Sample records for image acquisition computer

  1. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    PubMed Central

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  2. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    PubMed

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  3. Software for Acquiring Image Data for PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Cheung, H. M.; Kressler, Brian

    2003-01-01

    PIV Acquisition (PIVACQ) is a computer program for acquisition of data for particle-image velocimetry (PIV). In the PIV system for which PIVACQ was developed, small particles entrained in a flow are illuminated with a sheet of light from a pulsed laser. The illuminated region is monitored by a charge-coupled-device camera that operates in conjunction with a data-acquisition system that includes a frame grabber and a counter-timer board, both installed in a single computer. The camera operates in "frame-straddle" mode where a pair of images can be obtained closely spaced in time (on the order of microseconds). The frame grabber acquires image data from the camera and stores the data in the computer memory. The counter/timer board triggers the camera and synchronizes the pulsing of the laser with acquisition of data from the camera. PIVPROC coordinates all of these functions and provides a graphical user interface, through which the user can control the PIV data-acquisition system. PIVACQ enables the user to acquire a sequence of single-exposure images, display the images, process the images, and then save the images to the computer hard drive. PIVACQ works in conjunction with the PIVPROC program which processes the images of particles into the velocity field in the illuminated plane.

  4. Design and Construction of Detector and Data Acquisition Elements for Proton Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermi Research Alliance; Northern Illinois University

    2015-07-15

    Proton computed tomography (pCT) offers an alternative to x-ray imaging with potential for three-dimensional imaging, reduced radiation exposure, and in-situ imaging. Northern Illinois University (NIU) is developing a second-generation proton computed tomography system with a goal of demonstrating the feasibility of three-dimensional imaging within clinically realistic imaging times. The second-generation pCT system is comprised of a tracking system, a calorimeter, data acquisition, a computing farm, and software algorithms. The proton beam encounters the upstream tracking detectors, the patient or phantom, the downstream tracking detectors, and a calorimeter. The schematic layout of the PCT system is shown. The data acquisition sendsmore » the proton scattering information to an offline computing farm. Major innovations of the second generation pCT project involve an increased data acquisition rate ( MHz range) and development of three-dimensional imaging algorithms. The Fermilab Particle Physics Division and Northern Illinois Center for Accelerator and Detector Development at Northern Illinois University worked together to design and construct the tracking detectors, calorimeter, readout electronics and detector mounting system.« less

  5. The image acquisition system design of floor grinder

    NASA Astrophysics Data System (ADS)

    Wang, Yang-jiang; Liu, Wei; Liu, Hui-qin

    2018-01-01

    Based on linear CCD, high resolution image real-time acquisition system serves as designing a set of image acquisition system for floor grinder through the calculation of optical imaging system. The entire image acquisition system can collect images of ground before and after the work of the floor grinder, and the data is transmitted through the Bluetooth system to the computer and compared to realize real-time monitoring of its working condition. The system provides technical support for the design of unmanned ground grinders.

  6. A translational registration system for LANDSAT image segments

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Erthal, G. J.; Velasco, F. R. D.; Mascarenhas, N. D. D.

    1983-01-01

    The use of satellite images obtained from various dates is essential for crop forecast systems. In order to make possible a multitemporal analysis, it is necessary that images belonging to each acquisition have pixel-wise correspondence. A system developed to obtain, register and record image segments from LANDSAT images in computer compatible tapes is described. The translational registration of the segments is performed by correlating image edges in different acquisitions. The system was constructed for the Burroughs B6800 computer in ALGOL language.

  7. General equations for optimal selection of diagnostic image acquisition parameters in clinical X-ray imaging.

    PubMed

    Zheng, Xiaoming

    2017-12-01

    The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.

  8. Acquisition of gamma camera and physiological data by computer.

    PubMed

    Hack, S N; Chang, M; Line, B R; Cooper, J A; Robeson, G H

    1986-11-01

    We have designed, implemented, and tested a new Research Data Acquisition System (RDAS) that permits a general purpose digital computer to acquire signals from both gamma camera sources and physiological signal sources concurrently. This system overcomes the limited multi-source, high speed data acquisition capabilities found in most clinically oriented nuclear medicine computers. The RDAS can simultaneously input signals from up to four gamma camera sources with a throughput of 200 kHz per source and from up to eight physiological signal sources with an aggregate throughput of 50 kHz. Rigorous testing has found the RDAS to exhibit acceptable linearity and timing characteristics. In addition, flood images obtained by this system were compared with flood images acquired by a commercial nuclear medicine computer system. National Electrical Manufacturers Association performance standards of the flood images were found to be comparable.

  9. Image Quality and Radiation Exposure Comparison of a Double High-Pitch Acquisition for Coronary Computed Tomography Angiography Versus Standard Retrospective Spiral Acquisition in Patients With Atrial Fibrillation.

    PubMed

    Prazeres, Carlos Eduardo Elias Dos; Magalhães, Tiago Augusto; de Castro Carneiro, Adriano Camargo; Cury, Roberto Caldeira; de Melo Moreira, Valéria; Bello, Juliana Hiromi Silva Matsumoto; Rochitte, Carlos Eduardo

    The aim of this study was to compare image quality and radiation dose of coronary computed tomography (CT) angiography performed with dual-source CT scanner using 2 different protocols in patients with atrial fibrillation. Forty-seven patients with AF underwent 2 different acquisition protocols: double high-pitch (DHP) spiral acquisition and retrospective spiral acquisition. The image quality was ranked according to a qualitative score by 2 experts: 1, no evident motion; 2, minimal motion not influencing coronary artery luminal evaluation; and 3, motion with impaired luminal evaluation. A third expert solved any disagreement. A total of 732 segments were evaluated. The DHP group (24 patients, 374 segments) showed more segments classified as score 1 than the retrospective spiral acquisition group (71.3% vs 37.4%). Image quality evaluation agreement was high between observers (κ = 0.8). There was significantly lower radiation exposure for the DHP group (3.65 [1.29] vs 23.57 [10.32] mSv). In this original direct comparison, a DHP spiral protocol for coronary CT angiography acquisition in patients with atrial fibrillation resulted in lower radiation exposure and superior image quality compared with conventional spiral retrospective acquisition.

  10. Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage

    PubMed Central

    Li, Xueming; Zheng, Shawn; Agard, David A.; Cheng, Yifan

    2015-01-01

    Newly developed direct electron detection cameras have a high image output frame rate that enables recording dose fractionated image stacks of frozen hydrated biological samples by electron cryomicroscopy (cryoEM). Such novel image acquisition schemes provide opportunities to analyze cryoEM data in ways that were previously impossible. The file size of a dose fractionated image stack is 20 ~ 60 times larger than that of a single image. Thus, efficient data acquisition and on-the-fly analysis of a large number of dose-fractionated image stacks become a serious challenge to any cryoEM data acquisition system. We have developed a computer-assisted system, named UCSFImage4, for semi-automated cryo-EM image acquisition that implements an asynchronous data acquisition scheme. This facilitates efficient acquisition, on-the-fly motion correction, and CTF analysis of dose fractionated image stacks with a total time of ~60 seconds/exposure. Here we report the technical details and configuration of this system. PMID:26370395

  11. QR-on-a-chip: a computer-recognizable micro-pattern engraved microfluidic device for high-throughput image acquisition.

    PubMed

    Yun, Kyungwon; Lee, Hyunjae; Bang, Hyunwoo; Jeon, Noo Li

    2016-02-21

    This study proposes a novel way to achieve high-throughput image acquisition based on a computer-recognizable micro-pattern implemented on a microfluidic device. We integrated the QR code, a two-dimensional barcode system, onto the microfluidic device to simplify imaging of multiple ROIs (regions of interest). A standard QR code pattern was modified to arrays of cylindrical structures of polydimethylsiloxane (PDMS). Utilizing the recognition of the micro-pattern, the proposed system enables: (1) device identification, which allows referencing additional information of the device, such as device imaging sequences or the ROIs and (2) composing a coordinate system for an arbitrarily located microfluidic device with respect to the stage. Based on these functionalities, the proposed method performs one-step high-throughput imaging for data acquisition in microfluidic devices without further manual exploration and locating of the desired ROIs. In our experience, the proposed method significantly reduced the time for the preparation of an acquisition. We expect that the method will innovatively improve the prototype device data acquisition and analysis.

  12. Exploitation of realistic computational anthropomorphic phantoms for the optimization of nuclear imaging acquisition and processing protocols.

    PubMed

    Loudos, George K; Papadimitroulas, Panagiotis G; Kagadis, George C

    2014-01-01

    Monte Carlo (MC) simulations play a crucial role in nuclear medical imaging since they can provide the ground truth for clinical acquisitions, by integrating and quantifing all physical parameters that affect image quality. The last decade a number of realistic computational anthropomorphic models have been developed to serve imaging, as well as other biomedical engineering applications. The combination of MC techniques with realistic computational phantoms can provide a powerful tool for pre and post processing in imaging, data analysis and dosimetry. This work aims to create a global database for simulated Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) exams and the methodology, as well as the first elements are presented. Simulations are performed using the well validated GATE opensource toolkit, standard anthropomorphic phantoms and activity distribution of various radiopharmaceuticals, derived from literature. The resulting images, projections and sinograms of each study are provided in the database and can be further exploited to evaluate processing and reconstruction algorithms. Patient studies using different characteristics are included in the database and different computational phantoms were tested for the same acquisitions. These include the XCAT, Zubal and the Virtual Family, which some of which are used for the first time in nuclear imaging. The created database will be freely available and our current work is towards its extension by simulating additional clinical pathologies.

  13. Experimental validation of A-mode ultrasound acquisition system for computer assisted orthopaedic surgery

    NASA Astrophysics Data System (ADS)

    De Lorenzo, Danilo; De Momi, Elena; Beretta, Elisa; Cerveri, Pietro; Perona, Franco; Ferrigno, Giancarlo

    2009-02-01

    Computer Assisted Orthopaedic Surgery (CAOS) systems improve the results and the standardization of surgical interventions. Anatomical landmarks and bone surface detection is straightforward to either register the surgical space with the pre-operative imaging space and to compute biomechanical parameters for prosthesis alignment. Surface points acquisition increases the intervention invasiveness and can be influenced by the soft tissue layer interposition (7-15mm localization errors). This study is aimed at evaluating the accuracy of a custom-made A-mode ultrasound (US) system for non invasive detection of anatomical landmarks and surfaces. A-mode solutions eliminate the necessity of US images segmentation, offers real-time signal processing and requires less invasive equipment. The system consists in a single transducer US probe optically tracked, a pulser/receiver and an FPGA-based board, which is responsible for logic control command generation and for real-time signal processing and three custom-made board (signal acquisition, blanking and synchronization). We propose a new calibration method of the US system. The experimental validation was then performed measuring the length of known-shape polymethylmethacrylate boxes filled with pure water and acquiring bone surface points on a bovine bone phantom covered with soft-tissue mimicking materials. Measurement errors were computed through MR and CT images acquisitions of the phantom. Points acquisition on bone surface with the US system demonstrated lower errors (1.2mm) than standard pointer acquisition (4.2mm).

  14. Respiratory motion guided four dimensional cone beam computed tomography: encompassing irregular breathing

    NASA Astrophysics Data System (ADS)

    O'Brien, Ricky T.; Cooper, Benjamin J.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.

    2014-02-01

    Four dimensional cone beam computed tomography (4DCBCT) images suffer from angular under sampling and bunching of projections due to a lack of feedback between the respiratory signal and the acquisition system. To address this problem, respiratory motion guided 4DCBCT (RMG-4DCBCT) regulates the gantry velocity and projection time interval, in response to the patient’s respiratory signal, with the aim of acquiring evenly spaced projections in a number of phase or displacement bins during the respiratory cycle. Our previous study of RMG-4DCBCT was limited to sinusoidal breathing traces. Here we expand on that work to provide a practical algorithm for the case of real patient breathing data. We give a complete description of RMG-4DCBCT including full details on how to implement the algorithms to determine when to move the gantry and when to acquire projections in response to the patient’s respiratory signal. We simulate a realistic working RMG-4DCBCT system using 112 breathing traces from 24 lung cancer patients. Acquisition used phase-based binning and parameter settings typically used on commercial 4DCBCT systems (4 min acquisition time, 1200 projections across 10 respiratory bins), with the acceleration and velocity constraints of current generation linear accelerators. We quantified streaking artefacts and image noise for conventional and RMG-4DCBCT methods by reconstructing projection data selected from an oversampled set of Catphan phantom projections. RMG-4DCBCT allows us to optimally trade-off image quality, acquisition time and image dose. For example, for the same image quality and acquisition time as conventional 4DCBCT approximately half the imaging dose is needed. Alternatively, for the same imaging dose, the image quality as measured by the signal to noise ratio, is improved by 63% on average. C-arm cone beam computed tomography systems, with an acceleration up to 200°/s2, a velocity up to 100°/s and the acquisition of 80 projections per second, allow the image acquisition time to be reduced to below 60 s. We have made considerable progress towards realizing a system to reduce projection clustering in conventional 4DCBCT imaging and hence reduce the imaging dose to the patient.

  15. Comparison of prostate contours between conventional stepping transverse imaging and Twister-based sagittal imaging in permanent interstitial prostate brachytherapy.

    PubMed

    Kawakami, Shogo; Ishiyama, Hiromichi; Satoh, Takefumi; Tsumura, Hideyasu; Sekiguchi, Akane; Takenaka, Kouji; Tabata, Ken-Ichi; Iwamura, Masatsugu; Hayakawa, Kazushige

    2017-08-01

    To compare prostate contours on conventional stepping transverse image acquisitions with those on twister-based sagittal image acquisitions. Twenty prostate cancer patients who were planned to have permanent interstitial prostate brachytherapy were prospectively accrued. A transrectal ultrasonography probe was inserted, with the patient in lithotomy position. Transverse images were obtained with stepping movement of the transverse transducer. In the same patient, sagittal images were also obtained through rotation of the sagittal transducer using the "Twister" mode. The differences of prostate size among the two types of image acquisitions were compared. The relationships among the difference of the two types of image acquisitions, dose-volume histogram (DVH) parameters on the post-implant computed tomography (CT) analysis, as well as other factors were analyzed. The sagittal image acquisitions showed a larger prostate size compared to the transverse image acquisitions especially in the anterior-posterior (AP) direction ( p < 0.05). Interestingly, relative size of prostate apex in AP direction in sagittal image acquisitions compared to that in transverse image acquisitions was correlated to DVH parameters such as D 90 ( R = 0.518, p = 0.019), and V 100 ( R = 0.598, p = 0.005). There were small but significant differences in the prostate contours between the transverse and the sagittal planning image acquisitions. Furthermore, our study suggested that the differences between the two types of image acquisitions might correlated to dosimetric results on CT analysis.

  16. Diagnostic Radiology--The Impact of New Technology.

    ERIC Educational Resources Information Center

    Harrison, R. M.

    1989-01-01

    Discussed are technological advances applying computer techniques for image acquisition and processing, including digital radiography, computed tomography, and nuclear magnetic resonance imaging. Several diagrams and pictures showing the use of each technique are presented. (YP)

  17. A USB 2.0 computer interface for the UCO/Lick CCD cameras

    NASA Astrophysics Data System (ADS)

    Wei, Mingzhi; Stover, Richard J.

    2004-09-01

    The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.

  18. Towards the use of computationally inserted lesions for mammographic CAD assessment

    NASA Astrophysics Data System (ADS)

    Ghanian, Zahra; Pezeshk, Aria; Petrick, Nicholas; Sahiner, Berkman

    2018-03-01

    Computer-aided detection (CADe) devices used for breast cancer detection on mammograms are typically first developed and assessed for a specific "original" acquisition system, e.g., a specific image detector. When CADe developers are ready to apply their CADe device to a new mammographic acquisition system, they typically assess the CADe device with images acquired using the new system. Collecting large repositories of clinical images containing verified cancer locations and acquired by the new image acquisition system is costly and time consuming. Our goal is to develop a methodology to reduce the clinical data burden in the assessment of a CADe device for use with a different image acquisition system. We are developing an image blending technique that allows users to seamlessly insert lesions imaged using an original acquisition system into normal images or regions acquired with a new system. In this study, we investigated the insertion of microcalcification clusters imaged using an original acquisition system into normal images acquired with that same system utilizing our previously-developed image blending technique. We first performed a reader study to assess whether experienced observers could distinguish between computationally inserted and native clusters. For this purpose, we applied our insertion technique to clinical cases taken from the University of South Florida Digital Database for Screening Mammography (DDSM) and the Breast Cancer Digital Repository (BCDR). Regions of interest containing microcalcification clusters from one breast of a patient were inserted into the contralateral breast of the same patient. The reader study included 55 native clusters and their 55 inserted counterparts. Analysis of the reader ratings using receiver operating characteristic (ROC) methodology indicated that inserted clusters cannot be reliably distinguished from native clusters (area under the ROC curve, AUC=0.58±0.04). Furthermore, CADe sensitivity was evaluated on mammograms with native and inserted microcalcification clusters using a commercial CADe system. For this purpose, we used full field digital mammograms (FFDMs) from 68 clinical cases, acquired at the University of Michigan Health System. The average sensitivities for native and inserted clusters were equal, 85.3% (58/68). These results demonstrate the feasibility of using the inserted microcalcification clusters for assessing mammographic CAD devices.

  19. Computer system for scanning tunneling microscope automation

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; García, A.; Pascual, P. J.; Presa, J.; Santisteban, A.

    1987-03-01

    A computerized system for the automation of a scanning tunneling microscope is presented. It is based on an IBM personal computer (PC) either an XT or an AT, which performs the control, data acquisition and storage operations, displays the STM "images" in real time, and provides image processing tools for the restoration and analysis of data. It supports different data acquisition and control cards and image display cards. The software has been designed in a modular way to allow the replacement of these cards and other equipment improvements as well as the inclusion of user routines for data analysis.

  20. Data-Acquisition Software for PSP/TSP Wind-Tunnel Cameras

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R.; Goad, William K.

    2005-01-01

    Wing-Viewer is a computer program for acquisition and reduction of image data acquired by any of five different scientificgrade commercial electronic cameras used at Langley Research center to observe wind-tunnel models coated with pressure or temperature-sensitive paints (PSP/TSP). Wing-Viewer provides full automation of camera operation and acquisition of image data, and has limited data-preprocessing capability for quick viewing of the results of PSP/TSP test images. Wing- Viewer satisfies a requirement for a standard interface between all the cameras and a single personal computer: Written by use of Microsoft Visual C++ and the Microsoft Foundation Class Library as a framework, Wing-Viewer has the ability to communicate with the C/C++ software libraries that run on the controller circuit cards of all five cameras.

  1. A self-synchronized high speed computational ghost imaging system: A leap towards dynamic capturing

    NASA Astrophysics Data System (ADS)

    Suo, Jinli; Bian, Liheng; Xiao, Yudong; Wang, Yongjin; Zhang, Lei; Dai, Qionghai

    2015-11-01

    High quality computational ghost imaging needs to acquire a large number of correlated measurements between the to-be-imaged scene and different reference patterns, thus ultra-high speed data acquisition is of crucial importance in real applications. To raise the acquisition efficiency, this paper reports a high speed computational ghost imaging system using a 20 kHz spatial light modulator together with a 2 MHz photodiode. Technically, the synchronization between such high frequency illumination and bucket detector needs nanosecond trigger precision, so the development of synchronization module is quite challenging. To handle this problem, we propose a simple and effective computational self-synchronization scheme by building a general mathematical model and introducing a high precision synchronization technique. The resulted efficiency is around 14 times faster than state-of-the-arts, and takes an important step towards ghost imaging of dynamic scenes. Besides, the proposed scheme is a general approach with high flexibility for readily incorporating other illuminators and detectors.

  2. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging.

    PubMed

    Erdenebat, Munkh-Uchral; Kim, Byeong-Jun; Piao, Yan-Ling; Park, Seo-Yeon; Kwon, Ki-Chul; Piao, Mei-Lan; Yoo, Kwan-Hee; Kim, Nam

    2017-10-01

    A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods. The proposed system is implemented successfully and the experimental results certify that the system is an effective and interesting method of displaying real three-dimensional content on a mobile device.

  3. Imaging and applied optics: introduction to the feature issue.

    PubMed

    Zalevsky, Zeev; Arnison, Matthew R; Javidi, Bahram; Testorf, Markus

    2018-03-01

    This special issue of Applied Optics contains selected papers from OSA's Imaging Congress with particular emphasis on work from mathematics in imaging, computational optical sensing and imaging, imaging systems and applications, and 3D image acquisition and display.

  4. GPU-accelerated regularized iterative reconstruction for few-view cone beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Goussard, Yves, E-mail: yves.goussard@polymtl.ca; Després, Philippe, E-mail: philippe.despres@phy.ulaval.ca

    2015-04-15

    Purpose: The present work proposes an iterative reconstruction technique designed for x-ray transmission computed tomography (CT). The main objective is to provide a model-based solution to the cone-beam CT reconstruction problem, yielding accurate low-dose images via few-views acquisitions in clinically acceptable time frames. Methods: The proposed technique combines a modified ordered subsets convex (OSC) algorithm and the total variation minimization (TV) regularization technique and is called OSC-TV. The number of subsets of each OSC iteration follows a reduction pattern in order to ensure the best performance of the regularization method. Considering the high computational cost of the algorithm, it ismore » implemented on a graphics processing unit, using parallelization to accelerate computations. Results: The reconstructions were performed on computer-simulated as well as human pelvic cone-beam CT projection data and image quality was assessed. In terms of convergence and image quality, OSC-TV performs well in reconstruction of low-dose cone-beam CT data obtained via a few-view acquisition protocol. It compares favorably to the few-view TV-regularized projections onto convex sets (POCS-TV) algorithm. It also appears to be a viable alternative to full-dataset filtered backprojection. Execution times are of 1–2 min and are compatible with the typical clinical workflow for nonreal-time applications. Conclusions: Considering the image quality and execution times, this method may be useful for reconstruction of low-dose clinical acquisitions. It may be of particular benefit to patients who undergo multiple acquisitions by reducing the overall imaging radiation dose and associated risks.« less

  5. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  6. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.

    PubMed

    Aldridge, Matthew D; Waddington, Wendy W; Dickson, John C; Prakash, Vineet; Ell, Peter J; Bomanji, Jamshed B

    2013-11-01

    A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (P<0.05). The RR algorithm improved image quality compared with local processing protocols and has been introduced into routine clinical use. SPECT acquisitions are now acquired at half of the time previously required. The method of binning the data can be applied to any other camera system to evaluate the reduction in acquisition time for similar processes. The potential for dose reduction is also inherent with this approach.

  7. Plenoptic Ophthalmoscopy: A Novel Imaging Technique.

    PubMed

    Adam, Murtaza K; Aenchbacher, Weston; Kurzweg, Timothy; Hsu, Jason

    2016-11-01

    This prospective retinal imaging case series was designed to establish feasibility of plenoptic ophthalmoscopy (PO), a novel mydriatic fundus imaging technique. A custom variable intensity LED array light source adapter was created for the Lytro Gen1 light-field camera (Lytro, Mountain View, CA). Initial PO testing was performed on a model eye and rabbit fundi. PO image acquisition was then performed on dilated human subjects with a variety of retinal pathology and images were subjected to computational enhancement. The Lytro Gen1 light-field camera with custom LED array captured fundus images of eyes with diabetic retinopathy, age-related macular degeneration, retinal detachment, and other diagnoses. Post-acquisition computational processing allowed for refocusing and perspective shifting of retinal PO images, resulting in improved image quality. The application of PO to image the ocular fundus is feasible. Additional studies are needed to determine its potential clinical utility. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:1038-1043.]. Copyright 2016, SLACK Incorporated.

  8. Single-Shot X-Ray Phase-Contrast Computed Tomography with Nonmicrofocal Laboratory Sources

    NASA Astrophysics Data System (ADS)

    Diemoz, P. C.; Hagen, C. K.; Endrizzi, M.; Minuti, M.; Bellazzini, R.; Urbani, L.; De Coppi, P.; Olivo, A.

    2017-04-01

    We present a method that enables performing x-ray phase-contrast imaging (XPCI) computed tomography with a laboratory setup using a single image per projection angle, eliminating the need to move optical elements during acquisition. Theoretical derivation of the method is presented, and its validity conditions are provided. The object is assumed to be quasihomogeneous, i.e., to feature a ratio between the refractive index and the linear attenuation coefficient that is approximately constant across the field of view. The method is experimentally demonstrated on a plastics phantom and on biological samples using a continuous rotation acquisition scheme achieving scan times of a few minutes. Moreover, we show that such acquisition times can be further reduced with the use of a high-efficiency photon-counting detector. Thanks to its ability to substantially simplify the image-acquisition procedure and greatly reduce collection times, we believe this method represents a very important step towards the application of XPCI to real-world problems.

  9. Adaptive hyperspectral imager: design, modeling, and control

    NASA Astrophysics Data System (ADS)

    McGregor, Scot; Lacroix, Simon; Monmayrant, Antoine

    2015-08-01

    An adaptive, hyperspectral imager is presented. We propose a system with easily adaptable spectral resolution, adjustable acquisition time, and high spatial resolution which is independent of spectral resolution. The system yields the possibility to define a variety of acquisition schemes, and in particular near snapshot acquisitions that may be used to measure the spectral content of given or automatically detected regions of interest. The proposed system is modelled and simulated, and tests on a first prototype validate the approach to achieve near snapshot spectral acquisitions without resorting to any computationally heavy post-processing, nor cumbersome calibration

  10. General-purpose interface bus for multiuser, multitasking computer system

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.; Stang, David B.

    1990-01-01

    The architecture of a multiuser, multitasking, virtual-memory computer system intended for the use by a medium-size research group is described. There are three central processing units (CPU) in the configuration, each with 16 MB memory, and two 474 MB hard disks attached. CPU 1 is designed for data analysis and contains an array processor for fast-Fourier transformations. In addition, CPU 1 shares display images viewed with the image processor. CPU 2 is designed for image analysis and display. CPU 3 is designed for data acquisition and contains 8 GPIB channels and an analog-to-digital conversion input/output interface with 16 channels. Up to 9 users can access the third CPU simultaneously for data acquisition. Focus is placed on the optimization of hardware interfaces and software, facilitating instrument control, data acquisition, and processing.

  11. Venous phase of computed tomography angiography increases spot sign detection, but intracerebral hemorrhage expansion is greater in spot signs detected in arterial phase.

    PubMed

    Rodriguez-Luna, David; Dowlatshahi, Dar; Aviv, Richard I; Molina, Carlos A; Silva, Yolanda; Dzialowski, Imanuel; Lum, Cheemun; Czlonkowska, Anna; Boulanger, Jean-Martin; Kase, Carlos S; Gubitz, Gord; Bhatia, Rohit; Padma, Vasantha; Roy, Jayanta; Stewart, Teri; Huynh, Thien J; Hill, Michael D; Demchuk, Andrew M

    2014-03-01

    Variability in computed tomography angiography (CTA) acquisitions may be one explanation for the modest accuracy of the spot sign for predicting intracerebral hemorrhage expansion detected in the multicenter Predicting Hematoma Growth and Outcome in Intracerebral Hemorrhage Using Contrast Bolus CT (PREDICT) study. This study aimed to determine the frequency of the spot sign in intracerebral hemorrhage and its relationship with hematoma expansion depending on the phase of image acquisition. PREDICT study was a prospective observational cohort study of patients with intracerebral hemorrhage presenting within 6 hours from onset. A post hoc analysis of the Hounsfield units of an artery and venous structure were measured on CTA source images of the entire PREDICT cohort in a core laboratory. Each CTA study was classified into arterial or venous phase and into 1 of 5 specific image acquisition phases. Significant hematoma expansion and total hematoma enlargement were recorded at 24 hours. Overall (n=371), 77.9% of CTA were acquired in arterial phase. The spot sign, present in 29.9% of patients, was more frequently seen in venous phase as compared with arterial phase (39% versus 27.3%; P=0.041) and the later the phase of image acquisition (P=0.095). Significant hematoma expansion (P=0.253) and higher total hematoma enlargement (P=0.019) were observed more frequently among spot sign-positive patients with earlier phases of image acquisition. Later image acquisition of CTA improves the frequency of spot sign detection. However, spot signs identified in earlier phases may be associated with greater absolute enlargement. A multiphase CTA including arterial and venous acquisitions could be optimal in patients with intracerebral hemorrhage.

  12. Comparison of digital intraoral scanners by single-image capture system and full-color movie system.

    PubMed

    Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi

    2017-01-01

    The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.

  13. XDesign: an open-source software package for designing X-ray imaging phantoms and experiments.

    PubMed

    Ching, Daniel J; Gürsoy, Dogˇa

    2017-03-01

    The development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.

  14. Contour Detector and Data Acquisition System for the Left Ventricular Outline

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C. (Inventor)

    1978-01-01

    A real-time contour detector and data acquisition system is described for an angiographic apparatus having a video scanner for converting an X-ray image of a structure characterized by a change in brightness level compared with its surrounding into video format and displaying the X-ray image in recurring video fields. The real-time contour detector and data acqusition system includes track and hold circuits; a reference level analog computer circuit; an analog compartor; a digital processor; a field memory; and a computer interface.

  15. XDesign: An open-source software package for designing X-ray imaging phantoms and experiments

    DOE PAGES

    Ching, Daniel J.; Gursoy, Dogˇa

    2017-02-21

    Here, the development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.

  16. Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.; Sertel, Kubilay

    2015-07-01

    We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.

  17. Comparison of Tissue Density in Hounsfield Units in Computed Tomography and Cone Beam Computed Tomography.

    PubMed

    Varshowsaz, Masoud; Goorang, Sepideh; Ehsani, Sara; Azizi, Zeynab; Rahimian, Sepideh

    2016-03-01

    Bone quality and quantity assessment is one of the most important steps in implant treatment planning. Different methods such as computed tomography (CT) and recently suggested cone beam computed tomography (CBCT) with lower radiation dose and less time and cost are used for bone density assessment. This in vitro study aimed to compare the tissue density values in Hounsfield units (HUs) in CBCT and CT scans of different tissue phantoms with two different thicknesses, two different image acquisition settings and in three locations in the phantoms. Four different tissue phantoms namely hard tissue, soft tissue, air and water were scanned by three different CBCT and a CT system in two thicknesses (full and half) and two image acquisition settings (high and low kVp and mA). The images were analyzed at three sites (middle, periphery and intermediate) using eFilm software. The difference in density values was analyzed by ANOVA and correction coefficient test (P<0.05). There was a significant difference between density values in CBCT and CT scans in most situations, and CBCT values were not similar to CT values in any of the phantoms in different thicknesses and acquisition parameters or the three different sites. The correction coefficients confirmed the results. CBCT is not reliable for tissue density assessment. The results were not affected by changes in thickness, acquisition parameters or locations.

  18. Machine Learning and Computer Vision System for Phenotype Data Acquisition and Analysis in Plants.

    PubMed

    Navarro, Pedro J; Pérez, Fernando; Weiss, Julia; Egea-Cortines, Marcos

    2016-05-05

    Phenomics is a technology-driven approach with promising future to obtain unbiased data of biological systems. Image acquisition is relatively simple. However data handling and analysis are not as developed compared to the sampling capacities. We present a system based on machine learning (ML) algorithms and computer vision intended to solve the automatic phenotype data analysis in plant material. We developed a growth-chamber able to accommodate species of various sizes. Night image acquisition requires near infrared lightning. For the ML process, we tested three different algorithms: k-nearest neighbour (kNN), Naive Bayes Classifier (NBC), and Support Vector Machine. Each ML algorithm was executed with different kernel functions and they were trained with raw data and two types of data normalisation. Different metrics were computed to determine the optimal configuration of the machine learning algorithms. We obtained a performance of 99.31% in kNN for RGB images and a 99.34% in SVM for NIR. Our results show that ML techniques can speed up phenomic data analysis. Furthermore, both RGB and NIR images can be segmented successfully but may require different ML algorithms for segmentation.

  19. Computed Tomography Image Origin Identification Based on Original Sensor Pattern Noise and 3-D Image Reconstruction Algorithm Footprints.

    PubMed

    Duan, Yuping; Bouslimi, Dalel; Yang, Guanyu; Shu, Huazhong; Coatrieux, Gouenou

    2017-07-01

    In this paper, we focus on the "blind" identification of the computed tomography (CT) scanner that has produced a CT image. To do so, we propose a set of noise features derived from the image chain acquisition and which can be used as CT-scanner footprint. Basically, we propose two approaches. The first one aims at identifying a CT scanner based on an original sensor pattern noise (OSPN) that is intrinsic to the X-ray detectors. The second one identifies an acquisition system based on the way this noise is modified by its three-dimensional (3-D) image reconstruction algorithm. As these reconstruction algorithms are manufacturer dependent and kept secret, our features are used as input to train a support vector machine (SVM) based classifier to discriminate acquisition systems. Experiments conducted on images issued from 15 different CT-scanner models of 4 distinct manufacturers demonstrate that our system identifies the origin of one CT image with a detection rate of at least 94% and that it achieves better performance than sensor pattern noise (SPN) based strategy proposed for general public camera devices.

  20. Preliminary study on X-ray fluorescence computed tomography imaging of gold nanoparticles: Acceleration of data acquisition by multiple pinholes scheme

    NASA Astrophysics Data System (ADS)

    Sasaya, Tenta; Sunaguchi, Naoki; Seo, Seung-Jum; Hyodo, Kazuyuki; Zeniya, Tsutomu; Kim, Jong-Ki; Yuasa, Tetsuya

    2018-04-01

    Gold nanoparticles (GNPs) have recently attracted attention in nanomedicine as novel contrast agents for cancer imaging. A decisive tomographic imaging technique has not yet been established to depict the 3-D distribution of GNPs in an object. An imaging technique known as pinhole-based X-ray fluorescence computed tomography (XFCT) is a promising method that can be used to reconstruct the distribution of GNPs from the X-ray fluorescence emitted by GNPs. We address the acceleration of data acquisition in pinhole-based XFCT for preclinical use using a multiple pinhole scheme. In this scheme, multiple projections are simultaneously acquired through a multi-pinhole collimator with a 2-D detector and full-field volumetric beam to enhance the signal-to-noise ratio of the projections; this enables fast data acquisition. To demonstrate the efficacy of this method, we performed an imaging experiment using a physical phantom with an actual multi-pinhole XFCT system that was constructed using the beamline AR-NE7A at KEK. The preliminary study showed that the multi-pinhole XFCT achieved a data acquisition time of 20 min at a theoretical detection limit of approximately 0.1 Au mg/ml and at a spatial resolution of 0.4 mm.

  1. Dual-energy computed tomography of the head: a phantom study assessing axial dose distribution, eye lens dose, and image noise level

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro

    2016-03-01

    The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.

  2. Image acquisition unit for the Mayo/IBM PACS project

    NASA Astrophysics Data System (ADS)

    Reardon, Frank J.; Salutz, James R.

    1991-07-01

    The Mayo Clinic and IBM Rochester, Minnesota, have jointly developed a picture archiving, distribution and viewing system for use with Mayo's CT and MRI imaging modalities. Images are retrieved from the modalities and sent over the Mayo city-wide token ring network to optical storage subsystems for archiving, and to server subsystems for viewing on image review stations. Images may also be retrieved from archive and transmitted back to the modalities. The subsystems that interface to the modalities and communicate to the other components of the system are termed Image Acquisition Units (LAUs). The IAUs are IBM Personal System/2 (PS/2) computers with specially developed software. They operate independently in a network of cooperative subsystems and communicate with the modalities, archive subsystems, image review server subsystems, and a central subsystem that maintains information about the content and location of images. This paper provides a detailed description of the function and design of the Image Acquisition Units.

  3. Motion artifact detection in four-dimensional computed tomography images

    NASA Astrophysics Data System (ADS)

    Bouilhol, G.; Ayadi, M.; Pinho, R.; Rit, S.; Sarrut, D.

    2014-03-01

    Motion artifacts appear in four-dimensional computed tomography (4DCT) images because of suboptimal acquisition parameters or patient breathing irregularities. Frequency of motion artifacts is high and they may introduce errors in radiation therapy treatment planning. Motion artifact detection can be useful for image quality assessment and 4D reconstruction improvement but manual detection in many images is a tedious process. We propose a novel method to evaluate the quality of 4DCT images by automatic detection of motion artifacts. The method was used to evaluate the impact of the optimization of acquisition parameters on image quality at our institute. 4DCT images of 114 lung cancer patients were analyzed. Acquisitions were performed with a rotation period of 0.5 seconds and a pitch of 0.1 (74 patients) or 0.081 (40 patients). A sensitivity of 0.70 and a specificity of 0.97 were observed. End-exhale phases were less prone to motion artifacts. In phases where motion speed is high, the number of detected artifacts was systematically reduced with a pitch of 0.081 instead of 0.1 and the mean reduction was 0.79. The increase of the number of patients with no artifact detected was statistically significant for the 10%, 70% and 80% respiratory phases, indicating a substantial image quality improvement.

  4. Compressed sensing for ultrasound computed tomography.

    PubMed

    van Sloun, Ruud; Pandharipande, Ashish; Mischi, Massimo; Demi, Libertario

    2015-06-01

    Ultrasound computed tomography (UCT) allows the reconstruction of quantitative tissue characteristics, such as speed of sound, mass density, and attenuation. Lowering its acquisition time would be beneficial; however, this is fundamentally limited by the physical time of flight and the number of transmission events. In this letter, we propose a compressed sensing solution for UCT. The adopted measurement scheme is based on compressed acquisitions, with concurrent randomised transmissions in a circular array configuration. Reconstruction of the image is then obtained by combining the born iterative method and total variation minimization, thereby exploiting variation sparsity in the image domain. Evaluation using simulated UCT scattering measurements shows that the proposed transmission scheme performs better than uniform undersampling, and is able to reduce acquisition time by almost one order of magnitude, while maintaining high spatial resolution.

  5. Task-based data-acquisition optimization for sparse image reconstruction systems

    NASA Astrophysics Data System (ADS)

    Chen, Yujia; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.

    2017-03-01

    Conventional wisdom dictates that imaging hardware should be optimized by use of an ideal observer (IO) that exploits full statistical knowledge of the class of objects to be imaged, without consideration of the reconstruction method to be employed. However, accurate and tractable models of the complete object statistics are often difficult to determine in practice. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and (sparse) image reconstruction are innately coupled technologies. We have previously proposed a sparsity-driven ideal observer (SDIO) that can be employed to optimize hardware by use of a stochastic object model that describes object sparsity. The SDIO and sparse reconstruction method can therefore be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute SDIO performance, the posterior distribution is estimated by use of computational tools developed recently for variational Bayesian inference. Subsequently, the SDIO test statistic can be computed semi-analytically. The advantages of employing the SDIO instead of a Hotelling observer are systematically demonstrated in case studies in which magnetic resonance imaging (MRI) data acquisition schemes are optimized for signal detection tasks.

  6. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know.

    PubMed

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted.

  7. Speckle interferometry. Data acquisition and control for the SPID instrument.

    NASA Astrophysics Data System (ADS)

    Altarac, S.; Tallon, M.; Thiebaut, E.; Foy, R.

    1998-08-01

    SPID (SPeckle Imaging by Deconvolution) is a new speckle camera currently under construction at CRAL-Observatoire de Lyon. Its high spectral resolution and high image restoration capabilities open new astrophysical programs. The instrument SPID is composed of four main optical modules which are fully automated and computer controlled by a software written in Tcl/Tk/Tix and C. This software provides an intelligent assistance to the user by choosing observational parameters as a function of atmospheric parameters, computed in real time, and the desired restored image quality. Data acquisition is made by a photon-counting detector (CP40). A VME-based computer under OS9 controls the detector and stocks the data. The intelligent system runs under Linux on a PC. A slave PC under DOS commands the motors. These 3 computers communicate through an Ethernet network. SPID can be considered as a precursor for VLT's (Very Large Telescope, four 8-meter telescopes currently built in Chile by European Southern Observatory) very high spatial resolution camera.

  8. ScanImage: flexible software for operating laser scanning microscopes.

    PubMed

    Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel

    2003-05-17

    Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design.

  9. [Computed tomography of the lungs. A step into the fourth dimension].

    PubMed

    Dinkel, J; Hintze, C; Rochet, N; Thieke, C; Biederer, J

    2009-08-01

    To discuss the techniques for four dimensional computed tomography of the lungs in tumour patients. The image acquisition in CT can be done using respiratory gating in two different ways: the helical or cine mode. In the helical mode, the couch moves continuously during image and respiratory signal acquisition. In the cine mode, the couch remains in the same position during at least one complete respiratory cycle and then moves to next position. The 4D images are either acquired prospectively or reconstructed retrospectively with dedicated algorithms in a freely selectable respiratory phase. The time information required for motion depiction in 4D imaging can be obtained with tolerable motion artefacts. Partial projection and stepladder-artifacts are occurring predominantly close to the diaphragm, where the displacement is most prominent. Due to the long exposure times, radiation exposure is significantly higher compared to a simple breathhold helical acquisition. Therefore, the use of 4D-CT is restricted to only specific indications (i.e. radiotherapy planning). 4D-CT of the lung allows evaluating the respiration-correlated displacement of lungs and tumours in space for radiotherapy planning.

  10. Enhancement of multimodality texture-based prediction models via optimization of PET and MR image acquisition protocols: a proof of concept

    NASA Astrophysics Data System (ADS)

    Vallières, Martin; Laberge, Sébastien; Diamant, André; El Naqa, Issam

    2017-11-01

    Texture-based radiomic models constructed from medical images have the potential to support cancer treatment management via personalized assessment of tumour aggressiveness. While the identification of stable texture features under varying imaging settings is crucial for the translation of radiomics analysis into routine clinical practice, we hypothesize in this work that a complementary optimization of image acquisition parameters prior to texture feature extraction could enhance the predictive performance of texture-based radiomic models. As a proof of concept, we evaluated the possibility of enhancing a model constructed for the early prediction of lung metastases in soft-tissue sarcomas by optimizing PET and MR image acquisition protocols via computerized simulations of image acquisitions with varying parameters. Simulated PET images from 30 STS patients were acquired by varying the extent of axial data combined per slice (‘span’). Simulated T 1-weighted and T 2-weighted MR images were acquired by varying the repetition time and echo time in a spin-echo pulse sequence, respectively. We analyzed the impact of the variations of PET and MR image acquisition parameters on individual textures, and we investigated how these variations could enhance the global response and the predictive properties of a texture-based model. Our results suggest that it is feasible to identify an optimal set of image acquisition parameters to improve prediction performance. The model constructed with textures extracted from simulated images acquired with a standard clinical set of acquisition parameters reached an average AUC of 0.84 +/- 0.01 in bootstrap testing experiments. In comparison, the model performance significantly increased using an optimal set of image acquisition parameters (p = 0.04 ), with an average AUC of 0.89 +/- 0.01 . Ultimately, specific acquisition protocols optimized to generate superior radiomics measurements for a given clinical problem could be developed and standardized via dedicated computer simulations and thereafter validated using clinical scanners.

  11. An integrated compact airborne multispectral imaging system using embedded computer

    NASA Astrophysics Data System (ADS)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  12. Investigation of undersampling and reconstruction algorithm dependence on respiratory correlated 4D-MRI for online MR-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Mickevicius, Nikolai J.; Paulson, Eric S.

    2017-04-01

    The purpose of this work is to investigate the effects of undersampling and reconstruction algorithm on the total processing time and image quality of respiratory phase-resolved 4D MRI data. Specifically, the goal is to obtain quality 4D-MRI data with a combined acquisition and reconstruction time of five minutes or less, which we reasoned would be satisfactory for pre-treatment 4D-MRI in online MRI-gRT. A 3D stack-of-stars, self-navigated, 4D-MRI acquisition was used to scan three healthy volunteers at three image resolutions and two scan durations. The NUFFT, CG-SENSE, SPIRiT, and XD-GRASP reconstruction algorithms were used to reconstruct each dataset on a high performance reconstruction computer. The overall image quality, reconstruction time, artifact prevalence, and motion estimates were compared. The CG-SENSE and XD-GRASP reconstructions provided superior image quality over the other algorithms. The combination of a 3D SoS sequence and parallelized reconstruction algorithms using computing hardware more advanced than those typically seen on product MRI scanners, can result in acquisition and reconstruction of high quality respiratory correlated 4D-MRI images in less than five minutes.

  13. A Real-Time Image Acquisition And Processing System For A RISC-Based Microcomputer

    NASA Astrophysics Data System (ADS)

    Luckman, Adrian J.; Allinson, Nigel M.

    1989-03-01

    A low cost image acquisition and processing system has been developed for the Acorn Archimedes microcomputer. Using a Reduced Instruction Set Computer (RISC) architecture, the ARM (Acorn Risc Machine) processor provides instruction speeds suitable for image processing applications. The associated improvement in data transfer rate has allowed real-time video image acquisition without the need for frame-store memory external to the microcomputer. The system is comprised of real-time video digitising hardware which interfaces directly to the Archimedes memory, and software to provide an integrated image acquisition and processing environment. The hardware can digitise a video signal at up to 640 samples per video line with programmable parameters such as sampling rate and gain. Software support includes a work environment for image capture and processing with pixel, neighbourhood and global operators. A friendly user interface is provided with the help of the Archimedes Operating System WIMP (Windows, Icons, Mouse and Pointer) Manager. Windows provide a convenient way of handling images on the screen and program control is directed mostly by pop-up menus.

  14. [A skin cell segregating control system based on PC].

    PubMed

    Liu, Wen-zhong; Zhou, Ming; Zhang, Hong-bing

    2005-11-01

    A skin cell segregating control system based on PC (personal computer) is presented in this paper. Its front controller is a single-chip microcomputer which enables the manipulation for 6 patients simultaneously, and thus provides a great convenience for clinical treatments for vitiligo. With the use of serial port communication technology, it's possible to monitor and control the front controller in a PC terminal. And the application of computer image acquisition technology realizes the synchronous acquisition of pathologic shin cell images pre/after the operation and a case history. Clinical tests prove its conformity with national standards and the pre-set technological requirements.

  15. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  16. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    NASA Technical Reports Server (NTRS)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  17. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know

    PubMed Central

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701

  18. Measurement of eye lens dose for Varian On-Board Imaging with different cone-beam computed tomography acquisition techniques

    PubMed Central

    Deshpande, Sudesh; Dhote, Deepak; Thakur, Kalpna; Pawar, Amol; Kumar, Rajesh; Kumar, Munish; Kulkarni, M. S.; Sharma, S. D.; Kannan, V.

