saliency of MAE signals in hMT(+). We conclude that MAE-related changes in the global activity of hMT(+) are present provided selective attention is not focused on an interfering feature such as concurrent motion. Accordingly, there is a genuine MAE-related motion signal in hMT(+) that is neither explained by shifts in arousal nor by selective attention.

  15. Frogs Jump Forward: Semantic Knowledge Influences the Perception of Element Motion in the Ternus Display.

    PubMed

    Hsu, Patty; Taylor, J Eric T; Pratt, Jay

    2015-01-01

    The Ternus effect is a robust illusion of motion that produces element motion at short interstimulus intervals (ISIs; < 50 ms) and group motion at longer ISIs (> 50 ms). Previous research has shown that the nature of the stimuli (e.g., similarity, grouping), not just ISI, can influence the likelihood of perceiving element or group motion. We examined if semantic knowledge can also influence what type of illusory motion is perceived. In Experiment I, we used a modified Ternus display with pictures of frogs in a jump-ready pose facing forwards or backwards to the direction of illusory motion. Participants perceived more element motion with the forward-facing frogs and more group motion with the backward-facing frogs. Experiment 2 tested whether this effect would still occur with line drawings of frogs, or if a more life-like image was necessary. Experiment 3 tested whether this effect was due to visual asymmetries inherent in the jumping pose. Experiment 4 tested whether frogs in a "non-jumping," sedentary pose would replicate the original effect. These experiments elucidate the role of semantic knowledge in the Ternus effect. Prior knowledge of the movement of certain animate objects, in this case, frogs can also bias the perception of element or group motion.

  16. Visuokinesthetic Perception of Hand Movement is Mediated by Cerebro–Cerebellar Interaction between the Left Cerebellum and Right Parietal Cortex

    PubMed Central

    Hagura, Nobuhiro; Oouchida, Yutaka; Aramaki, Yu; Okada, Tomohisa; Matsumura, Michikazu; Sadato, Norihiro

    2009-01-01

    Combination of visual and kinesthetic information is essential to perceive bodily movements. We conducted behavioral and functional magnetic resonance imaging experiments to investigate the neuronal correlates of visuokinesthetic combination in perception of hand movement. Participants experienced illusory flexion movement of their hand elicited by tendon vibration while they viewed video-recorded flexion (congruent: CONG) or extension (incongruent: INCONG) motions of their hand. The amount of illusory experience was graded by the visual velocities only when visual information regarding hand motion was concordant with kinesthetic information (CONG). The left posterolateral cerebellum was specifically recruited under the CONG, and this left cerebellar activation was consistent for both left and right hands. The left cerebellar activity reflected the participants' intensity of illusory hand movement under the CONG, and we further showed that coupling of activity between the left cerebellum and the “right” parietal cortex emerges during this visuokinesthetic combination/perception. The “left” cerebellum, working with the anatomically connected high-order bodily region of the “right” parietal cortex, participates in online combination of exteroceptive (vision) and interoceptive (kinesthesia) information to perceive hand movement. The cerebro–cerebellar interaction may underlie updating of one's “body image,” when perceiving bodily movement from visual and kinesthetic information. PMID:18453537

  17. Perception and the strongest sensory memory trace of multi-stable displays both form shortly after the stimulus onset.

    PubMed

    Pastukhov, Alexander

    2016-02-01

    We investigated the relation between perception and sensory memory of multi-stable structure-from-motion displays. The latter is an implicit visual memory that reflects a recent history of perceptual dominance and influences only the initial perception of multi-stable displays. First, we established the earliest time point when the direction of an illusory rotation can be reversed after the display onset (29-114 ms). Because our display manipulation did not bias perception towards a specific direction of illusory rotation but only signaled the change in motion, this means that the perceptual dominance was established no later than 29-114 ms after the stimulus onset. Second, we used orientation-selectivity of sensory memory to establish which display orientation produced the strongest memory trace and when this orientation was presented during the preceding prime interval (80-140 ms). Surprisingly, both estimates point towards the time interval immediately after the display onset, indicating that both perception and sensory memory form at approximately the same time. This suggests a tighter integration between perception and sensory memory than previously thought, warrants a reconsideration of its role in visual perception, and indicates that sensory memory could be a unique behavioral correlate of the earlier perceptual inference that can be studied post hoc.

  18. Effect of stationary objects on illusory forward self-motion induced by a looming display.

    PubMed

    Ohmi, M; Howard, I P

    1988-01-01

    It has previously been shown that when a moving and a stationary display are superimposed, illusory self-rotation (circular vection) is induced only when the moving display appears as the background. Three experiments are reported on the extent to which illusory forward self-motion (forward vection) induced by a looming display is inhibited by a superimposed stationary display as a function of the size and location of the stationary display and of the depth between the stationary and looming displays. Results showed that forward vection was controlled by the display that was perceived as the background, and background stationary displays suppressed forward vection by about the same amount whatever their size and eccentricity. Also, the perception of foreground-background properties of competing displays determined which controlled forward vection, and this control was not tied to specific depth cues. The inhibitory effect of a stationary background on forward vection was, however, weaker than that found with circular vection. This difference makes sense because, for forward body motion, the image of a distant scene is virtually stationary whereas, when the body rotates, it is not.

  19. Directional bias of illusory stream caused by relative motion adaptation.

    PubMed

    Tomimatsu, Erika; Ito, Hiroyuki

    2016-07-01

    Enigma is an op-art painting that elicits an illusion of rotational streaming motion. In the present study, we tested whether adaptation to various motion configurations that included relative motion components could be reflected in the directional bias of the illusory stream. First, participants viewed the center of a rotating Enigma stimulus for adaptation. There was no physical motion on the ring area. During the adaptation period, the illusory stream on the ring was mainly seen in the direction opposite to that of the physical rotation. After the physical rotation stopped, the illusory stream on the ring was mainly seen in the same direction as that of the preceding physical rotation. Moreover, adapting to strong relative motion induced a strong bias in the illusory motion direction in the subsequently presented static Enigma stimulus. The results suggest that relative motion detectors corresponding to the ring area may produce the illusory stream of Enigma. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Infant perception of the rotating Kanizsa square.

    PubMed

    Yoshino, Daisuke; Idesawa, Masanori; Kanazawa, So; Yamaguchi, Masami K

    2010-04-01

    This study examined the perception of the rotating Kanizsa square by using a fixed-trial familiarization method. If the Kanizsa square is rotated across the pacmen, adult observers perceive not only a rotating illusory square, but also an illusory expansion/contraction motion of this square. The phenomenon is called a "rotational dynamic illusion". In experiments 1 and 2, we investigated whether infants perceived the rotational dynamic illusion, finding that 3-8-month-old infants perceived the rotational dynamic illusion as a simple rotation of the Kanizsa square. In experiment 3, we investigated whether infants perceived the rotational dynamic illusion as a rotation of the Kanizsa square or as a deformation of shape, finding that 3-4-month-old infants did perceive the rotational dynamic illusion as a rotation of the Kanizsa square. Our results show that while 3-8-month-old infants perceive the rotating Kanizsa square, however, it is difficult for the infants to extract expansion/contraction motion from the rotational dynamic illusion. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Detection of visual events along the apparent motion trace in patients with paranoid schizophrenia.

    PubMed

    Sanders, Lia Lira Olivier; Muckli, Lars; de Millas, Walter; Lautenschlager, Marion; Heinz, Andreas; Kathmann, Norbert; Sterzer, Philipp

    2012-07-30

    Dysfunctional prediction in sensory processing has been suggested as a possible causal mechanism in the development of delusions in patients with schizophrenia. Previous studies in healthy subjects have shown that while the perception of apparent motion can mask visual events along the illusory motion trace, such motion masking is reduced when events are spatio-temporally compatible with the illusion, and, therefore, predictable. Here we tested the hypothesis that this specific detection advantage for predictable target stimuli on the apparent motion trace is reduced in patients with paranoid schizophrenia. Our data show that, although target detection along the illusory motion trace is generally impaired, both patients and healthy control participants detect predictable targets more often than unpredictable targets. Patients had a stronger motion masking effect when compared to controls. However, patients showed the same advantage in the detection of predictable targets as healthy control subjects. Our findings reveal stronger motion masking but intact prediction of visual events along the apparent motion trace in patients with paranoid schizophrenia and suggest that the sensory prediction mechanism underlying apparent motion is not impaired in paranoid schizophrenia. Copyright © 2012. Published by Elsevier Ireland Ltd.

  2. Passive motion reduces vestibular balance and perceptual responses

    PubMed Central

    Fitzpatrick, Richard C; Watson, Shaun R D

    2015-01-01

    With the hypothesis that vestibular sensitivity is regulated to deal with a range of environmental motion conditions, we explored the effects of passive whole-body motion on vestibular perceptual and balance responses. In 10 subjects, vestibular responses were measured before and after a period of imposed passive motion. Vestibulospinal balance reflexes during standing evoked by galvanic vestibular stimulation (GVS) were measured as shear reaction forces. Perceptual tests measured thresholds for detecting angular motion, perceptions of suprathreshold rotation and perceptions of GVS-evoked illusory rotation. The imposed conditioning motion was 10 min of stochastic yaw rotation (0.5–2.5 Hz ≤ 300 deg s−2) with subjects seated. This conditioning markedly reduced reflexive and perceptual responses. The medium latency galvanic reflex (300–350 ms) was halved in amplitude (48%; P = 0.011) but the short latency response was unaffected. Thresholds for detecting imposed rotation more than doubled (248%; P < 0.001) and remained elevated after 30 min. Over-estimation of whole-body rotation (30–180 deg every 5 s) before conditioning was significantly reduced (41.1 to 21.5%; P = 0.033). Conditioning reduced illusory vestibular sensations of rotation evoked by GVS (mean 113 deg for 10 s at 1 mA) by 44% (P < 0.01) and the effect persisted for at least 1 h (24% reduction; P < 0.05). We conclude that a system of vestibular sensory autoregulation exists and that this probably involves central and peripheral mechanisms, possibly through vestibular efferent regulation. We propose that failure of these regulatory mechanisms at different levels could lead to disorders of movement perception and balance control during standing. Key points Human activity exposes the vestibular organs to a wide dynamic range of motion. We aimed to discover whether the CNS regulates sensitivity to vestibular afference during exposure to ambient motion. Balance and perceptual responses to vestibular stimulation were measured before and after a 10 min period of imposed, moderate intensity, stochastic whole-body rotation. After this conditioning, vestibular balance reflexes evoked by galvanic vestibular stimulation were halved in amplitude. Conditioning doubled the thresholds for perceiving small rotations, and reduced perceptions of the amplitude of real rotations, and illusory rotation evoked by galvanic stimulation. We conclude that the CNS auto-regulates sensitivity to vestibular sensory afference and that this probably involves central and peripheral mechanisms, as might arise from vestibular efferent regulation. Failure of these regulatory mechanisms at different levels could lead to disorders of movement perception and balance control during standing. PMID:25809702

  3. Adding rotation to translation: percepts and illusions.

    PubMed

    Magnussen, Camilla M; Orbach, Harry S; Loffler, Gunter

    2014-01-01

    This study investigated how the perception of a translating object is affected by rotation. Observers were asked to judge the motion and trajectory of objects that rotated around their centroid while linearly translating. The expected percept, consistent with the actual dynamics used to generate the movie sequences, is that of a translating and rotating object, akin to a tumbling rugby ball. Observers, however, do not always report this and, under certain circumstances, perceive the object to translate on an illusory curved trajectory, similar to a car driving on a curved road. The prevalence of veridical versus nonveridical percepts depends on a number of factors. First, if the object's orientation remains within a limited range relative to the axis of translation, the illusory, curved percept dominates. If the orientation, at any point of the movie sequence, differs sufficiently from the axis of translation, the percept switches to linear translation with rotation. The angle at which the switch occurs is dependent upon a number of factors that relate to an object's elongation and, with it, the prominence of its orientation. For an ellipse with an aspect ratio of 3, the switch occurs at approximately 45 degrees. Higher aspect ratios increase the range; lower ratios decrease it. This applies similarly to rectangular shapes. A line is more likely to be perceived on a curved trajectory than an elongated rectangle, which, in turn, is more likely seen on a curved path than a square. This is largely independent of rotational and translational speeds. Measuring perceived directions of motion at different instants in time allows the shape of the perceived illusory curved path to be extrapolated. This results in a trajectory that is independent of object size and corresponds closely to the actual object orientation at different points during the movie sequence. The results provide evidence for a perceptual transition from an illusory curved trajectory to a veridical linear trajectory (with rotation) for the same object. Both are consistent with special real-world cases such as objects rotating around a centre outside of the object so that their orientation remains tangent to the trajectory (cheetahs running along a curve, sailboats) or objects tumbling along simple trajectories (a monkey spinning in air, spinning cars on ice). In certain cases, the former is an illusion.

  4. Cathodal transcranial direct current stimulation can stabilize perception of movement: Evidence from the two-thirds power law illusion.

    PubMed

    Scocchia, Lisa; Bolognini, Nadia; Convento, Silvia; Stucchi, Natale

    2015-11-16

    Human movements conform to specific kinematic laws of motion. One of such laws, the "two-thirds power law", describes the systematic co-variation between curvature and velocity of body movements. Noticeably, the same law also influences the perception of moving stimuli: the velocity of a dot moving along a curvilinear trajectory is perceived as uniform when the dot kinematics complies with the two-thirds power law. Instead, if the dot moves at constant speed, its velocity is perceived as highly non-uniform. This dynamic visual illusion points to a strong coupling between action and perception; however, how this coupling is implemented in the brain remains elusive. In this study, we tested whether the premotor cortex (PM) and the primary visual cortex (V1) play a role in the illusion by means of transcranial Direct Current Stimulation (tDCS). All participants underwent three tDCS sessions during which they received active or sham cathodal tDCS (1.5mA) over PM or V1 of the left hemisphere. During tDCS, participants were required to adjust the velocity of a dot moving along an elliptical trajectory until it looked uniform across the whole trajectory. Results show that occipital tDCS decreases the illusion variability both within and across participants, as compared to sham tDCS. This means that V1 stimulation increases individual sensitivity to the illusory motion and also increases coherence across different observers. Conversely, the illusion seems resistant to tDCS in terms of its magnitude, with cathodal stimulation of V1 or PM not affecting the amount of the illusory effect. Our results provide evidence for strong visuo-motor coupling in visual perception: the velocity of a dot moving along an elliptical trajectory is perceived as uniform only when its kinematics closely complies to the same law of motion that constrains human movement production. Occipital stimulation by cathodal tDCS can stabilize such illusory percept. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. From Flashes to Edges to Objects: Recovery of Local Edge Fragments Initiates Spatiotemporal Boundary Formation

    PubMed Central

    Erlikhman, Gennady; Kellman, Philip J.

    2016-01-01

    Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global form, and global motion from spatially and temporally sparse transformations of texture elements (Shipley and Kellman, 1993a, 1994; Erlikhman and Kellman, 2015). It has been theorized that the visual system uses positions and times of element transformations to extract local oriented edge fragments, which then connect by known interpolation processes to produce larger contours and shapes in SBF. To test this theory, we created a novel display consisting of a sawtooth arrangement of elements that disappeared and reappeared sequentially. Although apparent motion along the sawtooth would be expected, with appropriate spacing and timing, the resulting percept was of a larger, moving, illusory bar. This display approximates the minimal conditions for visual perception of an oriented edge fragment from spatiotemporal information and confirms that such events may be initiating conditions in SBF. Using converging objective and subjective methods, experiments showed that edge formation in these displays was subject to a temporal integration constraint of ~80 ms between element disappearances. The experiments provide clear support for models of SBF that begin with extraction of local edge fragments, and they identify minimal conditions required for this process. We conjecture that these results reveal a link between spatiotemporal object perception and basic visual filtering. Motion energy filters have usually been studied with orientation given spatially by luminance contrast. When orientation is not given in static frames, these same motion energy filters serve as spatiotemporal edge filters, yielding local orientation from discrete element transformations over time. As numerous filters of different characteristic orientations and scales may respond to any simple SBF stimulus, we discuss the aperture and ambiguity problems that accompany this conjecture and how they might be resolved by the visual system. PMID:27445886

  6. Is the Positive Illusory Bias Illusory? Examining Discrepant Self-Perceptions of Competence in Girls with ADHD

    ERIC Educational Resources Information Center

    Swanson, Erika N.; Owens, Elizabeth B.; Hinshaw, Stephen P.

    2012-01-01

    It has been claimed that excessively positive self-perceptions of competence are a key risk factor for concurrent and subsequent impairments in youth with attention-deficit/ hyperactivity disorder (ADHD). We examined whether girls with ADHD demonstrate positive illusory self-perceptions in scholastic competence, social acceptance, and behavioral…

  7. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory.

    PubMed

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: 'element motion' (EM) or 'group motion' (GM). In "EM," the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in "GM," both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms) in the long glide was perceived to be shorter than that within both the short glide and the 'gap-transfer' auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.

  8. Auditorily-induced illusory self-motion: a review.

    PubMed

    Väljamäe, Aleksander

    2009-10-01

    The aim of this paper is to provide a first review of studies related to auditorily-induced self-motion (vection). These studies have been scarce and scattered over the years and over several research communities including clinical audiology, multisensory perception of self-motion and its neural correlates, ergonomics, and virtual reality. The reviewed studies provide evidence that auditorily-induced vection has behavioral, physiological and neural correlates. Although the sound contribution to self-motion perception appears to be weaker than the visual modality, specific acoustic cues appear to be instrumental for a number of domains including posture prosthesis, navigation in unusual gravitoinertial environments (in the air, in space, or underwater), non-visual navigation, and multisensory integration during self-motion. A number of open research questions are highlighted opening avenue for more active and systematic studies in this area.

  9. Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time.

    PubMed

    Herrmann, Björn; Henry, Molly J; Grigutsch, Maren; Obleser, Jonas

    2013-10-02

    Neural oscillatory dynamics are a candidate mechanism to steer perception of time and temporal rate change. While oscillator models of time perception are strongly supported by behavioral evidence, a direct link to neural oscillations and oscillatory entrainment has not yet been provided. In addition, it has thus far remained unaddressed how context-induced illusory percepts of time are coded for in oscillator models of time perception. To investigate these questions, we used magnetoencephalography and examined the neural oscillatory dynamics that underpin pitch-induced illusory percepts of temporal rate change. Human participants listened to frequency-modulated sounds that varied over time in both modulation rate and pitch, and judged the direction of rate change (decrease vs increase). Our results demonstrate distinct neural mechanisms of rate perception: Modulation rate changes directly affected listeners' rate percept as well as the exact frequency of the neural oscillation. However, pitch-induced illusory rate changes were unrelated to the exact frequency of the neural responses. The rate change illusion was instead linked to changes in neural phase patterns, which allowed for single-trial decoding of percepts. That is, illusory underestimations or overestimations of perceived rate change were tightly coupled to increased intertrial phase coherence and changes in cerebro-acoustic phase lag. The results provide insight on how illusory percepts of time are coded for by neural oscillatory dynamics.

  10. The Verriest Lecture: Color lessons from space, time, and motion

    PubMed Central

    Shevell, Steven K.

    2012-01-01

    The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398

  11. Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows.

    PubMed

    Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno

    2016-11-01

    Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.

  12. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    PubMed

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Default perception of high-speed motion

    PubMed Central

    Wexler, Mark; Glennerster, Andrew; Cavanagh, Patrick; Ito, Hiroyuki; Seno, Takeharu

    2013-01-01

    When human observers are exposed to even slight motion signals followed by brief visual transients—stimuli containing no detectable coherent motion signals—they perceive large and salient illusory jumps. This visually striking effect, which we call “high phi,” challenges well-entrenched assumptions about the perception of motion, namely the minimal-motion principle and the breakdown of coherent motion perception with steps above an upper limit called dmax. Our experiments with transients, such as texture randomization or contrast reversal, show that the magnitude of the jump depends on spatial frequency and transient duration—but not on the speed of the inducing motion signals—and the direction of the jump depends on the duration of the inducer. Jump magnitude is robust across jump directions and different types of transient. In addition, when a texture is actually displaced by a large step beyond the upper step size limit of dmax, a breakdown of coherent motion perception is expected; however, in the presence of an inducer, observers again perceive coherent displacements at or just above dmax. In summary, across a large variety of stimuli, we find that when incoherent motion noise is preceded by a small bias, instead of perceiving little or no motion—as suggested by the minimal-motion principle—observers perceive jumps whose amplitude closely follows their own dmax limits. PMID:23572578

  14. Perception of Fechner Illusory Colors in Alzheimer Disease Patients.

    PubMed

    Kaubrys, Gintaras; Bukina, Vera; Bingelytė, Ieva; Taluntis, Vladas

    2016-11-30

    BACKGROUND Alzheimer disease (AD) primarily affects cognition. A variety of visual disorders was established in AD. Fechner illusory colors are produced by a rotating disk with a black and white pattern. The purpose of our research was to explore the perception of illusory colors in AD. MATERIAL AND METHODS W recruited 40 AD patients (MMSE ≥14) and 40 normal controls (CG group) matched by age, education, gender in this prospective, cross-sectional, case-control study. An achromatic Benham's disk attached to a device to control the speed and direction of rotation was used to produce illusory colors. Primary, secondary, and tertiary RGB system colors were used for matching of illusory and physical colors. RESULTS Subjects in the AD group perceived less illusory colors in 5 arcs (p<0.05) of the 8 arcs assessed. The biggest difference was found between AD and CG groups for pure blue (χ²=26.87, p<0.001 clockwise, χ²=22.75, p<0.001 counter-clockwise). Groups did not differ in perception of pure yellow opponent colors (p>0.05). Mixed colors of the blue-yellow axis were perceived less often in AD, but more frequently than pure blue (#0000FF). The sequence of colors on Benham's disk followed a complex pattern, different from the order of physical spectral colors and opponent processes-based colors. CONCLUSIONS AD patients retained reduced perception of illusory colors. The perception of pure blue illusory color is almost absent in AD. The asymmetrical shift to the yellow opponent is observed in AD with red prevailing over green constituent. This may indicate cortical rather than retinal impairment.

  15. Gaze stability of observers watching Op Art pictures.

    PubMed

    Zanker, Johannes M; Doyle, Melanie; Robin, Walker

    2003-01-01

    It has been the matter of some debate why we can experience vivid dynamic illusions when looking at static pictures composed from simple black and white patterns. The impression of illusory motion is particularly strong when viewing some of the works of 'Op Artists, such as Bridget Riley's painting Fall. Explanations of the illusory motion have ranged from retinal to cortical mechanisms, and an important role has been attributed to eye movements. To assess the possible contribution of eye movements to the illusory-motion percept we studied the strength of the illusion under different viewing conditions, and analysed the gaze stability of observers viewing the Riley painting and control patterns that do not produce the illusion. Whereas the illusion was reduced, but not abolished, when watching the painting through a pinhole, which reduces the effects of accommodation, it was not perceived in flash afterimages, suggesting an important role for eye movements in generating the illusion for this image. Recordings of eye movements revealed an abundance of small involuntary saccades when looking at the Riley pattern, despite the fact that gaze was kept within the dedicated fixation region. The frequency and particular characteristics of these rapid eye movements can vary considerably between different observers, but, although there was a tendency for gaze stability to deteriorate while viewing a Riley painting, there was no significant difference in saccade frequency between the stimulus and control patterns. Theoretical considerations indicate that such small image displacements can generate patterns of motion signals in a motion-detector network, which may serve as a simple and sufficient, but not necessarily exclusive, explanation for the illusion. Why such image displacements lead to perceptual results with a group of Op Art and similar patterns, but remain invisible for other stimuli, is discussed.

  16. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    PubMed Central

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055

  17. Self and world: large scale installations at science museums.

    PubMed

    Shimojo, Shinsuke

    2008-01-01

    This paper describes three examples of illusion installation in a science museum environment from the author's collaboration with the artist and architect. The installations amplify the illusory effects, such as vection (visually-induced sensation of self motion) and motion-induced blindness, to emphasize that perception is not just to obtain structure and features of objects, but rather to grasp the dynamic relationship between the self and the world. Scaling up the size and utilizing the live human body turned out to be keys for installations with higher emotional impact.

  18. Optimal combination of illusory and luminance-defined 3-D surfaces: A role for ambiguity.

    PubMed

    Hartle, Brittney; Wilcox, Laurie M; Murray, Richard F

    2018-04-01

    The shape of the illusory surface in stereoscopic Kanizsa figures is determined by the interpolation of depth from the luminance edges of adjacent inducing elements. Despite ambiguity in the position of illusory boundaries, observers reliably perceive a coherent three-dimensional (3-D) surface. However, this ambiguity may contribute additional uncertainty to the depth percept beyond what is expected from measurement noise alone. We evaluated the intrinsic ambiguity of illusory boundaries by using a cue-combination paradigm to measure the reliability of depth percepts elicited by stereoscopic illusory surfaces. We assessed the accuracy and precision of depth percepts using 3-D Kanizsa figures relative to luminance-defined surfaces. The location of the surface peak was defined by illusory boundaries, luminance-defined edges, or both. Accuracy and precision were assessed using a depth-discrimination paradigm. A maximum likelihood linear cue combination model was used to evaluate the relative contribution of illusory and luminance-defined signals to the perceived depth of the combined surface. Our analysis showed that the standard deviation of depth estimates was consistent with an optimal cue combination model, but the points of subjective equality indicated that observers consistently underweighted the contribution of illusory boundaries. This systematic underweighting may reflect a combination rule that attributes additional intrinsic ambiguity to the location of the illusory boundary. Although previous studies show that illusory and luminance-defined contours share many perceptual similarities, our model suggests that ambiguity plays a larger role in the perceptual representation of illusory contours than of luminance-defined contours.

  19. Perception of Fechner Illusory Colors in Alzheimer Disease Patients

    PubMed Central

    Kaubrys, Gintaras; Bukina, Vera; Bingelytė, Ieva; Taluntis, Vladas

    2016-01-01

    Background Alzheimer disease (AD) primarily affects cognition. A variety of visual disorders was established in AD. Fechner illusory colors are produced by a rotating disk with a black and white pattern. The purpose of our research was to explore the perception of illusory colors in AD. Material/Methods W recruited 40 AD patients (MMSE ≥14) and 40 normal controls (CG group) matched by age, education, gender in this prospective, cross-sectional, case-control study. An achromatic Benham’s disk attached to a device to control the speed and direction of rotation was used to produce illusory colors. Primary, secondary, and tertiary RGB system colors were used for matching of illusory and physical colors. Results Subjects in the AD group perceived less illusory colors in 5 arcs (p<0.05) of the 8 arcs assessed. The biggest difference was found between AD and CG groups for pure blue (χ2=26.87, p<0.001 clockwise, χ2=22.75, p<0.001 counter-clockwise). Groups did not differ in perception of pure yellow opponent colors (p>0.05). Mixed colors of the blue-yellow axis were perceived less often in AD, but more frequently than pure blue (#0000FF). The sequence of colors on Benham’s disk followed a complex pattern, different from the order of physical spectral colors and opponent processes-based colors. Conclusions AD patients retained reduced perception of illusory colors. The perception of pure blue illusory color is almost absent in AD. The asymmetrical shift to the yellow opponent is observed in AD with red prevailing over green constituent. This may indicate cortical rather than retinal impairment. PMID:27902677

  20. Critical role of foreground stimuli in perceiving visually induced self-motion (vection).

    PubMed

    Nakamura, S; Shimojo, S

    1999-01-01

    The effects of a foreground stimulus on vection (illusory perception of self-motion induced by a moving background stimulus) were examined in two experiments. The experiments reveal that the presentation of a foreground pattern with a moving background stimulus may affect vection. The foreground stimulus facilitated vection strength when it remained stationary or moved slowly in the opposite direction to that of the background stimulus. On the other hand, there was a strong inhibition of vection when the foreground stimulus moved slowly with, or quickly against, the background. These results suggest that foreground stimuli, as well as background stimuli, play an important role in perceiving self-motion.

  1. The influence of visual motion on interceptive actions and perception.

    PubMed

    Marinovic, Welber; Plooy, Annaliese M; Arnold, Derek H

    2012-05-01

    Visual information is an essential guide when interacting with moving objects, yet it can also be deceiving. For instance, motion can induce illusory position shifts, such that a moving ball can seem to have bounced past its true point of contact with the ground. Some evidence suggests illusory motion-induced position shifts bias pointing tasks to a greater extent than they do perceptual judgments. This, however, appears at odds with other findings and with our success when intercepting moving objects. Here we examined the accuracy of interceptive movements and of perceptual judgments in relation to simulated bounces. Participants were asked to intercept a moving disc at its bounce location by positioning a virtual paddle, and then to report where the disc had landed. Results showed that interceptive actions were accurate whereas perceptual judgments were inaccurate, biased in the direction of motion. Successful interceptions necessitated accurate information concerning both the location and timing of the bounce, so motor planning evidently had privileged access to an accurate forward model of bounce timing and location. This would explain why people can be accurate when intercepting a moving object, but lack insight into the accurate information that had guided their actions when asked to make a perceptual judgment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Changes in apparent body orientation and sensory localization induced by vibration of postural muscles - Vibratory myesthetic illusions

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Levine, M. S.

    1979-01-01

    Human experiments are carried out which support the observation of Goodwin (1973) and Goodwin et al. (1972) that vibration of skeletal muscles can elicit illusory limb motion. These experiments extend the class of possible myesthetic illusions by showing that vibration of the appropriate muscles can produce illusory body motion in nearly any desired direction. Such illusory changes in posture occur only when visual information about body orientation is absent; these changes in apparent posture are sometimes accompanied by a slow-phase nystagmus that compensates for the direction of apparent body motion. During illusory body motion a stationary target light that is fixated will appear to move with the body at the same apparent velocity. However, this pattern of apparent body motion and conjoint visual - defined as propriogyral illusion - is suppressed if the subject is in a fully illuminated environment providing cues about true body orientation. Persuasive evidence is thus provided for the contribution of both muscle afferent and touch-pressure information to the supraspinal mechanisms that determine apparent orientation on the basis of ongoing patterns of interoceptive and exteroceptive activity.

  3. Alternative mode of presentation of Kanizsa figures sheds new light on the chronometry of the mechanisms underlying the perception of illusory figures.

    PubMed

    Brodeur, M; Lepore, F; Lepage, M; Bacon, B A; Jemel, B; Debruille, J B

    2008-01-31

    The mechanisms responsible for the perception of illusory modal figures are usually studied by presenting entire Kanizsa figures at stimulus onset. However, with this mode of presentation, the brain activity generated by the inducers (the 'pacmen') is difficult to differentiate from the activity underlying the perception of the illusory figure. Therefore, in addition to this usual presentation mode, we used an alternative presentation mode. Inducer disks remained permanently on the screen and the illusory figure was induced by just removing the notches from the disks. The results support the heuristic value of this alternative mode of presentation. The P1 deflection of the visual evoked potentials (VEPs) was found to be greater for the illusory modal figure than for its control and for an amodal figure. This modulation is one of the earliest direct evidences for a low-level processing of illusory forms in the human brain. Meanwhile, larger N1s were obtained for the control figures than for the illusory figures in the notch mode of presentation. While this new type of N1 modulation could shed some light on the stage of processing indexed by this deflection, several propositions are put forward to account for the P1 and N1 variations found.

  4. Perceptual Stability of the Lissajous Figure Is Modulated by the Speed of Illusory Rotation.

    PubMed

    Weilnhammer, Veith A; Sterzer, Philipp; Hesselmann, Guido

    2016-01-01

    Lissajous figures represent ambiguous structure-from-motion stimuli rotating in depth and have proven to be a versatile tool to explore the cognitive and neural mechanisms underlying bistable perception. They are generated by the intersection of two sinusoids with perpendicular axes and increasing phase-shift whose frequency determines the speed of illusory 3D rotation. Recently, we found that Lissajous figures of higher shifting frequencies elicited longer perceptual phase durations and tentatively proposed a "representational momentum" account. In this study, our aim was twofold. First, we aimed to gather more behavioral evidence related to the perceptual dynamics of the Lissajous figure by simultaneously varying its shifting frequency and size. Using a conventional analysis, we investigated the effects of our experimental manipulations on transition probability (i.e., the probability that the current percept will change at the next critical stimulus configuration). Second, we sought to test the impact of our experimental factors on the occurrence of transitions in bistable perception by means of a Bayesian approach that can be used to directly quantify the impact of contextual cues on perceptual stability. We thereby estimated the implicit prediction of perceptual stability and how it is modulated by experimental manipulations.

  5. Perceptual Stability of the Lissajous Figure Is Modulated by the Speed of Illusory Rotation

    PubMed Central

    Weilnhammer, Veith A.; Sterzer, Philipp; Hesselmann, Guido

    2016-01-01

    Lissajous figures represent ambiguous structure-from-motion stimuli rotating in depth and have proven to be a versatile tool to explore the cognitive and neural mechanisms underlying bistable perception. They are generated by the intersection of two sinusoids with perpendicular axes and increasing phase-shift whose frequency determines the speed of illusory 3D rotation. Recently, we found that Lissajous figures of higher shifting frequencies elicited longer perceptual phase durations and tentatively proposed a “representational momentum” account. In this study, our aim was twofold. First, we aimed to gather more behavioral evidence related to the perceptual dynamics of the Lissajous figure by simultaneously varying its shifting frequency and size. Using a conventional analysis, we investigated the effects of our experimental manipulations on transition probability (i.e., the probability that the current percept will change at the next critical stimulus configuration). Second, we sought to test the impact of our experimental factors on the occurrence of transitions in bistable perception by means of a Bayesian approach that can be used to directly quantify the impact of contextual cues on perceptual stability. We thereby estimated the implicit prediction of perceptual stability and how it is modulated by experimental manipulations. PMID:27560958

  6. Neural Representation of Scale Illusion: Magnetoencephalographic Study on the Auditory Illusion Induced by Distinctive Tone Sequences in the Two Ears

    PubMed Central

    Kuriki, Shinya; Yokosawa, Koichi; Takahashi, Makoto

    2013-01-01

    The auditory illusory perception “scale illusion” occurs when a tone of ascending scale is presented in one ear, a tone of descending scale is presented simultaneously in the other ear, and vice versa. Most listeners hear illusory percepts of smooth pitch contours of the higher half of the scale in the right ear and the lower half in the left ear. Little is known about neural processes underlying the scale illusion. In this magnetoencephalographic study, we recorded steady-state responses to amplitude-modulated short tones having illusion-inducing pitch sequences, where the sound level of the modulated tones was manipulated to decrease monotonically with increase in pitch. The steady-state responses were decomposed into right- and left-sound components by means of separate modulation frequencies. It was found that the time course of the magnitude of response components of illusion-perceiving listeners was significantly correlated with smooth pitch contour of illusory percepts and that the time course of response components of stimulus-perceiving listeners was significantly correlated with discontinuous pitch contour of stimulus percepts in addition to the contour of illusory percepts. The results suggest that the percept of illusory pitch sequence was represented in the neural activity in or near the primary auditory cortex, i.e., the site of generation of auditory steady-state response, and that perception of scale illusion is maintained by automatic low-level processing. PMID:24086676

  7. The spiral aftereffect : influence of stimulus size and viewing distance on the duration of illusory motion.

    DOT National Transportation Integrated Search

    1968-05-01

    The study examined some effects of stimulus size and distance on the persistence of one type of illusory motion, viz., the spiral aftereffect (SAE). Duration of SAE was investigated with stimuli of 2, 4, 8, 12, and 16 inches in diameter. The distance...

  8. Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects

    PubMed Central

    Ma, Zheng; Watamaniuk, Scott N. J.; Heinen, Stephen J.

    2017-01-01

    When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and then centers the eyes on it during pursuit as a foveation mechanism might. Alternatively, the brain merely matches the velocity by motion integration. We test these alternatives with an illusory motion stimulus that translates at a speed different from its retinal motion. The stimulus was a Gabor array that translated at a fixed velocity, with component Gabors that drifted with motion consistent or inconsistent with the translation. Velocity matching predicts different pursuit behaviors across drift conditions, while centroid matching predicts no difference. We also tested whether pursuit can segregate and ignore irrelevant local drifts when motion and centroid information are consistent by surrounding the Gabors with solid frames. Finally, observers judged the global translational speed of the Gabors to determine whether smooth pursuit and motion perception share mechanisms. We found that consistent Gabor motion enhanced pursuit gain while inconsistent, opposite motion diminished it, drawing the eyes away from the center of the stimulus and supporting a motion-based pursuit drive. Catch-up saccades tended to counter the position offset, directing the eyes opposite to the deviation caused by the pursuit gain change. Surrounding the Gabors with visible frames canceled both the gain increase and the compensatory saccades. Perceived speed was modulated analogous to pursuit gain. The results suggest that smooth pursuit of large stimuli depends on the magnitude of integrated retinal motion information, not its retinal location, and that the position system might be unnecessary for generating smooth velocity to large pursuit targets. PMID:29090315

  9. Mechanisms underlying the perceived angular velocity of a rigidly rotating object.

    PubMed

    Caplovitz, G P; Hsieh, P-J; Tse, P U

    2006-09-01

    The perceived angular velocity of an ellipse undergoing a constant rate of rotation will vary as its aspect ratio is changed. Specifically, a "fat" ellipse with a low aspect ratio will in general be perceived to rotate more slowly than a "thin" ellipse with a higher aspect ratio. Here we investigate this illusory underestimation of angular velocity in the domain where ellipses appear to be rotating rigidly. We characterize the relationship between aspect ratio and perceived angular velocity under luminance and non-luminance-defined conditions. The data are consistent with two hypotheses concerning the construction of rotational motion percepts. The first hypothesis is that perceived angular velocity is determined by low-level component-motion (i.e., motion-energy) signals computed along the ellipse's contour. The second hypothesis is that relative maxima of positive contour curvature are treated as non-component, form-based "trackable features" (TFs) that contribute to the visual system's construction of the motion percept. Our data suggest that perceived angular velocity is driven largely by component signals, but is modulated by the motion signals of trackable features, such as corners and regions of high contour curvature.

  10. Deciding what to see: the role of intention and attention in the perception of apparent motion.

    PubMed

    Kohler, Axel; Haddad, Leila; Singer, Wolf; Muckli, Lars

    2008-03-01

    Apparent motion is an illusory perception of movement that can be induced by alternating presentations of static objects. Already in Wertheimer's early investigation of the phenomenon [Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeitschrift fur Psychologie, 61, 161-265], he mentions that voluntary attention can influence the way in which an ambiguous apparent motion display is perceived. But until now, few studies have investigated how strong the modulation of apparent motion through attention can be under different stimulus and task conditions. We used bistable motion quartets of two different sizes, where the perception of vertical and horizontal motion is equally likely. Eleven observers participated in two experiments. In Experiment 1, participants were instructed to either (a) hold the current movement direction as long as possible, (b) passively view the stimulus, or (c) switch the movement directions as quickly as possible. With the respective instructions, observers could almost double phase durations in (a) and more than halve durations in (c) relative to the passive condition. This modulation effect was stronger for the large quartets. In Experiment 2, observers' attention was diverted from the stimulus by a detection task at fixation while they still had to report their conscious perception. This manipulation prolonged dominance durations for up to 100%. The experiments reveal a high susceptibility of ambiguous apparent motion to attentional modulation. We discuss how feature- and space-based attention mechanisms might contribute to those effects.

  11. A simple integrative method for presenting head-contingent motion parallax and disparity cues on intel x86 processor-based machines.

    PubMed

    Szatmary, J; Hadani, I; Julesz, B

    1997-01-01

    Rogers and Graham (1979) developed a system to show that head-movement-contingent motion parallax produces monocular depth perception in random dot patterns. Their display system comprised an oscilloscope driven by function generators or a special graphics board that triggered the X and Y deflection of the raster scan signal. Replication of this system required costly hardware that is no longer on the market. In this paper the Rogers-Graham method is reproduced with an Intel processor based IBM PC compatible machine with no additional hardware cost. An adapted joystick sampled through the standard game-port can serve as a provisional head-movement sensor. Monitor resolution for displaying motion is effectively enhanced 16 times by the use of anti-aliasing, enabling the display of thousands of random dots in real-time with a refresh rate of 60 Hz or above. A color monitor enables the use of the anaglyph method, thus combining stereoscopic and monocular parallax on a single display without the loss of speed. The power of this system is demonstrated by a psychophysical measurement in which subjects nulled head-movement-contingent illusory parallax, evoked by a static stereogram, with real parallax. The amount of real parallax required to null the illusory stereoscopic parallax monotonically increased with disparity.

  12. Defining the computational structure of the motion detector in Drosophila

    PubMed Central

    Clark, Damon A.; Bursztyn, Limor; Horowitz, Mark; Schnitzer, Mark J.; Clandinin, Thomas R.

    2011-01-01

    SUMMARY Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt Correlator (HRC), relates visual inputs to neural and behavioral responses to motion, but the circuits that implement this computation remain unknown. Using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, “reverse phi”, that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection. PMID:21689602

  13. Connecting the dots: Illusory pattern perception predicts belief in conspiracies and the supernatural

    PubMed Central

    Douglas, Karen M.; De Inocencio, Clara

    2017-01-01

    Abstract A common assumption is that belief in conspiracy theories and supernatural phenomena are grounded in illusory pattern perception. In the present research we systematically tested this assumption. Study 1 revealed that such irrational beliefs are related to perceiving patterns in randomly generated coin toss outcomes. In Study 2, pattern search instructions exerted an indirect effect on irrational beliefs through pattern perception. Study 3 revealed that perceiving patterns in chaotic but not in structured paintings predicted irrational beliefs. In Study 4, we found that agreement with texts supporting paranormal phenomena or conspiracy theories predicted pattern perception. In Study 5, we manipulated belief in a specific conspiracy theory. This manipulation influenced the extent to which people perceive patterns in world events, which in turn predicted unrelated irrational beliefs. We conclude that illusory pattern perception is a central cognitive mechanism accounting for conspiracy theories and supernatural beliefs. PMID:29695889

  14. Connecting the dots: Illusory pattern perception predicts belief in conspiracies and the supernatural.

    PubMed

    van Prooijen, Jan-Willem; Douglas, Karen M; De Inocencio, Clara

    2018-04-01

    A common assumption is that belief in conspiracy theories and supernatural phenomena are grounded in illusory pattern perception. In the present research we systematically tested this assumption. Study 1 revealed that such irrational beliefs are related to perceiving patterns in randomly generated coin toss outcomes. In Study 2, pattern search instructions exerted an indirect effect on irrational beliefs through pattern perception. Study 3 revealed that perceiving patterns in chaotic but not in structured paintings predicted irrational beliefs. In Study 4, we found that agreement with texts supporting paranormal phenomena or conspiracy theories predicted pattern perception. In Study 5, we manipulated belief in a specific conspiracy theory. This manipulation influenced the extent to which people perceive patterns in world events, which in turn predicted unrelated irrational beliefs. We conclude that illusory pattern perception is a central cognitive mechanism accounting for conspiracy theories and supernatural beliefs.

  15. Interocular induction of illusory size perception.

    PubMed

    Song, Chen; Schwarzkopf, D Samuel; Rees, Geraint

    2011-03-11

    The perceived size of objects not only depends on their physical size but also on the surroundings in which they appear. For example, an object surrounded by small items looks larger than a physically identical object surrounded by big items (Ebbinghaus illusion), and a physically identical but distant object looks larger than an object that appears closer in space (Ponzo illusion). Activity in human primary visual cortex (V1) reflects the perceived rather than the physical size of objects, indicating an involvement of V1 in illusory size perception. Here we investigate the role of eye-specific signals in two common size illusions in order to provide further information about the mechanisms underlying illusory size perception. We devised stimuli so that an object and its spatial context associated with illusory size perception could be presented together to one eye or separately to two eyes. We found that the Ponzo illusion had an equivalent magnitude whether the objects and contexts were presented to the same or different eyes, indicating that it may be largely mediated by binocular neurons. In contrast, the Ebbinghaus illusion became much weaker when objects and their contexts were presented to different eyes, indicating important contributions to the illusion from monocular neurons early in the visual pathway. Our findings show that two well-known size illusions - the Ponzo illusion and the Ebbinghaus illusion - are mediated by different neuronal populations, and suggest that the underlying neural mechanisms associated with illusory size perception differ and can be dependent on monocular channels in the early visual pathway.

  16. Do rhesus monkeys (Macaca mulatta) perceive illusory motion?

    PubMed

    Agrillo, Christian; Gori, Simone; Beran, Michael J

    2015-07-01

    During the last decade, visual illusions have been used repeatedly to understand similarities and differences in visual perception of human and non-human animals. However, nearly all studies have focused only on illusions not related to motion perception, and to date, it is unknown whether non-human primates perceive any kind of motion illusion. In the present study, we investigated whether rhesus monkeys (Macaca mulatta) perceived one of the most popular motion illusions in humans, the Rotating Snake illusion (RSI). To this purpose, we set up four experiments. In Experiment 1, subjects initially were trained to discriminate static versus dynamic arrays. Once reaching the learning criterion, they underwent probe trials in which we presented the RSI and a control stimulus identical in overall configuration with the exception that the order of the luminance sequence was changed in a way that no apparent motion is perceived by humans. The overall performance of monkeys indicated that they spontaneously classified RSI as a dynamic array. Subsequently, we tested adult humans in the same task with the aim of directly comparing the performance of human and non-human primates (Experiment 2). In Experiment 3, we found that monkeys can be successfully trained to discriminate between the RSI and a control stimulus. Experiment 4 showed that a simple change in luminance sequence in the two arrays could not explain the performance reported in Experiment 3. These results suggest that some rhesus monkeys display a human-like perception of this motion illusion, raising the possibility that the neurocognitive systems underlying motion perception may be similar between human and non-human primates.

  17. Suppressive and enhancing effects in early visual cortex during illusory shape perception: A comment on.

    PubMed

    Moors, Pieter

    2015-01-01

    In a recent functional magnetic resonance imaging study, Kok and de Lange (2014) observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.

  18. Interocular induction of illusory size perception

    PubMed Central

    2011-01-01

    Background The perceived size of objects not only depends on their physical size but also on the surroundings in which they appear. For example, an object surrounded by small items looks larger than a physically identical object surrounded by big items (Ebbinghaus illusion), and a physically identical but distant object looks larger than an object that appears closer in space (Ponzo illusion). Activity in human primary visual cortex (V1) reflects the perceived rather than the physical size of objects, indicating an involvement of V1 in illusory size perception. Here we investigate the role of eye-specific signals in two common size illusions in order to provide further information about the mechanisms underlying illusory size perception. Results We devised stimuli so that an object and its spatial context associated with illusory size perception could be presented together to one eye or separately to two eyes. We found that the Ponzo illusion had an equivalent magnitude whether the objects and contexts were presented to the same or different eyes, indicating that it may be largely mediated by binocular neurons. In contrast, the Ebbinghaus illusion became much weaker when objects and their contexts were presented to different eyes, indicating important contributions to the illusion from monocular neurons early in the visual pathway. Conclusions Our findings show that two well-known size illusions - the Ponzo illusion and the Ebbinghaus illusion - are mediated by different neuronal populations, and suggest that the underlying neural mechanisms associated with illusory size perception differ and can be dependent on monocular channels in the early visual pathway. PMID:21396093

  19. Extrinsic grouping factors in motion-induced blindness

    PubMed Central

    2018-01-01

    We investigated how various grouping factors altered subjective disappearances of the individual targets in the motion-induced blindness display. The latter relies on a moving mask to render highly salient static targets temporarily subjectively invisible. Specifically, we employed two extrinsic grouping factors, the connectedness and the common region, and examined whether their presence would make targets more resilient against the suppression. In addition, we investigated whether the presence of an illusory Kanizsa triangle would affect the suppression of the inducing Pac-Man elements. We quantified the perceptual dynamics using the proportion of the disappearance time (this indicates whether targets became more resilient against the suppression), and the proportion of simultaneous disappearance and reappearance events (characterizes the tendency for the targets to disappear or reappear as a group). We report that a single mask that encompassed all targets (a common region grouping) significantly increased the proportion of simultaneous disappearance and reappearance events, but had no effect on the proportion of the disappearance time. In contrast, a line that connected two targets significantly decreased the total invisibility time, but had no impact on the simultaneity of the disappearance and reappearance events. We found no statistically significant effect of the presence of the illusory Kanizsa triangle on either measure. Finally, we found no interaction either between the common region and the connectedness or between the common region and the presence of the illusory Kanizsa triangle. Our results indicate that extrinsic grouping factors might influence the perception differently than the intrinsic ones and highlight the importance of using several measures to characterize the perceptual dynamics, as various grouping factors might affect it differentially. PMID:29381747

  20. Illusory bending of a rigidly moving line segment: effects of image motion and smooth pursuit eye movements.

    PubMed

    Thaler, Lore; Todd, James T; Spering, Miriam; Gegenfurtner, Karl R

    2007-04-20

    Four experiments in which observers judged the apparent "rubberiness" of a line segment undergoing different types of rigid motion are reported. The results reveal that observers perceive illusory bending when the motion involves certain combinations of translational and rotational components and that the illusion is maximized when these components are presented at a frequency of approximately 3 Hz with a relative phase angle of approximately 120 degrees . Smooth pursuit eye movements can amplify or attenuate the illusion, which is consistent with other results reported in the literature that show effects of eye movements on perceived image motion. The illusion is unaffected by background motion that is in counterphase with the motion of the line segment but is significantly attenuated by background motion that is in-phase. This is consistent with the idea that human observers integrate motion signals within a local frame of reference, and it provides strong evidence that visual persistency cannot be the sole cause of the illusion as was suggested by J. R. Pomerantz (1983). An analysis of the motion patterns suggests that the illusory bending motion may be due to an inability of observers to accurately track the motions of features whose image displacements undergo rapid simultaneous changes in both space and time. A measure of these changes is presented, which is highly correlated with observers' numerical ratings of rubberiness.

  1. Whole-Motion Model of Perception during Forward- and Backward-Facing Centrifuge Runs

    PubMed Central

    Holly, Jan E.; Vrublevskis, Arturs; Carlson, Lindsay E.

    2009-01-01

    Illusory perceptions of motion and orientation arise during human centrifuge runs without vision. Asymmetries have been found between acceleration and deceleration, and between forward-facing and backward-facing runs. Perceived roll tilt has been studied extensively during upright fixed-carriage centrifuge runs, and other components have been studied to a lesser extent. Certain, but not all, perceptual asymmetries in acceleration-vs-deceleration and forward-vs-backward motion can be explained by existing analyses. The immediate acceleration-deceleration roll-tilt asymmetry can be explained by the three-dimensional physics of the external stimulus; in addition, longer-term data has been modeled in a standard way using physiological time constants. However, the standard modeling approach is shown in the present research to predict forward-vs-backward-facing symmetry in perceived roll tilt, contradicting experimental data, and to predict perceived sideways motion, rather than forward or backward motion, around a curve. The present work develops a different whole-motion-based model taking into account the three-dimensional form of perceived motion and orientation. This model predicts perceived forward or backward motion around a curve, and predicts additional asymmetries such as the forward-backward difference in roll tilt. This model is based upon many of the same principles as the standard model, but includes an additional concept of familiarity of motions as a whole. PMID:19208962

  2. Adapted physical activity programme and self-perception in obese adolescents with intellectual disability: between morphological awareness and positive illusory bias.

    PubMed

    Salaun, Laureline; Reynes, Eric; Berthouze-Aranda, Sophie E

    2014-03-01

    In adolescent with intellectual disability, the management of obesity is a crucial issue, yet also quite complex because of their particular perception of themselves. This study investigated the relationship between self-perception variables and morphological variables and their changes after a 9-month Adapted Physical Activity (APA) programme. Twenty-three adolescents with intellectual disability responded to an adapted questionnaire, including the PSI-VSF-ID and a nine-drawing body silhouette scale. Anthropometric and body composition indicators were measured before and after the APA programme. The main predictor of the adolescents' self-perceptions was the inclination towards positive illusory bias before the intervention; obesity awareness ranked second. Morphological measurements did not contribute in the same way to self-perceptions in the initial and final data. This study confirms the interest of weight management programmes for adolescents with intellectual disability and points to the need to take positive illusory bias more fully into account in the study of self-perception. © 2013 John Wiley & Sons Ltd.

  3. Defining the computational structure of the motion detector in Drosophila.

    PubMed

    Clark, Damon A; Bursztyn, Limor; Horowitz, Mark A; Schnitzer, Mark J; Clandinin, Thomas R

    2011-06-23

    Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt correlator (HRC), relates visual inputs to neural activity and behavioral responses to motion, but the circuits that implement this computation remain unknown. By using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, "reverse phi," that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Space flight and neurovestibular adaptation

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.

    1994-01-01

    Space flight represents a form of sensory stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment.

  5. Filling-in visual motion with sounds.

    PubMed

    Väljamäe, A; Soto-Faraco, S

    2008-10-01

    Information about the motion of objects can be extracted by multiple sensory modalities, and, as a consequence, object motion perception typically involves the integration of multi-sensory information. Often, in naturalistic settings, the flow of such information can be rather discontinuous (e.g. a cat racing through the furniture in a cluttered room is partly seen and partly heard). This study addressed audio-visual interactions in the perception of time-sampled object motion by measuring adaptation after-effects. We found significant auditory after-effects following adaptation to unisensory auditory and visual motion in depth, sampled at 12.5 Hz. The visually induced (cross-modal) auditory motion after-effect was eliminated if visual adaptors flashed at half of the rate (6.25 Hz). Remarkably, the addition of the high-rate acoustic flutter (12.5 Hz) to this ineffective, sparsely time-sampled, visual adaptor restored the auditory after-effect to a level comparable to what was seen with high-rate bimodal adaptors (flashes and beeps). Our results suggest that this auditory-induced reinstatement of the motion after-effect from the poor visual signals resulted from the occurrence of sound-induced illusory flashes. This effect was found to be dependent both on the directional congruency between modalities and on the rate of auditory flutter. The auditory filling-in of time-sampled visual motion supports the feasibility of using reduced frame rate visual content in multisensory broadcasting and virtual reality applications.

  6. Parietal cortex mediates perceptual Gestalt grouping independent of stimulus size.

    PubMed

    Grassi, Pablo R; Zaretskaya, Natalia; Bartels, Andreas

    2016-06-01

    The integration of local moving elements into a unified gestalt percept has previously been linked to the posterior parietal cortex. There are two possible interpretations for the lack of involvement of other occipital regions. The first is that parietal cortex is indeed uniquely functionally specialized to perform grouping. Another possibility is that other visual regions can perform grouping as well, but that the large spatial separation of the local elements used previously exceeded their neurons' receptive field (RF) sizes, preventing their involvement. In this study we distinguished between these two alternatives. We measured whole-brain activity using fMRI in response to a bistable motion illusion that induced mutually exclusive percepts of either an illusory global Gestalt or of local elements. The stimulus was presented in two sizes, a large version known to activate IPS only, and a version sufficiently small to fit into the RFs of mid-level dorsal regions such as V5/MT. We found that none of the separately localized motion regions apart from parietal cortex showed a preference for global Gestalt perception, even for the smaller version of the stimulus. This outcome suggests that grouping-by-motion is mediated by a specialized size-invariant mechanism with parietal cortex as its anatomical substrate. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. On the Reality of Illusory Conjunctions.

    PubMed

    Botella, Juan; Suero, Manuel; Durán, Juan I

    2017-01-01

    The reality of illusory conjunctions in perception has been sometimes questioned, arguing that they can be explained by other mechanisms. Most relevant experiments are based on migrations along the space dimension. But the low rate of illusory conjunctions along space can easily hide them among other types of errors. As migrations over time are a more frequent phenomenon, illusory conjunctions can be disentangled from other errors. We report an experiment in which series of colored letters were presented in several spatial locations, allowing for migrations over both space and time. The distribution of frequencies were fit by several multinomial tree models based on alternative hypothesis about illusory conjunctions and the potential sources of free-floating features. The best-fit model acknowledges that most illusory conjunctions are migrations in the time domain. Migrations in space are probably present, but the rate is very low. Other conjunction errors, as those produced by guessing or miscategorizations of the to-be-reported feature, are also present in the experiment. The main conclusion is that illusory conjunctions do exist.

  8. Space flight and changes in spatial orientation

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.

    1992-01-01

    From a sensory point of view, space flight represents a form of stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment. Appropriate countermeasures for long-duration flights will rely on preflight adaptation and in-flight training.

  9. Stronger vection in junior high school children than in adults.

    PubMed

    Shirai, Nobu; Imura, Tomoko; Tamura, Rio; Seno, Takeharu

    2014-01-01

    Previous studies have shown that even elementary school-aged children (7 and 11 years old) experience visually induced perception of illusory self-motion (vection) (Lepecq et al., 1995, Perception, 24, 435-449) and that children of a similar age (mean age = 9.2 years) experience more rapid and stronger vection than do adults (Shirai et al., 2012, Perception, 41, 1399-1402). These findings imply that although elementary school-aged children experience vection, this ability is subject to further development. To examine the subsequent development of vection, we compared junior high school students' (N = 11, mean age = 14.4 years) and adults' (N = 10, mean age = 22.2 years) experiences of vection. Junior high school students reported significantly stronger vection than did adults, suggesting that the perceptual experience of junior high school students differs from that of adults with regard to vection and that this ability undergoes gradual changes over a relatively long period of development.

  10. Late electrophysiological modulations of feature-based attention to object shapes.

    PubMed

    Stojanoski, Bobby Boge; Niemeier, Matthias

    2014-03-01

    Feature-based attention has been shown to aid object perception. Our previous ERP effects revealed temporally late feature-based modulation in response to objects relative to motion. The aim of the current study was to confirm the timing of feature-based influences on object perception while cueing within the feature dimension of shape. Participants were told to expect either "pillow" or "flower" objects embedded among random white and black lines. Participants more accurately reported the object's main color for valid compared to invalid shapes. ERPs revealed modulation from 252-502 ms, from occipital to frontal electrodes. Our results are consistent with previous findings examining the time course for processing similar stimuli (illusory contours). Our results provide novel insights into how attending to features of higher complexity aids object perception presumably via feed-forward and feedback mechanisms along the visual hierarchy. Copyright © 2014 Society for Psychophysiological Research.