    2016-01-01

    The objective of this work was to measure patient eye lens dose for different cone-beam computed tomography (CBCT) acquisition protocols of Varian's On-Board Imaging (OBI) system using optically stimulated luminescence dosimeter (OSLD) and to study the variation in eye lens dose with patient geometry and distance of isocenter to the eye lens. During the experimental measurements, OSLD was placed on the patient between the eyebrows of both eyes in line of nose during CBCT image acquisition to measure eye lens doses. The eye lens dose measurements were carried out for three different cone-beam acquisition protocols (standard dose head, low-dose head [LDH], and high-quality head [HQH]) of Varian OBI. Measured doses were correlated with patient geometry and distance between isocenter and eye lens. Measured eye lens doses for standard head and HQH protocols were in the range of 1.8–3.2 mGy and 4.5–9.9 mGy, respectively. However, the measured eye lens dose for the LDH protocol was in the range of 0.3–0.7 mGy. The measured data indicate that eye lens dose to patient depends on the selected imaging protocol. It was also observed that eye lens dose does not depend on patient geometry but strongly depends on distance between eye lens and treatment field isocenter. However, undoubted advantages of imaging system should not be counterbalanced by inappropriate selection of imaging protocol, especially for very intense imaging protocol. PMID:27651564

  19. Retina-like sensor image coordinates transformation and display

    NASA Astrophysics Data System (ADS)

    Cao, Fengmei; Cao, Nan; Bai, Tingzhu; Song, Shengyu

    2015-03-01

    For a new kind of retina-like senor camera, the image acquisition, coordinates transformation and interpolation need to be realized. Both of the coordinates transformation and interpolation are computed in polar coordinate due to the sensor's particular pixels distribution. The image interpolation is based on sub-pixel interpolation and its relative weights are got in polar coordinates. The hardware platform is composed of retina-like senor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes the real-time image acquisition, coordinate transformation and interpolation.

  20. Intraoperative brain tumor resection cavity characterization with conoscopic holography

    NASA Astrophysics Data System (ADS)

    Simpson, Amber L.; Burgner, Jessica; Chen, Ishita; Pheiffer, Thomas S.; Sun, Kay; Thompson, Reid C.; Webster, Robert J., III; Miga, Michael I.

    2012-02-01

    Brain shift compromises the accuracy of neurosurgical image-guided interventions if not corrected by either intraoperative imaging or computational modeling. The latter requires intraoperative sparse measurements for constraining and driving model-based compensation strategies. Conoscopic holography, an interferometric technique that measures the distance of a laser light illuminated surface point from a fixed laser source, was recently proposed for non-contact surface data acquisition in image-guided surgery and is used here for validation of our modeling strategies. In this contribution, we use this inexpensive, hand-held conoscopic holography device for intraoperative validation of our computational modeling approach to correcting for brain shift. Laser range scan, instrument swabbing, and conoscopic holography data sets were collected from two patients undergoing brain tumor resection therapy at Vanderbilt University Medical Center. The results of our study indicate that conoscopic holography is a promising method for surface acquisition since it requires no contact with delicate tissues and can characterize the extents of structures within confined spaces. We demonstrate that for two clinical cases, the acquired conoprobe points align with our model-updated images better than the uncorrected images lending further evidence that computational modeling approaches improve the accuracy of image-guided surgical interventions in the presence of soft tissue deformations.

  1. Imaging system design and image interpolation based on CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  2. Optical image acquisition system for colony analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Jin, Wenbiao

    2006-02-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems since they belong to a new technology product. One of the main problems is image acquisition. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. A digital camera in the top of the box connected to a PC computer with a USB cable, all the camera functions are controlled by the computer.

  3. Embedded, real-time UAV control for improved, image-based 3D scene reconstruction

    Treesearch

    Jean Liénard; Andre Vogs; Demetrios Gatziolis; Nikolay Strigul

    2016-01-01

    Unmanned Aerial Vehicles (UAVs) are already broadly employed for 3D modeling of large objects such as trees and monuments via photogrammetry. The usual workflow includes two distinct steps: image acquisition with UAV and computationally demanding postflight image processing. Insufficient feature overlaps across images is a common shortcoming in post-flight image...

  4. Design and Configuration of a Medical Imaging Systems Computer Laboratory Syllabus

    ERIC Educational Resources Information Center

    Selver, M. Alper

    2016-01-01

    Medical imaging systems (MIS) constitute an important emergent subdiscipline of engineering studies. In the context of electrical and electronics engineering (EEE) education, MIS courses cover physics, instrumentation, data acquisition, image formation, modeling, and quality assessment of various modalities. Many well-structured MIS courses are…

  5. Kinetic Analysis of Benign and Malignant Breast Lesions With Ultrafast Dynamic Contrast-Enhanced MRI: Comparison With Standard Kinetic Assessment.

    PubMed

    Abe, Hiroyuki; Mori, Naoko; Tsuchiya, Keiko; Schacht, David V; Pineda, Federico D; Jiang, Yulei; Karczmar, Gregory S

    2016-11-01

    The purposes of this study were to evaluate diagnostic parameters measured with ultrafast MRI acquisition and with standard acquisition and to compare diagnostic utility for differentiating benign from malignant lesions. Ultrafast acquisition is a high-temporal-resolution (7 seconds) imaging technique for obtaining 3D whole-breast images. The dynamic contrast-enhanced 3-T MRI protocol consists of an unenhanced standard and an ultrafast acquisition that includes eight contrast-enhanced ultrafast images and four standard images. Retrospective assessment was performed for 60 patients with 33 malignant and 29 benign lesions. A computer-aided detection system was used to obtain initial enhancement rate and signal enhancement ratio (SER) by means of identification of a voxel showing the highest signal intensity in the first phase of standard imaging. From the same voxel, the enhancement rate at each time point of the ultrafast acquisition and the AUC of the kinetic curve from zero to each time point of ultrafast imaging were obtained. There was a statistically significant difference between benign and malignant lesions in enhancement rate and kinetic AUC for ultrafast imaging and also in initial enhancement rate and SER for standard imaging. ROC analysis showed no significant differences between enhancement rate in ultrafast imaging and SER or initial enhancement rate in standard imaging. Ultrafast imaging is useful for discriminating benign from malignant lesions. The differential utility of ultrafast imaging is comparable to that of standard kinetic assessment in a shorter study time.

  6. MONSOON Image Acquisition System | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments flexible solution for the acquisition of pixel data from scientific CDD and IR detectors. The architecture requirements for both IR and CCD large focal planes that NOAO developed for instrumentation efforts in the

  7. Computed Tomography of the Musculoskeletal System.

    PubMed

    Ballegeer, Elizabeth A

    2016-05-01

    Computed tomography (CT) has specific uses in veterinary species' appendicular musculoskeletal system. Parameters for acquisition of images, interpretation limitations, as well as published information regarding its use in small animals is reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  9. Partition-based acquisition model for speed up navigated beta-probe surface imaging

    NASA Astrophysics Data System (ADS)

    Monge, Frédéric; Shakir, Dzhoshkun I.; Navab, Nassir; Jannin, Pierre

    2016-03-01

    Although gross total resection in low-grade glioma surgery leads to a better patient outcome, the in-vivo control of resection borders remains challenging. For this purpose, navigated beta-probe systems combined with 18F-based radiotracer, relying on activity distribution surface estimation, have been proposed to generate reconstructed images. The clinical relevancy has been outlined by early studies where intraoperative functional information is leveraged although inducing low spatial resolution in reconstruction. To improve reconstruction quality, multiple acquisition models have been proposed. They involve the definition of attenuation matrix for designing radiation detection physics. Yet, they require high computational power for efficient intraoperative use. To address the problem, we propose a new acquisition model called Partition Model (PM) considering an existing model where coefficients of the matrix are taken from a look-up table (LUT). Our model is based upon the division of the LUT into averaged homogeneous values for assigning attenuation coefficients. We validated our model using in vitro datasets, where tumors and peri-tumoral tissues have been simulated. We compared our acquisition model with the o_-the-shelf LUT and the raw method. Acquisition models outperformed the raw method in term of tumor contrast (7.97:1 mean T:B) but with a difficulty of real-time use. Both acquisition models reached the same detection performance with references (0.8 mean AUC and 0.77 mean NCC), where PM slightly improves the mean tumor contrast up to 10.1:1 vs 9.9:1 with the LUT model and more importantly, it reduces the mean computation time by 7.5%. Our model gives a faster solution for an intraoperative use of navigated beta-probe surface imaging system, with improved image quality.

  10. Transitioning to digital radiography.

    PubMed

    Drost, Wm Tod

    2011-04-01

    To describe the different forms of digital radiography (DR), image file formats, supporting equipment and services required for DR, storage of digital images, and teleradiology. Purchasing a DR system is a major investment for a veterinary practice. Types of DR systems include computed radiography, charge coupled devices, and direct or indirect DR. Comparison of workflow for analog and DR is presented. On the surface, switching to DR involves the purchase of DR acquisition hardware. The X-ray machine, table and grids used in analog radiography are the same for DR. Realistically, a considerable infrastructure supports the image acquisition hardware. This infrastructure includes monitors, computer workstations, a robust computer network and internet connection, a plan for storage and back up of images, and service contracts. Advantages of DR compared with analog radiography include improved image quality (when used properly), ease of use (more forgiving to the errors of radiographic technique), speed of making a complete study (important for critically ill patients), fewer repeat radiographs, less time looking for imaging studies, less physical storage space, and the ability to easily send images for consultation. With an understanding of the infrastructure requirements, capabilities and limitations of DR, an informed veterinary practice should be better able to make a sound decision about transitioning to DR. © Veterinary Emergency and Critical Care Society 2011.

  11. Acoustic window planning for ultrasound acquisition.

    PubMed

    Göbl, Rüdiger; Virga, Salvatore; Rackerseder, Julia; Frisch, Benjamin; Navab, Nassir; Hennersperger, Christoph

    2017-06-01

    Autonomous robotic ultrasound has recently gained considerable interest, especially for collaborative applications. Existing methods for acquisition trajectory planning are solely based on geometrical considerations, such as the pose of the transducer with respect to the patient surface. This work aims at establishing acoustic window planning to enable autonomous ultrasound acquisitions of anatomies with restricted acoustic windows, such as the liver or the heart. We propose a fully automatic approach for the planning of acquisition trajectories, which only requires information about the target region as well as existing tomographic imaging data, such as X-ray computed tomography. The framework integrates both geometrical and physics-based constraints to estimate the best ultrasound acquisition trajectories with respect to the available acoustic windows. We evaluate the developed method using virtual planning scenarios based on real patient data as well as for real robotic ultrasound acquisitions on a tissue-mimicking phantom. The proposed method yields superior image quality in comparison with a naive planning approach, while maintaining the necessary coverage of the target. We demonstrate that by taking image formation properties into account acquisition planning methods can outperform naive plannings. Furthermore, we show the need for such planning techniques, since naive approaches are not sufficient as they do not take the expected image quality into account.

  12. An automatic detection method for the boiler pipe header based on real-time image acquisition

    NASA Astrophysics Data System (ADS)

    Long, Yi; Liu, YunLong; Qin, Yongliang; Yang, XiangWei; Li, DengKe; Shen, DingJie

    2017-06-01

    Generally, an endoscope is used to test the inner part of the thermal power plants boiler pipe header. However, since the endoscope hose manual operation, the length and angle of the inserted probe cannot be controlled. Additionally, it has a big blind spot observation subject to the length of the endoscope wire. To solve these problems, an automatic detection method for the boiler pipe header based on real-time image acquisition and simulation comparison techniques was proposed. The magnetic crawler with permanent magnet wheel could carry the real-time image acquisition device to complete the crawling work and collect the real-time scene image. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3-D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.

  13. Non-invasive coronary angiography with multislice computed tomography. Technology, methods, preliminary experience and prospects.

    PubMed

    Traversi, Egidio; Bertoli, Giuseppe; Barazzoni, Giancarlo; Baldi, Maurizia; Tramarin, Roberto

    2004-02-01

    The recent technical developments in multislice computed tomography (MSCT), with ECG retro-gated image reconstruction, have elicited great interest in the possibility of accurate non-invasive imaging of the coronary arteries. The latest generation of MSCT systems with 8-16 rows of detectors permits acquisition of the whole cardiac volume during a single 15-20 s breath-hold with a submillimetric definition of the images and an outstanding signal-to-noise ratio. Thus the race which, between MSCT, electron beam computed tomography and cardiac magnetic resonance imaging, can best provide routine and reliable imaging of the coronary arteries in clinical practice has recommenced. Currently available MSCT systems offer different options for both cardiac image acquisition and reconstruction, including multiplanar and curved multiplanar reconstruction, three-dimensional volume rendering, maximum intensity projection, and virtual angioscopy. In our preliminary experience including 176 patients suffering from known or suspected coronary artery disease, MSCT was feasible in 161 (91.5%) and showed a sensitivity of 80.4% and a specificity of 80.3%, with respect to standard coronary angiography, in detecting critical stenosis in coronary arteries and artery or venous bypass grafts. These results correspond to a positive predictive value of 58.6% and a negative predictive value of 92.2%. The true role that MSCT is likely to play in the future in non-invasive coronary imaging is still to be defined. Nevertheless, the huge amount of data obtainable by MSCT along with the rapid technological advances, shorter acquisition times and reconstruction algorithm developments will make the technique stronger, and possible applications are expected not only for non-invasive coronary angiography, but also for cardiac function and myocardial perfusion evaluation, as an all-in-one examination.

  14. Development of an ultralow-light-level luminescence image analysis system for dynamic measurements of transcriptional activity in living and migrating cells.

    PubMed

    Maire, E; Lelièvre, E; Brau, D; Lyons, A; Woodward, M; Fafeur, V; Vandenbunder, B

    2000-04-10

    We have developed an approach to study in single living epithelial cells both cell migration and transcriptional activation, which was evidenced by the detection of luminescence emission from cells transfected with luciferase reporter vectors. The image acquisition chain consists of an epifluorescence inverted microscope, connected to an ultralow-light-level photon-counting camera and an image-acquisition card associated to specialized image analysis software running on a PC computer. Using a simple method based on a thin calibrated light source, the image acquisition chain has been optimized following comparisons of the performance of microscopy objectives and photon-counting cameras designed to observe luminescence. This setup allows us to measure by image analysis the luminescent light emitted by individual cells stably expressing a luciferase reporter vector. The sensitivity of the camera was adjusted to a high value, which required the use of a segmentation algorithm to eliminate the background noise. Following mathematical morphology treatments, kinetic changes of luminescent sources were analyzed and then correlated with the distance and speed of migration. Our results highlight the usefulness of our image acquisition chain and mathematical morphology software to quantify the kinetics of luminescence changes in migrating cells.

  15. Evaluation of the influence of acquisition parameters of microtomography in image quality applied by carbonate rocks

    NASA Astrophysics Data System (ADS)

    Santos, T. M. P.; Machado, A. S.; Araújo, O. M. O.; Ferreira, C. G.; Lopes, R. T.

    2018-03-01

    X-ray computed microtomography is a powerful nondestructive technique for 2D and 3D structure analysis. However, parameters used in acquisition promote directs influence in qualitative and quantitative results in characterization of samples, due image resolution. The aim of this study is value the influence of theses parameters in results through of tests changing these parameters in different situations and system characterization. Results demonstrate those pixel size and detector matrixes are the main parameters that influence in resolution and image quality. Microtomography was considered an excellent technique for characterization using the best image resolution possible.

  16. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée; McKay, Erin

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of amore » given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. Conclusions: The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.« less

  17. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry.

    PubMed

    Garcia, Marie-Paule; Villoing, Daphnée; McKay, Erin; Ferrer, Ludovic; Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila; Bardiès, Manuel

    2015-12-01

    The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit gate offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on gate to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user's imaging requirements and generates automatically command files used as input for gate. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant gate input files are generated for the virtual patient model and associated pharmacokinetics. Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body "step and shoot" acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.

  18. Technical aspects of CT imaging of the spine.

    PubMed

    Tins, Bernhard

    2010-11-01

    This review article discusses technical aspects of computed tomography (CT) imaging of the spine. Patient positioning, and its influence on image quality and movement artefact, is discussed. Particular emphasis is placed on the choice of scan parameters and their relation to image quality and radiation burden to the patient. Strategies to reduce radiation burden and artefact from metal implants are outlined. Data acquisition, processing, image display and steps to reduce artefact are reviewed. CT imaging of the spine is put into context with other imaging modalities for specific clinical indications or problems. This review aims to review underlying principles for image acquisition and to provide a rough guide for clinical problems without being prescriptive. Individual practice will always vary and reflect differences in local experience, technical provisions and clinical requirements.

  19. Time-Resolved C-Arm Computed Tomographic Angiography Derived From Computed Tomographic Perfusion Acquisition: New Capability for One-Stop-Shop Acute Ischemic Stroke Treatment in the Angiosuite.

    PubMed

    Yang, Pengfei; Niu, Kai; Wu, Yijing; Struffert, Tobias; Dorfler, Arnd; Schafer, Sebastian; Royalty, Kevin; Strother, Charles; Chen, Guang-Hong

    2015-12-01

    Multimodal imaging using cone beam C-arm computed tomography (CT) may shorten the delay from ictus to revascularization for acute ischemic stroke patients with a large vessel occlusion. Largely because of limited temporal resolution, reconstruction of time-resolved CT angiography (CTA) from these systems has not yielded satisfactory results. We evaluated the image quality and diagnostic value of time-resolved C-arm CTA reconstructed using novel image processing algorithms. Studies were done under an Institutional Review Board approved protocol. Postprocessing of data from 21 C-arm CT dynamic perfusion acquisitions from 17 patients with acute ischemic stroke were done to derive time-resolved C-arm CTA images. Two observers independently evaluated image quality and diagnostic content for each case. ICC and receiver-operating characteristic analysis were performed to evaluate interobserver agreement and diagnostic value of this novel imaging modality. Time-resolved C-arm CTA images were successfully generated from 20 data sets (95.2%, 20/21). Two observers agreed well that the image quality for large cerebral arteries was good but was more limited for small cerebral arteries (distal to M1, A1, and P1). receiver-operating characteristic curves demonstrated excellent diagnostic value for detecting large vessel occlusions (area under the curve=0.987-1). Time-resolved CTAs derived from C-arm CT perfusion acquisitions provide high quality images that allowed accurate diagnosis of large vessel occlusions. Although image quality of smaller arteries in this study was not optimal ongoing modifications of the postprocessing algorithm will likely remove this limitation. Adding time-resolved C-arm CTAs to the capabilities of the angiography suite further enhances its suitability as a one-stop shop for care for patients with acute ischemic stroke. © 2015 American Heart Association, Inc.

  20. Software for simulation of a computed tomography imaging spectrometer using optical design software

    NASA Astrophysics Data System (ADS)

    Spuhler, Peter T.; Willer, Mark R.; Volin, Curtis E.; Descour, Michael R.; Dereniak, Eustace L.

    2000-11-01

    Our Imaging Spectrometer Simulation Software known under the name Eikon should improve and speed up the design of a Computed Tomography Imaging Spectrometer (CTIS). Eikon uses existing raytracing software to simulate a virtual instrument. Eikon enables designers to virtually run through the design, calibration and data acquisition, saving significant cost and time when designing an instrument. We anticipate that Eikon simulations will improve future designs of CTIS by allowing engineers to explore more instrument options.

  1. RTSPM: real-time Linux control software for scanning probe microscopy.

    PubMed

    Chandrasekhar, V; Mehta, M M

    2013-01-01

    Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.

  2. Estimation of Spatiotemporal Sensitivity Using Band-limited Signals with No Additional Acquisitions for k-t Parallel Imaging.

    PubMed

    Takeshima, Hidenori; Saitoh, Kanako; Nitta, Shuhei; Shiodera, Taichiro; Takeguchi, Tomoyuki; Bannae, Shuhei; Kuhara, Shigehide

    2018-03-13

    Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. The goal of the present study was to develop a method that achieves short acquisition times, while maintaining a cost-effective reconstruction, for dynamic MRI. k - t sensitivity encoding (SENSE) was identified as the base method to be enhanced meeting these two requirements. The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal (x - f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k - t SENSE technique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the x - f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for sensitivity estimation because the strongly aliased signals have been removed. For the same reduction factor 4, the net reduction factor 4 for the proposed method was significantly higher than the factor 2.29 achieved by k - t SENSE. The processing time is reduced from 4.1 s for k - t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the k - t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views. In the present study, k - t SENSE was identified as a suitable base method to be improved achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics of base method, a novel implementation is proposed, estimating the x - f sensitivity without the need for an explicit scan of the reference signals. Experimental results showed that the acquisition, computational times and image quality for the proposed method were improved compared to the standard k - t SENSE method.

  3. Solid-state NMR imaging system

    DOEpatents

    Gopalsami, Nachappa; Dieckman, Stephen L.; Ellingson, William A.

    1992-01-01

    An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  4. Motmot, an open-source toolkit for realtime video acquisition and analysis.

    PubMed

    Straw, Andrew D; Dickinson, Michael H

    2009-07-22

    Video cameras sense passively from a distance, offer a rich information stream, and provide intuitively meaningful raw data. Camera-based imaging has thus proven critical for many advances in neuroscience and biology, with applications ranging from cellular imaging of fluorescent dyes to tracking of whole-animal behavior at ecologically relevant spatial scales. Here we present 'Motmot': an open-source software suite for acquiring, displaying, saving, and analyzing digital video in real-time. At the highest level, Motmot is written in the Python computer language. The large amounts of data produced by digital cameras are handled by low-level, optimized functions, usually written in C. This high-level/low-level partitioning and use of select external libraries allow Motmot, with only modest complexity, to perform well as a core technology for many high-performance imaging tasks. In its current form, Motmot allows for: (1) image acquisition from a variety of camera interfaces (package motmot.cam_iface), (2) the display of these images with minimal latency and computer resources using wxPython and OpenGL (package motmot.wxglvideo), (3) saving images with no compression in a single-pass, low-CPU-use format (package motmot.FlyMovieFormat), (4) a pluggable framework for custom analysis of images in realtime and (5) firmware for an inexpensive USB device to synchronize image acquisition across multiple cameras, with analog input, or with other hardware devices (package motmot.fview_ext_trig). These capabilities are brought together in a graphical user interface, called 'FView', allowing an end user to easily view and save digital video without writing any code. One plugin for FView, 'FlyTrax', which tracks the movement of fruit flies in real-time, is included with Motmot, and is described to illustrate the capabilities of FView. Motmot enables realtime image processing and display using the Python computer language. In addition to the provided complete applications, the architecture allows the user to write relatively simple plugins, which can accomplish a variety of computer vision tasks and be integrated within larger software systems. The software is available at http://code.astraw.com/projects/motmot.

  5. Investigation of Image Reconstruction Parameters of the Mediso nanoScan PC Small-Animal PET/CT Scanner for Two Different Positron Emitters Under NEMA NU 4-2008 Standards.

    PubMed

    Gaitanis, Anastasios; Kastis, George A; Vlastou, Elena; Bouziotis, Penelope; Verginis, Panayotis; Anagnostopoulos, Constantinos D

    2017-08-01

    The Tera-Tomo 3D image reconstruction algorithm (a version of OSEM), provided with the Mediso nanoScan® PC (PET8/2) small-animal positron emission tomograph (PET)/x-ray computed tomography (CT) scanner, has various parameter options such as total level of regularization, subsets, and iterations. Also, the acquisition time in PET plays an important role. This study aims to assess the performance of this new small-animal PET/CT scanner for different acquisition times and reconstruction parameters, for 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and Ga-68, under the NEMA NU 4-2008 standards. Various image quality metrics were calculated for different realizations of [ 18 F]FDG and Ga-68 filled image quality (IQ) phantoms. [ 18 F]FDG imaging produced improved images over Ga-68. The best compromise for the optimization of all image quality factors is achieved for at least 30 min acquisition and image reconstruction with 52 iteration updates combined with a high regularization level. A high regularization level at 52 iteration updates and 30 min acquisition time were found to optimize most of the figures of merit investigated.

  6. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications

    PubMed Central

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  7. Raspberry Pi-powered imaging for plant phenotyping.

    PubMed

    Tovar, Jose C; Hoyer, J Steen; Lin, Andy; Tielking, Allison; Callen, Steven T; Elizabeth Castillo, S; Miller, Michael; Tessman, Monica; Fahlgren, Noah; Carrington, James C; Nusinow, Dmitri A; Gehan, Malia A

    2018-03-01

    Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.

  8. Interventional C-arm tomosynthesis for vascular imaging: initial results

    NASA Astrophysics Data System (ADS)

    Langan, David A.; Claus, Bernhard E. H.; Al Assad, Omar; Trousset, Yves; Riddell, Cyril; Avignon, Gregoire; Solomon, Stephen B.; Lai, Hao; Wang, Xin

    2015-03-01

    As percutaneous endovascular procedures address more complex and broader disease states, there is an increasing need for intra-procedure 3D vascular imaging. In this paper, we investigate C-Arm 2-axis tomosynthesis ("Tomo") as an alternative to C-Arm Cone Beam Computed Tomography (CBCT) for workflow situations in which the CBCT acquisition may be inconvenient or prohibited. We report on our experience in performing tomosynthesis acquisitions with a digital angiographic imaging system (GE Healthcare Innova 4100 Angiographic Imaging System, Milwaukee, WI). During a tomo acquisition the detector and tube each orbit on a plane above and below the table respectively. The tomo orbit may be circular or elliptical, and the tomographic half-angle in our studies varied from approximately 16 to 28 degrees as a function of orbit period. The trajectory, geometric calibration, and gantry performance are presented. We overview a multi-resolution iterative reconstruction employing compressed sensing techniques to mitigate artifacts associated with incomplete data reconstructions. In this work, we focus on the reconstruction of small high contrast objects such as iodinated vasculature and interventional devices. We evaluate the overall performance of the acquisition and reconstruction through phantom acquisitions and a swine study. Both tomo and comparable CBCT acquisitions were performed during the swine study thereby enabling the use of CBCT as a reference in the evaluation of tomo vascular imaging. We close with a discussion of potential clinical applications for tomo, reflecting on the imaging and workflow results achieved.

  9. Point-and-stare operation and high-speed image acquisition in real-time hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Driver, Richard D.; Bannon, David P.; Ciccone, Domenic; Hill, Sam L.

    2010-04-01

    The design and optical performance of a small-footprint, low-power, turnkey, Point-And-Stare hyperspectral analyzer, capable of fully automated field deployment in remote and harsh environments, is described. The unit is packaged for outdoor operation in an IP56 protected air-conditioned enclosure and includes a mechanically ruggedized fully reflective, aberration-corrected hyperspectral VNIR (400-1000 nm) spectrometer with a board-level detector optimized for point and stare operation, an on-board computer capable of full system data-acquisition and control, and a fully functioning internal hyperspectral calibration system for in-situ system spectral calibration and verification. Performance data on the unit under extremes of real-time survey operation and high spatial and high spectral resolution will be discussed. Hyperspectral acquisition including full parameter tracking is achieved by the addition of a fiber-optic based downwelling spectral channel for solar illumination tracking during hyperspectral acquisition and the use of other sensors for spatial and directional tracking to pinpoint view location. The system is mounted on a Pan-And-Tilt device, automatically controlled from the analyzer's on-board computer, making the HyperspecTM particularly adaptable for base security, border protection and remote deployments. A hyperspectral macro library has been developed to control hyperspectral image acquisition, system calibration and scene location control. The software allows the system to be operated in a fully automatic mode or under direct operator control through a GigE interface.

  10. Image reconstruction by domain-transform manifold learning.

    PubMed

    Zhu, Bo; Liu, Jeremiah Z; Cauley, Stephen F; Rosen, Bruce R; Rosen, Matthew S

    2018-03-21

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction-automated transform by manifold approximation (AUTOMAP)-which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development of new acquisition strategies across imaging modalities.

  11. Image reconstruction by domain-transform manifold learning

    NASA Astrophysics Data System (ADS)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development of new acquisition strategies across imaging modalities.

  12. Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI.

    PubMed

    Zhou, Ziwu; Han, Fei; Yan, Lirong; Wang, Danny J J; Hu, Peng

    2017-12-01

    To develop and evaluate an improved stack-of-stars radial sampling strategy for reducing streaking artifacts. The conventional stack-of-stars sampling strategy collects the same radial angle for every partition (slice) encoding. In an undersampled acquisition, such an aligned acquisition generates coherent aliasing patterns and introduces strong streaking artifacts. We show that by rotating the radial spokes in a golden-angle manner along the partition-encoding direction, the aliasing pattern is modified, resulting in improved image quality for gridding and more advanced reconstruction methods. Computer simulations were performed and phantom as well as in vivo images for three different applications were acquired. Simulation, phantom, and in vivo experiments confirmed that the proposed method was able to generate images with less streaking artifact and sharper structures based on undersampled acquisitions in comparison with the conventional aligned approach at the same acceleration factors. By combining parallel imaging and compressed sensing in the reconstruction, streaking artifacts were mostly removed with improved delineation of fine structures using the proposed strategy. We present a simple method to reduce streaking artifacts and improve image quality in 3D stack-of-stars acquisitions by re-arranging the radial spoke angles in the 3D partition direction, which can be used for rapid volumetric imaging. Magn Reson Med 78:2290-2298, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Application test of a Detection Method for the Enclosed Turbine Runner Chamber

    NASA Astrophysics Data System (ADS)

    Liu, Yunlong; Shen, Dingjie; Xie, Yi; Yang, Xiangwei; Long, Yi; Li, Wenbo

    2017-06-01

    At present, for the existing problems of the testing methods for the key hidden metal components of the turbine runner chamber, such as the poor reliability, the inaccurate locating and the larger detection blind spots of the detection device, under the downtime without opening the cover of the hydropower turbine runner chamber, an automatic detection method based on real-time image acquisition and simulation comparison techniques was proposed. By using the permanent magnet wheel, the magnetic crawler which carry the real-time image acquisition device, could complete the crawling work on the inner surface of the enclosed chamber. Then the image acquisition device completed the real-time collection of the scene image of the enclosed chamber. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.

  14. Assessment of temporal resolution of multi-detector row computed tomography in helical acquisition mode using the impulse method.

    PubMed

    Ichikawa, Katsuhiro; Hara, Takanori; Urikura, Atsushi; Takata, Tadanori; Ohashi, Kazuya

    2015-06-01

    The purpose of this study was to propose a method for assessing the temporal resolution (TR) of multi-detector row computed tomography (CT) (MDCT) in the helical acquisition mode using temporal impulse signals generated by a metal ball passing through the acquisition plane. An 11-mm diameter metal ball was shot along the central axis at approximately 5 m/s during a helical acquisition, and the temporal sensitivity profile (TSP) was measured from the streak image intensities in the reconstructed helical CT images. To assess the validity, we compared the measured and theoretical TSPs for the 4-channel modes of two MDCT systems. A 64-channel MDCT system was used to compare TSPs and image quality of a motion phantom for the pitch factors P of 0.6, 0.8, 1.0 and 1.2 with a rotation time R of 0.5 s, and for two R/P combinations of 0.5/1.2 and 0.33/0.8. Moreover, the temporal transfer functions (TFs) were calculated from the obtained TSPs. The measured and theoretical TSPs showed perfect agreement. The TSP narrowed with an increase in the pitch factor. The image sharpness of the 0.33/0.8 combination was inferior to that of the 0.5/1.2 combination, despite their almost identical full width at tenth maximum values. The temporal TFs quantitatively confirmed these differences. The TSP results demonstrated that the TR in the helical acquisition mode significantly depended on the pitch factor as well as the rotation time, and the pitch factor and reconstruction algorithm affected the TSP shape. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Data Visualization and Animation Lab (DVAL) overview

    NASA Technical Reports Server (NTRS)

    Stacy, Kathy; Vonofenheim, Bill

    1994-01-01

    The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.

  16. ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research.

    PubMed

    Campagnola, Luke; Kratz, Megan B; Manis, Paul B

    2014-01-01

    The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org.

  17. Rotating single-shot acquisition (RoSA) with composite reconstruction for fast high-resolution diffusion imaging.

    PubMed

    Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien

    2018-01-01

    To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. The new classic data acquisition system for NPOI

    NASA Astrophysics Data System (ADS)

    Sun, B.; Jorgensen, A. M.; Landavazo, M.; Hutter, D. J.; van Belle, G. T.; Mozurkewich, David; Armstrong, J. T.; Schmitt, H. R.; Baines, E. K.; Restaino, S. R.

    2014-07-01

    The New Classic data acquisition system is an important portion of a new project of stellar surface imaging with the NPOI, funded by the National Science Foundation, and enables the data acquisition necessary for the project. The NPOI can simultaneously deliver beams from 6 telescopes to the beam combining facility, and in the Classic beam combiner these are combined 4 at a time on 3 separate spectrographs with all 15 possible baselines observed. The Classic data acquisition system is limited to 16 of 32 wavelength channels on two spectrographs and limited to 30 s integrations followed by a pause to ush data. Classic also has some limitations in its fringe-tracking capability. These factors, and the fact that Classic incorporates 1990s technology which cannot be easily replaced are motivation for upgrading the data acquisition system. The New Classic data acquisition system is based around modern electronics, including a high-end Stratix FPGA, a 200 MB/s Direct Memory Access card, and a fast modern Linux computer. These allow for continuous recording of all 96 channels across three spectrographs, increasing the total amount of data recorded by a an estimated order of magnitude. The additional computing power on the data acquisition system also allows for the implementation of more sophisticated fringe-tracking algorithms which are needed for the Stellar Surface Imaging project. In this paper we describe the New Classic system design and implementation, describe the background and motivation for the system as well as show some initial results from using it.

  19. Real-time model-based vision system for object acquisition and tracking

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Gennery, Donald B.; Bon, Bruce; Litwin, Todd

    1987-01-01

    A machine vision system is described which is designed to acquire and track polyhedral objects moving and rotating in space by means of two or more cameras, programmable image-processing hardware, and a general-purpose computer for high-level functions. The image-processing hardware is capable of performing a large variety of operations on images and on image-like arrays of data. Acquisition utilizes image locations and velocities of the features extracted by the image-processing hardware to determine the three-dimensional position, orientation, velocity, and angular velocity of the object. Tracking correlates edges detected in the current image with edge locations predicted from an internal model of the object and its motion, continually updating velocity information to predict where edges should appear in future frames. With some 10 frames processed per second, real-time tracking is possible.

  20. MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance

    PubMed Central

    2014-01-01

    Background Computer simulations are important for validating novel image acquisition and reconstruction strategies. In cardiovascular magnetic resonance (CMR), numerical simulations need to combine anatomical information and the effects of cardiac and/or respiratory motion. To this end, a framework for realistic CMR simulations is proposed and its use for image reconstruction from undersampled data is demonstrated. Methods The extended Cardiac-Torso (XCAT) anatomical phantom framework with various motion options was used as a basis for the numerical phantoms. Different tissue, dynamic contrast and signal models, multiple receiver coils and noise are simulated. Arbitrary trajectories and undersampled acquisition can be selected. The utility of the framework is demonstrated for accelerated cine and first-pass myocardial perfusion imaging using k-t PCA and k-t SPARSE. Results MRXCAT phantoms allow for realistic simulation of CMR including optional cardiac and respiratory motion. Example reconstructions from simulated undersampled k-t parallel imaging demonstrate the feasibility of simulated acquisition and reconstruction using the presented framework. Myocardial blood flow assessment from simulated myocardial perfusion images highlights the suitability of MRXCAT for quantitative post-processing simulation. Conclusion The proposed MRXCAT phantom framework enables versatile and realistic simulations of CMR including breathhold and free-breathing acquisitions. PMID:25204441

  1. Multi-channel pre-beamformed data acquisition system for research on advanced ultrasound imaging methods.

    PubMed

    Cheung, Chris C P; Yu, Alfred C H; Salimi, Nazila; Yiu, Billy Y S; Tsang, Ivan K H; Kerby, Benjamin; Azar, Reza Zahiri; Dickie, Kris

    2012-02-01

    The lack of open access to the pre-beamformed data of an ultrasound scanner has limited the research of novel imaging methods to a few privileged laboratories. To address this need, we have developed a pre-beamformed data acquisition (DAQ) system that can collect data over 128 array elements in parallel from the Ultrasonix series of research-purpose ultrasound scanners. Our DAQ system comprises three system-level blocks: 1) a connector board that interfaces with the array probe and the scanner through a probe connector port; 2) a main board that triggers DAQ and controls data transfer to a computer; and 3) four receiver boards that are each responsible for acquiring 32 channels of digitized raw data and storing them to the on-board memory. This system can acquire pre-beamformed data with 12-bit resolution when using a 40-MHz sampling rate. It houses a 16 GB RAM buffer that is sufficient to store 128 channels of pre-beamformed data for 8000 to 25 000 transmit firings, depending on imaging depth; corresponding to nearly a 2-s period in typical imaging setups. Following the acquisition, the data can be transferred through a USB 2.0 link to a computer for offline processing and analysis. To evaluate the feasibility of using the DAQ system for advanced imaging research, two proof-of-concept investigations have been conducted on beamforming and plane-wave B-flow imaging. Results show that adaptive beamforming algorithms such as the minimum variance approach can generate sharper images of a wire cross-section whose diameter is equal to the imaging wavelength (150 μm in our example). Also, planewave B-flow imaging can provide more consistent visualization of blood speckle movement given the higher temporal resolution of this imaging approach (2500 fps in our example).

  2. Computer vision for microscopy diagnosis of malaria.

    PubMed

    Tek, F Boray; Dempster, Andrew G; Kale, Izzet

    2009-07-13

    This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  3. Multispectral computational ghost imaging with multiplexed illumination

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Shi, Dongfeng

    2017-07-01

    Computational ghost imaging has attracted wide attention from researchers in many fields over the last two decades. Multispectral imaging as one application of computational ghost imaging possesses spatial and spectral resolving abilities, and is very useful for surveying scenes and extracting detailed information. Existing multispectral imagers mostly utilize narrow band filters or dispersive optical devices to separate light of different wavelengths, and then use multiple bucket detectors or an array detector to record them separately. Here, we propose a novel multispectral ghost imaging method that uses one single bucket detector with multiplexed illumination to produce a colored image. The multiplexed illumination patterns are produced by three binary encoded matrices (corresponding to the red, green and blue colored information, respectively) and random patterns. The results of the simulation and experiment have verified that our method can be effective in recovering the colored object. Multispectral images are produced simultaneously by one single-pixel detector, which significantly reduces the amount of data acquisition.

  4. Automatic Solitary Lung Nodule Detection in Computed Tomography Images Slices

    NASA Astrophysics Data System (ADS)

    Sentana, I. W. B.; Jawas, N.; Asri, S. A.

    2018-01-01

    Lung nodule is an early indicator of some lung diseases, including lung cancer. In Computed Tomography (CT) based image, nodule is known as a shape that appears brighter than lung surrounding. This research aim to develop an application that automatically detect lung nodule in CT images. There are some steps in algorithm such as image acquisition and conversion, image binarization, lung segmentation, blob detection, and classification. Data acquisition is a step to taking image slice by slice from the original *.dicom format and then each image slices is converted into *.tif image format. Binarization that tailoring Otsu algorithm, than separated the background and foreground part of each image slices. After removing the background part, the next step is to segment part of the lung only so the nodule can localized easier. Once again Otsu algorithm is use to detect nodule blob in localized lung area. The final step is tailoring Support Vector Machine (SVM) to classify the nodule. The application has succeed detecting near round nodule with a certain threshold of size. Those detecting result shows drawback in part of thresholding size and shape of nodule that need to enhance in the next part of the research. The algorithm also cannot detect nodule that attached to wall and Lung Chanel, since it depend the searching only on colour differences.

  5. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography

    Treesearch

    Michael C. Martin; Charlotte Dabat-Blondeau; Miriam Unger; Julia Sedlmair; Dilworth Y. Parkinson; Hans A. Bechtel; Barbara Illman; Jonathan M. Castro; Marco Keiluweit; David Buschke; Brenda Ogle; Michael J. Nasse; Carol J. Hirschmugl

    2013-01-01

    We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical...

  6. Identification of natural images and computer-generated graphics based on statistical and textural features.

    PubMed

    Peng, Fei; Li, Jiao-ting; Long, Min

    2015-03-01

    To discriminate the acquisition pipelines of digital images, a novel scheme for the identification of natural images and computer-generated graphics is proposed based on statistical and textural features. First, the differences between them are investigated from the view of statistics and texture, and 31 dimensions of feature are acquired for identification. Then, LIBSVM is used for the classification. Finally, the experimental results are presented. The results show that it can achieve an identification accuracy of 97.89% for computer-generated graphics, and an identification accuracy of 97.75% for natural images. The analyses also demonstrate the proposed method has excellent performance, compared with some existing methods based only on statistical features or other features. The method has a great potential to be implemented for the identification of natural images and computer-generated graphics. © 2014 American Academy of Forensic Sciences.

  7. Remote canopy hemispherical image collection system

    NASA Astrophysics Data System (ADS)

    Wan, Xuefen; Liu, Bingyu; Yang, Yi; Han, Fang; Cui, Jian

    2016-11-01

    Canopies are major part of plant photosynthesis and have distinct architectural elements such as tree crowns, whorls, branches, shoots, etc. By measuring canopy structural parameters, the solar radiation interception, photosynthesis effects and the spatio-temporal distribution of solar radiation under the canopy can be evaluated. Among canopy structure parameters, Leaf Area Index (LAI) is the key one. Leaf area index is a crucial variable in agronomic and environmental studies, because of its importance for estimating the amount of radiation intercepted by the canopy and the crop water requirements. The LAI can be achieved by hemispheric images which are obtained below the canopy with high accuracy and effectiveness. But existing hemispheric images canopy-LAI measurement technique is based on digital SLR camera with a fisheye lens. Users need to collect hemispheric image manually. The SLR camera with fisheye lens is not suit for long-term canopy-LAI outdoor measurement too. And the high cost of SLR limits its capacity. In recent years, with the development of embedded system and image processing technology, low cost remote canopy hemispheric image acquisition technology is becoming possible. In this paper, we present a remote hemispheric canopy image acquisition system with in-field/host configuration. In-field node based on imbed platform, low cost image sensor and fisheye lens is designed to achieve hemispherical image of plant canopy at distance with low cost. Solar radiation and temperature/humidity data, which are important for evaluating image data validation, are obtained for invalid hemispherical image elimination and node maintenance too. Host computer interacts with in-field node by 3G network. The hemispherical image calibration and super resolution are used to improve image quality in host computer. Results show that the remote canopy image collection system can make low cost remote canopy image acquisition for LAI effectively. It will be a potential technology candidate for low-cost remote canopy hemispherical image collection to measure canopy LAI.

  8. Russian norms for name agreement, image agreement for the colorized version of the Snodgrass and Vanderwart pictures and age of acquisition, conceptual familiarity, and imageability scores for modal object names.

    PubMed

    Tsaparina, Diana; Bonin, Patrick; Méot, Alain

    2011-12-01

    The aim of the present study was to provide Russian normative data for the Snodgrass and Vanderwart (Behavior Research Methods, Instruments, & Computers, 28, 516-536, 1980) colorized pictures (Rossion & Pourtois, Perception, 33, 217-236, 2004). The pictures were standardized on name agreement, image agreement, conceptual familiarity, imageability, and age of acquisition. Objective word frequency and objective visual complexity measures are also provided for the most common names associated with the pictures. Comparative analyses between our results and the norms obtained in other, similar studies are reported. The Russian norms may be downloaded from the Psychonomic Society supplemental archive.

  9. Advances in Pancreatic CT Imaging.

    PubMed

    Almeida, Renata R; Lo, Grace C; Patino, Manuel; Bizzo, Bernardo; Canellas, Rodrigo; Sahani, Dushyant V

    2018-07-01

    The purpose of this article is to discuss the advances in CT acquisition and image postprocessing as they apply to imaging the pancreas and to conceptualize the role of radiogenomics and machine learning in pancreatic imaging. CT is the preferred imaging modality for assessment of pancreatic diseases. Recent advances in CT (dual-energy CT, CT perfusion, CT volumetry, and radiogenomics) and emerging computational algorithms (machine learning) have the potential to further increase the value of CT in pancreatic imaging.

  10. Metallic artifacts from internal scaphoid fracture fixation screws: comparison between C-arm flat-panel, cone-beam, and multidetector computed tomography.

    PubMed

    Finkenstaedt, Tim; Morsbach, Fabian; Calcagni, Maurizio; Vich, Magdalena; Pfirrmann, Christian W A; Alkadhi, Hatem; Runge, Val M; Andreisek, Gustav; Guggenberger, Roman

    2014-08-01

    The aim of this study was to compare image quality and extent of artifacts from scaphoid fracture fixation screws using different computed tomography (CT) modalities and radiation dose protocols. Imaging of 6 cadaveric wrists with artificial scaphoid fractures and different fixation screws was performed in 2 screw positions (45° and 90° orientation in relation to the x/y-axis) using multidetector CT (MDCT) and 2 flat-panel CT modalities, C-arm flat-panel CT (FPCT) and cone-beam CT (CBCT), the latter 2 with low and standard radiation dose protocols. Mean cartilage attenuation and metal artifact-induced absolute Hounsfield unit changes (= artifact extent) were measured. Two independent radiologists evaluated different image quality criteria using a 5-point Likert-scale. Interreader agreements (Cohen κ) were calculated. Mean absolute Hounsfield unit changes and quality ratings were compared using Friedman and Wilcoxon signed-rank tests. Artifact extent was significantly smaller for MDCT and standard-dose FPCT compared with CBCT low- and standard-dose acquisitions (all P < 0.05). No significant differences in artifact extent among different screw types and scanning positions were noted (P > 0.05). Both MDCT and FPCT standard-dose protocols showed equal ratings for screw bone interface, fracture line, and trabecular bone evaluation (P = 0.06, 0.2, and 0.2, respectively) and performed significantly better than FPCT low- and CBCT low- and standard-dose acquisitions (all P < 0.05). Good interreader agreement was found for image quality comparisons (Cohen κ = 0.76-0.78). Both MDCT and FPCT standard-dose acquisition showed comparatively less metal-induced artifacts and better overall image quality compared with FPCT low-dose and both CBCT acquisitions. Flat-panel CT may provide sufficient image quality to serve as a versatile CT alternative for postoperative imaging of internally fixated wrist fractures.