  11. Second-order motions contribute to vection.

    PubMed

    Gurnsey, R; Fleet, D; Potechin, C

    1998-09-01

    First- and second-order motions differ in their ability to induce motion aftereffects (MAEs) and the kinetic depth effect (KDE). To test whether second-order stimuli support computations relating to motion-in-depth we examined the vection illusion (illusory self motion induced by image flow) using a vection stimulus (V, expanding concentric rings) that depicted a linear path through a circular tunnel. The set of vection stimuli contained differing amounts of first- and second-order motion energy (ME). Subjects reported the duration of the perceived MAEs and the duration of their vection percept. In Experiment 1 both MAEs and vection durations were longest when the first-order (Fourier) components of V were present in the stimulus. In Experiment 2, V was multiplicatively combined with static noise carriers having different check sizes. The amount of first-order ME associated with V increases with check size. MAEs were found to increase with check size but vection durations were unaffected. In general MAEs depend on the amount of first-order ME present in the signal. Vection, on the other hand, appears to depend on a representation of image flow that combines first- and second-order ME.

  12. Mismatch negativity evoked by the McGurk-MacDonald effect: a phonetic representation within short-term memory.

    PubMed

    Colin, C; Radeau, M; Soquet, A; Demolin, D; Colin, F; Deltenre, P

    2002-04-01

    The McGurk-MacDonald illusory percept is obtained by dubbing an incongruent articulatory movement on an auditory phoneme. This type of audiovisual speech perception contributes to the assessment of theories of speech perception. The mismatch negativity (MMN) reflects the detection of a deviant stimulus within the auditory short-term memory and besides an acoustic component, possesses, under certain conditions, a phonetic one. The present study assessed the existence of an MMN evoked by McGurk-MacDonald percepts elicited by audiovisual stimuli with constant auditory components. Cortical evoked potentials were recorded using the oddball paradigm on 8 adults in 3 experimental conditions: auditory alone, visual alone and audiovisual stimulation. Obtaining illusory percepts was confirmed in an additional psychophysical condition. The auditory deviant syllables and the audiovisual incongruent syllables elicited a significant MMN at Fz. In the visual condition, no negativity was observed either at Fz, or at O(z). An MMN can be evoked by visual articulatory deviants, provided they are presented in a suitable auditory context leading to a phonetically significant interaction. The recording of an MMN elicited by illusory McGurk percepts suggests that audiovisual integration mechanisms in speech take place rather early during the perceptual processes.

  13. Motion parallax in immersive cylindrical display systems

    NASA Astrophysics Data System (ADS)

    Filliard, N.; Reymond, G.; Kemeny, A.; Berthoz, A.

    2012-03-01

    Motion parallax is a crucial visual cue produced by translations of the observer for the perception of depth and selfmotion. Therefore, tracking the observer viewpoint has become inevitable in immersive virtual (VR) reality systems (cylindrical screens, CAVE, head mounted displays) used e.g. in automotive industry (style reviews, architecture design, ergonomics studies) or in scientific studies of visual perception. The perception of a stable and rigid world requires that this visual cue be coherent with other extra-retinal (e.g. vestibular, kinesthetic) cues signaling ego-motion. Although world stability is never questioned in real world, rendering head coupled viewpoint in VR can lead to the perception of an illusory perception of unstable environments, unless a non-unity scale factor is applied on recorded head movements. Besides, cylindrical screens are usually used with static observers due to image distortions when rendering image for viewpoints different from a sweet spot. We developed a technique to compensate in real-time these non-linear visual distortions, in an industrial VR setup, based on a cylindrical screen projection system. Additionally, to evaluate the amount of discrepancies tolerated without perceptual distortions between visual and extraretinal cues, a "motion parallax gain" between the velocity of the observer's head and that of the virtual camera was introduced in this system. The influence of this artificial gain was measured on the gait stability of free-standing participants. Results indicate that, below unity, gains significantly alter postural control. Conversely, the influence of higher gains remains limited, suggesting a certain tolerance of observers to these conditions. Parallax gain amplification is therefore proposed as a possible solution to provide a wider exploration of space to users of immersive virtual reality systems.

  14. Betting on Illusory Patterns: Probability Matching in Habitual Gamblers.

    PubMed

    Gaissmaier, Wolfgang; Wilke, Andreas; Scheibehenne, Benjamin; McCanney, Paige; Barrett, H Clark

    2016-03-01

    Why do people gamble? A large body of research suggests that cognitive distortions play an important role in pathological gambling. Many of these distortions are specific cases of a more general misperception of randomness, specifically of an illusory perception of patterns in random sequences. In this article, we provide further evidence for the assumption that gamblers are particularly prone to perceiving illusory patterns. In particular, we compared habitual gamblers to a matched sample of community members with regard to how much they exhibit the choice anomaly 'probability matching'. Probability matching describes the tendency to match response proportions to outcome probabilities when predicting binary outcomes. It leads to a lower expected accuracy than the maximizing strategy of predicting the most likely event on each trial. Previous research has shown that an illusory perception of patterns in random sequences fuels probability matching. So does impulsivity, which is also reported to be higher in gamblers. We therefore hypothesized that gamblers will exhibit more probability matching than non-gamblers, which was confirmed in a controlled laboratory experiment. Additionally, gamblers scored much lower than community members on the cognitive reflection task, which indicates higher impulsivity. This difference could account for the difference in probability matching between the samples. These results suggest that gamblers are more willing to bet impulsively on perceived illusory patterns.

  15. Dynamic Network Communication in the Human Functional Connectome Predicts Perceptual Variability in Visual Illusion.

    PubMed

    Wang, Zhiwei; Zeljic, Kristina; Jiang, Qinying; Gu, Yong; Wang, Wei; Wang, Zheng

    2018-01-01

    Ubiquitous variability between individuals in visual perception is difficult to standardize and has thus essentially been ignored. Here we construct a quantitative psychophysical measure of illusory rotary motion based on the Pinna-Brelstaff figure (PBF) in 73 healthy volunteers and investigate the neural circuit mechanisms underlying perceptual variation using functional magnetic resonance imaging (fMRI). We acquired fMRI data from a subset of 42 subjects during spontaneous and 3 stimulus conditions: expanding PBF, expanding modified-PBF (illusion-free) and expanding modified-PBF with physical rotation. Brain-wide graph analysis of stimulus-evoked functional connectivity patterns yielded a functionally segregated architecture containing 3 discrete hierarchical networks, commonly shared between rest and stimulation conditions. Strikingly, communication efficiency and strength between 2 networks predominantly located in visual areas robustly predicted individual perceptual differences solely in the illusory stimulus condition. These unprecedented findings demonstrate that stimulus-dependent, not spontaneous, dynamic functional integration between distributed brain networks contributes to perceptual variability in humans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Provides instructions for constructing a "Heath Robinson compass" and describes activities/demonstrations focusing on energy waves, opposing forces, illusory motion with paper movies, and motion of vessels in air and in water. (JN)

  17. Hearing Lips and Seeing Voices: How Cortical Areas Supporting Speech Production Mediate Audiovisual Speech Perception

    PubMed Central

    Skipper, Jeremy I.; van Wassenhove, Virginie; Nusbaum, Howard C.; Small, Steven L.

    2009-01-01

    Observing a speaker’s mouth profoundly influences speech perception. For example, listeners perceive an “illusory” “ta” when the video of a face producing /ka/ is dubbed onto an audio /pa/. Here, we show how cortical areas supporting speech production mediate this illusory percept and audiovisual (AV) speech perception more generally. Specifically, cortical activity during AV speech perception occurs in many of the same areas that are active during speech production. We find that different perceptions of the same syllable and the perception of different syllables are associated with different distributions of activity in frontal motor areas involved in speech production. Activity patterns in these frontal motor areas resulting from the illusory “ta” percept are more similar to the activity patterns evoked by AV/ta/ than they are to patterns evoked by AV/pa/ or AV/ka/. In contrast to the activity in frontal motor areas, stimulus-evoked activity for the illusory “ta” in auditory and somatosensory areas and visual areas initially resembles activity evoked by AV/pa/ and AV/ka/, respectively. Ultimately, though, activity in these regions comes to resemble activity evoked by AV/ta/. Together, these results suggest that AV speech elicits in the listener a motor plan for the production of the phoneme that the speaker might have been attempting to produce, and that feedback in the form of efference copy from the motor system ultimately influences the phonetic interpretation. PMID:17218482

  18. The role of alpha oscillations for illusory perception

    PubMed Central

    Lange, Joachim; Keil, Julian; Schnitzler, Alfons; van Dijk, Hanneke; Weisz, Nathan

    2014-01-01

    Alpha oscillations are a prominent electrophysiological signal measured across a wide range of species and cortical and subcortical sites. Alpha oscillations have been viewed for a long time as an “idling” rhythm, purely reflecting inactive sites. Despite earlier evidence from neurophysiology, awareness that alpha oscillations can substantially influence perception and behavior has grown only recently in cognitive neuroscience. Evidence for an active role of alpha for perception comes mainly from several visual, near-threshold experiments. In the current review, we extend this view by summarizing studies showing how alpha-defined brain states relate to illusory perception, i.e. cases of perceptual reports that are not “objectively” verifiable by distinct stimuli or stimulus features. These studies demonstrate that ongoing or prestimulus alpha oscillations substantially influence the perception of auditory, visual or multisensory illusions. PMID:24931795

  19. Brief Report: Atypical Neuromagnetic Responses to Illusory Auditory Pitch in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Brock, Jon; Bzishvili, Samantha; Reid, Melanie; Hautus, Michael; Johnson, Blake W.

    2013-01-01

    Atypical auditory perception is a widely recognised but poorly understood feature of autism. In the current study, we used magnetoencephalography to measure the brain responses of 10 autistic children as they listened passively to dichotic pitch stimuli, in which an illusory tone is generated by sub-millisecond inter-aural timing differences in…

  20. A comparison of colour, shape, and flash induced illusory line motion.

    PubMed

    Hamm, Jeff P

    2017-04-01

    When a bar suddenly appears between two boxes, the bar will appear to shoot away from the box that matches it in colour or in shape-a phenomenon referred to as attribute priming of illusory line motion (ILM; colour ILM and shape ILM, respectively). If the two boxes are identical, ILM will still occur away from a box if it changes luminance shortly before the presentation of the bar ( flash ILM). This flash condition has been suggested to produce the illusory motion due to the formation of an attentional gradient surrounding the flashed location. However, colour ILM and shape ILM cannot be explained by an attentional gradient as there is no way for attention to select the matching box prior to the presentation of the bar. These findings challenge the attentional gradient explanation for ILM, but only if it is assumed that ILM arises for the same underlying reason. Two experiments are presented that address the question of whether or not flash ILM is the same as colour ILM or shape ILM. The results suggest that while colour ILM and shape ILM reflect a common illusion, flash ILM arises for a different reason. Therefore, the attentional gradient explanation for flash ILM is not refuted by the occurrence of colour ILM or shape ILM, which may reflect transformational apparent motion (TAM).

  1. Displacement of location in illusory line motion.

    PubMed

    Hubbard, Timothy L; Ruppel, Susan E

    2013-05-01

    Six experiments examined displacement in memory for the location of the line in illusory line motion (ILM; appearance or disappearance of a stationary cue is followed by appearance of a stationary line that is presented all at once, but the stationary line is perceived to "unfold" or "be drawn" from the end closest to the cue to the end most distant from the cue). If ILM was induced by having a single cue appear, then memory for the location of the line was displaced toward the cue, and displacement was larger if the line was closer to the cue. If ILM was induced by having one of two previously visible cues vanish, then memory for the location of the line was displaced away from the cue that vanished. In general, the magnitude of displacement increased and then decreased as retention interval increased from 50 to 250 ms and from 250 to 450 ms, respectively. Displacement of the line (a) is consistent with a combination of a spatial averaging of the locations of the cue and the line with a relatively weaker dynamic in the direction of illusory motion, (b) might be implemented in a spreading activation network similar to networks previously suggested to implement displacement resulting from implied or apparent motion, and (c) provides constraints and challenges for theories of ILM.

  2. Gestalt perception modulates early visual processing.

    PubMed

    Herrmann, C S; Bosch, V

    2001-04-17

    We examined whether early visual processing reflects perceptual properties of a stimulus in addition to physical features. We recorded event-related potentials (ERPs) of 13 subjects in a visual classification task. We used four different stimuli which were all composed of four identical elements. One of the stimuli constituted an illusory Kanizsa square, another was composed of the same number of collinear line segments but the elements did not form a Gestalt. In addition, a target and a control stimulus were used which were arranged differently. These stimuli allow us to differentiate the processing of colinear line elements (stimulus features) and illusory figures (perceptual properties). The visual N170 in response to the illusory figure was significantly larger as compared to the other collinear stimulus. This is taken to indicate that the visual N170 reflects cognitive processes of Gestalt perception in addition to attentional processes and physical stimulus properties.

  3. The specificity of cortical region KO to depth structure.

    PubMed

    Tyler, Christopher W; Likova, Lora T; Kontsevich, Leonid L; Wade, Alex R

    2006-03-01

    Functional MRI studies have identified a cortical region designated as KO between retinotopic areas V3A/B and motion area V5 in human cortex as particularly responsive to motion-defined or kinetic borders. To determine the response of the KO region to more general aspects of structure, we used stereoscopic depth borders and disparate planes with no borders, together with three stimulus types that evoked no depth percept: luminance borders, line contours and illusory phase borders. Responses to these stimuli in the KO region were compared with the responses in retinotopically defined areas that have been variously associated with disparity processing in neurophysiological and fMRI studies. The strongest responses in the KO region were to stimuli evoking perceived depth structure from either disparity or motion cues, but it showed negligible responses either to luminance-based contour stimuli or to edgeless disparity stimuli. We conclude that the region designated as KO is best regarded as a primary center for the generic representation of depth structure rather than any kind of contour specificity.

  4. Stronger vection in junior high school children than in adults

    PubMed Central

    Shirai, Nobu; Imura, Tomoko; Tamura, Rio; Seno, Takeharu

    2014-01-01

    Previous studies have shown that even elementary school-aged children (7 and 11 years old) experience visually induced perception of illusory self-motion (vection) (Lepecq et al., 1995, Perception, 24, 435–449) and that children of a similar age (mean age = 9.2 years) experience more rapid and stronger vection than do adults (Shirai et al., 2012, Perception, 41, 1399–1402). These findings imply that although elementary school-aged children experience vection, this ability is subject to further development. To examine the subsequent development of vection, we compared junior high school students' (N = 11, mean age = 14.4 years) and adults' (N = 10, mean age = 22.2 years) experiences of vection. Junior high school students reported significantly stronger vection than did adults, suggesting that the perceptual experience of junior high school students differs from that of adults with regard to vection and that this ability undergoes gradual changes over a relatively long period of development. PMID:24971067

  5. Stimulus meanings alter illusory self-motion (vection)--experimental examination of the train illusion.

    PubMed

    Seno, Takeharu; Fukuda, Haruaki

    2012-01-01

    Over the last 100 years, numerous studies have examined the effective visual stimulus properties for inducing illusory self-motion (known as vection). This vection is often experienced more strongly in daily life than under controlled experimental conditions. One well-known example of vection in real life is the so-called 'train illusion'. In the present study, we showed that this train illusion can also be generated in the laboratory using virtual computer graphics-based motion stimuli. We also demonstrated that this vection can be modified by altering the meaning of the visual stimuli (i.e., top down effects). Importantly, we show that the semantic meaning of a stimulus can inhibit or facilitate vection, even when there is no physical change to the stimulus.

  6. Face processing in autism: Reduced integration of cross-feature dynamics.

    PubMed

    Shah, Punit; Bird, Geoffrey; Cook, Richard

    2016-02-01

    Characteristic problems with social interaction have prompted considerable interest in the face processing of individuals with Autism Spectrum Disorder (ASD). Studies suggest that reduced integration of information from disparate facial regions likely contributes to difficulties recognizing static faces in this population. Recent work also indicates that observers with ASD have problems using patterns of facial motion to judge identity and gender, and may be less able to derive global motion percepts. These findings raise the possibility that feature integration deficits also impact the perception of moving faces. To test this hypothesis, we examined whether observers with ASD exhibit susceptibility to a new dynamic face illusion, thought to index integration of moving facial features. When typical observers view eye-opening and -closing in the presence of asynchronous mouth-opening and -closing, the concurrent mouth movements induce a strong illusory slowing of the eye transitions. However, we find that observers with ASD are not susceptible to this illusion, suggestive of weaker integration of cross-feature dynamics. Nevertheless, observers with ASD and typical controls were equally able to detect the physical differences between comparison eye transitions. Importantly, this confirms that observers with ASD were able to fixate the eye-region, indicating that the striking group difference has a perceptual, not attentional origin. The clarity of the present results contrasts starkly with the modest effect sizes and equivocal findings seen throughout the literature on static face perception in ASD. We speculate that differences in the perception of facial motion may be a more reliable feature of this condition. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Attentional shifts between surfaces: effects on detection and early brain potentials.

    PubMed

    Pinilla, T; Cobo, A; Torres, K; Valdes-Sosa, M

    2001-06-01

    Two consecutive events transforming the same illusory surface in transparent motion (brief changes in direction) can be discriminated with ease, but a prolonged interference ( approximately 500 ms) on the discrimination of the second event arises when different surfaces are concerned [Valdes-Sosa, M., Cobo, A., & Pinilla, T. (2000). Attention to object files defined by transparent motion. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 488-505]. Here we further characterise this phenomenon and compare it to the attentional blink AB [Shapiro, K.L., Raymond, J.E., & Arnell, K.M. (1994). Attention to visual pattern information produces the attentional blink in RSVP. Journal of Experimental Psychology: Human Perception and Performance, 20, 357-371]. Similar to the AB, reduced sensitivity (d') was found in the two-surface condition. However, the two-surface cost was associated with a reduced N1 brain response in contrast to reports for AB [Vogel, E.K., Luck, S.J., & Shapiro, K. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24(6), 1656-1674]. The results from this study indicate that the two-surface cost corresponds to competitive effects in early vision. Reasons for the discrepancy with the AB study are considered.

  8. Illusory Distance Modulates Perceived Size of Afterimage despite the Disappearance of Depth Cues

    PubMed Central

    Liu, Shengxi; Lei, Quan

    2016-01-01

    It is known that the perceived size of an afterimage is modulated by the perceived distance between the observer and the depth plane on which the afterimage is projected (Emmert’s law). Illusions like Ponzo demonstrate that illusory distance induced by depth cues can also affect the perceived size of an object. In this study, we report that the illusory distance not only modulates the perceived size of object’s afterimage during the presence of the depth cues, but the modulation persists after the disappearance of the depth cues. We used an adapted version of the classic Ponzo illusion. Illusory depth perception was induced by linear perspective cues with two tilted lines converging at the upper boundary of the display. Two horizontal bars were placed between the two lines, resulting in a percept of the upper bar to be farther away than the lower bar. Observers were instructed to make judgment about the relative size of the afterimage of the lower and the upper bars after adaptation. When the perspective cues and the bars were static, the illusory effect of the Ponzo afterimage is consistent with that of the traditional size-distance illusion. When the perspective cues were flickering and the bars were static, only the afterimage of the latter was perceived, yet still a considerable amount of the illusory effect was perceived. The results could not be explained by memory of a prejudgment of the bar length during the adaptation phase. The findings suggest that cooccurrences of depth cues and object may link a depth marker for the object, so that the perceived size of the object or its afterimage is modulated by feedback of depth information from higher-level visual cortex even when there is no depth cues directly available on the retinal level. PMID:27391335

  9. Crossmodal binding rivalry: A "race" for integration between unequal sensory inputs.

    PubMed

    Kostaki, Maria; Vatakis, Argiro

    2016-10-01

    Exposure to multiple but unequal (in number) sensory inputs often leads to illusory percepts, which may be the product of a conflict between those inputs. To test this conflict, we utilized the classic sound induced visual fission and fusion illusions under various temporal configurations and timing presentations. This conflict between unequal numbers of sensory inputs (i.e., crossmodal binding rivalry) depends on the binding of the first audiovisual pair and its temporal proximity to the upcoming unisensory stimulus. We, therefore, expected that tight coupling of the first audiovisual pair would lead to higher rivalry with the upcoming unisensory stimulus and, thus, weaker illusory percepts. Loose coupling, on the other hand, would lead to lower rivalry and higher illusory percepts. Our data showed the emergence of two different participant groups, those with low discrimination performance and strong illusion reports (particularly for fusion) and those with the exact opposite pattern, thus extending previous findings on the effect of visual acuity in the strength of the illusion. Most importantly, our data revealed differential illusory strength across different temporal configurations for the fission illusion, while for the fusion illusion these effects were only noted for the largest stimulus onset asynchronies tested. These findings support that the optimal integration theory for the double flash illusion should be expanded so as to also take into account the multisensory temporal interactions of the stimuli presented (i.e., temporal sequence and configuration). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Illusory conjunctions and perceptual grouping in a visual search task in schizophrenia.

    PubMed

    Carr, V J; Dewis, S A; Lewin, T J

    1998-07-27

    This report describes part of a series of experiments, conducted within the framework of feature integration theory, to determine whether patients with schizophrenia show deficits in preattentive processing. Thirty subjects with a DSM-III-R diagnosis of schizophrenia and 30 age-, gender-, and education-matched normal control subjects completed two computerized experimental tasks, a visual search task assessing the frequency of illusory conjunctions (i.e. false perceptions) under conditions of divided attention (Experiment 3) and a task which examined the effects of perceptual grouping on illusory conjunctions (Experiment 4). We also assessed current symptomatology and its relationship to task performance. Contrary to our hypotheses, schizophrenia subjects did not show higher rates of illusory conjunctions, and the influence of perceptual grouping on the frequency of illusory conjunctions was similar for schizophrenia and control subjects. Nonetheless, specific predictions from feature integration theory about the impact of different target types (Experiment 3) and perceptual groups (Experiment 4) on the likelihood of forming an illusory conjunction were strongly supported, thereby confirming the integrity of the experimental procedures. Overall, these studies revealed no firm evidence that schizophrenia is associated with a preattentive abnormality in visual search using stimuli that differ on the basis of physical characteristics.

  11. The spiral aftereffect : III, Some effects of perceived size, retinal size, and retinal speed on the duration of illusory motion.

    DOT National Transportation Integrated Search

    1971-07-01

    Many safety problems encountered in aviation have been attributed to visual illusions. One of the various types of visual illusions, that of apparent motion, includes as an aftereffect the apparent reversed motion of an object after it ceases real mo...

  12. Active Manual Movement Improves Directional Perception of Illusory Force.

    PubMed

    Amemiya, Tomohiro; Gomi, Hiroaki

    2016-01-01

    Active touch sensing is known to facilitate the discrimination or recognition of the spatial properties of an object from the movement of tactile sensors on the skin and by integrating proprioceptive feedback about hand positions or motor commands related to ongoing hand movements. On the other hand, several studies have reported that tactile processing is suppressed by hand movement. Thus, it is unclear whether or not the active exploration of force direction by using hand or arm movement improves the perception of the force direction. Here, we show that active manual movement in both the rotational and translational directions enhances the precise perception of the force direction. To make it possible to move a hand in space without any physical constraints, we have adopted a method of inducing the sensation of illusory force by asymmetric vibration. We found that the precision of the perceived force direction was significantly better when the shoulder is rotated medially and laterally. We also found that directional errors supplied by the motor response of the perceived force were smaller than those resulting from perceptual judgments between visual and haptic directional stimuli. These results demonstrate that active manual movement boosts the precision of the perceived direction of an illusory force.

  13. Perception of the dynamic visual vertical during sinusoidal linear motion.

    PubMed

    Pomante, A; Selen, L P J; Medendorp, W P

    2017-10-01

    The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s 2 peak acceleration, 80 cm displacement). While subjects ( n =10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the disambiguation of linear acceleration and spatial orientation. We discuss the dynamics of these illusory percepts in terms of a dynamic Bayesian model that combines uncertainty in the vestibular signals with priors based on the natural statistics of head motion. Copyright © 2017 the American Physiological Society.

  14. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    PubMed

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Postural illusions experienced during Z-axis recumbent rotation and their dependence upon somatosensory stimulation of the body surface

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1978-01-01

    A blindfolded recumbent subject experiences a variety of postural illusions when rotated about his Z axis. Initially, during the acceleratory phase of rotation, turning about his Z axis is experienced; but, as rotary velocity increases, a spiraling of the body outward in the direction opposite to true rotation is experienced as well. Above 15-20 rpm, only orbital motion of the body is experienced, with the subject feeling that he is always facing in the same direction. One cycle of the apparent orbit is completed each time the subject actually rotates 360 deg. The reverse sequence of illusory motion is experienced during deceleration. The illusory motion all subjects experience during Z-axis recumbent rotation is shown to depend upon the touch and pressure stimulation of the body surface generated by contact forces of support.

  16. The Continuous Wagon Wheel Illusion and the ‘When’ Pathway of the Right Parietal Lobe: A Repetitive Transcranial Magnetic Stimulation Study

    PubMed Central

    VanRullen, Rufin; Pascual-Leone, Alvaro; Battelli, Lorella

    2008-01-01

    A continuous periodic motion stimulus can sometimes be perceived moving in the wrong direction. These illusory reversals have been taken as evidence that part of the motion perception system samples its inputs as a series of discrete snapshots –although other explanations of the phenomenon have been proposed, that rely on the spurious activation of low-level motion detectors in early visual areas. We have hypothesized that the right inferior parietal lobe (‘when’ pathway) plays a critical role in timing perceptual events relative to one another, and thus we examined the role of the right parietal lobe in the generation of this “continuous Wagon Wheel Illusion” (c-WWI). Consistent with our hypothesis, we found that the illusion was effectively weakened following disruption of right, but not left, parietal regions by low frequency repetitive transcranial magnetic stimulation (1 Hz, 10 min). These results were independent of whether the motion stimulus was shown in the left or the right visual field. Thus, the c-WWI appears to depend on higher-order attentional mechanisms that are supported by the ‘when’ pathway of the right parietal lobe. PMID:18682842

  17. van Maanen, Adriaan (1884-1947)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Dutch astronomer, became a member of the Mount Wilson staff, and studied the rotation of spiral nebulae as a means to establish their distances. His detection of rotational motions was illusory and misleadingly suggested that they were relatively nearby. Through its proper motion and parallax, he discovered the white dwarf van Maanen's star....

  18. Illusory movement perception improves motor control for prosthetic hands

    PubMed Central

    Marasco, Paul D.; Hebert, Jacqueline S.; Sensinger, Jon W.; Shell, Courtney E.; Schofield, Jonathon S.; Thumser, Zachary C.; Nataraj, Raviraj; Beckler, Dylan T.; Dawson, Michael R.; Blustein, Dan H.; Gill, Satinder; Mensh, Brett D.; Granja-Vazquez, Rafael; Newcomb, Madeline D.; Carey, Jason P.; Orzell, Beth M.

    2018-01-01

    To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement’s progress. This largely non-conscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. Here we report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. PMID:29540617

  19. Object-based warping: an illusory distortion of space within objects.

    PubMed

    Vickery, Timothy J; Chun, Marvin M

    2010-12-01

    Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.

  20. A formal theory of feature binding in object perception.

    PubMed

    Ashby, F G; Prinzmetal, W; Ivry, R; Maddox, W T

    1996-01-01

    Visual objects are perceived correctly only if their features are identified and then bound together. Illusory conjunctions result when feature identification is correct but an error occurs during feature binding. A new model is proposed that assumes feature binding errors occur because of uncertainty about the location of visual features. This model accounted for data from 2 new experiments better than a model derived from A. M. Treisman and H. Schmidt's (1982) feature integration theory. The traditional method for detecting the occurrence of true illusory conjunctions is shown to be fundamentally flawed. A reexamination of 2 previous studies provided new insights into the role of attention and location information in object perception and a reinterpretation of the deficits in patients who exhibit attentional disorders.

  1. Spatial Alignment and Response Hand in Geometric and Motion Illusions

    PubMed Central

    Scocchia, Lisa; Paroli, Michela; Stucchi, Natale A.; Sedda, Anna

    2017-01-01

    Perception of visual illusions is susceptible to manipulation of their spatial properties. Further, illusions can sometimes affect visually guided actions, especially the movement planning phase. Remarkably, visual properties of objects related to actions, such as affordances, can prime more accurate perceptual judgements. In spite of the amount of knowledge available on affordances and on the influence of illusions on actions (or lack of thereof), virtually nothing is known about the reverse: the influence of action-related parameters on the perception of visual illusions. Here, we tested a hypothesis that the response mode (that can be linked to action-relevant features) can affect perception of the Poggendorff (geometric) and of the Vanishing Point (motion) illusion. We explored the role of hand dominance (right dominant versus left non-dominant hand) and its interaction with stimulus spatial alignment (i.e., congruency between visual stimulus and the hand used for responses). Seventeen right-handed participants performed our tasks with their right and left hands, and the stimuli were presented in regular and mirror-reversed views. It turned out that the regular version of the Poggendorff display generates a stronger illusion compared to the mirror version, and that participants are less accurate and show more variability when they use their left hand in responding to the Vanishing Point. In summary, our results show that there is a marginal effect of hand precision in motion related illusions, which is absent for geometrical illusions. In the latter, attentional anisometry seems to play a greater role in generating the illusory effect. Taken together, our findings suggest that changes in the response mode (here: manual action-related parameters) do not necessarily affect illusion perception. Therefore, although intuitively speaking there should be at least unidirectional effects of perception on action, and possible interactions between the two systems, this simple study still suggests their relative independence, except for the case when the less skilled (non-dominant) hand and arguably more deliberate responses are used. PMID:28769830

  2. Dynamic Calibration of Our Sense of Time

    ERIC Educational Resources Information Center

    Grivel, Jeremy; Bernasconi, Fosco; Manuel, Aurelie L.; Murray, Micah M.; Spierer, Lucas

    2011-01-01

    An accurate sense of time contributes to functions ranging from the perception and anticipation of sensory events to the production of coordinated movements. However, accumulating evidence demonstrates that time perception is subject to strong illusory distortion. In two experiments, we investigated whether the subjective speed of temporal…

  3. The spiral aftereffect. II, Some influences of visual angle and retinal speed on the duration and intensity of illusory motion.

    DOT National Transportation Integrated Search

    1969-08-01

    Visual illusions have been a persistent problem in aviation research. The spiral aftereffect (SAE) is an example of one type of visual illusion--that which occurs following the cessation of real motion. Duration and intensity of the SAE was evaluated...

  4. Adapted Physical Activity Programme and Self-Perception in Obese Adolescents with Intellectual Disability: Between Morphological Awareness and Positive Illusory Bias

    ERIC Educational Resources Information Center

    Salaun, Laureline; Reynes, Eric; Berthouze-Aranda, Sophie E.

    2014-01-01

    Background: In adolescents with intellectual disability, the management of obesity is a crucial issue, yet also quite complex because of their particular perception of themselves. This study investigated the relationship between self-perception variables and morphological variables and their changes after a 9-month Adapted Physical Activity (APA)…

  5. Perceptual distortion of intrapersonal and near-personal space sensed by proprioception.

    PubMed

    Naito, Eiichi

    2002-04-01

    It is known that the illusory displacement of a vibrated limb can be transferred to a nonvibrated contacted limb. The purpose of this study was to quantify and compare the transferred illusory displacements occurring in the intrapersonal and near-personal space. In two tasks, 8 male and 8 female blindfolded subjects estimated (1) the height of the left elbow and (2) the height of an external object located at the same height as the left elbow, by the proprioception of the right arm which was Subject to illusory displacement. If the internal representation of the left elbow in one's body schema could provide precise information of its static position independently of the proprioception of the right arm, the perceived displacement of the right arm might be smaller when influenced by proprioceptive information from the static left arm, than when in contrast instead with an object which is not a body part. There was no difference in the estimation of illusory displacement between male and female subjects and between right and left arms. No significant difference was observed between transferred displacements of the left elbow and the object. This means that the perception of limb position sensed by the proprioception of another limb can be distorted as easily as the perception of location of an external object. This suggests that the internal representation of static limb position is not enough to provide the correct information of current limb position in the absence of vision.

  6. From elements to perception: local and global processing in visual neurons.

    PubMed

    Spillmann, L

    1999-01-01

    Gestalt psychologists in the early part of the century challenged psychophysical notions that perceptual phenomena can be understood from a punctate (atomistic) analysis of the elements present in the stimulus. Their ideas slowed later attempts to explain vision in terms of single-cell recordings from individual neurons. A rapprochement between Gestalt phenomenology and neurophysiology seemed unlikely when the first ECVP was held in Marburg, Germany, in 1978. Since that time, response properties of neurons have been discovered that invite an interpretation of visual phenomena (including illusions) in terms of neuronal processing by long-range interactions, as first proposed by Mach and Hering in the last century. This article traces a personal journey into the early days of neurophysiological vision research to illustrate the progress that has taken place from the first attempts to correlate single-cell responses with visual perceptions. Whereas initially the receptive-field properties of individual classes of cells--e.g., contrast, wavelength, orientation, motion, disparity, and spatial-frequency detectors--were used to account for relatively simple visual phenomena, nowadays complex perceptions are interpreted in terms of long-range interactions, involving many neurons. This change in paradigm from local to global processing was made possible by recent findings, in the cortex, on horizontal interactions and backward propagation (feedback loops) in addition to classical feedforward processing. These mechanisms are exemplified by studies of the tilt effect and tilt aftereffect, direction-specific motion adaptation, illusory contours, filling-in and fading, figure--ground segregation by orientation and motion contrast, and pop-out in dynamic visual-noise patterns. Major questions for future research and a discussion of their epistemological implications conclude the article.

  7. A frontal but not parietal neural correlate of auditory consciousness.

    PubMed

    Brancucci, Alfredo; Lugli, Victor; Perrucci, Mauro Gianni; Del Gratta, Cosimo; Tommasi, Luca

    2016-01-01

    Hemodynamic correlates of consciousness were investigated in humans during the presentation of a dichotic sequence inducing illusory auditory percepts with features analogous to visual multistability. The sequence consisted of a variation of the original stimulation eliciting the Deutsch's octave illusion, created to maintain a stable illusory percept long enough to allow the detection of the underlying hemodynamic activity using functional magnetic resonance imaging (fMRI). Two specular 500 ms dichotic stimuli (400 and 800 Hz) presented in alternation by means of earphones cause an illusory segregation of pitch and ear of origin which can yield up to four different auditory percepts per dichotic stimulus. Such percepts are maintained stable when one of the two dichotic stimuli is presented repeatedly for 6 s, immediately after the alternation. We observed hemodynamic activity specifically accompanying conscious experience of pitch in a bilateral network including the superior frontal gyrus (SFG, BA9 and BA10), medial frontal gyrus (BA6 and BA9), insula (BA13), and posterior lateral nucleus of the thalamus. Conscious experience of side (ear of origin) was instead specifically accompanied by bilateral activity in the MFG (BA6), STG (BA41), parahippocampal gyrus (BA28), and insula (BA13). These results suggest that the neural substrate of auditory consciousness, differently from that of visual consciousness, may rest upon a fronto-temporal rather than upon a fronto-parietal network. Moreover, they indicate that the neural correlates of consciousness depend on the specific features of the stimulus and suggest the SFG-MFG and the insula as important cortical nodes for auditory conscious experience.

  8. Illusory conjunctions reflect the time course of the attentional blink.

    PubMed

    Botella, Juan; Privado, Jesús; de Liaño, Beatriz Gil-Gómez; Suero, Manuel

    2011-07-01

    Illusory conjunctions in the time domain are binding errors for features from stimuli presented sequentially but in the same spatial position. A similar experimental paradigm is employed for the attentional blink (AB), an impairment of performance for the second of two targets when it is presented 200-500 msec after the first target. The analysis of errors along the time course of the AB allows the testing of models of illusory conjunctions. In an experiment, observers identified one (control condition) or two (experimental condition) letters in a specified color, so that illusory conjunctions in each response could be linked to specific positions in the series. Two items in the target colors (red and white, embedded in distractors of different colors) were employed in four conditions defined according to whether both targets were in the same or different colors. Besides the U-shaped function for hits, the errors were analyzed by calculating several response parameters reflecting characteristics such as the average position of the responses or the attentional suppression during the blink. The several error parameters cluster in two time courses, as would be expected from prevailing models of the AB. Furthermore, the results match the predictions from Botella, Barriopedro, and Suero's (Journal of Experimental Psychology: Human Perception and Performance, 27, 1452-1467, 2001) model for illusory conjunctions.

  9. Illusory movement perception improves motor control for prosthetic hands.

    PubMed

    Marasco, Paul D; Hebert, Jacqueline S; Sensinger, Jon W; Shell, Courtney E; Schofield, Jonathon S; Thumser, Zachary C; Nataraj, Raviraj; Beckler, Dylan T; Dawson, Michael R; Blustein, Dan H; Gill, Satinder; Mensh, Brett D; Granja-Vazquez, Rafael; Newcomb, Madeline D; Carey, Jason P; Orzell, Beth M

    2018-03-14

    To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement's progress. This largely nonconscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. We report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Face Pareidolia in the Rhesus Monkey.

    PubMed

    Taubert, Jessica; Wardle, Susan G; Flessert, Molly; Leopold, David A; Ungerleider, Leslie G

    2017-08-21

    Face perception in humans and nonhuman primates is rapid and accurate [1-4]. In the human brain, a network of visual-processing regions is specialized for faces [5-7]. Although face processing is a priority of the primate visual system, face detection is not infallible. Face pareidolia is the compelling illusion of perceiving facial features on inanimate objects, such as the illusory face on the surface of the moon. Although face pareidolia is commonly experienced by humans, its presence in other species is unknown. Here we provide evidence for face pareidolia in a species known to possess a complex face-processing system [8-10]: the rhesus monkey (Macaca mulatta). In a visual preference task [11, 12], monkeys looked longer at photographs of objects that elicited face pareidolia in human observers than at photographs of similar objects that did not elicit illusory faces. Examination of eye movements revealed that monkeys fixated the illusory internal facial features in a pattern consistent with how they view photographs of faces [13]. Although the specialized response to faces observed in humans [1, 3, 5-7, 14] is often argued to be continuous across primates [4, 15], it was previously unclear whether face pareidolia arose from a uniquely human capacity. For example, pareidolia could be a product of the human aptitude for perceptual abstraction or result from frequent exposure to cartoons and illustrations that anthropomorphize inanimate objects. Instead, our results indicate that the perception of illusory facial features on inanimate objects is driven by a broadly tuned face-detection mechanism that we share with other species. Published by Elsevier Ltd.

  11. Illusory Changes in Body Size Modulate Body Satisfaction in a Way That Is Related to Non-Clinical Eating Disorder Psychopathology

    PubMed Central

    Preston, Catherine; Ehrsson, H. Henrik

    2014-01-01

    Historically, body size overestimation has been linked to abnormal levels of body dissatisfaction found in eating disorders. However, recently this relationship has been called into question. Indeed, despite a link between how we perceive and how we feel about our body seeming intuitive, until now lack of an experimental method to manipulate body size has meant that a causal link, even in healthy participants, has remained elusive. Recent developments in body perception research demonstrate that the perceptual experience of the body can be readily manipulated using multisensory illusions. The current study exploits such illusions to modulate perceived body size in an attempt to influence body satisfaction. Participants were presented with stereoscopic video images of slimmer and wider mannequin bodies viewed through head-mounted displays from first person perspective. Illusory ownership was induced by synchronously stroking the seen mannequin body with the unseen real body. Pre and post-illusion affective and perceptual measures captured changes in perceived body size and body satisfaction. Illusory ownership of a slimmer body resulted in participants perceiving their actual body as slimmer and giving higher ratings of body satisfaction demonstrating a direct link between perceptual and affective body representations. Change in body satisfaction following illusory ownership of a wider body, however, was related to degree of (non-clinical) eating disorder psychopathology, which can be linked to fluctuating body representations found in clinical samples. The results suggest that body perception is linked to body satisfaction and may be of importance for eating disorder symptomology. PMID:24465698

  12. Optokinetic motion sickness - Attenuation of visually-induced apparent self-rotation by passive head movements

    NASA Technical Reports Server (NTRS)

    Teixeira, R. A.; Lackner, J. R.

    1979-01-01

    An experimental study was conducted on seven normal subjects to evaluate the effectiveness of passive head movements in suppressing the optokinetically-induced illusory self-rotation. Visual simulation was provided by a servo-controlled optokinetic drum. Each subject participated in two experimental sessions. In one condition, the subject's head remained stationary while he gazed passively at a moving stripe pattern. In the other, he gazed passively and relaxed his neck muscles while his head was rotated from side to side. It appears that suppression of optokinetically-induced illusory self-rotation with passive head movements results from the operation of a spatial constancy mechanism interrelating visual, vestibular, and kinesthetic information on ongoing body orientation. The results support the view that optokinetic 'motion sickness' is related, at least in part, to an oculomotor disturbance rather than a visually triggered disturbance of specifically vestibular etiology.

  13. Visual illusion of tool use recalibrates tactile perception

    PubMed Central

    Miller, Luke E.; Longo, Matthew R.; Saygin, Ayse P.

    2018-01-01

    Brief use of a tool recalibrates multisensory representations of the user’s body, a phenomenon called tool embodiment. Despite two decades of research, little is known about its boundary conditions. It has been widely argued that embodiment requires active tool use, suggesting a critical role for somatosensory and motor feedback. The present study used a visual illusion to cast doubt on this view. We used a mirror-based setup to induce a visual experience of tool use with an arm that was in fact stationary. Following illusory tool use, tactile perception was recalibrated on this stationary arm, and with equal magnitude as physical use. Recalibration was not found following illusory passive tool holding, and could not be accounted for by sensory conflict or general interhemispheric plasticity. These results suggest visual tool-use signals play a critical role in driving tool embodiment. PMID:28196765

  14. Perceived spatial displacement of motion-defined contours in peripheral vision.

    PubMed

    Fan, Zhao; Harris, John

    2008-12-01

    The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging patterns, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern.

  15. Eye movement instructions modulate motion illusion and body sway with Op Art.

    PubMed

    Kapoula, Zoï; Lang, Alexandre; Vernet, Marine; Locher, Paul

    2015-01-01

    Op Art generates illusory visual motion. It has been proposed that eye movements participate in such illusion. This study examined the effect of eye movement instructions (fixation vs. free exploration) on the sensation of motion as well as the body sway of subjects viewing Op Art paintings. Twenty-eight healthy adults in orthostatic stance were successively exposed to three visual stimuli consisting of one figure representing a cross (baseline condition) and two Op Art paintings providing sense of motion in depth-Bridget Riley's Movements in Squares and Akiyoshi Kitaoka's Rollers. Before their exposure to the Op Art images, participants were instructed either to fixate at the center of the image (fixation condition) or to explore the artwork (free viewing condition). Posture was measured for 30 s per condition using a body fixed sensor (accelerometer). The major finding of this study is that the two Op Art paintings induced a larger antero-posterior body sway both in terms of speed and displacement and an increased motion illusion in the free viewing condition as compared to the fixation condition. For body sway, this effect was significant for the Riley painting, while for motion illusion this effect was significant for Kitaoka's image. These results are attributed to macro-saccades presumably occurring under free viewing instructions, and most likely to the small vergence drifts during fixations following the saccades; such movements in interaction with visual properties of each image would increase either the illusory motion sensation or the antero-posterior body sway.

  16. Perceived association between diagnostic and non-diagnostic cues of women's sexual interest: General Recognition Theory predictors of risk for sexual coercion.

    PubMed

    Farris, Coreen; Viken, Richard J; Treat, Teresa A

    2010-01-01

    Young men's errors in sexual perception have been linked to sexual coercion. The current investigation sought to explicate the perceptual and decisional sources of these social perception errors, as well as their link to risk for sexual violence. General Recognition Theory (GRT; [Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological Review, 93, 154-179]) was used to estimate participants' ability to discriminate between affective cues and clothing style cues and to measure illusory correlations between men's perception of women's clothing style and sexual interest. High-risk men were less sensitive to the distinction between women's friendly and sexual interest cues relative to other men. In addition, they were more likely to perceive an illusory correlation between women's diagnostic sexual interest cues (e.g., facial affect) and non-diagnostic cues (e.g., provocative clothing), which increases the probability that high-risk men will misperceive friendly women as intending to communicate sexual interest. The results provide information about the degree of risk conferred by individual differences in perceptual processing of women's interest cues, and also illustrate how translational scientists might adapt GRT to examine research questions about individual differences in social perception.

  17. The sense of body ownership relaxes temporal constraints for multisensory integration.

    PubMed

    Maselli, Antonella; Kilteni, Konstantina; López-Moliner, Joan; Slater, Mel

    2016-08-03

    Experimental work on body ownership illusions showed how simple multisensory manipulation can generate the illusory experience of an artificial limb as being part of the own-body. This work highlighted how own-body perception relies on a plastic brain representation emerging from multisensory integration. The flexibility of this representation is reflected in the short-term modulations of physiological states and perceptual processing observed during these illusions. Here, we explore the impact of ownership illusions on the temporal dimension of multisensory integration. We show that, during the illusion, the temporal window for integrating touch on the physical body with touch seen on a virtual body representation, increases with respect to integration with visual events seen close but separated from the virtual body. We show that this effect is mediated by the ownership illusion. Crucially, the temporal window for visuotactile integration was positively correlated with participants' scores rating the illusory experience of owning the virtual body and touching the object seen in contact with it. Our results corroborate the recently proposed causal inference mechanism for illusory body ownership. As a novelty, they show that the ensuing illusory causal binding between stimuli from the real and fake body relaxes constraints for the integration of bodily signals.

  18. Multisensory Motion Perception in 3–4 Month-Old Infants

    PubMed Central

    Nava, Elena; Grassi, Massimo; Brenna, Viola; Croci, Emanuela; Turati, Chiara

    2017-01-01

    Human infants begin very early in life to take advantage of multisensory information by extracting the invariant amodal information that is conveyed redundantly by multiple senses. Here we addressed the question as to whether infants can bind multisensory moving stimuli, and whether this occurs even if the motion produced by the stimuli is only illusory. Three- to 4-month-old infants were presented with two bimodal pairings: visuo-tactile and audio-visual. Visuo-tactile pairings consisted of apparently vertically moving bars (the Barber Pole illusion) moving in either the same or opposite direction with a concurrent tactile stimulus consisting of strokes given on the infant’s back. Audio-visual pairings consisted of the Barber Pole illusion in its visual and auditory version, the latter giving the impression of a continuous rising or ascending pitch. We found that infants were able to discriminate congruently (same direction) vs. incongruently moving (opposite direction) pairs irrespective of modality (Experiment 1). Importantly, we also found that congruently moving visuo-tactile and audio-visual stimuli were preferred over incongruently moving bimodal stimuli (Experiment 2). Our findings suggest that very young infants are able to extract motion as amodal component and use it to match stimuli that only apparently move in the same direction. PMID:29187829

  19. Six-month-old infants' perception of the hollow face illusion: evidence for a general convexity bias.

    PubMed

    Corrow, Sherryse L; Mathison, Jordan; Granrud, Carl E; Yonas, Albert

    2014-01-01

    Corrow, Granrud, Mathison, and Yonas (2011, Perception, 40, 1376-1383) found evidence that 6-month-old infants perceive the hollow face illusion. In the present study we asked whether 6-month-old infants perceive illusory depth reversal for a nonface object and whether infants' perception of the hollow face illusion is affected by mask orientation inversion. In experiment 1 infants viewed a concave bowl, and their reaches were recorded under monocular and binocular viewing conditions. Infants reached to the bowl as if it were convex significantly more often in the monocular than in the binocular viewing condition. These results suggest that infants perceive illusory depth reversal with a nonface stimulus and that the infant visual system has a bias to perceive objects as convex. Infants in experiment 2 viewed a concave face-like mask in upright and inverted orientations. Infants reached to the display as if it were convex more in the monocular than in the binocular condition; however, mask orientation had no effect on reaching. Previous findings that adults' perception of the hollow face illusion is affected by mask orientation inversion have been interpreted as evidence of stored-knowledge influences on perception. However, we found no evidence of such influences in infants, suggesting that their perception of this illusion may not be affected by stored knowledge, and that perceived depth reversal is not face-specific in infants.

  20. A common framework for the analysis of complex motion? Standstill and capture illusions

    PubMed Central

    Dürsteler, Max R.

    2014-01-01

    A series of illusions was created by presenting stimuli, which consisted of two overlapping surfaces each defined by textures of independent visual features (i.e., modulation of luminance, color, depth, etc.). When presented concurrently with a stationary 2-D luminance texture, observers often fail to perceive the motion of an overlapping stereoscopically defined depth-texture. This illusory motion standstill arises due to a failure to represent two independent surfaces (one for luminance and one for depth textures) and motion transparency (the ability to perceive motion of both surfaces simultaneously). Instead the stimulus is represented as a single non-transparent surface taking on the stationary nature of the luminance-defined texture. By contrast, if it is the 2D-luminance defined texture that is in motion, observers often perceive the stationary depth texture as also moving. In this latter case, the failure to represent the motion transparency of the two textures gives rise to illusionary motion capture. Our past work demonstrated that the illusions of motion standstill and motion capture can occur for depth-textures that are rotating, or expanding / contracting, or else spiraling. Here I extend these findings to include stereo-shearing. More importantly, it is the motion (or lack thereof) of the luminance texture that determines how the motion of the depth will be perceived. This observation is strongly in favor of a single pathway for complex motion that operates on luminance-defines texture motion signals only. In addition, these complex motion illusions arise with chromatically-defined textures with smooth transitions between their colors. This suggests that in respect to color motion perception the complex motions' pathway is only able to accurately process signals from isoluminant colored textures with sharp transitions between colors, and/or moving at high speeds, which is conceivable if it relies on inputs from a hypothetical dual opponent color pathway. PMID:25566023

  1. Directional harmonic theory: a computational Gestalt model to account for illusory contour and vertex formation.

    PubMed

    Lehar, Steven

    2003-01-01

    Visual illusions and perceptual grouping phenomena offer an invaluable tool for probing the computational mechanism of low-level visual processing. Some illusions, like the Kanizsa figure, reveal illusory contours that form edges collinear with the inducing stimulus. This kind of illusory contour has been modeled by neural network models by way of cells equipped with elongated spatial receptive fields designed to detect and complete the collinear alignment. There are, however, other illusory groupings which are not so easy to account for in neural network terms. The Ehrenstein illusion exhibits an illusory contour that forms a contour orthogonal to the stimulus instead of collinear with it. Other perceptual grouping effects reveal illusory contours that exhibit a sharp corner or vertex, and still others take the form of vertices defined by the intersection of three, four, or more illusory contours that meet at a point. A direct extension of the collinear completion models to account for these phenomena tends towards a combinatorial explosion, because it would suggest cells with specialized receptive fields configured to perform each of those completion types, each of which would have to be replicated at every location and every orientation across the visual field. These phenomena therefore challenge the adequacy of the neural network approach to account for these diverse perceptual phenomena. I have proposed elsewhere an alternative paradigm of neurocomputation in the harmonic resonance theory (Lehar 1999, see website), whereby pattern recognition and completion are performed by spatial standing waves across the neural substrate. The standing waves perform a computational function analogous to that of the spatial receptive fields of the neural network approach, except that, unlike that paradigm, a single resonance mechanism performs a function equivalent to a whole array of spatial receptive fields of different spatial configurations and of different orientations, and thereby avoids the combinatorial explosion inherent in the older paradigm. The present paper presents the directional harmonic model, a more specific development of the harmonic resonance theory, designed to account for specific perceptual grouping phenomena. Computer simulations of the directional harmonic model show that it can account for collinear contours as observed in the Kanizsa figure, orthogonal contours as seen in the Ehrenstein illusion, and a number of illusory vertex percepts composed of two, three, or more illusory contours that meet in a variety of configurations.

  2. Hearing Faces: How the Infant Brain Matches the Face It Sees with the Speech It Hears

    ERIC Educational Resources Information Center

    Bristow, Davina; Dehaene-Lambertz, Ghislaine; Mattout, Jeremie; Soares, Catherine; Gliga, Teodora; Baillet, Sylvain; Mangin, Jean-Francois

    2009-01-01

    Speech is not a purely auditory signal. From around 2 months of age, infants are able to correctly match the vowel they hear with the appropriate articulating face. However, there is no behavioral evidence of integrated audiovisual perception until 4 months of age, at the earliest, when an illusory percept can be created by the fusion of the…

  3. Competing Cues: Older Adults Rely on Knowledge in the Face of Fluency

    PubMed Central

    Brashier, Nadia M.; Umanath, Sharda; Cabeza, Roberto; Marsh, Elizabeth J.

    2017-01-01

    Consumers regularly encounter repeated false claims in political and marketing campaigns, but very little empirical work addresses their impact among older adults. Repeated statements feel easier to process, and thus more truthful, than new ones (i.e., illusory truth). When judging truth, older adults’ accumulated general knowledge may offset this perception of fluency. In two experiments, participants read statements that contradicted information stored in memory; a post-experimental knowledge check confirmed what individual participants knew. Unlike young adults, older adults exhibited illusory truth only when they lacked knowledge about claims. This interaction between knowledge and fluency extends dual-process theories of aging. PMID:28333505

  4. Vection and visually induced motion sickness: how are they related?

    PubMed Central

    Keshavarz, Behrang; Riecke, Bernhard E.; Hettinger, Lawrence J.; Campos, Jennifer L.

    2015-01-01

    The occurrence of visually induced motion sickness has been frequently linked to the sensation of illusory self-motion (vection), however, the precise nature of this relationship is still not fully understood. To date, it is still a matter of debate as to whether vection is a necessary prerequisite for visually induced motion sickness (VIMS). That is, can there be VIMS without any sensation of self-motion? In this paper, we will describe the possible nature of this relationship, review the literature that addresses this relationship (including theoretical accounts of vection and VIMS), and offer suggestions with respect to operationally defining and reporting these phenomena in future. PMID:25941509

  5. Eye movement instructions modulate motion illusion and body sway with Op Art

    PubMed Central

    Kapoula, Zoï; Lang, Alexandre; Vernet, Marine; Locher, Paul

    2015-01-01

    Op Art generates illusory visual motion. It has been proposed that eye movements participate in such illusion. This study examined the effect of eye movement instructions (fixation vs. free exploration) on the sensation of motion as well as the body sway of subjects viewing Op Art paintings. Twenty-eight healthy adults in orthostatic stance were successively exposed to three visual stimuli consisting of one figure representing a cross (baseline condition) and two Op Art paintings providing sense of motion in depth—Bridget Riley’s Movements in Squares and Akiyoshi Kitaoka’s Rollers. Before their exposure to the Op Art images, participants were instructed either to fixate at the center of the image (fixation condition) or to explore the artwork (free viewing condition). Posture was measured for 30 s per condition using a body fixed sensor (accelerometer). The major finding of this study is that the two Op Art paintings induced a larger antero-posterior body sway both in terms of speed and displacement and an increased motion illusion in the free viewing condition as compared to the fixation condition. For body sway, this effect was significant for the Riley painting, while for motion illusion this effect was significant for Kitaoka’s image. These results are attributed to macro-saccades presumably occurring under free viewing instructions, and most likely to the small vergence drifts during fixations following the saccades; such movements in interaction with visual properties of each image would increase either the illusory motion sensation or the antero-posterior body sway. PMID:25859197

  6. The physiological locus of the spiral after-effect.

    DOT National Transportation Integrated Search

    1964-09-01

    It has long been known that if an Archimedes spiral is rotated, an illusory motion of swelling or shrinking, depending on the direction of rotation, will be perceived. If, after the spiral is rotated, it is stopped and S looks at a stationary spiral,...

  7. Artificial gravity: head movements during short-radius centrifugation

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.

    2001-01-01

    Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects of pitch and yaw head movements in participants placed supine on a rotating bed with their head at the center of rotation, feet at the rim. The vast majority of participants experienced motion sickness, inappropriate vertical nystagmus and illusory tilt and roll as predicted by a semicircular canal model. However, a small but significant number of the 28 participants experienced tilt in the predicted plane but in the opposite direction. Heart rate was elevated following one-second duration head turns. Significant adaptation occurred following a series of head turns in the light. Vertical nystagmus, motion sickness and illusory tilt all decreased with adaptation. Consequences for artificial gravity produced by short-radius centrifuges as a countermeasure are discussed. Grant numbers: NCC 9-58. c 2001. Elsevier Science Ltd. All rights reserved.

  8. Why do parallel cortical systems exist for the perception of static form and moving form?

    PubMed

    Grossberg, S

    1991-02-01

    This article analyzes computational properties that clarify why the parallel cortical systems V1----V2, V1----MT, and V1----V2----MT exist for the perceptual processing of static visual forms and moving visual forms. The article describes a symmetry principle, called FM symmetry, that is predicted to govern the development of these parallel cortical systems by computing all possible ways of symmetrically gating sustained cells with transient cells and organizing these sustained-transient cells into opponent pairs of on-cells and off-cells whose output signals are insensitive to direction of contrast. This symmetric organization explains how the static form system (static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction of contrast and insensitive to direction of motion, whereas the motion form system (motion BCS) generates emergent boundary segmentations whose outputs are insensitive to direction of contrast but sensitive to direction of motion. FM symmetry clarifies why the geometries of static and motion form perception differ--for example, why the opposite orientation of vertical is horizontal (90 degrees), but the opposite direction of up is down (180 degrees). Opposite orientations and directions are embedded in gated dipole opponent processes that are capable of antagonistic rebound. Negative afterimages, such as the MacKay and waterfall illusions, are hereby explained as are aftereffects of long-range apparent motion. These antagonistic rebounds help to control a dynamic balance between complementary perceptual states of resonance and reset. Resonance cooperatively links features into emergent boundary segmentations via positive feedback in a CC loop, and reset terminates a resonance when the image changes, thereby preventing massive smearing of percepts. These complementary preattentive states of resonance and reset are related to analogous states that govern attentive feature integration, learning, and memory search in adaptive resonance theory. The mechanism used in the V1----MT system to generate a wave of apparent motion between discrete flashes may also be used in other cortical systems to generate spatial shifts of attention. The theory suggests how the V1----V2----MT cortical stream helps to compute moving form in depth and how long-range apparent motion of illusory contours occurs. These results collectively argue against vision theories that espouse independent processing modules. Instead, specialized subsystems interact to overcome computational uncertainties and complementary deficiencies, to cooperatively bind features into context-sensitive resonances, and to realize symmetry principles that are predicted to govern the development of the visual cortex.

  9. How prior expectations shape multisensory perception.

    PubMed

    Gau, Remi; Noppeney, Uta

    2016-01-01

    The brain generates a representation of our environment by integrating signals from a common source, but segregating signals from different sources. This fMRI study investigated how the brain arbitrates between perceptual integration and segregation based on top-down congruency expectations and bottom-up stimulus-bound congruency cues. Participants were presented audiovisual movies of phonologically congruent, incongruent or McGurk syllables that can be integrated into an illusory percept (e.g. "ti" percept for visual «ki» with auditory /pi/). They reported the syllable they perceived. Critically, we manipulated participants' top-down congruency expectations by presenting McGurk stimuli embedded in blocks of congruent or incongruent syllables. Behaviorally, participants were more likely to fuse audiovisual signals into an illusory McGurk percept in congruent than incongruent contexts. At the neural level, the left inferior frontal sulcus (lIFS) showed increased activations for bottom-up incongruent relative to congruent inputs. Moreover, lIFS activations were increased for physically identical McGurk stimuli, when participants segregated the audiovisual signals and reported their auditory percept. Critically, this activation increase for perceptual segregation was amplified when participants expected audiovisually incongruent signals based on prior sensory experience. Collectively, our results demonstrate that the lIFS combines top-down prior (in)congruency expectations with bottom-up (in)congruency cues to arbitrate between multisensory integration and segregation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Competing cues: Older adults rely on knowledge in the face of fluency.

    PubMed

    Brashier, Nadia M; Umanath, Sharda; Cabeza, Roberto; Marsh, Elizabeth J

    2017-06-01

    Consumers regularly encounter repeated false claims in political and marketing campaigns, but very little empirical work addresses their impact among older adults. Repeated statements feel easier to process, and thus more truthful, than new ones (i.e., illusory truth). When judging truth, older adults' accumulated general knowledge may offset this perception of fluency. In two experiments, participants read statements that contradicted information stored in memory; a post-experimental knowledge check confirmed what individual participants knew. Unlike young adults, older adults exhibited illusory truth only when they lacked knowledge about claims. This interaction between knowledge and fluency extends dual-process theories of aging. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. A PDP model of the simultaneous perception of multiple objects

    NASA Astrophysics Data System (ADS)

    Henderson, Cynthia M.; McClelland, James L.

    2011-06-01

    Illusory conjunctions in normal and simultanagnosic subjects are two instances where the visual features of multiple objects are incorrectly 'bound' together. A connectionist model explores how multiple objects could be perceived correctly in normal subjects given sufficient time, but could give rise to illusory conjunctions with damage or time pressure. In this model, perception of two objects benefits from lateral connections between hidden layers modelling aspects of the ventral and dorsal visual pathways. As with simultanagnosia, simulations of dorsal lesions impair multi-object recognition. In contrast, a large ventral lesion has minimal effect on dorsal functioning, akin to dissociations between simple object manipulation (retained in visual form agnosia and semantic dementia) and object discrimination (impaired in these disorders) [Hodges, J.R., Bozeat, S., Lambon Ralph, M.A., Patterson, K., and Spatt, J. (2000), 'The Role of Conceptual Knowledge: Evidence from Semantic Dementia', Brain, 123, 1913-1925; Milner, A.D., and Goodale, M.A. (2006), The Visual Brain in Action (2nd ed.), New York: Oxford]. It is hoped that the functioning of this model might suggest potential processes underlying dorsal and ventral contributions to the correct perception of multiple objects.

  12. Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum

    NASA Technical Reports Server (NTRS)

    Hu, Senqi; Stern, Robert M.; Vasey, Michael W.; Koch, Kenneth L.

    1989-01-01

    Motion sickness symptoms and electrogastrograms (EGGs) were obtained from 60 healthy subjects while they viewed an optokinetic drum rotated at one of four speeds: 15, 30, 60 or 90 deg/s. All subjects experienced vection, illusory self-motion. Motion sickness symptoms increased as drums speed increased up to 60 deg/s. Power, spectral intensity, of the EGG at the tachygastria frequencies (4-9 cpm) was calculated at each drum rotation speed. The correlation between the motion sickness symptoms and the power at 4-9 cpm was significant. Thus, drum rotation speed influenced the spectral power of the EGG at 4-9 cpm, tachygastria, and the intensity of motion sickness symptoms.

  13. Dissociable neural correlates of contour completion and contour representation in illusory contour perception.

    PubMed

    Wu, Xiang; He, Sheng; Bushara, Khalaf; Zeng, Feiyan; Liu, Ying; Zhang, Daren

    2012-10-01

    Object recognition occurs even when environmental information is incomplete. Illusory contours (ICs), in which a contour is perceived though the contour edges are incomplete, have been extensively studied as an example of such a visual completion phenomenon. Despite the neural activity in response to ICs in visual cortical areas from low (V1 and V2) to high (LOC: the lateral occipital cortex) levels, the details of the neural processing underlying IC perception are largely not clarified. For example, how do the visual areas function in IC perception and how do they interact to archive the coherent contour perception? IC perception involves the process of completing the local discrete contour edges (contour completion) and the process of representing the global completed contour information (contour representation). Here, functional magnetic resonance imaging was used to dissociate contour completion and contour representation by varying each in opposite directions. The results show that the neural activity was stronger to stimuli with more contour completion than to stimuli with more contour representation in V1 and V2, which was the reverse of that in the LOC. When inspecting the neural activity change across the visual pathway, the activation remained high for the stimuli with more contour completion and increased for the stimuli with more contour representation. These results suggest distinct neural correlates of contour completion and contour representation, and the possible collaboration between the two processes during IC perception, indicating a neural connection between the discrete retinal input and the coherent visual percept. Copyright © 2011 Wiley Periodicals, Inc.

  14. Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia

    PubMed Central

    Liu, Jiangang; Li, Jun; Feng, Lu; Li, Ling; Tian, Jie; Lee, Kang

    2014-01-01

    Face pareidolia is the illusory perception of non-existent faces. The present study, for the first time, contrasted behavioral and neural responses of face pareidolia with those of letter pareidolia to explore face-specific behavioral and neural responses during illusory face processing. Participants were shown pure-noise images but were led to believe that 50% of them contained either faces or letters; they reported seeing faces or letters illusorily 34% and 38% of the time, respectively. The right fusiform face area (rFFA) showed a specific response when participants “saw” faces as opposed to letters in the pure-noise images. Behavioral responses during face pareidolia produced a classification image that resembled a face, whereas those during letter pareidolia produced a classification image that was letter-like. Further, the extent to which such behavioral classification images resembled faces was directly related to the level of face-specific activations in the right FFA. This finding suggests that the right FFA plays a specific role not only in processing of real faces but also in illusory face perception, perhaps serving to facilitate the interaction between bottom-up information from the primary visual cortex and top-down signals from the prefrontal cortex (PFC). Whole brain analyses revealed a network specialized in face pareidolia, including both the frontal and occipito-temporal regions. Our findings suggest that human face processing has a strong top-down component whereby sensory input with even the slightest suggestion of a face can result in the interpretation of a face. PMID:24583223

  15. Visual Enhancement of Illusory Phenomenal Accents in Non-Isochronous Auditory Rhythms

    PubMed Central

    2016-01-01

    Musical rhythms encompass temporal patterns that often yield regular metrical accents (e.g., a beat). There have been mixed results regarding perception as a function of metrical saliency, namely, whether sensitivity to a deviant was greater in metrically stronger or weaker positions. Besides, effects of metrical position have not been examined in non-isochronous rhythms, or with respect to multisensory influences. This study was concerned with two main issues: (1) In non-isochronous auditory rhythms with clear metrical accents, how would sensitivity to a deviant be modulated by metrical positions? (2) Would the effects be enhanced by multisensory information? Participants listened to strongly metrical rhythms with or without watching a point-light figure dance to the rhythm in the same meter, and detected a slight loudness increment. Both conditions were presented with or without an auditory interference that served to impair auditory metrical perception. Sensitivity to a deviant was found greater in weak beat than in strong beat positions, consistent with the Predictive Coding hypothesis and the idea of metrically induced illusory phenomenal accents. The visual rhythm of dance hindered auditory detection, but more so when the latter was itself less impaired. This pattern suggested that the visual and auditory rhythms were perceptually integrated to reinforce metrical accentuation, yielding more illusory phenomenal accents and thus lower sensitivity to deviants, in a manner consistent with the principle of inverse effectiveness. Results were discussed in the predictive framework for multisensory rhythms involving observed movements and possible mediation of the motor system. PMID:27880850

  16. Perception-action dissociation generalizes to the size-inertia illusion.

    PubMed

    Platkiewicz, Jonathan; Hayward, Vincent

    2014-04-01

    Two objects of similar visual aspects and of equal mass, but of different sizes, generally do not elicit the same percept of heaviness in humans. The larger object is consistently felt to be lighter than the smaller, an effect known as the "size-weight illusion." When asked to repeatedly lift the two objects, the grip forces were observed to adapt rapidly to the true object weight while the size-weight illusion persisted, a phenomenon interpreted as a dissociation between perception and action. We investigated whether the same phenomenon can be observed if the mass of an object is available to participants through inertial rather than gravitational cues and if the number and statistics of the stimuli is such that participants cannot remember each individual stimulus. We compared the responses of 10 participants in 2 experimental conditions, where they manipulated 33 objects having uncorrelated masses and sizes, supported by a frictionless, air-bearing slide that could be oriented vertically or horizontally. We also analyzed the participants' anticipatory motor behavior by measuring the grip force before motion onset. We found that the perceptual illusory effect was quantitatively the same in the two conditions and observed that both visual size and haptic mass had a negligible effect on the anticipatory gripping control of the participants in the gravitational and inertial conditions, despite the enormous differences in the mechanics of the two conditions and the large set of uncorrelated stimuli.

  17. Deconstructing the McGurk-MacDonald Illusion

    ERIC Educational Resources Information Center

    Soto-Faraco, Salvador; Alsius, Agnes

    2009-01-01

    Cross-modal illusions such as the McGurk-MacDonald effect have been used to illustrate the automatic, encapsulated nature of multisensory integration. This characterization is based in the widespread assumption that the illusory percept arising from intersensory conflict reflects only the end-product of the multisensory integration process, with…

  18. Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures.

    PubMed

    Clément, Gilles; Allaway, Heather C M; Demel, Michael; Golemis, Adrianos; Kindrat, Alexandra N; Melinyshyn, Alexander N; Merali, Tahir; Thirsk, Robert

    2015-01-01

    The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5-6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70-30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of "illusory" depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues.

  19. Illusory words: the roles of attention and of top-down constraints in conjoining letters to form words.

    PubMed

    Treisman, A; Souther, J

    1986-02-01

    When attention is divided among four briefly exposed syllables, subjects mistakenly detect targets whose letters are present in the display but in the wrong combinations. These illusory conjunctions are somewhat more frequent when the target is a word and when the distractors are nonwords, but the effects of lexical status are small, and no longer reach significance in free report of the same displays. Search performance is further impaired if the nonwords are unpronounceable consonant strings rather than consonant-vowel-consonant strings, but the decrement is due to missed targets rather than to increased conjunction errors. The results are discussed in relation to feature-integration theory and to current models of word perception.

  20. Illusory displacement of equiluminous kinetic edges.

    PubMed

    Ramachandran, V S; Anstis, S M

    1990-01-01

    A stationary window was cut out of a stationary random-dot pattern. When a field of dots was moved continuously behind the window (a) the window appeared to move in the same direction even though it was stationary, (b) the position of the 'kinetic edges' defining the window was also displaced along the direction of dot motion, and (c) the edges of the window tended to fade on steady fixation even though the dots were still clearly visible. The illusory displacement was enhanced considerably if the kinetic edge was equiluminous and if the 'window' region was seen as 'figure' rather than 'ground'. Since the extraction of kinetic edges probably involves the use of direction-selective cells, the illusion may provide insights into how the visual system uses the output of these cells to localize the kinetic edges.

  1. Seeing Jesus in toast: neural and behavioral correlates of face pareidolia.

    PubMed

    Liu, Jiangang; Li, Jun; Feng, Lu; Li, Ling; Tian, Jie; Lee, Kang

    2014-04-01

    Face pareidolia is the illusory perception of non-existent faces. The present study, for the first time, contrasted behavioral and neural responses of face pareidolia with those of letter pareidolia to explore face-specific behavioral and neural responses during illusory face processing. Participants were shown pure-noise images but were led to believe that 50% of them contained either faces or letters; they reported seeing faces or letters illusorily 34% and 38% of the time, respectively. The right fusiform face area (rFFA) showed a specific response when participants "saw" faces as opposed to letters in the pure-noise images. Behavioral responses during face pareidolia produced a classification image (CI) that resembled a face, whereas those during letter pareidolia produced a CI that was letter-like. Further, the extent to which such behavioral CIs resembled faces was directly related to the level of face-specific activations in the rFFA. This finding suggests that the rFFA plays a specific role not only in processing of real faces but also in illusory face perception, perhaps serving to facilitate the interaction between bottom-up information from the primary visual cortex and top-down signals from the prefrontal cortex (PFC). Whole brain analyses revealed a network specialized in face pareidolia, including both the frontal and occipitotemporal regions. Our findings suggest that human face processing has a strong top-down component whereby sensory input with even the slightest suggestion of a face can result in the interpretation of a face. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A new look at Op art: towards a simple explanation of illusory motion.

    PubMed

    Zanker, Johannes M; Walker, Robin

    2004-04-01

    Vivid motion illusions created by some Op art paintings are at the centre of a lively scientific debate about possible mechanisms that might underlie these phenomena. Here we review emerging evidence from a new approach that combines perceptual judgements of the illusion and observations of eye movements with simulations of the induced optic flow. This work suggests that the small involuntary saccades which participants make when viewing such Op art patterns would generate an incoherent distribution of motion signals that resemble the perceptual effects experienced by the observers. The combined experimental and computational evidence supports the view that the illusion is indeed caused by involuntary image displacements picked up by low-level motion detectors, and further suggests that coherent motion signals are crucial to perceive a stable world.

  3. A new look at Op art: towards a simple explanation of illusory motion

    NASA Astrophysics Data System (ADS)

    Zanker, Johannes M.; Walker, Robin

    Vivid motion illusions created by some Op art paintings are at the centre of a lively scientific debate about possible mechanisms that might underlie these phenomena. Here we review emerging evidence from a new approach that combines perceptual judgements of the illusion and observations of eye movements with simulations of the induced optic flow. This work suggests that the small involuntary saccades which participants make when viewing such Op art patterns would generate an incoherent distribution of motion signals that resemble the perceptual effects experienced by the observers. The combined experimental and computational evidence supports the view that the illusion is indeed caused by involuntary image displacements picked up by low-level motion detectors, and further suggests that coherent motion signals are crucial to perceive a stable world.

  4. Attenuating illusory binding with TMS of the right parietal cortex

    PubMed Central

    Esterman, Michael; Verstynen, Timothy; Robertson, Lynn C.

    2007-01-01

    A number of neuroimaging and neuropsychology studies have implicated various regions of parietal cortex as playing a critical role in the binding of color and form into conjunctions. The current study investigates the role of two such regions by examining how parietal transcranial magnetic stimulation (TMS) influences binding errors known as ‘illusory conjunctions.’ Participants made fewer binding errors after 1 Hz rTMS of the right intraparietal sulcus (IPS), while basic perception of features (colors and shape) was unaffected. No perceptual effects were found following left IPS stimulation, or stimulation of the right angular gyrus at the junction of the transverse occipital sulcus (IPS/TOS). These results support a role for the parietal cortex in feature binding but in ways that may require rethinking. PMID:17336097

  5. Seeing Inscriptions on the Shroud of Turin: The Role of Psychological Influences in the Perception of Writing.

    PubMed

    Jordan, Timothy R; Sheen, Mercedes; Abedipour, Lily; Paterson, Kevin B

    2015-01-01

    The Shroud of Turin (hereafter the Shroud) is one of the most widely known and widely studied artifacts in existence, with enormous historical and religious significance. For years, the Shroud has inspired worldwide interest in images on its fabric which appear to be of the body and face of a man executed in a manner consistent with crucifixion, and many believe that these images were formed in the Shroud's fibers during the Resurrection of Jesus of Nazareth. But, more recently, other reports have suggested that the Shroud also contains evidence of inscriptions, and these reports have been used to add crucial support to the view that the Shroud is the burial cloth of Jesus. Unfortunately, these reports of inscriptions are based on marks that are barely visible on the Shroud, even when images are enhanced, and the actual existence of writing on the Shroud is still a matter of considerable debate. Here we discuss previous evidence concerning the psychological processes involved generally in the perception of writing, and especially when letters and words are indistinct. We then report two experiments in which the influence of religious context on perception of inscriptions was addressed specifically, using an image of woven fabric (modern linen) containing no writing and with no religious provenance. This image was viewed in two different contexts: in the Religious Context, participants were informed that the image was of a linen artifact that was important to the Christian faith whereas, in the non-religious Neutral Context, participants were informed that the image was of a simple piece of linen. Both groups were told that the image may contain faint words and were asked to report any words they could see. All participants detected words on the image, and indicated that these words were visible and were able to trace on the image the words they detected. In each experiment, more religious words were detected in the Religious Context condition than in the Neutral Context condition whereas the two contexts showed no effect on the number of non-religious words detected, indicating that religious context had a specific effect on the perception of illusory writing. Indeed, in the Neutral Context condition, no religious words at all were reported in either experiment. These findings suggest that images of woven material, like linen, inspire illusory perceptions of writing and that the nature of these perceptions is influenced considerably by the religious expectations of observers. As a consequence, the normal psychological processes underlying perception of writing, and the tendency of these processes to produce illusory perceptions, should be an essential consideration when addressing the existence of religious inscriptions on religious artifacts such as the Shroud of Turin.

  6. Seeing Inscriptions on the Shroud of Turin: The Role of Psychological Influences in the Perception of Writing

    PubMed Central

    Jordan, Timothy R.; Sheen, Mercedes; Abedipour, Lily; Paterson, Kevin B.

    2015-01-01

    The Shroud of Turin (hereafter the Shroud) is one of the most widely known and widely studied artifacts in existence, with enormous historical and religious significance. For years, the Shroud has inspired worldwide interest in images on its fabric which appear to be of the body and face of a man executed in a manner consistent with crucifixion, and many believe that these images were formed in the Shroud’s fibers during the Resurrection of Jesus of Nazareth. But, more recently, other reports have suggested that the Shroud also contains evidence of inscriptions, and these reports have been used to add crucial support to the view that the Shroud is the burial cloth of Jesus. Unfortunately, these reports of inscriptions are based on marks that are barely visible on the Shroud, even when images are enhanced, and the actual existence of writing on the Shroud is still a matter of considerable debate. Here we discuss previous evidence concerning the psychological processes involved generally in the perception of writing, and especially when letters and words are indistinct. We then report two experiments in which the influence of religious context on perception of inscriptions was addressed specifically, using an image of woven fabric (modern linen) containing no writing and with no religious provenance. This image was viewed in two different contexts: in the Religious Context, participants were informed that the image was of a linen artifact that was important to the Christian faith whereas, in the non-religious Neutral Context, participants were informed that the image was of a simple piece of linen. Both groups were told that the image may contain faint words and were asked to report any words they could see. All participants detected words on the image, and indicated that these words were visible and were able to trace on the image the words they detected. In each experiment, more religious words were detected in the Religious Context condition than in the Neutral Context condition whereas the two contexts showed no effect on the number of non-religious words detected, indicating that religious context had a specific effect on the perception of illusory writing. Indeed, in the Neutral Context condition, no religious words at all were reported in either experiment. These findings suggest that images of woven material, like linen, inspire illusory perceptions of writing and that the nature of these perceptions is influenced considerably by the religious expectations of observers. As a consequence, the normal psychological processes underlying perception of writing, and the tendency of these processes to produce illusory perceptions, should be an essential consideration when addressing the existence of religious inscriptions on religious artifacts such as the Shroud of Turin. PMID:26509503

  7. Motion-induced blindness and microsaccades: cause and effect

    PubMed Central

    Bonneh, Yoram S.; Donner, Tobias H.; Sagi, Dov; Fried, Moshe; Cooperman, Alexander; Heeger, David J; Arieli, Amos

    2010-01-01

    It has been suggested that subjective disappearance of visual stimuli results from a spontaneous reduction of microsaccade rate causing image stabilization, enhanced adaptation and a consequent fading. In motion-induced-blindness (MIB) salient visual targets disappear intermittently when surrounded by a moving pattern. We investigated whether changes in microsaccade rate can account for MIB. We first determined that the moving mask does not affect microsaccade metrics (rate, magnitude, and temporal distribution). We then compared the dynamics of microsaccades during reported illusory disappearance (MIB) and physical disappearance (Replay) of a salient peripheral target. We found large modulations of microsaccade rate following perceptual transitions, whether illusory (MIB) or real (Replay). For MIB, the rate also decreased prior to disappearance and increased prior to reappearance. Importantly, MIB persisted in the presence of microsaccades although sustained microsaccade rate was lower during invisible than visible periods. These results suggest that the microsaccade system reacts to changes in visibility, but microsaccades also modulate MIB. The latter modulation is well described by a Poisson model of the perceptual transitions assuming that the probability for reappearance and disappearance is modulated following a microsaccade. Our results show that microsaccades counteract disappearance, but are neither necessary nor sufficient to account for MIB. PMID:21172899

  8. Perception of self-tilt in a true and illusory vertical plane

    NASA Technical Reports Server (NTRS)

    Groen, Eric L.; Jenkin, Heather L.; Howard, Ian P.; Oman, C. M. (Principal Investigator)

    2002-01-01

    A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.

  9. Visual capture and the experience of having two bodies – Evidence from two different virtual reality techniques

    PubMed Central

    Heydrich, Lukas; Dodds, Trevor J.; Aspell, Jane E.; Herbelin, Bruno; Bülthoff, Heinrich H.; Mohler, Betty J.; Blanke, Olaf

    2013-01-01

    In neurology and psychiatry the detailed study of illusory own body perceptions has suggested close links between bodily processing and self-consciousness. One such illusory own body perception is heautoscopy where patients have the sensation of being reduplicated and to exist at two or even more locations. In previous experiments, using a video head-mounted display, self-location and self-identification were manipulated by applying conflicting visuo-tactile information. Yet the experienced singularity of the self was not affected, i.e., participants did not experience having multiple bodies or selves. In two experiments presented in this paper, we investigated self-location and self-identification while participants saw two virtual bodies (video-generated in study 1 and 3D computer generated in study 2) that were stroked either synchronously or asynchronously with their own body. In both experiments, we report that self-identification with two virtual bodies was stronger during synchronous stroking. Furthermore, in the video generated setup with synchronous stroking participants reported a greater feeling of having multiple bodies than in the control conditions. In study 1, but not in study 2, we report that self-location – measured by anterior posterior drift – was significantly shifted towards the two bodies in the synchronous condition only. Self-identification with two bodies, the sensation of having multiple bodies, and the changes in self-location show that the experienced singularity of the self can be studied experimentally. We discuss our data with respect to ownership for supernumerary hands and heautoscopy. We finally compare the effects of the video and 3D computer generated head-mounted display technology and discuss the possible benefits of using either technology to induce changes in illusory self-identification with a virtual body. PMID:24385970

  10. Left, right, left, right, eyes to the front! Müller-Lyer bias in grasping is not a function of hand used, hand preferred or visual hemifield, but foveation does matter.

    PubMed

    van der Kamp, John; de Wit, Matthieu M; Masters, Rich S W

    2012-04-01

    We investigated whether the control of movement of the left hand is more likely to involve the use of allocentric information than movements performed with the right hand. Previous studies (Gonzalez et al. in J Neurophys 95:3496-3501, 2006; De Grave et al. in Exp Br Res 193:421-427, 2009) have reported contradictory findings in this respect. In the present study, right-handed participants (N = 12) and left-handed participants (N = 12) made right- and left-handed grasps to foveated objects and peripheral, non-foveated objects that were located in the right or left visual hemifield and embedded within a Müller-Lyer illusion. They were also asked to judge the size of the object by matching their hand aperture to its length. Hand apertures did not show significant differences in illusory bias as a function of hand used, handedness or visual hemifield. However, the illusory effect was significantly larger for perception than for action, and for the non-foveated compared to foveated objects. No significant illusory biases were found for reach movement times. These findings are consistent with the two-visual system model that holds that the use of allocentric information is more prominent in perception than in movement control. We propose that the increased involvement of allocentric information in movements toward peripheral, non-foveated objects may be a consequence of more awkward, less automatized grasps of nonfoveated than foveated objects. The current study does not support the conjecture that the control of left-handed and right-handed grasps is predicated on different sources of information.

  11. Illusory Reversal of Causality between Touch and Vision has No Effect on Prism Adaptation Rate.

    PubMed

    Tanaka, Hirokazu; Homma, Kazuhiro; Imamizu, Hiroshi

    2012-01-01

    Learning, according to Oxford Dictionary, is "to gain knowledge or skill by studying, from experience, from being taught, etc." In order to learn from experience, the central nervous system has to decide what action leads to what consequence, and temporal perception plays a critical role in determining the causality between actions and consequences. In motor adaptation, causality between action and consequence is implicitly assumed so that a subject adapts to a new environment based on the consequence caused by her action. Adaptation to visual displacement induced by prisms is a prime example; the visual error signal associated with the motor output contributes to the recovery of accurate reaching, and a delayed feedback of visual error can decrease the adaptation rate. Subjective feeling of temporal order of action and consequence, however, can be modified or even reversed when her sense of simultaneity is manipulated with an artificially delayed feedback. Our previous study (Tanaka et al., 2011; Exp. Brain Res.) demonstrated that the rate of prism adaptation was unaffected when the subjective delay of visual feedback was shortened. This study asked whether subjects could adapt to prism adaptation and whether the rate of prism adaptation was affected when the subjective temporal order was illusory reversed. Adapting to additional 100 ms delay and its sudden removal caused a positive shift of point of simultaneity in a temporal order judgment experiment, indicating an illusory reversal of action and consequence. We found that, even in this case, the subjects were able to adapt to prism displacement with the learning rate that was statistically indistinguishable to that without temporal adaptation. This result provides further evidence to the dissociation between conscious temporal perception and motor adaptation.

  12. Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback.

    PubMed

    Kok, Peter; Bains, Lauren J; van Mourik, Tim; Norris, David G; de Lange, Floris P

    2016-02-08

    In addition to bottom-up input, the visual cortex receives large amounts of feedback from other cortical areas [1-3]. One compelling example of feedback activation of early visual neurons in the absence of bottom-up input occurs during the famous Kanizsa illusion, where a triangular shape is perceived, even in regions of the image where there is no bottom-up visual evidence for it. This illusion increases the firing activity of neurons in the primary visual cortex with a receptive field on the illusory contour [4]. Feedback signals are largely segregated from feedforward signals within each cortical area, with feedforward signals arriving in the middle layer, while top-down feedback avoids the middle layers and predominantly targets deep and superficial layers [1, 2, 5, 6]. Therefore, the feedback-mediated activity increase in V1 during the perception of illusory shapes should lead to a specific laminar activity profile that is distinct from the activity elicited by bottom-up stimulation. Here, we used fMRI at high field (7 T) to empirically test this hypothesis, by probing the cortical response to illusory figures in human V1 at different cortical depths [7-14]. We found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1. These results demonstrate the potential for non-invasive recordings of neural activity with laminar specificity in humans and elucidate the role of top-down signals during perceptual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Visual enhancing of tactile perception in the posterior parietal cortex.

    PubMed

    Ro, Tony; Wallace, Ruth; Hagedorn, Judith; Farnè, Alessandro; Pienkos, Elizabeth

    2004-01-01

    The visual modality typically dominates over our other senses. Here we show that after inducing an extreme conflict in the left hand between vision of touch (present) and the feeling of touch (absent), sensitivity to touch increases for several minutes after the conflict. Transcranial magnetic stimulation of the posterior parietal cortex after this conflict not only eliminated the enduring visual enhancement of touch, but also impaired normal tactile perception. This latter finding demonstrates a direct role of the parietal lobe in modulating tactile perception as a result of the conflict between these senses. These results provide evidence for visual-to-tactile perceptual modulation and demonstrate effects of illusory vision of touch on touch perception through a long-lasting modulatory process in the posterior parietal cortex.

  14. Gamma abnormalities during perception of illusory figures in autism.

    PubMed

    Brown, Caroline; Gruber, Thomas; Boucher, Jill; Rippon, Gina; Brock, Jon

    2005-06-01

    This experiment was designed to test the hypothesis that perceptual abnormalities in autism might be associated with alteration of induced gamma activity patterns overlying visual cortical regions. EEG was recorded from six adolescents with autism and eight controls matched on chronological age, and verbal and nonverbal mental age, whilst identifying the presence or absence of an illusory Kanizsa shape. Although there were no reaction time or accuracy differences between the groups there were significant task-related differences in cortical activity. Control participants showed typical gamma-band activity over parietal regions at around 350 msec post onset of shape trials, similar to gamma patterns found in previous studies with non-impaired adults. In contrast, autistic participants showed overall increased activity, including an early 100 msec gamma peak and a late induced peak, 50 to 70 msec earlier than that shown by the control group. We interpret the abnormal gamma activity to reflect decreased "signal to noise" due to decreased inhibitory processing. In this experiment we did not establish a link between altered perception and abnormal gamma, as the autistic participants' behaviour did not differ from the controls. Future work should be designed to replicate this phenomenon and establish the perceptual consequences of altered gamma activity.

  15. Vivid Motor Imagery as an Adaptation Method for Head Turns on a Short-Arm Centrifuge

    NASA Technical Reports Server (NTRS)

    Newby, N. J.; Mast, F. W.; Natapoff, A.; Paloski, W. H.

    2006-01-01

    Artificial gravity (AG) has been proposed as a potential countermeasure to the debilitating physiological effects of long duration space flight. The most economical means of implementing AG may be through the use of a short-radius (2m or less) centrifuge. For such a device to produce gravitational forces comparable to those on earth requires rotation rates in excess of 20 revolutions per minute (rpm). Head turns made out of the plane of rotation at these rates, as may be necessary if exercise is combined with AG, result in cross-coupled stimuli (CCS) that cause adverse side effects including motion sickness, illusory sensations of motion, and inappropriate eye movements. Recent studies indicate that people can adapt to CCS and reduce these side effects by making multiple head turns during centrifuge sessions conducted over consecutive days. However, about 25% of the volunteers for these studies have difficulty tolerating the CCS adaptation paradigm and often drop out due to motion sickness symptoms. The goal of this investigation was to determine whether vivid motor imagery could be used as a pseudostimulus for adapting subjects to this unique environment. Twenty four healthy human subjects (14 males, 10 females), ranging in age from 21 to 48 years (mean 33, sd 7 years) took part in this study. The experimental stimuli were produced using the NASA JSC short-arm centrifuge (SAC). Subjects were oriented supinely on this device with the nose pointed toward the ceiling and head centered on the axis of rotation. Thus, centrifuge rotation was in the body roll plane. After ramp-up the SAC rotated clockwise at a constant rate of 23 rpm, producing a centrifugal force of approximately 1 g at the feet. Semicircular canal CCS were produced by having subjects make yaw head turns from the nose up (NU) position to the right ear down (RED) position and from RED to NU. Each head turn was completed in about one second, and a 30 second recovery period separated consecutive head movements. Participants were randomly assigned to one of three groups (n=8 per group): physical adapters (PA), mental adapters (MA), or a control group (CG). Each subject participated in a one hour test session on each of three consecutive days. Each test session consisted of an initial (preadaptation) period during which the subject performed six CCS maneuvers in the dark, followed by an adaptation period with internal lighting on the centrifuge, and a final (postadaptation) period during which six more CCS maneuvers were performed in the dark. For the PA group, the adaptation period consisted of performing 30 additional CCS maneuvers in the light. For the MA and CG group the centrifuge was ramped down to 0 rpm after the pre-adaptation period and ramped back up to 23 rpm before the post-adaptation period. For the both of these groups, the adaptation period consisted of making 30 CCS maneuvers in the light with the centrifuge stationary (so no cross-coupling occurred). MA group subjects were instructed to vividly imagine the provocative sensations produced by the preadaptation CCS maneuvers in terms of magnitude, duration, and direction of illusory body tilt, as well as any accompanying levels of motion sickness. CG group subjects were asked to answer low imagery content questions (trivial pursuit) during each adaptation period head turn. During the 30 second recovery following each head turn, psychophysical data were collected including self reports of motion sickness, magnitude and direction estimates of illusory body tilt, and the overall duration of these sensations. A multilevel mixed effects linear regression analysis performed on all response variables indicated that all three groups experienced some psychophysical adaptation across the three test sessions. For illusory tilt magnitude, the PA group exhibited the most overall adaptation, followed by the MA group, and the CG group. The slopes of these adaptation trajectories by group over day were significantly diffent from one another. For the perceived duration of sensations, the CG group again exhibited the least amount of adaptation. However, the rates of adaptation of the PA and the MA groups were indistinguishable, suggesting that the imagined pseudostimulus appeared to be just as effective a means of adaptation as the actual stimulus. The MA group's rate of adaptation to motion sickness symptoms was also comparable to the PA group. The use of vivid motor imagery may be an effective method for adapting to the illusory sensations and motion sickness symptoms produced by cross-coupled stimuli. For space-based AG applications, this technique may prove quite useful in retaining astronauts considered highly susceptible to motion sickness as it reduces the number of actual CCS required to attain adaptation.

  16. Transient cardio-respiratory responses to visually induced tilt illusions

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Ramsdell, C. D.; Mullen, T. J.; Oman, C. M.; Harm, D. L.; Paloski, W. H.

    2000-01-01

    Although the orthostatic cardio-respiratory response is primarily mediated by the baroreflex, studies have shown that vestibular cues also contribute in both humans and animals. We have demonstrated a visually mediated response to illusory tilt in some human subjects. Blood pressure, heart and respiration rate, and lung volume were monitored in 16 supine human subjects during two types of visual stimulation, and compared with responses to real passive whole body tilt from supine to head 80 degrees upright. Visual tilt stimuli consisted of either a static scene from an overhead mirror or constant velocity scene motion along different body axes generated by an ultra-wide dome projection system. Visual vertical cues were initially aligned with the longitudinal body axis. Subjective tilt and self-motion were reported verbally. Although significant changes in cardio-respiratory parameters to illusory tilts could not be demonstrated for the entire group, several subjects showed significant transient decreases in mean blood pressure resembling their initial response to passive head-up tilt. Changes in pulse pressure and a slight elevation in heart rate were noted. These transient responses are consistent with the hypothesis that visual-vestibular input contributes to the initial cardiovascular adjustment to a change in posture in humans. On average the static scene elicited perceived tilt without rotation. Dome scene pitch and yaw elicited perceived tilt and rotation, and dome roll motion elicited perceived rotation without tilt. A significant correlation between the magnitude of physiological and subjective reports could not be demonstrated.

  17. Parabolic flight - Loss of sense of orientation

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1979-01-01

    On the earth, or in level flight, a blindfolded subject being rotated at constant velocity about his recumbent long body axis experiences illusory orbital motion of his body in the opposite direction. By contrast, during comparable rotation in the free-fall phase of parabolic flight, no body motion is perceived and all sense of external orientation may be lost; when touch and pressure stimulation is applied to the body surface, a sense of orientation is reestablished immediately. The increased gravitoinertial force period of a parabola produces an exaggeration of the orbital motion experienced in level flight. These observations reveal an important influence of touch, pressure, and kinesthetic information on spatial orientation and provide a basis for understanding many of the postural illusions reported by astronauts in space flight.

  18. The "side" matters: how configurality is reflected in completion.

    PubMed

    Kogo, Naoki; Wagemans, Johan

    2013-01-01

    The perception of figure-ground organization is a highly context-sensitive phenomenon. Accumulating evidence suggests that the so-called completion phenomenon is tightly linked to this figure-ground organization. While many computational models have applied borderline completion algorithms based on the detection of boundary alignments, we point out the problems of this approach. We hypothesize that completion is a result of computing the figure-ground organization. Specifically, the global interactions in the neural network activate the "border-ownership" sensitive neurons at the location where no luminance contrast is given and this activation corresponds to the perception of illusory contours. The implications of this result to the general property of emerging Gestalt percepts are discussed.

  19. Cortical dynamics of feature binding and reset: control of visual persistence.

    PubMed

    Francis, G; Grossberg, S; Mingolla, E

    1994-04-01

    An analysis of the reset of visual cortical circuits responsible for the binding or segmentation of visual features into coherent visual forms yields a model that explains properties of visual persistence. The reset mechanisms prevent massive smearing of visual percepts in response to rapidly moving images. The model simulates relationships among psychophysical data showing inverse relations of persistence to flash luminance and duration, greater persistence of illusory contours than real contours, a U-shaped temporal function for persistence of illusory contours, a reduction of persistence due to adaptation with a stimulus of like orientation, an increase of persistence with spatial separation of a masking stimulus. The model suggests that a combination of habituative, opponent, and endstopping mechanisms prevent smearing and limit persistence. Earlier work with the model has analyzed data about boundary formation, texture segregation, shape-from-shading, and figure-ground separation. Thus, several types of data support each model mechanism and new predictions are made.

  20. Illusory Obesity Triggers Body Dissatisfaction Responses in the Insula and Anterior Cingulate Cortex

    PubMed Central

    Preston, Catherine; Ehrsson, H. Henrik

    2016-01-01

    In today's Western society, concerns regarding body size and negative feelings toward one's body are all too common. However, little is known about the neural mechanisms underlying negative feelings toward the body and how they relate to body perception and eating-disorder pathology. Here, we used multisensory illusions to elicit illusory ownership of obese and slim bodies during functional magnetic resonance imaging. The results implicate the anterior insula and the anterior cingulate cortex in the development of negative feelings toward the body through functional interactions with the posterior parietal cortex, which mediates perceived obesity. Moreover, cingulate neural responses were modulated by nonclinical eating-disorder psychopathology and were attenuated in females. These results reveal how perceptual and affective body representations interact in the human brain and may help explain the neurobiological underpinnings of eating-disorder vulnerability in women. PMID:27733537

  1. Why Barbie Feels Heavier than Ken: The Influence of Size-Based Expectancies and Social Cues on the Illusory Perception of Weight

    ERIC Educational Resources Information Center

    Dijker, Anton J. M.

    2008-01-01

    In order to examine the relative influence of size-based expectancies and social cues on the perceived weight of objects, two studies were performed, using equally weighing dolls differing in sex-related and age-related vulnerability or physical strength cues. To increase variation in perceived size, stimulus objects were viewed through optical…

  2. “Seeing” and “feeling” architecture: how bodily self-consciousness alters architectonic experience and affects the perception of interiors

    PubMed Central

    Pasqualini, Isabella; Llobera, Joan; Blanke, Olaf

    2013-01-01

    Over the centuries architectural theory evolved several notions of embodiment, proposing in the nineteenth and twentieth century that architectonic experience is related to physiological responses of the observer. Recent advances in the cognitive neuroscience of embodiment (or bodily self-consciousness) enable empirical studies of architectonic embodiment. Here, we investigated how architecture modulates bodily self-consciousness by adapting a video-based virtual reality (VR) setup previously used to investigate visuo-tactile mechanisms of bodily self-consciousness. While standing in two different interiors, participants were filmed from behind and watched their own virtual body online on a head-mounted display (HMD). Visuo-tactile strokes were applied in synchronous or asynchronous mode to the participants and their virtual body. Two interiors were simulated in the laboratory by placing the sidewalls either far or near from the participants, generating a large and narrow room. We tested if bodily self-consciousness was differently modulated when participants were exposed to both rooms and whether these changes depend on visuo-tactile stimulation. We measured illusory touch, self-identification, and performed length estimations. Our data show that synchronous stroking of the physical and the virtual body induces illusory touch and self-identification with the virtual body, independent of room-size. Moreover, in the narrow room we observed weak feelings of illusory touch with the sidewalls and of approaching walls. These subjective changes were complemented by a stroking-dependent modulation of length estimation only in the narrow room with participants judging the room-size more accurately during conditions of illusory self-identification. We discuss our findings and previous notions of architectonic embodiment in the context of the cognitive neuroscience of bodily self-consciousness and propose an empirical framework grounded in architecture, cognitive neuroscience, and VR. PMID:23805112

  3. "Seeing" and "feeling" architecture: how bodily self-consciousness alters architectonic experience and affects the perception of interiors.

    PubMed

    Pasqualini, Isabella; Llobera, Joan; Blanke, Olaf

    2013-01-01

    Over the centuries architectural theory evolved several notions of embodiment, proposing in the nineteenth and twentieth century that architectonic experience is related to physiological responses of the observer. Recent advances in the cognitive neuroscience of embodiment (or bodily self-consciousness) enable empirical studies of architectonic embodiment. Here, we investigated how architecture modulates bodily self-consciousness by adapting a video-based virtual reality (VR) setup previously used to investigate visuo-tactile mechanisms of bodily self-consciousness. While standing in two different interiors, participants were filmed from behind and watched their own virtual body online on a head-mounted display (HMD). Visuo-tactile strokes were applied in synchronous or asynchronous mode to the participants and their virtual body. Two interiors were simulated in the laboratory by placing the sidewalls either far or near from the participants, generating a large and narrow room. We tested if bodily self-consciousness was differently modulated when participants were exposed to both rooms and whether these changes depend on visuo-tactile stimulation. We measured illusory touch, self-identification, and performed length estimations. Our data show that synchronous stroking of the physical and the virtual body induces illusory touch and self-identification with the virtual body, independent of room-size. Moreover, in the narrow room we observed weak feelings of illusory touch with the sidewalls and of approaching walls. These subjective changes were complemented by a stroking-dependent modulation of length estimation only in the narrow room with participants judging the room-size more accurately during conditions of illusory self-identification. We discuss our findings and previous notions of architectonic embodiment in the context of the cognitive neuroscience of bodily self-consciousness and propose an empirical framework grounded in architecture, cognitive neuroscience, and VR.

  4. Self-Grounded Vision: Hand Ownership Modulates Visual Location through Cortical β and γ Oscillations.

    PubMed

    Faivre, Nathan; Dönz, Jonathan; Scandola, Michele; Dhanis, Herberto; Bello Ruiz, Javier; Bernasconi, Fosco; Salomon, Roy; Blanke, Olaf

    2017-01-04

    Vision is known to be shaped by context, defined by environmental and bodily signals. In the Taylor illusion, the size of an afterimage projected on one's hand changes according to proprioceptive signals conveying hand position. Here, we assessed whether the Taylor illusion does not just depend on the physical hand position, but also on bodily self-consciousness as quantified through illusory hand ownership. Relying on the somatic rubber hand illusion, we manipulated hand ownership, such that participants embodied a rubber hand placed next to their own hand. We found that an afterimage projected on the participant's hand drifted depending on illusory ownership between the participants' two hands, showing an implication of self-representation during the Taylor illusion. Oscillatory power analysis of electroencephalographic signals showed that illusory hand ownership was stronger in participants with stronger α suppression over left sensorimotor cortex, whereas the Taylor illusion correlated with higher β/γ power over frontotemporal regions. Higher γ connectivity between left sensorimotor and inferior parietal cortex was also found during illusory hand ownership. These data show that afterimage drifts in the Taylor illusion do not only depend on the physical hand position but also on subjective ownership, which itself is based on the synchrony of somatosensory signals from the two hands. The effect of ownership on afterimage drifts is associated with β/γ power and γ connectivity between frontoparietal regions and the visual cortex. Together, our results suggest that visual percepts are not only influenced by bodily context but are self-grounded, mapped on a self-referential frame. Vision is influenced by the body: in the Taylor illusion, the size of an afterimage projected on one's hand changes according to tactile and proprioceptive signals conveying hand position. Here, we report a new phenomenon revealing that the perception of afterimages depends not only on bodily signals, but also on the sense of self. Relying on the rubber hand illusion, we manipulated hand ownership, so that participants embodied a rubber hand placed next to their own hand. We found that visual afterimages projected on the participant's hand drifted laterally, only when the rubber hand was embodied. Electroencephalography revealed spectral dissociations between somatic and visual effects, and higher γ connectivity along the dorsal visual pathways when the rubber hand was embodied. Copyright © 2017 the authors 0270-6474/17/370011-12$15.00/0.

  5. Surface regions of illusory images are detected with a slower processing speed than those of luminance-defined images.

    PubMed

    Mihaylova, Milena; Manahilov, Velitchko

    2010-11-24

    Research has shown that the processing time for discriminating illusory contours is longer than for real contours. We know, however, little whether the visual processes, associated with detecting regions of illusory surfaces, are also slower as those responsible for detecting luminance-defined images. Using a speed-accuracy trade-off (SAT) procedure, we measured accuracy as a function of processing time for detecting illusory Kanizsa-type and luminance-defined squares embedded in 2D static luminance noise. The data revealed that the illusory images were detected at slower processing speed than the real images, while the points in time, when accuracy departed from chance, were not significantly different for both stimuli. The classification images for detecting illusory and real squares showed that observers employed similar detection strategies using surface regions of the real and illusory squares. The lack of significant differences between the x-intercepts of the SAT functions for illusory and luminance-modulated stimuli suggests that the detection of surface regions of both images could be based on activation of a single mechanism (the dorsal magnocellular visual pathway). The slower speed for detecting illusory images as compared to luminance-defined images could be attributed to slower processes of filling-in of regions of illusory images within the dorsal pathway.

  6. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion.

    PubMed

    Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J

    2007-02-01

    Seeing a speaker's facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the "McGurk illusion", where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at approximately 290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350-400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process.

  7. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion

    PubMed Central

    Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J.

    2006-01-01

    Seeing a speaker’s facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the “McGurk illusion”, where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at ~290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350–400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process. PMID:16757004

  8. The perception of subjective contours and neon color spreading figures in young infants.

    PubMed

    Kavsek, Michael

    2009-02-01

    The goal of the present habituation-dishabituation study was to explore sensitivity to subjective contours and neon color spreading patterns in infants. The first experiment was a replication of earlier investigations that showed evidence that even young infants are capable of perceiving subjective contours. Participants 4 months of age were habituated to a subjective Kanizsa square and were tested afterward for their ability to differentiate between the subjective square and a nonsubjective pattern that was constructed by rotating some of the inducing elements. Data analysis indicated a significant preference for the nonsubjective pattern. A control condition ensured that this result was not generated by the difference in figural symmetry or by the local differences between the test displays. In the second experiment, infant perception of a neon color spreading display was analyzed. Again, 4-month-old infants could discriminate between the illusory figure and a nonillusory pattern. Furthermore, infants in a control group did not respond to the difference in symmetry and the local differences between two nonillusory targets. Overall, the results show that young infants respond to illusory figures that are generated by either implicit T-junctions (Experiment 1) or implicit X-junctions (Experiment 2). The findings are interpreted against the background of the neurophysiological model proposed by Grossberg and Mingolla (1985).

  9. Perceptual similarity and the neural correlates of geometrical illusions in human brain structure.

    PubMed

    Axelrod, Vadim; Schwarzkopf, D Samuel; Gilaie-Dotan, Sharon; Rees, Geraint

    2017-01-09

    Geometrical visual illusions are an intriguing phenomenon, in which subjective perception consistently misjudges the objective, physical properties of the visual stimulus. Prominent theoretical proposals have been advanced attempting to find common mechanisms across illusions. But empirically testing the similarity between illusions has been notoriously difficult because illusions have very different visual appearances. Here we overcome this difficulty by capitalizing on the variability of the illusory magnitude across participants. Fifty-nine healthy volunteers participated in the study that included measurement of individual illusion magnitude and structural MRI scanning. We tested the Muller-Lyer, Ebbinghaus, Ponzo, and vertical-horizontal geometrical illusions as well as a non-geometrical, contrast illusion. We found some degree of similarity in behavioral judgments of all tested geometrical illusions, but not between geometrical illusions and non-geometrical, contrast illusion. The highest similarity was found between Ebbinghaus and Muller-Lyer geometrical illusions. Furthermore, the magnitude of all geometrical illusions, and particularly the Ebbinghaus and Muller-Lyer illusions, correlated with local gray matter density in the parahippocampal cortex, but not in other brain areas. Our findings suggest that visuospatial integration and scene construction processes might partly mediate individual differences in geometric illusory perception. Overall, these findings contribute to a better understanding of the mechanisms behind geometrical illusions.

  10. Multiple functional units in the preattentive segmentation of speech in Japanese: evidence from word illusions.

    PubMed

    Nakamura, Miyoko; Kolinsky, Régine

    2014-12-01

    We explored the functional units of speech segmentation in Japanese using dichotic presentation and a detection task requiring no intentional sublexical analysis. Indeed, illusory perception of a target word might result from preattentive migration of phonemes, morae, or syllables from one ear to the other. In Experiment I, Japanese listeners detected targets presented in hiragana and/or kanji. Phoneme migrations did occur, suggesting that orthography-independent sublexical constituents play some role in segmentation. However, syllable and especially mora migrations were more numerous. This pattern of results was not observed in French speakers (Experiment 2), suggesting that it reflects native segmentation in Japanese. To control for the intervention of kanji representations (many words are written in kanji, and one kanji often corresponds to one syllable), in Experiment 3, Japanese listeners were presented with target loanwords that can be written only in katakana. Again, phoneme migrations occurred, while the first mora and syllable led to similar rates of illusory percepts. No migration occurred for the second, "special" mora (/J/ or/N/), probably because this constitutes the latter part of a heavy syllable. Overall, these findings suggest that multiple units, such as morae, syllables, and even phonemes, function independently of orthographic knowledge in Japanese preattentive speech segmentation.

  11. Moving in a Moving World: A Review on Vestibular Motion Sickness

    PubMed Central

    Bertolini, Giovanni; Straumann, Dominik

    2016-01-01

    Motion sickness is a common disturbance occurring in healthy people as a physiological response to exposure to motion stimuli that are unexpected on the basis of previous experience. The motion can be either real, and therefore perceived by the vestibular system, or illusory, as in the case of visual illusion. A multitude of studies has been performed in the last decades, substantiating different nauseogenic stimuli, studying their specific characteristics, proposing unifying theories, and testing possible countermeasures. Several reviews focused on one of these aspects; however, the link between specific nauseogenic stimuli and the unifying theories and models is often not clearly detailed. Readers unfamiliar with the topic, but studying a condition that may involve motion sickness, can therefore have difficulties to understand why a specific stimulus will induce motion sickness. So far, this general audience struggles to take advantage of the solid basis provided by existing theories and models. This review focuses on vestibular-only motion sickness, listing the relevant motion stimuli, clarifying the sensory signals involved, and framing them in the context of the current theories. PMID:26913019

  12. Visual feature integration with an attention deficit.

    PubMed

    Arguin, M; Cavanagh, P; Joanette, Y

    1994-01-01

    Treisman's feature integration theory proposes that the perception of illusory conjunctions of correctly encoded visual features is due to the failure of an attentional process. This hypothesis was examined by studying brain-damaged subjects who had previously been shown to have difficulty in attending to contralesional stimulation. These subjects exhibited a massive feature integration deficit for contralesional stimulation relative to ipsilesional displays. In contrast, both normal age-matched controls and brain-damaged subjects who did not exhibit any evidence of an attention deficit showed comparable feature integration performance with left- and right-hemifield stimulation. These observations indicate the crucial function of attention for visual feature integration in normal perception.

  13. Spatial vision within egocentric and exocentric frames of reference

    NASA Technical Reports Server (NTRS)

    Howard, Ian P.

    1989-01-01

    The extent to which perceptual judgements within egocentric and exocentric frames of reference are subject to illusory disturbances and long term modifications is discussed. It is argued that well known spatial illusions, such as the oculogyral illusion and induced visual motion have usually been discussed without proper attention being paid to the frame of reference within which they occur, and that this has led to the construction of inadequate theories and inappropriate procedures for testing them.

  14. Aristotle's illusion reveals interdigit functional somatosensory alterations in focal hand dystonia.

    PubMed

    Tinazzi, Michele; Marotta, Angela; Fasano, Alfonso; Bove, Francesco; Bentivoglio, Anna Rita; Squintani, Giovanna; Pozzer, Lara; Fiorio, Mirta

    2013-03-01

    In focal hand dystonia, the cortical somatosensory representation of the fingers is abnormal, with overlapping receptive fields and reduced interdigit separation. These abnormalities are associated with deficits in sensory perception, as previously demonstrated by applying tactile stimuli to one finger at a time. What is still unknown is whether the sensory deficits can be observed when tactile perception involves more than one finger. To address this issue, we applied 'Aristotle's illusion' to 15 patients with focal hand dystonia, 15 patients with dystonia not affecting the hand (blepharospasm and cervical dystonia) and 15 healthy control subjects. In this illusion, one object touching the contact point of two crossed fingertips is perceived as two objects by a blindfolded subject. The same object placed between two parallel fingertips is correctly perceived as one. The illusory doubling sensation is because of the fact that the contact point between the crossed fingers consists of non-adjacent and functionally unrelated skin regions, which usually send sensory signals to separate spots in the somatosensory cortex. In our study, participants were touched by one sphere between the second-third digits, the second-fourth digits and the fourth-fifth digits of both hands, either in crossed or in parallel position, and had to refer whether they felt one or two stimuli. The percentage of 'two stimuli' responses was an index of the illusory doubling. Both healthy control subjects and dystonic patients presented Aristotle's illusion when the fingers were crossed. However, patients with focal hand dystonia presented a significant reduction of the illusion when the sphere was placed between the crossed fourth and fifth digits of the affected hand. This reduction correlated with the severity of motor disease at the fingers. Similar findings were not observed in non-hand dystonia and control groups. The reduction of Aristotle's illusion in non-affected fingers and its preservation in affected fingers suggests dissociation between the abnormal processing of sensory signals and the motor impairment. Based on previous evidence showing that the sensory signals coming from the fourth digit determine lower activation in the somatosensory cortex than those coming from the fifth digit, we suggest that in the crossed position, the tactile information conveyed by the fifth digit prevailed over the fourth digit, thus resulting in the perception of one stimulus. The reduction of the illusory doubling perception, therefore, may represent the functional correlate of the different level of activation between the fourth and the fifth digit in the somatosensory cortex.

  15. Illusory correlations despite equated category frequencies: A test of the information loss account.

    PubMed

    Weigl, Michael; Mecklinger, Axel; Rosburg, Timm

    2018-06-14

    Illusory correlations (IC) are the perception of covariation, where none exists. For example, people associate majorities with frequent behavior and minorities with infrequent behavior even in the absence of such an association. According to the information loss account, ICs result from greater fading of infrequent group-behavior combinations in memory. We conducted computer simulations based on this account which showed that ICs are expected under standard conditions with skewed category frequencies (i.e. 2:1 ratio for positive and negative descriptions), but not under conditions with equated category frequencies (i.e. 1:1 ratio for positive and negative descriptions). Contrary to these simulations, our behavioral experiments revealed an IC under both conditions, which did not decrease over time. Thus, information loss alone is not sufficient as an explanation for the formation of ICs. These results imply that negative items contribute to ICs not only due to their infrequency, but also due to their emotional salience. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The lemon illusion: seeing curvature where there is none.

    PubMed

    Strother, Lars; Killebrew, Kyle W; Caplovitz, Gideon P

    2015-01-01

    Curvature is a highly informative visual cue for shape perception and object recognition. We introduce a novel illusion-the Lemon Illusion-in which subtle illusory curvature is perceived along contour regions that are devoid of physical curvature. We offer several perceptual demonstrations and observations that lead us to conclude that the Lemon Illusion is an instance of a more general illusory curvature phenomenon, one in which the presence of contour curvature discontinuities lead to the erroneous extension of perceived curvature. We propose that this erroneous extension of perceived curvature results from the interaction of neural mechanisms that operate on spatially local contour curvature signals with higher-tier mechanisms that serve to establish more global representations of object shape. Our observations suggest that the Lemon Illusion stems from discontinuous curvature transitions between rectilinear and curved contour segments. However, the presence of curvature discontinuities is not sufficient to produce the Lemon Illusion, and the minimal conditions necessary to elicit this subtle and insidious illusion are difficult to pin down.

  17. Plasticity of illusory vowel perception in Brazilian-Japanese bilinguals.

    PubMed

    Parlato-Oliveira, Erika; Christophe, Anne; Hirose, Yuki; Dupoux, Emmanuel

    2010-06-01

    Previous research shows that monolingual Japanese and Brazilian Portuguese listeners perceive illusory vowels (/u/ and /i/, respectively) within illegal sequences of consonants. Here, several populations of Japanese-Brazilian bilinguals are tested, using an explicit vowel identification task (experiment 1), and an implicit categorization and sequence recall task (experiment 2). Overall, second-generation immigrants, who first acquired Japanese at home and Brazilian during childhood (after age 4) showed a typical Brazilian pattern of result (and so did simultaneous bilinguals, who were exposed to both languages from birth on). In contrast, late bilinguals, who acquired their second language in adulthood, exhibited a pattern corresponding to their native language. In addition, an influence of the second language was observed in the explicit task of Exp. 1, but not in the implicit task used in Exp. 2, suggesting that second language experience affects mostly explicit or metalinguistic skills. These results are compared to other studies of phonological representations in adopted children or immigrants, and discussed in relation to the role of age of acquisition and sociolinguistic factors.

  18. Optical images of visible and invisible percepts in the primary visual cortex of primates

    PubMed Central

    Macknik, Stephen L.; Haglund, Michael M.