  11. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE)

    PubMed Central

    Sharif, Behzad; Derbyshire, J. Andrew; Faranesh, Anthony Z.; Bresler, Yoram

    2010-01-01

    MR imaging of the human heart without explicit cardiac synchronization promises to extend the applicability of cardiac MR to a larger patient population and potentially expand its diagnostic capabilities. However, conventional non-gated imaging techniques typically suffer from low image quality or inadequate spatio-temporal resolution and fidelity. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE) is a highly-accelerated non-gated dynamic imaging method that enables artifact-free imaging with high spatio-temporal resolutions by utilizing novel computational techniques to optimize the imaging process. In addition to using parallel imaging, the method gains acceleration from a physiologically-driven spatio-temporal support model; hence, it is doubly accelerated. The support model is patient-adaptive, i.e., its geometry depends on dynamics of the imaged slice, e.g., subject’s heart-rate and heart location within the slice. The proposed method is also doubly adaptive as it adapts both the acquisition and reconstruction schemes. Based on the theory of time-sequential sampling, the proposed framework explicitly accounts for speed limitations of gradient encoding and provides performance guarantees on achievable image quality. The presented in-vivo results demonstrate the effectiveness and feasibility of the PARADISE method for high resolution non-gated cardiac MRI during a short breath-hold. PMID:20665794

  12. Relationship between diverse patient body size- and image acquisition-related factors, and quantitative and qualitative image quality in coronary computed tomography angiography: a multicenter observational study.

    PubMed

    Utsunomiya, Daisuke; Tanaka, Ryoichi; Yoshioka, Kunihiro; Awai, Kazuo; Mochizuki, Teruhito; Matsunaga, Naofumi; Ichikawa, Tomoaki; Kanematsu, Masayuki; Kim, Tonsok; Yamashita, Yasuyuki

    2016-08-01

    We investigated the effects of patient- and image acquisition-related factors on the image quality in coronary CT angiography (CCTA). We enrolled 1197 patients (728 men; 65 ± 12 years). All underwent CCTA under the routine scan protocol in 23 participating hospitals. The subjective image quality (3-point Likert scale: excellent, good, and poor) and the attenuation of the left and right coronary artery (LCA, RCA) were recorded; the effects of patient and image acquisition-related factors on vascular attenuation were then compared. The mean LCA attenuation was 515.2 ± 65.8 (excellent), 401.4 ± 63.4 (good), and 319.5 ± 47.6 HU (poor). The corresponding RCA attenuation was 496.6 ± 67.6, 390.5 ± 58.5, and 308.5 ± 50.7 HU, respectively. Univariate analysis revealed significant associations between sufficient coronary attenuation (> 400 HU) and the age, gender, body surface area (BSA), number of detectors, contrast synchronization, scan mode, and the fractional contrast dose. Multivariate analysis revealed that the bolus tracking method, prospective electrocardiogram gating, and fractional contrast dose were significantly associated with sufficient coronary enhancement. BSA and fractional contrast dose are the most important patient- and image acquisition-related factors for sufficient coronary attenuation in CCTA.

  13. Distributed MRI reconstruction using Gadgetron-based cloud computing.

    PubMed

    Xue, Hui; Inati, Souheil; Sørensen, Thomas Sangild; Kellman, Peter; Hansen, Michael S

    2015-03-01

    To expand the open source Gadgetron reconstruction framework to support distributed computing and to demonstrate that a multinode version of the Gadgetron can be used to provide nonlinear reconstruction with clinically acceptable latency. The Gadgetron framework was extended with new software components that enable an arbitrary number of Gadgetron instances to collaborate on a reconstruction task. This cloud-enabled version of the Gadgetron was deployed on three different distributed computing platforms ranging from a heterogeneous collection of commodity computers to the commercial Amazon Elastic Compute Cloud. The Gadgetron cloud was used to provide nonlinear, compressed sensing reconstruction on a clinical scanner with low reconstruction latency (eg, cardiac and neuroimaging applications). The proposed setup was able to handle acquisition and 11 -SPIRiT reconstruction of nine high temporal resolution real-time, cardiac short axis cine acquisitions, covering the ventricles for functional evaluation, in under 1 min. A three-dimensional high-resolution brain acquisition with 1 mm(3) isotropic pixel size was acquired and reconstructed with nonlinear reconstruction in less than 5 min. A distributed computing enabled Gadgetron provides a scalable way to improve reconstruction performance using commodity cluster computing. Nonlinear, compressed sensing reconstruction can be deployed clinically with low image reconstruction latency. © 2014 Wiley Periodicals, Inc.

  14. Semiautomated digital analysis of knee joint space width using MR images.

    PubMed

    Agnesi, Filippo; Amrami, Kimberly K; Frigo, Carlo A; Kaufman, Kenton R

    2007-05-01

    The goal of this study was to (a) develop a semiautomated computer algorithm to measure knee joint space width (JSW) from magnetic resonance (MR) images using standard imaging techniques and (b) evaluate the reproducibility of the algorithm. Using a standard clinical imaging protocol, bilateral knee MR images were obtained twice within a 2-week period from 17 asymptomatic research participants. Images were analyzed to determine the variability of the measurements performed by the program compared with the variability of manual measurements. Measurement variability of the computer algorithm was considerably smaller than the variability of manual measurements. The average difference between two measurements of the same slice performed with the computer algorithm by the same user was 0.004 +/- 0.07 mm for the tibiofemoral joint (TF) and 0.009 +/- 0.11 mm for the patellofemoral joint (PF) compared with an average of 0.12 +/- 0.22 mm TF and 0.13 +/- 0.29 mm PF, respectively, for the manual method. Interuser variability of the computer algorithm was also considerably smaller, with an average difference of 0.004 +/- 0.1 mm TF and 0.0006 +/- 0.1 mm PF compared with 0.38 +/- 0.59 mm TF and 0.31 +/- 0.66 mm PF obtained using a manual method. The between-day reproducibility was larger but still within acceptable limits at 0.09 +/- 0.39 mm TF and 0.09 +/- 0.51 mm PF. This technique has proven consistently reproducible on a same slice base,while the reproducibility comparing different acquisitions of the same subject was larger. Longitudinal reproducibility improvement needs to be addressed through acquisition protocol improvements. A semiautomated method for measuring knee JSW from MR images has been successfully developed.

  15. TH-E-17A-07: Improved Cine Four-Dimensional Computed Tomography (4D CT) Acquisition and Processing Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, S; Castillo, R; Castillo, E

    2014-06-15

    Purpose: Artifacts arising from the 4D CT acquisition and post-processing methods add systematic uncertainty to the treatment planning process. We propose an alternate cine 4D CT acquisition and post-processing method to consistently reduce artifacts, and explore patient parameters indicative of image quality. Methods: In an IRB-approved protocol, 18 patients with primary thoracic malignancies received a standard cine 4D CT acquisition followed by an oversampling 4D CT that doubled the number of images acquired. A second cohort of 10 patients received the clinical 4D CT plus 3 oversampling scans for intra-fraction reproducibility. The clinical acquisitions were processed by the standard phasemore » sorting method. The oversampling acquisitions were processed using Dijkstras algorithm to optimize an artifact metric over available image data. Image quality was evaluated with a one-way mixed ANOVA model using a correlation-based artifact metric calculated from the final 4D CT image sets. Spearman correlations and a linear mixed model tested the association between breathing parameters, patient characteristics, and image quality. Results: The oversampling 4D CT scans reduced artifact presence significantly by 27% and 28%, for the first cohort and second cohort respectively. From cohort 2, the inter-replicate deviation for the oversampling method was within approximately 13% of the cross scan average at the 0.05 significance level. Artifact presence for both clinical and oversampling methods was significantly correlated with breathing period (ρ=0.407, p-value<0.032 clinical, ρ=0.296, p-value<0.041 oversampling). Artifact presence in the oversampling method was significantly correlated with amount of data acquired, (ρ=-0.335, p-value<0.02) indicating decreased artifact presence with increased breathing cycles per scan location. Conclusion: The 4D CT oversampling acquisition with optimized sorting reduced artifact presence significantly and reproducibly compared to the phase-sorted clinical acquisition.« less

  16. Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner

    ERIC Educational Resources Information Center

    Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.

    2004-01-01

    The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.

  17. Real-time detection and data acquisition system for the left ventricular outline. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C.

    1976-01-01

    To automate the data acquisition procedure, a real-time contour detection and data acquisition system for the left ventricular outline was developed using video techniques. The X-ray image of the contrast-filled left ventricle is stored for subsequent processing on film (cineangiogram), video tape or disc. The cineangiogram is converted into video format using a television camera. The video signal from either the TV camera, video tape or disc is the input signal to the system. The contour detection is based on a dynamic thresholding technique. Since the left ventricular outline is a smooth continuous function, for each contour side a narrow expectation window is defined in which the next borderpoint will be detected. A computer interface was designed and built for the online acquisition of the coordinates using a PDP-12 computer. The advantage of this system over other available systems is its potential for online, real-time acquisition of the left ventricular size and shape during angiocardiography.

  18. Computational cameras for moving iris recognition

    NASA Astrophysics Data System (ADS)

    McCloskey, Scott; Venkatesha, Sharath

    2015-05-01

    Iris-based biometric identification is increasingly used for facility access and other security applications. Like all methods that exploit visual information, however, iris systems are limited by the quality of captured images. Optical defocus due to a small depth of field (DOF) is one such challenge, as is the acquisition of sharply-focused iris images from subjects in motion. This manuscript describes the application of computational motion-deblurring cameras to the problem of moving iris capture, from the underlying theory to system considerations and performance data.

  19. SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, K; Matthews, K

    2014-06-01

    Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placedmore » within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.9–3.6 mGy.« less

  20. Computation of transmitted and received B1 fields in magnetic resonance imaging.

    PubMed

    Milles, Julien; Zhu, Yue Min; Chen, Nan-Kuei; Panych, Lawrence P; Gimenez, Gérard; Guttmann, Charles R G

    2006-05-01

    Computation of B1 fields is a key issue for determination and correction of intensity nonuniformity in magnetic resonance images. This paper presents a new method for computing transmitted and received B1 fields. Our method combines a modified MRI acquisition protocol and an estimation technique based on the Levenberg-Marquardt algorithm and spatial filtering. It enables accurate estimation of transmitted and received B1 fields for both homogeneous and heterogeneous objects. The method is validated using numerical simulations and experimental data from phantom and human scans. The experimental results are in agreement with theoretical expectations.

  1. Anisotropic field-of-view shapes for improved PROPELLER imaging☆

    PubMed Central

    Larson, Peder E.Z.; Lustig, Michael S.; Nishimura, Dwight G.

    2010-01-01

    The Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) method for magnetic resonance imaging data acquisition and reconstruction has the highly desirable property of being able to correct for motion during the scan, making it especially useful for imaging pediatric or uncooperative patients and diffusion imaging. This method nominally supports a circular field of view (FOV), but tailoring the FOV for noncircular shapes results in more efficient, shorter scans. This article presents new algorithms for tailoring PROPELLER acquisitions to the desired FOV shape and size that are flexible and precise. The FOV design also allows for rotational motion which provides better motion correction and reduced aliasing artifacts. Some possible FOV shapes demonstrated are ellipses, ovals and rectangles, and any convex, pi-symmetric shape can be designed. Standard PROPELLER reconstruction is used with minor modifications, and results with simulated motion presented confirm the effectiveness of the motion correction with these modified FOV shapes. These new acquisition design algorithms are simple and fast enough to be computed for each individual scan. Also presented are algorithms for further scan time reductions in PROPELLER echo-planar imaging (EPI) acquisitions by varying the sample spacing in two directions within each blade. PMID:18818039

  2. ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research

    PubMed Central

    Campagnola, Luke; Kratz, Megan B.; Manis, Paul B.

    2014-01-01

    The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org. PMID:24523692

  3. Image analysis in modern ophthalmology: from acquisition to computer assisted diagnosis and telemedicine

    NASA Astrophysics Data System (ADS)

    Marrugo, Andrés G.; Millán, María S.; Cristóbal, Gabriel; Gabarda, Salvador; Sorel, Michal; Sroubek, Filip

    2012-06-01

    Medical digital imaging has become a key element of modern health care procedures. It provides visual documentation and a permanent record for the patients, and most important the ability to extract information about many diseases. Modern ophthalmology thrives and develops on the advances in digital imaging and computing power. In this work we present an overview of recent image processing techniques proposed by the authors in the area of digital eye fundus photography. Our applications range from retinal image quality assessment to image restoration via blind deconvolution and visualization of structural changes in time between patient visits. All proposed within a framework for improving and assisting the medical practice and the forthcoming scenario of the information chain in telemedicine.

  4. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  5. Time-of-flight camera via a single-pixel correlation image sensor

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  6. Advanced imaging in acute stroke management-Part I: Computed tomographic.

    PubMed

    Saini, Monica; Butcher, Ken

    2009-01-01

    Neuroimaging is fundamental to stroke diagnosis and management. Non-contrast computed tomography (NCCT) has been the primary imaging modality utilized for this purpose for almost four decades. Although NCCT does permit identification of intracranial hemorrhage and parenchymal ischemic changes, insights into blood vessel patency and cerebral perfusion are limited. Advances in reperfusion strategies have made identification of potentially salvageable brain tissue a more practical concern. Advances in CT technology now permit identification of acute and chronic arterial lesions, as well as cerebral blood flow deficits. This review outlines principles of advanced CT image acquisition and its utility in acute stroke management.

  7. The Effect of Experimental Variables on Industrial X-Ray Micro-Computed Sensitivity

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.

    2014-01-01

    A study was performed on the effect of experimental variables on radiographic sensitivity (image quality) in x-ray micro-computed tomography images for a high density thin wall metallic cylinder containing micro-EDM holes. Image quality was evaluated in terms of signal-to-noise ratio, flaw detectability, and feature sharpness. The variables included: day-to-day reproducibility, current, integration time, voltage, filtering, number of frame averages, number of projection views, beam width, effective object radius, binning, orientation of sample, acquisition angle range (180deg to 360deg), and directional versus transmission tube.

  8. Sparsity based target detection for compressive spectral imagery

    NASA Astrophysics Data System (ADS)

    Boada, David Alberto; Arguello Fuentes, Henry

    2016-09-01

    Hyperspectral imagery provides significant information about the spectral characteristics of objects and materials present in a scene. It enables object and feature detection, classification, or identification based on the acquired spectral characteristics. However, it relies on sophisticated acquisition and data processing systems able to acquire, process, store, and transmit hundreds or thousands of image bands from a given area of interest which demands enormous computational resources in terms of storage, computationm, and I/O throughputs. Specialized optical architectures have been developed for the compressed acquisition of spectral images using a reduced set of coded measurements contrary to traditional architectures that need a complete set of measurements of the data cube for image acquisition, dealing with the storage and acquisition limitations. Despite this improvement, if any processing is desired, the image has to be reconstructed by an inverse algorithm in order to be processed, which is also an expensive task. In this paper, a sparsity-based algorithm for target detection in compressed spectral images is presented. Specifically, the target detection model adapts a sparsity-based target detector to work in a compressive domain, modifying the sparse representation basis in the compressive sensing problem by means of over-complete training dictionaries and a wavelet basis representation. Simulations show that the presented method can achieve even better detection results than the state of the art methods.

  9. Maximum-likelihood-based extended-source spatial acquisition and tracking for planetary optical communications

    NASA Astrophysics Data System (ADS)

    Tsou, Haiping; Yan, Tsun-Yee

    1999-04-01

    This paper describes an extended-source spatial acquisition and tracking scheme for planetary optical communications. This scheme uses the Sun-lit Earth image as the beacon signal, which can be computed according to the current Sun-Earth-Probe angle from a pre-stored Earth image or a received snapshot taken by other Earth-orbiting satellite. Onboard the spacecraft, the reference image is correlated in the transform domain with the received image obtained from a detector array, which is assumed to have each of its pixels corrupted by an independent additive white Gaussian noise. The coordinate of the ground station is acquired and tracked, respectively, by an open-loop acquisition algorithm and a closed-loop tracking algorithm derived from the maximum likelihood criterion. As shown in the paper, the optimal spatial acquisition requires solving two nonlinear equations, or iteratively solving their linearized variants, to estimate the coordinate when translation in the relative positions of onboard and ground transceivers is considered. Similar assumption of linearization leads to the closed-loop spatial tracking algorithm in which the loop feedback signals can be derived from the weighted transform-domain correlation. Numerical results using a sample Sun-lit Earth image demonstrate that sub-pixel resolutions can be achieved by this scheme in a high disturbance environment.

  10. Global analysis of microscopic fluorescence lifetime images using spectral segmentation and a digital micromirror spatial illuminator.

    PubMed

    Bednarkiewicz, Artur; Whelan, Maurice P

    2008-01-01

    Fluorescence lifetime imaging (FLIM) is very demanding from a technical and computational perspective, and the output is usually a compromise between acquisition/processing time and data accuracy and precision. We present a new approach to acquisition, analysis, and reconstruction of microscopic FLIM images by employing a digital micromirror device (DMD) as a spatial illuminator. In the first step, the whole field fluorescence image is collected by a color charge-coupled device (CCD) camera. Further qualitative spectral analysis and sample segmentation are performed to spatially distinguish between spectrally different regions on the sample. Next, the fluorescence of the sample is excited segment by segment, and fluorescence lifetimes are acquired with a photon counting technique. FLIM image reconstruction is performed by either raster scanning the sample or by directly accessing specific regions of interest. The unique features of the DMD illuminator allow the rapid on-line measurement of global good initial parameters (GIP), which are supplied to the first iteration of the fitting algorithm. As a consequence, a decrease of the computation time required to obtain a satisfactory quality-of-fit is achieved without compromising the accuracy and precision of the lifetime measurements.

  11. Design of a short nonuniform acquisition protocol for quantitative analysis in dynamic cardiac SPECT imaging - a retrospective 123 I-MIBG animal study.

    PubMed

    Zan, Yunlong; Long, Yong; Chen, Kewei; Li, Biao; Huang, Qiu; Gullberg, Grant T

    2017-07-01

    Our previous works have found that quantitative analysis of 123 I-MIBG kinetics in the rat heart with dynamic single-photon emission computed tomography (SPECT) offers the potential to quantify the innervation integrity at an early stage of left ventricular hypertrophy. However, conventional protocols involving a long acquisition time for dynamic imaging reduce the animal survival rate and thus make longitudinal analysis difficult. The goal of this work was to develop a procedure to reduce the total acquisition time by selecting nonuniform acquisition times for projection views while maintaining the accuracy and precision of estimated physiologic parameters. Taking dynamic cardiac imaging with 123 I-MIBG in rats as an example, we generated time activity curves (TACs) of regions of interest (ROIs) as ground truths based on a direct four-dimensional reconstruction of experimental data acquired from a rotating SPECT camera, where TACs represented as the coefficients of B-spline basis functions were used to estimate compartmental model parameters. By iteratively adjusting the knots (i.e., control points) of B-spline basis functions, new TACs were created according to two rules: accuracy and precision. The accuracy criterion allocates the knots to achieve low relative entropy between the estimated left ventricular blood pool TAC and its ground truth so that the estimated input function approximates its real value and thus the procedure yields an accurate estimate of model parameters. The precision criterion, via the D-optimal method, forces the estimated parameters to be as precise as possible, with minimum variances. Based on the final knots obtained, a new protocol of 30 min was built with a shorter acquisition time that maintained a 5% error in estimating rate constants of the compartment model. This was evaluated through digital simulations. The simulation results showed that our method was able to reduce the acquisition time from 100 to 30 min for the cardiac study of rats with 123 I-MIBG. Compared to a uniform interval dynamic SPECT protocol (1 s acquisition interval, 30 min acquisition time), the newly proposed protocol with nonuniform interval achieved comparable (K1 and k2, P = 0.5745 for K1 and P = 0.0604 for k2) or better (Distribution Volume, DV, P = 0.0004) performance for parameter estimates with less storage and shorter computational time. In this study, a procedure was devised to shorten the acquisition time while maintaining the accuracy and precision of estimated physiologic parameters in dynamic SPECT imaging. The procedure was designed for 123 I-MIBG cardiac imaging in rat studies; however, it has the potential to be extended to other applications, including patient studies involving the acquisition of dynamic SPECT data. © 2017 American Association of Physicists in Medicine.

  12. Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer.

    PubMed

    Zemp, Roger J; Song, Liang; Bitton, Rachel; Shung, K Kirk; Wang, Lihong V

    2008-05-26

    We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-microm-diameter carbon fibers are experimentally demonstrated at 80 microm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5-3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge.

  13. Bessel Fourier Orientation Reconstruction (BFOR): An Analytical Diffusion Propagator Reconstruction for Hybrid Diffusion Imaging and Computation of q-Space Indices

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Alexander, Andrew L.

    2012-01-01

    The ensemble average propagator (EAP) describes the 3D average diffusion process of water molecules, capturing both its radial and angular contents. The EAP can thus provide richer information about complex tissue microstructure properties than the orientation distribution function (ODF), an angular feature of the EAP. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed, such as diffusion propagator imaging (DPI) and spherical polar Fourier imaging (SPFI). In this study, a new analytical EAP reconstruction method is proposed, called Bessel Fourier orientation reconstruction (BFOR), whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition, and is validated on both synthetic and real datasets. A significant portion of the paper is dedicated to comparing BFOR, SPFI, and DPI using hybrid, non-Cartesian sampling for multiple b-value acquisitions. Ways to mitigate the effects of Gibbs ringing on EAP reconstruction are also explored. In addition to analytical EAP reconstruction, the aforementioned modeling bases can be used to obtain rotationally invariant q-space indices of potential clinical value, an avenue which has not yet been thoroughly explored. Three such measures are computed: zero-displacement probability (Po), mean squared displacement (MSD), and generalized fractional anisotropy (GFA). PMID:22963853

  14. A comparative study of multi-sensor data fusion methods for highly accurate assessment of manufactured parts

    NASA Astrophysics Data System (ADS)

    Hannachi, Ammar; Kohler, Sophie; Lallement, Alex; Hirsch, Ernest

    2015-04-01

    3D modeling of scene contents takes an increasing importance for many computer vision based applications. In particular, industrial applications of computer vision require efficient tools for the computation of this 3D information. Routinely, stereo-vision is a powerful technique to obtain the 3D outline of imaged objects from the corresponding 2D images. As a consequence, this approach provides only a poor and partial description of the scene contents. On another hand, for structured light based reconstruction techniques, 3D surfaces of imaged objects can often be computed with high accuracy. However, the resulting active range data in this case lacks to provide data enabling to characterize the object edges. Thus, in order to benefit from the positive points of various acquisition techniques, we introduce in this paper promising approaches, enabling to compute complete 3D reconstruction based on the cooperation of two complementary acquisition and processing techniques, in our case stereoscopic and structured light based methods, providing two 3D data sets describing respectively the outlines and surfaces of the imaged objects. We present, accordingly, the principles of three fusion techniques and their comparison based on evaluation criterions related to the nature of the workpiece and also the type of the tackled application. The proposed fusion methods are relying on geometric characteristics of the workpiece, which favour the quality of the registration. Further, the results obtained demonstrate that the developed approaches are well adapted for 3D modeling of manufactured parts including free-form surfaces and, consequently quality control applications using these 3D reconstructions.

  15. ECG-triggered high-pitch CT for simultaneous assessment of the aorta and coronary arteries.

    PubMed

    Hachulla, Anne-Lise; Ronot, Maxime; Noble, Stéphane; Becker, Christoph D; Montet, Xavier; Vallée, Jean-Paul

    2016-01-01

    To study the image quality of ECG-gated-computed tomography (CT) acquisition with a high-pitch CT imaging for the exploration of both the aorta and coronary arteries. Eighty-four patients underwent high-pitch ECG-gated aortic CT without β-blockers with iterative reconstruction algorithms. Contrast-to-noise ratio (CNR) between vessels and adjacent perivascular fat tissue were calculated on the aorta and the coronary arteries. Dose-length-products (DLP) were recorded. Two blinded readers graded image quality of the aorta and the coronary arteries on a 3-point scale. Coronary artery stenoses were compared with coronary angiograms in 24 patients. Kappa values were calculated. High-pitch acquisition resulted in a mean DLP of 234 ± 93 mGy cm(4.2 mSv) for an acquisition of the entire aorta, (mean 73 ± 16 bpm). CNR for ascending aorta was 10.6 ± 4 and CNR for coronary arteries was 9.85 ± 4.1. Image quality was excellent in 79/84 patients (94%), and excellent or moderate but diagnostic in 1087/1127 coronary artery segments (96%). 74 significant stenoses were observed, and 38/40 significant stenoses were confirmed by coronary angiography (K = 0.91, Sensitivity = 0.97, Specificity = 0.98). High-pitch ECG-gated aortic CT with iterative reconstructions allows an accurate exploration of both aorta and coronary arteries during the same acquisition, with limited dose deposition, despite the lack of β-blockers and relatively high heart rate. Radiologists need to be aware of the necessity to analyze and report coronary artery disease in aortic examination. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  16. Myocardial Scar Imaging by Standard Single-Energy and Dual-Energy Late Enhancement Computed Tomography: Comparison to Pathology and Electroanatomical Map in an Experimental Chronic Infarct Porcine Model

    PubMed Central

    Truong, Quynh A.; Thai, Wai-ee; Wai, Bryan; Cordaro, Kevin; Cheng, Teresa; Beaudoin, Jonathan; Xiong, Guanglei; Cheung, Jim W.; Altman, Robert; Min, James K.; Singh, Jagmeet P.; Barrett, Conor D.; Danik, Stephan

    2015-01-01

    Background Myocardial scar is a substrate for ventricular tachycardia and sudden cardiac death. Late enhancement computed tomography (CT) imaging can detect scar, but it remains unclear whether newer late enhancement dual-energy (LE-DECT) acquisition has benefit over standard single-energy late enhancement (LE-CT). Objective We aim to compare late enhancement CT using newer LE-DECT acquisition and single-energy LE-CT acquisitions to pathology and electroanatomical map (EAM) in an experimental chronic myocardial infarction (MI) porcine study. Methods In 8 chronic MI pigs (59±5 kg), we performed dual-source CT, EAM, and pathology. For CT imaging, we performed 3 acquisitions at 10 minutes post-contrast: LE-CT 80 kV, LE-CT 100 kV, and LE-DECT with two post-processing software settings. Results Of the sequences, LE-CT 100 kV provided the best contrast-to-noise ratio (all p≤0.03) and correlation to pathology for scar (ρ=0.88). While LE-DECT overestimated scar (both p=0.02), LE-CT images did not (both p=0.08). On a segment basis (n=136), all CT sequences had high specificity (87–93%) and modest sensitivity (50–67%), with LE-CT 100 kV having the highest specificity of 93% for scar detection compared to pathology and agreement with EAM (κ 0.69). Conclusions Standard single-energy LE-CT, particularly 100kV, matched better to pathology and EAM than dual-energy LE-DECT for scar detection. Larger human trials as well as more technical-based studies that optimize varying different energies with newer hardware and software are warranted. PMID:25977115

  17. Breath-hold device for laboratory rodents undergoing imaging procedures.

    PubMed

    Rivera, Belinda; Bushman, Mark J; Beaver, Richard G; Cody, Dianna D; Price, Roger E

    2006-07-01

    The increased use in noninvasive imaging of laboratory rodents has prompted innovative techniques in animal handling. Lung imaging of rodents can be a difficult task because of tissue motion caused by breathing, which affects image quality. The use of a prototype flat-panel computed tomography unit allows the acquisition of images in as little as 2, 4, or 8 s. This short acquisition time has allowed us to improve the image quality of this instrument by performing a breath-hold during image acquisition. We designed an inexpensive and safe method for performing a constant-pressure breath-hold in intubated rodents. Initially a prototypic manual 3-way valve system, consisting of a 3-way valve, an air pressure regulator, and a manometer, was used to manually toggle between the ventilator and the constant-pressure breath-hold equipment. The success of the manual 3-way valve system prompted the design of an electronically actuated valve system. In the electronic system, the manual 3-way valve was replaced with a custom designed 3-way valve operated by an electrical solenoid. The electrical solenoid is triggered by using a hand-held push button or a foot pedal that is several feet away from the gantry of the scanner. This system has provided improved image quality and is safe for the animals, easy to use, and reliable.

  18. Full-field OCT: ex vivo and in vivo biological imaging applications

    NASA Astrophysics Data System (ADS)

    Grieve, Katharine; Dubois, Arnaud; Moneron, Gael; Guyot, Elvire; Boccara, Albert C.

    2005-04-01

    We present results of studies in embryology and ophthalmology performed using our ultrahigh-resolution full-field OCT system. We also discuss recent developments to our ultrashort acquisition time full-field optical coherence tomography system designed to allow in vivo biological imaging. Preliminary results of high-speed imaging in biological samples are presented. The core of the experimental setup is the Linnik interferometer, illuminated by a white light source. En face tomographic images are obtained in real-time without scanning by computing the difference of two phase-opposed interferometric images recorded by high-resolution CCD cameras. An isotropic spatial resolution of ~1 μm is achieved thanks to the short source coherence length and the use of high numerical aperture microscope objectives. A detection sensitivity of ~90 dB is obtained by means of image averaging and pixel binning. In ophthalmology, reconstructed xz images from rat ocular tissue are presented, where cellular-level structures in the retina are revealed, demonstrating the unprecedented resolution of our instrument. Three-dimensional reconstructions of the mouse embryo allowing the study of the establishment of the anterior-posterior axis are shown. Finally we present the first results of embryonic imaging using the new rapid acquisition full-field OCT system, which offers an acquisition time of 10 μs per frame.

  19. Circular motion geometry using minimal data.

    PubMed

    Jiang, Guang; Quan, Long; Tsui, Hung-Tat

    2004-06-01

    Circular motion or single axis motion is widely used in computer vision and graphics for 3D model acquisition. This paper describes a new and simple method for recovering the geometry of uncalibrated circular motion from a minimal set of only two points in four images. This problem has been previously solved using nonminimal data either by computing the fundamental matrix and trifocal tensor in three images or by fitting conics to tracked points in five or more images. It is first established that two sets of tracked points in different images under circular motion for two distinct space points are related by a homography. Then, we compute a plane homography from a minimal two points in four images. After that, we show that the unique pair of complex conjugate eigenvectors of this homography are the image of the circular points of the parallel planes of the circular motion. Subsequently, all other motion and structure parameters are computed from this homography in a straighforward manner. The experiments on real image sequences demonstrate the simplicity, accuracy, and robustness of the new method.

  20. A large-scale solar dynamics observatory image dataset for computer vision applications.

    PubMed

    Kucuk, Ahmet; Banda, Juan M; Angryk, Rafal A

    2017-01-01

    The National Aeronautics Space Agency (NASA) Solar Dynamics Observatory (SDO) mission has given us unprecedented insight into the Sun's activity. By capturing approximately 70,000 images a day, this mission has created one of the richest and biggest repositories of solar image data available to mankind. With such massive amounts of information, researchers have been able to produce great advances in detecting solar events. In this resource, we compile SDO solar data into a single repository in order to provide the computer vision community with a standardized and curated large-scale dataset of several hundred thousand solar events found on high resolution solar images. This publicly available resource, along with the generation source code, will accelerate computer vision research on NASA's solar image data by reducing the amount of time spent performing data acquisition and curation from the multiple sources we have compiled. By improving the quality of the data with thorough curation, we anticipate a wider adoption and interest from the computer vision to the solar physics community.

  1. PACS 2000: quality control using the task allocation chart

    NASA Astrophysics Data System (ADS)

    Norton, Gary S.; Romlein, John R.; Lyche, David K.; Richardson, Ronald R., Jr.

    2000-05-01

    Medical imaging's technological evolution in the next century will continue to include Picture Archive and Communication Systems (PACS) and teleradiology. It is difficult to predict radiology's future in the new millennium with both computed radiography and direct digital capture competing as the primary image acquisition methods for routine radiography. Changes in Computed Axial Tomography (CT) and Magnetic Resonance Imaging (MRI) continue to amaze the healthcare community. No matter how the acquisition, display, and archive functions change, Quality Control (QC) of the radiographic imaging chain will remain an important step in the imaging process. The Task Allocation Chart (TAC) is a tool that can be used in a medical facility's QC process to indicate the testing responsibilities of the image stakeholders and the medical informatics department. The TAC shows a grid of equipment to be serviced, tasks to be performed, and the organization assigned to perform each task. Additionally, skills, tasks, time, and references for each task can be provided. QC of the PACS must be stressed as a primary element of a PACS' implementation. The TAC can be used to clarify responsibilities during warranty and paid maintenance periods. Establishing a TAC a part of a PACS implementation has a positive affect on patient care and clinical acceptance.

  2. A self-teaching image processing and voice-recognition-based, intelligent and interactive system to educate visually impaired children

    NASA Astrophysics Data System (ADS)

    Iqbal, Asim; Farooq, Umar; Mahmood, Hassan; Asad, Muhammad Usman; Khan, Akrama; Atiq, Hafiz Muhammad

    2010-02-01

    A self teaching image processing and voice recognition based system is developed to educate visually impaired children, chiefly in their primary education. System comprises of a computer, a vision camera, an ear speaker and a microphone. Camera, attached with the computer system is mounted on the ceiling opposite (on the required angle) to the desk on which the book is placed. Sample images and voices in the form of instructions and commands of English, Urdu alphabets, Numeric Digits, Operators and Shapes are already stored in the database. A blind child first reads the embossed character (object) with the help of fingers than he speaks the answer, name of the character, shape etc into the microphone. With the voice command of a blind child received by the microphone, image is taken by the camera which is processed by MATLAB® program developed with the help of Image Acquisition and Image processing toolbox and generates a response or required set of instructions to child via ear speaker, resulting in self education of a visually impaired child. Speech recognition program is also developed in MATLAB® with the help of Data Acquisition and Signal Processing toolbox which records and process the command of the blind child.

  3. Security screening via computational imaging using frequency-diverse metasurface apertures

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Reynolds, Matthew S.; Gollub, Jonah N.; Marks, Daniel L.; Imani, Mohammadreza F.; Yurduseven, Okan; Arnitz, Daniel; Pedross-Engel, Andreas; Sleasman, Timothy; Trofatter, Parker; Boyarsky, Michael; Rose, Alec; Odabasi, Hayrettin; Lipworth, Guy

    2017-05-01

    Computational imaging is a proven strategy for obtaining high-quality images with fast acquisition rates and simpler hardware. Metasurfaces provide exquisite control over electromagnetic fields, enabling the radiated field to be molded into unique patterns. The fusion of these two concepts can bring about revolutionary advances in the design of imaging systems for security screening. In the context of computational imaging, each field pattern serves as a single measurement of a scene; imaging a scene can then be interpreted as estimating the reflectivity distribution of a target from a set of measurements. As with any computational imaging system, the key challenge is to arrive at a minimal set of measurements from which a diffraction-limited image can be resolved. Here, we show that the information content of a frequency-diverse metasurface aperture can be maximized by design, and used to construct a complete millimeter-wave imaging system spanning a 2 m by 2 m area, consisting of 96 metasurfaces, capable of producing diffraction-limited images of human-scale targets. The metasurfacebased frequency-diverse system presented in this work represents an inexpensive, but tremendously flexible alternative to traditional hardware paradigms, offering the possibility of low-cost, real-time, and ubiquitous screening platforms.

  4. Concurrent PET/CT with an integrated imaging system: intersociety dialogue from the joint working group of the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.

    PubMed

    Coleman, R Edward; Delbeke, Dominique; Guiberteau, Milton J; Conti, Peter S; Royal, Henry D; Weinreb, Jeffrey C; Siegel, Barry A; Federle, Michael F; Townsend, David W; Berland, Lincoln L

    2005-07-01

    Rapid advances in imaging technology are a challenge for health care professionals, who must determine how best to use these technologies to optimize patient care and outcomes. Hybrid imaging instrumentation, combining 2 or more new or existing technologies, each with its own separate history of clinical evolution, such as PET and CT, may be especially challenging. CT and PET provide complementary anatomic information and molecular information, respectively, with PET giving specificity to anatomic findings and CT offering precise localization of metabolic activity. Historically, the acquisition and interpretation of the 2 image sets have been performed separately and very often at different times and locales. Recently, integrated PET/CT systems have become available; these systems provide PET and CT images that are acquired nearly simultaneously and are capable of producing superimposed, coregistered images, greatly facilitating interpretation. As the implementation of this integrated technology has become more widespread in the setting of oncologic imaging, questions and concerns regarding equipment specifications, image acquisition protocols, supervision, interpretation, professional qualifications, and safety have arisen. This article summarizes the discussions and observations surrounding these issues by a collaborative working group consisting of representatives from the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.

  5. Concurrent PET/CT with an integrated imaging system: intersociety dialogue from the Joint Working Group of the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.

    PubMed

    Coleman, R Edward; Delbeke, Dominique; Guiberteau, Milton J; Conti, Peter S; Royal, Henry D; Weinreb, Jeffrey C; Siegel, Barry A; Federle, Michael P; Townsend, David W; Berland, Lincoln L

    2005-07-01

    Rapid advances in imaging technology are a challenge for health care professionals, who must determine how best to use these technologies to optimize patient care and outcomes. Hybrid imaging instrumentation, combining 2 or more new or existing technologies, each with its own separate history of clinical evolution, such as PET and CT, may be especially challenging. CT and PET provide complementary anatomic information and molecular information, respectively, with PET giving specificity to anatomic findings and CT offering precise localization of metabolic activity. Historically, the acquisition and interpretation of the 2 image sets have been performed separately and very often at different times and locales. Recently, integrated PET/CT systems have become available; these systems provide PET and CT images that are acquired nearly simultaneously and are capable of producing superimposed, coregistered images, greatly facilitating interpretation. As the implementation of this integrated technology has become more widespread in the setting of oncologic imaging, questions and concerns regarding equipment specifications, image acquisition protocols, supervision, interpretation, professional qualifications, and safety have arisen. This article summarizes the discussions and observations surrounding these issues by a collaborative working group consisting of representatives from the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.

  6. A general method for motion compensation in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-08-01

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  7. A general method for motion compensation in x-ray computed tomography.

    PubMed

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-07-24

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  8. Evaluation of oesophageal transit velocity using the improved Demons technique.

    PubMed

    De Souza, Michele N; Xavier, Fernando E B; Secaf, Marie; Troncon, Luiz E A; de Oliveira, Ricardo B; Moraes, Eder R

    2016-01-01

    This paper presents a novel method to compute oesophageal transit velocity in a direct and automatized manner by the registration of scintigraphy images. A total of 36 images from nine healthy volunteers were processed. Four dynamic image series per volunteer were acquired after a minimum 8 h fast. Each acquisition was made following the ingestion of 5 ml saline labelled with about 26 MBq (700 µCi) technetium-99m phytate in a single swallow. Between the acquisitions, another two swallows of 5 ml saline were performed to clear the oesophagus. The composite acquired files were made of 240 frames of anterior and posterior views. Each frame is the accumulate count for 250 ms.At the end of acquisitions, the images were corrected for radioactive decay, the geometric mean was computed between the anterior and posterior views and the registration of a set of subsequent images was performed. Utilizing the improved Demons technique, we obtained from the deformation field the regional resultant velocity, which is directly related to the oesophagus transit velocity. The mean regional resulting velocities decreases progressively from the proximal to the distal oesophageal portions and, at the proximal portion, is virtually identical to the primary peristaltic pump typical velocity. Comparison between this parameter and 'time-activity' curves reveals consistency in velocities obtained using both methods, for the proximal portion. Application of the improved Demons technique, as an easy and automated method to evaluate velocities of oesophageal bolus transit, is feasible and seems to yield consistent data, particularly for the proximal oesophagus.

  9. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the society of Cardiovascular Computed Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging (NASCI).

    PubMed

    Abbara, Suhny; Blanke, Philipp; Maroules, Christopher D; Cheezum, Michael; Choi, Andrew D; Han, B Kelly; Marwan, Mohamed; Naoum, Chris; Norgaard, Bjarne L; Rubinshtein, Ronen; Schoenhagen, Paul; Villines, Todd; Leipsic, Jonathon

    In response to recent technological advancements in acquisition techniques as well as a growing body of evidence regarding the optimal performance of coronary computed tomography angiography (coronary CTA), the Society of Cardiovascular Computed Tomography Guidelines Committee has produced this update to its previously established 2009 "Guidelines for the Performance of Coronary CTA" (1). The purpose of this document is to provide standards meant to ensure reliable practice methods and quality outcomes based on the best available data in order to improve the diagnostic care of patients. Society of Cardiovascular Computed Tomography Guidelines for the Interpretation is published separately (2). The Society of Cardiovascular Computed Tomography Guidelines Committee ensures compliance with all existing standards for the declaration of conflict of interest by all authors and reviewers for the purpose ofclarity and transparency. Copyright © 2016 Society of Cardiovascular Computed Tomography. All rights reserved.

  10. Spectral Prior Image Constrained Compressed Sensing (Spectral PICCS) for Photon-Counting Computed Tomography

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-01-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878

  11. Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-09-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.

  12. Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy

    PubMed Central

    Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.

    2014-01-01

    Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868

  13. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.

    PubMed

    Tankam, Patrice; Santhanam, Anand P; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P

    2014-07-01

    Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.

  14. Determination of left ventricular volume, ejection fraction, and myocardial mass by real-time three-dimensional echocardiography

    NASA Technical Reports Server (NTRS)

    Qin, J. X.; Shiota, T.; Thomas, J. D.

    2000-01-01

    Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.

  15. Determination of left ventricular volume, ejection fraction, and myocardial mass by real-time three-dimensional echocardiography.

    PubMed

    Qin, J X; Shiota, T; Thomas, J D

    2000-11-01

    Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.

  16. Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer

    PubMed Central

    Zemp, Roger J.; Song, Liang; Bitton, Rachel; Shung, K. Kirk; Wang, Lihong V.

    2009-01-01

    We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-µm-diameter carbon fibers are experimentally demonstrated at 80 µm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5–3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge. PMID:18545502

  17. Evaluation of a High-Resolution Benchtop Micro-CT Scanner for Application in Porous Media Research

    NASA Astrophysics Data System (ADS)

    Tuller, M.; Vaz, C. M.; Lasso, P. O.; Kulkarni, R.; Ferre, T. A.

    2010-12-01

    Recent advances in Micro Computed Tomography (MCT) provided the motivation to thoroughly evaluate and optimize scanning, image reconstruction/segmentation and pore-space analysis capabilities of a new generation benchtop MCT scanner and associated software package. To demonstrate applicability to soil research the project was focused on determination of porosities and pore size distributions of two Brazilian Oxisols from segmented MCT-data. Effects of metal filters and various acquisition parameters (e.g. total rotation, rotation step, and radiograph frame averaging) on image quality and acquisition time are evaluated. Impacts of sample size and scanning resolution on CT-derived porosities and pore-size distributions are illustrated.

  18. Applications of nonlocal means algorithm in low-dose X-ray CT image processing and reconstruction: a review

    PubMed Central

    Zhang, Hao; Zeng, Dong; Zhang, Hua; Wang, Jing; Liang, Zhengrong

    2017-01-01

    Low-dose X-ray computed tomography (LDCT) imaging is highly recommended for use in the clinic because of growing concerns over excessive radiation exposure. However, the CT images reconstructed by the conventional filtered back-projection (FBP) method from low-dose acquisitions may be severely degraded with noise and streak artifacts due to excessive X-ray quantum noise, or with view-aliasing artifacts due to insufficient angular sampling. In 2005, the nonlocal means (NLM) algorithm was introduced as a non-iterative edge-preserving filter to denoise natural images corrupted by additive Gaussian noise, and showed superior performance. It has since been adapted and applied to many other image types and various inverse problems. This paper specifically reviews the applications of the NLM algorithm in LDCT image processing and reconstruction, and explicitly demonstrates its improving effects on the reconstructed CT image quality from low-dose acquisitions. The effectiveness of these applications on LDCT and their relative performance are described in detail. PMID:28303644

  19. Improved virtual cardiac phantom with variable diastolic filling rates and coronary artery velocities

    NASA Astrophysics Data System (ADS)

    Sturgeon, Gregory M.; Richards, Taylor W.; Samei, E.; Segars, W. P.

    2017-03-01

    To facilitate studies of measurement uncertainty in computed tomography angiography (CTA), we investigated the cardiac motion profile and resulting coronary artery motion utilizing innovative dynamic virtual and physical phantoms. The four-chamber cardiac finite element (FE) model developed in the Living Heart Project (LHP) served as the computational basis for our virtual cardiac phantom. This model provides deformation or strain information at high temporal and spatial resolution, exceeding that of speckle tracking echocardiography or tagged MRI. This model was extended by fitting its motion profile to left ventricular (LV) volume-time curves obtained from patient echocardiography data. By combining the dynamic patient variability from echo with the local strain information from the FE model, a series of virtual 4D cardiac phantoms were developed. Using the computational phantoms, we characterized the coronary motion and its effect on plaque imaging under a range of heart rates subject to variable diastolic function. The coronary artery motion was sampled at 248 spatial locations over 500 consecutive time frames. The coronary artery velocities were calculated as their average velocity during an acquisition window centered at each time frame, which minimized the discretization error. For the initial set of twelve patients, the diastatic coronary artery velocity ranged from 36.5 mm/s to 2.0 mm/s with a mean of 21.4 mm/s assuming an acquisition time of 75 ms. The developed phantoms have great potential in modeling cardiac imaging, providing a known truth and multiple realistic cardiac motion profiles to evaluate different image acquisition or reconstruction methods.

  20. Interactive local super-resolution reconstruction of whole-body MRI mouse data: a pilot study with applications to bone and kidney metastases.

    PubMed

    Dzyubachyk, Oleh; Khmelinskii, Artem; Plenge, Esben; Kok, Peter; Snoeks, Thomas J A; Poot, Dirk H J; Löwik, Clemens W G M; Botha, Charl P; Niessen, Wiro J; van der Weerd, Louise; Meijering, Erik; Lelieveldt, Boudewijn P F

    2014-01-01

    In small animal imaging studies, when the locations of the micro-structures of interest are unknown a priori, there is a simultaneous need for full-body coverage and high resolution. In MRI, additional requirements to image contrast and acquisition time will often make it impossible to acquire such images directly. Recently, a resolution enhancing post-processing technique called super-resolution reconstruction (SRR) has been demonstrated to improve visualization and localization of micro-structures in small animal MRI by combining multiple low-resolution acquisitions. However, when the field-of-view is large relative to the desired voxel size, solving the SRR problem becomes very expensive, in terms of both memory requirements and computation time. In this paper we introduce a novel local approach to SRR that aims to overcome the computational problems and allow researchers to efficiently explore both global and local characteristics in whole-body small animal MRI. The method integrates state-of-the-art image processing techniques from the areas of articulated atlas-based segmentation, planar reformation, and SRR. A proof-of-concept is provided with two case studies involving CT, BLI, and MRI data of bone and kidney tumors in a mouse model. We show that local SRR-MRI is a computationally efficient complementary imaging modality for the precise characterization of tumor metastases, and that the method provides a feasible high-resolution alternative to conventional MRI.