    1999-01-01

    We optically imaged a visual masking illusion in primary visual cortex (area V-1) of rhesus monkeys to ask whether activity in the early visual system more closely reflects the physical stimulus or the generated percept. Visual illusions can be a powerful way to address this question because they have the benefit of dissociating the stimulus from perception. We used an illusion in which a flickering target (a bar oriented in visual space) is rendered invisible by two counter-phase flickering bars, called masks, which flank and abut the target. The target and masks, when shown separately, each generated correlated activity on the surface of the cortex. During the illusory condition, however, optical signals generated in the cortex by the target disappeared although the image of the masks persisted. The optical image thus was correlated with perception but not with the physical stimulus. PMID:10611363

  19. Effects of eating on vection-induced motion sickness, cardiac vagal tone, and gastric myoelectric activity

    NASA Technical Reports Server (NTRS)

    Uijtdehaage, S. H.; Stern, R. M.; Koch, K. L.

    1992-01-01

    This study investigated the effect of food ingestion on motion sickness severity and its physiological mechanisms. Forty-six fasted subjects were assigned either to a meal group or to a no-meal group. Electrogastrographic (EGG) indices (normal 3 cpm activity and abnormal 4-9 cpm tachyarrhythmia) and respiratory sinus arrhythmia (RSA) were measured before and after a meal and during a subsequent exposure to a rotating drum in which illusory self-motion was induced. The results indicated that food intake enhanced cardiac parasympathetic tone (RSA) and increased gastric 3 cpm activity. Postprandial effects on motion sickness severity remain equivocal due to group differences in RSA baseline levels. During drum rotation, dysrhythmic activity of the stomach (tachyarrhythmia) and vagal withdrawal were observed. Furthermore, high levels of vagal tone prior to drum rotation predicted a low incidence of motion sickness symptoms, and were associated positively with gastric 3 cpm activity and negatively with tachyarrhythmia. These data suggest that enhanced levels of parasympathetic activity can alleviate motion sickness symptoms by suppressing, in part, its dysrhythmic gastric underpinnings.

  20. Disrupted integration of sensory stimuli with information about the movement of the body as a mechanism explaining LSD-induced experience.

    PubMed

    Juszczak, Grzegorz R

    2017-03-01

    LSD (lysergic acid diethylamide) is a model psychedelic drug used to study mechanism underlying the effects induced by hallucinogens. However, despite advanced knowledge about molecular mechanism responsible for the effects induced by LSD and other related substances acting at serotonergic 5-HT 2a receptors, we still do not understand how these drugs trigger specific sensory experiences. LSD-induced experience is characterised by perception of movement in the environment and by presence of various bodily sensations such as floating in space, merging into surroundings and movement out of the physical body (the out-of-body experience). It means that a large part of the experience induced by the LSD can be simplified to the illusory movement that can be attributed to the self or to external objects. The phenomenology of the LSD-induced experience has been combined with the fact that serotonergic neurons provide all major parts of the brain with information about the level of tonic motor activity, occurrence of external stimuli and the execution of orienting responses. Therefore, it has been proposed that LSD-induced stimulation of 5-HT 2a receptors disrupts the integration of the sensory stimuli with information about the movement of the body leading to perception of illusory movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Induced rotational motion with nonabutting inducing and induced stimuli: implications regarding two forms of induced motion.

    PubMed

    Reinhardt-Rutland, A H

    2003-07-01

    Induced motion is the illusory motion of a static stimulus in the opposite direction to a moving stimulus. Two types of induced motion have been distinguished: (a) when the moving stimulus is distant from the static stimulus and undergoes overall displacement, and (b) when the moving stimulus is pattern viewed within fixed boundaries that abut the static stimulus. Explanations of the 1st type of induced motion refer to mediating phenomena, such as vection, whereas the 2nd type is attributed to local processing by motion-sensitive neurons. The present research was directed to a display that elicited induced rotational motion with the characteristics of both types of induced motion: the moving stimulus lay within fixed boundaries, but the inducing and induced stimuli were distant from each other. The author investigated the properties that distinguished the two types of induced motion. In 3 experiments, induced motion persisted indefinitely, interocular transfer of the aftereffect of induced motion was limited to about 20%, and the time-course of the aftereffect of induced motion could not be attributed to vection. Those results were consistent with fixed-boundary induced motion. However, they could not be explained by local processing. Instead, the results might reflect the detection of object motion within a complex flow-field that resulted from the observer's motion.

  2. If it's not there, where is it? Locating illusory conjunctions.

    PubMed

    Hazeltine, R E; Prinzmetal, W; Elliott, W

    1997-02-01

    There is evidence that complex objects are decomposed by the visual system into features, such as shape and color. Consistent with this theory is the phenomenon of illusory conjunctions, which occur when features are incorrectly combined to form an illusory object. We analyzed the perceived location of illusory conjunctions to study the roles of color and shape in the location of visual objects. In Experiments 1 and 2, participants located illusory conjunctions about halfway between the veridical locations of the component features. Experiment 3 showed that the distribution of perceived locations was not the mixture of two distributions centered at the 2 feature locations. Experiment 4 replicated these results with an identification task rather than a detection task. We concluded that the locations of illusory conjunctions were not arbitrary but were determined by both constituent shape and color.

  3. Visual Illusions: An Interesting Tool to Investigate Developmental Dyslexia and Autism Spectrum Disorder

    PubMed Central

    Gori, Simone; Molteni, Massimo; Facoetti, Andrea

    2016-01-01

    A visual illusion refers to a percept that is different in some aspect from the physical stimulus. Illusions are a powerful non-invasive tool for understanding the neurobiology of vision, telling us, indirectly, how the brain processes visual stimuli. There are some neurodevelopmental disorders characterized by visual deficits. Surprisingly, just a few studies investigated illusory perception in clinical populations. Our aim is to review the literature supporting a possible role for visual illusions in helping us understand the visual deficits in developmental dyslexia and autism spectrum disorder. Future studies could develop new tools – based on visual illusions – to identify an early risk for neurodevelopmental disorders. PMID:27199702

  4. Let me take the wheel: Illusory control and sense of agency

    PubMed Central

    Tobias-Webb, Juliette; Limbrick-Oldfield, Eve H.; Gillan, Claire M.; Moore, James W.; Aitken, Michael R. F.; Clark, Luke

    2017-01-01

    ABSTRACT Illusory control refers to an effect in games of chance where features associated with skilful situations increase expectancies of success. Past work has operationalized illusory control in terms of subjective ratings or behaviour, with limited consideration of the relationship between these definitions, or the broader construct of agency. This study used a novel card-guessing task in 78 participants to investigate the relationship between subjective and behavioural illusory control. We compared trials in which participants (a) had no opportunity to exercise illusory control, (b) could exercise illusory control for free, or (c) could pay to exercise illusory control. Contingency Judgment and Intentional Binding tasks assessed explicit and implicit sense of agency, respectively. On the card-guessing task, confidence was higher when participants exerted control than in the baseline condition. In a complementary model, participants were more likely to exercise control when their confidence was high, and this effect was accentuated in the pay condition relative to the free condition. Decisions to pay were positively correlated with control ratings on the Contingency Judgment task, but were not significantly related to Intentional Binding. These results establish an association between subjective and behavioural illusory control and locate the construct within the cognitive literature on agency. PMID:27376771

  5. Illusory conjunctions die hard: a reply to Prinzmetal, Diedrichsen, and Ivry (2001).

    PubMed

    Donk, M

    2001-06-01

    M. Donk (1999) showed that various data patterns that have been considered as evidence for the existence of illusory conjunctions may be due to errors of target-nontarget confusion, an account that challenges the mere existence of illusory conjunction. In a reply, W. Prinzmetal, J. Diedrichsen, and R. B. Ivry (2001) argued against this conclusion, claiming that some earlier findings can be explained only when one assumes that illusory conjunctions exist. The current article shows that Prinzmetal et al.'s claims cannot refute any of Donk's earlier conclusions, suggesting indeed that one can only conclude that "illusory conjunctions are an illusion."

  6. Surface texture can bias tactile form perception.

    PubMed

    Nakatani, Masashi; Howe, Robert D; Tachi, Susumu

    2011-01-01

    The sense of touch is believed to provide a reliable perception of the object's properties; however, our tactile perceptions could be illusory at times. A recently reported tactile illusion shows that a raised form can be perceived as indented when it is surrounded by textured areas. This phenomenon suggests that the form perception can be influenced by the surface textures in its adjacent areas. As perception of texture and that of form have been studied independently of each other, the present study examined whether textures, in addition to the geometric edges, contribute to the tactile form perception. We examined the perception of the flat and raised contact surface (3.0 mm width) with various heights (0.1, 0.2, 0.3 mm), which had either textured or non-textured adjacent areas, under the static, passive and active touch conditions. Our results showed that texture decreased the raised perception of the surface with a small height (0.1 mm) and decreased the flat perception of the physically flat surface under the passive and active touch conditions. We discuss a possible mechanism underlying the effect of the textures on the form perception based on previous neurophysiological findings.

  7. Illusory body ownership of an invisible body interpolated between virtual hands and feet via visual-motor synchronicity.

    PubMed

    Kondo, Ryota; Sugimoto, Maki; Minamizawa, Kouta; Hoshi, Takayuki; Inami, Masahiko; Kitazaki, Michiteru

    2018-05-15

    Body ownership can be modulated through illusory visual-tactile integration or visual-motor synchronicity/contingency. Recently, it has been reported that illusory ownership of an invisible body can be induced by illusory visual-tactile integration from a first-person view. We aimed to test whether a similar illusory ownership of the invisible body could be induced by the active method of visual-motor synchronicity and if the illusory invisible body could be experienced in front of and facing away from the observer. Participants observed left and right white gloves and socks in front of them, at a distance of 2 m, in a virtual room through a head-mounted display. The white gloves and socks were synchronized with the observers' actions. In the experiments, we tested the effect of synchronization, and compared this to a whole-body avatar, measuring self-localization drift. We observed that visual hands and feet were sufficient to induce illusory body ownership, and this effect was as strong as using a whole-body avatar.

  8. Neural mechanisms underlying sensitivity to reverse-phi motion in the fly

    PubMed Central

    Meier, Matthias; Serbe, Etienne; Eichner, Hubert; Borst, Alexander

    2017-01-01

    Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON- or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics. PMID:29261684

  9. Neural mechanisms underlying sensitivity to reverse-phi motion in the fly.

    PubMed

    Leonhardt, Aljoscha; Meier, Matthias; Serbe, Etienne; Eichner, Hubert; Borst, Alexander

    2017-01-01

    Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON- or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics.

  10. Sensorimotor aspects of high-speed artificial gravity: II. The effect of head position on illusory self motion

    NASA Technical Reports Server (NTRS)

    Mast, F. W.; Newby, N. J.; Young, L. R.

    2002-01-01

    The effects of cross-coupled stimuli on the semicircular canals are shown to be influenced by the position of the subject's head with respect to gravity and the axis of rotation, but not by the subject's head position relative to the trunk. Seventeen healthy subjects made head yaw movements out of the horizontal plane while lying on a horizontal platform (MIT short radius centrifuge) rotating at 23 rpm about an earth-vertical axis. The subjects reported the magnitude and duration of the illusory pitch or roll sensations elicited by the cross-coupled rotational stimuli acting on the semicircular canals. The results suggest an influence of head position relative to gravity. The magnitude estimation is higher and the sensation decays more slowly when the head's final position is toward nose-up (gravity in the subject's head x-z-plane) compared to when the head is turned toward the side (gravity in the subject's head y-z-plane). The results are discussed with respect to artificial gravity in space and the possible role of pre-adaptation to cross-coupled angular accelerations on earth.

  11. The Effects of Optical Illusions in Perception and Action in Peripersonal and Extrapersonal Space.

    PubMed

    Shim, Jaeho; van der Kamp, John

    2017-09-01

    While the two visual system hypothesis tells a fairly compelling story about perception and action in peripersonal space (i.e., within arm's reach), its validity for extrapersonal space is very limited and highly controversial. Hence, the present purpose was to assess whether perception and action differences in peripersonal space hold in extrapersonal space and are modulated by the same factors. To this end, the effects of an optic illusion in perception and action in both peripersonal and extrapersonal space were compared in three groups that threw balls toward a target at a distance under different target eccentricity (i.e., with the target fixated and in peripheral field), viewing (i.e., binocular and monocular viewing), and delay conditions (i.e., immediate and delayed action). The illusory bias was smaller in action than in perception in peripersonal space, but this difference was significantly reduced in extrapersonal space, primarily because of a weakening bias in perception. No systematic modulation of target eccentricity, viewing, and delay arose. The findings suggest that the two visual system hypothesis is also valid for extra personal space.

  12. The role of human ventral visual cortex in motion perception

    PubMed Central

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  13. The role of attention in illusory conjunctions.

    PubMed

    Tsal, Y; Meiran, N; Lavie, N

    1994-03-01

    In five experiments, we investigated the effects of attention on illusory conjunctions formed between features of unrelated objects. The first three experiments used a weak manipulation of attention and found that illusory conjunctions formed either among features receiving high attentional priority or among features receiving low attentional priority were not more frequent than were conjunctions formed between mixed features of different attentional priority. The last two experiments used a strong manipulation of attention and failed to reveal any evidence of true illusory conjunctions. The results are inconsistent with the feature-integration theory, which predicts that when attention is focused on a subset of items, illusory conjunctions ought to occur within and outside of the attended subset, but not between the attended and unattended items.

  14. Control and Effort Costs Influence the Motivational Consequences of Choice

    PubMed Central

    Sullivan-Toole, Holly; Richey, John A.; Tricomi, Elizabeth

    2017-01-01

    The act of making a choice, apart from any outcomes the choice may yield, has, paradoxically, been linked to both the enhancement and the detriment of intrinsic motivation. Research has implicated two factors in potentially mediating these contradictory effects: the personal control conferred by a choice and the costs associated with a choice. Across four experiments, utilizing a physical effort task disguised as a simple video game, we systematically varied costs across two levels of physical effort requirements (Low-Requirement, High-Requirement) and control over effort costs across three levels of choice (Free-Choice, Restricted-Choice, and No-Choice) to disambiguate how these factors affect the motivational consequences of choosing within an effortful task. Together, our results indicated that, in the face of effort requirements, illusory control alone may not sufficiently enhance perceptions of personal control to boost intrinsic motivation; rather, the experience of actual control may be necessary to overcome effort costs and elevate performance. Additionally, we demonstrated that conditions of illusory control, while otherwise unmotivating, can through association with the experience of free-choice, be transformed to have a positive effect on motivation. PMID:28515705

  15. Brief report: atypical neuromagnetic responses to illusory auditory pitch in children with autism spectrum disorders.

    PubMed

    Brock, Jon; Bzishvili, Samantha; Reid, Melanie; Hautus, Michael; Johnson, Blake W

    2013-11-01

    Atypical auditory perception is a widely recognised but poorly understood feature of autism. In the current study, we used magnetoencephalography to measure the brain responses of 10 autistic children as they listened passively to dichotic pitch stimuli, in which an illusory tone is generated by sub-millisecond inter-aural timing differences in white noise. Relative to control stimuli that contain no inter-aural timing differences, dichotic pitch stimuli typically elicit an object related negativity (ORN) response, associated with the perceptual segregation of the tone and the carrier noise into distinct auditory objects. Autistic children failed to demonstrate an ORN, suggesting a failure of segregation; however, comparison with the ORNs of age-matched typically developing controls narrowly failed to attain significance. More striking, the autistic children demonstrated a significant differential response to the pitch stimulus, peaking at around 50 ms. This was not present in the control group, nor has it been found in other groups tested using similar stimuli. This response may be a neural signature of atypical processing of pitch in at least some autistic individuals.

  16. Does Seeing Ice Really Feel Cold? Visual-Thermal Interaction under an Illusory Body-Ownership

    PubMed Central

    Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko

    2012-01-01

    Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed. PMID:23144814

  17. Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership.

    PubMed

    Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko

    2012-01-01

    Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.

  18. Marvels of illusion: illusion and perception in the art of Salvador Dali

    PubMed Central

    Martinez-Conde, Susana; Conley, Dave; Hine, Hank; Kropf, Joan; Tush, Peter; Ayala, Andrea; Macknik, Stephen L.

    2015-01-01

    The surrealist movement aimed to blur the distinction between the real and the imagined. Such lack of a border between demonstrable truth and fantasy is perhaps most apparent in the art of Spanish painter Salvador Dali (1904–1989). Dali included numerous illusions in his artworks, with the intent to challenge the viewers' perceptions of reality and to enable them to see beyond the surface. The “Marvels of Illusion” exhibit, shown at The Dali Museum in St. Petersburg, FL., from June 14 to October 12, 2014, showcased Dali paintings, prints and sculptures centered on illusory themes. Here, we review the significance of illusions in Dali's art, focusing on the pieces displayed at the “Marvels of Illusion” exhibit. PMID:26483651

  19. Marvels of illusion: illusion and perception in the art of Salvador Dali.

    PubMed

    Martinez-Conde, Susana; Conley, Dave; Hine, Hank; Kropf, Joan; Tush, Peter; Ayala, Andrea; Macknik, Stephen L

    2015-01-01

    The surrealist movement aimed to blur the distinction between the real and the imagined. Such lack of a border between demonstrable truth and fantasy is perhaps most apparent in the art of Spanish painter Salvador Dali (1904-1989). Dali included numerous illusions in his artworks, with the intent to challenge the viewers' perceptions of reality and to enable them to see beyond the surface. The "Marvels of Illusion" exhibit, shown at The Dali Museum in St. Petersburg, FL., from June 14 to October 12, 2014, showcased Dali paintings, prints and sculptures centered on illusory themes. Here, we review the significance of illusions in Dali's art, focusing on the pieces displayed at the "Marvels of Illusion" exhibit.

  20. Brain Regions Associated to a Kinesthetic Illusion Evoked by Watching a Video of One's Own Moving Hand

    PubMed Central

    Kaneko, Fuminari; Blanchard, Caroline; Lebar, Nicolas; Nazarian, Bruno; Kavounoudias, Anne; Romaiguère, Patricia

    2015-01-01

    It is well known that kinesthetic illusions can be induced by stimulation of several sensory systems (proprioception, touch, vision…). In this study we investigated the cerebral network underlying a kinesthetic illusion induced by visual stimulation by using functional magnetic resonance imaging (fMRI) in humans. Participants were instructed to keep their hand still while watching the video of their own moving hand (Self Hand) or that of someone else's moving hand (Other Hand). In the Self Hand condition they experienced an illusory sensation that their hand was moving whereas the Other Hand condition did not induce any kinesthetic illusion. The contrast between the Self Hand and Other Hand conditions showed significant activation in the left dorsal and ventral premotor cortices, in the left Superior and Inferior Parietal lobules, at the right Occipito-Temporal junction as well as in bilateral Insula and Putamen. Most strikingly, there was no activation in the primary motor and somatosensory cortices, whilst previous studies have reported significant activation in these regions for vibration-induced kinesthetic illusions. To our knowledge, this is the first study that indicates that humans can experience kinesthetic perception without activation in the primary motor and somatosensory areas. We conclude that under some conditions watching a video of one's own moving hand could lead to activation of a network that is usually involved in processing copies of efference, thus leading to the illusory perception that the real hand is indeed moving. PMID:26287488

  1. Brain Regions Associated to a Kinesthetic Illusion Evoked by Watching a Video of One's Own Moving Hand.

    PubMed

    Kaneko, Fuminari; Blanchard, Caroline; Lebar, Nicolas; Nazarian, Bruno; Kavounoudias, Anne; Romaiguère, Patricia

    2015-01-01

    It is well known that kinesthetic illusions can be induced by stimulation of several sensory systems (proprioception, touch, vision…). In this study we investigated the cerebral network underlying a kinesthetic illusion induced by visual stimulation by using functional magnetic resonance imaging (fMRI) in humans. Participants were instructed to keep their hand still while watching the video of their own moving hand (Self Hand) or that of someone else's moving hand (Other Hand). In the Self Hand condition they experienced an illusory sensation that their hand was moving whereas the Other Hand condition did not induce any kinesthetic illusion. The contrast between the Self Hand and Other Hand conditions showed significant activation in the left dorsal and ventral premotor cortices, in the left Superior and Inferior Parietal lobules, at the right Occipito-Temporal junction as well as in bilateral Insula and Putamen. Most strikingly, there was no activation in the primary motor and somatosensory cortices, whilst previous studies have reported significant activation in these regions for vibration-induced kinesthetic illusions. To our knowledge, this is the first study that indicates that humans can experience kinesthetic perception without activation in the primary motor and somatosensory areas. We conclude that under some conditions watching a video of one's own moving hand could lead to activation of a network that is usually involved in processing copies of efference, thus leading to the illusory perception that the real hand is indeed moving.

  2. Multisensory integration of speech sounds with letters vs. visual speech: only visual speech induces the mismatch negativity.

    PubMed

    Stekelenburg, Jeroen J; Keetels, Mirjam; Vroomen, Jean

    2018-05-01

    Numerous studies have demonstrated that the vision of lip movements can alter the perception of auditory speech syllables (McGurk effect). While there is ample evidence for integration of text and auditory speech, there are only a few studies on the orthographic equivalent of the McGurk effect. Here, we examined whether written text, like visual speech, can induce an illusory change in the perception of speech sounds on both the behavioural and neural levels. In a sound categorization task, we found that both text and visual speech changed the identity of speech sounds from an /aba/-/ada/ continuum, but the size of this audiovisual effect was considerably smaller for text than visual speech. To examine at which level in the information processing hierarchy these multisensory interactions occur, we recorded electroencephalography in an audiovisual mismatch negativity (MMN, a component of the event-related potential reflecting preattentive auditory change detection) paradigm in which deviant text or visual speech was used to induce an illusory change in a sequence of ambiguous sounds halfway between /aba/ and /ada/. We found that only deviant visual speech induced an MMN, but not deviant text, which induced a late P3-like positive potential. These results demonstrate that text has much weaker effects on sound processing than visual speech does, possibly because text has different biological roots than visual speech. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Is the four-day rotation of Venus illusory?. [includes systematic error in radial velocities of solar lines reflected from Venus

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1974-01-01

    An overlooked systematic error exists in the apparent radial velocities of solar lines reflected from regions of Venus near the terminator, owing to a combination of the finite angular size of the Sun and its large (2 km/sec) equatorial velocity of rotation. This error produces an apparent, but fictitious, retrograde component of planetary rotation, typically on the order of 40 meters/sec. Spectroscopic, photometric, and radiometric evidence against a 4-day atmospheric rotation is also reviewed. The bulk of the somewhat contradictory evidence seems to favor slow motions, on the order of 5 m/sec, in the atmosphere of Venus; the 4-day rotation may be due to a traveling wave-like disturbance, not bulk motions, driven by the UV albedo differences.

  4. Global attention facilitates the planning, but not execution of goal-directed reaches.

    PubMed

    McCarthy, J Daniel; Song, Joo-Hyun

    2016-07-01

    In daily life, humans interact with multiple objects in complex environments. A large body of literature demonstrates that target selection is biased toward recently attended features, such that reaches are faster and trajectory curvature is reduced when target features (i.e., color) are repeated (priming of pop-out). In the real world, however, objects are comprised of several features-some of which may be more suitable for action than others. When fetching a mug from the cupboard, for example, attention not only has to be allocated to the object, but also the handle. To date, no study has investigated the impact of hierarchical feature organization on target selection for action. Here, we employed a color-oddity search task in which targets were Pac-men (i.e., a circle with a triangle cut out) oriented to be either consistent or inconsistent with the percept of a global Kanizsa triangle. We found that reaches were initiated faster when a task-irrelevant illusory figure was present independent of color repetition. Additionally, consistent with priming of pop-out, both reach planning and execution were facilitated when local target colors were repeated, regardless of whether a global figure was present. We also demonstrated that figures defined by illusory, but not real contours, afforded an early target selection benefit. In sum, these findings suggest that when local targets are perceptually grouped to form an illusory surface, attention quickly spreads across the global figure and facilitates the early stage of reach planning, but not execution. In contrast, local color priming is evident throughout goal-directed reaching.

  5. Illusion of arm movement evoked by tendon vibration in patients with spinal cord injury.

    PubMed

    Fusco, Gabriele; Tidoni, Emmanuele; Barone, Nicola; Pilati, Claudio; Aglioti, Salvatore Maria

    2016-09-21

    Studies in healthy people show that stimulation of muscle spindles through frequency-specific tendon vibration (TV) induces the illusory perception of movement. Following spinal cord injury (SCI), motor and sensory connections between the brain and parts of the body below-the-lesion level are partially or totally impaired. The present investigation is a descriptive study aimed to investigate whether people living with SCI may experience movement illusions comparable to a control group. Healthy and people with SCI were asked to report on three illusion-related features (Vividness, Duration, Illusory Extension) after receiving 70 Hz TV on the biceps brachii tendon of both arms. Two different forces of stimulation were applied: 2.4 N and 4.2 N. Both patients and controls were susceptible to the kinesthetic illusion. However patients presented lower sensitivity to TV than healthy subjects. Participants rated stronger illusions of movement after 4.2 N than 2.4 N stimulation in all the three illusion-related features. Further, patients reported atypical illusory experiences of movement (e.g. as if the arm wanted to extend, or a sensation of pushing against something) that may reflect different reorganization processes following spinal cord injury. The study provides a preliminary evidence of the possible use of the proprioceptive stimulation in the upper limbs of people living with SCI. Results are discussed in the light of recent advancements of brain-computer applications based on motor imagery for the control of neuroprosthetic and robotic devices in patients with severe sensorimotor deficits.

  6. Mitigating Illusory Results through Preregistration in Education

    ERIC Educational Resources Information Center

    Gehlbach, Hunter; Robinson, Carly D.

    2018-01-01

    Like performance-enhancing drugs inflating apparent athletic achievements, several common social science practices contribute to the production of illusory results. In this article, we examine the processes that lead to illusory findings and describe their consequences. We borrow from an approach used increasingly by other disciplines--the norm of…

  7. Influences of Age and Emotion on Source Guessing: Are Older Adults More Likely to Show Fear-Relevant Illusory Correlations?

    PubMed

    Meyer, Miriam Magdalena; Buchner, Axel; Bell, Raoul

    2016-09-01

    The present study investigates age differences in the vulnerability to illusory correlations between fear-relevant stimuli and threatening information. Younger and older adults saw pictures of threatening snakes and nonthreatening fish, paired with threatening and nonthreatening context information ("poisonous" and "nonpoisonous") with a null contingency between animal type and poisonousness. In a source monitoring test, participants were required to remember whether an animal was associated with poisonousness or nonpoisonousness. Illusory correlations were implicitly measured via a multinomial model. One advantage of this approach is that memory and guessing processes can be assessed independently. An illusory correlation would be reflected in a higher probability of guessing that a snake rather than a fish was poisonous if the poisonousness of the animal was not remembered. Older adults showed evidence of illusory correlations in source guessing while younger adults did not; instead they showed evidence of probability matching. Moreover, snake fear was associated with increased vulnerability to illusory correlations in older adults. The findings confirm that older adults are more susceptible to fear-relevant illusory correlations than younger adults. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Disorders of motion and depth.

    PubMed

    Nawrot, Mark

    2003-08-01

    Damage to the human homologue of area MT produces a motion perception deficit similar to that found in the monkey with MT lesions. Even temporary disruption of MT processing with transcranial magnetic stimulation can produce a temporary akinetopsia [127]. Motion perception deficits, however, also are found with a variety of subcortical lesions and other neurologic disorders that can best be described as causing a disconnection within the motion processing stream. The precise role of these subcortical structures, such as the cerebellum, remains to be determined. Simple motion perception, moreover, is only a part of MT function. It undoubtedly has an important role in the perception of depth from motion and stereopsis [112]. Psychophysical studies using aftereffects in normal observers suggest a link between stereo mechanisms and the perception of depth from motion [9-11]. There is even a simple correlation between stereo acuity and the perception of depth from motion [128]. Future studies of patients with cortical lesions will take a closer look at depth perception in association with motion perception and should provide a better understanding of how motion and depth are processed together.

  9. Blindness to Curvature and Blindness to Illusory Curvature.

    PubMed

    Bertamini, Marco; Kitaoka, Akiyoshi

    2018-01-01

    We compare two versions of two known phenomena, the Curvature blindness and the Kite mesh illusions, to highlight how similar manipulations lead to blindness to curvature and blindness to illusory curvature, respectively. The critical factor is a change in luminance polarity; this factor interferes with the computation of curvature along the contour, for both real and illusory curvature.

  10. Visual motion integration for perception and pursuit

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Beutter, B. R.; Lorenceau, J.

    2000-01-01

    To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.

  11. Impaired Perception of Biological Motion in Parkinson’s Disease

    PubMed Central

    Jaywant, Abhishek; Shiffrar, Maggie; Roy, Serge; Cronin-Golomb, Alice

    2016-01-01

    Objective We examined biological motion perception in Parkinson’s disease (PD). Biological motion perception is related to one’s own motor function and depends on the integrity of brain areas affected in PD, including posterior superior temporal sulcus. If deficits in biological motion perception exist, they may be specific to perceiving natural/fast walking patterns that individuals with PD can no longer perform, and may correlate with disease-related motor dysfunction. Method 26 non-demented individuals with PD and 24 control participants viewed videos of point-light walkers and scrambled versions that served as foils, and indicated whether each video depicted a human walking. Point-light walkers varied by gait type (natural, parkinsonian) and speed (0.5, 1.0, 1.5 m/s). Participants also completed control tasks (object motion, coherent motion perception), a contrast sensitivity assessment, and a walking assessment. Results The PD group demonstrated significantly less sensitivity to biological motion than the control group (p<.001, Cohen’s d=1.22), regardless of stimulus gait type or speed, with a less substantial deficit in object motion perception (p=.02, Cohen’s d=.68). There was no group difference in coherent motion perception. Although individuals with PD had slower walking speed and shorter stride length than control participants, gait parameters did not correlate with biological motion perception. Contrast sensitivity and coherent motion perception also did not correlate with biological motion perception. Conclusion PD leads to a deficit in perceiving biological motion, which is independent of gait dysfunction and low-level vision changes, and may therefore arise from difficulty perceptually integrating form and motion cues in posterior superior temporal sulcus. PMID:26949927

  12. The influence of trait anxiety and illusory kinesthesia on pain threshold.

    PubMed

    Imai, Ryota; Osumi, Michihiro; Ishigaki, Tomoya; Morioka, Shu

    2017-07-01

    [Purpose] It has also been reported that decreased activity in the reward pathway causes a decrease in brain activity in the descending pain control system in people with high trait anxiety. Activation of this system is dependent on both the reward pathway and motor areas. Recently, studies have also shown that motor areas are activated by illusory kinesthesia. It was aimed to explore whether anxiety trait modulates the influence of illusory kinesthesia on pain threshold. [Subjects and Methods] The pain threshold and trait anxiety at rest before vibratory tendon stimulation (the task) were measured. After the task, the pain threshold, the illusory kinesthesia angle, and the intensity of illusory kinesthesia for patients with and without illusory kinesthesia were measured. A total of 35 healthy right-handed students participated, among whom 22 and 13 were included in the illusion and no-illusion groups, respectively. [Results] There was a significant increase in the pain threshold after task completion in both groups; however, there was no statistically significant difference between the two groups. Correlational analysis revealed that State-Trait Anxiety Inventory-trait score correlated negatively with the pain threshold in the no-illusion group, but there was no correlation in the illusion group. [Conclusion] The pain threshold improved regardless of the size of trait anxiety in the illusion group, but did not improve merely through sensory input by vibratory stimulation in the no-illusion group. Thus, illusory kinesthesia has effect of increasing the pain threshold.

  13. Motion coherence affects human perception and pursuit similarly.

    PubMed

    Beutter, B R; Stone, L S

    2000-01-01

    Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion-integration stage, perhaps within areas MT or MST.

  14. Motion coherence affects human perception and pursuit similarly

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Stone, L. S.

    2000-01-01

    Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion-integration stage, perhaps within areas MT or MST.

  15. Neurological and robot-controlled induction of an apparition.

    PubMed

    Blanke, Olaf; Pozeg, Polona; Hara, Masayuki; Heydrich, Lukas; Serino, Andrea; Yamamoto, Akio; Higuchi, Toshiro; Salomon, Roy; Seeck, Margitta; Landis, Theodor; Arzy, Shahar; Herbelin, Bruno; Bleuler, Hannes; Rognini, Giulio

    2014-11-17

    Tales of ghosts, wraiths, and other apparitions have been reported in virtually all cultures. The strange sensation that somebody is nearby when no one is actually present and cannot be seen (feeling of a presence, FoP) is a fascinating feat of the human mind, and this apparition is often covered in the literature of divinity, occultism, and fiction. Although it is described by neurological and psychiatric patients and healthy individuals in different situations, it is not yet understood how the phenomenon is triggered by the brain. Here, we performed lesion analysis in neurological FoP patients, supported by an analysis of associated neurological deficits. Our data show that the FoP is an illusory own-body perception with well-defined characteristics that is associated with sensorimotor loss and caused by lesions in three distinct brain regions: temporoparietal, insular, and especially frontoparietal cortex. Based on these data and recent experimental advances of multisensory own-body illusions, we designed a master-slave robotic system that generated specific sensorimotor conflicts and enabled us to induce the FoP and related illusory own-body perceptions experimentally in normal participants. These data show that the illusion of feeling another person nearby is caused by misperceiving the source and identity of sensorimotor (tactile, proprioceptive, and motor) signals of one's own body. Our findings reveal the neural mechanisms of the FoP, highlight the subtle balance of brain mechanisms that generate the experience of "self" and "other," and advance the understanding of the brain mechanisms responsible for hallucinations in schizophrenia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Behavioural evidence for distinct mechanisms related to global and biological motion perception.

    PubMed

    Miller, Louisa; Agnew, Hannah C; Pilz, Karin S

    2018-01-01

    The perception of human motion is a vital ability in our daily lives. Human movement recognition is often studied using point-light stimuli in which dots represent the joints of a moving person. Depending on task and stimulus, the local motion of the single dots, and the global form of the stimulus can be used to discriminate point-light stimuli. Previous studies often measured motion coherence for global motion perception and contrasted it with performance in biological motion perception to assess whether difficulties in biological motion processing are related to more general difficulties with motion processing. However, it is so far unknown as to how performance in global motion tasks relates to the ability to use local motion or global form to discriminate point-light stimuli. Here, we investigated this relationship in more detail. In Experiment 1, we measured participants' ability to discriminate the facing direction of point-light stimuli that contained primarily local motion, global form, or both. In Experiment 2, we embedded point-light stimuli in noise to assess whether previously found relationships in task performance are related to the ability to detect signal in noise. In both experiments, we also assessed motion coherence thresholds from random-dot kinematograms. We found relationships between performances for the different biological motion stimuli, but performance for global and biological motion perception was unrelated. These results are in accordance with previous neuroimaging studies that highlighted distinct areas for global and biological motion perception in the dorsal pathway, and indicate that results regarding the relationship between global motion perception and biological motion perception need to be interpreted with caution. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Strength of visual interpolation depends on the ratio of physically specified to total edge length.

    PubMed

    Shipley, T F; Kellman, P J

    1992-07-01

    We report four experiments in which the strength of edge interpolation in illusory figure displays was tested. In Experiment 1, we investigated the relative contributions of the lengths of luminance-specified edges and the gaps between them to perceived boundary clarity as measured by using a magnitude estimation procedure. The contributions of these variables were found to be best characterized by a ratio of the length of luminance-specified contour to the length of the entire edge (specified plus interpolated edge). Experiment 2 showed that this ratio predicts boundary clarity for a wide range of ratio values and display sizes. There was no evidence that illusory figure boundaries are clearer in displays with small gaps than they are in displays with larger gaps and equivalent ratios. In Experiment 3, using a more sensitive pairwise comparison paradigm, we again found no such effect. Implications for boundary interpolation in general, including perception of partially occluded objects, are discussed. The dependence of interpolation on the ratio of physically specified edges to total edge length has the desirable ecological consequence that unit formation will not change with variations in viewing distance.

  18. Activation of color-selective areas of the visual cortex in a blind synesthete.

    PubMed

    Steven, Megan S; Hansen, Peter C; Blakemore, Colin

    2006-02-01

    Many areas of the visual cortex are activated when blind people are stimulated naturally through other sensory modalities (e.g., haptically; Sadato et al., 1996). While this extraneous activation of visual areas via other senses in normal blind people might have functional value (Kauffman et al., 2002; Lessard et al., 1998), it does not lead to conscious visual experiences. On the other hand, electrical stimulation of the primary visual cortex in the blind does produce illusory visual phosphenes (Brindley and Lewin, 1968). Here we provide the first evidence that high-level visual areas not only retain their specificity for particular visual characteristics in people who have been blind for long periods, but that activation of these areas can lead to visual sensations. We used fMRI to demonstrate activity in visual cortical areas specifically related to illusory colored and spatially located visual percepts in a synesthetic man who has been completely blind for 10 years. No such differential activations were seen in late-blind or sighted non-synesthetic controls; neither were these areas activated during color-imagery in the late-blind synesthete, implying that this subject's synesthesia is truly a perceptual experience.

  19. Motion perception and driving: predicting performance through testing and shortening braking reaction times through training.

    PubMed

    Wilkins, Luke; Gray, Rob; Gaska, James; Winterbottom, Marc

    2013-12-30

    A driving simulator was used to examine the relationship between motion perception and driving performance. Although motion perception test scores have been shown to be related to driving safety, it is not clear which combination of tests are the best predictors and whether motion perception training can improve driving performance. In experiment 1, 60 younger drivers (22.4 ± 2.5 years) completed three motion perception tests (2-dimensional [2D] motion-defined letter [MDL] identification, 3D motion in depth sensitivity [MID], and dynamic visual acuity [DVA]) followed by two driving tests (emergency braking [EB] and hazard perception [HP]). In experiment 2, 20 drivers (21.6 ± 2.1 years) completed 6 weeks of motion perception training (using the MDL, MID, and DVA tests), while 20 control drivers (22.0 ± 2.7 years) completed an online driving safety course. The EB performance was measured before and after training. In experiment 1, MDL (r = 0.34) and MID (r = 0.46) significantly correlated with EB score. The change in DVA score as a function of target speed (i.e., "velocity susceptibility") was correlated most strongly with HP score (r = -0.61). In experiment 2, the motion perception training group had a significant decrease in brake reaction time on the EB test from pre- to posttreatment, while there was no significant change for the control group: t(38) = 2.24, P = 0.03. Tests of 3D motion perception are the best predictor of EB, while DVA velocity susceptibility is the best predictor of hazard perception. Motion perception training appears to result in faster braking responses.

  20. Illusory inferences from a disjunction of conditionals: a new mental models account.

    PubMed

    Barrouillet, P; Lecas, J F

    2000-08-14

    (Johnson-Laird, P.N., & Savary, F. (1999, Illusory inferences: a novel class of erroneous deductions. Cognition, 71, 191-229.) have recently presented a mental models account, based on the so-called principle of truth, for the occurrence of inferences that are compelling but invalid. This article presents an alternative account of the illusory inferences resulting from a disjunction of conditionals. In accordance with our modified theory of mental models of the conditional, we show that the way individuals represent conditionals leads them to misinterpret the locus of the disjunction and prevents them from drawing conclusions from a false conditional, thus accounting for the compelling character of the illusory inference.

  1. The magnetic touch illusion: A perceptual correlate of visuo-tactile integration in peripersonal space.

    PubMed

    Guterstam, Arvid; Zeberg, Hugo; Özçiftci, Vedat Menderes; Ehrsson, H Henrik

    2016-10-01

    To accurately localize our limbs and guide movements toward external objects, the brain must represent the body and its surrounding (peripersonal) visual space. Specific multisensory neurons encode peripersonal space in the monkey brain, and neurobehavioral studies have suggested the existence of a similar representation in humans. However, because peripersonal space lacks a distinct perceptual correlate, its involvement in spatial and bodily perception remains unclear. Here, we show that applying brushstrokes in mid-air at some distance above a rubber hand-without touching it-in synchrony with brushstrokes applied to a participant's hidden real hand results in the illusory sensation of a "magnetic force" between the brush and the rubber hand, which strongly correlates with the perception of the rubber hand as one's own. In eight experiments, we characterized this "magnetic touch illusion" by using quantitative subjective reports, motion tracking, and behavioral data consisting of pointing errors toward the rubber hand in an intermanual pointing task. We found that the illusion depends on visuo-tactile synchrony and exhibits similarities with the visuo-tactile receptive field properties of peripersonal space neurons, featuring a non-linear decay at 40cm that is independent of gaze direction and follows changes in the rubber hand position. Moreover, the "magnetic force" does not penetrate physical barriers, thus further linking this phenomenon to body-specific visuo-tactile integration processes. These findings provide strong support for the notion that multisensory integration within peripersonal space underlies bodily self-attribution. Furthermore, we propose that the magnetic touch illusion constitutes a perceptual correlate of visuo-tactile integration in peripersonal space. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. When do letter features migrate? A boundary condition for feature-integration theory.

    PubMed

    Butler, B E; Mewhort, D J; Browse, R A

    1991-01-01

    Feature-integration theory postulates that a lapse of attention will allow letter features to change position and to recombine as illusory conjunctions (Treisman & Paterson, 1984). To study such errors, we used a set of uppercase letters known to yield illusory conjunctions in each of three tasks. The first, a bar-probe task, showed whole-character mislocations but not errors based on feature migration and recombination. The second, a two-alternative forced-choice detection task, allowed subjects to focus on the presence or absence of subletter features and showed illusory conjunctions based on feature migration and recombination. The third was also a two-alternative forced-choice detection task, but we manipulated the subjects' knowledge of the shape of the stimuli: In the case-certain condition, the stimuli were always in uppercase, but in the case-uncertain condition, the stimuli could appear in either upper- or lowercase. Subjects in the case-certain condition produced illusory conjunctions based on feature recombination, whereas subjects in the case-uncertain condition did not. The results suggest that when subjects can view the stimuli as feature groups, letter features regroup as illusory conjunctions; when subjects encode the stimuli as letters, whole items may be mislocated, but subletter features are not. Thus, illusory conjunctions reflect the subject's processing strategy, rather than the architecture of the visual system.

  3. Illusory ownership of an invisible body reduces autonomic and subjective social anxiety responses.

    PubMed

    Guterstam, Arvid; Abdulkarim, Zakaryah; Ehrsson, H Henrik

    2015-04-23

    What is it like to be invisible? This question has long fascinated man and has been the central theme of many classic literary works. Recent advances in materials science suggest that invisibility cloaking of the human body may be possible in the not-so-distant future. However, it remains unknown how invisibility affects body perception and embodied cognition. To address these questions, we developed a perceptual illusion of having an entire invisible body. Through a series of experiments, we characterized the multisensory rules that govern the elicitation of the illusion and show that the experience of having an invisible body reduces the social anxiety response to standing in front of an audience. This study provides an experimental model of what it is like to be invisible and shows that this experience affects bodily self-perception and social cognition.

  4. Individualistic weight perception from motion on a slope

    PubMed Central

    Zintus-art, K.; Shin, D.; Kambara, H.; Yoshimura, N.; Koike, Y.

    2016-01-01

    Perception of an object’s weight is linked to its form and motion. Studies have shown the relationship between weight perception and motion in horizontal and vertical environments to be universally identical across subjects during passive observation. Here we show a contradicting finding in that not all humans share the same motion-weight pairing. A virtual environment where participants control the steepness of a slope was used to investigate the relationship between sliding motion and weight perception. Our findings showed that distinct, albeit subjective, motion-weight relationships in perception could be identified for slope environments. These individualistic perceptions were found when changes in environmental parameters governing motion were introduced, specifically inclination and surface texture. Differences in environmental parameters, combined with individual factors such as experience, affected participants’ weight perception. This phenomenon may offer evidence of the central nervous system’s ability to choose and combine internal models based on information from the sensory system. The results also point toward the possibility of controlling human perception by presenting strong sensory cues to manipulate the mechanisms managing internal models. PMID:27174036

  5. Being Moved by the Self and Others: Influence of Empathy on Self-Motion Perception

    PubMed Central

    Lopez, Christophe; Falconer, Caroline J.; Mast, Fred W.

    2013-01-01

    Background The observation of conspecifics influences our bodily perceptions and actions: Contagious yawning, contagious itching, or empathy for pain, are all examples of mechanisms based on resonance between our own body and others. While there is evidence for the involvement of the mirror neuron system in the processing of motor, auditory and tactile information, it has not yet been associated with the perception of self-motion. Methodology/Principal Findings We investigated whether viewing our own body, the body of another, and an object in motion influences self-motion perception. We found a visual-vestibular congruency effect for self-motion perception when observing self and object motion, and a reduction in this effect when observing someone else's body motion. The congruency effect was correlated with empathy scores, revealing the importance of empathy in mirroring mechanisms. Conclusions/Significance The data show that vestibular perception is modulated by agent-specific mirroring mechanisms. The observation of conspecifics in motion is an essential component of social life, and self-motion perception is crucial for the distinction between the self and the other. Finally, our results hint at the presence of a “vestibular mirror neuron system”. PMID:23326302

  6. Tracking without perceiving: a dissociation between eye movements and motion perception.

    PubMed

    Spering, Miriam; Pomplun, Marc; Carrasco, Marisa

    2011-02-01

    Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept.

  7. Tracking Without Perceiving: A Dissociation Between Eye Movements and Motion Perception

    PubMed Central

    Spering, Miriam; Pomplun, Marc; Carrasco, Marisa

    2011-01-01

    Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept. PMID:21189353

  8. Contrast and assimilation in motion perception and smooth pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R

    2007-09-01

    The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.

  9. Crossing the Hands Increases Illusory Self-Touch

    PubMed Central

    Pozeg, Polona; Rognini, Giulio; Salomon, Roy; Blanke, Olaf

    2014-01-01

    Manipulation of hand posture, such as crossing the hands, has been frequently used to study how the body and its immediately surrounding space are represented in the brain. Abundant data show that crossed arms posture impairs remapping of tactile stimuli from somatotopic to external space reference frame and deteriorates performance on several tactile processing tasks. Here we investigated how impaired tactile remapping affects the illusory self-touch, induced by the non-visual variant of the rubber hand illusion (RHI) paradigm. In this paradigm blindfolded participants (Experiment 1) had their hands either uncrossed or crossed over the body midline. The strength of illusory self-touch was measured with questionnaire ratings and proprioceptive drift. Our results showed that, during synchronous tactile stimulation, the strength of illusory self-touch increased when hands were crossed compared to the uncrossed posture. Follow-up experiments showed that the increase in illusion strength was not related to unfamiliar hand position (Experiment 2) and that it was equally strengthened regardless of where in the peripersonal space the hands were crossed (Experiment 3). However, while the boosting effect of crossing the hands was evident from subjective ratings, the proprioceptive drift was not modulated by crossed posture. Finally, in contrast to the illusion increase in the non-visual RHI, the crossed hand postures did not alter illusory ownership or proprioceptive drift in the classical, visuo-tactile version of RHI (Experiment 4). We argue that the increase in illusory self-touch is related to misalignment of somatotopic and external reference frames and consequently inadequate tactile-proprioceptive integration, leading to re-weighting of the tactile and proprioceptive signals.The present study not only shows that illusory self-touch can be induced by crossing the hands, but importantly, that this posture is associated with a stronger illusion. PMID:24699795

  10. The Machine behind the Stage: A Neurobiological Approach toward Theoretical Issues of Sensory Perception

    PubMed Central

    Moutoussis, Konstantinos

    2016-01-01

    The purpose of the present article is to try and give a brief, scientific perspective on several issues raised in the Philosophy of Perception literature. This perspective gives a central role to the brain mechanisms that underlie perception: a percept is something that emerges when the brain is activated in a certain way and thus all perceptual experiences (whether veridical, illusory, or hallucinatory) have a common cause behind them, namely a given brain-activation pattern. What distinguishes between different cases of perception is what has caused this activation pattern, i.e., something very separate and very different from the perceptual experience itself. It is argued that separating the perceptual event from its hypothetical content, a direct consequence of the way everyday language is structured, creates unnecessary ontological complications regarding the nature of the hypothetical ‘object’ of perception. A clear distinction between the physical properties of the real world on the one hand (e.g., wavelength reflectance), and the psychological properties of perceptual experiences on the other (e.g., color) is clearly made. Finally, although perception is a way of acquiring knowledge/information about the world, this acquisition should be considered as a cognitive process which is separate to and follows perception. Therefore, the latter should remain neutral with respect to the ‘correctness’ or ‘truth’ of the knowledge acquired. PMID:27679587

  11. The Machine behind the Stage: A Neurobiological Approach toward Theoretical Issues of Sensory Perception.

    PubMed

    Moutoussis, Konstantinos

    2016-01-01

    The purpose of the present article is to try and give a brief, scientific perspective on several issues raised in the Philosophy of Perception literature. This perspective gives a central role to the brain mechanisms that underlie perception: a percept is something that emerges when the brain is activated in a certain way and thus all perceptual experiences (whether veridical, illusory, or hallucinatory) have a common cause behind them, namely a given brain-activation pattern. What distinguishes between different cases of perception is what has caused this activation pattern, i.e., something very separate and very different from the perceptual experience itself. It is argued that separating the perceptual event from its hypothetical content, a direct consequence of the way everyday language is structured, creates unnecessary ontological complications regarding the nature of the hypothetical 'object' of perception. A clear distinction between the physical properties of the real world on the one hand (e.g., wavelength reflectance), and the psychological properties of perceptual experiences on the other (e.g., color) is clearly made. Finally, although perception is a way of acquiring knowledge/information about the world, this acquisition should be considered as a cognitive process which is separate to and follows perception. Therefore, the latter should remain neutral with respect to the 'correctness' or 'truth' of the knowledge acquired.

  12. A historical note on illusory contours in shadow writing.

    PubMed

    Vezzani, Stefano; Marino, Barbara F M

    2009-01-01

    It is widely accepted that illusory contours have been first displayed and discussed by Schumann (1900, Zeitschrift für Psychologie und Physiologie der Sinnesorgane 23 1-32). Here we show that, before him, Jastrow (1899, Popular Science Monthly 54 299-312) produced illusory contours consisting of a shadow word. A brief history of shadow writing in psychological literature from Jastrow to Brunswik is presented, in which the contributions of Pillsbury, Warren, Koffka, and Benussi are examined.

  13. Underestimation of length by subjects in motion.

    PubMed

    Harte, D B

    1975-10-01

    To check a prior observation, in the present experiment, subjects made estimates of the lengths of both the guidelines and the spaces between guidelines on automotive highways so the magnitude of the illusion could be more accurately determined. Ten males and ten females were individually tested at 0 and 60 mph. At 60 mph, spaces were estimated with an error of 85%; lines were estimated with an error of 72%. Combining data for both stimuli, an error of 78% results, which corresponds to underestimation by a factor of 4.67. This illusory effect is considerably greater than that of the moon illusion, considered by many the most powerful of the classical illusions.

  14. The influence of gravitoinertial force level on oculomotor and perceptual responses to sudden stop stimulation

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.; Evanoff, John N.

    1987-01-01

    The goal of this investigation was to determine whether the vestibular response to vertical, z-axis body rotation in the dark is influenced by the magnitude of gravitoinertial force. The parameters measured were the nystagmus and the duration of illusory self-motion elicited in blindfolded subjects by cessation of such rotation during the free-fall, high, and terrestrial force phases of parabolic flight maneuvers. The pattern of findings is consistent with the responses that were observed earlier to constant levels of Coriolis cross-coupled stimulation during parabolic flight maneuvers both in terms of the mode of nystagmus suppression and the effect of G-level.

  15. A research on motion design for APP's loading pages based on time perception

    NASA Astrophysics Data System (ADS)

    Cao, Huai; Hu, Xiaoyun

    2018-04-01

    Due to restrictions caused by objective reasons like network bandwidth, hardware performance and etc., waiting is still an inevitable phenomenon that appears in our using mobile-terminal products. Relevant researches show that users' feelings in a waiting scenario can affect their evaluations on the whole product and services the product provides. With the development of user experience and inter-facial design subjects, the role of motion effect in the interface design has attracted more and more scholars' attention. In the current studies, the research theory of motion design in a waiting scenario is imperfect. This article will use the basic theory and experimental research methods of cognitive psychology to explore the motion design's impact on user's time perception when users are waiting for loading APP pages. Firstly, the article analyzes the factors that affect waiting experience of loading APP pages based on the theory of time perception, and then discusses motion design's impact on the level of time-perception when loading pages and its design strategy. Moreover, by the operation analysis of existing loading motion designs, the article classifies the existing loading motions and designs an experiment to verify the impact of different types of motions on the user's time perception. The result shows that the waiting time perception of mobile's terminals' APPs is related to the loading motion types, the combination type of loading motions can effectively shorten the waiting time perception as it scores a higher mean value in the length of time perception.

  16. Improving Sensorimotor Function Using Stochastic Vestibular Stimulation

    NASA Technical Reports Server (NTRS)

    Galvan, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Mulavara, A. P.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transition phases. Post flight sensorimotor changes may include postural and gait instability, spatial disorientation, and visual performance decrements, all of which can degrade operational capabilities of the astronauts and endanger the crew. Crewmember safety would be improved if these detrimental effects of spaceflight could be mitigated by a sensorimotor countermeasure and even further if adaptation to baseline could be facilitated. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor performance through stochastic resonance (SR). The SR phenomenon occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. Two studies have been initiated to investigate the beneficial effects and potential practical usage of SVS. In both studies, electrical vestibular stimulation is applied via electrodes on the mastoid processes using a constant current stimulator. The first study aims to determine the repeatability of the effect of vestibular stimulation on sensorimotor performance and perception in order to better understand the practical use of SVS. The beneficial effect of low levels of SVS on balance performance has been shown in the past. This research uses the same balance task repeated multiple times within a day and across days to study the repeatability of the stimulation effects. The balance test consists of 50 sec trials in which the subject stands with his or her feet together, arms crossed, and eyes closed on compliant foam. Varying levels of SVS, ranging from 0-700 micro A, are applied across different trials. The subject-specific optimal SVS level is that which results in the best balance performance as measured by inertial measurement units placed on the upper and lower torso of the subjects. Additionally, each individual’s threshold for illusory motion perception of suprasensory electrical vestibular stimulation is measured multiple times within and across days to better understand how multiple SVS test methods compare. The second study aims to demonstrate stochastic resonance in the vestibular system using a perception based motion recognition task. This task measures an individual’s velocity threshold of motion recognition using a 6-degree of freedom Stewart platform and a 3-down/1-up staircase procedure. For this study, thresholds are determined using 150 trials in the upright, head-centered roll tilt motion direction at a 0.2 Hz frequency. We aim to demonstrate the characteristic bell shaped curve associated with stochastic resonance with each subject’s motion recognition thresholds at varying SVS levels ranging from 0 to 1500 micro A. The curve includes the individual’s baseline threshold with no SVS, optimal or minimal threshold at some mid-level of SVS, and finally degraded or increased threshold at a high SVS level. An additional aim is to formally retest each subject at his or her individual optimal SVS level on a different day than the original testing for additional validity. The overall purpose of this research is to further quantify the effects of SVS on various sensorimotor tasks and investigate the practical implications of its use in the context of human space flight so that it may be implemented in the future as a component of a comprehensive countermeasure plan for adaptation to G-transitions.

  17. Neural Correlates of Coherent and Biological Motion Perception in Autism

    ERIC Educational Resources Information Center

    Koldewyn, Kami; Whitney, David; Rivera, Susan M.

    2011-01-01

    Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but…

  18. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  19. Ventral aspect of the visual form pathway is not critical for the perception of biological motion

    PubMed Central

    Gilaie-Dotan, Sharon; Saygin, Ayse Pinar; Lorenzi, Lauren J.; Rees, Geraint; Behrmann, Marlene

    2015-01-01

    Identifying the movements of those around us is fundamental for many daily activities, such as recognizing actions, detecting predators, and interacting with others socially. A key question concerns the neurobiological substrates underlying biological motion perception. Although the ventral “form” visual cortex is standardly activated by biologically moving stimuli, whether these activations are functionally critical for biological motion perception or are epiphenomenal remains unknown. To address this question, we examined whether focal damage to regions of the ventral visual cortex, resulting in significant deficits in form perception, adversely affects biological motion perception. Six patients with damage to the ventral cortex were tested with sensitive point-light display paradigms. All patients were able to recognize unmasked point-light displays and their perceptual thresholds were not significantly different from those of three different control groups, one of which comprised brain-damaged patients with spared ventral cortex (n > 50). Importantly, these six patients performed significantly better than patients with damage to regions critical for biological motion perception. To assess the necessary contribution of different regions in the ventral pathway to biological motion perception, we complement the behavioral findings with a fine-grained comparison between the lesion location and extent, and the cortical regions standardly implicated in biological motion processing. This analysis revealed that the ventral aspects of the form pathway (e.g., fusiform regions, ventral extrastriate body area) are not critical for biological motion perception. We hypothesize that the role of these ventral regions is to provide enhanced multiview/posture representations of the moving person rather than to represent biological motion perception per se. PMID:25583504

  20. Neck Proprioception Shapes Body Orientation and Perception of Motion

    PubMed Central

    Pettorossi, Vito Enrico; Schieppati, Marco

    2014-01-01

    This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject’s mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes. PMID:25414660

  1. Neck proprioception shapes body orientation and perception of motion.

    PubMed

    Pettorossi, Vito Enrico; Schieppati, Marco

    2014-01-01

    This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject's mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes.

  2. Perceptions of a fluid consensus: uniqueness bias, false consensus, false polarization, and pluralistic ignorance in a water conservation crisis.

    PubMed

    Monin, Benoît; Norton, Michael I

    2003-05-01

    A 5-day field study (N = 415) during and right after a shower ban demonstrated multifaceted social projection and the tendency to draw personality inferences from simple behavior in a time of drastic consensus change. Bathers thought showering was more prevalent than did non-bathers (false consensus) and respondents consistently underestimated the prevalence of the desirable and common behavior--be it not showering during the shower ban or showering after the ban (uniqueness bias). Participants thought that bathers and non-bathers during the ban differed greatly in their general concern for the community, but self-reports demonstrated that this gap was illusory (false polarization). Finally, bathers thought other bathers cared less than they did, whereas non-bathers thought other non-bathers cared more than they did (pluralistic ignorance). The study captures the many biases at work in social perception in a time of social change.

  3. Autoscopic phenomena and one's own body representation in dreams.

    PubMed

    Occhionero, Miranda; Cicogna, Piera Carla

    2011-12-01

    Autoscopic phenomena (AP) are complex experiences that include the visual illusory reduplication of one's own body. From a phenomenological point of view, we can distinguish three conditions: autoscopic hallucinations, heautoscopy, and out-of-body experiences. The dysfunctional pattern involves multisensory disintegration of personal and extrapersonal space perception. The etiology, generally either neurological or psychiatric, is different. Also, the hallucination of Self and own body image is present during dreams and differs according to sleep stage. Specifically, the representation of the Self in REM dreams is frequently similar to the perception of Self in wakefulness, whereas in NREM dreams, a greater polymorphism of Self and own body representation is observed. The parallels between autoscopic phenomena in pathological cases and the Self-hallucination in dreams will be discussed to further the understanding of the particular states of self awareness, especially the complex integration of different memory sources in Self and body representation. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Interobject grouping facilitates visual awareness.

    PubMed

    Stein, Timo; Kaiser, Daniel; Peelen, Marius V

    2015-01-01

    In organizing perception, the human visual system takes advantage of regularities in the visual input to perceptually group related image elements. Simple stimuli that can be perceptually grouped based on physical regularities, for example by forming an illusory contour, have a competitive advantage in entering visual awareness. Here, we show that regularities that arise from the relative positioning of complex, meaningful objects in the visual environment also modulate visual awareness. Using continuous flash suppression, we found that pairs of objects that were positioned according to real-world spatial regularities (e.g., a lamp above a table) accessed awareness more quickly than the same object pairs shown in irregular configurations (e.g., a table above a lamp). This advantage was specific to upright stimuli and abolished by stimulus inversion, meaning that it did not reflect physical stimulus confounds or the grouping of simple image elements. Thus, knowledge of the spatial configuration of objects in the environment shapes the contents of conscious perception.

  5. Illusory ownership of an invisible body reduces autonomic and subjective social anxiety responses

    PubMed Central

    Guterstam, Arvid; Abdulkarim, Zakaryah; Ehrsson, H. Henrik

    2015-01-01

    What is it like to be invisible? This question has long fascinated man and has been the central theme of many classic literary works. Recent advances in materials science suggest that invisibility cloaking of the human body may be possible in the not-so-distant future. However, it remains unknown how invisibility affects body perception and embodied cognition. To address these questions, we developed a perceptual illusion of having an entire invisible body. Through a series of experiments, we characterized the multisensory rules that govern the elicitation of the illusion and show that the experience of having an invisible body reduces the social anxiety response to standing in front of an audience. This study provides an experimental model of what it is like to be invisible and shows that this experience affects bodily self-perception and social cognition. PMID:25906330

  6. First Person Perspective of Seated Participants Over a Walking Virtual Body Leads to Illusory Agency Over the Walking.

    PubMed

    Kokkinara, Elena; Kilteni, Konstantina; Blom, Kristopher J; Slater, Mel

    2016-07-01

    Agency, the attribution of authorship to an action of our body, requires the intention to carry out the action, and subsequently a match between its predicted and actual sensory consequences. However, illusory agency can be generated through priming of the action together with perception of bodily action, even when there has been no actual corresponding action. Here we show that participants can have the illusion of agency over the walking of a virtual body even though in reality they are seated and only allowed head movements. The experiment (n = 28) had two factors: Perspective (1PP or 3PP) and Head Sway (Sway or NoSway). Participants in 1PP saw a life-sized virtual body spatially coincident with their own from a first person perspective, or the virtual body from third person perspective (3PP). In the Sway condition the viewpoint included a walking animation, but not in NoSway. The results show strong illusions of body ownership, agency and walking, in the 1PP compared to the 3PP condition, and an enhanced level of arousal while the walking was up a virtual hill. Sway reduced the level of agency. We conclude with a discussion of the results in the light of current theories of agency.

  7. Video quality assessment method motivated by human visual perception

    NASA Astrophysics Data System (ADS)

    He, Meiling; Jiang, Gangyi; Yu, Mei; Song, Yang; Peng, Zongju; Shao, Feng

    2016-11-01

    Research on video quality assessment (VQA) plays a crucial role in improving the efficiency of video coding and the performance of video processing. It is well acknowledged that the motion energy model generates motion energy responses in a middle temporal area by simulating the receptive field of neurons in V1 for the motion perception of the human visual system. Motivated by the biological evidence for the visual motion perception, a VQA method is proposed in this paper, which comprises the motion perception quality index and the spatial index. To be more specific, the motion energy model is applied to evaluate the temporal distortion severity of each frequency component generated from the difference of Gaussian filter bank, which produces the motion perception quality index, and the gradient similarity measure is used to evaluate the spatial distortion of the video sequence to get the spatial quality index. The experimental results of the LIVE, CSIQ, and IVP video databases demonstrate that the random forests regression technique trained by the generated quality indices is highly correspondent to human visual perception and has many significant improvements than comparable well-performing methods. The proposed method has higher consistency with subjective perception and higher generalization capability.

  8. Audiovisual associations alter the perception of low-level visual motion

    PubMed Central

    Kafaligonul, Hulusi; Oluk, Can

    2015-01-01

    Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role. PMID:25873869

  9. Gravity matters: Motion perceptions modified by direction and body position.

    PubMed

    Claassen, Jens; Bardins, Stanislavs; Spiegel, Rainer; Strupp, Michael; Kalla, Roger

    2016-07-01

    Motion coherence thresholds are consistently higher at lower velocities. In this study we analysed the influence of the position and direction of moving objects on their perception and thereby the influence of gravity. This paradigm allows a differentiation to be made between coherent and randomly moving objects in an upright and a reclining position with a horizontal or vertical axis of motion. 18 young healthy participants were examined in this coherent threshold paradigm. Motion coherence thresholds were significantly lower when position and motion were congruent with gravity independent of motion velocity (p=0.024). In the other conditions higher motion coherence thresholds (MCT) were found at lower velocities and vice versa (p<0.001). This result confirms previous studies with higher MCT at lower velocity but is in contrast to studies concerning perception of virtual turns and optokinetic nystagmus, in which differences of perception were due to different directions irrespective of body position, i.e. perception took place in an egocentric reference frame. Since the observed differences occurred in an upright position only, perception of coherent motion in this study is defined by an earth-centered reference frame rather than by an ego-centric frame. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Illusory conjunctions are alive and well: a reply to Donk (1999).

    PubMed

    Prinzmetal, W; Diedrichsen, J; Ivry, R B

    2001-06-01

    When presented with a red T and a green O, observers occasionally make conjunction responses and indicate that they saw a green T. These errors have been interpreted as reflecting separable processing stages of feature detection and integration with the illusory conjunctions arising from a failure at the integration stage. Recently, M. Donk (1999) asserted that the phenomenon of illusory conjunctions is an artifact. Conjunction reports are actually the result of confusing a nontarget item (O in the example above) for a target item (the letter T) and (correctly) reporting the color associated with the (incorrectly) selected target. The authors demonstrate that although target-nontarget confusion errors are a potential source of conjunction reports, there is a plethora of findings that cannot be accounted for by this confusion model. A review of the literature indicates that in many studies, illusory conjunctions do result from a failure to properly integrate features.

  11. Neural correlates of coherent and biological motion perception in autism.

    PubMed

    Koldewyn, Kami; Whitney, David; Rivera, Susan M

    2011-09-01

    Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. © 2011 Blackwell Publishing Ltd.

  12. Neural correlates of coherent and biological motion perception in autism

    PubMed Central

    Koldewyn, Kami; Whitney, David; Rivera, Susan M.

    2011-01-01

    Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. PMID:21884323

  13. Dynamical evolution of motion perception.

    PubMed

    Kanai, Ryota; Sheth, Bhavin R; Shimojo, Shinsuke

    2007-03-01

    Motion is defined as a sequence of positional changes over time. However, in perception, spatial position and motion dynamically interact with each other. This reciprocal interaction suggests that the perception of a moving object itself may dynamically evolve following the onset of motion. Here, we show evidence that the percept of a moving object systematically changes over time. In experiments, we introduced a transient gap in the motion sequence or a brief change in some feature (e.g., color or shape) of an otherwise smoothly moving target stimulus. Observers were highly sensitive to the gap or transient change if it occurred soon after motion onset (< or =200 ms), but significantly less so if it occurred later (> or = 300 ms). Our findings suggest that the moving stimulus is initially perceived as a time series of discrete potentially isolatable frames; later failures to perceive change suggests that over time, the stimulus begins to be perceived as a single, indivisible gestalt integrated over space as well as time, which could well be the signature of an emergent stable motion percept.

  14. Global motion perception is related to motor function in 4.5-year-old children born at risk of abnormal development

    PubMed Central

    Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin

    2017-01-01

    Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122

  15. Smelling directions: Olfaction modulates ambiguous visual motion perception

    PubMed Central

    Kuang, Shenbing; Zhang, Tao

    2014-01-01

    Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway. PMID:25052162

  16. Illusory conjunctions in visual short-term memory: Individual differences in corpus callosum connectivity and splitting attention between the two hemifields.

    PubMed

    Qin, Shuo; Ray, Nicholas R; Ramakrishnan, Nithya; Nashiro, Kaoru; O'Connell, Margaret A; Basak, Chandramallika

    2016-11-01

    Overloading the capacity of visual attention can result in mistakenly combining the various features of an object, that is, illusory conjunctions. We hypothesize that if the two hemispheres separately process visual information by splitting attention, connectivity of corpus callosum-a brain structure integrating the two hemispheres-would predict the degree of illusory conjunctions. In the current study, we assessed two types of illusory conjunctions using a memory-scanning paradigm; the features were either presented across the two opposite hemifields or within the same hemifield. Four objects, each with two visual features, were briefly presented together followed by a probe-recognition and a confidence rating for the recognition accuracy. MRI scans were also obtained. Results indicated that successful recollection during probe recognition was better for across hemifields conjunctions compared to within hemifield conjunctions, lending support to the bilateral advantage of the two hemispheres in visual short-term memory. Age-related differences regarding the underlying mechanisms of the bilateral advantage indicated greater reliance on recollection-based processing in young and on familiarity-based processing in old. Moreover, the integrity of the posterior corpus callosum was more predictive of opposite hemifield illusory conjunctions compared to within hemifield illusory conjunctions, even after controlling for age. That is, individuals with lesser posterior corpus callosum connectivity had better recognition for objects when their features were recombined from the opposite hemifields than from the same hemifield. This study is the first to investigate the role of the corpus callosum in splitting attention between versus within hemifields. © 2016 Society for Psychophysiological Research.

  17. Anisotropies in the perceived spatial displacement of motion-defined contours: opposite biases in the upper-left and lower-right visual quadrants.

    PubMed

    Fan, Zhao; Harris, John

    2010-10-12

    In a recent study (Fan, Z., & Harris, J. (2008). Perceived spatial displacement of motion-defined contours in peripheral vision. Vision Research, 48(28), 2793-2804), we demonstrated that virtual contours defined by two regions of dots moving in opposite directions were displaced perceptually in the direction of motion of the dots in the more eccentric region when the contours were viewed in the right visual field. Here, we show that the magnitude and/or direction of these displacements varies in different quadrants of the visual field. When contours were presented in the lower visual field, the direction of perceived contour displacement was consistent with that when both contours were presented in the right visual field. However, this illusory motion-induced spatial displacement disappeared when both contours were presented in the upper visual field. Also, perceived contour displacement in the direction of the more eccentric dots was larger in the right than in the left visual field, perhaps because of a hemispheric asymmetry in attentional allocation. Quadrant-based analyses suggest that the pattern of results arises from opposite directions of perceived contour displacement in the upper-left and lower-right visual quadrants, which depend on the relative strengths of two effects: a greater sensitivity to centripetal motion, and an asymmetry in the allocation of spatial attention. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Use of cues in virtual reality depends on visual feedback.

    PubMed

    Fulvio, Jacqueline M; Rokers, Bas

    2017-11-22

    3D motion perception is of central importance to daily life. However, when tested in laboratory settings, sensitivity to 3D motion signals is found to be poor, leading to the view that heuristics and prior assumptions are critical for 3D motion perception. Here we explore an alternative: sensitivity to 3D motion signals is context-dependent and must be learned based on explicit visual feedback in novel environments. The need for action-contingent visual feedback is well-established in the developmental literature. For example, young kittens that are passively moved through an environment, but unable to move through it themselves, fail to develop accurate depth perception. We find that these principles also obtain in adult human perception. Observers that do not experience visual consequences of their actions fail to develop accurate 3D motion perception in a virtual reality environment, even after prolonged exposure. By contrast, observers that experience the consequences of their actions improve performance based on available sensory cues to 3D motion. Specifically, we find that observers learn to exploit the small motion parallax cues provided by head jitter. Our findings advance understanding of human 3D motion processing and form a foundation for future study of perception in virtual and natural 3D environments.

  19. Global Motion Perception in 2-Year-Old Children: A Method for Psychophysical Assessment and Relationships With Clinical Measures of Visual Function

    PubMed Central

    Yu, Tzu-Ying; Jacobs, Robert J.; Anstice, Nicola S.; Paudel, Nabin; Harding, Jane E.; Thompson, Benjamin

    2013-01-01

    Purpose. We developed and validated a technique for measuring global motion perception in 2-year-old children, and assessed the relationship between global motion perception and other measures of visual function. Methods. Random dot kinematogram (RDK) stimuli were used to measure motion coherence thresholds in 366 children at risk of neurodevelopmental problems at 24 ± 1 months of age. RDKs of variable coherence were presented and eye movements were analyzed offline to grade the direction of the optokinetic reflex (OKR) for each trial. Motion coherence thresholds were calculated by fitting psychometric functions to the resulting datasets. Test–retest reliability was assessed in 15 children, and motion coherence thresholds were measured in a group of 10 adults using OKR and behavioral responses. Standard age-appropriate optometric tests also were performed. Results. Motion coherence thresholds were measured successfully in 336 (91.8%) children using the OKR technique, but only 31 (8.5%) using behavioral responses. The mean threshold was 41.7 ± 13.5% for 2-year-old children and 3.3 ± 1.2% for adults. Within-assessor reliability and test–retest reliability were high in children. Children's motion coherence thresholds were significantly correlated with stereoacuity (LANG I & II test, ρ = 0.29, P < 0.001; Frisby, ρ = 0.17, P = 0.022), but not with binocular visual acuity (ρ = 0.11, P = 0.07). In adults OKR and behavioral motion coherence thresholds were highly correlated (intraclass correlation = 0.81, P = 0.001). Conclusions. Global motion perception can be measured in 2-year-old children using the OKR. This technique is reliable and data from adults suggest that motion coherence thresholds based on the OKR are related to motion perception. Global motion perception was related to stereoacuity in children. PMID:24282224

  20. Modulation frequency as a cue for auditory speed perception.

    PubMed

    Senna, Irene; Parise, Cesare V; Ernst, Marc O

    2017-07-12

    Unlike vision, the mechanisms underlying auditory motion perception are poorly understood. Here we describe an auditory motion illusion revealing a novel cue to auditory speed perception: the temporal frequency of amplitude modulation (AM-frequency), typical for rattling sounds. Naturally, corrugated objects sliding across each other generate rattling sounds whose AM-frequency tends to directly correlate with speed. We found that AM-frequency modulates auditory speed perception in a highly systematic fashion: moving sounds with higher AM-frequency are perceived as moving faster than sounds with lower AM-frequency. Even more interestingly, sounds with higher AM-frequency also induce stronger motion aftereffects. This reveals the existence of specialized neural mechanisms for auditory motion perception, which are sensitive to AM-frequency. Thus, in spatial hearing, the brain successfully capitalizes on the AM-frequency of rattling sounds to estimate the speed of moving objects. This tightly parallels previous findings in motion vision, where spatio-temporal frequency of moving displays systematically affects both speed perception and the magnitude of the motion aftereffects. Such an analogy with vision suggests that motion detection may rely on canonical computations, with similar neural mechanisms shared across the different modalities. © 2017 The Author(s).

  1. Residual effects of ecstasy (3,4-methylenedioxymethamphetamine) on low level visual processes.

    PubMed

    Murray, Elizabeth; Bruno, Raimondo; Brown, John

    2012-03-01

    'Ecstasy' (3,4-methylenedioxymethamphetamine) induces impaired functioning in the serotonergic system, including the occipital lobe. This study employed the 'tilt aftereffect' paradigm to operationalise the function of orientation-selective neurons among ecstasy consumers and controls as a means of investigating the role of reduced serotonin on visual orientation processing. The magnitude of the tilt aftereffect reflects the extent of lateral inhibition between orientation-selective neurons and is elicited to both 'real' contours, processed in visual cortex area V1, and illusory contours, processed in V2. The magnitude of tilt aftereffect to both contour types was examined among 19 ecstasy users (6 ecstasy only; 13 ecstasy-plus-cannabis users) and 23 matched controls (9 cannabis-only users; 14 drug-naive). Ecstasy users had a significantly greater tilt magnitude than non-users for real contours (Hedge's g = 0.63) but not for illusory contours (g = 0.20). These findings provide support for literature suggesting that residual effects of ecstasy (and reduced serotonin) impairs lateral inhibition between orientation-selective neurons in V1, which however suggests that ecstasy may not substantially affect this process in V2. Multiple studies have now demonstrated ecstasy-related deficits on basic visual functions, including orientation and motion processing. Such low-level effects may contribute to the impact of ecstasy use on neuropsychological tests of visuospatial function. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator

    NASA Astrophysics Data System (ADS)

    Rehmatullah, Faizan

    In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.

  3. The upper spatial limit for perception of displacement is affected by preceding motion.

    PubMed

    Stefanova, Miroslava; Mateeff, Stefan; Hohnsbein, Joachim

    2009-03-01

    The upper spatial limit D(max) for perception of apparent motion of a random dot pattern may be strongly affected by another, collinear, motion that precedes it [Mateeff, S., Stefanova, M., &. Hohnsbein, J. (2007). Perceived global direction of a compound of real and apparent motion. Vision Research, 47, 1455-1463]. In the present study this phenomenon was studied with two-dimensional motion stimuli. A random dot pattern moved alternately in the vertical and oblique direction (zig-zag motion). The vertical motion was of 1.04 degrees length; it was produced by three discrete spatial steps of the dots. Thereafter the dots were displaced by a single spatial step in oblique direction. Each motion lasted for 57ms. The upper spatial limit for perception of the oblique motion was measured under two conditions: the vertical component of the oblique motion and the vertical motion were either in the same or in opposite directions. It was found that the perception of the oblique motion was strongly influenced by the relative direction of the vertical motion that preceded it; in the "same" condition the upper spatial limit was much shorter than in the "opposite" condition. Decreasing the speed of the vertical motion reversed this effect. Interpretations based on networks of motion detectors and on Gestalt theory are discussed.

  4. IQ Predicts Biological Motion Perception in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Rutherford, M. D.; Troje, Nikolaus F.

    2012-01-01

    Biological motion is easily perceived by neurotypical observers when encoded in point-light displays. Some but not all relevant research shows significant deficits in biological motion perception among those with ASD, especially with respect to emotional displays. We tested adults with and without ASD on the perception of masked biological motion…

  5. Early and late beta-band power reflect audiovisual perception in the McGurk illusion

    PubMed Central

    Senkowski, Daniel; Keil, Julian

    2015-01-01

    The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13–30 Hz) at short (0–500 ms) and long (500–800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept. PMID:25568160

  6. Early and late beta-band power reflect audiovisual perception in the McGurk illusion.

    PubMed

    Roa Romero, Yadira; Senkowski, Daniel; Keil, Julian

    2015-04-01

    The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13-30 Hz) at short (0-500 ms) and long (500-800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept. Copyright © 2015 the American Physiological Society.

  7. Contrasting accounts of direction and shape perception in short-range motion: Counterchange compared with motion energy detection.

    PubMed

    Norman, Joseph; Hock, Howard; Schöner, Gregor

    2014-07-01

    It has long been thought (e.g., Cavanagh & Mather, 1989) that first-order motion-energy extraction via space-time comparator-type models (e.g., the elaborated Reichardt detector) is sufficient to account for human performance in the short-range motion paradigm (Braddick, 1974), including the perception of reverse-phi motion when the luminance polarity of the visual elements is inverted during successive frames. Human observers' ability to discriminate motion direction and use coherent motion information to segregate a region of a random cinematogram and determine its shape was tested; they performed better in the same-, as compared with the inverted-, polarity condition. Computational analyses of short-range motion perception based on the elaborated Reichardt motion energy detector (van Santen & Sperling, 1985) predict, incorrectly, that symmetrical results will be obtained for the same- and inverted-polarity conditions. In contrast, the counterchange detector (Hock, Schöner, & Gilroy, 2009) predicts an asymmetry quite similar to that of human observers in both motion direction and shape discrimination. The further advantage of counterchange, as compared with motion energy, detection for the perception of spatial shape- and depth-from-motion is discussed.

  8. Translational Vestibulo-Ocular Reflex and Motion Perception During Interaural Linear Acceleration: Comparison of Different Motion Paradigms

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, S. J.

    2011-01-01

    The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for motion perception and eye movements differ, they also indicate that the specific motion platform employed can have a significant effect on both the amplitude and phase of each.

  9. Global motion perception is associated with motor function in 2-year-old children.

    PubMed

    Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E

    2017-09-29

    The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Coherent modulation of stimulus colour can affect visually induced self-motion perception.

    PubMed

    Nakamura, Shinji; Seno, Takeharu; Ito, Hiroyuki; Sunaga, Shoji

    2010-01-01

    The effects of dynamic colour modulation on vection were investigated to examine whether perceived variation of illumination affects self-motion perception. Participants observed expanding optic flow which simulated their forward self-motion. Onset latency, accumulated duration, and estimated magnitude of the self-motion were measured as indices of vection strength. Colour of the dots in the visual stimulus was modulated between white and red (experiment 1), white and grey (experiment 2), and grey and red (experiment 3). The results indicated that coherent colour oscillation in the visual stimulus significantly suppressed the strength of vection, whereas incoherent or static colour modulation did not affect vection. There was no effect of the types of the colour modulation; both achromatic and chromatic modulations turned out to be effective in inhibiting self-motion perception. Moreover, in a situation where the simulated direction of a spotlight was manipulated dynamically, vection strength was also suppressed (experiment 4). These results suggest that observer's perception of illumination is critical for self-motion perception, and rapid variation of perceived illumination would impair the reliabilities of visual information in determining self-motion.

  11. Contextual effects on motion perception and smooth pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R

    2008-08-15

    Smooth pursuit eye movements are continuous, slow rotations of the eyes that allow us to follow the motion of a visual object of interest. These movements are closely related to sensory inputs from the visual motion processing system. To track a moving object in the natural environment, its motion first has to be segregated from the motion signals provided by surrounding stimuli. Here, we review experiments on the effect of the visual context on motion processing with a focus on the relationship between motion perception and smooth pursuit eye movements. While perception and pursuit are closely linked, we show that they can behave quite distinctly when required by the visual context.

  12. Rotary motion impairs attention to color change in 4-month-old infants.

    PubMed

    Kavšek, Michael

    2013-06-01

    Continuous color changes of an array of elements appear to stop changing if the array undergoes a coherent motion. This silencing illusion was demonstrated for adults by Suchow and Alvarez (Current Biology, 2011, vol. 21, pp. 140-143). The current forced-choice preferential looking study examined 4-month-old infants' sensitivity to the silencing illusion. Two experimental conditions were conducted. In the dynamic condition, infants were tested with two rotating rings of circular different-colored dots. In one of these rings the dots continuously changed color, whereas in the other ring the dots did not change color. In the static condition, the global rotary motion was eliminated from the targets. Infants preferred looking at the color-changing target in the static condition but not in the dynamic condition; they attended to the color changes in the static condition but failed to detect them in the dynamic condition. This differential looking pattern is consistent with the hypothesis that the silencing illusion can be established during early infancy. A control group of adults also responded to the silencing phenomenon. This substantiates that the stimuli generate a robust illusory effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Color and luminance in the perception of 1- and 2-dimensional motion.

    PubMed

    Farell, B

    1999-08-01

    An isoluminant color grating usually appears to move more slowly than a luminance grating that has the same physical speed. Yet a grating defined by both color and luminance is seen as perceptually unified and moving at a single intermediate speed. In experiments measuring perceived speed and direction, it was found that color- and luminance-based motion signals are combined differently in the perception of 1-D motion than they are in the perception of 2-D motion. Adding color to a moving 1-D luminance pattern, a grating, slows its perceived speed. Adding color to a moving 2-D luminance pattern, a plaid made of orthogonal gratings, leaves its perceived speed unchanged. Analogous results occur for the perception of the direction of 2-D motion. The visual system appears to discount color when analyzing the motion of luminance-bearing 2-D patterns. This strategy has adaptive advantages, making the sensing of object motion more veridical without sacrificing the ability to see motion at isoluminance.

  14. Global motion perception is related to motor function in 4.5-year-old children born at risk of abnormal development.

    PubMed

    Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; LaGasse, Linda L; Lester, Barry M; McKinlay, Christopher J D; Harding, Jane E; Wouldes, Trecia A; Thompson, Benjamin

    2017-06-01

    Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Deficient motion-defined and texture-defined figure-ground segregation in amblyopic children.

    PubMed

    Wang, Jane; Ho, Cindy S; Giaschi, Deborah E

    2007-01-01

    Motion-defined form deficits in the fellow eye and the amblyopic eye of children with amblyopia implicate possible direction-selective motion processing or static figure-ground segregation deficits. Deficient motion-defined form perception in the fellow eye of amblyopic children may not be fully accounted for by a general motion processing deficit. This study investigates the contribution of figure-ground segregation deficits to the motion-defined form perception deficits in amblyopia. Performances of 6 amblyopic children (5 anisometropic, 1 anisostrabismic) and 32 control children with normal vision were assessed on motion-defined form, texture-defined form, and global motion tasks. Performance on motion-defined and texture-defined form tasks was significantly worse in amblyopic children than in control children. Performance on global motion tasks was not significantly different between the 2 groups. Faulty figure-ground segregation mechanisms are likely responsible for the observed motion-defined form perception deficits in amblyopia.

  16. On Known Unknowns: Fluency and the Neural Mechanisms of Illusory Truth

    PubMed Central

    Wang, Wei-Chun; Brashier, Nadia M.; Wing, Erik A.; Marsh, Elizabeth J.; Cabeza, Roberto

    2016-01-01

    The “illusory truth” effect refers to the phenomenon whereby repetition of a statement increases its likelihood of being judged true. This phenomenon has important implications for how we come to believe oft-repeated information that may be misleading or unknown. Behavioral evidence indicates that fluency or the subjective ease experienced while processing a statement underlies this effect. This suggests that illusory truth should be mediated by brain regions previously linked to fluency, such as the perirhinal cortex (PRC). To investigate this possibility, we scanned participants with fMRI while they rated the truth of unknown statements, half of which were presented earlier (i.e., repeated). The only brain region that showed an interaction between repetition and ratings of perceived truth was PRC, where activity increased with truth ratings for repeated, but not for new, statements. This finding supports the hypothesis that illusory truth is mediated by a fluency mechanism and further strengthens the link between PRC and fluency. PMID:26765947

  17. Implicit and Explicit Illusory Correlation as a Function of Political Ideology

    PubMed Central

    Carraro, Luciana; Negri, Paolo; Castelli, Luigi; Pastore, Massimiliano

    2014-01-01

    Research has demonstrated that people who embrace different ideological orientations often show differences at the level of basic cognitive processes. For instance, conservatives (vs. liberals) display an automatic selective attention for negative (vs. positive) stimuli, and tend to more easily form illusory correlations between negative information and minority groups. In the present work, we further explored this latter effect by examining whether it only involves the formation of explicit attitudes or it extends to implicit attitudes. To this end, following the typical illusory correlation paradigm, participants were presented with members of two numerically different groups (majority and minority) each performing either a positive or negative behaviour. Negative behaviors were relatively infrequent, and the proportion of positive and negative behaviors within each group was the same. Next, explicit and implicit (i.e., IAT-measured) attitudes were assessed. Results showed that conservatives (vs. liberals) displayed stronger explicit as well as implicit illusory correlations effects, forming more negative attitudes toward the minority (vs. majority) group at both the explicit and implicit level. PMID:24820311

  18. Is meaning implicated in illusory conjunctions?

    PubMed

    Virzi, R A; Egeth, H E

    1984-08-01

    According to feature-integration theory, when attention is diverted from a display, features from different objects in that display may be wrongly recombined, giving rise to "illusory conjunctions" (Treisman & Schmidt, 1982). Two experiments are reported that examine the nature of these illusory conjunctions. In displays that contain color names and adjectives printed in colored ink, subjects made two kinds of interesting and previously unreported errors. Consider, for example, a display that included the word BROWN in red ink and the word HEAVY in green ink. Subjects would sometimes incorrectly report that the word RED or the ink color brown had appeared in the display (e.g., RED in green ink or HEAVY in brown ink). It appears that subjects extract semantic representations from input and are sometimes confused about whether a particular representation has been extracted from a word or a color patch. Contrary to feature-integration theory, these findings suggest that illusory conjunctions may occur with high-level codes as well as with perceptual features.

  19. The Positive Illusory Bias in Children and Adolescents With ADHD: Further Evidence.

    PubMed

    Volz-Sidiropoulou, Eftychia; Boecker, Maren; Gauggel, Siegfried

    2016-02-01

    This study aimed to examine the accuracy of self-reports of children and adolescents with ADHD in evaluating activity limitations. Self-reports of children/adolescents with ADHD (n = 89) were compared with those of nonreferred children (n = 94), relative to parent reports about children's competence. Competence was measured with a 34-item rating scale. Behavioral disorders were documented with the Child Behavior Checklist. Children/adolescents with ADHD were much more likely than controls to overestimate their competence in certain daily activities relative to parent reports, demonstrating a positive illusory bias. Positive illusory bias was found to be pronounced in activities, which were expected to be affected by symptoms of ADHD. Overestimations of competencies were more likely to be accompanied with externalizing problems. Results support the presence of the positive illusory bias also in the domain of everyday life activities. Improvement of self-evaluation of competencies should become a focus of treatment. © The Author(s) 2013.

  20. Implicit and explicit illusory correlation as a function of political ideology.

    PubMed

    Carraro, Luciana; Negri, Paolo; Castelli, Luigi; Pastore, Massimiliano

    2014-01-01

    Research has demonstrated that people who embrace different ideological orientations often show differences at the level of basic cognitive processes. For instance, conservatives (vs. liberals) display an automatic selective attention for negative (vs. positive) stimuli, and tend to more easily form illusory correlations between negative information and minority groups. In the present work, we further explored this latter effect by examining whether it only involves the formation of explicit attitudes or it extends to implicit attitudes. To this end, following the typical illusory correlation paradigm, participants were presented with members of two numerically different groups (majority and minority) each performing either a positive or negative behaviour. Negative behaviors were relatively infrequent, and the proportion of positive and negative behaviors within each group was the same. Next, explicit and implicit (i.e., IAT-measured) attitudes were assessed. Results showed that conservatives (vs. liberals) displayed stronger explicit as well as implicit illusory correlations effects, forming more negative attitudes toward the minority (vs. majority) group at both the explicit and implicit level.

  1. Neural network architecture for form and motion perception (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Grossberg, Stephen

    1991-08-01

    Evidence is given for a new neural network theory of biological motion perception, a motion boundary contour system. This theory clarifies why parallel streams V1 yields V2 and V1 yields MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. The motion boundary contour system consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a motion oriented contrast (MOC) filter, for preprocessing moving images; and a cooperative-competitive feedback (CC) loop, for generating emergent boundary segmentations of the filtered signals. The present work uses the MOC filter to explain a variety of classical and recent data about short-range and long- range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed- up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte''s Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90 degree(s), whereas opposite directions differ by 180 degree(s), and why a cortical stream V1 yields V2 yields MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the motion boundary contour system design.

  2. Prolonged asymmetric vestibular stimulation induces opposite, long-term effects on self-motion perception and ocular responses.

    PubMed

    Pettorossi, V E; Panichi, R; Botti, F M; Kyriakareli, A; Ferraresi, A; Faralli, M; Schieppati, M; Bronstein, A M

    2013-04-01

    Self-motion perception and the vestibulo-ocular reflex (VOR) were investigated in healthy subjects during asymmetric whole body yaw plane oscillations while standing on a platform in the dark. Platform oscillation consisted of two half-sinusoidal cycles of the same amplitude (40°) but different duration, featuring a fast (FHC) and a slow half-cycle (SHC). Rotation consisted of four or 20 consecutive cycles to probe adaptation further with the longer duration protocol. Self-motion perception was estimated by subjects tracking with a pointer the remembered position of an earth-fixed visual target. VOR was measured by electro-oculography. The asymmetric stimulation pattern consistently induced a progressive increase of asymmetry in motion perception, whereby the gain of the tracking response gradually increased during FHCs and decreased during SHCs. The effect was observed already during the first few cycles and further increased during 20 cycles, leading to a totally distorted location of the initial straight-ahead. In contrast, after some initial interindividual variability, the gain of the slow phase VOR became symmetric, decreasing for FHCs and increasing for SHCs. These oppositely directed adaptive effects in motion perception and VOR persisted for nearly an hour. Control conditions using prolonged but symmetrical stimuli produced no adaptive effects on either motion perception or VOR. These findings show that prolonged asymmetric activation of the vestibular system leads to opposite patterns of adaptation of self-motion perception and VOR. The results provide strong evidence that semicircular canal inputs are processed centrally by independent mechanisms for perception of body motion and eye movement control. These divergent adaptation mechanisms enhance awareness of movement toward the faster body rotation, while improving the eye stabilizing properties of the VOR.

  3. Prolonged asymmetric vestibular stimulation induces opposite, long-term effects on self-motion perception and ocular responses

    PubMed Central

    Pettorossi, V E; Panichi, R; Botti, F M; Kyriakareli, A; Ferraresi, A; Faralli, M; Schieppati, M; Bronstein, A M

    2013-01-01

    Self-motion perception and the vestibulo-ocular reflex (VOR) were investigated in healthy subjects during asymmetric whole body yaw plane oscillations while standing on a platform in the dark. Platform oscillation consisted of two half-sinusoidal cycles of the same amplitude (40°) but different duration, featuring a fast (FHC) and a slow half-cycle (SHC). Rotation consisted of four or 20 consecutive cycles to probe adaptation further with the longer duration protocol. Self-motion perception was estimated by subjects tracking with a pointer the remembered position of an earth-fixed visual target. VOR was measured by electro-oculography. The asymmetric stimulation pattern consistently induced a progressive increase of asymmetry in motion perception, whereby the gain of the tracking response gradually increased during FHCs and decreased during SHCs. The effect was observed already during the first few cycles and further increased during 20 cycles, leading to a totally distorted location of the initial straight-ahead. In contrast, after some initial interindividual variability, the gain of the slow phase VOR became symmetric, decreasing for FHCs and increasing for SHCs. These oppositely directed adaptive effects in motion perception and VOR persisted for nearly an hour. Control conditions using prolonged but symmetrical stimuli produced no adaptive effects on either motion perception or VOR. These findings show that prolonged asymmetric activation of the vestibular system leads to opposite patterns of adaptation of self-motion perception and VOR. The results provide strong evidence that semicircular canal inputs are processed centrally by independent mechanisms for perception of body motion and eye movement control. These divergent adaptation mechanisms enhance awareness of movement toward the faster body rotation, while improving the eye stabilizing properties of the VOR. PMID:23318876

  4. Subjective figures and texture perception.

    PubMed

    Zucker, S W; Cavanagh, P

    1985-01-01

    A texture discrimination task using the Ehrenstein illusion demonstrates that subjective brightness effects can play an essential role in early vision. The subjectively bright regions of the Ehrenstein can be organized either as discs or as stripes, depending on orientation. The accuracy of discrimination between variants of the Ehrenstein and control patterns was a direct function of the presence of the illusory brightness stripes, being high when they were present and low otherwise. It is argued that neither receptive field structure nor spatial-frequency content can adequately account for these results. We suggest that the subjective brightness illusions, rather than being a high-level, cognitive aspect of vision, are in fact the result of an early visual process.

  5. Criterion-free measurement of motion transparency perception at different speeds

    PubMed Central

    Rocchi, Francesca; Ledgeway, Timothy; Webb, Ben S.

    2018-01-01

    Transparency perception often occurs when objects within the visual scene partially occlude each other or move at the same time, at different velocities across the same spatial region. Although transparent motion perception has been extensively studied, we still do not understand how the distribution of velocities within a visual scene contribute to transparent perception. Here we use a novel psychophysical procedure to characterize the distribution of velocities in a scene that give rise to transparent motion perception. To prevent participants from adopting a subjective decision criterion when discriminating transparent motion, we used an “odd-one-out,” three-alternative forced-choice procedure. Two intervals contained the standard—a random-dot-kinematogram with dot speeds or directions sampled from a uniform distribution. The other interval contained the comparison—speeds or directions sampled from a distribution with the same range as the standard, but with a notch of different widths removed. Our results suggest that transparent motion perception is driven primarily by relatively slow speeds, and does not emerge when only very fast speeds are present within a visual scene. Transparent perception of moving surfaces is modulated by stimulus-based characteristics, such as the separation between the means of the overlapping distributions or the range of speeds presented within an image. Our work illustrates the utility of using objective, forced-choice methods to reveal the mechanisms underlying motion transparency perception. PMID:29614154

  6. The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production.

    PubMed

    Buchanan, John J

    2016-01-01

    The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor's motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.

  7. Illusory conjunctions in the time domain and the resulting time-course of the attentional blink.

    PubMed

    Botella, Juan; Arend, Isabel; Suero, Manuel

    2004-05-01

    Illusory conjunctions in the time domain are errors made in binding stimulus features presented In the same spatial position in Rapid Serial Visual Presentation (RSVP) conditions. Botella, Barriopedro, and Suero (2001) devised a model to explain how the distribution of responses originating from stimuli around the target in the series is generated. They proposed two routes consisting of two sequential attempts to make a response. The second attempt (sophisticated guessing) is only employed if the first one (focal attention) fails in producing an integrated perception. This general outline enables specific predictions to be made and tested related to the efficiency of focal attention in generating responses in the first attempt. Participants had to report the single letter in an RSVP stream of letters that was presented in a previously specified color (first target, T1) and then report whether an X (second target, T2) was or was not presented. Performance on T2 showed the typical U-shaped function across the T1-T2 lag that reflects the attentional blink phenomenon. However, as was predicted by Botella, Barriopedro, and Suero's model, the time-course of the interference was shorter for trials with a correct response to T1 than for trials with a T1 error. Furthermore, longer time-courses of interference associated with pre-target and post-target errors to the first target were indistinguishable.

  8. Neural networks supporting audiovisual integration for speech: A large-scale lesion study.

    PubMed

    Hickok, Gregory; Rogalsky, Corianne; Matchin, William; Basilakos, Alexandra; Cai, Julia; Pillay, Sara; Ferrill, Michelle; Mickelsen, Soren; Anderson, Steven W; Love, Tracy; Binder, Jeffrey; Fridriksson, Julius

    2018-06-01

    Auditory and visual speech information are often strongly integrated resulting in perceptual enhancements for audiovisual (AV) speech over audio alone and sometimes yielding compelling illusory fusion percepts when AV cues are mismatched, the McGurk-MacDonald effect. Previous research has identified three candidate regions thought to be critical for AV speech integration: the posterior superior temporal sulcus (STS), early auditory cortex, and the posterior inferior frontal gyrus. We assess the causal involvement of these regions (and others) in the first large-scale (N = 100) lesion-based study of AV speech integration. Two primary findings emerged. First, behavioral performance and lesion maps for AV enhancement and illusory fusion measures indicate that classic metrics of AV speech integration are not necessarily measuring the same process. Second, lesions involving superior temporal auditory, lateral occipital visual, and multisensory zones in the STS are the most disruptive to AV speech integration. Further, when AV speech integration fails, the nature of the failure-auditory vs visual capture-can be predicted from the location of the lesions. These findings show that AV speech processing is supported by unimodal auditory and visual cortices as well as multimodal regions such as the STS at their boundary. Motor related frontal regions do not appear to play a role in AV speech integration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A slowly moving foreground can capture an observer's self-motion--a report of a new motion illusion: inverted vection.

    PubMed

    Nakamura, S; Shimojo, S

    2000-01-01

    We investigated interactions between foreground and background stimuli during visually induced perception of self-motion (vection) by using a stimulus composed of orthogonally moving random-dot patterns. The results indicated that, when the foreground moves with a slower speed, a self-motion sensation with a component in the same direction as the foreground is induced. We named this novel component of self-motion perception 'inverted vection'. The robustness of inverted vection was confirmed using various measures of self-motion sensation and under different stimulus conditions. The mechanism underlying inverted vection is discussed with regard to potentially relevant factors, such as relative motion between the foreground and background, and the interaction between the mis-registration of eye-movement information and self-motion perception.

  10. Perception of Visual Speed While Moving

    ERIC Educational Resources Information Center

    Durgin, Frank H.; Gigone, Krista; Scott, Rebecca

    2005-01-01

    During self-motion, the world normally appears stationary. In part, this may be due to reductions in visual motion signals during self-motion. In 8 experiments, the authors used magnitude estimation to characterize changes in visual speed perception as a result of biomechanical self-motion alone (treadmill walking), physical translation alone…

  11. Inducing any virtual two-dimensional movement in humans by applying muscle tendon vibration.

    PubMed

    Roll, Jean-Pierre; Albert, Frédéric; Thyrion, Chloé; Ribot-Ciscar, Edith; Bergenheim, Mikael; Mattei, Benjamin

    2009-02-01

    In humans, tendon vibration evokes illusory sensation of movement. We developed a model mimicking the muscle afferent patterns corresponding to any two-dimensional movement and checked its validity by inducing writing illusory movements through specific sets of muscle vibrators. Three kinds of illusory movements were compared. The first was induced by vibration patterns copying the responses of muscle spindle afferents previously recorded by microneurography during imposed ankle movements. The two others were generated by the model. Sixteen different vibratory patterns were applied to 20 motionless volunteers in the absence of vision. After each vibration sequence, the participants were asked to name the corresponding graphic symbol and then to reproduce the illusory movement perceived. Results showed that the afferent patterns generated by the model were very similar to those recorded microneurographically during actual ankle movements (r=0.82). The model was also very efficient for generating afferent response patterns at the wrist level, if the preferred sensory directions of the wrist muscle groups were first specified. Using recorded and modeled proprioceptive patterns to pilot sets of vibrators placed at the ankle or wrist levels evoked similar illusory movements, which were correctly identified by the participants in three quarters of the trials. Our proprioceptive model, based on neurosensory data recorded in behaving humans, should then be a useful tool in fields of research such as sensorimotor learning, rehabilitation, and virtual reality.

  12. The moral foundations of illusory correlation

    PubMed Central

    Barberia, Itxaso

    2017-01-01

    Previous research has studied the relationship between political ideology and cognitive biases, such as the tendency of conservatives to form stronger illusory correlations between negative infrequent behaviors and minority groups. We further explored these findings by studying the relation between illusory correlation and moral values. According to the moral foundations theory, liberals and conservatives differ in the relevance they concede to different moral dimensions: Care, Fairness, Loyalty, Authority, and Purity. Whereas liberals consistently endorse the Care and Fairness foundations more than the Loyalty, Authority and Purity foundations, conservatives tend to adhere to the five foundations alike. In the present study, a group of participants took part in a standard illusory correlation task in which they were presented with randomly ordered descriptions of either desirable or undesirable behaviors attributed to individuals belonging to numerically different majority and minority groups. Although the proportion of desirable and undesirable behaviors was the same in the two groups, participants attributed a higher frequency of undesirable behaviors to the minority group, thus showing the expected illusory correlation effect. Moreover, this effect was specifically associated to our participants’ scores in the Loyalty subscale of the Moral Foundations Questionnaire. These results emphasize the role of the Loyalty moral foundation in the formation of attitudes towards minorities among conservatives. Our study points out the moral system as a useful fine-grained framework to explore the complex interaction between basic cognitive processes and ideology. PMID:28972990

  13. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness

    PubMed Central

    Spering, Miriam; Carrasco, Marisa

    2012-01-01

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth pursuit eye movements in response to moving dichoptic plaids–stimuli composed of two orthogonally-drifting gratings, presented separately to each eye–in human observers. Monocular adaptation to one grating prior to the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating’s motion direction or to both (neutral condition). We show that observers were better in detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating’s motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted towards the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it. PMID:22649238

  14. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness.

    PubMed

    Spering, Miriam; Carrasco, Marisa

    2012-05-30

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth-pursuit eye movements in response to moving dichoptic plaids--stimuli composed of two orthogonally drifting gratings, presented separately to each eye--in human observers. Monocular adaptation to one grating before the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating's motion direction or to both (neutral condition). We show that observers were better at detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating's motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted toward the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it.

  15. Differential responses in dorsal visual cortex to motion and disparity depth cues

    PubMed Central

    Arnoldussen, David M.; Goossens, Jeroen; van den Berg, Albert V.

    2013-01-01

    We investigated how interactions between monocular motion parallax and binocular cues to depth vary in human motion areas for wide-field visual motion stimuli (110 × 100°). We used fMRI with an extensive 2 × 3 × 2 factorial blocked design in which we combined two types of self-motion (translational motion and translational + rotational motion), with three categories of motion inflicted by the degree of noise (self-motion, distorted self-motion, and multiple object-motion), and two different view modes of the flow patterns (stereo and synoptic viewing). Interactions between disparity and motion category revealed distinct contributions to self- and object-motion processing in 3D. For cortical areas V6 and CSv, but not the anterior part of MT+ with bilateral visual responsiveness (MT+/b), we found a disparity-dependent effect of rotational flow and noise: When self-motion perception was degraded by adding rotational flow and moderate levels of noise, the BOLD responses were reduced compared with translational self-motion alone, but this reduction was cancelled by adding stereo information which also rescued the subject's self-motion percept. At high noise levels, when the self-motion percept gave way to a swarm of moving objects, the BOLD signal strongly increased compared to self-motion in areas MT+/b and V6, but only for stereo in the latter. BOLD response did not increase for either view mode in CSv. These different response patterns indicate different contributions of areas V6, MT+/b, and CSv to the processing of self-motion perception and the processing of multiple independent motions. PMID:24339808

  16. Seeking Positive Experiences Can Produce Illusory Correlations

    ERIC Educational Resources Information Center

    Denrell, Jerker; Le Mens, Gael

    2011-01-01

    Individuals tend to select again alternatives about which they have positive impressions and to avoid alternatives about which they have negative impressions. Here we show how this sequential sampling feature of the information acquisition process leads to the emergence of an illusory correlation between estimates of the attributes of…

  17. Phosphene Perception Relates to Visual Cortex Glutamate Levels and Covaries with Atypical Visuospatial Awareness.

    PubMed

    Terhune, Devin B; Murray, Elizabeth; Near, Jamie; Stagg, Charlotte J; Cowey, Alan; Cohen Kadosh, Roi

    2015-11-01

    Phosphenes are illusory visual percepts produced by the application of transcranial magnetic stimulation to occipital cortex. Phosphene thresholds, the minimum stimulation intensity required to reliably produce phosphenes, are widely used as an index of cortical excitability. However, the neural basis of phosphene thresholds and their relationship to individual differences in visual cognition are poorly understood. Here, we investigated the neurochemical basis of phosphene perception by measuring basal GABA and glutamate levels in primary visual cortex using magnetic resonance spectroscopy. We further examined whether phosphene thresholds would relate to the visuospatial phenomenology of grapheme-color synesthesia, a condition characterized by atypical binding and involuntary color photisms. Phosphene thresholds negatively correlated with glutamate concentrations in visual cortex, with lower thresholds associated with elevated glutamate. This relationship was robust, present in both controls and synesthetes, and exhibited neurochemical, topographic, and threshold specificity. Projector synesthetes, who experience color photisms as spatially colocalized with inducing graphemes, displayed lower phosphene thresholds than associator synesthetes, who experience photisms as internal images, with both exhibiting lower thresholds than controls. These results suggest that phosphene perception is driven by interindividual variation in glutamatergic activity in primary visual cortex and relates to cortical processes underlying individual differences in visuospatial awareness. © The Author 2015. Published by Oxford University Press.

  18. Adaptation aftereffects in the perception of gender from biological motion.

    PubMed

    Troje, Nikolaus F; Sadr, Javid; Geyer, Henning; Nakayama, Ken

    2006-07-28

    Human visual perception is highly adaptive. While this has been known and studied for a long time in domains such as color vision, motion perception, or the processing of spatial frequency, a number of more recent studies have shown that adaptation and adaptation aftereffects also occur in high-level visual domains like shape perception and face recognition. Here, we present data that demonstrate a pronounced aftereffect in response to adaptation to the perceived gender of biological motion point-light walkers. A walker that is perceived to be ambiguous in gender under neutral adaptation appears to be male after adaptation with an exaggerated female walker and female after adaptation with an exaggerated male walker. We discuss this adaptation aftereffect as a tool to characterize and probe the mechanisms underlying biological motion perception.

  19. Coherence Motion Perception in Developmental Dyslexia: A Meta-Analysis of Behavioral Studies

    ERIC Educational Resources Information Center

    Benassi, Mariagrazia; Simonelli, Letizia; Giovagnoli, Sara; Bolzani, Roberto

    2010-01-01

    The magnitude of the association between developmental dyslexia (DD) and motion sensitivity is evaluated in 35 studies, which investigated coherence motion perception in DD. A first analysis is conducted on the differences between DD groups and age-matched control (C) groups. In a second analysis, the relationship between motion coherence…

  20. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    PubMed Central

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  1. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion

    PubMed Central

    Smith, Ross T.; Hunter, Estin V.; Davis, Miles G.; Sterling, Michele; Moseley, G. Lorimer

    2017-01-01

    Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. Method In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%–200%—the Motor Offset Visual Illusion (MoOVi)—thus simulating more or less movement than that actually occurring. At 50o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360o immersive virtual reality with and without three-dimensional properties, was also investigated. Results Perception of head movement was dependent on visual-kinaesthetic feedback (p = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Discussion Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and therapy of people with spinal pain. PMID:28243537

  2. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion.

    PubMed

    Harvie, Daniel S; Smith, Ross T; Hunter, Estin V; Davis, Miles G; Sterling, Michele; Moseley, G Lorimer

    2017-01-01

    Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can't be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50 o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%-200%-the Motor Offset Visual Illusion (MoOVi)-thus simulating more or less movement than that actually occurring. At 50 o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360 o immersive virtual reality with and without three-dimensional properties, was also investigated. Perception of head movement was dependent on visual-kinaesthetic feedback ( p  = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and therapy of people with spinal pain.

  3. Color-motion feature-binding errors are mediated by a higher-order chromatic representation

    PubMed Central

    Shevell, Steven K.; Wang, Wei

    2017-01-01

    Peripheral and central moving objects of the same color may be perceived to move in the same direction even though peripheral objects have a different true direction of motion [Nature 429, 262 (2004)]. The perceived, illusory direction of peripheral motion is a color-motion feature-binding error. Recent work shows that such binding errors occur even without an exact color match between central and peripheral objects, and, moreover, the frequency of the binding errors in the periphery declines as the chromatic difference increases between the central and peripheral objects [J. Opt. Soc. Am. A 31, A60 (2014)]. This change in the frequency of binding errors with the chromatic difference raises the general question of the chromatic representation from which the difference is determined. Here, basic properties of the chromatic representation are tested to discover whether it depends on independent chromatic differences on the l and the s cardinal axes or, alternatively, on a more specific higher-order chromatic representation. Experimental tests compared the rate of feature-binding errors when the central and peripheral colors had the identical s chromaticity (so zero difference in s) and a fixed magnitude of l difference, while varying the identical s level in center and periphery (thus always keeping the s difference at zero). A chromatic representation based on independent l and s differences would result in the same frequency of color-motion binding errors at every s level. The results are contrary to this prediction, thus showing that the chromatic representation at the level of color-motion feature binding depends on a higherorder chromatic mechanism. PMID:26974945

  4. Visual processing and social cognition in schizophrenia: relationships among eye movements, biological motion perception, and empathy.

    PubMed

    Matsumoto, Yukiko; Takahashi, Hideyuki; Murai, Toshiya; Takahashi, Hidehiko

    2015-01-01

    Schizophrenia patients have impairments at several levels of cognition including visual attention (eye movements), perception, and social cognition. However, it remains unclear how lower-level cognitive deficits influence higher-level cognition. To elucidate the hierarchical path linking deficient cognitions, we focused on biological motion perception, which is involved in both the early stage of visual perception (attention) and higher social cognition, and is impaired in schizophrenia. Seventeen schizophrenia patients and 18 healthy controls participated in the study. Using point-light walker stimuli, we examined eye movements during biological motion perception in schizophrenia. We assessed relationships among eye movements, biological motion perception and empathy. In the biological motion detection task, schizophrenia patients showed lower accuracy and fixated longer than healthy controls. As opposed to controls, patients exhibiting longer fixation durations and fewer numbers of fixations demonstrated higher accuracy. Additionally, in the patient group, the correlations between accuracy and affective empathy index and between eye movement index and affective empathy index were significant. The altered gaze patterns in patients indicate that top-down attention compensates for impaired bottom-up attention. Furthermore, aberrant eye movements might lead to deficits in biological motion perception and finally link to social cognitive impairments. The current findings merit further investigation for understanding the mechanism of social cognitive training and its development. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  5. Neural representations of kinematic laws of motion: evidence for action-perception coupling.

    PubMed

    Dayan, Eran; Casile, Antonino; Levit-Binnun, Nava; Giese, Martin A; Hendler, Talma; Flash, Tamar

    2007-12-18

    Behavioral and modeling studies have established that curved and drawing human hand movements obey the 2/3 power law, which dictates a strong coupling between movement curvature and velocity. Human motion perception seems to reflect this constraint. The functional MRI study reported here demonstrates that the brain's response to this law of motion is much stronger and more widespread than to other types of motion. Compliance with this law is reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. Hence, these results strongly support the notion of similar neural coding for motion perception and production. These findings suggest that cortical motion representations are optimally tuned to the kinematic and geometrical invariants characterizing biological actions.

  6. Human Motion Perception and Smooth Eye Movements Show Similar Directional Biases for Elongated Apertures

    NASA Technical Reports Server (NTRS)

    Beutter, Brent R.; Stone, Leland S.

    1997-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  7. Human motion perception and smooth eye movements show similar directional biases for elongated apertures

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Stone, L. S.

    1998-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye-movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical, suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  8. Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion

    PubMed Central

    Niehorster, Diederick C.

    2017-01-01

    How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272

  9. Early Development of Object Unity: Evidence for Perceptual Completion in Newborns

    ERIC Educational Resources Information Center

    Valenza, Eloisa; Bulf, Hermann

    2011-01-01

    The present study aimed to investigate whether perceptual completion is available at birth, in the absence of any visual experience. An extremely underspecified kinetic visual display composed of four spatially separated fragments arranged to give rise to an illusory rectangle that occluded a vertical rod (illusory condition) or rotated so as not…

  10. Differentiation of Illusory and True Halo in Writing Scores

    ERIC Educational Resources Information Center

    Lai, Emily R.; Wolfe, Edward W.; Vickers, Daisy

    2015-01-01

    This report summarizes an empirical study that addresses two related topics within the context of writing assessment--illusory halo and how much unique information is provided by multiple analytic scores. Specifically, we address the issue of whether unique information is provided by analytic scores assigned to student writing, beyond what is…

  11. Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex.

    PubMed

    Kok, Peter; de Lange, Floris P

    2014-07-07

    An essential part of visual perception is the grouping of local elements (such as edges and lines) into coherent shapes. Previous studies have shown that this grouping process modulates neural activity in the primary visual cortex (V1) that is signaling the local elements [1-4]. However, the nature of this modulation is controversial. Some studies find that shape perception reduces neural activity in V1 [2, 5, 6], while others report increased V1 activity during shape perception [1, 3, 4, 7-10]. Neurocomputational theories that cast perception as a generative process [11-13] propose that feedback connections carry predictions (i.e., the generative model), while feedforward connections signal the mismatch between top-down predictions and bottom-up inputs. Within this framework, the effect of feedback on early visual cortex may be either enhancing or suppressive, depending on whether the feedback signal is met by congruent bottom-up input. Here, we tested this hypothesis by quantifying the spatial profile of neural activity in V1 during the perception of illusory shapes using population receptive field mapping. We find that shape perception concurrently increases neural activity in regions of V1 that have a receptive field on the shape but do not receive bottom-up input and suppresses activity in regions of V1 that receive bottom-up input that is predicted by the shape. These effects were not modulated by task requirements. Together, these findings suggest that shape perception changes lower-order sensory representations in a highly specific and automatic manner, in line with theories that cast perception in terms of hierarchical generative models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Visual-vestibular integration as a function of adaptation to space flight and return to Earth

    NASA Technical Reports Server (NTRS)

    Reschke, Millard R.; Bloomberg, Jacob J.; Harm, Deborah L.; Huebner, William P.; Krnavek, Jody M.; Paloski, William H.; Berthoz, Alan

    1999-01-01

    Research on perception and control of self-orientation and self-motion addresses interactions between action and perception . Self-orientation and self-motion, and the perception of that orientation and motion are required for and modified by goal-directed action. Detailed Supplementary Objective (DSO) 604 Operational Investigation-3 (OI-3) was designed to investigate the integrated coordination of head and eye movements within a structured environment where perception could modify responses and where response could be compensatory for perception. A full understanding of this coordination required definition of spatial orientation models for the microgravity environment encountered during spaceflight.

  13. Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.

    PubMed

    Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A

    2004-11-09

    Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.