  1. Database for the collection and analysis of clinical data and images of neoplasms of the sinonasal tract.

    PubMed

    Trimarchi, Matteo; Lund, Valerie J; Nicolai, Piero; Pini, Massimiliano; Senna, Massimo; Howard, David J

    2004-04-01

    The Neoplasms of the Sinonasal Tract software package (NSNT v 1.0) implements a complete visual database for patients with sinonasal neoplasia, facilitating standardization of data and statistical analysis. The software, which is compatible with the Macintosh and Windows platforms, provides multiuser application with a dedicated server (on Windows NT or 2000 or Macintosh OS 9 or X and a network of clients) together with web access, if required. The system hardware consists of an Apple Power Macintosh G4500 MHz computer with PCI bus, 256 Mb of RAM plus 60 Gb hard disk, or any IBM-compatible computer with a Pentium 2 processor. Image acquisition may be performed with different frame-grabber cards for analog or digital video input of different standards (PAL, SECAM, or NTSC) and levels of quality (VHS, S-VHS, Betacam, Mini DV, DV). The visual database is based on 4th Dimension by 4D Inc, and video compression is made in real-time MPEG format. Six sections have been developed: demographics, symptoms, extent of disease, radiology, treatment, and follow-up. Acquisition of data includes computed tomography and magnetic resonance imaging, histology, and endoscopy images, allowing sequential comparison. Statistical analysis integral to the program provides Kaplan-Meier survival curves. The development of a dedicated, user-friendly database for sinonasal neoplasia facilitates a multicenter network and has obvious clinical and research benefits.

  2. Interfacing laboratory instruments to multiuser, virtual memory computers

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Stang, David B.; Roth, Don J.

    1989-01-01

    Incentives, problems and solutions associated with interfacing laboratory equipment with multiuser, virtual memory computers are presented. The major difficulty concerns how to utilize these computers effectively in a medium sized research group. This entails optimization of hardware interconnections and software to facilitate multiple instrument control, data acquisition and processing. The architecture of the system that was devised, and associated programming and subroutines are described. An example program involving computer controlled hardware for ultrasonic scan imaging is provided to illustrate the operational features.

  3. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.

    PubMed

    Matovic, Milovan; Jankovic, Milica; Barjaktarovic, Marko; Jeremic, Marija

    2017-01-01

    After radioiodine therapy of differentiated thyroid cancer (DTC) patients, whole body scintigraphy (WBS) is standard procedure before releasing the patient from the hospital. A common problem is the precise localization of regions where the iod-avide tissue is located. Sometimes is practically impossible to perform precise topographic localization of such regions. In order to face this problem, we have developed a low-cost Vision-Fusion system for web-camera image acquisition simultaneously with routine scintigraphic whole body acquisition including the algorithm for fusion of images given from both cameras. For image acquisition in the gamma part of the spectra we used e.cam dual head gamma camera (Siemens, Erlangen, Germany) in WBS modality, with matrix size of 256×1024 pixels and bed speed of 6cm/min, equipped with high energy collimator. For optical image acquisition in visible part of spectra we have used web-camera model C905 (Logitech, USA) with Carl Zeiss® optics, native resolution 1600×1200 pixels, 34 o field of view, 30g weight, with autofocus option turned "off" and auto white balance turned "on". Web camera is connected to upper head of gamma camera (GC) by a holder of lightweight aluminum rod and a plexiglas adapter. Our own Vision-Fusion software for image acquisition and coregistration was developed using NI LabVIEW programming environment 2015 (National Instruments, Texas, USA) and two additional LabVIEW modules: NI Vision Acquisition Software (VAS) and NI Vision Development Module (VDM). Vision acquisition software enables communication and control between laptop computer and web-camera. Vision development module is image processing library used for image preprocessing and fusion. Software starts the web-camera image acquisition before starting image acquisition on GC and stops it when GC completes the acquisition. Web-camera is in continuous acquisition mode with frame rate f depending on speed of patient bed movement v (f=v/∆ cm , where ∆ cm is a displacement step that can be changed in Settings option of Vision-Fusion software; by default, ∆ cm is set to 1cm corresponding to ∆ p =15 pixels). All images captured while patient's bed is moving are processed. Movement of patient's bed is checked using cross-correlation of two successive images. After each image capturing, algorithm extracts the central region of interest (ROI) of the image, with the same width as captured image (1600 pixels) and the height that is equal to the ∆ p displacement in pixels. All extracted central ROI are placed next to each other in the overall whole-body image. Stacking of narrow central ROI introduces negligible distortion in the overall whole-body image. The first step for fusion of the scintigram and the optical image was determination of spatial transformation between them. We have made an experiment with two markers (point radioactivity sources of 99m Tc pertechnetate 1MBq) visible in both images (WBS and optical) to find transformation of coordinates between images. The distance between point markers is used for spatial coregistration of the gamma and optical images. At the end of coregistration process, gamma image is rescaled in spatial domain and added to the optical image (green or red channel, amplification changeable from user interface). We tested our system for 10 patients with DTC who received radioiodine therapy (8 women and two men, with average age of 50.10±12.26 years). Five patients received 5.55Gbq, three 3.70GBq and two 1.85GBq. Whole-body scintigraphy and optical image acquisition were performed 72 hours after application of radioiodine therapy. Based on our first results during clinical testing of our system, we can conclude that our system can improve diagnostic possibility of whole body scintigraphy to detect thyroid remnant tissue in patients with DTC after radioiodine therapy.

  4. 48 CFR 252.239-7018 - Supply chain risk.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subsystem(s) of equipment, that is used in the automatic acquisition, storage, analysis, evaluation..., ancillary equipment (including imaging peripherals, input, output, and storage devices necessary for... of a computer, software, firmware and similar procedures, services (including support services), and...

  5. Optronic System Imaging Simulator (OSIS): imager simulation tool of the ECOMOS project

    NASA Astrophysics Data System (ADS)

    Wegner, D.; Repasi, E.

    2018-04-01

    ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defense and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses two approaches to calculate Target Acquisition (TA) ranges, the analytical TRM4 model and the image-based Triangle Orientation Discrimination model (TOD). In this paper the IR imager simulation tool, Optronic System Imaging Simulator (OSIS), is presented. It produces virtual camera imagery required by the TOD approach. Pristine imagery is degraded by various effects caused by atmospheric attenuation, optics, detector footprint, sampling, fixed pattern noise, temporal noise and digital signal processing. Resulting images might be presented to observers or could be further processed for automatic image quality calculations. For convenience OSIS incorporates camera descriptions and intermediate results provided by TRM4. For input OSIS uses pristine imagery tied with meta information about scene content, its physical dimensions, and gray level interpretation. These images represent planar targets placed at specified distances to the imager. Furthermore, OSIS is extended by a plugin functionality that enables integration of advanced digital signal processing techniques in ECOMOS such as compression, local contrast enhancement, digital turbulence mitiga- tion, to name but a few. By means of this image-based approach image degradations and image enhancements can be investigated, which goes beyond the scope of the analytical TRM4 model.

  6. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  7. UWGSP7: a real-time optical imaging workstation

    NASA Astrophysics Data System (ADS)

    Bush, John E.; Kim, Yongmin; Pennington, Stan D.; Alleman, Andrew P.

    1995-04-01

    With the development of UWGSP7, the University of Washington Image Computing Systems Laboratory has a real-time workstation for continuous-wave (cw) optical reflectance imaging. Recent discoveries in optical science and imaging research have suggested potential practical use of the technology as a medical imaging modality and identified the need for a machine to support these applications in real time. The UWGSP7 system was developed to provide researchers with a high-performance, versatile tool for use in optical imaging experiments with the eventual goal of bringing the technology into clinical use. One of several major applications of cw optical reflectance imaging is tumor imaging which uses a light-absorbing dye that preferentially sequesters in tumor tissue. This property could be used to locate tumors and to identify tumor margins intraoperatively. Cw optical reflectance imaging consists of illumination of a target with a band-limited light source and monitoring the light transmitted by or reflected from the target. While continuously illuminating the target, a control image is acquired and stored. A dye is injected into a subject and a sequence of data images are acquired and processed. The data images are aligned with the control image and then subtracted to obtain a signal representing the change in optical reflectance over time. This signal can be enhanced by digital image processing and displayed in pseudo-color. This type of emerging imaging technique requires a computer system that is versatile and adaptable. The UWGSP7 utilizes a VESA local bus PC as a host computer running the Windows NT operating system and includes ICSL developed add-on boards for image acquisition and processing. The image acquisition board is used to digitize and format the analog signal from the input device into digital frames and to the average frames into images. To accommodate different input devices, the camera interface circuitry is designed in a small mezzanine board that supports the RS-170 standard. The image acquisition board is connected to the image- processing board using a direct connect port which provides a 66 Mbytes/s channel independent of the system bus. The image processing board utilizes the Texas Instruments TMS320C80 Multimedia Video Processor chip. This chip is capable of 2 billion operations per second providing the UWGSP7 with the capability to perform real-time image processing functions like median filtering, convolution and contrast enhancement. This processing power allows interactive analysis of the experiments as compared to current practice of off-line processing and analysis. Due to its flexibility and programmability, the UWGSP7 can be adapted into various research needs in intraoperative optical imaging.

  8. Flexible mini gamma camera reconstructions of extended sources using step and shoot and list mode.

    PubMed

    Gardiazabal, José; Matthies, Philipp; Vogel, Jakob; Frisch, Benjamin; Navab, Nassir; Ziegler, Sibylle; Lasser, Tobias

    2016-12-01

    Hand- and robot-guided mini gamma cameras have been introduced for the acquisition of single-photon emission computed tomography (SPECT) images. Less cumbersome than whole-body scanners, they allow for a fast acquisition of the radioactivity distribution, for example, to differentiate cancerous from hormonally hyperactive lesions inside the thyroid. This work compares acquisition protocols and reconstruction algorithms in an attempt to identify the most suitable approach for fast acquisition and efficient image reconstruction, suitable for localization of extended sources, such as lesions inside the thyroid. Our setup consists of a mini gamma camera with precise tracking information provided by a robotic arm, which also provides reproducible positioning for our experiments. Based on a realistic phantom of the thyroid including hot and cold nodules as well as background radioactivity, the authors compare "step and shoot" (SAS) and continuous data (CD) acquisition protocols in combination with two different statistical reconstruction methods: maximum-likelihood expectation-maximization (ML-EM) for time-integrated count values and list-mode expectation-maximization (LM-EM) for individually detected gamma rays. In addition, the authors simulate lower uptake values by statistically subsampling the experimental data in order to study the behavior of their approach without changing other aspects of the acquired data. All compared methods yield suitable results, resolving the hot nodules and the cold nodule from the background. However, the CD acquisition is twice as fast as the SAS acquisition, while yielding better coverage of the thyroid phantom, resulting in qualitatively more accurate reconstructions of the isthmus between the lobes. For CD acquisitions, the LM-EM reconstruction method is preferable, as it yields comparable image quality to ML-EM at significantly higher speeds, on average by an order of magnitude. This work identifies CD acquisition protocols combined with LM-EM reconstruction as a prime candidate for the wider introduction of SPECT imaging with flexible mini gamma cameras in the clinical practice.

  9. Multi-slice computed tomography 5-minute delayed scan is superior to immediate scan after contrast media application in characterization of intracranial tuberculosis.

    PubMed

    Hou, Dailun; Qu, Huifang; Zhang, Xu; Li, Ning; Liu, Cheng; Ma, Xiangxing

    2014-09-02

    The aim of this study was to determine whether the diagnosis of intracranial tuberculosis (TB) can be improved when multi-slice computed tomography (MSCT) scans are taken with a 5-min delay after contrast media application. Pre- and post-contrast CT scans of the head were obtained from 30 patients using a 16-slice spiral CT. Dual-phase acquisition was performed immediately and 5 min after contrast agent injection. Diagnostic values of different images were compared using a scoring system applied by 2 experienced radiologists. We found 526 lesions in 30 patients, including 22 meningeal thickenings, 235 meningeal tuberculomas/tubercles, and 269 parenchymal tuberculomas/tubercles. Images obtained with 5-min delayed scan time were superior in terms of lesion size and meningeal thickening outlining in all disease types (P<0.01). The ability to distinguish between vascular sections from the cerebral sulcus and tubercle was also improved (P<0.01). Image acquisition with 5-min delay after contrast agent injection should be performed as a standard scanning protocol to diagnose intracranial TB.

  10. [Detection of lung nodules. New opportunities in chest radiography].

    PubMed

    Pötter-Lang, S; Schalekamp, S; Schaefer-Prokop, C; Uffmann, M

    2014-05-01

    Chest radiography still represents the most commonly performed X-ray examination because it is readily available, requires low radiation doses and is relatively inexpensive. However, as previously published, many initially undetected lung nodules are retrospectively visible in chest radiographs. The great improvements in detector technology with the increasing dose efficiency and improved contrast resolution provide a better image quality and reduced dose needs. The dual energy acquisition technique and advanced image processing methods (e.g. digital bone subtraction and temporal subtraction) reduce the anatomical background noise by reduction of overlapping structures in chest radiography. Computer-aided detection (CAD) schemes increase the awareness of radiologists for suspicious areas. The advanced image processing methods show clear improvements for the detection of pulmonary lung nodules in chest radiography and strengthen the role of this method in comparison to 3D acquisition techniques, such as computed tomography (CT). Many of these methods will probably be integrated into standard clinical treatment in the near future. Digital software solutions offer advantages as they can be easily incorporated into radiology departments and are often more affordable as compared to hardware solutions.

  11. NDE scanning and imaging of aircraft structure

    NASA Astrophysics Data System (ADS)

    Bailey, Donald; Kepler, Carl; Le, Cuong

    1995-07-01

    The Science and Engineering Lab at McClellan Air Force Base, Sacramento, Calif. has been involved in the development and use of computer-based scanning systems for NDE (nondestructive evaluation) since 1985. This paper describes the history leading up to our current applications which employ eddy current and ultrasonic scanning of aircraft structures that contain both metallics and advanced composites. The scanning is performed using industrialized computers interfaced to proprietary acquisition equipment and software. Examples are shown that image several types of damage such as exfoliation and fuselage lap joint corrosion in aluminum, impact damage, embedded foreign material, and porosity in Kevlar and graphite epoxy composites. Image analysis techniques are reported that are performed using consumer oriented computer hardware and software that are not NDE specific and not expensive

  12. US-Cut: interactive algorithm for rapid detection and segmentation of liver tumors in ultrasound acquisitions

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Chen, Xiaojun; Zoller, Wolfram G.; Schmalstieg, Dieter; Hann, Alexander

    2016-04-01

    Ultrasound (US) is the most commonly used liver imaging modality worldwide. It plays an important role in follow-up of cancer patients with liver metastases. We present an interactive segmentation approach for liver tumors in US acquisitions. Due to the low image quality and the low contrast between the tumors and the surrounding tissue in US images, the segmentation is very challenging. Thus, the clinical practice still relies on manual measurement and outlining of the tumors in the US images. We target this problem by applying an interactive segmentation algorithm to the US data, allowing the user to get real-time feedback of the segmentation results. The algorithm has been developed and tested hand-in-hand by physicians and computer scientists to make sure a future practical usage in a clinical setting is feasible. To cover typical acquisitions from the clinical routine, the approach has been evaluated with dozens of datasets where the tumors are hyperechoic (brighter), hypoechoic (darker) or isoechoic (similar) in comparison to the surrounding liver tissue. Due to the interactive real-time behavior of the approach, it was possible even in difficult cases to find satisfying segmentations of the tumors within seconds and without parameter settings, and the average tumor deviation was only 1.4mm compared with manual measurements. However, the long term goal is to ease the volumetric acquisition of liver tumors in order to evaluate for treatment response. Additional aim is the registration of intraoperative US images via the interactive segmentations to the patient's pre-interventional CT acquisitions.

  13. Unwarping confocal microscopy images of bee brains by nonrigid registration to a magnetic resonance microscopy image.

    PubMed

    Rohlfing, Torsten; Schaupp, Frank; Haddad, Daniel; Brandt, Robert; Haase, Axel; Menzel, Randolf; Maurer, Calvin R

    2005-01-01

    Confocal microscopy (CM) is a powerful image acquisition technique that is well established in many biological applications. It provides 3-D acquisition with high spatial resolution and can acquire several different channels of complementary image information. Due to the specimen extraction and preparation process, however, the shapes of imaged objects may differ considerably from their in vivo appearance. Magnetic resonance microscopy (MRM) is an evolving variant of magnetic resonance imaging, which achieves microscopic resolutions using a high magnetic field and strong magnetic gradients. Compared to CM imaging, MRM allows for in situ imaging and is virtually free of geometrical distortions. We propose to combine the advantages of both methods by unwarping CM images using a MRM reference image. Our method incorporates a sequence of image processing operators applied to the MRM image, followed by a two-stage intensity-based registration to compute a nonrigid coordinate transformation between the CM images and the MRM image. We present results obtained using CM images from the brains of 20 honey bees and a MRM image of an in situ bee brain. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.

  14. Comparison of the accuracy of 3-dimensional cone-beam computed tomography and micro-computed tomography reconstructions by using different voxel sizes.

    PubMed

    Maret, Delphine; Peters, Ove A; Galibourg, Antoine; Dumoncel, Jean; Esclassan, Rémi; Kahn, Jean-Luc; Sixou, Michel; Telmon, Norbert

    2014-09-01

    Cone-beam computed tomography (CBCT) data are, in principle, metrically exact. However, clinicians need to consider the precision of measurements of dental morphology as well as other hard tissue structures. CBCT spatial resolution, and thus image reconstruction quality, is restricted by the acquisition voxel size. The aim of this study was to assess geometric discrepancies among 3-dimensional CBCT reconstructions relative to the micro-CT reference. A total of 37 permanent teeth from 9 mandibles were scanned with CBCT 9500 and 9000 3D and micro-CT. After semiautomatic segmentation, reconstructions were obtained from CBCT acquisitions (voxel sizes 76, 200, and 300 μm) and from micro-CT (voxel size 41 μm). All reconstructions were positioned in the same plane by image registration. The topography of the geometric discrepancies was displayed by using a color map allowing the maximum differences to be located. The maximum differences were mainly found at the cervical margins and on the cusp tips or incisal edges. Geometric reconstruction discrepancies were significant at 300-μm resolution (P = .01, Wilcoxon test). To study hard tissue morphology, CBCT acquisitions require voxel sizes smaller than 300 μm. This experimental study will have to be complemented by studies in vivo that consider the conditions of clinical practice. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    PubMed

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  16. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers

    PubMed Central

    Cui, Yang; Hanley, Luke

    2015-01-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science. PMID:26133872

  17. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers

    NASA Astrophysics Data System (ADS)

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  18. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  19. Ringing Artefact Reduction By An Efficient Likelihood Improvement Method

    NASA Astrophysics Data System (ADS)

    Fuderer, Miha

    1989-10-01

    In MR imaging, the extent of the acquired spatial frequencies of the object is necessarily finite. The resulting image shows artefacts caused by "truncation" of its Fourier components. These are known as Gibbs artefacts or ringing artefacts. These artefacts are particularly. visible when the time-saving reduced acquisition method is used, say, when scanning only the lowest 70% of the 256 data lines. Filtering the data results in loss of resolution. A method is described that estimates the high frequency data from the low-frequency data lines, with the likelihood of the image as criterion. It is a computationally very efficient method, since it requires practically only two extra Fourier transforms, in addition to the normal. reconstruction. The results of this method on MR images of human subjects are promising. Evaluations on a 70% acquisition image show about 20% decrease of the error energy after processing. "Error energy" is defined as the total power of the difference to a 256-data-lines reference image. The elimination of ringing artefacts then appears almost complete..

  20. Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging.

    PubMed

    Cross, Russell; Olivieri, Laura; O'Brien, Kendall; Kellman, Peter; Xue, Hui; Hansen, Michael

    2016-02-25

    Traditional cine imaging for cardiac functional assessment requires breath-holding, which can be problematic in some situations. Free-breathing techniques have relied on multiple averages or real-time imaging, producing images that can be spatially and/or temporally blurred. To overcome this, methods have been developed to acquire real-time images over multiple cardiac cycles, which are subsequently motion corrected and reformatted to yield a single image series displaying one cardiac cycle with high temporal and spatial resolution. Application of these algorithms has required significant additional reconstruction time. The use of distributed computing was recently proposed as a way to improve clinical workflow with such algorithms. In this study, we have deployed a distributed computing version of motion corrected re-binning reconstruction for free-breathing evaluation of cardiac function. Twenty five patients and 25 volunteers underwent cardiovascular magnetic resonance (CMR) for evaluation of left ventricular end-systolic volume (ESV), end-diastolic volume (EDV), and end-diastolic mass. Measurements using motion corrected re-binning were compared to those using breath-held SSFP and to free-breathing SSFP with multiple averages, and were performed by two independent observers. Pearson correlation coefficients and Bland-Altman plots tested agreement across techniques. Concordance correlation coefficient and Bland-Altman analysis tested inter-observer variability. Total scan plus reconstruction times were tested for significant differences using paired t-test. Measured volumes and mass obtained by motion corrected re-binning and by averaged free-breathing SSFP compared favorably to those obtained by breath-held SSFP (r = 0.9863/0.9813 for EDV, 0.9550/0.9685 for ESV, 0.9952/0.9771 for mass). Inter-observer variability was good with concordance correlation coefficients between observers across all acquisition types suggesting substantial agreement. Both motion corrected re-binning and averaged free-breathing SSFP acquisition and reconstruction times were shorter than breath-held SSFP techniques (p < 0.0001). On average, motion corrected re-binning required 3 min less than breath-held SSFP imaging, a 37% reduction in acquisition and reconstruction time. The motion corrected re-binning image reconstruction technique provides robust cardiac imaging that can be used for quantification that compares favorably to breath-held SSFP as well as multiple average free-breathing SSFP, but can be obtained in a fraction of the time when using cloud-based distributed computing reconstruction.

  1. QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays.

    PubMed

    Jung, Sang-Kyu; Aleman-Meza, Boanerges; Riepe, Celeste; Zhong, Weiwei

    2014-01-01

    Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.

  2. More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPUs

    PubMed Central

    Gai, Jiading; Obeid, Nady; Holtrop, Joseph L.; Wu, Xiao-Long; Lam, Fan; Fu, Maojing; Haldar, Justin P.; Hwu, Wen-mei W.; Liang, Zhi-Pei; Sutton, Bradley P.

    2013-01-01

    Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code. PMID:23682203

  3. Initial clinical evaluation of stationary digital chest tomosynthesis

    NASA Astrophysics Data System (ADS)

    Hartman, Allison E.; Shan, Jing; Wu, Gongting; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping; Heath, Michael; Wang, Xiaohui; Foos, David

    2016-03-01

    Computed Tomography (CT) is the gold standard for image evaluation of lung disease, including lung cancer and cystic fibrosis. It provides detailed information of the lung anatomy and lesions, but at a relatively high cost and high dose of radiation. Chest radiography is a low dose imaging modality but it has low sensitivity. Digital chest tomosynthesis (DCT) is an imaging modality that produces 3D images by collecting x-ray projection images over a limited angle. DCT is less expensive than CT and requires about 1/10th the dose of radiation. Commercial DCT systems acquire the projection images by mechanically scanning an x-ray tube. The movement of the tube head limits acquisition speed. We recently demonstrated the feasibility of stationary digital chest tomosynthesis (s-DCT) using a carbon nanotube (CNT) x-ray source array in benchtop phantom studies. The stationary x-ray source allows for fast image acquisition. The objective of this study is to demonstrate the feasibility of s-DCT for patient imaging. We have successfully imaged 31 patients. Preliminary evaluation by board certified radiologists suggests good depiction of thoracic anatomy and pathology.

  4. Six-minute magnetic resonance imaging protocol for evaluation of acute ischemic stroke: pushing the boundaries.

    PubMed

    Nael, Kambiz; Khan, Rihan; Choudhary, Gagandeep; Meshksar, Arash; Villablanca, Pablo; Tay, Jennifer; Drake, Kendra; Coull, Bruce M; Kidwell, Chelsea S

    2014-07-01

    If magnetic resonance imaging (MRI) is to compete with computed tomography for evaluation of patients with acute ischemic stroke, there is a need for further improvements in acquisition speed. Inclusion criteria for this prospective, single institutional study were symptoms of acute ischemic stroke within 24 hours onset, National Institutes of Health Stroke Scale ≥3, and absence of MRI contraindications. A combination of echo-planar imaging (EPI) and a parallel acquisition technique were used on a 3T magnetic resonance (MR) scanner to accelerate the acquisition time. Image analysis was performed independently by 2 neuroradiologists. A total of 62 patients met inclusion criteria. A repeat MRI scan was performed in 22 patients resulting in a total of 84 MRIs available for analysis. Diagnostic image quality was achieved in 100% of diffusion-weighted imaging, 100% EPI-fluid attenuation inversion recovery imaging, 98% EPI-gradient recalled echo, 90% neck MR angiography and 96% of brain MR angiography, and 94% of dynamic susceptibility contrast perfusion scans with interobserver agreements (k) ranging from 0.64 to 0.84. Fifty-nine patients (95%) had acute infarction. There was good interobserver agreement for EPI-fluid attenuation inversion recovery imaging findings (k=0.78; 95% confidence interval, 0.66-0.87) and for detection of mismatch classification using dynamic susceptibility contrast-Tmax (k=0.92; 95% confidence interval, 0.87-0.94). Thirteen acute intracranial hemorrhages were detected on EPI-gradient recalled echo by both observers. A total of 68 and 72 segmental arterial stenoses were detected on contrast-enhanced MR angiography of the neck and brain with k=0.93, 95% confidence interval, 0.84 to 0.96 and 0.87, 95% confidence interval, 0.80 to 0.90, respectively. A 6-minute multimodal MR protocol with good diagnostic quality is feasible for the evaluation of patients with acute ischemic stroke and can result in significant reduction in scan time rivaling that of the multimodal computed tomographic protocol. © 2014 American Heart Association, Inc.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolly, S; University of Missouri, Columbia, MO; Chen, H

    Purpose: Local noise power spectrum (NPS) properties are significantly affected by calculation variables and CT acquisition and reconstruction parameters, but a thoughtful analysis of these effects is absent. In this study, we performed a complete analysis of the effects of calculation and imaging parameters on the NPS. Methods: The uniformity module of a Catphan phantom was scanned with a Philips Brilliance 64-slice CT simulator using various scanning protocols. Images were reconstructed using both FBP and iDose4 reconstruction algorithms. From these images, local NPS were calculated for regions of interest (ROI) of varying locations and sizes, using four image background removalmore » methods. Additionally, using a predetermined ground truth, NPS calculation accuracy for various calculation parameters was compared for computer simulated ROIs. A complete analysis of the effects of calculation, acquisition, and reconstruction parameters on the NPS was conducted. Results: The local NPS varied with ROI size and image background removal method, particularly at low spatial frequencies. The image subtraction method was the most accurate according to the computer simulation study, and was also the most effective at removing low frequency background components in the acquired data. However, first-order polynomial fitting using residual sum of squares and principle component analysis provided comparable accuracy under certain situations. Similar general trends were observed when comparing the NPS for FBP to that of iDose4 while varying other calculation and scanning parameters. However, while iDose4 reduces the noise magnitude compared to FBP, this reduction is spatial-frequency dependent, further affecting NPS variations at low spatial frequencies. Conclusion: The local NPS varies significantly depending on calculation parameters, image acquisition parameters, and reconstruction techniques. Appropriate local NPS calculation should be performed to capture spatial variations of noise; calculation methodology should be selected with consideration of image reconstruction effects and the desired purpose of CT simulation for radiotherapy tasks.« less

  6. Full-field OCT: applications in ophthalmology

    NASA Astrophysics Data System (ADS)

    Grieve, Kate; Dubois, Arnaud; Paques, Michel; Le Gargasson, Jean-Francois; Boccara, Albert C.

    2005-04-01

    We present images of ocular tissues obtained using ultrahigh resolution full-field OCT. The experimental setup is based on the Linnik interferometer, illuminated by a tungsten halogen lamp. En face tomographic images are obtained in real-time without scanning by computing the difference of two phase-opposed interferometric images recorded by a high-resolution CCD camera. A spatial resolution of 0.7 μm × 0.9 μm (axial × transverse) is achieved thanks to the short source coherence length and the use of high numerical aperture microscope objectives. A detection sensitivity of 90 dB is obtained by means of image averaging and pixel binning. Whole unfixed eyes and unstained tissue samples (cornea, lens, retina, choroid and sclera) of ex vivo rat, mouse, rabbit and porcine ocular tissues were examined. The unprecedented resolution of our instrument allows cellular-level resolution in the cornea and retina, and visualization of individual fibers in the lens. Transcorneal lens imaging was possible in all animals, and in albino animals, transscleral retinal imaging was achieved. We also introduce our rapid acquisition full-field optical coherence tomography system designed to accommodate in vivo ophthalmologic imaging. The variations on the original system technology include the introduction of a xenon arc lamp as source, and rapid image acquisition performed by a high-speed CMOS camera, reducing acquisition time to 5 ms per frame.

  7. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT.

    PubMed

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2015-07-07

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results also suggested that DISA methods could potentially provide image quality as good as that obtained with separate acquisition protocols. We compared observer performance for the optimized protocols and the current clinical protocol using separate acquisition. The current clinical protocols provided better performance at a cost of injecting the patient with approximately double the injected activity of Tc-99m and Tl-201, resulting in substantially increased radiation dose.

  8. The low-order wavefront control system for the PICTURE-C mission: high-speed image acquisition and processing

    NASA Astrophysics Data System (ADS)

    Hewawasam, Kuravi; Mendillo, Christopher B.; Howe, Glenn A.; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. The PICTURE-C low-order wavefront control (LOWC) system will be used to correct time-varying low-order aberrations due to pointing jitter, gravity sag, thermal deformation, and the gondola pendulum motion. We present the hardware and software implementation of the low-order ShackHartmann and reflective Lyot stop sensors. Development of the high-speed image acquisition and processing system is discussed with the emphasis on the reduction of hardware and computational latencies through the use of a real-time operating system and optimized data handling. By characterizing all of the LOWC latencies, we describe techniques to achieve a framerate of 200 Hz with a mean latency of ˜378 μs

  9. Multiscale Integration of -Omic, Imaging, and Clinical Data in Biomedical Informatics

    PubMed Central

    Phan, John H.; Quo, Chang F.; Cheng, Chihwen; Wang, May Dongmei

    2016-01-01

    This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data. PMID:23231990

  10. Multiscale integration of -omic, imaging, and clinical data in biomedical informatics.

    PubMed

    Phan, John H; Quo, Chang F; Cheng, Chihwen; Wang, May Dongmei

    2012-01-01

    This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data.

  11. Large Scale Textured Mesh Reconstruction from Mobile Mapping Images and LIDAR Scans

    NASA Astrophysics Data System (ADS)

    Boussaha, M.; Vallet, B.; Rives, P.

    2018-05-01

    The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.

  12. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  13. Impact of large x-ray beam collimation on image quality

    NASA Astrophysics Data System (ADS)

    Racine, Damien; Ba, Alexandre; Ott, Julien G.; Bochud, François O.; Verdun, Francis R.

    2016-03-01

    Large X-ray beam collimation in computed tomography (CT) opens the way to new image acquisition techniques and improves patient management for several clinical indications. The systems that offer large X-ray beam collimation enable, in particular, a whole region of interest to be investigated with an excellent temporal resolution. However, one of the potential drawbacks of this option might be a noticeable difference in image quality along the z-axis when compared with the standard helical acquisition mode using more restricted X-ray beam collimations. The aim of this project is to investigate the impact of the use of large X-ray beam collimation and new iterative reconstruction on noise properties, spatial resolution and low contrast detectability (LCD). An anthropomorphic phantom and a custom made phantom were scanned on a GE Revolution CT. The images were reconstructed respectively with ASIR-V at 0% and 50%. Noise power spectra, to evaluate the noise properties, and Target Transfer Functions, to evaluate the spatial resolution, were computed. Then, a Channelized Hotelling Observer with Gabor and Dense Difference of Gaussian channels was used to evaluate the LCD using the Percentage correct as a figure of merit. Noticeable differences of 3D noise power spectra and MTF have been recorded; however no significant difference appeared when dealing with the LCD criteria. As expected the use of iterative reconstruction, for a given CTDIvol level, allowed a significant gain in LCD in comparison to ASIR-V 0%. In addition, the outcomes of the NPS and TTF metrics led to results that would contradict the outcomes of CHO model observers if used for a NPWE model observer (Non- Prewhitening With Eye filter). The unit investigated provides major advantages for cardiac diagnosis without impairing the image quality level of standard chest or abdominal acquisitions.

  14. Open source bioimage informatics for cell biology.

    PubMed

    Swedlow, Jason R; Eliceiri, Kevin W

    2009-11-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery.

  15. Increasing circular synthetic aperture sonar resolution via adapted wave atoms deconvolution.

    PubMed

    Pailhas, Yan; Petillot, Yvan; Mulgrew, Bernard

    2017-04-01

    Circular Synthetic Aperture Sonar (CSAS) processing computes coherently Synthetic Aperture Sonar (SAS) data acquired along a circular trajectory. This approach has a number of advantages, in particular it maximises the aperture length of a SAS system, producing very high resolution sonar images. CSAS image reconstruction using back-projection algorithms, however, introduces a dissymmetry in the impulse response, as the imaged point moves away from the centre of the acquisition circle. This paper proposes a sampling scheme for the CSAS image reconstruction which allows every point, within the full field of view of the system, to be considered as the centre of a virtual CSAS acquisition scheme. As a direct consequence of using the proposed resampling scheme, the point spread function (PSF) is uniform for the full CSAS image. Closed form solutions for the CSAS PSF are derived analytically, both in the image and the Fourier domain. The thorough knowledge of the PSF leads naturally to the proposed adapted atom waves basis for CSAS image decomposition. The atom wave deconvolution is successfully applied to simulated data, increasing the image resolution by reducing the PSF energy leakage.

  16. Development of a Receiver Processor For UAV Video Signal Acquisition and Tracking Using Digital Phased Array Antenna

    DTIC Science & Technology

    2010-09-01

    53 Figure 26. Image of the phased array antenna...................................................................54...69 Figure 38. Computation of correction angle from array factor and sum/difference beams...71 Figure 39. Front panel of the tracking algorithm

  17. Non-ECG-gated unenhanced MRA of the carotids: optimization and clinical feasibility.

    PubMed

    Raoult, H; Gauvrit, J Y; Schmitt, P; Le Couls, V; Bannier, E

    2013-11-01

    To optimise and assess the clinical feasibility of a carotid non-ECG-gated unenhanced MRA sequence. Sixteen healthy volunteers and 11 patients presenting with internal carotid artery (ICA) disease underwent large field-of-view balanced steady-state free precession (bSSFP) unenhanced MRA at 3T. Sampling schemes acquiring the k-space centre either early (kCE) or late (kCL) in the acquisition window were evaluated. Signal and image quality was scored in comparison to ECG-gated kCE unenhanced MRA and TOF. For patients, computed tomography angiography was used as the reference. In volunteers, kCE sampling yielded higher image quality than kCL and TOF, with fewer flow artefacts and improved signal homogeneity. kCE unenhanced MRA image quality was higher without ECG-gating. Arterial signal and artery/vein contrast were higher with both bSSFP sampling schemes than with TOF. The kCE sequence allowed correct quantification of ten significant stenoses, and it facilitated the identification of an infrapetrous dysplasia, which was outside of the TOF imaging coverage. Non-ECG-gated bSSFP carotid imaging offers high-quality images and is a promising sequence for carotid disease diagnosis in a short acquisition time with high spatial resolution and a large field of view. • Non-ECG-gated unenhanced bSSFP MRA offers high-quality imaging of the carotid arteries. • Sequences using early acquisition of the k-space centre achieve higher image quality. • Non-ECG-gated unenhanced bSSFP MRA allows quantification of significant carotid stenosis. • Short MR acquisition times and ungated sequences are helpful in clinical practice. • High 3D spatial resolution and a large field of view improve diagnostic performance.

  18. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System

    PubMed Central

    Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570

  19. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System.

    PubMed

    Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).

  20. Example-Based Super-Resolution Fluorescence Microscopy.

    PubMed

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  1. Low-frequency noise effect on terahertz tomography using thermal detectors.

    PubMed

    Guillet, J P; Recur, B; Balacey, H; Bou Sleiman, J; Darracq, F; Lewis, D; Mounaix, P

    2015-08-01

    In this paper, the impact of low-frequency noise on terahertz-computed tomography (THz-CT) is analyzed for several measurement configurations and pyroelectric detectors. We acquire real noise data from a continuous millimeter-wave tomographic scanner in order to figure out its impact on reconstructed images. Second, noise characteristics are quantified according to two distinct acquisition methods by (i) extrapolating from experimental acquisitions a sinogram for different noise backgrounds and (ii) reconstructing the corresponding spatial distributions in a slice using a CT reconstruction algorithm. Then we describe the low-frequency noise fingerprint and its influence on reconstructed images. Thanks to the observations, we demonstrate that some experimental choices can dramatically affect the 3D rendering of reconstructions. Thus, we propose some experimental methodologies optimizing the resulting quality and accuracy of the 3D reconstructions, with respect to the low-frequency noise characteristics observed during acquisitions.

  2. Image-guided laser projection for port placement in minimally invasive surgery.

    PubMed

    Marmurek, Jonathan; Wedlake, Chris; Pardasani, Utsav; Eagleson, Roy; Peters, Terry

    2006-01-01

    We present an application of an augmented reality laser projection system in which procedure-specific optimal incision sites, computed from pre-operative image acquisition, are superimposed on a patient to guide port placement in minimally invasive surgery. Tests were conducted to evaluate the fidelity of computed and measured port configurations, and to validate the accuracy with which a surgical tool-tip can be placed at an identified virtual target. A high resolution volumetric image of a thorax phantom was acquired using helical computed tomography imaging. Oriented within the thorax, a phantom organ with marked targets was visualized in a virtual environment. A graphical interface enabled marking the locations of target anatomy, and calculation of a grid of potential port locations along the intercostal rib lines. Optimal configurations of port positions and tool orientations were determined by an objective measure reflecting image-based indices of surgical dexterity, hand-eye alignment, and collision detection. Intra-operative registration of the computed virtual model and the phantom anatomy was performed using an optical tracking system. Initial trials demonstrated that computed and projected port placement provided direct access to target anatomy with an accuracy of 2 mm.

  3. A single-image method for x-ray refractive index CT.

    PubMed

    Mittone, A; Gasilov, S; Brun, E; Bravin, A; Coan, P

    2015-05-07

    X-ray refraction-based computer tomography imaging is a well-established method for nondestructive investigations of various objects. In order to perform the 3D reconstruction of the index of refraction, two or more raw computed tomography phase-contrast images are usually acquired and combined to retrieve the refraction map (i.e. differential phase) signal within the sample. We suggest an approximate method to extract the refraction signal, which uses a single raw phase-contrast image. This method, here applied to analyzer-based phase-contrast imaging, is employed to retrieve the index of refraction map of a biological sample. The achieved accuracy in distinguishing the different tissues is comparable with the non-approximated approach. The suggested procedure can be used for precise refraction computer tomography with the advantage of a reduction of at least a factor of two of both the acquisition time and the dose delivered to the sample with respect to any of the other algorithms in the literature.

  4. Clinical applications of cone beam computed tomography in endodontics: A comprehensive review.

    PubMed

    Cohenca, Nestor; Shemesh, Hagay

    2015-06-01

    Cone beam computed tomography (CBCT) is a new technology that produces three-dimensional (3D) digital imaging at reduced cost and less radiation for the patient than traditional CT scans. It also delivers faster and easier image acquisition. By providing a 3D representation of the maxillofacial tissues in a cost- and dose-efficient manner, a better preoperative assessment can be obtained for diagnosis and treatment. This comprehensive review presents current applications of CBCT in endodontics. Specific case examples illustrate the difference in treatment planning with traditional periapical radiography versus CBCT technology.

  5. 3D noise power spectrum applied on clinical MDCT scanners: effects of reconstruction algorithms and reconstruction filters

    NASA Astrophysics Data System (ADS)

    Miéville, Frédéric A.; Bolard, Gregory; Benkreira, Mohamed; Ayestaran, Paul; Gudinchet, François; Bochud, François; Verdun, Francis R.

    2011-03-01

    The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters. A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed. In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements. The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.

  6. Cone beam computed tomography and intraoral radiography for diagnosis of dental abnormalities in dogs and cats

    PubMed Central

    Silva, Luiz Antonio F.; Barriviera, Mauricio; Januário, Alessandro L.; Bezerra, Ana Cristina B.; Fioravanti, Maria Clorinda S.

    2011-01-01

    The development of veterinary dentistry has substantially improved the ability to diagnose canine and feline dental abnormalities. Consequently, examinations previously performed only on humans are now available for small animals, thus improving the diagnostic quality. This has increased the need for technical qualification of veterinary professionals and increased technological investments. This study evaluated the use of cone beam computed tomography and intraoral radiography as complementary exams for diagnosing dental abnormalities in dogs and cats. Cone beam computed tomography was provided faster image acquisition with high image quality, was associated with low ionizing radiation levels, enabled image editing, and reduced the exam duration. Our results showed that radiography was an effective method for dental radiographic examination with low cost and fast execution times, and can be performed during surgical procedures. PMID:22122905

  7. Global Pressure- and Temperature-Measurements in 1.27-m JAXA Hypersonic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Miyazaki, T.; Nakagawa, M.; Tsuda, S.; Sakaue, H.

    Pressure-sensitive paint (PSP) technique has been widely used in aerodynamic measurements. A PSP is a global optical sensor, which consists of a luminophore and binding material. The luminophore gives a luminescence related to an oxygen concentration known as oxygen quenching. In an aerodynamic measurement, the oxygen concentration is related to a partial pressure of oxygen and a static pressure, thus the luminescent signal can be related to a static pressure [1]. The PSP measurement system consists of a PSP coated model, an image acquisition unit, and an image processing unit (Fig. 1). For the image acquisition, an illumination source and a photo-detector are required. To separate the illumination and PSP emission detected by a photo-detector, appropriate band-pass filters are placed in front of the illumination and photo-detector. The image processing unit includes the calibration and computation. The calibration relates the luminescent signal to pressures and temperatures. Based on these calibrations, luminescent images are converted to a pressure map.

  8. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition.

    PubMed

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Muftuler, L Tugan; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-03-21

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B(0) field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  9. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition

    NASA Astrophysics Data System (ADS)

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Tugan Muftuler, L.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2010-03-01

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B0 field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  10. System Matrix Analysis for Computed Tomography Imaging

    PubMed Central

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  11. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.

    PubMed

    Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6  s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  12. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  13. 3D ultrasound computer tomography: Hardware setup, reconstruction methods and first clinical results

    NASA Astrophysics Data System (ADS)

    Gemmeke, Hartmut; Hopp, Torsten; Zapf, Michael; Kaiser, Clemens; Ruiter, Nicole V.

    2017-11-01

    A promising candidate for improved imaging of breast cancer is ultrasound computer tomography (USCT). Current experimental USCT systems are still focused in elevation dimension resulting in a large slice thickness, limited depth of field, loss of out-of-plane reflections, and a large number of movement steps to acquire a stack of images. 3D USCT emitting and receiving spherical wave fronts overcomes these limitations. We built an optimized 3D USCT, realizing for the first time the full benefits of a 3D system. The point spread function could be shown to be nearly isotropic in 3D, to have very low spatial variability and fit the predicted values. The contrast of the phantom images is very satisfactory in spite of imaging with a sparse aperture. The resolution and imaged details of the reflectivity reconstruction are comparable to a 3 T MRI volume. Important for the obtained resolution are the simultaneously obtained results of the transmission tomography. The KIT 3D USCT was then tested in a pilot study on ten patients. The primary goals of the pilot study were to test the USCT device, the data acquisition protocols, the image reconstruction methods and the image fusion techniques in a clinical environment. The study was conducted successfully; the data acquisition could be carried out for all patients with an average imaging time of six minutes per breast. The reconstructions provide promising images. Overlaid volumes of the modalities show qualitative and quantitative information at a glance. This paper gives a summary of the involved techniques, methods, and first results.

  14. Diagnostic report acquisition unit for the Mayo/IBM PACS project

    NASA Astrophysics Data System (ADS)

    Brooks, Everett G.; Rothman, Melvyn L.

    1991-07-01

    The Mayo Clinic and IBM Rochester have jointly developed a picture archive and control system (PACS) for use with Mayo's MRI and Neuro-CT imaging modalities. One of the challenges of developing a useful PACS involves integrating the diagnostic reports with the electronic images so they can be displayed simultaneously. By the time a diagnostic report is generated for a particular case, its images have already been captured and archived by the PACS. To integrate the report with the images, the authors have developed an IBM Personal System/2 computer (PS/2) based diagnostic report acquisition unit (RAU). A typed copy of the report is transmitted via facsimile to the RAU where it is stacked electronically with other reports that have been sent previously but not yet processed. By processing these reports at the RAU, the information they contain is integrated with the image database and a copy of the report is archived electronically on an IBM Application System/400 computer (AS/400). When a user requests a set of images for viewing, the report is automatically integrated with the image data. By using a hot key, the user can toggle on/off the report on the display screen. This report describes process, hardware, and software employed to integrate the diagnostic report information into the PACS, including how the report images are captured, transmitted, and entered into the AS/400 database. Also described is how the archived reports and their associated medical images are located and merged for retrieval and display. The methods used to detect and process error conditions are also discussed.

  15. Identification of reduced-order thermal therapy models using thermal MR images: theory and validation.

    PubMed

    Niu, Ran; Skliar, Mikhail

    2012-07-01

    In this paper, we develop and validate a method to identify computationally efficient site- and patient-specific models of ultrasound thermal therapies from MR thermal images. The models of the specific absorption rate of the transduced energy and the temperature response of the therapy target are identified in the reduced basis of proper orthogonal decomposition of thermal images, acquired in response to a mild thermal test excitation. The method permits dynamic reidentification of the treatment models during the therapy by recursively utilizing newly acquired images. Such adaptation is particularly important during high-temperature therapies, which are known to substantially and rapidly change tissue properties and blood perfusion. The developed theory was validated for the case of focused ultrasound heating of a tissue phantom. The experimental and computational results indicate that the developed approach produces accurate low-dimensional treatment models despite temporal and spatial noises in MR images and slow image acquisition rate.