  14. Motion perception without Nystagmus--a novel manifestation of cerebellar stroke.

    PubMed

    Shaikh, Aasef G

    2014-01-01

    The motion perception and the vestibulo-ocular reflex (VOR) each serve distinct functions. The VOR keeps the gaze steady on the target of interest, whereas vestibular perception serves a number of tasks, including awareness of self-motion and orientation in space. VOR and motion perception might abide the same neurophysiological principles, but their distinct anatomical correlates were proposed. In patients with cerebellar stroke in distribution of medial division of posterior inferior cerebellar artery, we asked whether specific location of the focal lesion in vestibulocerebellum could cause impaired perception of motion but normal eye movements. Thirteen patients were studied, 5 consistently perceived spinning of surrounding environment (vertigo), but the eye movements were normal. This group was called "disease model." Remaining 8 patients were also symptomatic for vertigo, but they had spontaneous nystagmus. The latter group was called "disease control." Magnetic resonance imaging in both groups consistently revealed focal cerebellar infarct affecting posterior cerebellar vermis (lobule IX). In the "disease model" group, only part of lobule IX was affected. In the disease control group, however, complete lobule IX was involved. This study discovered a novel presentation of cerebellar stroke where only motion perception was affected, but there was an absence of objective neurologic signs. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. The influence of selective attention to auditory and visual speech on the integration of audiovisual speech information.

    PubMed

    Buchan, Julie N; Munhall, Kevin G

    2011-01-01

    Conflicting visual speech information can influence the perception of acoustic speech, causing an illusory percept of a sound not present in the actual acoustic speech (the McGurk effect). We examined whether participants can voluntarily selectively attend to either the auditory or visual modality by instructing participants to pay attention to the information in one modality and to ignore competing information from the other modality. We also examined how performance under these instructions was affected by weakening the influence of the visual information by manipulating the temporal offset between the audio and video channels (experiment 1), and the spatial frequency information present in the video (experiment 2). Gaze behaviour was also monitored to examine whether attentional instructions influenced the gathering of visual information. While task instructions did have an influence on the observed integration of auditory and visual speech information, participants were unable to completely ignore conflicting information, particularly information from the visual stream. Manipulating temporal offset had a more pronounced interaction with task instructions than manipulating the amount of visual information. Participants' gaze behaviour suggests that the attended modality influences the gathering of visual information in audiovisual speech perception.

  16. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Video-Based Method of Quantifying Performance and Instrument Motion During Simulated Phonosurgery

    PubMed Central

    Conroy, Ellen; Surender, Ketan; Geng, Zhixian; Chen, Ting; Dailey, Seth; Jiang, Jack

    2015-01-01

    Objectives/Hypothesis To investigate the use of the Video-Based Phonomicrosurgery Instrument Tracking System to collect instrument position data during simulated phonomicrosurgery and calculate motion metrics using these data. We used this system to determine if novice subject motion metrics improved over 1 week of training. Study Design Prospective cohort study. Methods Ten subjects performed simulated surgical tasks once per day for 5 days. Instrument position data were collected and used to compute motion metrics (path length, depth perception, and motion smoothness). Data were analyzed to determine if motion metrics improved with practice time. Task outcome was also determined each day, and relationships between task outcome and motion metrics were used to evaluate the validity of motion metrics as indicators of surgical performance. Results Significant decreases over time were observed for path length (P <.001), depth perception (P <.001), and task outcome (P <.001). No significant change was observed for motion smoothness. Significant relationships were observed between task outcome and path length (P <.001), depth perception (P <.001), and motion smoothness (P <.001). Conclusions Our system can estimate instrument trajectory and provide quantitative descriptions of surgical performance. It may be useful for evaluating phonomicrosurgery performance. Path length and depth perception may be particularly useful indicators. PMID:24737286

  18. A Pursuit Theory Account for the Perception of Common Motion in Motion Parallax.

    PubMed

    Ratzlaff, Michael; Nawrot, Mark

    2016-09-01

    The visual system uses an extraretinal pursuit eye movement signal to disambiguate the perception of depth from motion parallax. Visual motion in the same direction as the pursuit is perceived nearer in depth while visual motion in the opposite direction as pursuit is perceived farther in depth. This explanation of depth sign applies to either an allocentric frame of reference centered on the fixation point or an egocentric frame of reference centered on the observer. A related problem is that of depth order when two stimuli have a common direction of motion. The first psychophysical study determined whether perception of egocentric depth order is adequately explained by a model employing an allocentric framework, especially when the motion parallax stimuli have common rather than divergent motion. A second study determined whether a reversal in perceived depth order, produced by a reduction in pursuit velocity, is also explained by this model employing this allocentric framework. The results show than an allocentric model can explain both the egocentric perception of depth order with common motion and the perceptual depth order reversal created by a reduction in pursuit velocity. We conclude that an egocentric model is not the only explanation for perceived depth order in these common motion conditions. © The Author(s) 2016.

  19. An Adaptive Neural Mechanism for Acoustic Motion Perception with Varying Sparsity

    PubMed Central

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    Biological motion-sensitive neural circuits are quite adept in perceiving the relative motion of a relevant stimulus. Motion perception is a fundamental ability in neural sensory processing and crucial in target tracking tasks. Tracking a stimulus entails the ability to perceive its motion, i.e., extracting information about its direction and velocity. Here we focus on auditory motion perception of sound stimuli, which is poorly understood as compared to its visual counterpart. In earlier work we have developed a bio-inspired neural learning mechanism for acoustic motion perception. The mechanism extracts directional information via a model of the peripheral auditory system of lizards. The mechanism uses only this directional information obtained via specific motor behaviour to learn the angular velocity of unoccluded sound stimuli in motion. In nature however the stimulus being tracked may be occluded by artefacts in the environment, such as an escaping prey momentarily disappearing behind a cover of trees. This article extends the earlier work by presenting a comparative investigation of auditory motion perception for unoccluded and occluded tonal sound stimuli with a frequency of 2.2 kHz in both simulation and practice. Three instances of each stimulus are employed, differing in their movement velocities–0.5°/time step, 1.0°/time step and 1.5°/time step. To validate the approach in practice, we implement the proposed neural mechanism on a wheeled mobile robot and evaluate its performance in auditory tracking. PMID:28337137

  20. Spatial Disorientation in Gondola Centrifuges Predicted by the Form of Motion as a Whole in 3-D

    PubMed Central

    Holly, Jan E.; Harmon, Katharine J.

    2009-01-01

    INTRODUCTION During a coordinated turn, subjects can misperceive tilts. Subjects accelerating in tilting-gondola centrifuges without external visual reference underestimate the roll angle, and underestimate more when backward-facing than when forward-facing. In addition, during centrifuge deceleration, the perception of pitch can include tumble while paradoxically maintaining a fixed perceived pitch angle. The goal of the present research was to test two competing hypotheses: (1) that components of motion are perceived relatively independently and then combined to form a three-dimensional perception, and (2) that perception is governed by familiarity of motions as a whole in three dimensions, with components depending more strongly on the overall shape of the motion. METHODS Published experimental data were used from existing tilting-gondola centrifuge studies. The two hypotheses were implemented formally in computer models, and centrifuge acceleration and deceleration were simulated. RESULTS The second, whole-motion oriented, hypothesis better predicted subjects' perceptions, including the forward-backward asymmetry and the paradoxical tumble upon deceleration. Important was the predominant stimulus at the beginning of the motion as well as the familiarity of centripetal acceleration. CONCLUSION Three-dimensional perception is better predicted by taking into account familiarity with the form of three-dimensional motion. PMID:19198199

  1. Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1995-01-01

    The objective is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness.

  2. Preadapting to Weightlessness

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Parker, D. E.; Arrott, A. P.

    1986-01-01

    Report discusses physiological and physical concepts of proposed training system to precondition astronauts to weightless environment. System prevents motion sickness, often experienced during early part of orbital flight. Also helps prevent seasickness and other forms of terrestrial motion sickness, often experienced during early part of orbital flight. Training affects subject's perception of inner-ear signals, visual signals, and kinesthetic motion perception. Changed perception resembles that of astronauts who spent many days in space and adapted to weightlessness.

  3. Orientation of selective effects of body tilt on visually induced perception of self-motion.

    PubMed

    Nakamura, S; Shimojo, S

    1998-10-01

    We examined the effect of body posture upon visually induced perception of self-motion (vection) with various angles of observer's tilt. The experiment indicated that the tilted body of observer could enhance perceived strength of vertical vection, while there was no effect of body tilt on horizontal vection. This result suggests that there is an interaction between the effects of visual and vestibular information on perception of self-motion.

  4. Posture-based processing in visual short-term memory for actions.

    PubMed

    Vicary, Staci A; Stevens, Catherine J

    2014-01-01

    Visual perception of human action involves both form and motion processing, which may rely on partially dissociable neural networks. If form and motion are dissociable during visual perception, then they may also be dissociable during their retention in visual short-term memory (VSTM). To elicit form-plus-motion and form-only processing of dance-like actions, individual action frames can be presented in the correct or incorrect order. The former appears coherent and should elicit action perception, engaging both form and motion pathways, whereas the latter appears incoherent and should elicit posture perception, engaging form pathways alone. It was hypothesized that, if form and motion are dissociable in VSTM, then recognition of static body posture should be better after viewing incoherent than after viewing coherent actions. However, as VSTM is capacity limited, posture-based encoding of actions may be ineffective with increased number of items or frames. Using a behavioural change detection task, recognition of a single test posture was significantly more likely after studying incoherent than after studying coherent stimuli. However, this effect only occurred for spans of two (but not three) items and for stimuli with five (but not nine) frames. As in perception, posture and motion are dissociable in VSTM.

  5. The moon illusion and size-distance scaling--evidence for shared neural patterns.

    PubMed

    Weidner, Ralph; Plewan, Thorsten; Chen, Qi; Buchner, Axel; Weiss, Peter H; Fink, Gereon R

    2014-08-01

    A moon near to the horizon is perceived larger than a moon at the zenith, although--obviously--the moon does not change its size. In this study, the neural mechanisms underlying the "moon illusion" were investigated using a virtual 3-D environment and fMRI. Illusory perception of an increased moon size was associated with increased neural activity in ventral visual pathway areas including the lingual and fusiform gyri. The functional role of these areas was further explored in a second experiment. Left V3v was found to be involved in integrating retinal size and distance information, thus indicating that the brain regions that dynamically integrate retinal size and distance play a key role in generating the moon illusion.

  6. Curvilinear approach to an intersection and visual detection of a collision.

    PubMed

    Berthelon, C; Mestre, D

    1993-09-01

    Visual motion perception plays a fundamental role in vehicle control. Recent studies have shown that the pattern of optical flow resulting from the observer's self-motion through a stable environment is used by the observer to accurately control his or her movements. However, little is known about the perception of another vehicle during self-motion--for instance, when a car driver approaches an intersection with traffic. In a series of experiments using visual simulations of car driving, we show that observers are able to detect the presence of a moving object during self-motion. However, the perception of the other car's trajectory appears to be strongly dependent on environmental factors, such as the presence of a road sign near the intersection or the shape of the road. These results suggest that local and global visual factors determine the perception of a car's trajectory during self-motion.

  7. Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia

    ERIC Educational Resources Information Center

    Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue

    2011-01-01

    Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…

  8. Accuracy of System Step Response Roll Magnitude Estimation from Central and Peripheral Visual Displays and Simulator Cockpit Motion

    NASA Technical Reports Server (NTRS)

    Hosman, R. J. A. W.; Vandervaart, J. C.

    1984-01-01

    An experiment to investigate visual roll attitude and roll rate perception is described. The experiment was also designed to assess the improvements of perception due to cockpit motion. After the onset of the motion, subjects were to make accurate and quick estimates of the final magnitude of the roll angle step response by pressing the appropriate button of a keyboard device. The differing time-histories of roll angle, roll rate and roll acceleration caused by a step response stimulate the different perception processes related the central visual field, peripheral visual field and vestibular organs in different, yet exactly known ways. Experiments with either of the visual displays or cockpit motion and some combinations of these were run to asses the roles of the different perception processes. Results show that the differences in response time are much more pronounced than the differences in perception accuracy.

  9. Phase-linking and the perceived motion during off-vertical axis rotation.

    PubMed

    Holly, Jan E; Wood, Scott J; McCollum, Gin

    2010-01-01

    Human off-vertical axis rotation (OVAR) in the dark typically produces perceived motion about a cone, the amplitude of which changes as a function of frequency. This perception is commonly attributed to the fact that both the OVAR and the conical motion have a gravity vector that rotates about the subject. Little-known, however, is that this rotating-gravity explanation for perceived conical motion is inconsistent with basic observations about self-motion perception: (a) that the perceived vertical moves toward alignment with the gravito-inertial acceleration (GIA) and (b) that perceived translation arises from perceived linear acceleration, as derived from the portion of the GIA not associated with gravity. Mathematically proved in this article is the fact that during OVAR these properties imply mismatched phase of perceived tilt and translation, in contrast to the common perception of matched phases which correspond to conical motion with pivot at the bottom. This result demonstrates that an additional perceptual rule is required to explain perception in OVAR. This study investigates, both analytically and computationally, the phase relationship between tilt and translation at different stimulus rates-slow (45 degrees /s) and fast (180 degrees /s), and the three-dimensional shape of predicted perceived motion, under different sets of hypotheses about self-motion perception. We propose that for human motion perception, there is a phase-linking of tilt and translation movements to construct a perception of one's overall motion path. Alternative hypotheses to achieve the phase match were tested with three-dimensional computational models, comparing the output with published experimental reports. The best fit with experimental data was the hypothesis that the phase of perceived translation was linked to perceived tilt, while the perceived tilt was determined by the GIA. This hypothesis successfully predicted the bottom-pivot cone commonly reported and a reduced sense of tilt during fast OVAR. Similar considerations apply to the hilltop illusion often reported during horizontal linear oscillation. Known response properties of central neurons are consistent with this ability to phase-link translation with tilt. In addition, the competing "standard" model was mathematically proved to be unable to predict the bottom-pivot cone regardless of the values used for parameters in the model.

  10. Visual motion perception predicts driving hazard perception ability.

    PubMed

    Lacherez, Philippe; Au, Sandra; Wood, Joanne M

    2014-02-01

    To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  11. Perception of Biological Motion in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Freitag, Christine M.; Konrad, Carsten; Haberlen, Melanie; Kleser, Christina; von Gontard, Alexander; Reith, Wolfgang; Troje, Nikolaus F.; Krick, Christoph

    2008-01-01

    In individuals with autism or autism-spectrum-disorder (ASD), conflicting results have been reported regarding the processing of biological motion tasks. As biological motion perception and recognition might be related to impaired imitation, gross motor skills and autism specific psychopathology in individuals with ASD, we performed a functional…

  12. Perception of linear horizontal self-motion induced by peripheral vision /linearvection/ - Basic characteristics and visual-vestibular interactions

    NASA Technical Reports Server (NTRS)

    Berthoz, A.; Pavard, B.; Young, L. R.

    1975-01-01

    The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyzer as judged by frequency analysis is lower than the vestibular analyzer. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.

  13. The perception of object versus objectless motion.

    PubMed

    Hock, Howard S; Nichols, David F

    2013-05-01

    Wertheimer, M. (Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 61:161-265, 1912) classical distinction between beta (object) and phi (objectless) motion is elaborated here in a series of experiments concerning competition between two qualitatively different motion percepts, induced by sequential changes in luminance for two-dimensional geometric objects composed of rectangular surfaces. One of these percepts is of spreading-luminance motion that continuously sweeps across the entire object; it exhibits shape invariance and is perceived most strongly for fast speeds. Significantly for the characterization of phi as objectless motion, the spreading luminance does not involve surface boundaries or any other feature; the percept is driven solely by spatiotemporal changes in luminance. Alternatively, and for relatively slow speeds, a discrete series of edge motions can be perceived in the direction opposite to spreading-luminance motion. Akin to beta motion, the edges appear to move through intermediate positions within the object's changing surfaces. Significantly for the characterization of beta as object motion, edge motion exhibits shape dependence and is based on the detection of oppositely signed changes in contrast (i.e., counterchange) for features essential to the determination of an object's shape, the boundaries separating its surfaces. These results are consistent with area MT neurons that differ with respect to speed preference Newsome et al (Journal of Neurophysiology, 55:1340-1351, 1986) and shape dependence Zeki (Journal of Physiology, 236:549-573, 1974).

  14. Unconscious Local Motion Alters Global Image Speed

    PubMed Central

    Khuu, Sieu K.; Chung, Charles Y. L.; Lord, Stephanie; Pearson, Joel

    2014-01-01

    Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed. PMID:25503603

  15. The effect of occlusion therapy on motion perception deficits in amblyopia.

    PubMed

    Giaschi, Deborah; Chapman, Christine; Meier, Kimberly; Narasimhan, Sathyasri; Regan, David

    2015-09-01

    There is growing evidence for deficits in motion perception in amblyopia, but these are rarely assessed clinically. In this prospective study we examined the effect of occlusion therapy on motion-defined form perception and multiple-object tracking. Participants included children (3-10years old) with unilateral anisometropic and/or strabismic amblyopia who were currently undergoing occlusion therapy and age-matched control children with normal vision. At the start of the study, deficits in motion-defined form perception were present in at least one eye in 69% of the children with amblyopia. These deficits were still present at the end of the study in 55% of the amblyopia group. For multiple-object tracking, deficits were present initially in 64% and finally in 55% of the children with amblyopia, even after completion of occlusion therapy. Many of these deficits persisted in spite of an improvement in amblyopic eye visual acuity in response to occlusion therapy. The prevalence of motion perception deficits in amblyopia as well as their resistance to occlusion therapy, support the need for new approaches to amblyopia treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Decreased Corticospinal Excitability after the Illusion of Missing Part of the Arm.

    PubMed

    Kilteni, Konstantina; Grau-Sánchez, Jennifer; Veciana De Las Heras, Misericordia; Rodríguez-Fornells, Antoni; Slater, Mel

    2016-01-01

    Previous studies on body ownership illusions have shown that under certain multimodal conditions, healthy people can experience artificial body-parts as if they were part of their own body, with direct physiological consequences for the real limb that gets 'substituted.' In this study we wanted to assess (a) whether healthy people can experience 'missing' a body-part through illusory ownership of an amputated virtual body, and (b) whether this would cause corticospinal excitability changes in muscles associated with the 'missing' body-part. Forty right-handed participants saw a virtual body from a first person perspective but for half of them the virtual body was missing a part of its right arm. Single pulse transcranial magnetic stimulation was applied before and after the experiment to left and right motor cortices. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI) and the extensor digitorum communis (EDC) of each hand. We found that the stronger the illusion of amputation and arm ownership, the more the reduction of MEP amplitudes of the EDC muscle for the contralateral sensorimotor cortex. In contrast, no association was found for the EDC amplitudes in the ipsilateral cortex and for the FDI amplitudes in both contralateral and ipsilateral cortices. Our study provides evidence that a short-term illusory perception of missing a body-part can trigger inhibitory effects on corticospinal pathways and importantly in the absence of any limb deafferentation or disuse.

  17. Effect of Achilles tendon vibration on postural orientation.

    PubMed

    Ceyte, Hadrien; Cian, Corinne; Zory, Raphael; Barraud, Pierre-Alain; Roux, Alain; Guerraz, Michel

    2007-04-06

    Vibration applied to the Achilles tendon is well known to induce in freely standing subjects a backward body displacement and in restrained subjects an illusory forward body tilt. The purpose of the present experiment was to evaluate the effect of Achilles tendon vibration (90Hz) on postural orientation in subjects free of equilibrium constraints. Subjects (n=12) were strapped on a backboard that could be rotated in the antero-posterior direction with the axis of rotation at the level of the ankles. They stood on a rigid horizontal floor with the soles of their feet parallel to the ground. They were initially positioned 7 degrees backward or forward or vertical and were required to adjust their body (the backboard) to the vertical orientation via a joystick. Firstly, results showed that in response to Achilles tendon vibration, subjects adjusted their body backward compared to the condition without vibration. This backward body adjustment likely cancel the appearance of an illusory forward body tilt. It was also observed that the vibratory stimulus applied to the Achilles tendon elicited in restrained standing subjects an increased EMG activity in both the gastrocnemius lateralis and the soleus muscles. Secondly, this vibration effect was more pronounced when passive displacement during the adjustment phase was congruent with the simulated elongation of calf muscles. These results indicated that the perception of body orientation is coherent with the postural response classically observed in freely standing subjects although the relationship between these two responses remains to be elucidated.

  18. Motion perception tasks as potential correlates to driving difficulty in the elderly

    NASA Astrophysics Data System (ADS)

    Raghuram, A.; Lakshminarayanan, V.

    2006-09-01

    Changes in the demographics indicates that the population older than 65 is on the rise because of the aging of the ‘baby boom’ generation. This aging trend and driving related accident statistics reveal the need for procedures and tests that would assess the driving ability of older adults and predict whether they would be safe or unsafe drivers. Literature shows that an attention based test called the useful field of view (UFOV) was a significant predictor of accident rates compared to any other visual function tests. The present study evaluates a qualitative trend on using motion perception tasks as a potential visual perceptual correlates in screening elderly drivers who might have difficulty in driving. Data was collected from 15 older subjects with a mean age of 71. Motion perception tasks included—speed discrimination with radial and lamellar motion, time to collision using prediction motion and estimating direction of heading. A motion index score was calculated which was indicative of performance on all of the above-mentioned motion tasks. Scores on visual attention was assessed using UFOV. A driving habit questionnaire was also administered for a self report on the driving difficulties and accident rates. A qualitative trend based on frequency distributions show that thresholds on the motion perception tasks are successful in identifying subjects who reported to have had difficulty in certain aspects of driving and had accidents. Correlation between UFOV and motion index scores was not significant indicating that probably different aspects of visual information processing that are crucial to driving behaviour are being tapped by these two paradigms. UFOV and motion perception tasks together can be a better predictor for identifying at risk or safe drivers than just using either one of them.

  19. Illusory Memories of Emotionally Charged Words in Autism Spectrum Disorder: Further Evidence for Atypical Emotion Processing outside the Social Domain

    ERIC Educational Resources Information Center

    Gaigg, Sebastian B.; Bowler, Dermot M.

    2009-01-01

    Recent evidence suggests that individuals with ASD may not accumulate distinct representations of emotional information throughout development. On the basis of this observation we predicted that such individuals would not be any less likely to falsely remember emotionally significant as compared to neutral words when such "illusory memories" are…

  20. Illusory correlation: a function of availability or representativeness heuristics?

    PubMed

    MacDonald, M G

    2000-08-01

    The present study sought to investigate the illusory correlation phenomenon by experimentally manipulating the availability of information through the use of the "lag" effect (Madigan, 1969). Seventy-four university students voluntarily participated in this study. Similar to Starr and Katkin's (1969) methodology, subjects were visually presented with each possible combination of four experimental problem descriptions and four sentence completions that were paired and shown twice at each of four lags (i.e., with 0, 2, 8 and 20 intervening variables). Subjects were required to make judgements concerning the frequency with which sentence completions and problem descriptions co-occurred. In agreement with previous research (Starr & Katkin, 1969), the illusory correlation effect was found for specific descriptions and sentence completions. Results also yielded a significant effect of lag for mean ratings between 0 and 2 lags; however, there was no reliable increase in judged co-occurrence at lags 8 and 20. Evidence failed to support the hypothesis that greater availability, through the experimental manipulation of lag, would result in increased frequency of co-occurrence judgements. Findings indicate that, in the present study, the illusory correlation effect is probably due to a situational bias based on the representativeness heuristic.

  1. Color difference threshold of chromostereopsis induced by flat display emission.

    PubMed

    Ozolinsh, Maris; Muizniece, Kristine

    2015-01-01

    The study of chromostereopsis has gained attention in the backdrop of the use of computer displays in daily life. In this context, we analyze the illusory depth sense using planar color images presented on a computer screen. We determine the color difference threshold required to induce an illusory sense of depth psychometrically using a constant stimuli paradigm. Isoluminant stimuli are presented on a computer screen, which stimuli are aligned along the blue-red line in the computer display CIE xyY color space. Stereo disparity is generated by increasing the color difference between the central and surrounding areas of the stimuli with both areas consisting of random dots on a black background. The observed altering of illusory depth sense, thus also stereo disparity is validated using the "center-of-gravity" model. The induced illusory sense of the depth effect undergoes color reversal upon varying the binocular lateral eye pupil covering conditions (lateral or medial). Analysis of the retinal image point spread function for the display red and blue pixel radiation validates the altering of chromostereopsis retinal disparity achieved by increasing the color difference, and also the chromostereopsis color reversal caused by varying the eye pupil covering conditions.

  2. Illusory expectations can affect retrieval-monitoring accuracy.

    PubMed

    McDonough, Ian M; Gallo, David A

    2012-03-01

    The present study investigated how expectations, even when illusory, can affect the accuracy of memory decisions. Participants studied words presented in large or small font for subsequent memory tests. Replicating prior work, judgments of learning indicated that participants expected to remember large words better than small words, even though memory for these words was equivalent on a standard test of recognition memory and subjective judgments. Critically, we also included tests that instructed participants to selectively search memory for either large or small words, thereby allowing different memorial expectations to contribute to performance. On these tests we found reduced false recognition when searching memory for large words relative to small words, such that the size illusion paradoxically affected accuracy measures (d' scores) in the absence of actual memory differences. Additional evidence for the role of illusory expectations was that (a) the accuracy effect was obtained only when participants searched memory for the aspect of the stimuli corresponding to illusory expectations (size instead of color) and (b) the accuracy effect was eliminated on a forced-choice test that prevented the influence of memorial expectations. These findings demonstrate the critical role of memorial expectations in the retrieval-monitoring process. 2012 APA, all rights reserved

  3. An Adaptation-Induced Repulsion Illusion in Tactile Spatial Perception

    PubMed Central

    Li, Lux; Chan, Arielle; Iqbal, Shah M.; Goldreich, Daniel

    2017-01-01

    Following focal sensory adaptation, the perceived separation between visual stimuli that straddle the adapted region is often exaggerated. For instance, in the tilt aftereffect illusion, adaptation to tilted lines causes subsequently viewed lines with nearby orientations to be perceptually repelled from the adapted orientation. Repulsion illusions in the nonvisual senses have been less studied. Here, we investigated whether adaptation induces a repulsion illusion in tactile spatial perception. In a two-interval forced-choice task, participants compared the perceived separation between two point-stimuli applied on the forearms successively. Separation distance was constant on one arm (the reference) and varied on the other arm (the comparison). In Experiment 1, we took three consecutive baseline measurements, verifying that in the absence of manipulation, participants’ distance perception was unbiased across arms and stable across experimental blocks. In Experiment 2, we vibrated a region of skin on the reference arm, verifying that this focally reduced tactile sensitivity, as indicated by elevated monofilament detection thresholds. In Experiment 3, we applied vibration between the two reference points in our distance perception protocol and discovered that this caused an illusory increase in the separation between the points. We conclude that focal adaptation induces a repulsion aftereffect illusion in tactile spatial perception. The illusion provides clues as to how the tactile system represents spatial information. The analogous repulsion aftereffects caused by adaptation in different stimulus domains and sensory systems may point to fundamentally similar strategies for dynamic sensory coding. PMID:28701936

  4. Contrast effects on speed perception for linear and radial motion.

    PubMed

    Champion, Rebecca A; Warren, Paul A

    2017-11-01

    Speed perception is vital for safe activity in the environment. However, considerable evidence suggests that perceived speed changes as a function of stimulus contrast, with some investigators suggesting that this might have meaningful real-world consequences (e.g. driving in fog). In the present study we investigate whether the neural effects of contrast on speed perception occur at the level of local or global motion processing. To do this we examine both speed discrimination thresholds and contrast-dependent speed perception for two global motion configurations that have matched local spatio-temporal structure. Specifically we compare linear and radial configurations, the latter of which arises very commonly due to self-movement. In experiment 1 the stimuli comprised circular grating patches. In experiment 2, to match stimuli even more closely, motion was presented in multiple local Gabor patches equidistant from central fixation. Each patch contained identical linear motion but the global configuration was either consistent with linear or radial motion. In both experiments 1 and 2, discrimination thresholds and contrast-induced speed biases were similar in linear and radial conditions. These results suggest that contrast-based speed effects occur only at the level of local motion processing, irrespective of global structure. This result is interpreted in the context of previous models of speed perception and evidence suggesting differences in perceived speed of locally matched linear and radial stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Brief report: altered horizontal binding of single dots to coherent motion in autism.

    PubMed

    David, Nicole; Rose, Michael; Schneider, Till R; Vogeley, Kai; Engel, Andreas K

    2010-12-01

    Individuals with autism often show a fragmented way of perceiving their environment, suggesting a disorder of information integration, possibly due to disrupted communication between brain areas. We investigated thirteen individuals with high-functioning autism (HFA) and thirteen healthy controls using the metastable motion quartet, a stimulus consisting of two dots alternately presented at four locations of a hypothetical square, thereby inducing an apparent motion percept. This percept is vertical or horizontal, the latter requiring binding of motion signals across cerebral hemispheres. Decreasing the horizontal distance between dots could facilitate horizontal percepts. We found evidence for altered horizontal binding in HFA: Individuals with HFA needed stronger facilitation to experience horizontal motion. These data are interpreted in light of reduced cross-hemispheric communication.

  6. Thresholds for the perception of whole-body linear sinusoidal motion in the horizontal plane

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Young, Laurence R.; Steele, Charles R.; Schubert, Earl D.

    1989-01-01

    An improved linear sled has been developed to provide precise motion stimuli without generating perceptible extraneous motion cues (a noiseless environment). A modified adaptive forced-choice method was employed to determine perceptual thresholds to whole-body linear sinusoidal motion in 25 subjects. Thresholds for the detection of movement in the horizontal plane were found to be lower than those reported previously. At frequencies of 0.2 to 0.5 Hz, thresholds were shown to be independent of frequency, while at frequencies of 1.0 to 3.0 Hz, thresholds showed a decreasing sensitivity with increasing frequency, indicating that the perceptual process is not sensitive to the rate change of acceleration of the motion stimulus. The results suggest that the perception of motion behaves as an integrating accelerometer with a bandwidth of at least 3 Hz.

  7. Self-motion perception and vestibulo-ocular reflex during whole body yaw rotation in standing subjects: the role of head position and neck proprioception.

    PubMed

    Panichi, Roberto; Botti, Fabio Massimo; Ferraresi, Aldo; Faralli, Mario; Kyriakareli, Artemis; Schieppati, Marco; Pettorossi, Vito Enrico

    2011-04-01

    Self-motion perception and vestibulo-ocular reflex (VOR) were studied during whole body yaw rotation in the dark at different static head positions. Rotations consisted of four cycles of symmetric sinusoidal and asymmetric oscillations. Self-motion perception was evaluated by measuring the ability of subjects to manually track a static remembered target. VOR was recorded separately and the slow phase eye position (SPEP) was computed. Three different head static yaw deviations (active and passive) relative to the trunk (0°, 45° to right and 45° to left) were examined. Active head deviations had a significant effect during asymmetric oscillation: the movement perception was enhanced when the head was kept turned toward the side of body rotation and decreased in the opposite direction. Conversely, passive head deviations had no effect on movement perception. Further, vibration (100 Hz) of the neck muscles splenius capitis and sternocleidomastoideus remarkably influenced perceived rotation during asymmetric oscillation. On the other hand, SPEP of VOR was modulated by active head deviation, but was not influenced by neck muscle vibration. Through its effects on motion perception and reflex gain, head position improved gaze stability and enhanced self-motion perception in the direction of the head deviation. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Stereomotion speed perception is contrast dependent

    NASA Technical Reports Server (NTRS)

    Brooks, K.

    2001-01-01

    The effect of contrast on the perception of stimulus speed for stereomotion and monocular lateral motion was investigated for successive matches in random-dot stimuli. The familiar 'Thompson effect'--that a reduction in contrast leads to a reduction in perceived speed--was found in similar proportions for both binocular images moving in depth, and for monocular images translating laterally. This result is consistent with the idea that the monocular motion system has a significant input to the stereomotion system, and dominates the speed percept for approaching motion.

  9. Illusory memories of emotionally charged words in autism spectrum disorder: further evidence for atypical emotion processing outside the social domain.

    PubMed

    Gaigg, Sebastian B; Bowler, Dermot M

    2009-07-01

    Recent evidence suggests that individuals with ASD may not accumulate distinct representations of emotional information throughout development. On the basis of this observation we predicted that such individuals would not be any less likely to falsely remember emotionally significant as compared to neutral words when such illusory memories are induced by asking participants to study lists of words that are orthographically associated to these words. Our findings showed that typical participants are far less likely to experience illusory memories of emotionally charged as compared to neutral words. Individuals with ASD, on the other hand, did not exhibit this emotional modulation of false memories. We discuss this finding in relation to the role of emotional processing atypicalities in ASD.

  10. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Tabei, Ken-ichi; Satoh, Masayuki; Kida, Hirotaka; Kizaki, Moeni; Sakuma, Haruno; Sakuma, Hajime; Tomimoto, Hidekazu

    2015-01-01

    Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI), we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions. PMID:26083375

  11. Color-motion feature-binding errors are mediated by a higher-order chromatic representation.

    PubMed

    Shevell, Steven K; Wang, Wei

    2016-03-01

    Peripheral and central moving objects of the same color may be perceived to move in the same direction even though peripheral objects have a different true direction of motion [Nature429, 262 (2004)10.1038/429262a]. The perceived, illusory direction of peripheral motion is a color-motion feature-binding error. Recent work shows that such binding errors occur even without an exact color match between central and peripheral objects, and, moreover, the frequency of the binding errors in the periphery declines as the chromatic difference increases between the central and peripheral objects [J. Opt. Soc. Am. A31, A60 (2014)JOAOD60740-323210.1364/JOSAA.31.000A60]. This change in the frequency of binding errors with the chromatic difference raises the general question of the chromatic representation from which the difference is determined. Here, basic properties of the chromatic representation are tested to discover whether it depends on independent chromatic differences on the l and the s cardinal axes or, alternatively, on a more specific higher-order chromatic representation. Experimental tests compared the rate of feature-binding errors when the central and peripheral colors had the identical s chromaticity (so zero difference in s) and a fixed magnitude of l difference, while varying the identical s level in center and periphery (thus always keeping the s difference at zero). A chromatic representation based on independent l and s differences would result in the same frequency of color-motion binding errors at everyslevel. The results are contrary to this prediction, thus showing that the chromatic representation at the level of color-motion feature binding depends on a higher-order chromatic mechanism.

  12. Neural dynamics of motion processing and speed discrimination.

    PubMed

    Chey, J; Grossberg, S; Mingolla, E

    1998-09-01

    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-turned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the V1-->MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.

  13. Do we track what we see? Common versus independent processing for motion perception and smooth pursuit eye movements: a review.

    PubMed

    Spering, Miriam; Montagnini, Anna

    2011-04-22

    Many neurophysiological studies in monkeys have indicated that visual motion information for the guidance of perception and smooth pursuit eye movements is - at an early stage - processed in the same visual pathway in the brain, crucially involving the middle temporal area (MT). However, these studies left some questions unanswered: Are perception and pursuit driven by the same or independent neuronal signals within this pathway? Are the perceptual interpretation of visual motion information and the motor response to visual signals limited by the same source of neuronal noise? Here, we review psychophysical studies that were motivated by these questions and compared perception and pursuit behaviorally in healthy human observers. We further review studies that focused on the interaction between perception and pursuit. The majority of results point to similarities between perception and pursuit, but dissociations were also reported. We discuss recent developments in this research area and conclude with suggestions for common and separate principles for the guidance of perceptual and motor responses to visual motion information. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Tilt and Translation Motion Perception during Off Vertical Axis Rotation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Reschke, Millard F.; Clement, Gilles

    2006-01-01

    The effect of stimulus frequency on tilt and translation motion perception was studied during constant velocity off-vertical axis rotation (OVAR), and compared to the effect of stimulus frequency on eye movements. Fourteen healthy subjects were rotated in darkness about their longitudinal axis 10deg and 20deg off-vertical at 0.125 Hz, and 20deg offvertical at 0.5 Hz. Oculomotor responses were recorded using videography, and perceived motion was evaluated using verbal reports and a joystick with four degrees of freedom (pitch and roll tilt, mediallateral and anteriorposterior translation). During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. The modulation of both tilt recorded from the joystick and ocular torsion significantly increased as the tilt angle increased from 10deg to 20deg at 0.125 Hz, and then decreased at 0.5 Hz. Both tilt perception and torsion slightly lagged head orientation at 0.125 Hz. The phase lag of torsion increased at 0.5 Hz, while the phase of tilt perception did not change as a function of frequency. The amplitude of both translation perception recorded from the joystick and horizontal eye movements was negligible at 0.125 Hz and increased as a function of stimulus frequency. While the phase lead of horizontal eye movements decreased at 0.5 Hz, the phase of translation perception did not vary with stimulus frequency and was similar to the phase of tilt perception during all conditions. During dynamic linear acceleration in the absence of other sensory input (canal, vision) a change in stimulus frequency alone elicits similar changes in the amplitude of both self motion perception and eye movements. However, in contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. We conclude that the neural processing to distinguish tilt and translation linear acceleration stimuli differs between eye movements and motion perception.

  15. Sensory perception. [role of human vestibular system in dynamic space perception and manual vehicle control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effect of motion on the ability of men to perform a variety of control actions was investigated. Special attention was given to experimental and analytical studies of the dynamic characteristics of the otoliths and semicircular canals using a two axis angular motion simulator and a one axis linear motion simulator.

  16. The Perception of Biological and Mechanical Motion in Female Fragile X Premutation Carriers

    ERIC Educational Resources Information Center

    Keri, Szabolcs; Benedek, Gyorgy

    2010-01-01

    Previous studies reported impaired visual information processing in patients with fragile x syndrome and in premutation carriers. In this study, we assessed the perception of biological motion (a walking point-light character) and mechanical motion (a rotating shape) in 25 female fragile x premutation carriers and in 20 healthy non-carrier…

  17. Optimal visuotactile integration for velocity discrimination of self-hand movements

    PubMed Central

    Chancel, M.; Blanchard, C.; Guerraz, M.; Montagnini, A.

    2016-01-01

    Illusory hand movements can be elicited by a textured disk or a visual pattern rotating under one's hand, while proprioceptive inputs convey immobility information (Blanchard C, Roll R, Roll JP, Kavounoudias A. PLoS One 8: e62475, 2013). Here, we investigated whether visuotactile integration can optimize velocity discrimination of illusory hand movements in line with Bayesian predictions. We induced illusory movements in 15 volunteers by visual and/or tactile stimulation delivered at six angular velocities. Participants had to compare hand illusion velocities with a 5°/s hand reference movement in an alternative forced choice paradigm. Results showed that the discrimination threshold decreased in the visuotactile condition compared with unimodal (visual or tactile) conditions, reflecting better bimodal discrimination. The perceptual strength (gain) of the illusions also increased: the stimulation required to give rise to a 5°/s illusory movement was slower in the visuotactile condition compared with each of the two unimodal conditions. The maximum likelihood estimation model satisfactorily predicted the improved discrimination threshold but not the increase in gain. When we added a zero-centered prior, reflecting immobility information, the Bayesian model did actually predict the gain increase but systematically overestimated it. Interestingly, the predicted gains better fit the visuotactile performances when a proprioceptive noise was generated by covibrating antagonist wrist muscles. These findings show that kinesthetic information of visual and tactile origins is optimally integrated to improve velocity discrimination of self-hand movements. However, a Bayesian model alone could not fully describe the illusory phenomenon pointing to the crucial importance of the omnipresent muscle proprioceptive cues with respect to other sensory cues for kinesthesia. PMID:27385802

  18. A Role for Mouse Primary Visual Cortex in Motion Perception.

    PubMed

    Marques, Tiago; Summers, Mathew T; Fioreze, Gabriela; Fridman, Marina; Dias, Rodrigo F; Feller, Marla B; Petreanu, Leopoldo

    2018-06-04

    Visual motion is an ethologically important stimulus throughout the animal kingdom. In primates, motion perception relies on specific higher-order cortical regions. Although mouse primary visual cortex (V1) and higher-order visual areas show direction-selective (DS) responses, their role in motion perception remains unknown. Here, we tested whether V1 is involved in motion perception in mice. We developed a head-fixed discrimination task in which mice must report their perceived direction of motion from random dot kinematograms (RDKs). After training, mice made around 90% correct choices for stimuli with high coherence and performed significantly above chance for 16% coherent RDKs. Accuracy increased with both stimulus duration and visual field coverage of the stimulus, suggesting that mice in this task integrate motion information in time and space. Retinal recordings showed that thalamically projecting On-Off DS ganglion cells display DS responses when stimulated with RDKs. Two-photon calcium imaging revealed that neurons in layer (L) 2/3 of V1 display strong DS tuning in response to this stimulus. Thus, RDKs engage motion-sensitive retinal circuits as well as downstream visual cortical areas. Contralateral V1 activity played a key role in this motion direction discrimination task because its reversible inactivation with muscimol led to a significant reduction in performance. Neurometric-psychometric comparisons showed that an ideal observer could solve the task with the information encoded in DS L2/3 neurons. Motion discrimination of RDKs presents a powerful behavioral tool for dissecting the role of retino-forebrain circuits in motion processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Phase-linking and the perceived motion during off-vertical axis rotation

    PubMed Central

    Wood, Scott J.; McCollum, Gin

    2010-01-01

    Human off-vertical axis rotation (OVAR) in the dark typically produces perceived motion about a cone, the amplitude of which changes as a function of frequency. This perception is commonly attributed to the fact that both the OVAR and the conical motion have a gravity vector that rotates about the subject. Little-known, however, is that this rotating-gravity explanation for perceived conical motion is inconsistent with basic observations about self-motion perception: (a) that the perceived vertical moves toward alignment with the gravito-inertial acceleration (GIA) and (b) that perceived translation arises from perceived linear acceleration, as derived from the portion of the GIA not associated with gravity. Mathematically proved in this article is the fact that during OVAR these properties imply mismatched phase of perceived tilt and translation, in contrast to the common perception of matched phases which correspond to conical motion with pivot at the bottom. This result demonstrates that an additional perceptual rule is required to explain perception in OVAR. This study investigates, both analytically and computationally, the phase relationship between tilt and translation at different stimulus rates—slow (45°/s) and fast (180°/s), and the three-dimensional shape of predicted perceived motion, under different sets of hypotheses about self-motion perception. We propose that for human motion perception, there is a phase-linking of tilt and translation movements to construct a perception of one’s overall motion path. Alternative hypotheses to achieve the phase match were tested with three-dimensional computational models, comparing the output with published experimental reports. The best fit with experimental data was the hypothesis that the phase of perceived translation was linked to perceived tilt, while the perceived tilt was determined by the GIA. This hypothesis successfully predicted the bottom-pivot cone commonly reported and a reduced sense of tilt during fast OVAR. Similar considerations apply to the hilltop illusion often reported during horizontal linear oscillation. Known response properties of central neurons are consistent with this ability to phase-link translation with tilt. In addition, the competing “standard” model was mathematically proved to be unable to predict the bottom-pivot cone regardless of the values used for parameters in the model. PMID:19937069

  20. Impaired visual recognition of biological motion in schizophrenia.

    PubMed

    Kim, Jejoong; Doop, Mikisha L; Blake, Randolph; Park, Sohee

    2005-09-15

    Motion perception deficits have been suggested to be an important feature of schizophrenia but the behavioral consequences of such deficits are unknown. Biological motion refers to the movements generated by living beings. The human visual system rapidly and effortlessly detects and extracts socially relevant information from biological motion. A deficit in biological motion perception may have significant consequences for detecting and interpreting social information. Schizophrenia patients and matched healthy controls were tested on two visual tasks: recognition of human activity portrayed in point-light animations (biological motion task) and a perceptual control task involving detection of a grouped figure against the background noise (global-form task). Both tasks required detection of a global form against background noise but only the biological motion task required the extraction of motion-related information. Schizophrenia patients performed as well as the controls in the global-form task, but were significantly impaired on the biological motion task. In addition, deficits in biological motion perception correlated with impaired social functioning as measured by the Zigler social competence scale [Zigler, E., Levine, J. (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96-105.]. The deficit in biological motion processing, which may be related to the previously documented deficit in global motion processing, could contribute to abnormal social functioning in schizophrenia.

  1. Stimulus factors in motion perception and spatial orientation

    NASA Technical Reports Server (NTRS)

    Post, R. B.; Johnson, C. A.

    1984-01-01

    The Malcolm horizon utilizes a large projected light stimulus Peripheral Vision Horizon Device (PVHD) as an attitude indicator in order to achieve a more compelling sense of roll than is obtained with smaller devices. The basic principle is that the larger stimulus is more similar to visibility of a real horizon during roll, and does not require fixation and attention to the degree that smaller displays do. Successful implementation of such a device requires adjustment of the parameters of the visual stimulus so that its effects on motion perception and spatial orientation are optimized. With this purpose in mind, the effects of relevant image variables on the perception of object motion, self motion and spatial orientation are reviewed.

  2. Contour entropy: a new determinant of perceiving ground or a hole.

    PubMed

    Gillam, Barbara J; Grove, Philip M

    2011-06-01

    Figure-ground perception is typically described as seeing one surface occluding another. Figure properties, not ground properties, are considered the significant factors. In scenes, however, a near surface will often occlude multiple contours and surfaces, often at different depths, producing alignments that are improbable except under conditions of occlusion. We thus hypothesized that unrelated (high entropy) lines would tend to appear as ground in a figure-ground paradigm more often than similarly aligned ordered (low entropy) lines. We further hypothesized that for lines spanning a closed area, high line entropy should increase the hole-like appearance of that area. These predictions were confirmed in three experiments. The probability that patterned rectangles were seen as ground when alternated with blank rectangles increased with pattern entropy. A single rectangular shape appeared more hole-like when the entropy of the enclosed contours increased. Furthermore, these same contours, with the outline shape removed, gave rise to bounding illusory contours whose strength increased with contour entropy. We conclude that figure-ground and hole perception can be determined by properties of ground in the absence of any figural shape, or surround, factors.

  3. Illusory control, gambling, and video gaming: an investigation of regular gamblers and video game players.

    PubMed

    King, Daniel L; Ejova, Anastasia; Delfabbro, Paul H

    2012-09-01

    There is a paucity of empirical research examining the possible association between gambling and video game play. In two studies, we examined the association between video game playing, erroneous gambling cognitions, and risky gambling behaviour. One hundred and fifteen participants, including 65 electronic gambling machine (EGM) players and 50 regular video game players, were administered a questionnaire that examined video game play, gambling involvement, problem gambling, and beliefs about gambling. We then assessed each groups' performance on a computerised gambling task that involved real money. A post-game survey examined perceptions of the skill and chance involved in the gambling task. The results showed that video game playing itself was not significantly associated with gambling involvement or problem gambling status. However, among those persons who both gambled and played video games, video game playing was uniquely and significantly positively associated with the perception of direct control over chance-based gambling events. Further research is needed to better understand the nature of this association, as it may assist in understanding the impact of emerging digital gambling technologies.

  4. From optics to attention: visual perception in barn owls.

    PubMed

    Harmening, Wolf M; Wagner, Hermann

    2011-11-01

    Barn owls are nocturnal predators which have evolved specific sensory and morphological adaptations to a life in dim light. Here, some of the most fundamental properties of spatial vision in barn owls are reviewed. The eye with its tubular shape is rigidly integrated in the skull so that eye movements are very much restricted. The eyes are oriented frontally, allowing for a large binocular overlap. Accommodation, but not pupil dilation, is coupled between the two eyes. The retina is rod dominated and lacks a visible fovea. Retinal ganglion cells form a marked region of highest density that extends to a horizontally oriented visual streak. Behavioural visual acuity and contrast sensitivity are poor, although the optical quality of the ocular media is excellent. A low f-number allows high image quality at low light levels. Vernier acuity was found to be a hyperacute percept. Owls have global stereopsis with hyperacute stereo acuity thresholds. Neurons of the visual Wulst are sensitive to binocular disparities. Orientation based saliency was demonstrated in a visual-search experiment, and higher cognitive abilities were shown when the owl's were able to use illusory contours for object discrimination.

  5. Diminishing self-disclosure to maintain security in partners' care.

    PubMed

    Lemay, Edward P; Melville, Michael C

    2014-01-01

    Six studies demonstrate that perceivers' desire to bond with targets motivates perceivers to misconstrue their own self-disclosure in ways that maintain perceivers' security in targets' care and commitment. Perceivers who strongly valued relationships with targets reported high levels of global self-disclosure, consistent with many findings suggesting salutary effects of disclosure. However, these same perceivers reported low self-disclosure of needs and desires in hypothetical (Study 1) and actual (Study 2) situations characterized by targets' unresponsive behavior. Similarly, in daily report (Study 3) and behavioral observation (Study 4) studies, perceivers who valued relationships with targets perceived high levels of self-disclosure when targets were responsive, but they perceived low self-disclosure when targets were unresponsive, and these perceptions seemed partly illusory. In turn, these perceptions of low self-disclosure in situations characterized by partners' unresponsive behavior predicted decreased perceptions of diagnosticity of targets' behavior (Studies 1-3) and buffered the negative affective and interpersonal effects of unresponsive behavior (Study 4). Experimental manipulations (Studies 5 and 6) demonstrated the motivational nature of perceived self-disclosure. Collectively, the results suggest that a desire to bond with targets motivates perceivers to downplay the diagnosticity of targets' unresponsive behavior through diminishing their self-disclosure, in turn preserving perceivers' trust in targets' care and commitment.

  6. Effects of proposed preflight adaptation training on eye movements, self-motion perception, and motion sickness - A progress report

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Reschke, M. F.; Von Gierke, H. E.; Lessard, C. S.

    1987-01-01

    The preflight adaptation trainer (PAT) was designed to produce rearranged relationships between visual and otolith signals analogous to those experienced in space. Investigations have been undertaken with three prototype trainers. The results indicated that exposure to the PAT sensory rearrangement altered self-motion perception, induced motion sickness, and changed the amplitude and phase of the horizontal eye movements evoked by roll stimulation. However, the changes were inconsistent.

  7. Inferring the direction of implied motion depends on visual awareness

    PubMed Central

    Faivre, Nathan; Koch, Christof

    2014-01-01

    Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction. PMID:24706951

  8. Inferring the direction of implied motion depends on visual awareness.

    PubMed

    Faivre, Nathan; Koch, Christof

    2014-04-04

    Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction.

  9. Modeling a space-variant cortical representation for apparent motion.

    PubMed

    Wurbs, Jeremy; Mingolla, Ennio; Yazdanbakhsh, Arash

    2013-08-06

    Receptive field sizes of neurons in early primate visual areas increase with eccentricity, as does temporal processing speed. The fovea is evidently specialized for slow, fine movements while the periphery is suited for fast, coarse movements. In either the fovea or periphery discrete flashes can produce motion percepts. Grossberg and Rudd (1989) used traveling Gaussian activity profiles to model long-range apparent motion percepts. We propose a neural model constrained by physiological data to explain how signals from retinal ganglion cells to V1 affect the perception of motion as a function of eccentricity. Our model incorporates cortical magnification, receptive field overlap and scatter, and spatial and temporal response characteristics of retinal ganglion cells for cortical processing of motion. Consistent with the finding of Baker and Braddick (1985), in our model the maximum flash distance that is perceived as an apparent motion (Dmax) increases linearly as a function of eccentricity. Baker and Braddick (1985) made qualitative predictions about the functional significance of both stimulus and visual system parameters that constrain motion perception, such as an increase in the range of detectable motions as a function of eccentricity and the likely role of higher visual processes in determining Dmax. We generate corresponding quantitative predictions for those functional dependencies for individual aspects of motion processing. Simulation results indicate that the early visual pathway can explain the qualitative linear increase of Dmax data without reliance on extrastriate areas, but that those higher visual areas may serve as a modulatory influence on the exact Dmax increase.

  10. A Rotational Motion Perception Neural Network Based on Asymmetric Spatiotemporal Visual Information Processing.

    PubMed

    Hu, Bin; Yue, Shigang; Zhang, Zhuhong

    All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.

  11. Effects of Frequency and Motion Paradigm on Perception of Tilt and Translation During Periodic Linear Acceleration

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.

    2009-01-01

    Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.

  12. Object motion perception is shaped by the motor control mechanism of ocular pursuit.

    PubMed

    Schweigart, G; Mergner, T; Barnes, G R

    2003-02-01

    It is still a matter of debate whether the control of smooth pursuit eye movements involves an internal drive signal from object motion perception. We measured human target velocity and target position perceptions and compared them with the presumed pursuit control mechanism (model simulations). We presented normal subjects (Ns) and vestibular loss patients (Ps) with visual target motion in space. Concurrently, a visual background was presented, which was kept stationary or was moved with or against the target (five combinations). The motion stimuli consisted of smoothed ramp displacements with different dominant frequencies and peak velocities (0.05, 0.2, 0.8 Hz; 0.2-25.6 degrees /s). Subjects always pursued the target with their eyes. In a first experiment they gave verbal magnitude estimates of perceived target velocity in space and of self-motion in space. The target velocity estimates of both Ns and Ps tended to saturate at 0.8 Hz and with peak velocities >3 degrees /s. Below these ranges the velocity estimates showed a pronounced modulation in relation to the relative target-to-background motion ('background effect'; for example, 'background with'-motion decreased and 'against'-motion increased perceived target velocity). Pronounced only in Ps and not in Ns, there was an additional modulation in relation to the relative head-to-background motion, which co-varied with an illusion of self-motion in space (circular vection, CV) in Ps. In a second experiment, subjects performed retrospective reproduction of perceived target start and end positions with the same stimuli. Perceived end position was essentially veridical in both Ns and Ps (apart from a small constant offset). Reproduced start position showed an almost negligible background effect in Ns. In contrast, it showed a pronounced modulation in Ps, which again was related to CV. The results were compared with simulations of a model that we have recently presented for velocity control of eye pursuit. We found that the main features of target velocity perception (in terms of dynamics and modulation by background) closely correspond to those of the internal drive signal for target pursuit, compatible with the notion of a common source of both the perception and the drive signal. In contrast, the eye pursuit movement is almost free of the background effect. As an explanation, we postulate that the target-to-background component in the target pursuit drive signal largely neutralises the background-to-eye retinal slip signal (optokinetic reflex signal) that feeds into the eye premotor mechanism as a competitor of the target retinal slip signal. An extension of the model allowed us to simulate also the findings of the target position perception. It is assumed to be represented in a perceptual channel that is distinct from the velocity perception, building on an efference copy of the essentially accurate eye position. We hold that other visuomotor behaviour, such as target reaching with the hand, builds mainly on this target position percept and therefore is not contaminated by the background effect in the velocity percept. Generally, the coincidence of an erroneous velocity percept and an almost perfect eye pursuit movement during background motion is discussed as an instructive example of an action-perception dissociation. This dissociation cannot be taken to indicate that the two functions are internally represented in separate brain control systems, but rather reflects the intimate coupling between both functions.

  13. Spatiotemporal Processing in Crossmodal Interactions for Perception of the External World: A Review

    PubMed Central

    Hidaka, Souta; Teramoto, Wataru; Sugita, Yoichi

    2015-01-01

    Research regarding crossmodal interactions has garnered much interest in the last few decades. A variety of studies have demonstrated that multisensory information (vision, audition, tactile sensation, and so on) can perceptually interact with each other in the spatial and temporal domains. Findings regarding crossmodal interactions in the spatiotemporal domain (i.e., motion processing) have also been reported, with updates in the last few years. In this review, we summarize past and recent findings on spatiotemporal processing in crossmodal interactions regarding perception of the external world. A traditional view regarding crossmodal interactions holds that vision is superior to audition in spatial processing, but audition is dominant over vision in temporal processing. Similarly, vision is considered to have dominant effects over the other sensory modalities (i.e., visual capture) in spatiotemporal processing. However, recent findings demonstrate that sound could have a driving effect on visual motion perception. Moreover, studies regarding perceptual associative learning reported that, after association is established between a sound sequence without spatial information and visual motion information, the sound sequence could trigger visual motion perception. Other sensory information, such as motor action or smell, has also exhibited similar driving effects on visual motion perception. Additionally, recent brain imaging studies demonstrate that similar activation patterns could be observed in several brain areas, including the motion processing areas, between spatiotemporal information from different sensory modalities. Based on these findings, we suggest that multimodal information could mutually interact in spatiotemporal processing in the percept of the external world and that common perceptual and neural underlying mechanisms would exist for spatiotemporal processing. PMID:26733827

  14. Object Manipulation and Motion Perception: Evidence of an Influence of Action Planning on Visual Processing

    ERIC Educational Resources Information Center

    Lindemann, Oliver; Bekkering, Harold

    2009-01-01

    In 3 experiments, the authors investigated the bidirectional coupling of perception and action in the context of object manipulations and motion perception. Participants prepared to grasp an X-shaped object along one of its 2 diagonals and to rotate it in a clockwise or a counterclockwise direction. Action execution had to be delayed until the…

  15. Altered perception of apparent motion in schizophrenia spectrum disorder.

    PubMed

    Tschacher, Wolfgang; Dubouloz, Priscilla; Meier, Rahel; Junghan, Uli

    2008-06-30

    Apparent motion (AM), the Gestalt perception of motion in the absence of physical motion, was used to study perceptual organization and neurocognitive binding in schizophrenia. Associations between AM perception and psychopathology as well as meaningful subgroups were sought. Circular and stroboscopic AM stimuli were presented to 68 schizophrenia spectrum patients and healthy participants. Psychopathology was measured using the Positive and Negative Syndrome Scale (PANSS). Psychopathology was related to AM perception differentially: Positive and disorganization symptoms were linked to reduced gestalt stability; negative symptoms, excitement and depression had opposite regression weights. Dimensions of psychopathology thus have opposing effects on gestalt perception. It was generally found that AM perception was closely associated with psychopathology. No difference existed between patients and controls, but two latent classes were found. Class A members who had low levels of AM stability made up the majority of inpatients and control subjects; such participants were generally young and male, with short reaction times. Class B typically contained outpatients and some control subjects; participants in class B were older and showed longer reaction times. Hence AM perceptual dysfunctions are not specific for schizophrenia, yet AM may be a promising stage marker.

  16. Individual differences in visual motion perception and neurotransmitter concentrations in the human brain.

    PubMed

    Takeuchi, Tatsuto; Yoshimoto, Sanae; Shimada, Yasuhiro; Kochiyama, Takanori; Kondo, Hirohito M

    2017-02-19

    Recent studies have shown that interindividual variability can be a rich source of information regarding the mechanism of human visual perception. In this study, we examined the mechanisms underlying interindividual variability in the perception of visual motion, one of the fundamental components of visual scene analysis, by measuring neurotransmitter concentrations using magnetic resonance spectroscopy. First, by psychophysically examining two types of motion phenomena-motion assimilation and contrast-we found that, following the presentation of the same stimulus, some participants perceived motion assimilation, while others perceived motion contrast. Furthermore, we found that the concentration of the excitatory neurotransmitter glutamate-glutamine (Glx) in the dorsolateral prefrontal cortex (Brodmann area 46) was positively correlated with the participant's tendency to motion assimilation over motion contrast; however, this effect was not observed in the visual areas. The concentration of the inhibitory neurotransmitter γ-aminobutyric acid had only a weak effect compared with that of Glx. We conclude that excitatory process in the suprasensory area is important for an individual's tendency to determine antagonistically perceived visual motion phenomena.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Author(s).

  17. Vestibular signals in primate cortex for self-motion perception.

    PubMed

    Gu, Yong

    2018-04-21

    The vestibular peripheral organs in our inner ears detect transient motion of the head in everyday life. This information is sent to the central nervous system for automatic processes such as vestibulo-ocular reflexes, balance and postural control, and higher cognitive functions including perception of self-motion and spatial orientation. Recent neurophysiological studies have discovered a prominent vestibular network in the primate cerebral cortex. Many of the areas involved are multisensory: their neurons are modulated by both vestibular signals and visual optic flow, potentially facilitating more robust heading estimation through cue integration. Combining psychophysics, computation, physiological recording and causal manipulation techniques, recent work has addressed both the encoding and decoding of vestibular signals for self-motion perception. Copyright © 2018. Published by Elsevier Ltd.

  18. Categorization influences illusory conjunctions.

    PubMed

    Esterman, Michael; Prinzmetal, William; Robertson, Lynn

    2004-08-01

    Illusory conjunctions (ICs) provide evidence for a binding problem that must be resolved in vision. Objects that are perceptually grouped are more likely to have their features erroneously conjoined. We examined whether semantic grouping, determined by category membership (letter vs. number), also influences illusory conjunction rates. Participants were instructed to detect an "L" or a "7" among briefly presented character strings and to report its color. Despite high shape discrimination accuracy, participants often made color conjunction errors, reporting instead the color of a distractor character, "O". This distractor could be ambiguously interpreted as a letter or a number. The status of the "O" was determined by other noncolored flanker characters, which were either letters or numbers. When both the target and flankers were of the same category, participants made more ICs than when the target and flankers were of different categories. This finding demonstrates that alphanumeric categorization can precede and subsequently influence binding.

  19. Illusory conjunctions of pitch and duration in unfamiliar tone sequences.

    PubMed

    Thompson, W F; Hall, M D; Pressing, J

    2001-02-01

    In 3 experiments, the authors examined short-term memory for pitch and duration in unfamiliar tone sequences. Participants were presented a target sequence consisting of 2 tones (Experiment 1) or 7 tones (Experiments 2 and 3) and then a probe tone. Participants indicated whether the probe tone matched 1 of the target tones in both pitch and duration. Error rates were relatively low if the probe tone matched 1 of the target tones or if it differed from target tones in pitch, duration, or both. Error rates were remarkably high, however, if the probe tone combined the pitch of 1 target tone with the duration of a different target tone. The results suggest that illusory conjunctions of these dimensions frequently occur. A mathematical model is presented that accounts for the relative contribution of pitch errors, duration errors, and illusory conjunctions of pitch and duration.

  20. Perceptual organization reconsidered in the light of the watercolor illusion: The problem of perception of holes and the object-hole effect.

    PubMed

    Pinna, Baingio; Tanca, Maria

    2008-05-23

    The watercolor illusion is a long-range color assimilation (coloration effect) imparting a figure-ground segregation (figural effect) across large enclosed areas (B. Pinna, 1987; B. Pinna, G. Brelstaff, & L. Spillmann, 2001; B. Pinna, L. Spillmann, & J. S. Werner, 2003; B. Pinna, J. S. Werner, & L. Spillmann, 2003). The watercolored figure has a very poorly reversible or univocal figure-ground segregation and strongly enhances the unilateral belongingness of the boundaries (E. Rubin, 1915), a principle stating that the boundaries belong only to the figure and not to the background. The figural effect determines grouping and figure-ground segregation more strongly than the well-known Gestalt principles. Under watercolor conditions both the figure and the background assume new properties becoming respectively bulging object and hole both with a 3-D volumetric appearance (object-hole effect). Our purposes were: (i) to demonstrate that the hole induced by the watercolor illusion has unique figural properties comparable to those of the object and not present in the background induced by the known figure-ground principles; (ii) to demonstrate a dissociation of the object-hole effect from the coloration one; (iii) to demonstrate that the object-hole effect depends on a new principle. This was psychophysically tested by weakening (ungrouping) the whole figural organization of the watercolor illusion, i.e. by imparting motion to only some components of a stimulus, while other components remain stationary. The results showed that (i) subjects perceived moving holes more strongly than moving figures or objects enlarging and shrinking. (ii) Paradoxically, moving holes appear more as figures than the bulging surfaces. (iii) When motion was imparted to components that while stationary were perceived as objects, their figurality is further enhanced (summation effect). (iv) When object-hole and coloration effects were dissociated no significant difference compared to illusory colored conditions was reported. Coloration can be considered independent from the object-hole effect of the watercolor illusion. The object-hole effect may depend on the "asymmetric luminance contrast principle" (B. Pinna, 2005).

  1. Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum

    NASA Technical Reports Server (NTRS)

    Hu, Senqi; Grant, Wanda F.; Stern, Robert M.; Koch, Kenneth L.

    1991-01-01

    Fifty-two subjects were exposed to a rotating optokinetic drum. Ten of these subjects who became motion sick during the first session completed two additional sessions. Subjects' symptoms of motion sickness, perception of self-motion, electrogastrograms (EGGs), heart rate, mean successive differences of R-R intervals (RRI), and skin conductance were recorded for each session. The results from the first session indicated that the development of motion sickness was accompanied by increased EGG 4-9 cpm activity (gastric tachyarrhythmia), decreased mean succesive differences of RRI, increased skin conductance levels, and increased self-motion perception. The results from the subjects who had three repeated sessions showed that 4-9 cpm EGG activity, skin conductance levels, perception of self-motion, and symptoms of motion sickness all increased significantly during the drum rotation period of the first session, but increased significantly less during the following sessions. Mean successive differences of RRI decreased significantly during the drum rotation period for the first session, but decreased significantly less during the following sessions. Results show that the development of motion sickness is accompanied by an increase in gastric tachyarrhythmia, and an increase in sympathetic activity and a decrease in parasympathetic activity, and that adaptation to motion sickness is accompanied by the recovery of autonomic nervous system balance.

  2. Tuning self-motion perception in virtual reality with visual illusions.

    PubMed

    Bruder, Gerd; Steinicke, Frank; Wieland, Phil; Lappe, Markus

    2012-07-01

    Motion perception in immersive virtual environments significantly differs from the real world. For example, previous work has shown that users tend to underestimate travel distances in virtual environments (VEs). As a solution to this problem, researchers proposed to scale the mapped virtual camera motion relative to the tracked real-world movement of a user until real and virtual motion are perceived as equal, i.e., real-world movements could be mapped with a larger gain to the VE in order to compensate for the underestimation. However, introducing discrepancies between real and virtual motion can become a problem, in particular, due to misalignments of both worlds and distorted space cognition. In this paper, we describe a different approach that introduces apparent self-motion illusions by manipulating optic flow fields during movements in VEs. These manipulations can affect self-motion perception in VEs, but omit a quantitative discrepancy between real and virtual motions. In particular, we consider to which regions of the virtual view these apparent self-motion illusions can be applied, i.e., the ground plane or peripheral vision. Therefore, we introduce four illusions and show in experiments that optic flow manipulation can significantly affect users' self-motion judgments. Furthermore, we show that with such manipulations of optic flow fields the underestimation of travel distances can be compensated.

  3. Posture, locomotion, spatial orientation, and motion sickness as a function of space flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.; Layne, C.; McDonald, V.

    1998-01-01

    This article summarizes a variety of newly published findings obtained by the Neuroscience Laboratory, Johnson Space Center, and attempts to place this work within a historical framework of previous results on posture, locomotion, motion sickness, and perceptual responses that have been observed in conjunction with space flight. In this context, we have taken the view that correct transduction and integration of signals from all sensory systems is essential to maintaining stable vision, postural and locomotor control, and eye-hand coordination as components of spatial orientation. The plasticity of the human central nervous system allows individuals to adapt to altered stimulus conditions encountered in a microgravity environment. However, until some level of adaptation is achieved, astronauts and cosmonauts often experience space motion sickness, disturbances in motion control and eye-hand coordination, unstable vision, and illusory motion of the self, the visual scene, or both. Many of the same types of disturbances encountered in space flight reappear immediately after crew members return to earth. The magnitude of these neurosensory, sensory-motor and perceptual disturbances, and the time needed to recover from them, tend to vary as a function of mission duration and the space travelers prior experience with the stimulus rearrangement of space flight. To adequately chart the development of neurosensory changes associated with space flight, we recommend development of enhanced eye movement systems and body position measurement. We also advocate the use of a human small radius centrifuge as both a research tool and as a means of providing on-orbit countermeasures that will lessen the impact of living for long periods of time with out exposure to altering gravito-inertial forces. Copyright 1998 Elsevier Science B.V.

  4. Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1994-01-01

    The objective of this proposal is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness. Results of experimentation are summarized and modifications to a two-axis rotation device are described. Abstracts of a number of papers generated during the reporting period are appended.

  5. Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures

    PubMed Central

    Clément, Gilles; Allaway, Heather C. M.; Demel, Michael; Golemis, Adrianos; Kindrat, Alexandra N.; Melinyshyn, Alexander N.; Merali, Tahir; Thirsk, Robert

    2015-01-01

    The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5–6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70–30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of “illusory” depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues. PMID:26146839

  6. Sex differences in the development of brain mechanisms for processing biological motion.

    PubMed

    Anderson, L C; Bolling, D Z; Schelinski, S; Coffman, M C; Pelphrey, K A; Kaiser, M D

    2013-12-01

    Disorders related to social functioning including autism and schizophrenia differ drastically in incidence and severity between males and females. Little is known about the neural systems underlying these sex-linked differences in risk and resiliency. Using functional magnetic resonance imaging and a task involving the visual perception of point-light displays of coherent and scrambled biological motion, we discovered sex differences in the development of neural systems for basic social perception. In adults, we identified enhanced activity during coherent biological motion perception in females relative to males in a network of brain regions previously implicated in social perception including amygdala, medial temporal gyrus, and temporal pole. These sex differences were less pronounced in our sample of school-age youth. We hypothesize that the robust neural circuitry supporting social perception in females, which diverges from males beginning in childhood, may underlie sex differences in disorders related to social processing. © 2013 Elsevier Inc. All rights reserved.

  7. Sex Differences in the Development of Brain Mechanisms for Processing Biological Motion

    PubMed Central

    Anderson, L.C.; Bolling, D.Z.; Schelinski, S.; Coffman, M.C.; Pelphrey, K.A.; Kaiser, M.D.

    2013-01-01

    Disorders related to social functioning including autism and schizophrenia differ drastically in incidence and severity between males and females. Little is known about the neural systems underlying these sex-linked differences in risk and resiliency. Using functional magnetic resonance imaging and a task involving the visual perception of point-light displays of coherent and scrambled biological motion, we discovered sex differences in the development of neural systems for basic social perception. In adults, we identified enhanced activity during coherent biological motion perception in females relative to males in a network of brain regions previously implicated in social perception including amygdala, medial temporal gyrus, and temporal pole. These sex differences were less pronounced in our sample of school-age youth. We hypothesize that the robust neural circuitry supporting social perception in females, which diverges from males beginning in childhood, may underlie sex differences in disorders related to social processing. PMID:23876243

  8. Priming with real motion biases visual cortical response to bistable apparent motion

    PubMed Central

    Zhang, Qing-fang; Wen, Yunqing; Zhang, Deng; She, Liang; Wu, Jian-young; Dan, Yang; Poo, Mu-ming

    2012-01-01

    Apparent motion quartet is an ambiguous stimulus that elicits bistable perception, with the perceived motion alternating between two orthogonal paths. In human psychophysical experiments, the probability of perceiving motion in each path is greatly enhanced by a brief exposure to real motion along that path. To examine the neural mechanism underlying this priming effect, we used voltage-sensitive dye (VSD) imaging to measure the spatiotemporal activity in the primary visual cortex (V1) of awake mice. We found that a brief real motion stimulus transiently biased the cortical response to subsequent apparent motion toward the spatiotemporal pattern representing the real motion. Furthermore, intracellular recording from V1 neurons in anesthetized mice showed a similar increase in subthreshold depolarization in the neurons representing the path of real motion. Such short-term plasticity in early visual circuits may contribute to the priming effect in bistable visual perception. PMID:23188797

  9. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control

    PubMed Central

    Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-01-01

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior. SIGNIFICANCE STATEMENT When selecting an object such as a ripe fruit or sofa, we need to assess the object's stiffness. Because we lack dedicated stiffness sensors, we rely on an as yet unknown mechanism that generates stiffness percepts by combining position and force signals. Here, we found that the posterior parietal cortex (PPC) contributes to combining position and force signals for stiffness estimation. This finding challenges the classical view about the role of the PPC in regulating position signals only for motion control because we highlight a key role of the PPC in perception that is disassociated from action. Altogether this sheds light on brain mechanisms underlying the interaction between action and perception and may help in the development of better teleoperation systems and rehabilitation of patients with sensory impairments. PMID:27733607

  10. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control.

    PubMed

    Leib, Raz; Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-10-12

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior. When selecting an object such as a ripe fruit or sofa, we need to assess the object's stiffness. Because we lack dedicated stiffness sensors, we rely on an as yet unknown mechanism that generates stiffness percepts by combining position and force signals. Here, we found that the posterior parietal cortex (PPC) contributes to combining position and force signals for stiffness estimation. This finding challenges the classical view about the role of the PPC in regulating position signals only for motion control because we highlight a key role of the PPC in perception that is disassociated from action. Altogether this sheds light on brain mechanisms underlying the interaction between action and perception and may help in the development of better teleoperation systems and rehabilitation of patients with sensory impairments. Copyright © 2016 Leib et al.

  11. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  12. Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception.

    PubMed

    Pessoa, L; Thompson, E; Noë, A

    1998-12-01

    In visual science the term filling-in is used in different ways, which often leads to confusion. This target article presents a taxonomy of perceptual completion phenomena to organize and clarify theoretical and empirical discussion. Examples of boundary completion (illusory contours) and featural completion (color, brightness, motion, texture, and depth) are examined, and single-cell studies relevant to filling-in are reviewed and assessed. Filling-in issues must be understood in relation to theoretical issues about neural-perceptual isomorphism and linking propositions. Six main conclusions are drawn: (1) visual filling-in comprises a multitude of different perceptual completion phenomena; (2) certain forms of visual completion seem to involve spatially propagating neural activity (neural filling-in) and so, contrary to Dennett's (1991; 1992) recent discussion of filling-in, cannot be described as results of the brain's "ignoring an absence" or "jumping to a conclusion"; (3) in certain cases perceptual completion seems to have measurable effects that depend on neural signals representing a presence rather than ignoring an absence; (4) neural filling-in does not imply either "analytic isomorphism" or "Cartesian materialism," and thus the notion of the bridge locus--a particular neural stage that forms the immediate substrate of perceptual experience--is problematic and should be abandoned; (5) to reject the representational conception of vision in favor of an "enactive" or "animate" conception reduces the importance of filling-in as a theoretical category in the explanation of vision; and (6) the evaluation of perceptual content should not be determined by "subpersonal" considerations about internal processing, but rather by considerations about the task of vision at the level of the animal or person interacting with the world.

  13. Perception of Motion in Statistically-Defined Displays.

    DTIC Science & Technology

    1988-02-15

    motion encoding (Reichardt, 1961; Barlow and Levick , 1963; van Doorn and Koenderink, 1982a, b ; van de Grind, Koenderink, van Doorn, 1983). A bilocal...stimelu toetini motion onet Lca perception. Psychological Review, 87, 435-469.bo. Barlow H. B . and Levick W. R. (1963) The mechanisms of directionally...REPORT NUMBER(S) 5. MONITORING ORGANIZATIOLA OAT yOSl R 6. NAME OF PERFORMING ORGANIZATION b . OFFICE SYMBOL 7@. NAME OF MONITORING ORGANIZATION (If

  14. Mental Rotation Meets the Motion Aftereffect: The Role of hV5/MT+ in Visual Mental Imagery

    ERIC Educational Resources Information Center

    Seurinck, Ruth; de Lange, Floris P.; Achten, Erik; Vingerhoets, Guy

    2011-01-01

    A growing number of studies show that visual mental imagery recruits the same brain areas as visual perception. Although the necessity of hV5/MT+ for motion perception has been revealed by means of TMS, its relevance for motion imagery remains unclear. We induced a direction-selective adaptation in hV5/MT+ by means of an MAE while subjects…

  15. Perception of Motion in Statistically-Defined Displays

    DTIC Science & Technology

    1989-04-15

    psychophysical study before. He was paid $7.50/hour for his participation. Also, to insure high motivation , he received an additional one cent for every...correct response. This was the same motivational device used in the earlier work on motion discrimination (Ball and Sekuler, 1982). The observer...scientists, physiologists, and people interested in computer vision. Finally, one of the main motives for studying motion perception is a desire to

  16. Development of Visual Motion Perception for Prospective Control: Brain and Behavioral Studies in Infants

    PubMed Central

    Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2016-01-01

    During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908

  17. Asymmetric vestibular stimulation reveals persistent disruption of motion perception in unilateral vestibular lesions.

    PubMed

    Panichi, R; Faralli, M; Bruni, R; Kiriakarely, A; Occhigrossi, C; Ferraresi, A; Bronstein, A M; Pettorossi, V E

    2017-11-01

    Self-motion perception was studied in patients with unilateral vestibular lesions (UVL) due to acute vestibular neuritis at 1 wk and 4, 8, and 12 mo after the acute episode. We assessed vestibularly mediated self-motion perception by measuring the error in reproducing the position of a remembered visual target at the end of four cycles of asymmetric whole-body rotation. The oscillatory stimulus consists of a slow (0.09 Hz) and a fast (0.38 Hz) half cycle. A large error was present in UVL patients when the slow half cycle was delivered toward the lesion side, but minimal toward the healthy side. This asymmetry diminished over time, but it remained abnormally large at 12 mo. In contrast, vestibulo-ocular reflex responses showed a large direction-dependent error only initially, then they normalized. Normalization also occurred for conventional reflex vestibular measures (caloric tests, subjective visual vertical, and head shaking nystagmus) and for perceptual function during symmetric rotation. Vestibular-related handicap, measured with the Dizziness Handicap Inventory (DHI) at 12 mo correlated with self-motion perception asymmetry but not with abnormalities in vestibulo-ocular function. We conclude that 1 ) a persistent self-motion perceptual bias is revealed by asymmetric rotation in UVLs despite vestibulo-ocular function becoming symmetric over time, 2 ) this dissociation is caused by differential perceptual-reflex adaptation to high- and low-frequency rotations when these are combined as with our asymmetric stimulus, 3 ) the findings imply differential central compensation for vestibuloperceptual and vestibulo-ocular reflex functions, and 4 ) self-motion perception disruption may mediate long-term vestibular-related handicap in UVL patients. NEW & NOTEWORTHY A novel vestibular stimulus, combining asymmetric slow and fast sinusoidal half cycles, revealed persistent vestibuloperceptual dysfunction in unilateral vestibular lesion (UVL) patients. The compensation of motion perception after UVL was slower than that of vestibulo-ocular reflex. Perceptual but not vestibulo-ocular reflex deficits correlated with dizziness-related handicap. Copyright © 2017 the American Physiological Society.

  18. Combined pitch and roll and cybersickness in a virtual environment.

    PubMed

    Bonato, Frederick; Bubka, Andrea; Palmisano, Stephen

    2009-11-01

    Stationary subjects who perceive visually induced illusions of self-motion, or vection, in virtual reality (VR) often experience cybersickness, the symptoms of which are similar to those experienced during motion sickness. An experiment was conducted to test the effects of single and dual-axis rotation of a virtual environment on cybersickness. It was predicted that VR displays which induced illusory dual-axis (as opposed to single-axis) self-rotations in stationary subjects would generate more sensory conflict and subsequently more cybersickness. There were 19 individuals (5 men, 14 women, mean age = 19.8 yr) who viewed the interior of a virtual cube that steadily rotated (at 60 degrees x s(-1)) about either the pitch axis or both the pitch and roll axes simultaneously. Subjects completed the Simulator Sickness Questionnaire (SSQ) before a trial and after 5 min of stimulus viewing. Post-treatment total SSQ scores and subscores for nausea, oculomotor, and disorientation were significantly higher in the dual-axis condition. These results support the hypothesis that a vection-inducing VR stimulus that rotates about two axes generates more cybersickness compared to aVR stimulus that rotates about only one. In the single-axis condition, sensory conflict and pseudo-Coriolis effects may have led to symptoms. However, in the dual-axis condition, not only was perceived self-motion more complex (two axes compared to one), the inducing stimulus was consistent with twice as much self-motion. Hence, the increased likelihood/magnitude of sensory conflict and pseudo-Coriolis effects may have subsequently resulted in a higher degree of cybersickness in the dual-axis condition.

  19. Global motion perception deficits in autism are reflected as early as primary visual cortex

    PubMed Central

    Thomas, Cibu; Kravitz, Dwight J.; Wallace, Gregory L.; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I.

    2014-01-01

    Individuals with autism are often characterized as ‘seeing the trees, but not the forest’—attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15–27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. PMID:25060095

  20. Attention during adaptation weakens negative afterimages of perceptually colour-spread surfaces.

    PubMed

    Lak, Armin

    2008-06-01

    The visual system can complete coloured surfaces from stimulus fragments, inducing the subjective perception of a colour-spread figure. Negative afterimages of these induced colours were first reported by S. Shimojo, Y. Kamitani, and S. Nishida (2001). Two experiments were conducted to examine the effect of attention on the duration of these afterimages. The results showed that shifting attention to the colour-spread figure during the adaptation phase weakened the subsequent afterimage. On the basis of previous findings that the duration of these afterimages is correlated with the strength of perceptual filling-in (grouping) among local inducers during the adaptation phase, it is proposed that attention weakens perceptual filling-in during the adaptation phase and thereby prevents the stimulus from being segmented into an illusory figure. (PsycINFO Database Record (c) 2008 APA, all rights reserved).

  1. Volitional Control of Movement: The Physiology of Free Will

    PubMed Central

    Hallett, Mark

    2007-01-01

    This review deals with the physiology of the initiation of a voluntary movement and the appreciation of whether it is voluntary or not. I argue that free will is not a driving force for movement, but a conscious awareness concerning the nature of the movement. Movement initiation and the perception of willing the movement can be separately manipulated. Movement is generated subconsciously, and the conscious sense of volition comes later, but the exact time of this event is difficult to assess because of the potentially illusory nature of introspection. Neurological disorders of volition are also reviewed. The evidence suggests that movement is initiated in frontal lobe, particularly the mesial areas, and the sense of volition arises as the result of a corollary discharge likely involving multiple areas with reciprocal connections including those in the parietal lobe and insular cortex. PMID:17466580

  2. Neural dynamics of motion perception: direction fields, apertures, and resonant grouping.

    PubMed

    Grossberg, S; Mingolla, E

    1993-03-01

    A neural network model of global motion segmentation by visual cortex is described. Called the motion boundary contour system (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike many previous researchers, we analyze how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The motion BCS describes how preprocessing of motion signals by a motion oriented contrast (MOC) filter is joined to long-range cooperative grouping mechanisms in a motion cooperative-competitive (MOCC) loop to control phenomena such as motion capture. The motion BCS is computed in parallel with the static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the motion BCS and the static BCS, specialized to process motion directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1-->MT and V1-->V2-->MT are made--notably, the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions of contrast. Interactions of model simple cells, complex cells, hyper-complex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.

  3. Schematic and realistic biological motion identification in children with high-functioning autism spectrum disorder

    PubMed Central

    Wright, Kristyn; Kelley, Elizabeth; Poulin-Dubois, Diane

    2014-01-01

    Research investigating biological motion perception in children with ASD has revealed conflicting findings concerning whether impairments in biological motion perception exist. The current study investigated how children with high-functioning ASD (HF-ASD) performed on two tasks of biological motion identification: a novel schematic motion identification task and a point-light biological motion identification task. Twenty-two HFASD children were matched with 21 TD children on gender, non-verbal mental, and chronological, age (M years = 6.72). On both tasks, HF-ASD children performed with similar accuracy as TD children. Across groups, children performed better on animate than on inanimate trials of both tasks. These findings suggest that HF-ASD children's identification of both realistic and schematic biological motion identification is unimpaired. PMID:25395988

  4. Motion direction discrimination training reduces perceived motion repulsion.

    PubMed

    Jia, Ke; Li, Sheng

    2017-04-01

    Participants often exaggerate the perceived angular separation between two simultaneously presented motion stimuli, which is referred to as motion repulsion. The overestimation helps participants differentiate between the two superimposed motion directions, yet it causes the impairment of direction perception. Since direction perception can be refined through perceptual training, we here attempted to investigate whether the training of a direction discrimination task changes the amount of motion repulsion. Our results showed a direction-specific learning effect, which was accompanied by a reduced amount of motion repulsion both for the trained and the untrained directions. The reduction of the motion repulsion disappeared when the participants were trained on a luminance discrimination task (control experiment 1) or a speed discrimination task (control experiment 2), ruling out any possible interpretation in terms of adaptation or training-induced attentional bias. Furthermore, training with a direction discrimination task along a direction 150° away from both directions in the transparent stimulus (control experiment 3) also had little effect on the amount of motion repulsion, ruling out the contribution of task learning. The changed motion repulsion observed in the main experiment was consistent with the prediction of the recurrent model of perceptual learning. Therefore, our findings demonstrate that training in direction discrimination can benefit the precise direction perception of the transparent stimulus and provide new evidence for the recurrent model of perceptual learning.

  5. Visually guided control of movement in the context of multimodal stimulation

    NASA Technical Reports Server (NTRS)

    Riccio, Gary E.

    1991-01-01

    Flight simulation has been almost exclusively concerned with simulating the motions of the aircraft. Physically distinct subsystems are often combined to simulate the varieties of aircraft motion. Visual display systems simulate the motion of the aircraft relative to remote objects and surfaces (e.g., other aircraft and the terrain). 'Motion platform' simulators recreate aircraft motion relative to the gravitoinertial vector (i.e., correlated rotation and tilt as opposed to the 'coordinated turn' in flight). 'Control loaders' attempt to simulate the resistance of the aerodynamic medium to aircraft motion. However, there are few operational systems that attempt to simulate the motion of the pilot relative to the aircraft and the gravitoinertial vector. The design and use of all simulators is limited by poor understanding of postural control in the aircraft and its effect on the perception and control of flight. Analysis of the perception and control of flight (real or simulated) must consider that: (1) the pilot is not rigidly attached to the aircraft; and (2) the pilot actively monitors and adjusts body orientation and configuration in the aircraft. It is argued that this more complete approach to flight simulation requires that multimodal perception be considered as the rule rather than the exception. Moreover, the necessity of multimodal perception is revealed by emphasizing the complementarity rather than the redundancy among perceptual systems. Finally, an outline is presented for an experiment to be conducted at NASA ARC. The experiment explicitly considers possible consequences of coordination between postural and vehicular control.

  6. Altered perceptual sensitivity to kinematic invariants in Parkinson's disease.

    PubMed

    Dayan, Eran; Inzelberg, Rivka; Flash, Tamar

    2012-01-01

    Ample evidence exists for coupling between action and perception in neurologically healthy individuals, yet the precise nature of the internal representations shared between these domains remains unclear. One experimentally derived view is that the invariant properties and constraints characterizing movement generation are also manifested during motion perception. One prominent motor invariant is the "two-third power law," describing the strong relation between the kinematics of motion and the geometrical features of the path followed by the hand during planar drawing movements. The two-thirds power law not only characterizes various movement generation tasks but also seems to constrain visual perception of motion. The present study aimed to assess whether motor invariants, such as the two thirds power law also constrain motion perception in patients with Parkinson's disease (PD). Patients with PD and age-matched controls were asked to observe the movement of a light spot rotating on an elliptical path and to modify its velocity until it appeared to move most uniformly. As in previous reports controls tended to choose those movements close to obeying the two-thirds power law as most uniform. Patients with PD displayed a more variable behavior, choosing on average, movements closer but not equal to a constant velocity. Our results thus demonstrate impairments in how the two-thirds power law constrains motion perception in patients with PD, where this relationship between velocity and curvature appears to be preserved but scaled down. Recent hypotheses on the role of the basal ganglia in motor timing may explain these irregularities. Alternatively, these impairments in perception of movement may reflect similar deficits in motor production.

  7. VEP Responses to Op-Art Stimuli

    PubMed Central

    O’Hare, Louise; Clarke, Alasdair D. F.; Pollux, Petra M. J.

    2015-01-01

    Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast. PMID:26422207

  8. VEP Responses to Op-Art Stimuli.

    PubMed

    O'Hare, Louise; Clarke, Alasdair D F; Pollux, Petra M J

    2015-01-01

    Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast.

  9. Normal form from biological motion despite impaired ventral stream function.

    PubMed

    Gilaie-Dotan, S; Bentin, S; Harel, M; Rees, G; Saygin, A P

    2011-04-01

    We explored the extent to which biological motion perception depends on ventral stream integration by studying LG, an unusual case of developmental visual agnosia. LG has significant ventral stream processing deficits but no discernable structural cortical abnormality. LG's intermediate visual areas and object-sensitive regions exhibit abnormal activation during visual object perception, in contrast to area V5/MT+ which responds normally to visual motion (Gilaie-Dotan, Perry, Bonneh, Malach, & Bentin, 2009). Here, in three studies we used point light displays, which require visual integration, in adaptive threshold experiments to examine LG's ability to detect form from biological and non-biological motion cues. LG's ability to detect and discriminate form from biological motion was similar to healthy controls. In contrast, he was significantly deficient in processing form from non-biological motion. Thus, LG can rely on biological motion cues to perceive human forms, but is considerably impaired in extracting form from non-biological motion. Finally, we found that while LG viewed biological motion, activity in a network of brain regions associated with processing biological motion was functionally correlated with his V5/MT+ activity, indicating that normal inputs from V5/MT+ might suffice to activate his action perception system. These results indicate that processing of biologically moving form can dissociate from other form processing in the ventral pathway. Furthermore, the present results indicate that integrative ventral stream processing is necessary for uncompromised processing of non-biological form from motion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Premotor cortex is sensitive to auditory-visual congruence for biological motion.

    PubMed

    Wuerger, Sophie M; Parkes, Laura; Lewis, Penelope A; Crocker-Buque, Alex; Rutschmann, Roland; Meyer, Georg F

    2012-03-01

    The auditory and visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilizing some of the statistical properties of the real world. A well-known example is the perception of biological motion, for example, the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual coactivation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: middle temporal area, inferior parietal lobule, ventral premotor cortex, and cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analyzed within these regions of coactivation. Auditory footsteps were presented concurrently with either an intact visual point-light walker (biological motion) or a scrambled point-light walker; auditory and visual motion in depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the ventral premotor cortex, but only if the visual point-light walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the premotor area assimilates information across the auditory and visual modalities by comparing the incoming sensory input with an internal representation.

  11. Audio-visual speech perception in infants and toddlers with Down syndrome, fragile X syndrome, and Williams syndrome.

    PubMed

    D'Souza, Dean; D'Souza, Hana; Johnson, Mark H; Karmiloff-Smith, Annette

    2016-08-01

    Typically-developing (TD) infants can construct unified cross-modal percepts, such as a speaking face, by integrating auditory-visual (AV) information. This skill is a key building block upon which higher-level skills, such as word learning, are built. Because word learning is seriously delayed in most children with neurodevelopmental disorders, we assessed the hypothesis that this delay partly results from a deficit in integrating AV speech cues. AV speech integration has rarely been investigated in neurodevelopmental disorders, and never previously in infants. We probed for the McGurk effect, which occurs when the auditory component of one sound (/ba/) is paired with the visual component of another sound (/ga/), leading to the perception of an illusory third sound (/da/ or /tha/). We measured AV integration in 95 infants/toddlers with Down, fragile X, or Williams syndrome, whom we matched on Chronological and Mental Age to 25 TD infants. We also assessed a more basic AV perceptual ability: sensitivity to matching vs. mismatching AV speech stimuli. Infants with Williams syndrome failed to demonstrate a McGurk effect, indicating poor AV speech integration. Moreover, while the TD children discriminated between matching and mismatching AV stimuli, none of the other groups did, hinting at a basic deficit or delay in AV speech processing, which is likely to constrain subsequent language development. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Actual motor performance and self-perceived motor competence in children with attention-deficit hyperactivity disorder compared with healthy siblings and peers.

    PubMed

    Fliers, Ellen A; de Hoog, Marieke L A; Franke, Barbara; Faraone, Stephen V; Rommelse, Nanda N J; Buitelaar, Jan K; Nijhuis-van der Sanden, Maria W G

    2010-01-01

    : Children with attention-deficit hyperactivity disorder (ADHD) frequently experience comorbid motor problems, developmental coordination disorder. Also, children with ADHD are said to overestimate their abilities in the cognitive and social domain, the so-called "Positive Illusory Bias." In this cross-sectional study, the relationship between actual motor performance and perceived motor competence was examined. Motor performance was assessed using the Movement Assessment Battery for Children in 100 children and adolescents (age 6-17 years), including 32 children with ADHD combined type, 18 unaffected siblings, and 50 healthy control children. ADHD was diagnosed using Parent and Teacher questionnaires and a clinical interview. Perceived motor competence and interest in the motor domain were rated with the Dutch supplement scale to Harters' Self-Perception Profile for Children, especially focusing on the motor domain (m-CBSK). Children with ADHD had poorer motor performance than unaffected siblings and control children, especially in the field of manual dexterity. However, no relationship was found between motor performance and perceived motor competence. Only children with the very lowest motor performance had a significantly lowered perception of their motor competence. Interest in the motor domain and motor self-perception was positively correlated. Children with ADHD performed poorer on the Movement Assessment Battery for Children, but generally overestimated their own motor competence.

  13. Eye Movements in Darkness Modulate Self-Motion Perception.

    PubMed

    Clemens, Ivar Adrianus H; Selen, Luc P J; Pomante, Antonella; MacNeilage, Paul R; Medendorp, W Pieter

    2017-01-01

    During self-motion, humans typically move the eyes to maintain fixation on the stationary environment around them. These eye movements could in principle be used to estimate self-motion, but their impact on perception is unknown. We had participants judge self-motion during different eye-movement conditions in the absence of full-field optic flow. In a two-alternative forced choice task, participants indicated whether the second of two successive passive lateral whole-body translations was longer or shorter than the first. This task was used in two experiments. In the first ( n = 8), eye movements were constrained differently in the two translation intervals by presenting either a world-fixed or body-fixed fixation point or no fixation point at all (allowing free gaze). Results show that perceived translations were shorter with a body-fixed than a world-fixed fixation point. A linear model indicated that eye-movement signals received a weight of ∼25% for the self-motion percept. This model was independently validated in the trials without a fixation point (free gaze). In the second experiment ( n = 10), gaze was free during both translation intervals. Results show that the translation with the larger eye-movement excursion was judged more often to be larger than chance, based on an oculomotor choice probability analysis. We conclude that eye-movement signals influence self-motion perception, even in the absence of visual stimulation.

  14. Eye Movements in Darkness Modulate Self-Motion Perception

    PubMed Central

    Pomante, Antonella

    2017-01-01

    Abstract During self-motion, humans typically move the eyes to maintain fixation on the stationary environment around them. These eye movements could in principle be used to estimate self-motion, but their impact on perception is unknown. We had participants judge self-motion during different eye-movement conditions in the absence of full-field optic flow. In a two-alternative forced choice task, participants indicated whether the second of two successive passive lateral whole-body translations was longer or shorter than the first. This task was used in two experiments. In the first (n = 8), eye movements were constrained differently in the two translation intervals by presenting either a world-fixed or body-fixed fixation point or no fixation point at all (allowing free gaze). Results show that perceived translations were shorter with a body-fixed than a world-fixed fixation point. A linear model indicated that eye-movement signals received a weight of ∼25% for the self-motion percept. This model was independently validated in the trials without a fixation point (free gaze). In the second experiment (n = 10), gaze was free during both translation intervals. Results show that the translation with the larger eye-movement excursion was judged more often to be larger than chance, based on an oculomotor choice probability analysis. We conclude that eye-movement signals influence self-motion perception, even in the absence of visual stimulation. PMID:28144623

  15. Presentation of words to separate hemispheres prevents interword illusory conjunctions.

    PubMed

    Liederman, J; Sohn, Y S

    1999-03-01

    We tested the hypothesis that division of inputs between the hemispheres could prevent interword letter migrations in the form of illusory conjunctions. The task was to decide whether a centrally-presented consonant-vowel-consonant (CVC) target word matched one of four CVC words presented to a single hemisphere or divided between the hemispheres in a subsequent test display. During half of the target-absent trials, known as conjunction trials, letters from two separate words (e.g., "tag" and "cop") in the test display could be mistaken for a target word (e.g., "top"). For the other half of the target-absent trails, the test display did not match any target consonants (Experiment 1, N = 16) or it matched one target consonant (Experiment 2, N = 29), the latter constituting true "feature" trials. Bi- as compared to unihemispheric presentation significantly reduced the number of conjunction, but not feature, errors. Illusory conjunctions did not occur when the words were presented to separate hemispheres.

  16. Modification of Motion Perception and Manual Control Following Short-Durations Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Vanya, R. D.; Esteves, J. T.; Rupert, A. H.; Clement, G.

    2011-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination and spatial disorientation following G-transitions. This ESA-NASA study was designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short-duration spaceflights. The goals of this study were to (1) examine the effects of stimulus frequency on adaptive changes in motion perception during passive tilt and translation motion, (2) quantify decrements in manual control of tilt motion, and (3) evaluate vibrotactile feedback as a sensorimotor countermeasure.

  17. Self-motion Perception Training: Thresholds Improve in the Light but not in the Dark

    PubMed Central

    Hartmann, Matthias; Furrer, Sarah; Herzog, Michael H.; Merfeld, Daniel M.; Mast, Fred W.

    2014-01-01

    We investigated perceptual learning in self-motion perception. Blindfolded participants were displaced leftward or rightward by means of a motion platform, and asked to indicate the direction of motion. A total of eleven participants underwent 3360 practice trials, distributed over twelve (Experiment 1) or six days (Experiment 2). We found no improvement in motion discrimination in both experiments. These results are surprising since perceptual learning has been demonstrated for visual, auditory, and somatosensory discrimination. Improvements in the same task were found when visual input was provided (Experiment 3). The multisensory nature of vestibular information is discussed as a possible explanation of the absence of perceptual learning in darkness. PMID:23392475

  18. Applications of computer-graphics animation for motion-perception research

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Kaiser, M. K.

    1986-01-01

    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events.

  19. Pareidolia in infants.

    PubMed

    Kato, Masaharu; Mugitani, Ryoko

    2015-01-01

    Faces convey primal information for our social life. This information is so primal that we sometimes find faces in non-face objects. Such illusory perception is called pareidolia. In this study, using infants' orientation behavior toward a sound source, we demonstrated that infants also perceive pareidolic faces. An image formed by four blobs and an outline was shown to infants with or without pure tones, and the time they spent looking at each blob was compared. Since the mouth is the unique sound source in a face and the literature has shown that infants older than 6 months already have sound-mouth association, increased looking time towards the bottom blob (pareidolic mouth area) during sound presentation indicated that they illusorily perceive a face in the image. Infants aged 10 and 12 months looked longer at the bottom blob under the upright-image condition, whereas no differences in looking time were observed for any blob under the inverted-image condition. However, 8-month-olds did not show any difference in looking time under both the upright and inverted conditions, suggesting that the perception of pareidolic faces, through sound association, comes to develop at around 8 to 10 months after birth.

  20. Pareidolia in Infants

    PubMed Central

    Kato, Masaharu; Mugitani, Ryoko

    2015-01-01

    Faces convey primal information for our social life. This information is so primal that we sometimes find faces in non-face objects. Such illusory perception is called pareidolia. In this study, using infants’ orientation behavior toward a sound source, we demonstrated that infants also perceive pareidolic faces. An image formed by four blobs and an outline was shown to infants with or without pure tones, and the time they spent looking at each blob was compared. Since the mouth is the unique sound source in a face and the literature has shown that infants older than 6 months already have sound-mouth association, increased looking time towards the bottom blob (pareidolic mouth area) during sound presentation indicated that they illusorily perceive a face in the image. Infants aged 10 and 12 months looked longer at the bottom blob under the upright-image condition, whereas no differences in looking time were observed for any blob under the inverted-image condition. However, 8-month-olds did not show any difference in looking time under both the upright and inverted conditions, suggesting that the perception of pareidolic faces, through sound association, comes to develop at around 8 to 10 months after birth. PMID:25689630

  1. Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration.

    PubMed

    Shibata, E; Kaneko, F

    2013-04-29

    The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Hearing faces: how the infant brain matches the face it sees with the speech it hears.

    PubMed

    Bristow, Davina; Dehaene-Lambertz, Ghislaine; Mattout, Jeremie; Soares, Catherine; Gliga, Teodora; Baillet, Sylvain; Mangin, Jean-François

    2009-05-01

    Speech is not a purely auditory signal. From around 2 months of age, infants are able to correctly match the vowel they hear with the appropriate articulating face. However, there is no behavioral evidence of integrated audiovisual perception until 4 months of age, at the earliest, when an illusory percept can be created by the fusion of the auditory stimulus and of the facial cues (McGurk effect). To understand how infants initially match the articulatory movements they see with the sounds they hear, we recorded high-density ERPs in response to auditory vowels that followed a congruent or incongruent silently articulating face in 10-week-old infants. In a first experiment, we determined that auditory-visual integration occurs during the early stages of perception as in adults. The mismatch response was similar in timing and in topography whether the preceding vowels were presented visually or aurally. In the second experiment, we studied audiovisual integration in the linguistic (vowel perception) and nonlinguistic (gender perception) domain. We observed a mismatch response for both types of change at similar latencies. Their topographies were significantly different demonstrating that cross-modal integration of these features is computed in parallel by two different networks. Indeed, brain source modeling revealed that phoneme and gender computations were lateralized toward the left and toward the right hemisphere, respectively, suggesting that each hemisphere possesses an early processing bias. We also observed repetition suppression in temporal regions and repetition enhancement in frontal regions. These results underscore how complex and structured is the human cortical organization which sustains communication from the first weeks of life on.

  3. Dynamics of the G-excess illusion

    NASA Technical Reports Server (NTRS)

    Baylor, K. A.; Reschke, M.; Guedry, F. E.; Mcgrath, B. J.; Rupert, A. H.

    1992-01-01

    The G-excess illusion is increasingly recognized as a cause of aviation mishaps especially when pilots perform high-speed, steeply banked turns at low altitudes. Centrifuge studies of this illusion have examined the perception of subject orientation and/or target displacement during maintained hypergravity with the subject's head held stationary. The transient illusory perceptions produced by moving the head in hypergravity are difficult to study onboard centrifuges because the high angular velocity ensures the presence of strong Coriolis cross-coupled semicircular canal effects that mask immediate transient otolith-organ effects. The present study reports perceptions following head movements in hypergravity produced by high-speed aircraft maintaining a banked attitude with low angular velocity to minimize cross-coupled effects. Methods: Fourteen subjects flew on the NASA KC-135 and were exposed to resultant gravity forces of 1.3, 1.5, and 1.8 G for 3 minute periods. On command, seated subjects made controlled head movements in roll, pitch, and yaw at 30 second intervals both in the dark and with faint targets at a distance of 5 feet. Results: head movement produced transient perception of target displacement and velocity at levels as low as 1.3 G. Reports of target velocity without appropriate corresponding displacement were common. At 1.8 G when yaw head movements were made from a face down position, 4 subjects reported oscillatory rotational target displacement with fast and slow alternating components suggestive of torsional nystagmus. Head movements evoked symptoms of nausea in most subjects, with 2 subjects and 1 observer vomiting. Conclusions: The transient percepts present conflicting signals, which introduced confusion in target and subject orientation. Repeated head movements in hypergravity generate nausea by mechanisms distinct from cross-coupled Coriolis effects.

  4. Neurophysiological and Behavioural Correlates of Coherent Motion Perception in Dyslexia

    ERIC Educational Resources Information Center

    Taroyan, Naira A.; Nicolson, Roderick I.; Buckley, David

    2011-01-01

    Coherent motion perception was tested in nine adolescents with dyslexia and 10 control participants matched for age and IQ using low contrast stimuli with three levels of coherence (10%, 25% and 40%). Event-related potentials (ERPs) and behavioural performance data were obtained. No significant between-group differences were found in performance…

  5. Right insular damage decreases heartbeat awareness and alters cardio-visual effects on bodily self-consciousness.

    PubMed

    Ronchi, Roberta; Bello-Ruiz, Javier; Lukowska, Marta; Herbelin, Bruno; Cabrilo, Ivan; Schaller, Karl; Blanke, Olaf

    2015-04-01

    Recent evidence suggests that multisensory integration of bodily signals involving exteroceptive and interoceptive information modulates bodily aspects of self-consciousness such as self-identification and self-location. In the so-called Full Body Illusion subjects watch a virtual body being stroked while they perceive tactile stimulation on their own body inducing illusory self-identification with the virtual body and a change in self-location towards the virtual body. In a related illusion, it has recently been shown that similar changes in self-identification and self-location can be observed when an interoceptive signal is used in association with visual stimulation of the virtual body (i.e., participants observe a virtual body illuminated in synchrony with their heartbeat). Although brain imaging and neuropsychological evidence suggest that the insular cortex is a core region for interoceptive processing (such as cardiac perception and awareness) as well as for self-consciousness, it is currently not known whether the insula mediates cardio-visual modulation of self-consciousness. Here we tested the involvement of insular cortex in heartbeat awareness and cardio-visual manipulation of bodily self-consciousness in a patient before and after resection of a selective right neoplastic insular lesion. Cardio-visual stimulation induced an abnormally enhanced state of bodily self-consciousness; in addition, cardio-visual manipulation was associated with an experienced loss of the spatial unity of the self (illusory bi-location and duplication of his body), not observed in healthy subjects. Heartbeat awareness was found to decrease after insular resection. Based on these data we propose that the insula mediates interoceptive awareness as well as cardio-visual effects on bodily self-consciousness and that insular processing of interoceptive signals is an important mechanism for the experienced unity of the self. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of changes in size, speed and distance on the perception of curved 3D trajectories

    PubMed Central

    Zhang, Junjun; Braunstein, Myron L.; Andersen, George J.

    2012-01-01

    Previous research on the perception of 3D object motion has considered time to collision, time to passage, collision detection and judgments of speed and direction of motion, but has not directly studied the perception of the overall shape of the motion path. We examined the perception of the magnitude of curvature and sign of curvature of the motion path for objects moving at eye level in a horizontal plane parallel to the line of sight. We considered two sources of information for the perception of motion trajectories: changes in angular size and changes in angular speed. Three experiments examined judgments of relative curvature for objects moving at different distances. At the closest distance studied, accuracy was high with size information alone but near chance with speed information alone. At the greatest distance, accuracy with size information alone decreased sharply but accuracy for displays with both size and speed information remained high. We found similar results in two experiments with judgments of sign of curvature. Accuracy was higher for displays with both size and speed information than with size information alone, even when the speed information was based on parallel projections and was not informative about sign of curvature. For both magnitude of curvature and sign of curvature judgments, information indicating that the trajectory was curved increased accuracy, even when this information was not directly relevant to the required judgment. PMID:23007204

  7. Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.

    PubMed

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2017-06-01

    Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.

  8. Motion Perception and Driving: Predicting Performance Through Testing and Shortening Braking Reaction Times Through Training

    DTIC Science & Technology

    2013-12-01

    brake reaction time on the EB test from pre-post while there was no significant change for the control group : t(38)=2.24, p=0.03. Tests of 3D motion...0.61). In experiment 2, the motion perception training group had a significant decrease in brake reaction time on the EB test from pre- to...the following. The experiment was divided into 8 phases: a pretest , six training blocks (once per week), and a posttest . Participants were allocated

  9. Global motion perception deficits in autism are reflected as early as primary visual cortex.

    PubMed

    Robertson, Caroline E; Thomas, Cibu; Kravitz, Dwight J; Wallace, Gregory L; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I

    2014-09-01

    Individuals with autism are often characterized as 'seeing the trees, but not the forest'-attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15-27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Moving from spatially segregated to transparent motion: a modelling approach

    PubMed Central

    Durant, Szonya; Donoso-Barrera, Alejandra; Tan, Sovira; Johnston, Alan

    2005-01-01

    Motion transparency, in which patterns of moving elements group together to give the impression of lacy overlapping surfaces, provides an important challenge to models of motion perception. It has been suggested that we perceive transparent motion when the shape of the velocity histogram of the stimulus is bimodal. To investigate this further, random-dot kinematogram motion sequences were created to simulate segregated (perceptually spatially separated) and transparent (perceptually overlapping) motion. The motion sequences were analysed using the multi-channel gradient model (McGM) to obtain the speed and direction at every pixel of each frame of the motion sequences. The velocity histograms obtained were found to be quantitatively similar and all were bimodal. However, the spatial and temporal properties of the velocity field differed between segregated and transparent stimuli. Transparent stimuli produced patches of rightward and leftward motion that varied in location over time. This demonstrates that we can successfully differentiate between these two types of motion on the basis of the time varying local velocity field. However, the percept of motion transparency cannot be based simply on the presence of a bimodal velocity histogram. PMID:17148338

  11. Action Video Games Improve Direction Discrimination of Parafoveal Translational Global Motion but Not Reaction Times.

    PubMed

    Pavan, Andrea; Boyce, Matthew; Ghin, Filippo

    2016-10-01

    Playing action video games enhances visual motion perception. However, there is psychophysical evidence that action video games do not improve motion sensitivity for translational global moving patterns presented in fovea. This study investigates global motion perception in action video game players and compares their performance to that of non-action video game players and non-video game players. Stimuli were random dot kinematograms presented in the parafovea. Observers discriminated the motion direction of a target random dot kinematogram presented in one of the four visual quadrants. Action video game players showed lower motion coherence thresholds than the other groups. However, when the task was performed at threshold, we did not find differences between groups in terms of distributions of reaction times. These results suggest that action video games improve visual motion sensitivity in the near periphery of the visual field, rather than speed response. © The Author(s) 2016.

  12. Aesthetic valence of visual illusions

    PubMed Central

    Stevanov, Jasmina; Marković, Slobodan; Kitaoka, Akiyoshi

    2012-01-01

    Visual illusions constitute an interesting perceptual phenomenon, but they also have an aesthetic and affective dimension. We hypothesized that the illusive nature itself causes the increased aesthetic and affective valence of illusions compared with their non-illusory counterparts. We created pairs of stimuli. One qualified as a standard visual illusion whereas the other one did not, although they were matched in as many perceptual dimensions as possible. The phenomenal quality of being an illusion had significant effects on “Aesthetic Experience” (fascinating, irresistible, exceptional, etc), “Evaluation” (pleasant, cheerful, clear, bright, etc), “Arousal” (interesting, imaginative, complex, diverse, etc), and “Regularity” (balanced, coherent, clear, realistic, etc). A subsequent multiple regression analysis suggested that Arousal was a better predictor of Aesthetic Experience than Evaluation. The findings of this study demonstrate that illusion is a phenomenal quality of the percept which has measurable aesthetic and affective valence. PMID:23145272

  13. Who Expressed What Emotion? Men Grab Anger, Women Grab Happiness

    PubMed Central

    Neel, Rebecca; Becker, D. Vaughn; Neuberg, Steven L.; Kenrick, Douglas T.

    2011-01-01

    When anger or happiness flashes on a face in the crowd, do we misperceive that emotion as belonging to someone else? Two studies found that misperception of apparent emotional expressions – “illusory conjunctions” – depended on the gender of the target: male faces tended to “grab” anger from neighboring faces, and female faces tended to grab happiness. Importantly, the evidence did not suggest that this effect was due to the general tendency to misperceive male or female faces as angry or happy, but instead indicated a more subtle interaction of expectations and early visual processes. This suggests a novel aspect of affordance-management in human perception, whereby cues to threat, when they appear, are attributed to those with the greatest capability of doing harm, whereas cues to friendship are attributed to those with the greatest likelihood of providing affiliation opportunities. PMID:22368303

  14. Neural Substrate of Body Size: Illusory Feeling of Shrinking of the Waist

    PubMed Central

    Kito, Tomonori; Sadato, Norihiro; Passingham, Richard E; Naito, Eiichi

    2005-01-01

    The perception of the size and shape of one's body (body image) is a fundamental aspect of how we experience ourselves. We studied the neural correlates underlying perceived changes in the relative size of body parts by using a perceptual illusion in which participants felt that their waist was shrinking. We scanned the brains of the participants using functional magnetic resonance imaging. We found that activity in the cortices lining the left postcentral sulcus and the anterior part of the intraparietal sulcus reflected the illusion of waist shrinking, and that this activity was correlated with the reported degree of shrinking. These results suggest that the perceived changes in the size and shape of body parts are mediated by hierarchically higher-order somatosensory areas in the parietal cortex. Based on this finding we suggest that relative size of body parts is computed by the integration of more elementary somatic signals from different body segments. PMID:16336049

  15. Experts in offside decision making learn to compensate for their illusory perceptions.

    PubMed

    Put, Koen; Baldo M, V C; Cravo, André M; Wagemans, Johan; Helsen, Werner F

    2013-12-01

    In association football, the flash-lag effect appears to be a viable explanation for erroneous offside decision making. Due to this spatiotemporal illusion, assistant referees (ARs) perceive the player who receives the ball ahead of his real position. In this experiment, a laboratory decision-making task was used to demonstrate that international top-class ARs, compared with amateur soccer players, do not have superior perceptual sensitivity. They clearly modify their decision criterion according to the contextual needs and, therefore, show a higher response bias toward not responding to the stimulus, in particular in the most difficult situations. Thus, international ARs show evidence for response-level compensation, resulting in a specific cost (i.e., more misses), which clearly reflects the use of particular (cognitive) strategies. In summary, it appears that experts in offside decision making can be distinguished from novices more on the cognitive or decision-making level than on the perceptual level.

  16. Multi- and unisensory visual flash illusions.

    PubMed

    Courtney, Jon R; Motes, Michael A; Hubbard, Timothy L

    2007-01-01

    The role of stimulus structure in multisensory and unisensory interactions was examined. When a flash (17 ms) was accompanied by multiple tones (each 7 ms, SOA < or =100 ms) multiple flashes were reported, and this effect has been suggested to reflect the role of stimulus continuity in multisensory interactions. In experiments 1 and 2 we examined if stimulus continuity would affect concurrently presented stimuli. When a relatively longer flash (317 ms) was accompanied by multiple tones (each 7 ms), observers reported perceiving multiple flashes. In experiment 3 we tested whether a flash presented near fixation would induce an illusory flash further in the periphery. One flash (17 ms) presented 5 degrees below fixation was reported as multiple flashes if presented with two flashes (each 17 ms, SOA =100 ms) 2 degrees above fixation. The extent to which these data support a phenomenological continuity principle and whether this principle applies to unisensory perception is discussed.

  17. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.

  18. Recovery of biological motion perception and network plasticity after cerebellar tumor removal.

    PubMed

    Sokolov, Arseny A; Erb, Michael; Grodd, Wolfgang; Tatagiba, Marcos S; Frackowiak, Richard S J; Pavlova, Marina A

    2014-10-01

    Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.

  19. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  20. Visual and Non-Visual Contributions to the Perception of Object Motion during Self-Motion

    PubMed Central

    Fajen, Brett R.; Matthis, Jonathan S.

    2013-01-01

    Many locomotor tasks involve interactions with moving objects. When observer (i.e., self-)motion is accompanied by object motion, the optic flow field includes a component due to self-motion and a component due to object motion. For moving observers to perceive the movement of other objects relative to the stationary environment, the visual system could recover the object-motion component – that is, it could factor out the influence of self-motion. In principle, this could be achieved using visual self-motion information, non-visual self-motion information, or a combination of both. In this study, we report evidence that visual information about the speed (Experiment 1) and direction (Experiment 2) of self-motion plays a role in recovering the object-motion component even when non-visual self-motion information is also available. However, the magnitude of the effect was less than one would expect if subjects relied entirely on visual self-motion information. Taken together with previous studies, we conclude that when self-motion is real and actively generated, both visual and non-visual self-motion information contribute to the perception of object motion. We also consider the possible role of this process in visually guided interception and avoidance of moving objects. PMID:23408983

  1. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    PubMed

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  2. Motion interactive video games in home training for children with cerebral palsy: parents' perceptions.