  16. Imaging photomultiplier array with integrated amplifiers and high-speed USB interfacea)

    NASA Astrophysics Data System (ADS)

    Blacksell, M.; Wach, J.; Anderson, D.; Howard, J.; Collis, S. M.; Blackwell, B. D.; Andruczyk, D.; James, B. W.

    2008-10-01

    Multianode photomultiplier tube (PMT) arrays are finding application as convenient high-speed light sensitive devices for plasma imaging. This paper describes the development of a USB-based "plug-n-play" 16-channel PMT camera with 16bits simultaneous acquisition of 16 signal channels at rates up to 2MS/s per channel. The preamplifiers and digital hardware are packaged in a compact housing which incorporates magnetic shielding, on-board generation of the high-voltage PMT bias, an optical filter mount and slits, and F-mount lens adaptor. Triggering, timing, and acquisition are handled by four field-programmable gate arrays (FPGAs) under instruction from a master FPGA controlled by a computer with a LABVIEW interface. We present technical design details and specifications and illustrate performance with high-speed images obtained on the H-1 heliac at the ANU.

  17. Imaging photomultiplier array with integrated amplifiers and high-speed USB interface.

    PubMed

    Blacksell, M; Wach, J; Anderson, D; Howard, J; Collis, S M; Blackwell, B D; Andruczyk, D; James, B W

    2008-10-01

    Multianode photomultiplier tube (PMT) arrays are finding application as convenient high-speed light sensitive devices for plasma imaging. This paper describes the development of a USB-based "plug-n-play" 16-channel PMT camera with 16 bits simultaneous acquisition of 16 signal channels at rates up to 2 MSs per channel. The preamplifiers and digital hardware are packaged in a compact housing which incorporates magnetic shielding, on-board generation of the high-voltage PMT bias, an optical filter mount and slits, and F-mount lens adaptor. Triggering, timing, and acquisition are handled by four field-programmable gate arrays (FPGAs) under instruction from a master FPGA controlled by a computer with a LABVIEW interface. We present technical design details and specifications and illustrate performance with high-speed images obtained on the H-1 heliac at the ANU.

  18. Advances in cardiac CT contrast injection and acquisition protocols.

    PubMed

    Scholtz, Jan-Erik; Ghoshhajra, Brian

    2017-10-01

    Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors.

  19. Advances in cardiac CT contrast injection and acquisition protocols

    PubMed Central

    Scholtz, Jan-Erik

    2017-01-01

    Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors. PMID:29255688

  20. Results from a Prototype Proton-CT Head Scanner

    NASA Astrophysics Data System (ADS)

    Johnson, R. P.; Bashkirov, V. A.; Coutrakon, G.; Giacometti, V.; Karbasi, P.; Karonis, N. T.; Ordoñez, C. E.; Pankuch, M.; Sadrozinski, H. F.-W.; Schubert, K. E.; Schulte, R. W.

    We are exploring low-dose proton radiography and computed tomography (pCT) as techniques to improve the accuracy of proton treatment planning and to provide artifact-free images for verification and adaptive therapy at the time of treatment. Here we report on comprehensive beam test results with our prototype pCT head scanner. The detector system and data acquisition attain a sustained rate of more than a million protons individually measured per second, allowing a full CT scan to be completed in six minutes or less of beam time. In order to assess the performance of the scanner for proton radiography as well as computed tomography, we have performed numerous scans of phantoms at the Northwestern Medicine Chicago Proton Center including a custom phantom designed to assess the spatial resolution, a phantom to assess the measurement of relative stopping power, and a dosimetry phantom. Some images, performance, and dosimetry results from those phantom scans are presented together with a description of the instrument, the data acquisition system, and the calibration methods.

  1. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  2. Survey of computer vision technology for UVA navigation

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are carried out at high speed. The system is applied to rapid response system. (2) The visual system of distributed network. There are several discrete image data acquisition sensor in different locations, which transmit image data to the node processor to increase the sampling rate. (3) The visual system combined with observer. The system combines image sensors with the external observers to make up for lack of visual equipment. To some degree, these systems overcome lacks of the early visual system, including low frequency, low processing efficiency and strong noise. In the end, the difficulties of navigation based on computer version technology in practical application are briefly discussed. (1) Due to the huge workload of image operation , the real-time performance of the system is poor. (2) Due to the large environmental impact , the anti-interference ability of the system is poor.(3) Due to the ability to work in a particular environment, the system has poor adaptability.

  3. SU-E-J-11: Measurement of Eye Lens Dose for Varian On-Board Imaging with Different CBCT Acquisition Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, S; Dhote, D; Kumar, R

    Purpose: To measure actual patient eye lens dose for different cone beam computed tomography (CBCT) acquisition protocol of Varian’s On Board Imagining (OBI) system using Optically Stimulated Luminescence (OSL) dosimeter and study the eye lens dose with patient geometry and distance of isocenter to the eye lens Methods: OSL dosimeter was used to measure eye lens dose of patient. OSL dosimeter was placed on patient forehead center during CBCT image acquisition to measure eye lens dose. For three different cone beam acquisition protocol (standard dose head, low dose head and high quality head) of Varian On-Board Imaging, eye lens dosesmore » were measured. Measured doses were correlated with patient geometry and distance between isocenter to eye lens. Results: Measured eye lens dose for standard dose head was in the range of 1.8 mGy to 3.2 mGy, for high quality head protocol dose was in range of 4.5mGy to 9.9 mGy whereas for low dose head was in the range of 0.3mGy to 0.7mGy. Dose to eye lens is depends upon position of isocenter. For posterioraly located tumor eye lens dose is less. Conclusion: From measured doses it can be concluded that by proper selection of imagining protocol and frequency of imaging, it is possible to restrict the eye lens dose below the new limit set by ICRP. However, undoubted advantages of imaging system should be counter balanced by careful consideration of imaging protocol especially for very intense imaging sequences for Adoptive Radiotherapy or IMRT.« less

  4. Fast, low-dose patient localization on TomoTherapy via topogram registration.

    PubMed

    Moore, Kevin L; Palaniswaamy, Geethpriya; White, Benjamin; Goddu, S Murty; Low, Daniel A

    2010-08-01

    To investigate a protocol which efficiently localizes TomoTherapy patients with a scout imaging (topogram) mode that can be used with or instead of 3D megavoltage computed tomography (MVCT) imaging. The process presented here is twofold: (a) The acquisition of the topogram using the TomoTherapy MV imaging system and (b) the generation of a digitally reconstructed topogram (DRT) derived from a standard kV CT simulation data set. The unique geometric characteristics of the current TomoTherapy imaging system were explored both theoretically and by acquiring topograms of anthropomorphic phantoms and comparing these images to DRT images. The performance of the MV topogram imaging system in terms of image quality, dose incurred to the patient, and acquisition time was investigated using ionization chamber and radiographic film measurements. The time required to acquire a clinically usable topogram, limited by the maximum couch speed of 4.0 cm s(-1), was 12.5 s for a 50 cm long field. The patient dose was less than 1% of that delivered by a helical MVCT scan. Further refinements within the current TomoTherapy system, most notably decreasing the imaging beam repetition rate during MV topogram acquisition, would further reduce the topogram dose to less than 25 microGy per scan without compromising image quality. Topogram localization on TomoTherapy is a fast and low-dose alternative to 3D MVCT localization. A protocol designed that exclusively utilized MV topograms would result in a 30-fold reduction in imaging time and a 100-fold reduction in dose from localization scans using the current TomoTherapy workflow.

  5. FPGA Based High Speed Data Acquisition System for Electrical Impedance Tomography

    PubMed Central

    Khan, S; Borsic, A; Manwaring, Preston; Hartov, Alexander; Halter, Ryan

    2014-01-01

    Electrical Impedance Tomography (EIT) systems are used to image tissue bio-impedance. EIT provides a number of features making it attractive for use as a medical imaging device including the ability to image fast physiological processes (>60 Hz), to meet a range of clinical imaging needs through varying electrode geometries and configurations, to impart only non-ionizing radiation to a patient, and to map the significant electrical property contrasts present between numerous benign and pathological tissues. To leverage these potential advantages for medical imaging, we developed a modular 32 channel data acquisition (DAQ) system using National Instruments’ PXI chassis, along with FPGA, ADC, Signal Generator and Timing and Synchronization modules. To achieve high frame rates, signal demodulation and spectral characteristics of higher order harmonics were computed using dedicated FFT-hardware built into the FPGA module. By offloading the computing onto FPGA, we were able to achieve a reduction in throughput required between the FPGA and PC by a factor of 32:1. A custom designed analog front end (AFE) was used to interface electrodes with our system. Our system is wideband, and capable of acquiring data for input signal frequencies ranging from 100 Hz to 12 MHz. The modular design of both the hardware and software will allow this system to be flexibly configured for the particular clinical application. PMID:24729790

  6. High speed CMOS acquisition system based on FPGA embedded image processing for electro-optical measurements

    NASA Astrophysics Data System (ADS)

    Rosu-Hamzescu, Mihnea; Polonschii, Cristina; Oprea, Sergiu; Popescu, Dragos; David, Sorin; Bratu, Dumitru; Gheorghiu, Eugen

    2018-06-01

    Electro-optical measurements, i.e., optical waveguides and plasmonic based electrochemical impedance spectroscopy (P-EIS), are based on the sensitive dependence of refractive index of electro-optical sensors on surface charge density, modulated by an AC electrical field applied to the sensor surface. Recently, P-EIS has emerged as a new analytical tool that can resolve local impedance with high, optical spatial resolution, without using microelectrodes. This study describes a high speed image acquisition and processing system for electro-optical measurements, based on a high speed complementary metal-oxide semiconductor (CMOS) sensor and a field-programmable gate array (FPGA) board. The FPGA is used to configure CMOS parameters, as well as to receive and locally process the acquired images by performing Fourier analysis for each pixel, deriving the real and imaginary parts of the Fourier coefficients for the AC field frequencies. An AC field generator, for single or multi-sine signals, is synchronized with the high speed acquisition system for phase measurements. The system was successfully used for real-time angle-resolved electro-plasmonic measurements from 30 Hz up to 10 kHz, providing results consistent to ones obtained by a conventional electrical impedance approach. The system was able to detect amplitude variations with a relative variation of ±1%, even for rather low sampling rates per period (i.e., 8 samples per period). The PC (personal computer) acquisition and control software allows synchronized acquisition for multiple FPGA boards, making it also suitable for simultaneous angle-resolved P-EIS imaging.

  7. [The radiologist physician in major trauma evaluation].

    PubMed

    Motta-Ramírez, Gaspar Alberto

    2016-01-01

    Trauma is the most common cause of death in young adults. A multidisciplinary trauma team consists of at least a surgical team, an anesthesiology team, radiologic team, and an emergency department team. Recognize the integration of multidisciplinary medical team in managing the trauma patient and which must include the radiologist physician responsible for the institutional approach to the systematization of the trauma patient regarding any radiological and imaging study with emphasis on the FAST (del inglés, Focused Assessment with Sonography in Trauma)/USTA, Whole body computed tomography. Ultrasound is a cross-sectional method available for use in patients with major trauma. Whole-body multidetector computed tomography became the imaging modality of choice in the late 1990s. In patients with major trauma, examination FAST often is the initial imaging examination, extended to extraabdominal regions. Patients who have multitrauma from blunt mechanisms often require multiple diagnostic examinations, including Computed Tomography imaging of the torso as well as abdominopelvic Computed Tomography angiography. Multiphasic Whole-body trauma imaging is feasible, helps detect clinically relevant vascular injuries, and results in diagnostic image quality in the majority of patients. Computed Tomography has gained importance in the early diagnostic phase of trauma care in the emergency room. With a single continuous acquisition, whole-body computed tomography angiography is able to demonstrate all potentially injured organs, as well as vascular and bone structures, from the circle of Willis to the symphysis pubis.

  8. Prospective ECG-triggered, axial 4-D imaging of the aortic root, valvular, and left ventricular structures: a lower radiation dose option for preprocedural TAVR imaging.

    PubMed

    Bolen, Michael A; Popovic, Zoran B; Dahiya, Arun; Kapadia, Samir R; Tuzcu, E Murat; Flamm, Scott D; Halliburton, Sandra S; Schoenhagen, Paul

    2012-01-01

    Transcatheter valve interventions rely on imaging for patient selection, preprocedural planning, and intraprocedural guidance. We explored the use of prospective electrocardiogram (ECG)-triggered 4-dimensional (4-D) CT imaging in patients evaluated for transcatheter aortic valve replacement (TAVR). A total of 47 consecutive patients underwent 128-slice dual-source CT with wide-window dose-modulated prospective ECG-triggered, axial acquisition of the aortic root, reconstructed during diastolic and systolic cardiac phases. Image quality was evaluated, aortic root and left ventricular (LV) geometry and function were analyzed, and radiation exposure was estimated. Image quality was generally good, with 41 of 47 (87%) patients scored as good or excellent. The mean aortic valve area was 0.93 ± 0.24 cm(2). Mean LV ejection fraction was 56.8% ± 16.4%, and mean LV mass was 130.4 ± 43.8 g. The minor diameter of the annulus was larger in systole (systole, 2.29 ± 0.24 cm; diastole, 2.14 ± 0.25 cm; P = 0.006), but the mean and major diameters did not vary significantly between systole and diastole. The mean estimated effective dose was 5.9 ± 2.4 mSv. Multiphase, prospective ECG-triggered axial image acquisition is a lower dose acquisition technique for 4-D aortic root imaging in patients being considered for TAVR. Copyright © 2012 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  9. Correction of Motion Artifacts From Shuttle Mode Computed Tomography Acquisitions for Body Perfusion Imaging Applications.

    PubMed

    Ghosh, Payel; Chandler, Adam G; Altinmakas, Emre; Rong, John; Ng, Chaan S

    2016-01-01

    The aim of this study was to investigate the feasibility of shuttle-mode computed tomography (CT) technology for body perfusion applications by quantitatively assessing and correcting motion artifacts. Noncontrast shuttle-mode CT scans (10 phases, 2 nonoverlapping bed locations) were acquired from 4 patients on a GE 750HD CT scanner. Shuttling effects were quantified using Euclidean distances (between-phase and between-bed locations) of corresponding fiducial points on the shuttle and reference phase scans (prior to shuttle mode). Motion correction with nonrigid registration was evaluated using sum-of-squares differences and distances between centers of segmented volumes of interest on shuttle and references images. Fiducial point analysis showed an average shuttling motion of 0.85 ± 1.05 mm (between-bed) and 1.18 ± 1.46 mm (between-phase), respectively. The volume-of-interest analysis of the nonrigid registration results showed improved sum-of-squares differences from 2950 to 597, between-bed distance from 1.64 to 1.20 mm, and between-phase distance from 2.64 to 1.33 mm, respectively, averaged over all cases. Shuttling effects introduced during shuttle-mode CT acquisitions can be computationally corrected for body perfusion applications.

  10. A CAMAC display module for fast bit-mapped graphics

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, R. E.

    1992-10-01

    In many data acquisition and analysis facilities for nuclear physics research, utilities for the display of two-dimensional (2D) images and spectra on graphics terminals suffer from low speed, poor resolution, and limited accuracy. Development of CAMAC bit-mapped graphics modules for this purpose has been discouraged in the past by the large device count needed and the long times required to load the image data from the host computer into the CAMAC hardware; particularly since many such facilities have been designed to support fast DMA block transfers only for data acquisition into the host. This paper describes the design and implementation of a prototype CAMAC graphics display module with a resolution of 256×256 pixels at eight colours for which all components can be easily accommodated in a single-width package. Employed is a hardware technique which reduces the number of programmed CAMAC data transfer operations needed for writing 2D images into the display memory by approximately an order of magnitude, with attendant improvements in the display speed and CPU time consumption. Hardware and software details are given together with sample results. Information on the performance of the module in a typical VAX/MBD data acquisition environment is presented, including data on the mutual effects of simultaneous data acquisition traffic. Suggestions are made for further improvements in performance.

  11. Identification and restoration in 3D fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dieterlen, Alain; Xu, Chengqi; Haeberle, Olivier; Hueber, Nicolas; Malfara, R.; Colicchio, B.; Jacquey, Serge

    2004-06-01

    3-D optical fluorescent microscopy becomes now an efficient tool for volumic investigation of living biological samples. The 3-D data can be acquired by Optical Sectioning Microscopy which is performed by axial stepping of the object versus the objective. For any instrument, each recorded image can be described by a convolution equation between the original object and the Point Spread Function (PSF) of the acquisition system. To assess performance and ensure the data reproducibility, as for any 3-D quantitative analysis, the system indentification is mandatory. The PSF explains the properties of the image acquisition system; it can be computed or acquired experimentally. Statistical tools and Zernike moments are shown appropriate and complementary to describe a 3-D system PSF and to quantify the variation of the PSF as function of the optical parameters. Some critical experimental parameters can be identified with these tools. This is helpful for biologist to define an aquisition protocol optimizing the use of the system. Reduction of out-of-focus light is the task of 3-D microscopy; it is carried out computationally by deconvolution process. Pre-filtering the images improves the stability of deconvolution results, now less dependent on the regularization parameter; this helps the biologists to use restoration process.

  12. Open source bioimage informatics for cell biology

    PubMed Central

    Swedlow, Jason R.; Eliceiri, Kevin W.

    2009-01-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery. PMID:19833518

  13. Continuous stacking computational approach based automated microscope slide scanner

    NASA Astrophysics Data System (ADS)

    Murali, Swetha; Adhikari, Jayesh Vasudeva; Jagannadh, Veerendra Kalyan; Gorthi, Sai Siva

    2018-02-01

    Cost-effective and automated acquisition of whole slide images is a bottleneck for wide-scale deployment of digital pathology. In this article, a computation augmented approach for the development of an automated microscope slide scanner is presented. The realization of a prototype device built using inexpensive off-the-shelf optical components and motors is detailed. The applicability of the developed prototype to clinical diagnostic testing is demonstrated by generating good quality digital images of malaria-infected blood smears. Further, the acquired slide images have been processed to identify and count the number of malaria-infected red blood cells and thereby perform quantitative parasitemia level estimation. The presented prototype would enable cost-effective deployment of slide-based cyto-diagnostic testing in endemic areas.

  14. A low-cost universal cumulative gating circuit for small and large animal clinical imaging

    NASA Astrophysics Data System (ADS)

    Gioux, Sylvain; Frangioni, John V.

    2008-02-01

    Image-assisted diagnosis and therapy is becoming more commonplace in medicine. However, most imaging techniques suffer from voluntary or involuntary motion artifacts, especially cardiac and respiratory motions, which degrade image quality. Current software solutions either induce computational overhead or reject out-of-focus images after acquisition. In this study we demonstrate a hardware-only gating circuit that accepts multiple, pseudo-periodic signals and produces a single TTL (0-5 V) imaging window of accurate phase and period. The electronic circuit Gerber files described in this article and the list of components are available online at www.frangionilab.org.

  15. Optimal focal-plane restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1989-01-01

    Image restoration can be implemented efficiently by calculating the convolution of the digital image and a small kernel during image acquisition. Processing the image in the focal-plane in this way requires less computation than traditional Fourier-transform-based techniques such as the Wiener filter and constrained least-squares filter. Here, the values of the convolution kernel that yield the restoration with minimum expected mean-square error are determined using a frequency analysis of the end-to-end imaging system. This development accounts for constraints on the size and shape of the spatial kernel and all the components of the imaging system. Simulation results indicate the technique is effective and efficient.

  16. Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis.

    PubMed

    Peng, Hanchuan; Tang, Jianyong; Xiao, Hang; Bria, Alessandro; Zhou, Jianlong; Butler, Victoria; Zhou, Zhi; Gonzalez-Bellido, Paloma T; Oh, Seung W; Chen, Jichao; Mitra, Ananya; Tsien, Richard W; Zeng, Hongkui; Ascoli, Giorgio A; Iannello, Giulio; Hawrylycz, Michael; Myers, Eugene; Long, Fuhui

    2014-07-11

    Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.

  17. SU-G-IeP4-13: PET Image Noise Variability and Its Consequences for Quantifying Tumor Hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueng, R; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Manser, P

    Purpose: The values in a PET image which represent activity concentrations of a radioactive tracer are influenced by a large number of parameters including patient conditions as well as image acquisition and reconstruction. This work investigates noise characteristics in PET images for various image acquisition and image reconstruction parameters. Methods: Different phantoms with homogeneous activity distributions were scanned using several acquisition parameters and reconstructed with numerous sets of reconstruction parameters. Images from six PET scanners from different vendors were analyzed and compared with respect to quantitative noise characteristics. Local noise metrics, which give rise to a threshold value defining themore » metric of hypoxic fraction, as well as global noise measures in terms of noise power spectra (NPS) were computed. In addition to variability due to different reconstruction parameters, spatial variability of activity distribution and its noise metrics were investigated. Patient data from clinical trials were mapped onto phantom scans to explore the impact of the scanner’s intrinsic noise variability on quantitative clinical analysis. Results: Local noise metrics showed substantial variability up to an order of magnitude for different reconstruction parameters. Investigations of corresponding NPS revealed reconstruction dependent structural noise characteristics. For the acquisition parameters, noise metrics were guided by Poisson statistics. Large spatial non-uniformity of the noise was observed in both axial and radial direction of a PET image. In addition, activity concentrations in PET images of homogeneous phantom scans showed intriguing spatial fluctuations for most scanners. The clinical metric of the hypoxic fraction was shown to be considerably influenced by the PET scanner’s spatial noise characteristics. Conclusion: We showed that a hypoxic fraction metric based on noise characteristics requires careful consideration of the various dependencies in order to justify its quantitative validity. This work may result in recommendations for harmonizing QA of PET imaging for multi-institutional clinical trials.« less

  18. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT

    PubMed Central

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2015-01-01

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6–5 and acquisition energy window widths of 16–22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16–22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results also suggested that DISA methods could potentially provide image quality as good as that obtained with separate acquisition protocols. We compared observer performance for the optimized protocols and the current clinical protocol using separate acquisition. The current clinical protocols provided better performance at a cost of injecting the patient with approximately double the injected activity of Tc-99m and Tl-201, resulting in substantially increased radiation dose. PMID:26083239

  19. Cone Beam Computed Tomography (CBCT) in the Field of Interventional Oncology of the Liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bapst, Blanche, E-mail: blanchebapst@hotmail.com; Lagadec, Matthieu, E-mail: matthieu.lagadec@bjn.aphp.fr; Breguet, Romain, E-mail: romain.breguet@hcuge.ch

    Cone beam computed tomography (CBCT) is an imaging modality that provides computed tomographic images using a rotational C-arm equipped with a flat panel detector as part of the Angiography suite. The aim of this technique is to provide additional information to conventional 2D imaging to improve the performance of interventional liver oncology procedures (intraarterial treatments such as chemoembolization or selective internal radiation therapy, and percutaneous tumor ablation). CBCT provides accurate tumor detection and targeting, periprocedural guidance, and post-procedural evaluation of treatment success. This technique can be performed during intraarterial or intravenous contrast agent administration with various acquisition protocols to highlightmore » liver tumors, liver vessels, or the liver parenchyma. The purpose of this review is to present an extensive overview of published data on CBCT in interventional oncology of the liver, for both percutaneous ablation and intraarterial procedures.« less

  20. Reconstruction of Sky Illumination Domes from Ground-Based Panoramas

    NASA Astrophysics Data System (ADS)

    Coubard, F.; Lelégard, L.; Brédif, M.; Paparoditis, N.; Briottet, X.

    2012-07-01

    The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  1. Small Interactive Image Processing System (SMIPS) users manual

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    The Small Interactive Image Processing System (SMIP) is designed to facilitate the acquisition, digital processing and recording of image data as well as pattern recognition in an interactive mode. Objectives of the system are ease of communication with the computer by personnel who are not expert programmers, fast response to requests for information on pictures, complete error recovery as well as simplification of future programming efforts for extension of the system. The SMIP system is intended for operation under OS/MVT on an IBM 360/75 or 91 computer equipped with the IBM-2250 Model 1 display unit. This terminal is used as an interface between user and main computer. It has an alphanumeric keyboard, a programmed function keyboard and a light pen which are used for specification of input to the system. Output from the system is displayed on the screen as messages and pictures.

  2. Efficient robust reconstruction of dynamic PET activity maps with radioisotope decay constraints.

    PubMed

    Gao, Fei; Liu, Huafeng; Shi, Pengcheng

    2010-01-01

    Dynamic PET imaging performs sequence of data acquisition in order to provide visualization and quantification of physiological changes in specific tissues and organs. The reconstruction of activity maps is generally the first step in dynamic PET. State space Hinfinity approaches have been proved to be a robust method for PET image reconstruction where, however, temporal constraints are not considered during the reconstruction process. In addition, the state space strategies for PET image reconstruction have been computationally prohibitive for practical usage because of the need for matrix inversion. In this paper, we present a minimax formulation of the dynamic PET imaging problem where a radioisotope decay model is employed as physics-based temporal constraints on the photon counts. Furthermore, a robust steady state Hinfinity filter is developed to significantly improve the computational efficiency with minimal loss of accuracy. Experiments are conducted on Monte Carlo simulated image sequences for quantitative analysis and validation.

  3. Current role of multidetector computed tomography in imaging of wrist injuries.

    PubMed

    Syed, Mohd Arif; Raj, Vimal; Jeyapalan, Kanagaratnam

    2013-01-01

    Imaging of the wrist is challenging to both radiologists and orthopedic surgeons. This is primarily because of the complex anatomy/functionality of the wrist and also the fact that many frequent injuries are sustained to the hands. On going developments in multidetector computed tomography (MDCT) technology with its "state of the art" postprocessing capabilities have revolutionized this field. Apart from routine imaging of wrist trauma, it is now possible to assess intrinsic ligaments with MDCT arthrography, thereby avoiding invasive diagnostic arthroscopies. Postoperative wrist imaging can be a diagnostic challenge, and MDCT can be helpful in assessment of these cases because volume acquisition and excellent postprocessing abilities help to evaluate these wrists in any desired plane and thinner slices. This article pictorially reviews the current clinical role of MDCT imaging of wrist in our practice. It also describes arthrography technique and scanning parameters used at our center. Copyright © 2013 Mosby, Inc. All rights reserved.

  4. Scatter correction for cone-beam computed tomography using self-adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Xie, Shi-Peng; Luo, Li-Min

    2012-06-01

    The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in previous studies. However, this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel. This study first evaluates the scatter kernel parameters using the SDB, and then isolates the scatter distribution based on the SKS. The quality of image can be improved by removing the scatter distribution. The results show that the method can effectively reduce the scatter artifacts, and increase the image quality. Our approach increases the image contrast and reduces the magnitude of cupping. The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel. This method is computationally efficient, easy to implement, and provides scatter correction using a single scan acquisition.

  5. Teaching Spanish in a Typographic/Electronic Culture.

    ERIC Educational Resources Information Center

    Franz, Thomas R.

    Teaching Spanish while either restricting classroom use of the textbook or ignoring application of the computer is a losing proposition. Withdrawn from the typographic-video world that engages them daily, students are deprived of their most comfortable means of knowledge acquisition. Typography and visual images can be an immeasurable aid in…

  6. Web-Based Learning and Instruction Support System for Pneumatics

    ERIC Educational Resources Information Center

    Yen, Chiaming; Li, Wu-Jeng

    2003-01-01

    This research presents a Web-based learning and instructional system for Pneumatics. The system includes course material, remote data acquisition modules, and a pneumatic laboratory set. The course material is in the HTML format accompanied with text, still and animated images, simulation programs, and computer aided design tools. The data…

  7. High-Speed Noninvasive Eye-Tracking System

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin

    2007-01-01

    The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.

  8. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency of SPECT imaging simulations.

  9. Dual energy CT kidney stone differentiation in photon counting computed tomography

    NASA Astrophysics Data System (ADS)

    Gutjahr, R.; Polster, C.; Henning, A.; Kappler, S.; Leng, S.; McCollough, C. H.; Sedlmair, M. U.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2017-03-01

    This study evaluates the capabilities of a whole-body photon counting CT system to differentiate between four common kidney stone materials, namely uric acid (UA), calcium oxalate monohydrate (COM), cystine (CYS), and apatite (APA) ex vivo. Two different x-ray spectra (120 kV and 140 kV) were applied and two acquisition modes were investigated. The macro-mode generates two energy threshold based image-volumes and two energy bin based image-volumes. In the chesspattern-mode four energy thresholds are applied. A virtual low energy image, as well as a virtual high energy image are derived from initial threshold-based images, while considering their statistically correlated nature. The energy bin based images of the macro-mode, as well as the virtual low and high energy image of the chesspattern-mode serve as input for our dual energy evaluation. The dual energy ratio of the individually segmented kidney stones were utilized to quantify the discriminability of the different materials. The dual energy ratios of the two acquisition modes showed high correlation for both applied spectra. Wilcoxon-rank sum tests and the evaluation of the area under the receiver operating characteristics curves suggest that the UA kidney stones are best differentiable from all other materials (AUC = 1.0), followed by CYS (AUC ≍ 0.9 compared against COM and APA). COM and APA, however, are hardly distinguishable (AUC between 0.63 and 0.76). The results hold true for the measurements of both spectra and both acquisition modes.

  10. Quantitative metrics for evaluating parallel acquisition techniques in diffusion tensor imaging at 3 Tesla.

    PubMed

    Ardekani, Siamak; Selva, Luis; Sayre, James; Sinha, Usha

    2006-11-01

    Single-shot echo-planar based diffusion tensor imaging is prone to geometric and intensity distortions. Parallel imaging is a means of reducing these distortions while preserving spatial resolution. A quantitative comparison at 3 T of parallel imaging for diffusion tensor images (DTI) using k-space (generalized auto-calibrating partially parallel acquisitions; GRAPPA) and image domain (sensitivity encoding; SENSE) reconstructions at different acceleration factors, R, is reported here. Images were evaluated using 8 human subjects with repeated scans for 2 subjects to estimate reproducibility. Mutual information (MI) was used to assess the global changes in geometric distortions. The effects of parallel imaging techniques on random noise and reconstruction artifacts were evaluated by placing 26 regions of interest and computing the standard deviation of apparent diffusion coefficient and fractional anisotropy along with the error of fitting the data to the diffusion model (residual error). The larger positive values in mutual information index with increasing R values confirmed the anticipated decrease in distortions. Further, the MI index of GRAPPA sequences for a given R factor was larger than the corresponding mSENSE images. The residual error was lowest in the images acquired without parallel imaging and among the parallel reconstruction methods, the R = 2 acquisitions had the least error. The standard deviation, accuracy, and reproducibility of the apparent diffusion coefficient and fractional anisotropy in homogenous tissue regions showed that GRAPPA acquired with R = 2 had the least amount of systematic and random noise and of these, significant differences with mSENSE, R = 2 were found only for the fractional anisotropy index. Evaluation of the current implementation of parallel reconstruction algorithms identified GRAPPA acquired with R = 2 as optimal for diffusion tensor imaging.

  11. Sensor, signal, and image informatics - state of the art and current topics.

    PubMed

    Lehmann, T M; Aach, T; Witte, H

    2006-01-01

    The number of articles published annually in the fields of biomedical signal and image acquisition and processing is increasing. Based on selected examples, this survey aims at comprehensively demonstrating the recent trends and developments. Four articles are selected for biomedical data acquisition covering topics such as dose saving in CT, C-arm X-ray imaging systems for volume imaging, and the replacement of dose-intensive CT-based diagnostic with harmonic ultrasound imaging. Regarding biomedical signal analysis (BSA), the four selected articles discuss the equivalence of different time-frequency approaches for signal analysis, an application to Cochlea implants, where time-frequency analysis is applied for controlling the replacement system, recent trends for fusion of different modalities, and the role of BSA as part of a brain machine interfaces. To cover the broad spectrum of publications in the field of biomedical image processing, six papers are focused. Important topics are content-based image retrieval in medical applications, automatic classification of tongue photographs from traditional Chinese medicine, brain perfusion analysis in single photon emission computed tomography (SPECT), model-based visualization of vascular trees, and virtual surgery, where enhanced visualization and haptic feedback techniques are combined with a sphere-filled model of the organ. The selected papers emphasize the five fields forming the chain of biomedical data processing: (1) data acquisition, (2) data reconstruction and pre-processing, (3) data handling, (4) data analysis, and (5) data visualization. Fields 1 and 2 form the sensor informatics, while fields 2 to 5 form signal or image informatics with respect to the nature of the data considered. Biomedical data acquisition and pre-processing, as well as data handling, analysis and visualization aims at providing reliable tools for decision support that improve the quality of health care. Comprehensive evaluation of the processing methods and their reliable integration in routine applications are future challenges in the field of sensor, signal and image informatics.

  12. Cardiac multidetector computed tomography: basic physics of image acquisition and clinical applications.

    PubMed

    Bardo, Dianna M E; Brown, Paul

    2008-08-01

    Cardiac MDCT is here to stay. And, it is more than just imaging coronary arteries. Understanding the differences in and the benefits of one CT scanner from another will help you to optimize the capabilities of the scanner, but requires a basic understanding of the MDCT imaging physics.This review provides key information needed to understand the differences in the types of MDCT scanners, from 64 - 320 detectors, flat panels, single and dual source configurations, step and shoot prospective and retrospective gating, and how each factor influences radiation dose, spatial and temporal resolution, and image noise.

  13. Single-exposure quantitative phase imaging in color-coded LED microscopy.

    PubMed

    Lee, Wonchan; Jung, Daeseong; Ryu, Suho; Joo, Chulmin

    2017-04-03

    We demonstrate single-shot quantitative phase imaging (QPI) in a platform of color-coded LED microscopy (cLEDscope). The light source in a conventional microscope is replaced by a circular LED pattern that is trisected into subregions with equal area, assigned to red, green, and blue colors. Image acquisition with a color image sensor and subsequent computation based on weak object transfer functions allow for the QPI of a transparent specimen. We also provide a correction method for color-leakage, which may be encountered in implementing our method with consumer-grade LEDs and image sensors. Most commercially available LEDs and image sensors do not provide spectrally isolated emissions and pixel responses, generating significant error in phase estimation in our method. We describe the correction scheme for this color-leakage issue, and demonstrate improved phase measurement accuracy. The computational model and single-exposure QPI capability of our method are presented by showing images of calibrated phase samples and cellular specimens.

  14. An Assessment of Iterative Reconstruction Methods for Sparse Ultrasound Imaging

    PubMed Central

    Valente, Solivan A.; Zibetti, Marcelo V. W.; Pipa, Daniel R.; Maia, Joaquim M.; Schneider, Fabio K.

    2017-01-01

    Ultrasonic image reconstruction using inverse problems has recently appeared as an alternative to enhance ultrasound imaging over beamforming methods. This approach depends on the accuracy of the acquisition model used to represent transducers, reflectivity, and medium physics. Iterative methods, well known in general sparse signal reconstruction, are also suited for imaging. In this paper, a discrete acquisition model is assessed by solving a linear system of equations by an ℓ1-regularized least-squares minimization, where the solution sparsity may be adjusted as desired. The paper surveys 11 variants of four well-known algorithms for sparse reconstruction, and assesses their optimization parameters with the goal of finding the best approach for iterative ultrasound imaging. The strategy for the model evaluation consists of using two distinct datasets. We first generate data from a synthetic phantom that mimics real targets inside a professional ultrasound phantom device. This dataset is contaminated with Gaussian noise with an estimated SNR, and all methods are assessed by their resulting images and performances. The model and methods are then assessed with real data collected by a research ultrasound platform when scanning the same phantom device, and results are compared with beamforming. A distinct real dataset is finally used to further validate the proposed modeling. Although high computational effort is required by iterative methods, results show that the discrete model may lead to images closer to ground-truth than traditional beamforming. However, computing capabilities of current platforms need to evolve before frame rates currently delivered by ultrasound equipments are achievable. PMID:28282862

  15. Micro–Single-Photon Emission Computed Tomography Image Acquisition and Quantification of Sodium-Iodide Symporter–Mediated Radionuclide Accumulation in Mouse Thyroid and Salivary Glands

    PubMed Central

    Brandt, Michael P.; Kloos, Richard T.; Shen, Daniel H.; Zhang, Xiaoli; Liu, Yu-Yu

    2012-01-01

    Background Micro–single-photon emission computed tomography (SPECT) provides a noninvasive way to evaluate the effects of genetic and/or pharmacological modulation on sodium-iodide symporter (NIS)–mediated radionuclide accumulation in mouse thyroid and salivary glands. However, parameters affecting image acquisition and analysis of mouse thyroids and salivary glands have not been thoroughly investigated. In this study, we investigated the effects of region-of-interest (ROI) selection, collimation, scan time, and imaging orbit on image acquisition and quantification of thyroidal and salivary radionuclide accumulation in mice. Methods The effects of data window minima and maxima on thyroidal and salivary ROI selection using a visual boundary method were examined in SPECT images acquired from mice injected with 123I NaI. The effects of collimation, scan time, and imaging orbit on counting linearity and signal intensity were investigated using phantoms filled with various activities of 123I NaI or Tc-99m pertechnetate. Spatial resolution of target organs in whole-animal images was compared between circular orbit with parallel-hole collimation and spiral orbit with five-pinhole collimation. Lastly, the inter-experimental variability of the same mouse scanned multiple times was compared with the intra-experimental variability among different mice scanned at the same time. Results Thyroid ROI was separated from salivary glands by empirically increasing the data window maxima. Counting linearity within the range of 0.5–14.2 μCi was validated by phantom imaging using single- or multiple-pinhole collimators with circular or spiral imaging orbit. Scanning time could be shortened to 15 minutes per mouse without compromising counting linearity despite proportionally decreased signal intensity. Whole-animal imaging using a spiral orbit with five-pinhole collimators achieved a high spatial resolution and counting linearity. Finally, the extent of inter-experimental variability of NIS-mediated radionuclide accumulation in the thyroid and salivary glands by SPECT imaging in the same mouse was less than the magnitude of variability among the littermates. Conclusions The impacts of multiple variables and experimental designs on micro-SPECT imaging and quantification of radionuclide accumulation in mouse thyroid and salivary glands can be minimized. This platform will serve as an invaluable tool to screen for pharmacologic reagents that differentially modulate thyroidal and salivary radioiodine accumulation in preclinical mouse models. PMID:22540327

  16. De-aliasing for signal restoration in Propeller MR imaging.

    PubMed

    Chiu, Su-Chin; Chang, Hing-Chiu; Chu, Mei-Lan; Wu, Ming-Long; Chung, Hsiao-Wen; Lin, Yi-Ru

    2017-02-01

    Objects falling outside of the true elliptical field-of-view (FOV) in Propeller imaging show unique aliasing artifacts. This study proposes a de-aliasing approach to restore the signal intensities in Propeller images without extra data acquisition. Computer simulation was performed on the Shepp-Logan head phantom deliberately placed obliquely to examine the signal aliasing. In addition, phantom and human imaging experiments were performed using Propeller imaging with various readouts on a 3.0 Tesla MR scanner. De-aliasing using the proposed method was then performed, with the first low-resolution single-blade image used to find out the aliasing patterns in all the single-blade images, followed by standard Propeller reconstruction. The Propeller images without and with de-aliasing were compared. Computer simulations showed signal loss at the image corners along with aliasing artifacts distributed along directions corresponding to the rotational blades, consistent with clinical observations. The proposed de-aliasing operation successfully restored the correct images in both phantom and human experiments. The de-aliasing operation is an effective adjunct to Propeller MR image reconstruction for retrospective restoration of aliased signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Space infrared telescope pointing control system. Automated star pattern recognition

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Vanbezooijen, R. W. H.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a free flying spacecraft carrying a 1 meter class cryogenically cooled infrared telescope nearly three oders of magnitude most sensitive than the current generation of infrared telescopes. Three automatic target acquisition methods will be presented that are based on the use of an imaging star tracker. The methods are distinguished by the number of guidestars that are required per target, the amount of computational capability necessary, and the time required for the complete acquisition process. Each method is described in detail.

  18. T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing, E-mail: jing.cai@duke.edu

    2015-08-15

    Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundantmore » images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N{sub R}) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N{sub R} and the following factors: number of slices (N{sub S}), number of 4D-MRI respiratory bins (N{sub B}), and starting phase at image acquisition (P{sub 0}). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved in an IRB-approved study to investigate the feasibility of this technique. Results: 4D data acquisition completeness (C{sub p}) increases as NR increases in an inverse-exponential fashion (C{sub p} = 100 − 99 × exp(−0.18 × N{sub R}), when N{sub B} = 6, fitted using 29 patients’ data). The N{sub R} required for 4D-MRI reconstruction (defined as achieving 95% completeness, C{sub p} = 95%, N{sub R} = N{sub R,95}) is proportional to N{sub B} (N{sub R,95} ∼ 2.86 × N{sub B}, r = 1.0), but independent of N{sub S} and P{sub 0}. Simulated XCAT 4D-MRI showed a clear pattern of respiratory motion. Tumor motion trajectories measured on 4D-MRI were comparable to the average input signal, with a mean relative amplitude error of 2.7% ± 2.9%. Reconstructed 4D-MRI for healthy volunteers illustrated clear respiratory motion on three orthogonal planes, with minimal image artifacts. The artifacts were presumably caused by breathing irregularity and incompleteness of data acquisition (95% acquired only). The mean relative amplitude error between critical structure trajectory and average breathing curve for 12 healthy volunteers is 2.5 ± 0.3 mm in superior–inferior direction. Conclusions: A novel T2-weighted retrospective phase sorting 4D-MRI technique has been developed and successfully applied on digital phantom and healthy volunteers.« less

  19. Modeling human faces with multi-image photogrammetry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2002-03-01

    Modeling and measurement of the human face have been increasing by importance for various purposes. Laser scanning, coded light range digitizers, image-based approaches and digital stereo photogrammetry are the used methods currently employed in medical applications, computer animation, video surveillance, teleconferencing and virtual reality to produce three dimensional computer models of the human face. Depending on the application, different are the requirements. Ours are primarily high accuracy of the measurement and automation in the process. The method presented in this paper is based on multi-image photogrammetry. The equipment, the method and results achieved with this technique are here depicted. The process is composed of five steps: acquisition of multi-images, calibration of the system, establishment of corresponding points in the images, computation of their 3-D coordinates and generation of a surface model. The images captured by five CCD cameras arranged in front of the subject are digitized by a frame grabber. The complete system is calibrated using a reference object with coded target points, which can be measured fully automatically. To facilitate the establishment of correspondences in the images, texture in the form of random patterns can be projected from two directions onto the face. The multi-image matching process, based on a geometrical constrained least squares matching algorithm, produces a dense set of corresponding points in the five images. Neighborhood filters are then applied on the matching results to remove the errors. After filtering the data, the three-dimensional coordinates of the matched points are computed by forward intersection using the results of the calibration process; the achieved mean accuracy is about 0.2 mm in the sagittal direction and about 0.1 mm in the lateral direction. The last step of data processing is the generation of a surface model from the point cloud and the application of smooth filters. Moreover, a color texture image can be draped over the model to achieve a photorealistic visualization. The advantage of the presented method over laser scanning and coded light range digitizers is the acquisition of the source data in a fraction of a second, allowing the measurement of human faces with higher accuracy and the possibility to measure dynamic events like the speech of a person.

  20. A comparison of peripheral imaging technologies for bone and muscle quantification: a technical review of image acquisition

    PubMed Central

    Wong, A.K.O.

    2016-01-01

    The choice of an appropriate imaging technique to quantify bone, muscle, or muscle adiposity needs to be guided by a thorough understanding of its competitive advantages over other modalities balanced by its limitations. This review details the technical machinery and methods behind peripheral quantitative computed tomography (pQCT), high-resolution (HR)-pQCT, and magnetic resonance imaging (MRI) that drive successful depiction of bone and muscle morphometry, densitometry, and structure. It discusses a number of image acquisition settings, the challenges associated with using one versus another, and compares the risk-benefits across the different modalities. Issues related to all modalities including partial volume artifact, beam hardening, calibration, and motion assessment are also detailed. The review further provides data and images to illustrate differences between methods to better guide the reader in selecting an imaging method strategically. Overall, investigators should be cautious of the impact of imaging parameters on image signal or contrast-to-noise-ratios, and the need to report these settings in future publications. The effect of motion should be assessed on images and a decision made to exclude prior to segmentation. A more standardized approach to imaging bone and muscle on pQCT and MRI could enhance comparability across studies and could improve the quality of meta-analyses. PMID:27973379

  1. A comparison of peripheral imaging technologies for bone and muscle quantification: a technical review of image acquisition.

    PubMed

    Wong, A K

    2016-12-14

    The choice of an appropriate imaging technique to quantify bone, muscle, or muscle adiposity needs to be guided by a thorough understanding of its competitive advantages over other modalities balanced by its limitations. This review details the technical machinery and methods behind peripheral quantitative computed tomography (pQCT), high-resolution (HR)-pQCT, and magnetic resonance imaging (MRI) that drive successful depiction of bone and muscle morphometry, densitometry, and structure. It discusses a number of image acquisition settings, the challenges associated with using one versus another, and compares the risk-benefits across the different modalities. Issues related to all modalities including partial volume artifact, beam hardening, calibration, and motion assessment are also detailed. The review further provides data and images to illustrate differences between methods to better guide the reader in selecting an imaging method strategically. Overall, investigators should be cautious of the impact of imaging parameters on image signal or contrast-to-noise-ratios, and the need to report these settings in future publications. The effect of motion should be assessed on images and a decision made to exclude prior to segmentation. A more standardized approach to imaging bone and muscle on pQCT and MRI could enhance comparability across studies and could improve the quality of meta-analyses.

  2. Retrospective respiration-gated whole-body photoacoustic computed tomography of mice

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chen, Wanyi; Maslov, Konstantin; Anastasio, Mark A.; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is an emerging technique that has a great potential for preclinical whole-body imaging. To date, most whole-body PAT systems require multiple laser shots to generate one cross-sectional image, yielding a frame rate of <1 Hz. Because a mouse breathes at up to 3 Hz, without proper gating mechanisms, acquired images are susceptible to motion artifacts. Here, we introduce, for the first time to our knowledge, retrospective respiratory gating for whole-body photoacoustic computed tomography. This new method involves simultaneous capturing of the animal's respiratory waveform during photoacoustic data acquisition. The recorded photoacoustic signals are sorted and clustered according to the respiratory phase, and an image of the animal at each respiratory phase is reconstructed subsequently from the corresponding cluster. The new method was tested in a ring-shaped confocal photoacoustic computed tomography system with a hardware-limited frame rate of 0.625 Hz. After respiratory gating, we observed sharper vascular and anatomical images at different positions of the animal body. The entire breathing cycle can also be visualized at 20 frames/cycle.

  3. IMAGE: A Design Integration Framework Applied to the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.

    1993-01-01

    Effective design of the High Speed Civil Transport requires the systematic application of design resources throughout a product's life-cycle. Information obtained from the use of these resources is used for the decision-making processes of Concurrent Engineering. Integrated computing environments facilitate the acquisition, organization, and use of required information. State-of-the-art computing technologies provide the basis for the Intelligent Multi-disciplinary Aircraft Generation Environment (IMAGE) described in this paper. IMAGE builds upon existing agent technologies by adding a new component called a model. With the addition of a model, the agent can provide accountable resource utilization in the presence of increasing design fidelity. The development of a zeroth-order agent is used to illustrate agent fundamentals. Using a CATIA(TM)-based agent from previous work, a High Speed Civil Transport visualization system linking CATIA, FLOPS, and ASTROS will be shown. These examples illustrate the important role of the agent technologies used to implement IMAGE, and together they demonstrate that IMAGE can provide an integrated computing environment for the design of the High Speed Civil Transport.

  4. Space Technology - Game Changing Development NASA Facts: Autonomous Medical Operations

    NASA Technical Reports Server (NTRS)

    Thompson, David E.

    2018-01-01

    The AMO (Autonomous Medical Operations) Project is working extensively to train medical models on the reliability and confidence of computer-aided interpretation of ultrasound images in various clinical settings, and of various anatomical structures. AI (Artificial Intelligence) algorithms recognize and classify features in the ultrasound images, and these are compared to those features that clinicians use to diagnose diseases. The acquisition of clinically validated image assessment and the use of the AI algorithms constitutes fundamental baseline for a Medical Decision Support System that will advise crew on long-duration, remote missions.

  5. TIA Software User's Manual

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Syed, Hazari I.

    1995-01-01

    This user's manual describes the installation and operation of TIA, the Thermal-Imaging acquisition and processing Application, developed by the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center, Hampton, Virginia. TIA is a user friendly graphical interface application for the Macintosh 2 and higher series computers. The software has been developed to interface with the Perceptics/Westinghouse Pixelpipe(TM) and PixelStore(TM) NuBus cards and the GW Instruments MacADIOS(TM) input-output (I/O) card for the Macintosh for imaging thermal data. The software is also capable of performing generic image-processing functions.

  6. Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager

    NASA Astrophysics Data System (ADS)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2010-02-01

    We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.

  7. Multimode C-arm fluoroscopy, tomosynthesis, and cone-beam CT for image-guided interventions: from proof of principle to patient protocols

    NASA Astrophysics Data System (ADS)

    Siewerdsen, J. H.; Daly, M. J.; Bachar, G.; Moseley, D. J.; Bootsma, G.; Brock, K. K.; Ansell, S.; Wilson, G. A.; Chhabra, S.; Jaffray, D. A.; Irish, J. C.

    2007-03-01

    High-performance intraoperative imaging is essential to an ever-expanding scope of therapeutic procedures ranging from tumor surgery to interventional radiology. The need for precise visualization of bony and soft-tissue structures with minimal obstruction to the therapy setup presents challenges and opportunities in the development of novel imaging technologies specifically for image-guided procedures. Over the past ~5 years, a mobile C-arm has been modified in collaboration with Siemens Medical Solutions for 3D imaging. Based upon a Siemens PowerMobil, the device includes: a flat-panel detector (Varian PaxScan 4030CB); a motorized orbit; a system for geometric calibration; integration with real-time tracking and navigation (NDI Polaris); and a computer control system for multi-mode fluoroscopy, tomosynthesis, and cone-beam CT. Investigation of 3D imaging performance (noise-equivalent quanta), image quality (human observer studies), and image artifacts (scatter, truncation, and cone-beam artifacts) has driven the development of imaging techniques appropriate to a host of image-guided interventions. Multi-mode functionality presents a valuable spectrum of acquisition techniques: i.) fluoroscopy for real-time 2D guidance; ii.) limited-angle tomosynthesis for fast 3D imaging (e.g., ~10 sec acquisition of coronal slices containing the surgical target); and iii.) fully 3D cone-beam CT (e.g., ~30-60 sec acquisition providing bony and soft-tissue visualization across the field of view). Phantom and cadaver studies clearly indicate the potential for improved surgical performance - up to a factor of 2 increase in challenging surgical target excisions. The C-arm system is currently being deployed in patient protocols ranging from brachytherapy to chest, breast, spine, and head and neck surgery.

  8. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data.

    PubMed

    Muir, Dylan R; Kampa, Björn M

    2014-01-01

    Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.

  9. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data

    PubMed Central

    Muir, Dylan R.; Kampa, Björn M.

    2015-01-01

    Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories1. PMID:25653614

  10. A pathologist-designed imaging system for anatomic pathology signout, teaching, and research.

    PubMed

    Schubert, E; Gross, W; Siderits, R H; Deckenbaugh, L; He, F; Becich, M J

    1994-11-01

    Pathology images are derived from gross surgical specimens, light microscopy, immunofluorescence, electron microscopy, molecular diagnostic gels, flow cytometry, image analysis data, and clinical laboratory data in graphic form. We have implemented a network of desktop personal computers (PCs) that allow us to easily capture, store, and retrieve gross and microscopic, anatomic, and research pathology images. System architecture involves multiple image acquisition and retrieval sites and a central file server for storage. The digitized images are conveyed via a local area network to and from image capture or display stations. Acquisition sites consist of a high-resolution camera connected to a frame grabber card in a 486-type personal computer, equipped with 16 MB (Table 1) RAM, a 1.05-gigabyte hard drive, and a 32-bit ethernet card for access to our anatomic pathology reporting system. We have designed a push-button workstation for acquiring and indexing images that does not significantly interfere with surgical pathology sign-out. Advantages of the system include the following: (1) Improving patient care: the availability of gross images at time of microscopic sign-out, verification of recurrence of malignancy from archived images, monitoring of bone marrow engraftment and immunosuppressive intervention after bone marrow/solid organ transplantation on repeat biopsies, and ability to seek instantaneous consultation with any pathologist on the network; (2) enhancing the teaching environment: building a digital surgical pathology atlas, improving the availability of images for conference support, and sharing cases across the network; (3) enhancing research: case study compilation, metastudy analysis, and availability of digitized images for quantitative analysis and permanent/reusable image records for archival study; and (4) other practical and economic considerations: storing case requisition images and hand-drawn diagrams deters the spread of gross room contaminants and results in considerable cost savings in photographic media for conferences, improved quality assurance by porting control stains across the network, and a multiplicity of other advantages that enhance image and information management in pathology.

  11. Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review.

    PubMed

    Chen, Jia-Mei; Li, Yan; Xu, Jun; Gong, Lei; Wang, Lin-Wei; Liu, Wen-Lou; Liu, Juan

    2017-03-01

    With the advance of digital pathology, image analysis has begun to show its advantages in information analysis of hematoxylin and eosin histopathology images. Generally, histological features in hematoxylin and eosin images are measured to evaluate tumor grade and prognosis for breast cancer. This review summarized recent works in image analysis of hematoxylin and eosin histopathology images for breast cancer prognosis. First, prognostic factors for breast cancer based on hematoxylin and eosin histopathology images were summarized. Then, usual procedures of image analysis for breast cancer prognosis were systematically reviewed, including image acquisition, image preprocessing, image detection and segmentation, and feature extraction. Finally, the prognostic value of image features and image feature-based prognostic models was evaluated. Moreover, we discussed the issues of current analysis, and some directions for future research.

  12. EIAGRID: In-field optimization of seismic data acquisition by real-time subsurface imaging using a remote GRID computing environment.

    NASA Astrophysics Data System (ADS)

    Heilmann, B. Z.; Vallenilla Ferrara, A. M.

    2009-04-01

    The constant growth of contaminated sites, the unsustainable use of natural resources, and, last but not least, the hydrological risk related to extreme meteorological events and increased climate variability are major environmental issues of today. Finding solutions for these complex problems requires an integrated cross-disciplinary approach, providing a unified basis for environmental science and engineering. In computer science, grid computing is emerging worldwide as a formidable tool allowing distributed computation and data management with administratively-distant resources. Utilizing these modern High Performance Computing (HPC) technologies, the GRIDA3 project bundles several applications from different fields of geoscience aiming to support decision making for reasonable and responsible land use and resource management. In this abstract we present a geophysical application called EIAGRID that uses grid computing facilities to perform real-time subsurface imaging by on-the-fly processing of seismic field data and fast optimization of the processing workflow. Even though, seismic reflection profiling has a broad application range spanning from shallow targets in a few meters depth to targets in a depth of several kilometers, it is primarily used by the hydrocarbon industry and hardly for environmental purposes. The complexity of data acquisition and processing poses severe problems for environmental and geotechnical engineering: Professional seismic processing software is expensive to buy and demands large experience from the user. In-field processing equipment needed for real-time data Quality Control (QC) and immediate optimization of the acquisition parameters is often not available for this kind of studies. As a result, the data quality will be suboptimal. In the worst case, a crucial parameter such as receiver spacing, maximum offset, or recording time turns out later to be inappropriate and the complete acquisition campaign has to be repeated. The EIAGRID portal provides an innovative solution to this problem combining state-of-the-art data processing methods and modern remote grid computing technology. In field-processing equipment is substituted by remote access to high performance grid computing facilities. The latter can be ubiquitously controlled by a user-friendly web-browser interface accessed from the field by any mobile computer using wireless data transmission technology such as UMTS (Universal Mobile Telecommunications System) or HSUPA/HSDPA (High-Speed Uplink/Downlink Packet Access). The complexity of data-manipulation and processing and thus also the time demanding user interaction is minimized by a data-driven, and highly automated velocity analysis and imaging approach based on the Common-Reflection-Surface (CRS) stack. Furthermore, the huge computing power provided by the grid deployment allows parallel testing of alternative processing sequences and parameter settings, a feature which considerably reduces the turn-around times. A shared data storage using georeferencing tools and data grid technology is under current development. It will allow to publish already accomplished projects, making results, processing workflows and parameter settings available in a transparent and reproducible way. Creating a unified database shared by all users will facilitate complex studies and enable the use of data-crossing techniques to incorporate results of other environmental applications hosted on the GRIDA3 portal.

  13. Target recognition and phase acquisition by using incoherent digital holographic imaging

    NASA Astrophysics Data System (ADS)

    Lee, Munseob; Lee, Byung-Tak

    2017-05-01

    In this study, we proposed the Incoherent Digital Holographic Imaging (IDHI) for recognition and phase information of dedicated target. Although recent development of a number of target recognition techniques such as LIDAR, there have limited success in target discrimination, in part due to low-resolution, low scanning speed, and computation power. In the paper, the proposed system consists of the incoherent light source, such as LED, Michelson interferometer, and digital CCD for acquisition of four phase shifting image. First of all, to compare with relative coherence, we used a source as laser and LED, respectively. Through numerical reconstruction by using the four phase shifting method and Fresnel diffraction method, we recovered the intensity and phase image of USAF resolution target apart from about 1.0m distance. In this experiment, we show 1.2 times improvement in resolution compared to conventional imaging. Finally, to confirm the recognition result of camouflaged targets with the same color from background, we carry out to test holographic imaging in incoherent light. In this result, we showed the possibility of a target detection and recognition that used three dimensional shape and size signatures, numerical distance from phase information of obtained holographic image.

  14. In-flight edge response measurements for high-spatial-resolution remote sensing systems

    NASA Astrophysics Data System (ADS)

    Blonski, Slawomir; Pagnutti, Mary A.; Ryan, Robert; Zanoni, Vickie

    2002-09-01

    In-flight measurements of spatial resolution were conducted as part of the NASA Scientific Data Purchase Verification and Validation process. Characterization included remote sensing image products with ground sample distance of 1 meter or less, such as those acquired with the panchromatic imager onboard the IKONOS satellite and the airborne ADAR System 5500 multispectral instrument. Final image products were used to evaluate the effects of both the image acquisition system and image post-processing. Spatial resolution was characterized by full width at half maximum of an edge-response-derived line spread function. The edge responses were analyzed using the tilted-edge technique that overcomes the spatial sampling limitations of the digital imaging systems. As an enhancement to existing algorithms, the slope of the edge response and the orientation of the edge target were determined by a single computational process. Adjacent black and white square panels, either painted on a flat surface or deployed as tarps, formed the ground-based edge targets used in the tests. Orientation of the deployable tarps was optimized beforehand, based on simulations of the imaging system. The effects of such factors as acquisition geometry, temporal variability, Modulation Transfer Function compensation, and ground sample distance on spatial resolution were investigated.

  15. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging.

    PubMed

    Rong, Xing; Du, Yong; Frey, Eric C

    2012-06-21

    Quantitative Yttrium-90 ((90)Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging has shown great potential to provide reliable estimates of (90)Y activity distribution for targeted radionuclide therapy dosimetry applications. One factor that potentially affects the reliability of the activity estimates is the choice of the acquisition energy window. In contrast to imaging conventional gamma photon emitters where the acquisition energy windows are usually placed around photopeaks, there has been great variation in the choice of the acquisition energy window for (90)Y imaging due to the continuous and broad energy distribution of the bremsstrahlung photons. In quantitative imaging of conventional gamma photon emitters, previous methods for optimizing the acquisition energy window assumed unbiased estimators and used the variance in the estimates as a figure of merit (FOM). However, for situations, such as (90)Y imaging, where there are errors in the modeling of the image formation process used in the reconstruction there will be bias in the activity estimates. In (90)Y bremsstrahlung imaging this will be especially important due to the high levels of scatter, multiple scatter, and collimator septal penetration and scatter. Thus variance will not be a complete measure of reliability of the estimates and thus is not a complete FOM. To address this, we first aimed to develop a new method to optimize the energy window that accounts for both the bias due to model-mismatch and the variance of the activity estimates. We applied this method to optimize the acquisition energy window for quantitative (90)Y bremsstrahlung SPECT imaging in microsphere brachytherapy. Since absorbed dose is defined as the absorbed energy from the radiation per unit mass of tissues in this new method we proposed a mass-weighted root mean squared error of the volume of interest (VOI) activity estimates as the FOM. To calculate this FOM, two analytical expressions were derived for calculating the bias due to model-mismatch and the variance of the VOI activity estimates, respectively. To obtain the optimal acquisition energy window for general situations of interest in clinical (90)Y microsphere imaging, we generated phantoms with multiple tumors of various sizes and various tumor-to-normal activity concentration ratios using a digital phantom that realistically simulates human anatomy, simulated (90)Y microsphere imaging with a clinical SPECT system and typical imaging parameters using a previously validated Monte Carlo simulation code, and used a previously proposed method for modeling the image degrading effects in quantitative SPECT reconstruction. The obtained optimal acquisition energy window was 100-160 keV. The values of the proposed FOM were much larger than the FOM taking into account only the variance of the activity estimates, thus demonstrating in our experiment that the bias of the activity estimates due to model-mismatch was a more important factor than the variance in terms of limiting the reliability of activity estimates.

  16. A versatile nondestructive evaluation imaging workstation

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1994-01-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  17. A versatile nondestructive evaluation imaging workstation

    NASA Astrophysics Data System (ADS)

    Chern, E. James; Butler, David W.

    1994-02-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  18. MO-DE-209-03: Assessing Image Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, W.

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBTmore » shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support, Hologic, Inc.; Research Support, Barco, Inc.; Scientific Advisory Board, Gamma Medica, Inc.; Scientific Advisory Board, Real-Time Tomography, LLC.; Shareholder, Real-Time Tomography, LLC; J. Mainprize, Our lab has a research agreement with GE Healthcare on various topics in digital mammography and digital tomosynthesis; W. Zhao, Research grant from Siemens Health Care.« less

  19. Patient dose, gray level and exposure index with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Silva, T. R.; Yoshimura, E. M.

    2014-02-01

    Computed radiography (CR) is gradually replacing conventional screen-film system in Brazil. To assess image quality, manufactures provide the calculation of an exposure index through the acquisition software of the CR system. The objective of this study is to verify if the CR image can be used as an evaluator of patient absorbed dose too, through a relationship between the entrance skin dose and the exposure index or the gray level values obtained in the image. The CR system used for this study (Agfa model 30-X with NX acquisition software) calculates an exposure index called Log of the Median (lgM), related to the absorbed dose to the IP. The lgM value depends on the average gray level (called Scan Average Level (SAL)) of the segmented pixel value histogram of the whole image. A Rando male phantom was used to simulate a human body (chest and head), and was irradiated with an X-ray equipment, using usual radiologic techniques for chest exams. Thermoluminescent dosimeters (LiF, TLD100) were used to evaluate entrance skin dose and exit dose. The results showed a logarithm relation between entrance dose and SAL in the image center, regardless of the beam filtration. The exposure index varies linearly with the entrance dose, but the angular coefficient is beam quality dependent. We conclude that, with an adequate calibration, the CR system can be used to evaluate the patient absorbed dose.

  20. Image acquisitions, processing and analysis in the process of obtaining characteristics of horse navicular bone

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Włodarek, J.; Przybylak, A.; Przybył, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Boniecki, P.; Koszela, K.; Przybył, J.; Skwarcz, J.

    2015-07-01

    The aim of this study was investigate the possibility of using methods of computer image analysis for the assessment and classification of morphological variability and the state of health of horse navicular bone. Assumption was that the classification based on information contained in the graphical form two-dimensional digital images of navicular bone and information of horse health. The first step in the research was define the classes of analyzed bones, and then using methods of computer image analysis for obtaining characteristics from these images. This characteristics were correlated with data concerning the animal, such as: side of hooves, number of navicular syndrome (scale 0-3), type, sex, age, weight, information about lace, information about heel. This paper shows the introduction to the study of use the neural image analysis in the diagnosis of navicular bone syndrome. Prepared method can provide an introduction to the study of non-invasive way to assess the condition of the horse navicular bone.

  1. Normalized Temperature Contrast Processing in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  2. Identification of Reduced-Order Thermal Therapy Models Using Thermal MR Images: Theory and Validation

    PubMed Central

    2013-01-01

    In this paper, we develop and validate a method to identify computationally efficient site- and patient-specific models of ultrasound thermal therapies from MR thermal images. The models of the specific absorption rate of the transduced energy and the temperature response of the therapy target are identified in the reduced basis of proper orthogonal decomposition of thermal images, acquired in response to a mild thermal test excitation. The method permits dynamic reidentification of the treatment models during the therapy by recursively utilizing newly acquired images. Such adaptation is particularly important during high-temperature therapies, which are known to substantially and rapidly change tissue properties and blood perfusion. The developed theory was validated for the case of focused ultrasound heating of a tissue phantom. The experimental and computational results indicate that the developed approach produces accurate low-dimensional treatment models despite temporal and spatial noises in MR images and slow image acquisition rate. PMID:22531754

  3. Feasibility of high-pitch spiral dual-source CT angiography in children with complex congenital heart disease compared to retrospective-gated spiral acquisition.

    PubMed

    Li, T; Zhao, S; Liu, J; Yang, L; Huang, Z; Li, J; Luo, C; Li, X

    2017-10-01

    To investigate the use of second-generation dual-source high-pitch computed tomography in obtaining confident diagnostic image quality using a low radiation dose in young patients with congenital heart disease (CHD). From July 2014 to June 2016, 50 consecutive children <4 years with complex CHD underwent electrocardiography (ECG)-triggered dual-source computed tomography (CT). The patients were assigned randomly to two groups: high-pitch (pitch 3.4) spiral dual-source CT acquisition (group A) and retrospectively spiral dual-source CT acquisition (group B). The image quality, diagnostic accuracy, coronary artery origin, course demonstration, and radiation exposure were compared between the two groups. Fifty examinations were performed (group A, 25; group B, 25). There were no significant differences in image quality, diagnostic accuracy, coronary artery origin, and course demonstration between the two groups. The image quality scores were 1.3±0.4 in group A and 1.1±0.3 in group B (p=0.2). The diagnostic accuracy was 100% in both groups. The coronary arteries were traceable in 80% in group A and 84% in group B (p=0.7). A single coronary artery was identified in one case in group A and the left anterior descending (LAD) branch originated from the right coronary artery (RCA) in one case in group B. There were significant differences in the effective doses between the two groups (0.40±0.20 mSv in group A and 2.7±1.0 mSv in group B, p<0.05). Intra-cardiac and extra-cardiac malformation, coronary artery origin, and course malformation can be visualised clearly using a high-pitch ECG-triggered dual-source CT with a low radiation dose and good image quality in patients with CHD. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Earth Orbiter 1: Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An advanced on-board spacecraft data system component is presented. The component is computer-based and provides science data acquisition, processing, storage, and base-band transmission functions. Specifically, the component is a very high rate solid state recorder, serving as a pathfinder for achieving the data handling requirements of next-generation hyperspectral imaging missions.

  5. MCA-NMF: Multimodal Concept Acquisition with Non-Negative Matrix Factorization

    PubMed Central

    Mangin, Olivier; Filliat, David; ten Bosch, Louis; Oudeyer, Pierre-Yves

    2015-01-01

    In this paper we introduce MCA-NMF, a computational model of the acquisition of multimodal concepts by an agent grounded in its environment. More precisely our model finds patterns in multimodal sensor input that characterize associations across modalities (speech utterances, images and motion). We propose this computational model as an answer to the question of how some class of concepts can be learnt. In addition, the model provides a way of defining such a class of plausibly learnable concepts. We detail why the multimodal nature of perception is essential to reduce the ambiguity of learnt concepts as well as to communicate about them through speech. We then present a set of experiments that demonstrate the learning of such concepts from real non-symbolic data consisting of speech sounds, images, and motions. Finally we consider structure in perceptual signals and demonstrate that a detailed knowledge of this structure, named compositional understanding can emerge from, instead of being a prerequisite of, global understanding. An open-source implementation of the MCA-NMF learner as well as scripts and associated experimental data to reproduce the experiments are publicly available. PMID:26489021

  6. - and Scene-Guided Integration of Tls and Photogrammetric Point Clouds for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Zieher, T.; Toschi, I.; Remondino, F.; Rutzinger, M.; Kofler, Ch.; Mejia-Aguilar, A.; Schlögel, R.

    2018-05-01

    Terrestrial and airborne 3D imaging sensors are well-suited data acquisition systems for the area-wide monitoring of landslide activity. State-of-the-art surveying techniques, such as terrestrial laser scanning (TLS) and photogrammetry based on unmanned aerial vehicle (UAV) imagery or terrestrial acquisitions have advantages and limitations associated with their individual measurement principles. In this study we present an integration approach for 3D point clouds derived from these techniques, aiming at improving the topographic representation of landslide features while enabling a more accurate assessment of landslide-induced changes. Four expert-based rules involving local morphometric features computed from eigenvectors, elevation and the agreement of the individual point clouds, are used to choose within voxels of selectable size which sensor's data to keep. Based on the integrated point clouds, digital surface models and shaded reliefs are computed. Using an image correlation technique, displacement vectors are finally derived from the multi-temporal shaded reliefs. All results show comparable patterns of landslide movement rates and directions. However, depending on the applied integration rule, differences in spatial coverage and correlation strength emerge.

  7. Helium-3 MR q-space imaging with radial acquisition and iterative highly constrained back-projection.

    PubMed

    O'Halloran, Rafael L; Holmes, James H; Wu, Yu-Chien; Alexander, Andrew; Fain, Sean B

    2010-01-01

    An undersampled diffusion-weighted stack-of-stars acquisition is combined with iterative highly constrained back-projection to perform hyperpolarized helium-3 MR q-space imaging with combined regional correction of radiofrequency- and T1-related signal loss in a single breath-held scan. The technique is tested in computer simulations and phantom experiments and demonstrated in a healthy human volunteer with whole-lung coverage in a 13-sec breath-hold. Measures of lung microstructure at three different lung volumes are evaluated using inhaled gas volumes of 500 mL, 1000 mL, and 1500 mL to demonstrate feasibility. Phantom results demonstrate that the proposed technique is in agreement with theoretical values, as well as with a fully sampled two-dimensional Cartesian acquisition. Results from the volunteer study demonstrate that the root mean squared diffusion distance increased significantly from the 500-mL volume to the 1000-mL volume. This technique represents the first demonstration of a spatially resolved hyperpolarized helium-3 q-space imaging technique and shows promise for microstructural evaluation of lung disease in three dimensions. Copyright (c) 2009 Wiley-Liss, Inc.

  8. An imaging system for PLIF/Mie measurements for a combusting flow

    NASA Technical Reports Server (NTRS)

    Wey, C. C.; Ghorashi, B.; Marek, C. J.; Wey, C.

    1990-01-01

    The equipment required to establish an imaging system can be divided into four parts: (1) the light source and beam shaping optics; (2) camera and recording; (3) image acquisition and processing; and (4) computer and output systems. A pulsed, Nd:YAG-pummped, frequency-doubled dye laser which can freeze motion in the flowfield is used for an illumination source. A set of lenses is used to form the laser beam into a sheet. The induced fluorescence is collected by an UV-enhanced lens and passes through an UV-enhanced microchannel plate intensifier which is optically coupled to a gated solid state CCD camera. The output of the camera is simultaneously displayed on a monitor and recorded on either a laser videodisc set of a Super VHS VCR. This videodisc set is controlled by a minicomputer via a connection to the RS-232C interface terminals. The imaging system is connected to the host computer by a bus repeater and can be multiplexed between four video input sources. Sample images from a planar shear layer experiment are presented to show the processing capability of the imaging system with the host computer.

  9. Computer-implemented system and method for automated and highly accurate plaque analysis, reporting, and visualization

    NASA Technical Reports Server (NTRS)

    Kemp, James Herbert (Inventor); Talukder, Ashit (Inventor); Lambert, James (Inventor); Lam, Raymond (Inventor)

    2008-01-01

    A computer-implemented system and method of intra-oral analysis for measuring plaque removal is disclosed. The system includes hardware for real-time image acquisition and software to store the acquired images on a patient-by-patient basis. The system implements algorithms to segment teeth of interest from surrounding gum, and uses a real-time image-based morphing procedure to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The system integrates these components into a single software suite with an easy-to-use graphical user interface (GUI) that allows users to do an end-to-end run of a patient record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image.

  10. Hyperpolarized (3)He magnetic resonance imaging: comparison with four-dimensional x-ray computed tomography imaging in lung cancer.

    PubMed

    Mathew, Lindsay; Wheatley, Andrew; Castillo, Richard; Castillo, Edward; Rodrigues, George; Guerrero, Thomas; Parraga, Grace

    2012-12-01

    Pulmonary functional imaging using four-dimensional x-ray computed tomographic (4DCT) imaging and hyperpolarized (3)He magnetic resonance imaging (MRI) provides regional lung function estimates in patients with lung cancer in whom pulmonary function measurements are typically dominated by tumor burden. The aim of this study was to evaluate the quantitative spatial relationship between 4DCT and hyperpolarized (3)He MRI ventilation maps. Eleven patients with lung cancer provided written informed consent to 4DCT imaging and MRI performed within 11 ± 14 days. Hyperpolarized (3)He MRI was acquired in breath-hold after inhalation from functional residual capacity of 1 L hyperpolarized (3)He, whereas 4DCT imaging was acquired over a single tidal breath of room air. For hyperpolarized (3)He MRI, the percentage ventilated volume was generated using semiautomated segmentation; for 4DCT imaging, pulmonary function maps were generated using the correspondence between identical tissue elements at inspiratory and expiratory phases to generate percentage ventilated volume. After accounting for differences in image acquisition lung volumes ((3)He MRI: 1.9 ± 0.5 L ipsilateral, 2.3 ± 0.7 L contralateral; 4DCT imaging: 1.2 ± 0.3 L ipsilateral, 1.3 ± 0.4 L contralateral), there was no significant difference in percentage ventilated volume between hyperpolarized (3)He MRI (72 ± 11% ipsilateral, 79 ± 12% contralateral) and 4DCT imaging (74 ± 3% ipsilateral, 75 ± 4% contralateral). Spatial correspondence between 4DCT and (3)He MRI ventilation was evaluated using the Dice similarity coefficient index (ipsilateral, 86 ± 12%; contralateral, 88 ± 12%). Despite rather large differences in image acquisition breathing maneuvers, good spatial and significant quantitative agreement was observed for ventilation maps on hyperpolarized (3)He MRI and 4DCT imaging, suggesting that pulmonary regions with good lung function are similar between modalities in this small group of patients with lung cancer. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  11. Reproducibility of radiomics for deciphering tumor phenotype with imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Binsheng; Tan, Yongqiang; Tsai, Wei-Yann; Qi, Jing; Xie, Chuanmiao; Lu, Lin; Schwartz, Lawrence H.

    2016-03-01

    Radiomics (radiogenomics) characterizes tumor phenotypes based on quantitative image features derived from routine radiologic imaging to improve cancer diagnosis, prognosis, prediction and response to therapy. Although radiomic features must be reproducible to qualify as biomarkers for clinical care, little is known about how routine imaging acquisition techniques/parameters affect reproducibility. To begin to fill this knowledge gap, we assessed the reproducibility of a comprehensive, commonly-used set of radiomic features using a unique, same-day repeat computed tomography data set from lung cancer patients. Each scan was reconstructed at 6 imaging settings, varying slice thicknesses (1.25 mm, 2.5 mm and 5 mm) and reconstruction algorithms (sharp, smooth). Reproducibility was assessed using the repeat scans reconstructed at identical imaging setting (6 settings in total). In separate analyses, we explored differences in radiomic features due to different imaging parameters by assessing the agreement of these radiomic features extracted from the repeat scans reconstructed at the same slice thickness but different algorithms (3 settings in total). Our data suggest that radiomic features are reproducible over a wide range of imaging settings. However, smooth and sharp reconstruction algorithms should not be used interchangeably. These findings will raise awareness of the importance of properly setting imaging acquisition parameters in radiomics/radiogenomics research.

  12. Integrating respiratory gating into a megavoltage cone-beam CT system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Jenghwa; Sillanpaa, Jussi; Ling, Clifton C.

    2006-07-15

    We have previously described a low-dose megavoltage cone beam computed tomography (MV CBCT) system capable of producing projection image using one beam pulse. In this study, we report on its integration with respiratory gating for gated radiotherapy. The respiratory gating system tracks a reflective marker on the patient's abdomen midway between the xiphoid and umbilicus, and disables radiation delivery when the marker position is outside predefined thresholds. We investigate two strategies for acquiring gated scans. In the continuous rotation-gated acquisition, the linear accelerator (LINAC) is set to the fixed x-ray mode and the gantry makes a 5 min, 360 deg.continuousmore » rotation, during which the gating system turns the radiation beam on and off, resulting in projection images with an uneven distribution of projection angles (e.g., in 70 arcs each covering 2 deg.). In the gated rotation-continuous acquisition, the LINAC is set to the dynamic arc mode, which suspends the gantry rotation when the gating system inhibits the beam, leading to a slightly longer (6-7 min) scan time, but yielding projection images with more evenly distributed projection angles (e.g., {approx}0.8 deg.between two consecutive projection angles). We have tested both data acquisition schemes on stationary (a contrast detail and a thoracic) phantoms and protocol lung patients. For stationary phantoms, a separate motion phantom not visible in the images is used to trigger the RPM system. Frame rate is adjusted so that approximately 450 images (13 MU) are acquired for each scan and three-dimensional tomographic images reconstructed using a Feldkamp filtered backprojection algorithm. The gated rotation-continuous acquisition yield reconstructions free of breathing artifacts. The tumor in parenchymal lung and normal tissues are easily discernible and the boundary between the diaphragm and the lung sharply defined. Contrast-to-noise ratio (CNR) is not degraded relative to nongated scans of stationary phantoms. The continuous rotation-gated acquisition scan also yields tomographic images with discernible anatomic features; however, streak artifacts are observed and CNR is reduced by approximately a factor of 4. In conclusion, we have successfully developed a gated MV CBCT system to verify the patient positioning for gated radiotherapy.« less

  13. Cascaded systems analysis of noise and detectability in dual-energy cone-beam CT

    PubMed Central

    Gang, Grace J.; Zbijewski, Wojciech; Webster Stayman, J.; Siewerdsen, Jeffrey H.

    2012-01-01

    Purpose: Dual-energy computed tomography and dual-energy cone-beam computed tomography (DE-CBCT) are promising modalities for applications ranging from vascular to breast, renal, hepatic, and musculoskeletal imaging. Accordingly, the optimization of imaging techniques for such applications would benefit significantly from a general theoretical description of image quality that properly incorporates factors of acquisition, reconstruction, and tissue decomposition in DE tomography. This work reports a cascaded systems analysis model that includes the Poisson statistics of x rays (quantum noise), detector model (flat-panel detectors), anatomical background, image reconstruction (filtered backprojection), DE decomposition (weighted subtraction), and simple observer models to yield a task-based framework for DE technique optimization. Methods: The theoretical framework extends previous modeling of DE projection radiography and CBCT. Signal and noise transfer characteristics are propagated through physical and mathematical stages of image formation and reconstruction. Dual-energy decomposition was modeled according to weighted subtraction of low- and high-energy images to yield the 3D DE noise-power spectrum (NPS) and noise-equivalent quanta (NEQ), which, in combination with observer models and the imaging task, yields the dual-energy detectability index (d′). Model calculations were validated with NPS and NEQ measurements from an experimental imaging bench simulating the geometry of a dedicated musculoskeletal extremities scanner. Imaging techniques, including kVp pair and dose allocation, were optimized using d′ as an objective function for three example imaging tasks: (1) kidney stone discrimination; (2) iodine vs bone in a uniform, soft-tissue background; and (3) soft tissue tumor detection on power-law anatomical background. Results: Theoretical calculations of DE NPS and NEQ demonstrated good agreement with experimental measurements over a broad range of imaging conditions. Optimization results suggest a lower fraction of total dose imparted by the low-energy acquisition, a finding consistent with previous literature. The selection of optimal kVp pair reveals the combined effect of both quantum noise and contrast in the kidney stone discrimination and soft-tissue tumor detection tasks, whereas the K-edge effect of iodine was the dominant factor in determining kVp pairs in the iodine vs bone task. The soft-tissue tumor task illustrated the benefit of dual-energy imaging in eliminating anatomical background noise and improving detectability beyond that achievable by single-energy scans. Conclusions: This work established a task-based theoretical framework that is predictive of DE image quality. The model can be utilized in optimizing a broad range of parameters in image acquisition, reconstruction, and decomposition, providing a useful tool for maximizing DE-CBCT image quality and reducing dose. PMID:22894440

  14. Bessel Fourier orientation reconstruction: an analytical EAP reconstruction using multiple shell acquisitions in diffusion MRI.

    PubMed

    Hosseinbor, Ameer Pasha; Chung, Moo K; Wu, Yu-Chien; Alexander, Andrew L

    2011-01-01

    The estimation of the ensemble average propagator (EAP) directly from q-space DWI signals is an open problem in diffusion MRI. Diffusion spectrum imaging (DSI) is one common technique to compute the EAP directly from the diffusion signal, but it is burdened by the large sampling required. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed. One, in particular, is Diffusion Propagator Imaging (DPI) which is based on the Laplace's equation estimation of diffusion signal for each shell acquisition. Viewed intuitively in terms of the heat equation, the DPI solution is obtained when the heat distribution between temperatuere measurements at each shell is at steady state. We propose a generalized extension of DPI, Bessel Fourier Orientation Reconstruction (BFOR), whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition. That is, the heat distribution between shell measurements is no longer at steady state. In addition to being analytical, the BFOR solution also includes an intrinsic exponential smootheing term. We illustrate the effectiveness of the proposed method by showing results on both synthetic and real MR datasets.

  15. X-ray cone-beam computed tomography: principles, applications, challenges and solutions

    NASA Astrophysics Data System (ADS)

    Noo, Frederic

    2010-03-01

    In the nineties, x-ray computed tomography, commonly referred to as CT, seemed to be on the track to become old technology, bound to be replaced by more sophisticated techniques such as magnetic resonance imaging, due in particular to the harmful effects of x-ray radiation exposure. Yet, the new century brought with it new technology that allowed a complete change in trends and re-affirmed CT as an essential tool in radiology. For instance, the popularity of CT in 2007 was such that approximately 68.7 million CT examinations were performed in the United States, which was nearly 2.5 times the number of magnetic resonance (MRI) examinations. More than that, CT has expanded beyond its conventional diagnostic role; CT is now used routinely in interventional radiology and also in radiation therapy treatment. The technology advances that allowed the revival of CT are those that made fast, accurate cone-beam data acquisition possible. Nowadays, cone-beam data acquisition allows scanning large volumes with isotropic sub-millimeter spatial resolution in a very fast time, which can be as short as 500ms for cardiac imaging. The principles of cone-beam imaging will be first reviewed. Then a discussion of its applications will be given. Old and new challenges will be presented along the way with current solutions.

  16. Correlation of quantitative dual-energy computed tomography iodine maps and abdominal computed tomography perfusion measurements: are single-acquisition dual-energy computed tomography iodine maps more than a reduced-dose surrogate of conventional computed tomography perfusion?

    PubMed

    Stiller, Wolfram; Skornitzke, Stephan; Fritz, Franziska; Klauss, Miriam; Hansen, Jens; Pahn, Gregor; Grenacher, Lars; Kauczor, Hans-Ulrich

    2015-10-01

    Study objectives were the quantitative evaluation of whether conventional abdominal computed tomography (CT) perfusion measurements mathematically correlate with quantitative single-acquisition dual-energy CT (DECT) iodine concentration maps, the determination of the optimum time of acquisition for achieving maximum correlation, and the estimation of the potential for radiation exposure reduction when replacing conventional CT perfusion by single-acquisition DECT iodine concentration maps. Dual-energy CT perfusion sequences were dynamically acquired over 51 seconds (34 acquisitions every 1.5 seconds) in 24 patients with histologically verified pancreatic carcinoma using dual-source DECT at tube potentials of 80 kVp and 140 kVp. Using software developed in-house, perfusion maps were calculated from 80-kVp image series using the maximum slope model after deformable motion correction. In addition, quantitative iodine maps were calculated for each of the 34 DECT acquisitions per patient. Within a manual segmentation of the pancreas, voxel-by-voxel correlation between the perfusion map and each of the iodine maps was calculated for each patient to determine the optimum time of acquisition topt defined as the acquisition time of the iodine map with the highest correlation coefficient. Subsequently, regions of interest were placed inside the tumor and inside healthy pancreatic tissue, and correlation between mean perfusion values and mean iodine concentrations within these regions of interest at topt was calculated for the patient sample. The mean (SD) topt was 31.7 (5.4) seconds after the start of contrast agent injection. The mean (SD) perfusion values for healthy pancreatic and tumor tissues were 67.8 (26.7) mL per 100 mL/min and 43.7 (32.2) mL per 100 mL/min, respectively. At topt, the mean (SD) iodine concentrations were 2.07 (0.71) mg/mL in healthy pancreatic and 1.69 (0.98) mg/mL in tumor tissue, respectively. Overall, the correlation between perfusion values and iodine concentrations was high (0.77), with correlation of 0.89 in tumor and of 0.56 in healthy pancreatic tissue at topt. Comparing radiation exposure associated with a single DECT acquisition at topt (0.18 mSv) to that of an 80 kVp CT perfusion sequence (2.96 mSv) indicates that an average reduction of Deff by 94% could be achieved by replacing conventional CT perfusion with a single-acquisition DECT iodine concentration map. Quantitative iodine concentration maps obtained with DECT correlate well with conventional abdominal CT perfusion measurements, suggesting that quantitative iodine maps calculated from a single DECT acquisition at an organ-specific and patient-specific optimum time of acquisition might be able to replace conventional abdominal CT perfusion measurements if the time of acquisition is carefully calibrated. This could lead to large reductions of radiation exposure to the patients while offering quantitative perfusion data for diagnosis.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBTmore » shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support, Hologic, Inc.; Research Support, Barco, Inc.; Scientific Advisory Board, Gamma Medica, Inc.; Scientific Advisory Board, Real-Time Tomography, LLC.; Shareholder, Real-Time Tomography, LLC; J. Mainprize, Our lab has a research agreement with GE Healthcare on various topics in digital mammography and digital tomosynthesis; W. Zhao, Research grant from Siemens Health Care.« less

  18. MO-DE-209-01: Primer On Tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidment, A.

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBTmore » shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support, Hologic, Inc.; Research Support, Barco, Inc.; Scientific Advisory Board, Gamma Medica, Inc.; Scientific Advisory Board, Real-Time Tomography, LLC.; Shareholder, Real-Time Tomography, LLC; J. Mainprize, Our lab has a research agreement with GE Healthcare on various topics in digital mammography and digital tomosynthesis; W. Zhao, Research grant from Siemens Health Care.« less

  19. MO-DE-209-04: Radiation Dosimetry in Breast Tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sechopoulos, I.

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBTmore » shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support, Hologic, Inc.; Research Support, Barco, Inc.; Scientific Advisory Board, Gamma Medica, Inc.; Scientific Advisory Board, Real-Time Tomography, LLC.; Shareholder, Real-Time Tomography, LLC; J. Mainprize, Our lab has a research agreement with GE Healthcare on various topics in digital mammography and digital tomosynthesis; W. Zhao, Research grant from Siemens Health Care.« less

  20. MO-DE-209-02: Tomosynthesis Reconstruction Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainprize, J.

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBTmore » shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support, Hologic, Inc.; Research Support, Barco, Inc.; Scientific Advisory Board, Gamma Medica, Inc.; Scientific Advisory Board, Real-Time Tomography, LLC.; Shareholder, Real-Time Tomography, LLC; J. Mainprize, Our lab has a research agreement with GE Healthcare on various topics in digital mammography and digital tomosynthesis; W. Zhao, Research grant from Siemens Health Care.« less

  1. Diagnostic performance of a streamlined 18F-choline PET-CT protocol for the detection of prostate carcinoma recurrence in combination with appropriate-use criteria.

    PubMed

    Frood, R; Baren, J; McDermott, G; Bottomley, D; Patel, C; Scarsbrook, A

    2018-04-30

    To evaluate the efficacy of single time-point half-body (skull base to thighs) fluorine-18 choline positron emission tomography-computed tomography (PET-CT) compared to a triple-phase acquisition protocol in the detection of prostate carcinoma recurrence. Consecutive choline PET-CT studies performed at a single tertiary referral centre in patients with biochemical recurrence of prostate carcinoma between September 2012 and March 2017 were reviewed retrospectively. The indication for the study, imaging protocol used, imaging findings, whether management was influenced by the PET-CT, and subsequent patient outcome were recorded. Ninety-one examinations were performed during the study period; 42 were carried out using a triple-phase protocol (dynamic pelvic imaging for 20 minutes after tracer injection, half-body acquisition at 60 minutes and delayed pelvic scan at 90 minutes) between 2012 and August 2015. Subsequently following interim review of diagnostic performance, a streamlined protocol and appropriate-use criteria were introduced. Forty-nine examinations were carried out using the single-phase protocol between 2015 and 2017. Twenty-nine (69%) of the triple-phase studies were positive for recurrence compared to 38 (78%) of the single-phase studies. Only one patient who had a single-phase study would have benefited from a dynamic acquisition, they have required no further treatment or imaging and are currently under prostate-specific antigen (PSA) surveillance. Choline PET-CT remains a useful tool for the detection of prostate recurrence when used in combination with appropriate-use criteria. Removal of dynamic and delayed acquisition phases reduces study time without adversely affecting accuracy. Benefits include shorter imaging time which improves patient comfort, reduced cost, and improved scanner efficiency. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. Peri-implant assessment via cone beam computed tomography and digital periapical radiography: an ex vivo study.

    PubMed

    Silveira-Neto, Nicolau; Flores, Mateus Ericson; De Carli, João Paulo; Costa, Max Dória; Matos, Felipe de Souza; Paranhos, Luiz Renato; Linden, Maria Salete Sandini

    2017-11-01

    This research evaluated detail registration in peri-implant bone using two different cone beam computer tomography systems and a digital periapical radiograph. Three different image acquisition protocols were established for each cone beam computer tomography apparatus, and three clinical situations were simulated in an ex vivo fresh pig mandible: buccal bone defect, peri-implant bone defect, and bone contact. Data were subjected to two analyses: quantitative and qualitative. The quantitative analyses involved a comparison of real specimen measures using a digital caliper in three regions of the preserved buccal bone - A, B and E (control group) - to cone beam computer tomography images obtained with different protocols (kp1, kp2, kp3, ip1, ip2, and ip3). In the qualitative analyses, the ability to register peri-implant details via tomography and digital periapical radiography was verified, as indicated by twelve evaluators. Data were analyzed with ANOVA and Tukey's test (α=0.05). The quantitative assessment showed means statistically equal to those of the control group under the following conditions: buccal bone defect B and E with kp1 and ip1, peri-implant bone defect E with kp2 and kp3, and bone contact A with kp1, kp2, kp3, and ip2. Qualitatively, only bone contacts were significantly different among the assessments, and the p3 results differed from the p1 and p2 results. The other results were statistically equivalent. The registration of peri-implant details was influenced by the image acquisition protocol, although metal artifacts were produced in all situations. The evaluators preferred the Kodak 9000 3D cone beam computer tomography in most cases. The evaluators identified buccal bone defects better with cone beam computer tomography and identified peri-implant bone defects better with digital periapical radiography.

  3. New Focal Plane Array Controller for the Instruments of the Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Nakaya, Hidehiko; Komiyama, Yutaka; Miyazaki, Satoshi; Yamashita, Takuya; Yagi, Masafumi; Sekiguchi, Maki

    2006-03-01

    We have developed a next-generation data acquisition system, MESSIA5 (Modularized Extensible System for Image Acquisition), which comprises the digital part of a focal plane array controller. The new data acquisition system was constructed based on a 64 bit, 66 MHz PCI (peripheral component interconnect) bus architecture and runs on an x86 CPU computer with (non-real-time) Linux. The system, including the CPU board, is placed at the telescope focus, and standard gigabit Ethernet is adopted for the data transfer, as opposed to a dedicated fiber link. During the summer of 2002, we installed the new system for the first time on the Subaru prime-focus camera Suprime-Cam and successfully improved the observing performance.