    PubMed

    Sandlund, Marlene; Dock, Katarina; Häger, Charlotte K; Waterworth, Eva Lindh

    2012-01-01

    To explore parents' perceptions of using low-cost motion interactive video games as home training for their children with mild/moderate cerebral palsy. Semi-structured interviews were carried out with parents from 15 families after participation in an intervention where motion interactive games were used daily in home training for their child. A qualitative content analysis approach was applied. The parents' perception of the training was very positive. They expressed the view that motion interactive video games may promote positive experiences of physical training in rehabilitation, where the social aspects of gaming were especially valued. Further, the parents experienced less need to take on coaching while gaming stimulated independent training. However, there was a desire for more controlled and individualized games to better challenge the specific rehabilitative need of each child. Low-cost motion interactive games may provide increased motivation and social interaction to home training and promote independent training with reduced coaching efforts for the parents. In future designs of interactive games for rehabilitation purposes, it is important to preserve the motivational and social features of games while optimizing the individualized physical exercise.

  3. Central Inhibition Ability Modulates Attention-Induced Motion Blindness

    ERIC Educational Resources Information Center

    Milders, Maarten; Hay, Julia; Sahraie, Arash; Niedeggen, Michael

    2004-01-01

    Impaired motion perception can be induced in normal observers in a rapid serial visual presentation task. Essential for this effect is the presence of motion distractors prior to the motion target, and we proposed that this attention-induced motion blindness results from high-level inhibition produced by the distractors. To investigate this, we…

  4. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  5. Age-related changes in perception of movement in driving scenes.

    PubMed

    Lacherez, Philippe; Turner, Laura; Lester, Robert; Burns, Zoe; Wood, Joanne M

    2014-07-01

    Age-related changes in motion sensitivity have been found to relate to reductions in various indices of driving performance and safety. The aim of this study was to investigate the basis of this relationship in terms of determining which aspects of motion perception are most relevant to driving. Participants included 61 regular drivers (age range 22-87 years). Visual performance was measured binocularly. Measures included visual acuity, contrast sensitivity and motion sensitivity assessed using four different approaches: (1) threshold minimum drift rate for a drifting Gabor patch, (2) Dmin from a random dot display, (3) threshold coherence from a random dot display, and (4) threshold drift rate for a second-order (contrast modulated) sinusoidal grating. Participants then completed the Hazard Perception Test (HPT) in which they were required to identify moving hazards in videos of real driving scenes, and also a Direction of Heading task (DOH) in which they identified deviations from normal lane keeping in brief videos of driving filmed from the interior of a vehicle. In bivariate correlation analyses, all motion sensitivity measures significantly declined with age. Motion coherence thresholds, and minimum drift rate threshold for the first-order stimulus (Gabor patch) both significantly predicted HPT performance even after controlling for age, visual acuity and contrast sensitivity. Bootstrap mediation analysis showed that individual differences in DOH accuracy partly explained these relationships, where those individuals with poorer motion sensitivity on the coherence and Gabor tests showed decreased ability to perceive deviations in motion in the driving videos, which related in turn to their ability to detect the moving hazards. The ability to detect subtle movements in the driving environment (as determined by the DOH task) may be an important contributor to effective hazard perception, and is associated with age, and an individuals' performance on tests of motion sensitivity. The locus of the processing deficits appears to lie in first-order, rather than second-order motion pathways. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  6. On the Visual Input Driving Human Smooth-Pursuit Eye Movements

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, Brent R.; Lorenceau, Jean

    1996-01-01

    Current computational models of smooth-pursuit eye movements assume that the primary visual input is local retinal-image motion (often referred to as retinal slip). However, we show that humans can pursue object motion with considerable accuracy, even in the presence of conflicting local image motion. This finding indicates that the visual cortical area(s) controlling pursuit must be able to perform a spatio-temporal integration of local image motion into a signal related to object motion. We also provide evidence that the object-motion signal that drives pursuit is related to the signal that supports perception. We conclude that current models of pursuit should be modified to include a visual input that encodes perceived object motion and not merely retinal image motion. Finally, our findings suggest that the measurement of eye movements can be used to monitor visual perception, with particular value in applied settings as this non-intrusive approach would not require interrupting ongoing work or training.

  7. Visual Depth from Motion Parallax and Eye Pursuit

    PubMed Central

    Stroyan, Keith; Nawrot, Mark

    2012-01-01

    A translating observer viewing a rigid environment experiences “motion parallax,” the relative movement upon the observer’s retina of variously positioned objects in the scene. This retinal movement of images provides a cue to the relative depth of objects in the environment, however retinal motion alone cannot mathematically determine relative depth of the objects. Visual perception of depth from lateral observer translation uses both retinal image motion and eye movement. In (Nawrot & Stroyan, 2009, Vision Res. 49, p.1969) we showed mathematically that the ratio of the rate of retinal motion over the rate of smooth eye pursuit mathematically determines depth relative to the fixation point in central vision. We also reported on psychophysical experiments indicating that this ratio is the important quantity for perception. Here we analyze the motion/pursuit cue for the more general, and more complicated, case when objects are distributed across the horizontal viewing plane beyond central vision. We show how the mathematical motion/pursuit cue varies with different points across the plane and with time as an observer translates. If the time varying retinal motion and smooth eye pursuit are the only signals used for this visual process, it is important to know what is mathematically possible to derive about depth and structure. Our analysis shows that the motion/pursuit ratio determines an excellent description of depth and structure in these broader stimulus conditions, provides a detailed quantitative hypothesis of these visual processes for the perception of depth and structure from motion parallax, and provides a computational foundation to analyze the dynamic geometry of future experiments. PMID:21695531

  8. Asymmetries and three-dimensional features of vestibular cross-coupled stimuli illuminated through modeling

    PubMed Central

    Holly, Jan E.; Masood, M. Arjumand; Bhandari, Chiran S.

    2017-01-01

    Head movements during sustained rotation can cause angular cross-coupling which leads to tumbling illusions. Even though angular vectors predict equal magnitude illusions for head movements in opposite directions, the magnitudes of the illusions are often surprisingly asymmetric, such as during leftward versus rightward yaw while horizontal in a centrifuge. This paper presents a comprehensive investigation of the angular-linear stimulus combinations from eight different published papers in which asymmetries were found. Interactions between all angular and linear vectors, including gravity, are taken into account to model the three-dimensional consequences of the stimuli. Three main results followed. First, for every pair of head yaw movements, an asymmetry was found in the stimulus itself when considered in a fully three-dimensional manner, and the direction of the asymmetry matched the subjectively reported magnitude asymmetry. Second, for pitch and roll head movements for which motion sickness was measured, the stimulus was found symmetric in every case except one, and motion sickness generally aligned with other factors such as the existence of a head rest. Third, three-dimensional modeling predicted subjective inconsistency in the direction of perceived rotation when linear and angular components were oppositely-directed, and predicted surplus illusory rotation in the direction of head movement. PMID:27814310

  9. The Role of Perceived Speed in Vection: Does Perceived Speed Modulate the Jitter and Oscillation Advantages?

    PubMed Central

    Apthorp, Deborah; Palmisano, Stephen

    2014-01-01

    Illusory self-motion (‘vection’) in depth is strongly enhanced when horizontal/vertical simulated viewpoint oscillation is added to optic flow inducing displays; a similar effect is found for simulated viewpoint jitter. The underlying cause of these oscillation and jitter advantages for vection is still unknown. Here we investigate the possibility that perceived speed of motion in depth (MID) plays a role. First, in a 2AFC procedure, we obtained MID speed PSEs for briefly presented (vertically oscillating and smooth) radial flow displays. Then we examined the strength, duration and onset latency of vection induced by oscillating and smooth radial flow displays matched either for simulated or perceived MID speed. The oscillation advantage was eliminated when displays were matched for perceived MID speed. However, when we tested the jitter advantage in the same manner, jittering displays were found to produce greater vection in depth than speed-matched controls. In summary, jitter and oscillation advantages were the same across experiments, but slower MID speed was required to match jittering than oscillating stimuli. Thus, to the extent that vection is driven by perceived speed of MID, this effect is greater for oscillating than for jittering stimuli, which suggests that the two effects may arise from separate mechanisms. PMID:24651861

  10. Resolving Sensory Conflict: the Effect of Muscle Vibration on Postural Stability

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.

    1991-01-01

    The otolith-tilt reinterpretation hypothesis (OTTR) proposes that the central nervous system adapts to weightlessness by reinterpreting all otolith input as linear motion. While interpreting otolith input exclusively as linear motion is functionally useful in space, it is maladaptive upon return to Earth. Astronauts have reported experiencing illusory sensations during head movement which contributes to postural instability. The effect is assessed of muscle vibration in combination with a variety of sensory conflicts on postural equilibrium. The equilibrium of six healthy subjects was tested using the EquiTest sensory test protocol, with and without the confounding influence of triceps surea vibration. The data were analyzed with repeated measures with vibration, vision status, and platform status as independent variables. All main effects and an interaction between the presence of vision and platform sway referencing were found to be significant. Overall, a 4.5 pct. decrease in postural stability was observed with vibration. The trend of the difference scores between conditions with and without vibration suggests that vibration is most destabilizing when the triceps surea is able to change length during postural sway (i.e., conditions with a fixed support surface). The impact of sway referencing vision was virtually identical to that of eye closure, providing compelling evidence that sway referencing 'nulls out' useful cues about subject sway.

  11. Motion perception: behavior and neural substrate.

    PubMed

    Mather, George

    2011-05-01

    Visual motion perception is vital for survival. Single-unit recordings in primate primary visual cortex (V1) have revealed the existence of specialized motion sensing neurons; perceptual effects such as the motion after-effect demonstrate their importance for motion perception. Human psychophysical data on motion detection can be explained by a computational model of cortical motion sensors. Both psychophysical and physiological data reveal at least two classes of motion sensor capable of sensing motion in luminance-defined and texture-defined patterns, respectively. Psychophysical experiments also reveal that motion can be seen independently of motion sensor output, based on attentive tracking of visual features. Sensor outputs are inherently ambiguous, due to the problem of univariance in neural responses. In order to compute stimulus direction and speed, the visual system must compare the responses of many different sensors sensitive to different directions and speeds. Physiological data show that this computation occurs in the visual middle temporal (MT) area. Recent psychophysical studies indicate that information about spatial form may also play a role in motion computations. Adaptation studies show that the human visual system is selectively sensitive to large-scale optic flow patterns, and physiological studies indicate that cells in the middle superior temporal (MST) area derive this sensitivity from the combined responses of many MT cells. Extraretinal signals used to control eye movements are an important source of signals to cancel out the retinal motion responses generated by eye movements, though visual information also plays a role. A number of issues remain to be resolved at all levels of the motion-processing hierarchy. WIREs Cogni Sci 2011 2 305-314 DOI: 10.1002/wcs.110 For further resources related to this article, please visit the WIREs website Additional Supporting Information may be found in http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion/index.html. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Rocking or Rolling – Perception of Ambiguous Motion after Returning from Space

    PubMed Central

    Clément, Gilles; Wood, Scott J.

    2014-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Adaptive changes during spaceflight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions after return to Earth. The purpose of this study was to compare tilt and translation motion perception in astronauts before and after returning from spaceflight. We hypothesized that these stimuli would be the most ambiguous in the low-frequency range (i.e., at about 0.3 Hz) where the linear acceleration can be interpreted either as a translation or as a tilt relative to gravity. Verbal reports were obtained in eleven astronauts tested using a motion-based tilt-translation device and a variable radius centrifuge before and after flying for two weeks on board the Space Shuttle. Consistent with previous studies, roll tilt perception was overestimated shortly after spaceflight and then recovered with 1–2 days. During dynamic linear acceleration (0.15–0.6 Hz, ±1.7 m/s2) perception of translation was also overestimated immediately after flight. Recovery to baseline was observed after 2 days for lateral translation and 8 days for fore–aft translation. These results suggest that there was a shift in the frequency dynamic of tilt-translation motion perception after adaptation to weightlessness. These results have implications for manual control during landing of a space vehicle after exposure to microgravity, as it will be the case for human asteroid and Mars missions. PMID:25354042

  13. Rocking or rolling--perception of ambiguous motion after returning from space.

    PubMed

    Clément, Gilles; Wood, Scott J

    2014-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Adaptive changes during spaceflight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions after return to Earth. The purpose of this study was to compare tilt and translation motion perception in astronauts before and after returning from spaceflight. We hypothesized that these stimuli would be the most ambiguous in the low-frequency range (i.e., at about 0.3 Hz) where the linear acceleration can be interpreted either as a translation or as a tilt relative to gravity. Verbal reports were obtained in eleven astronauts tested using a motion-based tilt-translation device and a variable radius centrifuge before and after flying for two weeks on board the Space Shuttle. Consistent with previous studies, roll tilt perception was overestimated shortly after spaceflight and then recovered with 1-2 days. During dynamic linear acceleration (0.15-0.6 Hz, ±1.7 m/s2) perception of translation was also overestimated immediately after flight. Recovery to baseline was observed after 2 days for lateral translation and 8 days for fore-aft translation. These results suggest that there was a shift in the frequency dynamic of tilt-translation motion perception after adaptation to weightlessness. These results have implications for manual control during landing of a space vehicle after exposure to microgravity, as it will be the case for human asteroid and Mars missions.

  14. Illusory conjunctions in simultanagnosia: coarse coding of visual feature location?

    PubMed

    McCrea, Simon M; Buxbaum, Laurel J; Coslett, H Branch

    2006-01-01

    Simultanagnosia is a disorder characterized by an inability to see more than one object at a time. We report a simultanagnosic patient (ED) with bilateral posterior infarctions who produced frequent illusory conjunctions on tasks involving form and surface features (e.g., a red T) and form alone. ED also produced "blend" errors in which features of one familiar perceptual unit appeared to migrate to another familiar perceptual unit (e.g., "RO" read as "PQ"). ED often misread scrambled letter strings as a familiar word (e.g., "hmoe" read as "home"). Finally, ED's success in reporting two letters in an array was inversely related to the distance between the letters. These findings are consistent with the hypothesis that ED's illusory reflect coarse coding of visual feature location that is ameliorated in part by top-down information from object and word recognition systems; the findings are also consistent, however, with Treisman's Feature Integration Theory. Finally, the data provide additional support for the claim that the dorsal parieto-occipital cortex is implicated in the binding of visual feature information.

  15. Knowledge does not protect against illusory truth.

    PubMed

    Fazio, Lisa K; Brashier, Nadia M; Payne, B Keith; Marsh, Elizabeth J

    2015-10-01

    In daily life, we frequently encounter false claims in the form of consumer advertisements, political propaganda, and rumors. Repetition may be one way that insidious misconceptions, such as the belief that vitamin C prevents the common cold, enter our knowledge base. Research on the illusory truth effect demonstrates that repeated statements are easier to process, and subsequently perceived to be more truthful, than new statements. The prevailing assumption in the literature has been that knowledge constrains this effect (i.e., repeating the statement "The Atlantic Ocean is the largest ocean on Earth" will not make you believe it). We tested this assumption using both normed estimates of knowledge and individuals' demonstrated knowledge on a postexperimental knowledge check (Experiment 1). Contrary to prior suppositions, illusory truth effects occurred even when participants knew better. Multinomial modeling demonstrated that participants sometimes rely on fluency even if knowledge is also available to them (Experiment 2). Thus, participants demonstrated knowledge neglect, or the failure to rely on stored knowledge, in the face of fluent processing experiences. (c) 2015 APA, all rights reserved).

  16. Self-motion perception compresses time experienced in return travel.

    PubMed

    Seno, Takeharu; Ito, Hiroyuki; Shoji, Sunaga

    2011-01-01

    It is often anecdotally reported that time experienced in return travel (back to the start point) seems shorter than time spent in outward travel (travel to a new destination). Here, we report the first experimental results showing that return travel time is experienced as shorter than the actual time. This discrepancy is induced by the existence of self-motion perception.

  17. An Assessment of the Impact of a Science Outreach Program, Science In Motion, on Student Achievement, Teacher Efficacy, and Teacher Perception

    ERIC Educational Resources Information Center

    Herring, Phillip Allen

    2009-01-01

    The purpose of the study was to analyze the science outreach program, Science In Motion (SIM), located in Mobile, Alabama. This research investigated what impact the SIM program has on student cognitive functioning and teacher efficacy and also investigated teacher perceptions and attitudes regarding the program. To investigate student…

  18. He Throws like a Girl (but Only when He's Sad): Emotion Affects Sex-Decoding of Biological Motion Displays

    ERIC Educational Resources Information Center

    Johnson, Kerri L.; McKay, Lawrie S.; Pollick, Frank E.

    2011-01-01

    Gender stereotypes have been implicated in sex-typed perceptions of facial emotion. Such interpretations were recently called into question because facial cues of emotion are confounded with sexually dimorphic facial cues. Here we examine the role of visual cues and gender stereotypes in perceptions of biological motion displays, thus overcoming…

  19. Perception of Biological Motion in Schizophrenia and Healthy Individuals: A Behavioral and fMRI Study

    PubMed Central

    Kim, Jejoong; Park, Sohee; Blake, Randolph

    2011-01-01

    Background Anomalous visual perception is a common feature of schizophrenia plausibly associated with impaired social cognition that, in turn, could affect social behavior. Past research suggests impairment in biological motion perception in schizophrenia. Behavioral and functional magnetic resonance imaging (fMRI) experiments were conducted to verify the existence of this impairment, to clarify its perceptual basis, and to identify accompanying neural concomitants of those deficits. Methodology/Findings In Experiment 1, we measured ability to detect biological motion portrayed by point-light animations embedded within masking noise. Experiment 2 measured discrimination accuracy for pairs of point-light biological motion sequences differing in the degree of perturbation of the kinematics portrayed in those sequences. Experiment 3 measured BOLD signals using event-related fMRI during a biological motion categorization task. Compared to healthy individuals, schizophrenia patients performed significantly worse on both the detection (Experiment 1) and discrimination (Experiment 2) tasks. Consistent with the behavioral results, the fMRI study revealed that healthy individuals exhibited strong activation to biological motion, but not to scrambled motion in the posterior portion of the superior temporal sulcus (STSp). Interestingly, strong STSp activation was also observed for scrambled or partially scrambled motion when the healthy participants perceived it as normal biological motion. On the other hand, STSp activation in schizophrenia patients was not selective to biological or scrambled motion. Conclusion Schizophrenia is accompanied by difficulties discriminating biological from non-biological motion, and associated with those difficulties are altered patterns of neural responses within brain area STSp. The perceptual deficits exhibited by schizophrenia patients may be an exaggerated manifestation of neural events within STSp associated with perceptual errors made by healthy observers on these same tasks. The present findings fit within the context of theories of delusion involving perceptual and cognitive processes. PMID:21625492

  20. Psilocybin impairs high-level but not low-level motion perception.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Burr, David C; Alais, David; Hasler, Felix; Vollenweider, Franz X

    2004-08-26

    The hallucinogenic serotonin(1A&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sensitivity for random dot patterns, likely mediated by high-level global motion detectors, but not contrast sensitivity for drifting gratings, believed to be mediated by low-level detectors. These results are in line with those observed within schizophrenic populations and are discussed in respect to the proposition that psilocybin may provide a model to investigate clinical psychosis and the pharmacological underpinnings of visual perception in normal populations.

  1. 3D surface perception from motion involves a temporal–parietal network

    PubMed Central

    Beer, Anton L.; Watanabe, Takeo; Ni, Rui; Sasaki, Yuka; Andersen, George J.

    2010-01-01

    Previous research has suggested that three-dimensional (3D) structure-from-motion (SFM) perception in humans involves several motion-sensitive occipital and parietal brain areas. By contrast, SFM perception in nonhuman primates seems to involve the temporal lobe including areas MT, MST and FST. The present functional magnetic resonance imaging study compared several motion-sensitive regions of interest including the superior temporal sulcus (STS) while human observers viewed horizontally moving dots that defined either a 3D corrugated surface or a 3D random volume. Low-level stimulus features such as dot density and velocity vectors as well as attention were tightly controlled. Consistent with previous research we found that 3D corrugated surfaces elicited stronger responses than random motion in occipital and parietal brain areas including area V3A, the ventral and dorsal intraparietal sulcus, the lateral occipital sulcus and the fusiform gyrus. Additionally, 3D corrugated surfaces elicited stronger activity in area MT and the STS but not in area MST. Brain activity in the STS but not in area MT correlated with interindividual differences in 3D surface perception. Our findings suggest that area MT is involved in the analysis of optic flow patterns such as speed gradients and that the STS in humans plays a greater role in the analysis of 3D SFM than previously thought. PMID:19674088

  2. On the Vertigo Due to Static Magnetic Fields

    PubMed Central

    Mian, Omar S.; Li, Yan; Antunes, Andre; Glover, Paul M.; Day, Brian L.

    2013-01-01

    Vertigo is sometimes experienced in and around MRI scanners. Mechanisms involving stimulation of the vestibular system by movement in magnetic fields or magnetic field spatial gradients have been proposed. However, it was recently shown that vestibular-dependent ocular nystagmus is evoked when stationary in homogenous static magnetic fields. The proposed mechanism involves Lorentz forces acting on endolymph to deflect semicircular canal (SCC) cupulae. To investigate whether vertigo arises from a similar mechanism we recorded qualitative and quantitative aspects of vertigo and 2D eye movements from supine healthy adults (n = 25) deprived of vision while pushed into the 7T static field of an MRI scanner. Exposures were variable and included up to 135s stationary at 7T. Nystagmus was mainly horizontal, persisted during long-exposures with partial decline, and reversed upon withdrawal. The dominant vertiginous perception with the head facing up was rotation in the horizontal plane (85% incidence) with a consistent direction across participants. With the head turned 90 degrees in yaw the perception did not transform into equivalent vertical plane rotation, indicating a context-dependency of the perception. During long exposures, illusory rotation lasted on average 50 s, including 42 s whilst stationary at 7T. Upon withdrawal, perception re-emerged and reversed, lasting on average 30 s. Onset fields for nystagmus and perception were significantly correlated (p<.05). Although perception did not persist as long as nystagmus, this is a known feature of continuous SSC stimulation. These observations, and others in the paper, are compatible with magnetic-field evoked-vertigo and nystagmus sharing a common mechanism. With this interpretation, response decay and reversal upon withdrawal from the field, are due to adaptation to continuous vestibular input. Although the study does not entirely exclude the possibility of mechanisms involving transient vestibular stimulation during movement in and out of the bore, we argue these are less likely. PMID:24205304

  3. On the vertigo due to static magnetic fields.

    PubMed

    Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L

    2013-01-01

    Vertigo is sometimes experienced in and around MRI scanners. Mechanisms involving stimulation of the vestibular system by movement in magnetic fields or magnetic field spatial gradients have been proposed. However, it was recently shown that vestibular-dependent ocular nystagmus is evoked when stationary in homogenous static magnetic fields. The proposed mechanism involves Lorentz forces acting on endolymph to deflect semicircular canal (SCC) cupulae. To investigate whether vertigo arises from a similar mechanism we recorded qualitative and quantitative aspects of vertigo and 2D eye movements from supine healthy adults (n = 25) deprived of vision while pushed into the 7T static field of an MRI scanner. Exposures were variable and included up to 135s stationary at 7T. Nystagmus was mainly horizontal, persisted during long-exposures with partial decline, and reversed upon withdrawal. The dominant vertiginous perception with the head facing up was rotation in the horizontal plane (85% incidence) with a consistent direction across participants. With the head turned 90 degrees in yaw the perception did not transform into equivalent vertical plane rotation, indicating a context-dependency of the perception. During long exposures, illusory rotation lasted on average 50 s, including 42 s whilst stationary at 7T. Upon withdrawal, perception re-emerged and reversed, lasting on average 30 s. Onset fields for nystagmus and perception were significantly correlated (p<.05). Although perception did not persist as long as nystagmus, this is a known feature of continuous SSC stimulation. These observations, and others in the paper, are compatible with magnetic-field evoked-vertigo and nystagmus sharing a common mechanism. With this interpretation, response decay and reversal upon withdrawal from the field, are due to adaptation to continuous vestibular input. Although the study does not entirely exclude the possibility of mechanisms involving transient vestibular stimulation during movement in and out of the bore, we argue these are less likely.

  4. Video quality assessment using a statistical model of human visual speed perception.

    PubMed

    Wang, Zhou; Li, Qiang

    2007-12-01

    Motion is one of the most important types of information contained in natural video, but direct use of motion information in the design of video quality assessment algorithms has not been deeply investigated. Here we propose to incorporate a recent model of human visual speed perception [Nat. Neurosci. 9, 578 (2006)] and model visual perception in an information communication framework. This allows us to estimate both the motion information content and the perceptual uncertainty in video signals. Improved video quality assessment algorithms are obtained by incorporating the model as spatiotemporal weighting factors, where the weight increases with the information content and decreases with the perceptual uncertainty. Consistent improvement over existing video quality assessment algorithms is observed in our validation with the video quality experts group Phase I test data set.

  5. Kinesthetic information disambiguates visual motion signals.

    PubMed

    Hu, Bo; Knill, David C

    2010-05-25

    Numerous studies have shown that extra-retinal signals can disambiguate motion information created by movements of the eye or head. We report a new form of cross-modal sensory integration in which the kinesthetic information generated by active hand movements essentially captures ambiguous visual motion information. Several previous studies have shown that active movement can bias observers' percepts of bi-stable stimuli; however, these effects seem to be best explained by attentional mechanisms. We show that kinesthetic information can change an otherwise stable perception of motion, providing evidence of genuine fusion between visual and kinesthetic information. The experiments take advantage of the aperture problem, in which the motion of a one-dimensional grating pattern behind an aperture, while geometrically ambiguous, appears to move stably in the grating normal direction. When actively moving the pattern, however, the observer sees the motion to be in the hand movement direction. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Spared Ability to Perceive Direction of Locomotor Heading and Scene-Relative Object Movement Despite Inability to Perceive Relative Motion

    PubMed Central

    Vaina, Lucia M.; Buonanno, Ferdinando; Rushton, Simon K.

    2014-01-01

    Background All contemporary models of perception of locomotor heading from optic flow (the characteristic patterns of retinal motion that result from self-movement) begin with relative motion. Therefore it would be expected that an impairment on perception of relative motion should impact on the ability to judge heading and other 3D motion tasks. Material/Methods We report two patients with occipital lobe lesions whom we tested on a battery of motion tasks. Patients were impaired on all tests that involved relative motion in plane (motion discontinuity, form from differences in motion direction or speed). Despite this they retained the ability to judge their direction of heading relative to a target. A potential confound is that observers can derive information about heading from scale changes bypassing the need to use optic flow. Therefore we ran further experiments in which we isolated optic flow and scale change. Results Patients’ performance was in normal ranges on both tests. The finding that ability to perceive heading can be retained despite an impairment on ability to judge relative motion questions the assumption that heading perception proceeds from initial processing of relative motion. Furthermore, on a collision detection task, SS and SR’s performance was significantly better for simulated forward movement of the observer in the 3D scene, than for the static observer. This suggests that in spite of severe deficits on relative motion in the frontoparlel (xy) plane, information from self-motion helped identification objects moving along an intercept 3D relative motion trajectory. Conclusions This result suggests a potential use of a flow parsing strategy to detect in a 3D world the trajectory of moving objects when the observer is moving forward. These results have implications for developing rehabilitation strategies for deficits in visually guided navigation. PMID:25183375

  7. Motion and Actions in Language: Semantic Representations in Occipito-Temporal Cortex

    ERIC Educational Resources Information Center

    Humphreys, Gina F.; Newling, Katherine; Jennings, Caroline; Gennari, Silvia P.

    2013-01-01

    Understanding verbs typically activates posterior temporal regions and, in some circumstances, motion perception area V5. However, the nature and role of this activation remains unclear: does language alone indeed activate V5? And are posterior temporal representations modality-specific motion representations, or supra-modal motion-independent…

  8. The neural encoding of self-generated and externally applied movement: implications for the perception of self-motion and spatial memory

    PubMed Central

    Cullen, Kathleen E.

    2014-01-01

    The vestibular system is vital for maintaining an accurate representation of self-motion. As one moves (or is moved) toward a new place in the environment, signals from the vestibular sensors are relayed to higher-order centers. It is generally assumed the vestibular system provides a veridical representation of head motion to these centers for the perception of self-motion and spatial memory. In support of this idea, evidence from lesion studies suggests that vestibular inputs are required for the directional tuning of head direction cells in the limbic system as well as neurons in areas of multimodal association cortex. However, recent investigations in monkeys and mice challenge the notion that early vestibular pathways encode an absolute representation of head motion. Instead, processing at the first central stage is inherently multimodal. This minireview highlights recent progress that has been made towards understanding how the brain processes and interprets self-motion signals encoded by the vestibular otoliths and semicircular canals during everyday life. The following interrelated questions are considered. What information is available to the higher-order centers that contribute to self-motion perception? How do we distinguish between our own self-generated movements and those of the external world? And lastly, what are the implications of differences in the processing of these active vs. passive movements for spatial memory? PMID:24454282

  9. Multimodal Perception and Multicriterion Control of Nested Systems. 1; Coordination of Postural Control and Vehicular Control

    NASA Technical Reports Server (NTRS)

    Riccio, Gary E.; McDonald, P. Vernon

    1998-01-01

    The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.

  10. Motion facilitates face perception across changes in viewpoint and expression in older adults.

    PubMed

    Maguinness, Corrina; Newell, Fiona N

    2014-12-01

    Faces are inherently dynamic stimuli. However, face perception in younger adults appears to be mediated by the ability to extract structural cues from static images and a benefit of motion is inconsistent. In contrast, static face processing is poorer and more image-dependent in older adults. We therefore compared the role of facial motion in younger and older adults to assess whether motion can enhance perception when static cues are insufficient. In our studies, older and younger adults learned faces presented in motion or in a sequence of static images, containing rigid (viewpoint) or nonrigid (expression) changes. Immediately following learning, participants matched a static test image to the learned face which varied by viewpoint (Experiment 1) or expression (Experiment 2) and was either learned or novel. First, we found an age effect with better face matching performance in younger than in older adults. However, we observed face matching performance improved in the older adult group, across changes in viewpoint and expression, when faces were learned in motion relative to static presentation. There was no benefit for facial (nonrigid) motion when the task involved matching inverted faces (Experiment 3), suggesting that the ability to use dynamic face information for the purpose of recognition reflects motion encoding which is specific to upright faces. Our results suggest that ageing may offer a unique insight into how dynamic cues support face processing, which may not be readily observed in younger adults' performance. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  11. Role of orientation reference selection in motion sickness

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Black, F. Owen

    1992-01-01

    The overall objective of this proposal is to understand the relationship between human orientation control and motion sickness susceptibility. Three areas related to orientation control will be investigated. These three areas are (1) reflexes associated with the control of eye movements and posture, (2) the perception of body rotation and position with respect to gravity, and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. We refer to this process as sensory selection. This proposal will attempt to quantify subjects' sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms. Measurements of reflexes, motion perception, sensory selection abilities, and motion sickness susceptibility will concentrate on pitch and roll motions since these seem most relevant to the space motion sickness problem. Vestibulo-ocular (VOR) and oculomotor reflexes will be measured using a unique two-axis rotation device developed in our laboratory over the last seven years. Posture control reflexes will be measured using a movable posture platform capable of independently altering proprioceptive and visual orientation cues. Motion perception will be quantified using closed loop feedback technique developed by Zacharias and Young (Exp Brain Res, 1981). This technique requires a subject to null out motions induced by the experimenter while being exposed to various confounding sensory orientation cues. A subject's sensory selection abilities will be measured by the magnitude and timing of his reactions to changes in sensory environments. Motion sickness susceptibility will be measured by the time required to induce characteristic changes in the pattern of electrogastrogram recordings while exposed to various sensory environments during posture and motion perception tests. The results of this work are relevant to NASA's interest in understanding the etiology of space motion sickness. If any of the reflex, perceptual, or sensory selection abilities of subjects are found to correlate with motion sickness susceptibility, this work may be an important step in suggesting a method of predicting motion sickness susceptibility. If sensory selection can provide a means to avoid sensory conflict, then further work may lead to training programs which could enhance a subject's sensory selection ability and therefore minimize motion sickness susceptibility.

  12. Shared sensory estimates for human motion perception and pursuit eye movements.

    PubMed

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C

    2015-06-03

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.

  13. Shared Sensory Estimates for Human Motion Perception and Pursuit Eye Movements

    PubMed Central

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio

    2015-01-01

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. PMID:26041919

  14. Motion coherence and direction discrimination in healthy aging.

    PubMed

    Pilz, Karin S; Miller, Louisa; Agnew, Hannah C

    2017-01-01

    Perceptual functions change with age, particularly motion perception. With regard to healthy aging, previous studies mostly measured motion coherence thresholds for coarse motion direction discrimination along cardinal axes of motion. Here, we investigated age-related changes in the ability to discriminate between small angular differences in motion directions, which allows for a more specific assessment of age-related decline and its underlying mechanisms. We first assessed older (>60 years) and younger (<30 years) participants' ability to discriminate coarse horizontal (left/right) and vertical (up/down) motion at 100% coherence and a stimulus duration of 400 ms. In a second step, we determined participants' motion coherence thresholds for vertical and horizontal coarse motion direction discrimination. In a third step, we used the individually determined motion coherence thresholds and tested fine motion direction discrimination for motion clockwise away from horizontal and vertical motion. Older adults performed as well as younger adults for discriminating motion away from vertical. Surprisingly, performance for discriminating motion away from horizontal was strongly decreased. Further analyses, however, showed a relationship between motion coherence thresholds for horizontal coarse motion direction discrimination and fine motion direction discrimination performance in older adults. In a control experiment, using motion coherence above threshold for all conditions, the difference in performance for horizontal and vertical fine motion direction discrimination for older adults disappeared. These results clearly contradict the notion of an overall age-related decline in motion perception, and, most importantly, highlight the importance of taking into account individual differences when assessing age-related changes in perceptual functions.

  15. Functional associations at global brain level during perception of an auditory illusion by applying maximal information coefficient

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Joydeep; Pereda, Ernesto; Ioannou, Christos

    2018-02-01

    Maximal information coefficient (MIC) is a recently introduced information-theoretic measure of functional association with a promising potential of application to high dimensional complex data sets. Here, we applied MIC to reveal the nature of the functional associations between different brain regions during the perception of binaural beat (BB); BB is an auditory illusion occurring when two sinusoidal tones of slightly different frequency are presented separately to each ear and an illusory beat at the different frequency is perceived. We recorded sixty-four channels EEG from two groups of participants, musicians and non-musicians, during the presentation of BB, and systematically varied the frequency difference from 1 Hz to 48 Hz. Participants were also presented non-binuaral beat (NBB) stimuli, in which same frequencies were presented to both ears. Across groups, as compared to NBB, (i) BB conditions produced the most robust changes in the MIC values at the whole brain level when the frequency differences were in the classical alpha range (8-12 Hz), and (ii) the number of electrode pairs showing nonlinear associations decreased gradually with increasing frequency difference. Between groups, significant effects were found for BBs in the broad gamma frequency range (34-48 Hz), but such effects were not observed between groups during NBB. Altogether, these results revealed the nature of functional associations at the whole brain level during the binaural beat perception and demonstrated the usefulness of MIC in characterizing interregional neural dependencies.

  16. Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu

    2011-01-01

    Natural movements in the sagittal plane involve pitch tilt relative to gravity combined with translation motion. The Gravito-Inertial Force (GIF) resolution hypothesis states that the resultant force on the body is perceptually resolved into tilt and translation consistently with the laws of physics. The purpose of this study was to test this hypothesis for human perception during combined tilt and translation motion. EXPERIMENTAL METHODS: Twelve subjects provided verbal reports during 0.3 Hz motion in the dark with 4 types of tilt and/or translation motion: 1) pitch tilt about an interaural axis at +/-10deg or +/-20deg, 2) fore-aft translation with acceleration equivalent to +/-10deg or +/-20deg, 3) combined "in phase" tilt and translation motion resulting in acceleration equivalent to +/-20deg, and 4) "out of phase" tilt and translation motion that maintained the resultant gravito-inertial force aligned with the longitudinal body axis. The amplitude of perceived pitch tilt and translation at the head were obtained during separate trials. MODELING METHODS: Three-dimensional mathematical modeling was performed to test the GIF-resolution hypothesis using a dynamical model. The model encoded GIF-resolution using the standard vector equation, and used an internal model of motion parameters, including gravity. Differential equations conveyed time-varying predictions. The six motion profiles were tested, resulting in predicted perceived amplitude of tilt and translation for each. RESULTS: The modeling results exhibited the same pattern as the experimental results. Most importantly, both modeling and experimental results showed greater perceived tilt during the "in phase" profile than the "out of phase" profile, and greater perceived tilt during combined "in phase" motion than during pure tilt of the same amplitude. However, the model did not predict as much perceived translation as reported by subjects during pure tilt. CONCLUSION: Human perception is consistent with the GIF-resolution hypothesis even when the gravito-inertial force vector remains aligned with the body during periodic motion. Perception is also consistent with GIF-resolution in the opposite condition, when the gravito-inertial force vector angle is enhanced by synchronized tilt and translation.

  17. A selective impairment of perception of sound motion direction in peripheral space: A case study.

    PubMed

    Thaler, Lore; Paciocco, Joseph; Daley, Mark; Lesniak, Gabriella D; Purcell, David W; Fraser, J Alexander; Dutton, Gordon N; Rossit, Stephanie; Goodale, Melvyn A; Culham, Jody C

    2016-01-08

    It is still an open question if the auditory system, similar to the visual system, processes auditory motion independently from other aspects of spatial hearing, such as static location. Here, we report psychophysical data from a patient (female, 42 and 44 years old at the time of two testing sessions), who suffered a bilateral occipital infarction over 12 years earlier, and who has extensive damage in the occipital lobe bilaterally, extending into inferior posterior temporal cortex bilaterally and into right parietal cortex. We measured the patient's spatial hearing ability to discriminate static location, detect motion and perceive motion direction in both central (straight ahead), and right and left peripheral auditory space (50° to the left and right of straight ahead). Compared to control subjects, the patient was impaired in her perception of direction of auditory motion in peripheral auditory space, and the deficit was more pronounced on the right side. However, there was no impairment in her perception of the direction of auditory motion in central space. Furthermore, detection of motion and discrimination of static location were normal in both central and peripheral space. The patient also performed normally in a wide battery of non-spatial audiological tests. Our data are consistent with previous neuropsychological and neuroimaging results that link posterior temporal cortex and parietal cortex with the processing of auditory motion. Most importantly, however, our data break new ground by suggesting a division of auditory motion processing in terms of speed and direction and in terms of central and peripheral space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Does language guide event perception? Evidence from eye movements

    PubMed Central

    Papafragou, Anna; Hulbert, Justin; Trueswell, John

    2008-01-01

    Languages differ in how they encode motion. When describing bounded motion, English speakers typically use verbs that convey information about manner (e.g., slide, skip, walk) rather than path (e.g., approach, ascend), whereas Greek speakers do the opposite. We investigated whether this strong cross-language difference influences how people allocate attention during motion perception. We compared eye movements from Greek and English speakers as they viewed motion events while (a) preparing verbal descriptions, or (b) memorizing the events. During the verbal description task, speakers’ eyes rapidly focused on the event components typically encoded in their native language, generating significant cross-language differences even during the first second of motion onset. However, when freely inspecting ongoing events, as in the memorization task, people allocated attention similarly regardless of the language they speak. Differences between language groups arose only after the motion stopped, such that participants spontaneously studied those aspects of the scene that their language does not routinely encode in verbs. These findings offer a novel perspective on the relation between language and perceptual/cognitive processes. They indicate that attention allocation during event perception is not affected by the perceiver’s native language; effects of language arise only when linguistic forms are recruited to achieve the task, such as when committing facts to memory. PMID:18395705

  19. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    PubMed

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  20. How long did it last? You would better ask a human

    PubMed Central

    Lacquaniti, Francesco; Carrozzo, Mauro; d’Avella, Andrea; La Scaleia, Barbara; Moscatelli, Alessandro; Zago, Myrka

    2014-01-01

    In the future, human-like robots will live among people to provide company and help carrying out tasks in cooperation with humans. These interactions require that robots understand not only human actions, but also the way in which we perceive the world. Human perception heavily relies on the time dimension, especially when it comes to processing visual motion. Critically, human time perception for dynamic events is often inaccurate. Robots interacting with humans may want to see the world and tell time the way humans do: if so, they must incorporate human-like fallacy. Observers asked to judge the duration of brief scenes are prone to errors: perceived duration often does not match the physical duration of the event. Several kinds of temporal distortions have been described in the specialized literature. Here we review the topic with a special emphasis on our work dealing with time perception of animate actors versus inanimate actors. This work shows the existence of specialized time bases for different categories of targets. The time base used by the human brain to process visual motion appears to be calibrated against the specific predictions regarding the motion of human figures in case of animate motion, while it can be calibrated against the predictions of motion of passive objects in case of inanimate motion. Human perception of time appears to be strictly linked with the mechanisms used to control movements. Thus, neural time can be entrained by external cues in a similar manner for both perceptual judgments of elapsed time and in motor control tasks. One possible strategy could be to implement in humanoids a unique architecture for dealing with time, which would apply the same specialized mechanisms to both perception and action, similarly to humans. This shared implementation might render the humanoids more acceptable to humans, thus facilitating reciprocal interactions. PMID:24478694

  1. How long did it last? You would better ask a human.

    PubMed

    Lacquaniti, Francesco; Carrozzo, Mauro; d'Avella, Andrea; La Scaleia, Barbara; Moscatelli, Alessandro; Zago, Myrka

    2014-01-01

    In the future, human-like robots will live among people to provide company and help carrying out tasks in cooperation with humans. These interactions require that robots understand not only human actions, but also the way in which we perceive the world. Human perception heavily relies on the time dimension, especially when it comes to processing visual motion. Critically, human time perception for dynamic events is often inaccurate. Robots interacting with humans may want to see the world and tell time the way humans do: if so, they must incorporate human-like fallacy. Observers asked to judge the duration of brief scenes are prone to errors: perceived duration often does not match the physical duration of the event. Several kinds of temporal distortions have been described in the specialized literature. Here we review the topic with a special emphasis on our work dealing with time perception of animate actors versus inanimate actors. This work shows the existence of specialized time bases for different categories of targets. The time base used by the human brain to process visual motion appears to be calibrated against the specific predictions regarding the motion of human figures in case of animate motion, while it can be calibrated against the predictions of motion of passive objects in case of inanimate motion. Human perception of time appears to be strictly linked with the mechanisms used to control movements. Thus, neural time can be entrained by external cues in a similar manner for both perceptual judgments of elapsed time and in motor control tasks. One possible strategy could be to implement in humanoids a unique architecture for dealing with time, which would apply the same specialized mechanisms to both perception and action, similarly to humans. This shared implementation might render the humanoids more acceptable to humans, thus facilitating reciprocal interactions.

  2. Effects of prolonged weightlessness on self-motion perception and eye movements evoked by roll and pitch

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Parker, Donald E.

    1987-01-01

    Seven astronauts reported translational self-motion during roll simulation 1-3 h after landing following 5-7 d of orbital flight. Two reported strong translational self-motion perception when they performed pitch head motions during entry and while the orbiter was stationary on the runway. One of two astronauts from whom adequate data were collected exhibited a 132-deg shift in the phase angle between roll stimulation and horizontal eye position 2 h after landing. Neither of two from whom adequate data were collected exhibited increased horizontal eye movement amplitude or disturbance of voluntary pitch or roll body motion immediately postflight. These results are generally consistent with an otolith tilt-translation reinterpretation model and are being applied to the development of apparatus and procedures intended to preadapt astronauts to the sensory rearrangement of weightlessness.

  3. Perception of biological motion from size-invariant body representations.

    PubMed

    Lappe, Markus; Wittinghofer, Karin; de Lussanet, Marc H E

    2015-01-01

    The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.

  4. Suppressive mechanisms in visual motion processing: from perception to intelligence

    PubMed Central

    Tadin, Duje

    2015-01-01

    Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and those with schizophrenia—a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. PMID:26299386

  5. Self-Motion Perception: Assessment by Real-Time Computer Generated Animations

    NASA Technical Reports Server (NTRS)

    Parker, Donald E.

    1999-01-01

    Our overall goal is to develop materials and procedures for assessing vestibular contributions to spatial cognition. The specific objective of the research described in this paper is to evaluate computer-generated animations as potential tools for studying self-orientation and self-motion perception. Specific questions addressed in this study included the following. First, does a non- verbal perceptual reporting procedure using real-time animations improve assessment of spatial orientation? Are reports reliable? Second, do reports confirm expectations based on stimuli to vestibular apparatus? Third, can reliable reports be obtained when self-motion description vocabulary training is omitted?

  6. Modeling depth from motion parallax with the motion/pursuit ratio

    PubMed Central

    Nawrot, Mark; Ratzlaff, Michael; Leonard, Zachary; Stroyan, Keith

    2014-01-01

    The perception of unambiguous scaled depth from motion parallax relies on both retinal image motion and an extra-retinal pursuit eye movement signal. The motion/pursuit ratio represents a dynamic geometric model linking these two proximal cues to the ratio of depth to viewing distance. An important step in understanding the visual mechanisms serving the perception of depth from motion parallax is to determine the relationship between these stimulus parameters and empirically determined perceived depth magnitude. Observers compared perceived depth magnitude of dynamic motion parallax stimuli to static binocular disparity comparison stimuli at three different viewing distances, in both head-moving and head-stationary conditions. A stereo-viewing system provided ocular separation for stereo stimuli and monocular viewing of parallax stimuli. For each motion parallax stimulus, a point of subjective equality (PSE) was estimated for the amount of binocular disparity that generates the equivalent magnitude of perceived depth from motion parallax. Similar to previous results, perceived depth from motion parallax had significant foreshortening. Head-moving conditions produced even greater foreshortening due to the differences in the compensatory eye movement signal. An empirical version of the motion/pursuit law, termed the empirical motion/pursuit ratio, which models perceived depth magnitude from these stimulus parameters, is proposed. PMID:25339926

  7. Slow and fast visual motion channels have independent binocular-rivalry stages.

    PubMed Central

    van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.

    2001-01-01

    We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442

  8. Discriminating Rigid from Nonrigid Motion

    DTIC Science & Technology

    1989-07-31

    motion can be given a three-dimensional interpretation using a constraint of rigidity. Kruppa’s result and others (Faugeras & Maybank , 1989; Huang...Experimental Psychology: Human Perception and Performance, 10, 1-11. Faugeras, 0., & Maybank , S. (1989). Motion from point matches: multiplicity of

  9. Importance of human right inferior frontoparietal network connected by inferior branch of superior longitudinal fasciculus tract in corporeal awareness of kinesthetic illusory movement.

    PubMed

    Amemiya, Kaoru; Naito, Eiichi

    2016-05-01

    It is generally believed that the human right cerebral hemisphere plays a dominant role in corporeal awareness, which is highly associated with conscious experience of the physical self. Prompted by our previous findings, we examined whether the right frontoparietal activations often observed when people experience kinesthetic illusory limb movement are supported by a large-scale brain network connected by a specific branch of the superior longitudinal fasciculus fiber tracts (SLF I, II, and III). We scanned brain activity with functional magnetic resonance imaging (MRI) while nineteen blindfolded healthy volunteers experienced illusory movement of the right stationary hand elicited by tendon vibration, which was replicated after the scanning. We also scanned brain activity when they executed and imagined right hand movement, and identified the active brain regions during illusion, execution, and imagery in relation to the SLF fiber tracts. We found that illusion predominantly activated the right inferior frontoparietal regions connected by SLF III, which were not substantially recruited during execution and imagery. Among these regions, activities in the right inferior parietal cortices and inferior frontal cortices showed right-side dominance and correlated well with the amount of illusion (kinesthetic illusory awareness) experienced by the participants. The results illustrated the predominant involvement of the right inferior frontoparietal network connected by SLF III when people recognize postural changes of their limb. We assume that the network bears a series of functions, specifically, monitoring the current status of the musculoskeletal system, and building-up and updating our postural model (body schema), which could be a basis for the conscious experience of the physical self. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The Alternative Omen Effect: Illusory negative correlation between the outcomes of choice options.

    PubMed

    Marciano-Romm, Déborah; Romm, Assaf; Bourgeois-Gironde, Sacha; Deouell, Leon Y

    2016-01-01

    In situations of choice between uncertain options, one might get feedback on both the outcome of the chosen option and the outcome of the unchosen option ("the alternative"). Extensive research has shown that when both outcomes are eventually revealed, the alternative's outcome influences the way people evaluate their own outcome. In a series of experiments, we examined whether the outcome of the alternative plays an additional role in the decision-making process by creating expectations regarding the outcome of the chosen option. Specifically, we hypothesized that people see a good (bad) alternative's outcome as a bad (good) sign regarding their own outcome when the two outcomes are in fact uncorrelated, a phenomenon we call the "Alternative Omen Effect" (ALOE). Subjects had to repeatedly choose between two boxes, the outcomes of which were then sequentially revealed. In Experiments 1 and 2 the alternative's outcome was presented first, and we assessed the individual's prediction of their own outcome. In Experiment 3, subjects had to predict the alternative's outcome after seeing their own. We find that even though the two outcomes were in fact uncorrelated, people tended to see a good (bad) alternative outcome as a bad (good) sign regarding their own outcome. Importantly, this illusory negative correlation affected subsequent behavior and led to irrational choices. Furthermore, the order of presentation was critical: when the outcome of the chosen option was presented first, the effect disappeared, suggesting that this illusory negative correlation is influenced by self-relevance. We discuss the possible sources of this illusory correlation as well as its implications for research on counterfactual thinking. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Hawking radiation inside a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew J. S.

    2018-05-01

    The boundary of any observer's spacetime is the boundary that divides what the observer can see from what they cannot see. The boundary of an observer's spacetime in the presence of a black hole is not the true (future event) horizon of the black hole, but rather the illusory horizon, the dimming, redshifting surface of the star that collapsed to the black hole long ago. The illusory horizon is the source of Hawking radiation seen by observers both outside and inside the true horizon. The perceived acceleration (gravity) on the illusory horizon sets the characteristic frequency scale of Hawking radiation, even if that acceleration varies dynamically, as it must do from the perspective of an infalling observer. The acceleration seen by a non-rotating free-faller both on the illusory horizon below and in the sky above is calculated for a Schwarzschild black hole. Remarkably, as an infaller approaches the singularity, the acceleration becomes isotropic, and diverging as a power law. The isotropic, power-law character of the Hawking radiation, coupled with conservation of energy-momentum, the trace anomaly, and the familiar behavior of Hawking radiation far from the black hole, leads to a complete description of the quantum energy-momentum inside a Schwarzschild black hole. The quantum energy-momentum near the singularity diverges as r^{-6}, and consists of relativistic Hawking radiation and negative energy vacuum in the ratio 3 : - 2. The classical back reaction of the quantum energy-momentum on the geometry, calculated using the Einstein equations, serves merely to exacerbate the singularity. All the results are consistent with traditional calculations of the quantum energy-momentum in 1 + 1 spacetime dimensions.

  12. Congruity Effects in Time and Space: Behavioral and ERP Measures

    ERIC Educational Resources Information Center

    Teuscher, Ursina; McQuire, Marguerite; Collins, Jennifer; Coulson, Seana

    2008-01-01

    Two experiments investigated whether motion metaphors for time affected the perception of spatial motion. Participants read sentences either about literal motion through space or metaphorical motion through time written from either the ego-moving or object-moving perspective. Each sentence was followed by a cartoon clip. Smiley-moving clips showed…

  13. Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions.

    PubMed

    Cowlagi, Raghvendra V; Tsiotras, Panagiotis

    2012-10-01

    We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.

  14. Virtual head rotation reveals a process of route reconstruction from human vestibular signals

    PubMed Central

    Day, Brian L; Fitzpatrick, Richard C

    2005-01-01

    The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled. PMID:16002439

  15. Unconscious analyses of visual scenes based on feature conjunctions.

    PubMed

    Tachibana, Ryosuke; Noguchi, Yasuki

    2015-06-01

    To efficiently process a cluttered scene, the visual system analyzes statistical properties or regularities of visual elements embedded in the scene. It is controversial, however, whether those scene analyses could also work for stimuli unconsciously perceived. Here we show that our brain performs the unconscious scene analyses not only using a single featural cue (e.g., orientation) but also based on conjunctions of multiple visual features (e.g., combinations of color and orientation information). Subjects foveally viewed a stimulus array (duration: 50 ms) where 4 types of bars (red-horizontal, red-vertical, green-horizontal, and green-vertical) were intermixed. Although a conscious perception of those bars was inhibited by a subsequent mask stimulus, the brain correctly analyzed the information about color, orientation, and color-orientation conjunctions of those invisible bars. The information of those features was then used for the unconscious configuration analysis (statistical processing) of the central bars, which induced a perceptual bias and illusory feature binding in visible stimuli at peripheral locations. While statistical analyses and feature binding are normally 2 key functions of the visual system to construct coherent percepts of visual scenes, our results show that a high-level analysis combining those 2 functions is correctly performed by unconscious computations in the brain. (c) 2015 APA, all rights reserved).

  16. Audio aided electro-tactile perception training for finger posture biofeedback.

    PubMed

    Vargas, Jose Gonzalez; Yu, Wenwei

    2008-01-01

    Visual information is one of the prerequisites for most biofeedback studies. The aim of this study is to explore how the usage of an audio aided training helps in the learning process of dynamical electro-tactile perception without any visual feedback. In this research, the electrical simulation patterns associated with the experimenter's finger postures and motions were presented to the subjects. Along with the electrical stimulation patterns 2 different types of information, verbal and audio information on finger postures and motions, were presented to the verbal training subject group (group 1) and audio training subject group (group 2), respectively. The results showed an improvement in the ability to distinguish and memorize electrical stimulation patterns correspondent to finger postures and motions without visual feedback, and with audio tones aid, the learning was faster and the perception became more precise after training. Thus, this study clarified that, as a substitution to visual presentation, auditory information could help effectively in the formation of electro-tactile perception. Further research effort needed to make clear the difference between the visual guided and audio aided training in terms of information compilation, post-training effect and robustness of the perception.

  17. Local and global aspects of biological motion perception in children born at very low birth weight

    PubMed Central

    Williamson, K. E.; Jakobson, L. S.; Saunders, D. R.; Troje, N. F.

    2015-01-01

    Biological motion perception can be assessed using a variety of tasks. In the present study, 8- to 11-year-old children born prematurely at very low birth weight (<1500 g) and matched, full-term controls completed tasks that required the extraction of local motion cues, the ability to perceptually group these cues to extract information about body structure, and the ability to carry out higher order processes required for action recognition and person identification. Preterm children exhibited difficulties in all 4 aspects of biological motion perception. However, intercorrelations between test scores were weak in both full-term and preterm children—a finding that supports the view that these processes are relatively independent. Preterm children also displayed more autistic-like traits than full-term peers. In preterm (but not full-term) children, these traits were negatively correlated with performance in the task requiring structure-from-motion processing, r(30) = −.36, p < .05), but positively correlated with the ability to extract identity, r(30) = .45, p < .05). These findings extend previous reports of vulnerability in systems involved in processing dynamic cues in preterm children and suggest that a core deficit in social perception/cognition may contribute to the development of the social and behavioral difficulties even in members of this population who are functioning within the normal range intellectually. The results could inform the development of screening, diagnostic, and intervention tools. PMID:25103588

  18. Visual Motion Perception and Visual Attentive Processes.

    DTIC Science & Technology

    1988-04-01

    88-0551 Visual Motion Perception and Visual Attentive Processes George Spering , New YorkUnivesity A -cesson For DTIC TAB rant AFOSR 85-0364... Spering . HIPSt: A Unix-based image processing syslem. Computer Vision, Graphics, and Image Processing, 1984,25. 331-347. ’HIPS is the Human Information...Processing Laboratory’s Image Processing System. 1985 van Santen, Jan P. It, and George Spering . Elaborated Reichardt detectors. Journal of the Optical

  19. Methodology for estimating human perception to tremors in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Du, Wenqi; Goh, Key Seng; Pan, Tso-Chien

    2017-07-01

    Human perception to tremors during earthquakes in high-rise buildings is usually associated with psychological discomfort such as fear and anxiety. This paper presents a methodology for estimating the level of perception to tremors for occupants living in high-rise buildings subjected to ground motion excitations. Unlike other approaches based on empirical or historical data, the proposed methodology performs a regression analysis using the analytical results of two generic models of 15 and 30 stories. The recorded ground motions in Singapore are collected and modified for structural response analyses. Simple predictive models are then developed to estimate the perception level to tremors based on a proposed ground motion intensity parameter—the average response spectrum intensity in the period range between 0.1 and 2.0 s. These models can be used to predict the percentage of occupants in high-rise buildings who may perceive the tremors at a given ground motion intensity. Furthermore, the models are validated with two recent tremor events reportedly felt in Singapore. It is found that the estimated results match reasonably well with the reports in the local newspapers and from the authorities. The proposed methodology is applicable to urban regions where people living in high-rise buildings might feel tremors during earthquakes.

  20. Feature-Based Attention in Early Vision for the Modulation of Figure–Ground Segregation

    PubMed Central

    Wagatsuma, Nobuhiko; Oki, Megumi; Sakai, Ko

    2013-01-01

    We investigated psychophysically whether feature-based attention modulates the perception of figure–ground (F–G) segregation and, based on the results, we investigated computationally the neural mechanisms underlying attention modulation. In the psychophysical experiments, the attention of participants was drawn to a specific motion direction and they were then asked to judge the side of figure in an ambiguous figure with surfaces consisting of distinct motion directions. The results of these experiments showed that the surface consisting of the attended direction of motion was more frequently observed as figure, with a degree comparable to that of spatial attention (Wagatsuma et al., 2008). These experiments also showed that perception was dependent on the distribution of feature contrast, specifically the motion direction differences. These results led us to hypothesize that feature-based attention functions in a framework similar to that of spatial attention. We proposed a V1–V2 model in which feature-based attention modulates the contrast of low-level feature in V1, and this modulation of contrast changes directly the surround modulation of border-ownership-selective cells in V2; thus, perception of F–G is biased. The model exhibited good agreement with human perception in the magnitude of attention modulation and its invariance among stimuli. These results indicate that early-level features that are modified by feature-based attention alter subsequent processing along afferent pathway, and that such modification could even change the perception of object. PMID:23515841

Top