  4. The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox

    NASA Astrophysics Data System (ADS)

    Harris, A. T., III; Goodman, J.; Justice, B.

    2014-12-01

    As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.

  5. Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies

    NASA Astrophysics Data System (ADS)

    Jeon, P.-H.; Lee, C.-L.; Kim, D.-H.; Lee, Y.-J.; Jeon, S.-S.; Kim, H.-J.

    2014-03-01

    Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose optimization.

  6. Quantifying cortical surface harmonic deformation with stereovision during open cranial neurosurgery

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.

    2012-02-01

    Cortical surface harmonic motion during open cranial neurosurgery is well observed in image-guided neurosurgery. Recently, we quantified cortical surface deformation noninvasively with synchronized blood pressure pulsation (BPP) from a sequence of stereo image pairs using optical flow motion tracking. With three subjects, we found the average cortical surface displacement can reach more than 1 mm and in-plane principal strains of up to 7% relative to the first image pair. In addition, the temporal changes in deformation and strain were in concert with BPP and patient respiration [1]. However, because deformation was essentially computed relative to an arbitrary reference, comparing cortical surface deformation at different times was not possible. In this study, we extend the technique developed earlier by establishing a more reliable reference profile of the cortical surface for each sequence of stereo image acquisitions. Specifically, fast Fourier transform (FFT) was applied to the dynamic cortical surface deformation, and the fundamental frequencies corresponding to patient respiration and BPP were identified, which were used to determine the number of image acquisitions for use in averaging cortical surface images. This technique is important because it potentially allows in vivo characterization of soft tissue biomechanical properties using intraoperative stereovision and motion tracking.

  7. Magnetic Resonance of Pelvic and Gastrointestinal Emergencies.

    PubMed

    Wongwaisayawan, Sirote; Kaewlai, Rathachai; Dattwyler, Matthew; Abujudeh, Hani H; Singh, Ajay K

    2016-05-01

    Magnetic resonance (MR) imaging is gaining increased acceptance in the emergency setting despite the continued dominance of computed tomography. MR has the advantages of more precise tissue characterization, superior soft tissue contrast, and a lack of ionizing radiation. Traditional barriers to emergent MR are being overcome by streamlined imaging protocols and newer rapid-acquisition sequences. As the utilization of MR imaging in the emergency department increases, a strong working knowledge of the MR appearance of the most commonly encountered abdominopelvic pathologies is essential. In this article, MR imaging protocols and findings of acute pelvic, scrotal, and gastrointestinal pathologies are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun

    2014-01-01

    We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.

  9. Role of computed tomography angiography in detection and staging of small bowel carcinoid tumors

    PubMed Central

    Bonekamp, David; Raman, Siva P; Horton, Karen M; Fishman, Elliot K

    2015-01-01

    Small-bowel carcinoid tumors are the most common form (42%) of gastrointestinal carcinoids, which by themselves comprise 70% of neuroendocrine tumors. Although primary small bowel neoplasms are overall rare (3%-6% of all gastrointestinal neoplasms), carcinoids still represent the second most common (20%-30%) primary small-bowel malignancy after small bowel adenocarcinoma. Their imaging evaluation is often challenging. State-of-the-art high-resolution multiphasic computed tomography together with advanced postprocessing methods provides an excellent tool for their depiction. The manifold interactive parameter choices however require knowledge of when to use which technique. Here, we discuss the imaging appearance and evaluation of duodenal, jejunal and ileal carcinoid tumors, including the imaging features of the primary tumor, locoregional mesenteric nodal metastases, and distant metastatic disease. A protocol for optimal lesion detection is presented, including the use of computed tomography enterography, volume acquisition, computed tomography angiography and three-dimensional mapping. Imaging findings are illustrated with a series of challenging cases which illustrate the spectrum of possible disease in the small bowel and mesentery, the range of possible appearances in the bowel itself on multiphase data and extraluminal findings such as the desmoplastic reaction in mesentery and hypervascular liver metastases. Typical imaging pitfalls and pearls are illustrated. PMID:26435774

  10. Analysis of Brown camera distortion model

    NASA Astrophysics Data System (ADS)

    Nowakowski, Artur; Skarbek, Władysław

    2013-10-01

    Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.

  11. Contrast Gradient-Based Blood Velocimetry With Computed Tomography: Theory, Simulations, and Proof of Principle in a Dynamic Flow Phantom.

    PubMed

    Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard

    2016-01-01

    The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.

  12. [Evaluation of Slavic continuity for electrocardiograph (ECG)-gated non-helical scan using multi detector-row computed tomography with 64 data acquisition system].

    PubMed

    Shiotani, Masataka; Ogawa, Masato; Watanabe, Ryo; Shinohara, Tamotsu

    2012-01-01

    Multi detector-row computed tomography with 64 data acquisition systems are widely used for coronary CT angiography with an electrocardiograph (ECG) gated helical scan (HS). Step and shoot with ECG gated non-helical scan (snap shot pulse: SSP) could reduce exposure dose but banding artifact-like discontinuity was observed between adjacent slabs on volume rendering (VR) and curved planner reconstruction (CPR). Therefore, we investigated the factors that influence continuity of VR and CPR images by calculating image properties of Z-axis direction of slab. The observer performance studies were performed for evaluating continuity of simulated blood vessels of VR and CPR images at simulated heart rates: 50, 55, 57 and 60 beat per minute (bpm). As a result, the value of SD at both slab edges in SSP were 20.5% lower than middle part of slab and differences of value of SD were up to 4.4 between adjacent slab edges. Slice thickness of both slab edges were 20.3% thinner than that of the peripheral part of slab. At the border of the adjacent slab, the position of the simulated blood vessel was shifted. VR images of SSP at 57 bpm was indicated as the highest score and HS was significantly superior to SSP at 55 and 60 bpm (p<0.05). In CPR images, there were no significant differences at all simulated heart rates. In conclusion, we considered that VR images of SSP were influenced heart rates except 57 bpm (resonance case) and there was little difference of visibility for discontinuity of both CPR images obtained by SSP and HS.

  13. WHOLE BODY NONRIGID CT-PET REGISTRATION USING WEIGHTED DEMONS.

    PubMed

    Suh, J W; Kwon, Oh-K; Scheinost, D; Sinusas, A J; Cline, Gary W; Papademetris, X

    2011-03-30

    We present a new registration method for whole-body rat computed tomography (CT) image and positron emission tomography (PET) images using a weighted demons algorithm. The CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produced significant nonrigid changes between the two acquisitions in addition to heterogeneous image characteristics. In this situation, we utilized both the transmission-PET and the emission-PET images in the deformable registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. We validated our results with nine rat image sets using M-Hausdorff distance similarity measure. We demonstrate improved performance compared to standard methods such as Demons and normalized mutual information-based non-rigid FFD registration.

  14. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool

    NASA Astrophysics Data System (ADS)

    Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong

    2016-06-01

    The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.

  15. Endocardial left ventricle feature tracking and reconstruction from tri-plane trans-esophageal echocardiography data

    NASA Astrophysics Data System (ADS)

    Dangi, Shusil; Ben-Zikri, Yehuda K.; Cahill, Nathan; Schwarz, Karl Q.; Linte, Cristian A.

    2015-03-01

    Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV geometry using the tri-plane contours and spline interpolation, and assess the accuracy of the proposed work flow against gold-standard results from the GE Echopac PC clinical software according to quantitative clinical LV characterization parameters, such as the length, circumference, area and volume. Our proposed combined work flow leads to consistent, rapid and automated identification of the LV endocardium, suitable for intra-operative applications and "on-the-fly" computer-assisted assessment of ejection fraction for cardiac function monitoring.Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV geometry using the tri-plane contours and spline interpolation, and assess the accuracy of the proposed work flow against gold-standard results from the GE Echopac PC clinical software according to quantitative clinical LV characterization parameters, such as the length, circumference, area and volume. Our proposed combined work flow leads to consistent, rapid and automated identification of the LV endocardium, suitable for intra-operative applications and on-the- y" computer-assisted assessment of ejection fraction for cardiac function monitoring.

  16. Statistical analysis of low-voltage EDS spectrum images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, I.M.

    1998-03-01

    The benefits of using low ({le}5 kV) operating voltages for energy-dispersive X-ray spectrometry (EDS) of bulk specimens have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging of a computer chip manufactured by a major semiconductor company. Data acquisition was performed with a Philips XL30-FEG SEM operated at 4 kV and equipped with an Oxford super-ATW detector and XP3 pulse processor. The specimen was normal to the electron beam and the take-off angle for acquisition was 35{degree}. The microscope was operated with a 150 {micro}m diameter finalmore » aperture at spot size 3, which yielded an X-ray count rate of {approximately}2,000 s{sup {minus}1}. EDS spectrum images were acquired as Adobe Photoshop files with the 4pi plug-in module. (The spectrum images could also be stored as NIH Image files, but the raw data are automatically rescaled as maximum-contrast (0--255) 8-bit TIFF images -- even at 16-bit resolution -- which poses an inconvenience for quantitative analysis.) The 4pi plug-in module is designed for EDS X-ray mapping and allows simultaneous acquisition of maps from 48 elements plus an SEM image. The spectrum image was acquired by re-defining the energy intervals of 48 elements to form a series of contiguous 20 eV windows from 1.25 kV to 2.19 kV. A spectrum image of 450 x 344 pixels was acquired from the specimen with a sampling density of 50 nm/pixel and a dwell time of 0.25 live seconds per pixel, for a total acquisition time of {approximately}14 h. The binary data files were imported into Mathematica for analysis with software developed by the author at Oak Ridge National Laboratory. A 400 x 300 pixel section of the original image was analyzed. MSA required {approximately}185 Mbytes of memory and {approximately}18 h of CPU time on a 300 MHz Power Macintosh 9600.« less

  17. SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows.

    PubMed

    Brun, Francesco; Massimi, Lorenzo; Fratini, Michela; Dreossi, Diego; Billé, Fulvio; Accardo, Agostino; Pugliese, Roberto; Cedola, Alessia

    2017-01-01

    When considering the acquisition of experimental synchrotron radiation (SR) X-ray CT data, the reconstruction workflow cannot be limited to the essential computational steps of flat fielding and filtered back projection (FBP). More refined image processing is often required, usually to compensate artifacts and enhance the quality of the reconstructed images. In principle, it would be desirable to optimize the reconstruction workflow at the facility during the experiment (beamtime). However, several practical factors affect the image reconstruction part of the experiment and users are likely to conclude the beamtime with sub-optimal reconstructed images. Through an example of application, this article presents SYRMEP Tomo Project (STP), an open-source software tool conceived to let users design custom CT reconstruction workflows. STP has been designed for post-beamtime (off-line use) and for a new reconstruction of past archived data at user's home institution where simple computing resources are available. Releases of the software can be downloaded at the Elettra Scientific Computing group GitHub repository https://github.com/ElettraSciComp/STP-Gui.

  18. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review.

    PubMed

    Liedlgruber, Michael; Uhl, Andreas

    2011-01-01

    Today, medical endoscopy is a widely used procedure to inspect the inner cavities of the human body. The advent of endoscopic imaging techniques-allowing the acquisition of images or videos-created the possibility for the development of the whole new branch of computer-aided decision support systems. Such systems aim at helping physicians to identify possibly malignant abnormalities more accurately. At the beginning of this paper, we give a brief introduction to the history of endoscopy, followed by introducing the main types of endoscopes which emerged so far (flexible endoscope, wireless capsule endoscope, and confocal laser endomicroscope). We then give a brief introduction to computer-aided decision support systems specifically targeted at endoscopy in the gastrointestinal tract. Then we present general facts and figures concerning computer-aided decision support systems and summarize work specifically targeted at computer-aided decision support in the gastrointestinal tract. This summary is followed by a discussion of some common issues concerning the approaches reviewed and suggestions of possible ways to resolve them.

  19. MicroCT parameters for multimaterial elements assessment

    NASA Astrophysics Data System (ADS)

    de Araújo, Olga M. O.; Silva Bastos, Jaqueline; Machado, Alessandra S.; dos Santos, Thaís M. P.; Ferreira, Cintia G.; Rosifini Alves Claro, Ana Paula; Lopes, Ricardo T.

    2018-03-01

    Microtomography is a non-destructive testing technique for quantitative and qualitative analysis. The investigation of multimaterial elements with great difference of density can result in artifacts that degrade image quality depending on combination of additional filter. The aim of this study is the selection of parameters most appropriate for analysis of bone tissue with metallic implant. The results show the simulation with MCNPX code for the distribution of energy without additional filter, with use of aluminum, copper and brass filters and their respective reconstructed images showing the importance of the choice of these parameters in image acquisition process on computed microtomography.

  20. Systems Imaging of the Immune Synapse.

    PubMed

    Ambler, Rachel; Ruan, Xiangtao; Murphy, Robert F; Wülfing, Christoph

    2017-01-01

    Three-dimensional live cell imaging of the interaction of T cells with antigen-presenting cells (APCs) visualizes the subcellular distributions of signaling intermediates during T cell activation at thousands of resolved positions within a cell. These information-rich maps of local protein concentrations are a valuable resource in understanding T cell signaling. Here, we describe a protocol for the efficient acquisition of such imaging data and their computational processing to create four-dimensional maps of local concentrations. This protocol allows quantitative analysis of T cell signaling as it occurs inside live cells with resolution in time and space across thousands of cells.

  1. [Application of computed tomography (CT) examination for forensic medicine].

    PubMed

    Urbanik, Andrzej; Chrzan, Robert

    2013-01-01

    The aim of the study is to present a own experiences in usage of post mortem CT examination for forensic medicine. With the help of 16-slice CT scanner 181 corpses were examined. Obtained during acquisition imaging data are later developed with dedicated programmes. Analyzed images were extracted from axial sections, multiplanar reconstructions as well as 3D reconstructions. Gained information helped greatly when classical autopsy was performed by making it more accurate. A CT scan images recorded digitally enable to evaluate corpses at any time, despite processes of putrefaction or cremation. If possible CT examination should precede classical autopsy.

  2. Postmortem computed tomography (PMCT) and disaster victim identification.

    PubMed

    Brough, A L; Morgan, B; Rutty, G N

    2015-09-01

    Radiography has been used for identification since 1927, and established a role in mass fatality investigations in 1949. More recently, postmortem computed tomography (PMCT) has been used for disaster victim identification (DVI). PMCT offers several advantages compared with fluoroscopy, plain film and dental X-rays, including: speed, reducing the number of on-site personnel and imaging modalities required, making it potentially more efficient. However, there are limitations that inhibit the international adoption of PMCT into routine practice. One particular problem is that due to the fact that forensic radiology is a relatively new sub-speciality, there are no internationally established standards for image acquisition, image interpretation and archiving. This is reflected by the current INTERPOL DVI form, which does not contain a PMCT section. The DVI working group of the International Society of Forensic Radiology and Imaging supports the use of imaging in mass fatality response and has published positional statements in this area. This review will discuss forensic radiology, PMCT, and its role in disaster victim identification.

  3. Digital 3D Microstructure Analysis of Concrete using X-Ray Micro Computed Tomography SkyScan 1173: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Latief, F. D. E.; Mohammad, I. H.; Rarasati, A. D.

    2017-11-01

    Digital imaging of a concrete sample using high resolution tomographic imaging by means of X-Ray Micro Computed Tomography (μ-CT) has been conducted to assess the characteristic of the sample’s structure. A standard procedure of image acquisition, reconstruction, image processing of the method using a particular scanning device i.e., the Bruker SkyScan 1173 High Energy Micro-CT are elaborated. A qualitative and a quantitative analysis were briefly performed on the sample to deliver some basic ideas of the capability of the system and the bundled software package. Calculation of total VOI volume, object volume, percent of object volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity were conducted and analysed. This paper should serve as a brief description of how the device can produce the preferred image quality as well as the ability of the bundled software packages to help in performing qualitative and quantitative analysis.

  4. Employing temporal self-similarity across the entire time domain in computed tomography reconstruction

    PubMed Central

    Kazantsev, D.; Van Eyndhoven, G.; Lionheart, W. R. B.; Withers, P. J.; Dobson, K. J.; McDonald, S. A.; Atwood, R.; Lee, P. D.

    2015-01-01

    There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques. PMID:25939621

  5. High resolution spectroscopic mapping imaging applied in situ to multilayer structures for stratigraphic identification of painted art objects

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios Th.

    2016-04-01

    The development of non-destructive techniques is a reality in the field of conservation science. These techniques are usually not so accurate, as the analytical micro-sampling techniques, however, the proper development of soft-computing techniques can improve their accuracy. In this work, we propose a real-time fast acquisition spectroscopic mapping imaging system that operates from the ultraviolet to mid infrared (UV/Vis/nIR/mIR) area of the electromagnetic spectrum and it is supported by a set of soft-computing methods to identify the materials that exist in a stratigraphic structure of paint layers. Particularly, the system acquires spectra in diffuse-reflectance mode, scanning in a Region-Of-Interest (ROI), and having wavelength range from 200 up to 5000 nm. Also, a fuzzy c-means clustering algorithm, i.e., the particular soft-computing algorithm, produces the mapping images. The evaluation of the method was tested on a byzantine painted icon.

  6. Computed Tomography Studies of Lung Mechanics

    PubMed Central

    Simon, Brett A.; Christensen, Gary E.; Low, Daniel A.; Reinhardt, Joseph M.

    2005-01-01

    The study of lung mechanics has progressed from global descriptions of lung pressure and volume relationships to the high-resolution, three-dimensional, quantitative measurement of dynamic regional mechanical properties and displacements. X-ray computed tomography (CT) imaging is ideally suited to the study of regional lung mechanics in intact subjects because of its high spatial and temporal resolution, correlation of functional data with anatomic detail, increasing volumetric data acquisition, and the unique relationship between CT density and lung air content. This review presents an overview of CT measurement principles and limitations for the study of regional mechanics, reviews some of the early work that set the stage for modern imaging approaches and impacted the understanding and management of patients with acute lung injury, and presents evolving novel approaches for the analysis and application of dynamic volumetric lung image data. PMID:16352757

  7. Computer Aided Diagnostic Support System for Skin Cancer: A Review of Techniques and Algorithms

    PubMed Central

    Masood, Ammara; Al-Jumaily, Adel Ali

    2013-01-01

    Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique's performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided. PMID:24575126

  8. Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain

    NASA Astrophysics Data System (ADS)

    Petrov, Petr V.; Newman, Gregory A.

    2014-09-01

    3-D full waveform inversion (FWI) of seismic wavefields is routinely implemented with explicit time-stepping simulators. A clear advantage of explicit time stepping is the avoidance of solving large-scale implicit linear systems that arise with frequency domain formulations. However, FWI using explicit time stepping may require a very fine time step and (as a consequence) significant computational resources and run times. If the computational challenges of wavefield simulation can be effectively handled, an FWI scheme implemented within the frequency domain utilizing only a few frequencies, offers a cost effective alternative to FWI in the time domain. We have therefore implemented a 3-D FWI scheme for elastic wave propagation in the Fourier domain. To overcome the computational bottleneck in wavefield simulation, we have exploited an efficient Krylov iterative solver for the elastic wave equations approximated with second and fourth order finite differences. The solver does not exploit multilevel preconditioning for wavefield simulation, but is coupled efficiently to the inversion iteration workflow to reduce computational cost. The workflow is best described as a series of sequential inversion experiments, where in the case of seismic reflection acquisition geometries, the data has been laddered such that we first image highly damped data, followed by data where damping is systemically reduced. The key to our modelling approach is its ability to take advantage of solver efficiency when the elastic wavefields are damped. As the inversion experiment progresses, damping is significantly reduced, effectively simulating non-damped wavefields in the Fourier domain. While the cost of the forward simulation increases as damping is reduced, this is counterbalanced by the cost of the outer inversion iteration, which is reduced because of a better starting model obtained from the larger damped wavefield used in the previous inversion experiment. For cross-well data, it is also possible to launch a successful inversion experiment without laddering the damping constants. With this type of acquisition geometry, the solver is still quite effective using a small fixed damping constant. To avoid cycle skipping, we also employ a multiscale imaging approach, in which frequency content of the data is also laddered (with the data now including both reflection and cross-well data acquisition geometries). Thus the inversion process is launched using low frequency data to first recover the long spatial wavelength of the image. With this image as a new starting model, adding higher frequency data refines and enhances the resolution of the image. FWI using laddered frequencies with an efficient damping schemed enables reconstructing elastic attributes of the subsurface at a resolution that approaches half the smallest wavelength utilized to image the subsurface. We show the possibility of effectively carrying out such reconstructions using two to six frequencies, depending upon the application. Using the proposed FWI scheme, massively parallel computing resources are essential for reasonable execution times.

  9. Earth resources sensor data handling system: NASA JSC version

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design of the NASA JSC data handling system is presented. Data acquisition parameters and computer display formats and the flow of image data through the system, with recommendations for improving system efficiency are discussed along with modifications to existing data handling procedures which will allow utilization of data duplication techniques and the accurate identification of imagery.

  10. Objective definition of rosette shape variation using a combined computer vision and data mining approach.

    PubMed

    Camargo, Anyela; Papadopoulou, Dimitra; Spyropoulou, Zoi; Vlachonasios, Konstantinos; Doonan, John H; Gay, Alan P

    2014-01-01

    Computer-vision based measurements of phenotypic variation have implications for crop improvement and food security because they are intrinsically objective. It should be possible therefore to use such approaches to select robust genotypes. However, plants are morphologically complex and identification of meaningful traits from automatically acquired image data is not straightforward. Bespoke algorithms can be designed to capture and/or quantitate specific features but this approach is inflexible and is not generally applicable to a wide range of traits. In this paper, we have used industry-standard computer vision techniques to extract a wide range of features from images of genetically diverse Arabidopsis rosettes growing under non-stimulated conditions, and then used statistical analysis to identify those features that provide good discrimination between ecotypes. This analysis indicates that almost all the observed shape variation can be described by 5 principal components. We describe an easily implemented pipeline including image segmentation, feature extraction and statistical analysis. This pipeline provides a cost-effective and inherently scalable method to parameterise and analyse variation in rosette shape. The acquisition of images does not require any specialised equipment and the computer routines for image processing and data analysis have been implemented using open source software. Source code for data analysis is written using the R package. The equations to calculate image descriptors have been also provided.

  11. SU-C-207-01: Four-Dimensional Inverse Geometry Computed Tomography: Concept and Its Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K; Kim, D; Kim, T

    2015-06-15

    Purpose: In past few years, the inverse geometry computed tomography (IGCT) system has been developed to overcome shortcomings of a conventional computed tomography (CT) system such as scatter problem induced from large detector size and cone-beam artifact. In this study, we intend to present a concept of a four-dimensional (4D) IGCT system that has positive aspects above all with temporal resolution for dynamic studies and reduction of motion artifact. Methods: Contrary to conventional CT system, projection data at a certain angle in IGCT was a group of fractionated narrow cone-beam projection data, projection group (PG), acquired from multi-source array whichmore » have extremely short time gap of sequential operation between each of sources. At this, for 4D IGCT imaging, time-related data acquisition parameters were determined by combining multi-source scanning time for collecting one PG with conventional 4D CBCT data acquisition sequence. Over a gantry rotation, acquired PGs from multi-source array were tagged time and angle for 4D image reconstruction. Acquired PGs were sorted into 10 phase and image reconstructions were independently performed at each phase. Image reconstruction algorithm based upon filtered-backprojection was used in this study. Results: The 4D IGCT had uniform image without cone-beam artifact on the contrary to 4D CBCT image. In addition, the 4D IGCT images of each phase had no significant artifact induced from motion compared with 3D CT. Conclusion: The 4D IGCT image seems to give relatively accurate dynamic information of patient anatomy based on the results were more endurable than 3D CT about motion artifact. From this, it will be useful for dynamic study and respiratory-correlated radiation therapy. This work was supported by the Industrial R&D program of MOTIE/KEIT [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  12. Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods

    PubMed Central

    Smith, David S.; Gore, John C.; Yankeelov, Thomas E.; Welch, E. Brian

    2012-01-01

    Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 40962 or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 10242 and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images. PMID:22481908

  13. Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods.

    PubMed

    Smith, David S; Gore, John C; Yankeelov, Thomas E; Welch, E Brian

    2012-01-01

    Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 4096(2) or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 1024(2) and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images.

  14. Live dynamic OCT imaging of cardiac structure and function in mouse embryos with 43 Hz direct volumetric data acquisition

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Singh, Manmohan; Lopez, Andrew L.; Wu, Chen; Raghunathan, Raksha; Schill, Alexander; Li, Jiasong; Larin, Kirill V.; Larina, Irina V.

    2016-03-01

    Efficient phenotyping of cardiac dynamics in live mouse embryos has significant implications on understanding of early mammalian heart development and congenital cardiac defects. Recent studies established optical coherence tomography (OCT) as a powerful tool for live embryonic heart imaging in various animal models. However, current four-dimensional (4D) OCT imaging of the beating embryonic heart largely relies on gated data acquisition or postacquisition synchronization, which brings errors when cardiac cycles lack perfect periodicity and is time consuming and computationally expensive. Here, we report direct 4D OCT imaging of the structure and function of cardiac dynamics in live mouse embryos achieved by employing a Fourier domain mode-locking swept laser source that enables ~1.5 MHz A-line rate. Through utilizing both forward and backward scans of a resonant mirror, we obtained a ~6.4 kHz frame rate, which allows for a direct volumetric data acquisition speed of ~43 Hz, around 20 times of the early-stage mouse embryonic heart rate. Our experiments were performed on mouse embryos at embryonic day 9.5. Time-resolved 3D cardiodynamics clearly shows the heart structure in motion. We present analysis of cardiac wall movement and its velocity from the primitive atrium and ventricle. Our results suggest that the combination of ultrahigh-speed OCT imaging with live embryo culture could be a useful embryonic heart phenotyping approach for mouse mutants modeling human congenital heart diseases.

  15. Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing.

    PubMed

    Thong, Patricia S P; Tandjung, Stephanus S; Movania, Muhammad Mobeen; Chiew, Wei-Ming; Olivo, Malini; Bhuvaneswari, Ramaswamy; Seah, Hock-Soon; Lin, Feng; Qian, Kemao; Soo, Khee-Chee

    2012-05-01

    Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures. To move toward real-time "virtual" biopsy of oral lesions, we interfaced an embedded computing system to a confocal laser endomicroscope to achieve a prototype three-dimensional (3-D) fluorescence imaging system. A field-programmable gated array computing platform was programmed to enable synchronization of cross-sectional image grabbing and Z-depth scanning, automate the acquisition of confocal image stacks and perform volume rendering. Fluorescence imaging of the human and murine oral cavities was carried out using the fluorescent dyes fluorescein sodium and hypericin. Volume rendering of cellular and tissue structures from the oral cavity demonstrate the potential of the system for 3-D fluorescence visualization of the oral cavity in real-time. We aim toward achieving a real-time virtual biopsy technique that can complement current diagnostic techniques and aid in targeted biopsy for better clinical outcomes.

  16. A novel CT acquisition and analysis technique for breathing motion modeling

    NASA Astrophysics Data System (ADS)

    Low, Daniel A.; White, Benjamin M.; Lee, Percy P.; Thomas, David H.; Gaudio, Sergio; Jani, Shyam S.; Wu, Xiao; Lamb, James M.

    2013-06-01

    To report on a novel technique for providing artifact-free quantitative four-dimensional computed tomography (4DCT) image datasets for breathing motion modeling. Commercial clinical 4DCT methods have difficulty managing irregular breathing. The resulting images contain motion-induced artifacts that can distort structures and inaccurately characterize breathing motion. We have developed a novel scanning and analysis method for motion-correlated CT that utilizes standard repeated fast helical acquisitions, a simultaneous breathing surrogate measurement, deformable image registration, and a published breathing motion model. The motion model differs from the CT-measured motion by an average of 0.65 mm, indicating the precision of the motion model. The integral of the divergence of one of the motion model parameters is predicted to be a constant 1.11 and is found in this case to be 1.09, indicating the accuracy of the motion model. The proposed technique shows promise for providing motion-artifact free images at user-selected breathing phases, accurate Hounsfield units, and noise characteristics similar to non-4D CT techniques, at a patient dose similar to or less than current 4DCT techniques.

  17. Multiview 3-D Echocardiography Fusion with Breath-Hold Position Tracking Using an Optical Tracking System.

    PubMed

    Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; McNulty, Alexander; Biamonte, Marina; He, Allen; Noga, Michelle; Boulanger, Pierre; Becher, Harald

    2016-08-01

    Recent advances in echocardiography allow real-time 3-D dynamic image acquisition of the heart. However, one of the major limitations of 3-D echocardiography is the limited field of view, which results in an acquisition insufficient to cover the whole geometry of the heart. This study proposes the novel approach of fusing multiple 3-D echocardiography images using an optical tracking system that incorporates breath-hold position tracking to infer that the heart remains at the same position during different acquisitions. In six healthy male volunteers, 18 pairs of apical/parasternal 3-D ultrasound data sets were acquired during a single breath-hold as well as in subsequent breath-holds. The proposed method yielded a field of view improvement of 35.4 ± 12.5%. To improve the quality of the fused image, a wavelet-based fusion algorithm was developed that computes pixelwise likelihood values for overlapping voxels from multiple image views. The proposed wavelet-based fusion approach yielded significant improvement in contrast (66.46 ± 21.68%), contrast-to-noise ratio (49.92 ± 28.71%), signal-to-noise ratio (57.59 ± 47.85%) and feature count (13.06 ± 7.44%) in comparison to individual views. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Modeling digital breast tomosynthesis imaging systems for optimization studies

    NASA Astrophysics Data System (ADS)

    Lau, Beverly Amy

    Digital breast tomosynthesis (DBT) is a new imaging modality for breast imaging. In tomosynthesis, multiple images of the compressed breast are acquired at different angles, and the projection view images are reconstructed to yield images of slices through the breast. One of the main problems to be addressed in the development of DBT is the optimal parameter settings to obtain images ideal for detection of cancer. Since it would be unethical to irradiate women multiple times to explore potentially optimum geometries for tomosynthesis, it is ideal to use a computer simulation to generate projection images. Existing tomosynthesis models have modeled scatter and detector without accounting for oblique angles of incidence that tomosynthesis introduces. Moreover, these models frequently use geometry-specific physical factors measured from real systems, which severely limits the robustness of their algorithms for optimization. The goal of this dissertation was to design the framework for a computer simulation of tomosynthesis that would produce images that are sensitive to changes in acquisition parameters, so an optimization study would be feasible. A computer physics simulation of the tomosynthesis system was developed. The x-ray source was modeled as a polychromatic spectrum based on published spectral data, and inverse-square law was applied. Scatter was applied using a convolution method with angle-dependent scatter point spread functions (sPSFs), followed by scaling using an angle-dependent scatter-to-primary ratio (SPR). Monte Carlo simulations were used to generate sPSFs for a 5-cm breast with a 1-cm air gap. Detector effects were included through geometric propagation of the image onto layers of the detector, which were blurred using depth-dependent detector point-spread functions (PRFs). Depth-dependent PRFs were calculated every 5-microns through a 200-micron thick CsI detector using Monte Carlo simulations. Electronic noise was added as Gaussian noise as a last step of the model. The sPSFs and detector PRFs were verified to match published data, and noise power spectrum (NPS) from simulated flat field images were shown to match empirically measured data from a digital mammography unit. A novel anthropomorphic software breast phantom was developed for 3D imaging simulation. Projection view images of the phantom were shown to have similar structure as real breasts in the spatial frequency domain, using the power-law exponent beta to quantify tissue complexity. The physics simulation and computer breast phantom were used together, following methods from a published study with real tomosynthesis images of real breasts. The simulation model and 3D numerical breast phantoms were able to reproduce the trends in the experimental data. This result demonstrates the ability of the tomosynthesis physics model to generate images sensitive to changes in acquisition parameters.

  19. Protocol for Biomarker Ratio Imaging Microscopy with Specific Application to Ductal Carcinoma In situ of the Breast

    PubMed Central

    Clark, Andrea J.; Petty, Howard R.

    2016-01-01

    This protocol describes the methods and steps involved in performing biomarker ratio imaging microscopy (BRIM) using formalin fixed paraffin-embedded (FFPE) samples of human breast tissue. The technique is based on the acquisition of two fluorescence images of the same microscopic field using two biomarkers and immunohistochemical tools. The biomarkers are selected such that one biomarker correlates with breast cancer aggressiveness while the second biomarker anti-correlates with aggressiveness. When the former image is divided by the latter image, a computed ratio image is formed that reflects the aggressiveness of tumor cells while increasing contrast and eliminating path-length and other artifacts from the image. For example, the aggressiveness of epithelial cells may be assessed by computing ratio images of N-cadherin and E-cadherin images or CD44 and CD24 images, which specifically reflect the mesenchymal or stem cell nature of the constituent cells, respectively. This methodology is illustrated for tissue samples of ductal carcinoma in situ (DCIS) and invasive breast cancer. This tool should be useful in tissue studies of experimental cancer as well as the management of cancer patients. PMID:27857940

  20. Image-based computational fluid dynamics in blood vessel models: toward developing a prognostic tool to assess cardiovascular function changes in prolonged space flights

    NASA Astrophysics Data System (ADS)

    Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.

    2005-04-01

    One of NASA"s objectives is to be able to perform a complete pre-flight evaluation of possible cardiovascular changes in astronauts scheduled for prolonged space missions. Blood flow is an important component of cardiovascular function. Lately, attention has focused on using computational fluid dynamics (CFD) to analyze flow with realistic vessel geometries. MRI can provide detailed geometrical information and is the only clinical technique to measure all three spatial velocity components. The objective of this study was to investigate the reliability of MRI-based model reconstruction for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction using different resolution settings. The vessel walls were identified and the geometry was reconstructed using existing software. The geometry was then imported into a commercial CFD package for meshing and numerical solution. MRI velocity acquisitions provided true inlet boundary conditions for steady flow, as well as three-directional velocity data at several locations. In addition, an idealized version of each geometry was created from the model drawings. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with mean differences <10%. CFD results from different MRI resolution settings did not show significant differences (<5%). This study showed quantitatively that reliable CFD simulations can be performed in models reconstructed from MRI acquisitions and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system is possible.

  1. Integration of High-resolution Data for Temporal Bone Surgical Simulations

    PubMed Central

    Wiet, Gregory J.; Stredney, Don; Powell, Kimerly; Hittle, Brad; Kerwin, Thomas

    2016-01-01

    Purpose To report on the state of the art in obtaining high-resolution 3D data of the microanatomy of the temporal bone and to process that data for integration into a surgical simulator. Specifically, we report on our experience in this area and discuss the issues involved to further the field. Data Sources Current temporal bone image acquisition and image processing established in the literature as well as in house methodological development. Review Methods We reviewed the current English literature for the techniques used in computer-based temporal bone simulation systems to obtain and process anatomical data for use within the simulation. Search terms included “temporal bone simulation, surgical simulation, temporal bone.” Articles were chosen and reviewed that directly addressed data acquisition and processing/segmentation and enhancement with emphasis given to computer based systems. We present the results from this review in relationship to our approach. Conclusions High-resolution CT imaging (≤100μm voxel resolution), along with unique image processing and rendering algorithms, and structure specific enhancement are needed for high-level training and assessment using temporal bone surgical simulators. Higher resolution clinical scanning and automated processes that run in efficient time frames are needed before these systems can routinely support pre-surgical planning. Additionally, protocols such as that provided in this manuscript need to be disseminated to increase the number and variety of virtual temporal bones available for training and performance assessment. PMID:26762105

  2. Quality grading of Atlantic salmon (Salmo salar) by computer vision.

    PubMed

    Misimi, E; Erikson, U; Skavhaug, A

    2008-06-01

    In this study, we present a promising method of computer vision-based quality grading of whole Atlantic salmon (Salmo salar). Using computer vision, it was possible to differentiate among different quality grades of Atlantic salmon based on the external geometrical information contained in the fish images. Initially, before the image acquisition, the fish were subjectively graded and labeled into grading classes by a qualified human inspector in the processing plant. Prior to classification, the salmon images were segmented into binary images, and then feature extraction was performed on the geometrical parameters of the fish from the grading classes. The classification algorithm was a threshold-based classifier, which was designed using linear discriminant analysis. The performance of the classifier was tested by using the leave-one-out cross-validation method, and the classification results showed a good agreement between the classification done by human inspectors and by the computer vision. The computer vision-based method classified correctly 90% of the salmon from the data set as compared with the classification by human inspector. Overall, it was shown that computer vision can be used as a powerful tool to grade Atlantic salmon into quality grades in a fast and nondestructive manner by a relatively simple classifier algorithm. The low cost of implementation of today's advanced computer vision solutions makes this method feasible for industrial purposes in fish plants as it can replace manual labor, on which grading tasks still rely.

  3. External scintigraphy in monitoring the behavior of pharmaceutical formulations in vivo I: technique for acquiring high-resolution images of tablets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theodorakis, M.C.; Simpson, D.R.; Leung, D.M.

    1983-02-01

    A new method for monitoring tablet disintegration in vivo was developed. In this method, the tablets were labeled with a short-lived radionuclide, technetium 99m, and monitored by a gamma camera. Several innovations were introduced with this method. First, computer reconstruction algorithms were used to enhance the scintigraphic images of the disintegrating tablet in vivo. Second, the use of a four-pinhole collimator to acquire multiple views of the tablet resulted in high count rates and reduced acquisition times of the scintigraphic images. Third, the magnification of the scintigraphic images achieved by pinhole collimation led to significant improvement in resolution. Fourth, themore » radioinuclide was incorporated into the granulation so that the whole mass of the tablet was uniformly labeled with high levels of activity. This technique allowed the continuous monitoring of the disintegration process of tablets in vivo in experimental animals. Multiple pinhole collimation and the labeling process permitted the acquisition of quality scintigraphic images of the labeled tablet every 30 sec. The resolution of the method was tested in vitro and in vivo.« less

  4. Design and implementation of a contactless multiple hand feature acquisition system

    NASA Astrophysics Data System (ADS)

    Zhao, Qiushi; Bu, Wei; Wu, Xiangqian; Zhang, David

    2012-06-01

    In this work, an integrated contactless multiple hand feature acquisition system is designed. The system can capture palmprint, palm vein, and palm dorsal vein images simultaneously. Moreover, the images are captured in a contactless manner, that is, users need not to touch any part of the device when capturing. Palmprint is imaged under visible illumination while palm vein and palm dorsal vein are imaged under near infrared (NIR) illumination. The capturing is controlled by computer and the whole process is less than 1 second, which is sufficient for online biometric systems. Based on this device, this paper also implements a contactless hand-based multimodal biometric system. Palmprint, palm vein, palm dorsal vein, finger vein, and hand geometry features are extracted from the captured images. After similarity measure, the matching scores are fused using weighted sum fusion rule. Experimental results show that although the verification accuracy of each uni-modality is not as high as that of state-of-the-art, the fusion result is superior to most of the existing hand-based biometric systems. This result indicates that the proposed device is competent in the application of contactless multimodal hand-based biometrics.

  5. Optically gated beating-heart imaging

    PubMed Central

    Taylor, Jonathan M.

    2014-01-01

    The constant motion of the beating heart presents an obstacle to clear optical imaging, especially 3D imaging, in small animals where direct optical imaging would otherwise be possible. Gating techniques exploit the periodic motion of the heart to computationally “freeze” this movement and overcome motion artifacts. Optically gated imaging represents a recent development of this, where image analysis is used to synchronize acquisition with the heartbeat in a completely non-invasive manner. This article will explain the concept of optical gating, discuss a range of different implementation strategies and their strengths and weaknesses. Finally we will illustrate the usefulness of the technique by discussing applications where optical gating has facilitated novel biological findings by allowing 3D in vivo imaging of cardiac myocytes in their natural environment of the beating heart. PMID:25566083

  6. Optimization of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J.; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  7. NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis.

    PubMed

    Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien

    2018-01-01

    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.

  8. Quantitative analysis of defects in silicon. Silicon sheet growth development for the large are silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Smith, J. M.; Bruce, T.; Oidwai, H. A.

    1980-01-01

    One hundred and seventy four silicon sheet samples were analyzed for twin boundary density, dislocation pit density, and grain boundary length. Procedures were developed for the quantitative analysis of the twin boundary and dislocation pit densities using a QTM-720 Quantitative Image Analyzing system. The QTM-720 system was upgraded with the addition of a PDP 11/03 mini-computer with dual floppy disc drive, a digital equipment writer high speed printer, and a field-image feature interface module. Three versions of a computer program that controls the data acquisition and analysis on the QTM-720 were written. Procedures for the chemical polishing and etching were also developed.

  9. A Framework for Integration of Heterogeneous Medical Imaging Networks

    PubMed Central

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS. PMID:25279021

  10. A framework for integration of heterogeneous medical imaging networks.

    PubMed

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS.

  11. Rapid motion compensation for prostate biopsy using GPU.

    PubMed

    Shen, Feimo; Narayanan, Ramkrishnan; Suri, Jasjit S

    2008-01-01

    Image-guided procedures have become routine in medicine. Due to the nature of three-dimensional (3-D) structure of the target organs, two-dimensional (2-D) image acquisition is gradually being replaced by 3-D imaging. Specifically in the diagnosis of prostate cancer, biopsy can be performed using 3-D transrectal ultrasound (TRUS) image guidance. Because prostatic cancers are multifocal, it is crucial to accurately guide biopsy needles towards planned targets. Further the gland tends to move due to external physical disturbances, discomfort introduced by the procedure or intrinsic peristalsis. As a result the exact position of the gland must be rapidly updated so as to correspond with the originally acquired 3-D TRUS volume prior to biopsy planning. A graphics processing unit (GPU) is used in this study to compute rapid updates performing 3-D motion compensation via registration of the live 2-D image and the acquired 3-D TRUS volume. The parallel computational framework on the GPU is exploited resulting in mean compute times of 0.46 seconds for updating the position of a live 2-D buffer image containing 91,000 pixels. A 2x sub-sampling resulted in a further improvement to 0.19 seconds. With the increase in GPU multiprocessors and sub-sampling, we observe that real time motion compensation can be achieved.

  12. A Method to Measure and Estimate Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  13. Strategies of statistical windows in PET image reconstruction to improve the user’s real time experience

    NASA Astrophysics Data System (ADS)

    Moliner, L.; Correcher, C.; Gimenez-Alventosa, V.; Ilisie, V.; Alvarez, J.; Sanchez, S.; Rodríguez-Alvarez, M. J.

    2017-11-01

    Nowadays, with the increase of the computational power of modern computers together with the state-of-the-art reconstruction algorithms, it is possible to obtain Positron Emission Tomography (PET) images in practically real time. These facts open the door to new applications such as radio-pharmaceuticals tracking inside the body or the use of PET for image-guided procedures, such as biopsy interventions, among others. This work is a proof of concept that aims to improve the user experience with real time PET images. Fixed, incremental, overlapping, sliding and hybrid windows are the different statistical combinations of data blocks used to generate intermediate images in order to follow the path of the activity in the Field Of View (FOV). To evaluate these different combinations, a point source is placed in a dedicated breast PET device and moved along the FOV. These acquisitions are reconstructed according to the different statistical windows, resulting in a smoother transition of positions for the image reconstructions that use the sliding and hybrid window.

  14. Ameliorating slice gaps in multislice magnetic resonance images: an interpolation scheme.

    PubMed

    Kashou, Nasser H; Smith, Mark A; Roberts, Cynthia J

    2015-01-01

    Standard two-dimension (2D) magnetic resonance imaging (MRI) clinical acquisition protocols utilize orthogonal plane images which contain slice gaps (SG). The purpose of this work is to introduce a novel interpolation method for these orthogonal plane MRI 2D datasets. Three goals can be achieved: (1) increasing the resolution based on a priori knowledge of scanning protocol, (2) ameliorating the loss of data as a result of SG and (3) reconstructing a three-dimension (3D) dataset from 2D images. MRI data was collected using a 3T GE scanner and simulated using Matlab. The procedure for validating the MRI data combination algorithm was performed using a Shepp-Logan and a Gaussian phantom in both 2D and 3D of varying matrix sizes (64-512), as well as on one MRI dataset of a human brain and on an American College of Radiology magnetic resonance accreditation phantom. The squared error and mean squared error were computed in comparing this scheme to common interpolating functions employed in MR consoles and workstations. The mean structure similarity matrix was computed in 2D as a means of qualitative image assessment. Additionally, MRI scans were used for qualitative assessment of the method. This new scheme was consistently more accurate than upsampling each orientation separately and averaging the upsampled data. An efficient new interpolation approach to resolve SG was developed. This scheme effectively fills in the missing data points by using orthogonal plane images. To date, there have been few attempts to combine the information of three MRI plane orientations using brain images. This has specific applications for clinical MRI, functional MRI, diffusion-weighted imaging/diffusion tensor imaging and MR angiography where 2D slice acquisition are used. In these cases, the 2D data can be combined using our method in order to obtain 3D volume.

  15. CT imaging, then and now: a 30-year review of the economics of computed tomography.

    PubMed

    Stockburger, Wayne T

    2004-01-01

    The first computed tomography (CT) scanner in the US was installed in June 1973 at the Mayo Clinic in Rochester, MN. By the end of 1974, 44 similar systems had been installed at medical facilities around the country. Less than 4 years after the introduction of CT imaging in the US, at least 400 CT systems had been installed. The practice of pneumoencephalography was eliminated. The use of nuclear medicine brain scans significantly diminished. At the time, CT imaging was limited to head studies, but with the introduction of contrast agents and full body CT systems the changes in the practice of medicine became even more significant. CT imaging was hailed by the US medical community as the greatest advance in radiology since the discovery of x-rays. But the rapid spread of CT systems, their frequency of use, and the associated increase in healthcare costs combined to draw the attention of decision-makers within the federal and state governments, specifically to establish policies regarding the acquisition and use of diagnostic technologies. Initially, CT imaging was limited to neurological applications, but in the 30 years since its inception, capabilities and applications have been expanded as a result of the advancements in technology and software development. While neurological disorders are still a common reason for CT imaging, many other medical disciplines (oncology, emergency medicine, orthopedics, etc.) have found CT imaging to be the definitive tool for diagnostic information. As such, the clinical demand for CT imaging has steadily increased. Economically, the development of CT imaging has been one of success, even in the face of governmental action to restrict its acquisition and utilization by healthcare facilities. CTimaging has increased the cost of healthcare, but in turn has added unquantifiable value to the practice of medicine in the US.

  16. Two-dimensional thermography image retrieval from zig-zag scanned data with TZ-SCAN

    NASA Astrophysics Data System (ADS)

    Okumura, Hiroshi; Yamasaki, Ryohei; Arai, Kohei

    2008-10-01

    TZ-SCAN is a simple and low cost thermal imaging device which consists of a single point radiation thermometer on a tripod with a pan-tilt rotator, a DC motor controller board with a USB interface, and a laptop computer for rotator control, data acquisition, and data processing. TZ-SCAN acquires a series of zig-zag scanned data and stores the data as CSV file. A 2-D thermal distribution image can be retrieved by using the second quefrency peak calculated from TZ-SCAN data. An experiment is conducted to confirm the validity of the thermal retrieval algorithm. The experimental result shows efficient accuracy for 2-D thermal distribution image retrieval.

  17. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  18. Dynamic contrast enhanced CT in nodule characterization: How we review and report.

    PubMed

    Qureshi, Nagmi R; Shah, Andrew; Eaton, Rosemary J; Miles, Ken; Gilbert, Fiona J

    2016-07-18

    Incidental indeterminate solitary pulmonary nodules (SPN) that measure less than 3 cm in size are an increasingly common finding on computed tomography (CT) worldwide. Once identified there are a number of imaging strategies that can be performed to help with nodule characterization. These include interval CT, dynamic contrast enhanced computed tomography (DCE-CT), (18)F-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG-PET-CT). To date the most cost effective and efficient non-invasive test or combination of tests for optimal nodule characterization has yet to be determined.DCE-CT is a functional test that involves the acquisition of a dynamic series of images of a nodule before and following the administration of intravenous iodinated contrast medium. This article provides an overview of the current indications and limitations of DCE- CT in nodule characterization and a systematic approach to how to perform, analyse and interpret a DCE-CT scan.

  19. The European computer model for optronic system performance prediction (ECOMOS)

    NASA Astrophysics Data System (ADS)

    Repasi, Endre; Bijl, Piet; Labarre, Luc; Wittenstein, Wolfgang; Bürsing, Helge

    2017-05-01

    ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defence and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses and combines well-accepted existing European tools to build up a strong competitive position. This includes two TA models: the analytical TRM4 model and the image-based TOD model. In addition, it uses the atmosphere model MATISSE. In this paper, the central idea of ECOMOS is exposed. The overall software structure and the underlying models are shown and elucidated. The status of the project development is given as well as a short outlook on validation tests and the future potential of simulation for sensor assessment.

  20. Online Graph Completion: Multivariate Signal Recovery in Computer Vision.

    PubMed

    Kim, Won Hwa; Jalal, Mona; Hwang, Seongjae; Johnson, Sterling C; Singh, Vikas

    2017-07-01

    The adoption of "human-in-the-loop" paradigms in computer vision and machine learning is leading to various applications where the actual data acquisition (e.g., human supervision) and the underlying inference algorithms are closely interwined. While classical work in active learning provides effective solutions when the learning module involves classification and regression tasks, many practical issues such as partially observed measurements, financial constraints and even additional distributional or structural aspects of the data typically fall outside the scope of this treatment. For instance, with sequential acquisition of partial measurements of data that manifest as a matrix (or tensor), novel strategies for completion (or collaborative filtering) of the remaining entries have only been studied recently. Motivated by vision problems where we seek to annotate a large dataset of images via a crowdsourced platform or alternatively, complement results from a state-of-the-art object detector using human feedback, we study the "completion" problem defined on graphs, where requests for additional measurements must be made sequentially. We design the optimization model in the Fourier domain of the graph describing how ideas based on adaptive submodularity provide algorithms that work well in practice. On a large set of images collected from Imgur, we see promising results on images that are otherwise difficult to categorize. We also show applications to an experimental design problem in neuroimaging.

  1. Sensing and perception research for space telerobotics at JPL

    NASA Technical Reports Server (NTRS)

    Gennery, Donald B.; Litwin, Todd; Wilcox, Brian; Bon, Bruce

    1987-01-01

    PIFLEX is a pipelined-image processor that can perform elaborate computations whose exact nature is not fixed in the hardware, and that can handle multiple images. A wire-wrapped prototype PIFEX module has been produced and debugged, using a version of the convolver composed of three custom VLSI chips (plus the line buffers). A printed circuit layout is being designed for use with a single-chip convolver, leading to production of a PIFEX with about 120 modules. A high-level language for programming PIFEX has been designed, and a compiler will be written for it. The camera calibration software has been completed and tested. Two more terms in the camera model, for lens distortion, probably will be added later. The acquisition and tracking system has been designed and most of it has been coded in Pascal for the MicroVAX-II. The feature tracker, motion stereo module and stereo matcher have executed successfully. The model matcher is still under development, and coding has begun on the tracking initializer. The object tracker was running on a different computer from the VAX, and preliminary runs on real images have been performed there. Once all modules are working, optimization and integration will begin. Finally, when a sufficiently large PIFEX is available, appropriate parts of acquisition and tracking, including much of the feature tracker, will be programmed into PIFEX, thus increasing the speed and robustness of the system.

  2. Control and acquisition systems for new scanning transmission x-ray microscopes at Advanced Light Source (abstract)

    NASA Astrophysics Data System (ADS)

    Tyliszczak, T.; Hitchcock, P.; Kilcoyne, A. L. D.; Ade, H.; Hitchcock, A. P.; Fakra, S.; Steele, W. F.; Warwick, T.

    2002-03-01

    Two new scanning x-ray transmission microscopes are being built at beamline 5.3.2 and beamline 7.0 of the Advanced Light Source that have novel aspects in their control and acquisition systems. Both microscopes use multiaxis laser interferometry to improve the precision of pixel location during imaging and energy scans as well as to remove image distortions. Beam line 5.3.2 is a new beam line where the new microscope will be dedicated to studies of polymers in the 250-600 eV energy range. Since this is a bending magnet beam line with lower x-ray brightness than undulator beam lines, special attention is given to the design not only to minimize distortions and vibrations but also to optimize the controls and acquisition to improve data collection efficiency. 5.3.2 microscope control and acquisition is based on a PC computer running WINDOWS 2000. All mechanical stages are moved by stepper motors with rack mounted controllers. A dedicated counter board is used for counting and timing and a multi-input/output board is used for analog acquisition and control of the focusing mirror. A three axis differential laser interferometer is being used to improve stability and precision by careful tracking of the relative positions of the sample and zone plate. Each axis measures the relative distance between a mirror placed on the sample stage and a mirror attached to the zone plate holder. Agilent Technologies HP 10889A servo-axis interferometer boards are used. While they were designed to control servo motors, our tests show that they can be used to directly control the piezo stage. The use of the interferometer servo-axis boards provides excellent point stability for spectral measurements. The interferometric feedback also provides active vibration isolation which reduces deleterious impact of mechanical vibrations up to 20-30 Hz. It also can improve the speed and precision of image scans. Custom C++ software has been written to provide user friendly control of the microscope and integration with visual light microscopy indexing of the samples. The beam line 7.0 microscope upgrade is a new design which will replace the existing microscope. The design is similar to that of beam line 5.3.2, including interferometric position encoding. However the acquisition and control is based on VXI systems, a Sun computer, and LABVIEW™ software. The main objective of the BL 7.0 microscope upgrade is to achieve precise image scans at very high speed (pixel dwells as short as 10 μs) to take full advantage of the high brightness of the 7.0 undulator beamline. Results of tests and a discussion of the benefits of our scanning microscope designs will be presented.

  3. Development of a Computer-Aided Diagnosis System for Early Detection of Masses Using Retrospectively Detected Cancers on Prior Mammograms

    DTIC Science & Technology

    2007-06-01

    the masses were identified by an experi- enced Mammography Quality Standards Act (MQSA) radiologist. The no-mass data set contained 98 cases. The time...force, and the difference in time between the two acquisitions would cause differ- ences in the subtlety of the masses on the FFDMs and SFMs. However...images," Medical Physics 18, 955-963 (1991). 20A. J. Mendez, P. G. Tahoces, M. J. Lado , M. Souto, and J. J. Vidal, "Computer-aided diagnosis: Automatic

  4. Parallel Wavefront Analysis for a 4D Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  5. Comparing the imaging performance of computed super resolution and magnification tomosynthesis

    NASA Astrophysics Data System (ADS)

    Maidment, Tristan D.; Vent, Trevor L.; Ferris, William S.; Wurtele, David E.; Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2017-03-01

    Computed super-resolution (SR) is a method of reconstructing images with pixels that are smaller than the detector element size; superior spatial resolution is achieved through the elimination of aliasing and alteration of the sampling function imposed by the reconstructed pixel aperture. By comparison, magnification mammography is a method of projection imaging that uses geometric magnification to increase spatial resolution. This study explores the development and application of magnification digital breast tomosynthesis (MDBT). Four different acquisition geometries are compared in terms of various image metrics. High-contrast spatial resolution was measured in various axes using a lead star pattern. A modified Defrise phantom was used to determine the low-frequency spatial resolution. An anthropomorphic phantom was used to simulate clinical imaging. Each experiment was conducted at three different magnifications: contact (1.04x), MAG1 (1.3x), and MAG2 (1.6x). All images were taken on our next generation tomosynthesis system, an in-house solution designed to optimize SR. It is demonstrated that both computed SR and MDBT (MAG1 and MAG2) provide improved spatial resolution over non-SR contact imaging. To achieve the highest resolution, SR and MDBT should be combined. However, MDBT is adversely affected by patient motion at higher magnifications. In addition, MDBT requires more radiation dose and delays diagnosis, since MDBT would be conducted upon recall. By comparison, SR can be conducted with the original screening data. In conclusion, this study demonstrates that computed SR and MDBT are both viable methods of imaging the breast.

  6. Project MICAS: a multivendor open-system incremental approach to implementing an integrated enterprise-wide PACS: works in progress

    NASA Astrophysics Data System (ADS)

    Smith, Edward M.; Wright, Jeffrey; Fontaine, Marc T.; Robinson, Arvin E.

    1998-07-01

    The Medical Information, Communication and Archive System (MICAS) is a multi-vendor incremental approach to PACS. MICAS is a multi-modality integrated image management system that incorporates the radiology information system (RIS) and radiology image database (RID) with future 'hooks' to other hospital databases. Even though this approach to PACS is more risky than a single-vendor turn-key approach, it offers significant advantages. The vendors involved in the initial phase of MICAS are IDX Corp., ImageLabs, Inc. and Digital Equipment Corp (DEC). The network architecture operates at 100 MBits per sec except between the modalities and the stackable intelligent switch which is used to segment MICAS by modality. Each modality segment contains the acquisition engine for the modality, a temporary archive and one or more diagnostic workstations. All archived studies are available at all workstations, but there is no permanent archive at this time. At present, the RIS vendor is responsible for study acquisition and workflow as well as maintenance of the temporary archive. Management of study acquisition, workflow and the permanent archive will become the responsibility of the archive vendor when the archive is installed in the second quarter of 1998. The modalities currently interfaced to MICAS are MRI, CT and a Howtek film digitizer with Nuclear Medicine and computed radiography (CR) to be added when the permanent archive is installed. There are six dual-monitor diagnostic workstations which use ImageLabs Shared Vision viewer software located in MRI, CT, Nuclear Medicine, musculoskeletal reading areas and two in Radiology's main reading area. One of the major lessons learned to date is that the permanent archive should have been part of the initial MICAS installation and the archive vendor should have been responsible for image acquisition rather than the RIS vendor. Currently an archive vendor is being selected who will be responsible for the management of the archive plus the HIS/RIS interface, image acquisition, modality work list manager and interfacing to the current DICOM viewer software. The next phase of MICAS will include interfacing ultrasound, locating servers outside of the Radiology LAN to support the distribution of images and reports to the clinical floors and physician offices both within and outside of the University of Rochester Medical Center (URMC) campus and the teaching archive.

  7. A preliminary experiment definition for video landmark acquisition and tracking

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Hulstrom, R. L.; Cunningham, R. A.; Reel, G. M.

    1976-01-01

    Six scientific objectives/experiments were derived which consisted of agriculture/forestry/range resources, land use, geology/mineral resources, water resources, marine resources and environmental surveys. Computer calculations were then made of the spectral radiance signature of each of 25 candidate targets as seen by a satellite sensor system. An imaging system capable of recognizing, acquiring and tracking specific generic type surface features was defined. A preliminary experiment definition and design of a video Landmark Acquisition and Tracking system is given. This device will search a 10-mile swath while orbiting the earth, looking for land/water interfaces such as coastlines and rivers.

  8. Recent Design Development in Molecular Imaging for Breast Cancer Detection Using Nanometer CMOS Based Sensors.

    PubMed

    Nguyen, Dung C; Ma, Dongsheng Brian; Roveda, Janet M W

    2012-01-01

    As one of the key clinical imaging methods, the computed X-ray tomography can be further improved using new nanometer CMOS sensors. This will enhance the current technique's ability in terms of cancer detection size, position, and detection accuracy on the anatomical structures. The current paper reviewed designs of SOI-based CMOS sensors and their architectural design in mammography systems. Based on the existing experimental results, using the SOI technology can provide a low-noise (SNR around 87.8 db) and high-gain (30 v/v) CMOS imager. It is also expected that, together with the fast data acquisition designs, the new type of imagers may play important roles in the near-future high-dimensional images in additional to today's 2D imagers.

  9. Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.

    PubMed

    Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L

    2018-02-01

    This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Promote quantitative ischemia imaging via myocardial perfusion CT iterative reconstruction with tensor total generalized variation regularization

    NASA Astrophysics Data System (ADS)

    Gu, Chengwei; Zeng, Dong; Lin, Jiahui; Li, Sui; He, Ji; Zhang, Hao; Bian, Zhaoying; Niu, Shanzhou; Zhang, Zhang; Huang, Jing; Chen, Bo; Zhao, Dazhe; Chen, Wufan; Ma, Jianhua

    2018-06-01

    Myocardial perfusion computed tomography (MPCT) imaging is commonly used to detect myocardial ischemia quantitatively. A limitation in MPCT is that an additional radiation dose is required compared to unenhanced CT due to its repeated dynamic data acquisition. Meanwhile, noise and streak artifacts in low-dose cases are the main factors that degrade the accuracy of quantifying myocardial ischemia and hamper the diagnostic utility of the filtered backprojection reconstructed MPCT images. Moreover, it is noted that the MPCT images are composed of a series of 2/3D images, which can be naturally regarded as a 3/4-order tensor, and the MPCT images are globally correlated along time and are sparse across space. To obtain higher fidelity ischemia from low-dose MPCT acquisitions quantitatively, we propose a robust statistical iterative MPCT image reconstruction algorithm by incorporating tensor total generalized variation (TTGV) regularization into a penalized weighted least-squares framework. Specifically, the TTGV regularization fuses the spatial correlation of the myocardial structure and the temporal continuation of the contrast agent intake during the perfusion. Then, an efficient iterative strategy is developed for the objective function optimization. Comprehensive evaluations have been conducted on a digital XCAT phantom and a preclinical porcine dataset regarding the accuracy of the reconstructed MPCT images, the quantitative differentiation of ischemia and the algorithm’s robustness and efficiency.

  11. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiangang

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  12. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope.

    PubMed

    Nishi, Ryuji; Cao, Meng; Kanaji, Atsuko; Nishida, Tomoki; Yoshida, Kiyokazu; Isakozawa, Shigeto

    2014-11-01

    The ultra-high voltage electron microscope (UHVEM) H-3000 with the world highest acceleration voltage of 3 MV can observe remarkable three dimensional microstructures of microns-thick samples[1]. Acquiring a tilt series of electron tomography is laborious work and thus an automatic technique is highly desired. We proposed the Auto-Focus system using image Sharpness (AFS)[2,3] for UHVEM tomography tilt series acquisition. In the method, five images with different defocus values are firstly acquired and the image sharpness are calculated. The sharpness are then fitted to a quasi-Gaussian function to decide the best focus value[3]. Defocused images acquired by the slow scan CCD (SS-CCD) camera (Hitachi F486BK) are of high quality but one minute is taken for acquisition of five defocused images.In this study, we introduce a high-definition video camera (HD video camera; Hamamatsu Photonics K. K. C9721S) for fast acquisition of images[4]. It is an analog camera but the camera image is captured by a PC and the effective image resolution is 1280×1023 pixels. This resolution is lower than that of the SS-CCD camera of 4096×4096 pixels. However, the HD video camera captures one image for only 1/30 second. In exchange for the faster acquisition the S/N of images are low. To improve the S/N, 22 captured frames are integrated so that each image sharpness is enough to become lower fitting error. As countermeasure against low resolution, we selected a large defocus step, which is typically five times of the manual defocus step, to discriminate different defocused images.By using HD video camera for autofocus process, the time consumption for each autofocus procedure was reduced to about six seconds. It took one second for correction of an image position and the total correction time was seven seconds, which was shorter by one order than that using SS-CCD camera. When we used SS-CCD camera for final image capture, it took 30 seconds to record one tilt image. We can obtain a tilt series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain.

    PubMed

    Márquez Neila, Pablo; Baumela, Luis; González-Soriano, Juncal; Rodríguez, Jose-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Ángel

    2016-04-01

    Recent electron microscopy (EM) imaging techniques permit the automatic acquisition of a large number of serial sections from brain samples. Manual segmentation of these images is tedious, time-consuming and requires a high degree of user expertise. Therefore, there is considerable interest in developing automatic segmentation methods. However, currently available methods are computationally demanding in terms of computer time and memory usage, and to work properly many of them require image stacks to be isotropic, that is, voxels must have the same size in the X, Y and Z axes. We present a method that works with anisotropic voxels and that is computationally efficient allowing the segmentation of large image stacks. Our approach involves anisotropy-aware regularization via conditional random field inference and surface smoothing techniques to improve the segmentation and visualization. We have focused on the segmentation of mitochondria and synaptic junctions in EM stacks from the cerebral cortex, and have compared the results to those obtained by other methods. Our method is faster than other methods with similar segmentation results. Our image regularization procedure introduces high-level knowledge about the structure of labels. We have also reduced memory requirements with the introduction of energy optimization in overlapping partitions, which permits the regularization of very large image stacks. Finally, the surface smoothing step improves the appearance of three-dimensional renderings of the segmented volumes.

  14. Evaluation of dosimetry and image of very low-dose computed tomography attenuation correction for pediatric positron emission tomography/computed tomography: phantom study

    NASA Astrophysics Data System (ADS)

    Bahn, Y. K.; Park, H. H.; Lee, C. H.; Kim, H. S.; Lyu, K. Y.; Dong, K. R.; Chung, W. K.; Cho, J. H.

    2014-04-01

    In this study, phantom was used to evaluate attenuation correction computed tomography (CT) dose and image in case of pediatric positron emission tomography (PET)/CT scan. Three PET/CT scanners were used along with acryl phantom in the size for infant and ion-chamber dosimeter. The CT image acquisition conditions were changed from 10 to 20, 40, 80, 100 and 160 mA and from 80 to 100, 120 and 140 kVp, which aimed at evaluating penetrate dose and computed tomography dose indexvolume (CTDIvol) value. And NEMA PET Phantom™ was used to obtain PET image under the same CT conditions in order to evaluate each attenuation-corrected PET image based on standard uptake value (SUV) value and signal-to-noise ratio (SNR). In general, the penetrate dose was reduced by around 92% under the minimum CT conditions (80 kVp and 10 mA) with the decrease in CTDIvol value by around 88%, compared with the pediatric abdomen CT conditions (100 kVp and 100 mA). The PET image with its attenuation corrected according to each CT condition showed no change in SUV value and no influence on the SNR. In conclusion, if the minimum dose CT that is properly applied to body of pediatric patient is corrected for attenuation to ensure that the effective dose is reduced by around 90% or more compared with that for adult patient, this will be useful to reduce radiation exposure level.

  15. Efficient scatter model for simulation of ultrasound images from computed tomography data

    NASA Astrophysics Data System (ADS)

    D'Amato, J. P.; Lo Vercio, L.; Rubi, P.; Fernandez Vera, E.; Barbuzza, R.; Del Fresno, M.; Larrabide, I.

    2015-12-01

    Background and motivation: Real-time ultrasound simulation refers to the process of computationally creating fully synthetic ultrasound images instantly. Due to the high value of specialized low cost training for healthcare professionals, there is a growing interest in the use of this technology and the development of high fidelity systems that simulate the acquisitions of echographic images. The objective is to create an efficient and reproducible simulator that can run either on notebooks or desktops using low cost devices. Materials and methods: We present an interactive ultrasound simulator based on CT data. This simulator is based on ray-casting and provides real-time interaction capabilities. The simulation of scattering that is coherent with the transducer position in real time is also introduced. Such noise is produced using a simplified model of multiplicative noise and convolution with point spread functions (PSF) tailored for this purpose. Results: The computational efficiency of scattering maps generation was revised with an improved performance. This allowed a more efficient simulation of coherent scattering in the synthetic echographic images while providing highly realistic result. We describe some quality and performance metrics to validate these results, where a performance of up to 55fps was achieved. Conclusion: The proposed technique for real-time scattering modeling provides realistic yet computationally efficient scatter distributions. The error between the original image and the simulated scattering image was compared for the proposed method and the state-of-the-art, showing negligible differences in its distribution.

  16. Image acquisition context: procedure description attributes for clinically relevant indexing and selective retrieval of biomedical images.

    PubMed

    Bidgood, W D; Bray, B; Brown, N; Mori, A R; Spackman, K A; Golichowski, A; Jones, R H; Korman, L; Dove, B; Hildebrand, L; Berg, M

    1999-01-01

    To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation. The authors introduce the notion of "image acquisition context," the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries. The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements. The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries.

  17. Dual-Gated Motion-Frozen Cardiac PET with Flurpiridaz F 18.

    PubMed

    Slomka, Piotr J; Rubeaux, Mathieu; Le Meunier, Ludovic; Dey, Damini; Lazewatsky, Joel L; Pan, Tinsu; Dweck, Marc R; Newby, David E; Germano, Guido; Berman, Daniel S

    2015-12-01

    A novel PET radiotracer, Flurpiridaz F 18, has undergone phase II clinical trial evaluation as a high-resolution PET cardiac perfusion imaging agent. In a subgroup of patients imaged with this agent, we assessed the feasibility and benefit of simultaneous correction of respiratory and cardiac motion. In 16 patients, PET imaging was performed on a 4-ring scanner in dual cardiac and respiratory gating mode. Four sets of data were reconstructed with high-definition reconstruction (HD•PET): ungated and 8-bin electrocardiography-gated images using 5-min acquisition, optimal respiratory gating (ORG)-as developed for oncologic imaging-using a narrow range of breathing amplitude around end-expiration level with 35% of the counts in a 7-min acquisition, and 4-bin respiration-gated and 8-bin electrocardiography-gated images (32 bins in total) using the 7-min acquisition (dual-gating, using all data). Motion-frozen (MF) registration algorithms were applied to electrocardiography-gated and dual-gated data, creating cardiac-MF and dual-MF images. We computed wall thickness, wall/cavity contrast, and contrast-to-noise ratio for standard, ORG, cardiac-MF, and dual-MF images to assess image quality. The wall/cavity contrast was similar for ungated (9.3 ± 2.9) and ORG (9.5 ± 3.2) images and improved for cardiac-MF (10.8 ± 3.6) and dual-MF images (14.8 ± 8.0) (P < 0.05). The contrast-to-noise ratio was 22.2 ± 9.1 with ungated, 24.7 ± 12.2 with ORG, 35.5 ± 12.8 with cardiac-MF, and 42.1 ± 13.2 with dual-MF images (all P < 0.05). The wall thickness was significantly decreased (P < 0.05) with dual-MF (11.6 ± 1.9 mm) compared with ungated (13.9 ± 2.8 mm), ORG (13.1 ± 2.9 mm), and cardiac-MF images (12.1 ± 2.7 mm). Dual (respiratory/cardiac)-gated perfusion imaging with Flurpiridaz F 18 is feasible and improves image resolution, contrast, and contrast-to-noise ratio when MF registration methods are applied. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Dedicated mobile volumetric cone-beam computed tomography for human brain imaging: A phantom study.

    PubMed

    Ryu, Jong-Hyun; Kim, Tae-Hoon; Jeong, Chang-Won; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha

    2015-01-01

    Mobile computed tomography (CT) with a cone-beam source is increasingly used in the clinical field. Mobile cone-beam CT (CBCT) has great merits; however, its clinical utility for brain imaging has been limited due to problems including scan time and image quality. The aim of this study was to develop a dedicated mobile volumetric CBCT for obtaining brain images, and to optimize the imaging protocol using a brain phantom. The mobile volumetric CBCT system was evaluated with regards to scan time and image quality, measured as signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR), spatial resolution (10% MTF), and effective dose. Brain images were obtained using a CT phantom. The CT scan took 5.14 s at 360 projection views. SNR and CNR were 5.67 and 14.5 at 120 kV/10 mA. SNR and CNR values showed slight improvement as the x-ray voltage and current increased (p < 0.001). Effective dose and 10% MTF were 0.92 mSv and 360 μ m at 120 kV/10 mA. Various intracranial structures were clearly visible in the brain phantom images. Using this CBCT under optimal imaging acquisition conditions, it is possible to obtain human brain images with low radiation dose, reproducible image quality, and fast scan time.

  19. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy

    NASA Astrophysics Data System (ADS)

    Pablico-Lansigan, Michele H.; Situ, Shu F.; Samia, Anna Cristina S.

    2013-05-01

    Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.

  20. Computing moment to moment BOLD activation for real-time neurofeedback

    PubMed Central

    Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W.; Yoo, Julie J.; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D.E.

    2013-01-01

    Estimating moment to moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment to moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment to moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI timeseries, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. PMID:20682350

  1. Initial investigation into lower-cost CT for resource limited regions of the world

    NASA Astrophysics Data System (ADS)

    Dobbins, James T., III; Wells, Jered R.; Segars, W. Paul; Li, Christina M.; Kigongo, Christopher J. N.

    2010-04-01

    This paper describes an initial investigation into means for producing lower-cost CT scanners for resource limited regions of the world. In regions such as sub-Saharan Africa, intermediate level medical facilities serving millions have no CT machines, and lack the imaging resources necessary to determine whether certain patients would benefit from being transferred to a hospital in a larger city for further diagnostic workup or treatment. Low-cost CT scanners would potentially be of immense help to the healthcare system in such regions. Such scanners would not produce state-of-theart image quality, but rather would be intended primarily for triaging purposes to determine the patients who would benefit from transfer to larger hospitals. The lower-cost scanner investigated here consists of a fixed digital radiography system and a rotating patient stage. This paper describes initial experiments to determine if such a configuration is feasible. Experiments were conducted using (1) x-ray image acquisition, a physical anthropomorphic chest phantom, and a flat-panel detector system, and (2) a computer-simulated XCAT chest phantom. Both the physical phantom and simulated phantom produced excellent image quality reconstructions when the phantom was perfectly aligned during acquisition, but artifacts were noted when the phantom was displaced to simulate patient motion. An algorithm was developed to correct for motion of the phantom and demonstrated success in correcting for 5-mm motion during 360-degree acquisition of images. These experiments demonstrated feasibility for this approach, but additional work is required to determine the exact limitations produced by patient motion.

  2. Patient-Specific Simulation of Cardiac Blood Flow From High-Resolution Computed Tomography.

    PubMed

    Lantz, Jonas; Henriksson, Lilian; Persson, Anders; Karlsson, Matts; Ebbers, Tino

    2016-12-01

    Cardiac hemodynamics can be computed from medical imaging data, and results could potentially aid in cardiac diagnosis and treatment optimization. However, simulations are often based on simplified geometries, ignoring features such as papillary muscles and trabeculae due to their complex shape, limitations in image acquisitions, and challenges in computational modeling. This severely hampers the use of computational fluid dynamics in clinical practice. The overall aim of this study was to develop a novel numerical framework that incorporated these geometrical features. The model included the left atrium, ventricle, ascending aorta, and heart valves. The framework used image registration to obtain patient-specific wall motion, automatic remeshing to handle topological changes due to the complex trabeculae motion, and a fast interpolation routine to obtain intermediate meshes during the simulations. Velocity fields and residence time were evaluated, and they indicated that papillary muscles and trabeculae strongly interacted with the blood, which could not be observed in a simplified model. The framework resulted in a model with outstanding geometrical detail, demonstrating the feasibility as well as the importance of a framework that is capable of simulating blood flow in physiologically realistic hearts.

  3. Designing a wearable navigation system for image-guided cancer resection surgery

    PubMed Central

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2015-01-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure. PMID:24980159

  4. Designing a wearable navigation system for image-guided cancer resection surgery.

    PubMed

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2014-11-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure.

  5. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Pan, X; Stayman, J

    2014-06-15

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within themore » reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical applications. Learning Objectives: Learn the general methodologies associated with model-based 3D image reconstruction. Learn the potential advantages in image quality and dose associated with model-based image reconstruction. Learn the challenges associated with computational load and image quality assessment for such reconstruction methods. Learn how imaging task can be incorporated as a means to drive optimal image acquisition and reconstruction techniques. Learn how model-based reconstruction methods can incorporate prior information to improve image quality, ease sampling requirements, and reduce dose.« less

  6. Image Acquisition Context

    PubMed Central

    Bidgood, W. Dean; Bray, Bruce; Brown, Nicolas; Mori, Angelo Rossi; Spackman, Kent A.; Golichowski, Alan; Jones, Robert H.; Korman, Louis; Dove, Brent; Hildebrand, Lloyd; Berg, Michael

    1999-01-01

    Objective: To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation. Design: The authors introduce the notion of “image acquisition context,” the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries. Methods: The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements. Results: The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries. PMID:9925229

  7. Computational Modeling for Language Acquisition: A Tutorial With Syntactic Islands.

    PubMed

    Pearl, Lisa S; Sprouse, Jon

    2015-06-01

    Given the growing prominence of computational modeling in the acquisition research community, we present a tutorial on how to use computational modeling to investigate learning strategies that underlie the acquisition process. This is useful for understanding both typical and atypical linguistic development. We provide a general overview of why modeling can be a particularly informative tool and some general considerations when creating a computational acquisition model. We then review a concrete example of a computational acquisition model for complex structural knowledge referred to as syntactic islands. This includes an overview of syntactic islands knowledge, a precise definition of the acquisition task being modeled, the modeling results, and how to meaningfully interpret those results in a way that is relevant for questions about knowledge representation and the learning process. Computational modeling is a powerful tool that can be used to understand linguistic development. The general approach presented here can be used to investigate any acquisition task and any learning strategy, provided both are precisely defined.

  8. Image quality assessment for CT used on small animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters usingmore » an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.« less

  9. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  10. Computational oncology.

    PubMed

    Lefor, Alan T

    2011-08-01

    Oncology research has traditionally been conducted using techniques from the biological sciences. The new field of computational oncology has forged a new relationship between the physical sciences and oncology to further advance research. By applying physics and mathematics to oncologic problems, new insights will emerge into the pathogenesis and treatment of malignancies. One major area of investigation in computational oncology centers around the acquisition and analysis of data, using improved computing hardware and software. Large databases of cellular pathways are being analyzed to understand the interrelationship among complex biological processes. Computer-aided detection is being applied to the analysis of routine imaging data including mammography and chest imaging to improve the accuracy and detection rate for population screening. The second major area of investigation uses computers to construct sophisticated mathematical models of individual cancer cells as well as larger systems using partial differential equations. These models are further refined with clinically available information to more accurately reflect living systems. One of the major obstacles in the partnership between physical scientists and the oncology community is communications. Standard ways to convey information must be developed. Future progress in computational oncology will depend on close collaboration between clinicians and investigators to further the understanding of cancer using these new approaches.

  11. Reference-free ground truth metric for metal artifact evaluation in CT images.

    PubMed

    Kratz, Bärbel; Ens, Svitlana; Müller, Jan; Buzug, Thorsten M

    2011-07-01

    In computed tomography (CT), metal objects in the region of interest introduce data inconsistencies during acquisition. Reconstructing these data results in an image with star shaped artifacts induced by the metal inconsistencies. To enhance image quality, the influence of the metal objects can be reduced by different metal artifact reduction (MAR) strategies. For an adequate evaluation of new MAR approaches a ground truth reference data set is needed. In technical evaluations, where phantoms can be measured with and without metal inserts, ground truth data can easily be obtained by a second reference data acquisition. Obviously, this is not possible for clinical data. Here, an alternative evaluation method is presented without the need of an additionally acquired reference data set. The proposed metric is based on an inherent ground truth for metal artifacts as well as MAR methods comparison, where no reference information in terms of a second acquisition is needed. The method is based on the forward projection of a reconstructed image, which is compared to the actually measured projection data. The new evaluation technique is performed on phantom and on clinical CT data with and without MAR. The metric results are then compared with methods using a reference data set as well as an expert-based classification. It is shown that the new approach is an adequate quantification technique for artifact strength in reconstructed metal or MAR CT images. The presented method works solely on the original projection data itself, which yields some advantages compared to distance measures in image domain using two data sets. Beside this, no parameters have to be manually chosen. The new metric is a useful evaluation alternative when no reference data are available.

  12. [Wireless digital radiography detectors in the emergency area: an efficacious solution].

    PubMed

    Garrido Blázquez, M; Agulla Otero, M; Rodríguez Recio, F J; Torres Cabrera, R; Hernando González, I

    2013-01-01

    To evaluate the implementation of a flat panel digital radiolography (DR) system with WiFi technology in an emergency radiology area in which a computed radiography (CR) system was previously used. We analyzed aspects related to image quality, radiation dose, workflow, and ergonomics. We analyzed the results obtained with the CR and WiFi DR systems related with the quality of images analyzed in images obtained using a phantom and after radiologists' evaluation of radiological images obtained in real patients. We also analyzed the time required for image acquisition and the workflow with the two technological systems. Finally, we analyzed the data related to the dose of radiation in patients before and after the implementation of the new equipment. Image quality improved in both the tests carried out with a phantom and in radiological images obtained in patients, which increased from 3 to 4.5 on a 5-point scale. The average time required for image acquisition decreased by 25 seconds per image. The flat panel required less radiation to be delivered in practically all the techniques carried out using automatic dosimetry, although statistically significant differences were found in only some of the techniques (chest, thoracic spine, and lumbar spine). Implementing the WiFi DR system has brought benefits. Image quality has improved and the dose of radiation to patients has decreased. The new system also has advantages in terms of functionality, ergonomics, and performance. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  13. Probabilistic sparse matching for robust 3D/3D fusion in minimally invasive surgery.

    PubMed

    Neumann, Dominik; Grbic, Sasa; John, Matthias; Navab, Nassir; Hornegger, Joachim; Ionasec, Razvan

    2015-01-01

    Classical surgery is being overtaken by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm computed tomography (CT) and C-arm fluoroscopy are routinely used in clinical practice for intraoperative guidance. However, due to constraints regarding acquisition time and device configuration, intraoperative modalities have limited soft tissue image quality and reliable assessment of the cardiac anatomy typically requires contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a probabilistic sparse matching approach to fuse high-quality preoperative CT images and nongated, noncontrast intraoperative C-arm CT images by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the preoperative CT and mapped to the intraoperative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments on 95 clinical datasets demonstrate that our model-based fusion approach has an average execution time of 1.56 s, while the accuracy of 5.48 mm between the anchor anatomy in both images lies within expert user confidence intervals. In direct comparison with image-to-image registration based on an open-source state-of-the-art medical imaging library and a recently proposed quasi-global, knowledge-driven multi-modal fusion approach for thoracic-abdominal images, our model-based method exhibits superior performance in terms of registration accuracy and robustness with respect to both target anatomy and anchor anatomy alignment errors.

  14. Model-based estimation of breast percent density in raw and processed full-field digital mammography images from image-acquisition physics and patient-image characteristics

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Nathan, Diane L.; Conant, Emily F.; Kontos, Despina

    2012-03-01

    Breast percent density (PD%), as measured mammographically, is one of the strongest known risk factors for breast cancer. While the majority of studies to date have focused on PD% assessment from digitized film mammograms, digital mammography (DM) is becoming increasingly common, and allows for direct PD% assessment at the time of imaging. This work investigates the accuracy of a generalized linear model-based (GLM) estimation of PD% from raw and postprocessed digital mammograms, utilizing image acquisition physics, patient characteristics and gray-level intensity features of the specific image. The model is trained in a leave-one-woman-out fashion on a series of 81 cases for which bilateral, mediolateral-oblique DM images were available in both raw and post-processed format. Baseline continuous and categorical density estimates were provided by a trained breast-imaging radiologist. Regression analysis is performed and Pearson's correlation, r, and Cohen's kappa, κ, are computed. The GLM PD% estimation model performed well on both processed (r=0.89, p<0.001) and raw (r=0.75, p<0.001) images. Model agreement with radiologist assigned density categories was also high for processed (κ=0.79, p<0.001) and raw (κ=0.76, p<0.001) images. Model-based prediction of breast PD% could allow for a reproducible estimation of breast density, providing a rapid risk assessment tool for clinical practice.

  15. Identifying regions of interest in medical images using self-organizing maps.

    PubMed

    Teng, Wei-Guang; Chang, Ping-Lin

    2012-10-01

    Advances in data acquisition, processing and visualization techniques have had a tremendous impact on medical imaging in recent years. However, the interpretation of medical images is still almost always performed by radiologists. Developments in artificial intelligence and image processing have shown the increasingly great potential of computer-aided diagnosis (CAD). Nevertheless, it has remained challenging to develop a general approach to process various commonly used types of medical images (e.g., X-ray, MRI, and ultrasound images). To facilitate diagnosis, we recommend the use of image segmentation to discover regions of interest (ROI) using self-organizing maps (SOM). We devise a two-stage SOM approach that can be used to precisely identify the dominant colors of a medical image and then segment it into several small regions. In addition, by appropriately conducting the recursive merging steps to merge smaller regions into larger ones, radiologists can usually identify one or more ROIs within a medical image.

  16. Time-Domain Terahertz Computed Axial Tomography NDE System

    NASA Technical Reports Server (NTRS)

    Zimdars, David

    2012-01-01

    NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D slice data with better signal-to-noise using a COTS scanner rather than the gchirped h scanner. The system also reduced to practice a prototype for commercial CT systems for insulating materials where safety concerns cannot accommodate x-ray. A software script was written to automate the COTS software to collect and process TD-THz CT data.

  17. BPF-type region-of-interest reconstruction for parallel translational computed tomography.

    PubMed

    Wu, Weiwen; Yu, Hengyong; Wang, Shaoyu; Liu, Fenglin

    2017-01-01

    The objective of this study is to present and test a new ultra-low-cost linear scan based tomography architecture. Similar to linear tomosynthesis, the source and detector are translated in opposite directions and the data acquisition system targets on a region-of-interest (ROI) to acquire data for image reconstruction. This kind of tomographic architecture was named parallel translational computed tomography (PTCT). In previous studies, filtered backprojection (FBP)-type algorithms were developed to reconstruct images from PTCT. However, the reconstructed ROI images from truncated projections have severe truncation artefact. In order to overcome this limitation, we in this study proposed two backprojection filtering (BPF)-type algorithms named MP-BPF and MZ-BPF to reconstruct ROI images from truncated PTCT data. A weight function is constructed to deal with data redundancy for multi-linear translations modes. Extensive numerical simulations are performed to evaluate the proposed MP-BPF and MZ-BPF algorithms for PTCT in fan-beam geometry. Qualitative and quantitative results demonstrate that the proposed BPF-type algorithms cannot only more accurately reconstruct ROI images from truncated projections but also generate high-quality images for the entire image support in some circumstances.

  18. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer

    NASA Astrophysics Data System (ADS)

    Bredfeldt, Jeremy S.; Liu, Yuming; Pehlke, Carolyn A.; Conklin, Matthew W.; Szulczewski, Joseph M.; Inman, David R.; Keely, Patricia J.; Nowak, Robert D.; Mackie, Thomas R.; Eliceiri, Kevin W.

    2014-01-01

    Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.

  19. A feasibility study on laxative-free bowel preparation for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Liang, Zhengrong; Chen, Dongqing; Wax, Mark; Lakare, Sarang; Li, Lihong; Anderson, Joseph; Kaufman, Arie; Harrington, Donald

    2005-04-01

    Objective: To investigate the feasibility of laxative-free bowel preparation to relieve the patient stress in colon cleansing for virtual colonoscopy. Materials and Methods: Three different bowel-preparation protocols were investigated by 60 study cases from 35 healthy male volunteers. All the protocols utilize low-residue diet for two days and differ in diet for the third day - the day just prior to image acquisition in the fourth day morning. Protocol Diet-1 utilizes fluid or liquid diet in the third day, Diet-2 utilizes a food kit, and Diet-3 remains the low-residue diet. Oral contrast of barium sulfate (2.1%, 250 ml) was added respectively to the dinner in the second day and the three meals in the third day. Two doses of MD-Gastroview (60 ml) were ingested each in the evening of the third day and in the morning before image acquisition. Images were acquired by a single-slice detector spiral CT (computed tomography) scanner with 5 mm collimation, 1 mm reconstruction, 1.5-2.0:1.0 pitch, 100-150 mA, and 120 kVp after the colons were inflated by CO2. The contrasted colonic residue materials were electronically removed from the CT images by specialized computer-segmentation algorithms. Results: By assumptions that the healthy young volunteers have no polyp and the image resolution is approximately 4 mm, a successful electronic cleansing is defined as "no more than five false positives and no removal of a colon fold part greater than 4 mm" for each study case. The successful rate is 100% for protocol Diet-1, 77% for Diet-2 and 57% for Diet-3. Conclusion: A laxative-free bowel preparation is feasible for virtual colonoscopy.

  20. 3D ultrasound computer tomography: update from a clinical study

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.

    2016-04-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  1. Analytical reverse time migration: An innovation in imaging of infrastructures using ultrasonic shear waves.

    PubMed

    Asadollahi, Aziz; Khazanovich, Lev

    2018-04-11

    The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Thoracic wall trauma—misdiagnosed lesions on radiographs and usefulness of ultrasound, multidetector computed tomography and magnetic resonance imaging

    PubMed Central

    Facenda, Catherine; Vaz, Nuno; Castañeda, Edgar Augusto; del Amo, Montserrat; Garcia-Diez, Ana Isabel; Pomes, Jaime

    2017-01-01

    Blunt injuries to the chest wall are an important chapter on emergency room (ER) departments, being the third most common injuries in trauma patients which ominous complications could appear. This article describes different types of traumatic events affecting the chest wall, which maybe misdiagnosed with conventional X-ray. Special emphasis has been done in computed tomography (CT) and multidetector CT (MDCT) imaging. This technique is considered the “gold-standard” for those traumatic patients, due to its fast acquisition covering the whole area of interest in axial plane, reconstructing multiplanar (2D, 3D) volume-rendered images with a superb quality and angiographic CT capabilities for evaluating vascular damage. Complementary techniques such as ultrasonography (US) and magnetic resonance imaging (MRI) may improve the diagnostic accuracy due to its great capacity in visualising soft-tissue trauma (muscle-tendinous tears) and subtle fractures. All these imaging methods have an important role in quantifying the severity of chest wall trauma. The findings of this study have been exposed with cases of our archives in a didactic way. PMID:28932697

  3. Real time imaging of infrared scene data generated by the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) system

    NASA Astrophysics Data System (ADS)

    Baca, Michael J.

    1990-09-01

    A system to display images generated by the Naval Postgraduate School Infrared Search and Target Designation (a modified AN/SAR-8 Advanced Development Model) in near real time was developed using a 33 MHz NIC computer as the central controller. This computer was enhanced with a Data Translation DT2861 Frame Grabber for image processing and an interface board designed and constructed at NPS to provide synchronization between the IRSTD and Frame Grabber. Images are displayed in false color in a video raster format on a 512 by 480 pixel resolution monitor. Using FORTRAN, programs have been written to acquire, unscramble, expand and display a 3 deg sector of data. The time line for acquisition, processing and display has been analyzed and repetition periods of less than four seconds for successive screen displays have been achieved. This represents a marked improvement over previous methods necessitating slower Direct Memory Access transfers of data into the Frame Grabber. Recommendations are made for further improvements to enhance the speed and utility of images produced.

  4. The impact of breathing guidance and prospective gating during thoracic 4DCT imaging: an XCAT study utilizing lung cancer patient motion

    NASA Astrophysics Data System (ADS)

    Pollock, Sean; Kipritidis, John; Lee, Danny; Bernatowicz, Kinga; Keall, Paul

    2016-09-01

    Two interventions to overcome the deleterious impact irregular breathing has on thoracic-abdominal 4D computed tomography (4DCT) are (1) facilitating regular breathing using audiovisual biofeedback (AVB), and (2) prospective respiratory gating of the 4DCT scan based on the real-time respiratory motion. The purpose of this study was to compare the impact of AVB and gating on 4DCT imaging using the 4D eXtended cardiac torso (XCAT) phantom driven by patient breathing patterns. We obtained simultaneous measurements of chest and abdominal walls, thoracic diaphragm, and tumor motion from 6 lung cancer patients under two breathing conditions: (1) AVB, and (2) free breathing. The XCAT phantom was used to simulate 4DCT acquisitions in cine and respiratory gated modes. 4DCT image quality was quantified by artefact detection (NCCdiff), mean square error (MSE), and Dice similarity coefficient of lung and tumor volumes (DSClung, DSCtumor). 4DCT acquisition times and imaging dose were recorded. In cine mode, AVB improved NCCdiff, MSE, DSClung, and DSCtumor by 20% (p  =  0.008), 23% (p  <  0.001), 0.5% (p  <  0.001), and 4.0% (p  <  0.003), respectively. In respiratory gated mode, AVB improved NCCdiff, MSE, and DSClung by 29% (p  <  0.001), 34% (p  <  0.001), 0.4% (p  <  0.001), respectively. AVB increased the cine acquisitions by 15 s and reduced respiratory gated acquisitions by 31 s. AVB increased imaging dose in cine mode by 10%. This was the first study to quantify the impact of breathing guidance and respiratory gating on 4DCT imaging. With the exception of DSCtumor in respiratory gated mode, AVB significantly improved 4DCT image analysis metrics in both cine and respiratory gated modes over free breathing. The results demonstrate that AVB and respiratory-gating can be beneficial interventions to improve 4DCT for cancer radiation therapy, with the biggest gains achieved when these interventions are used simultaneously.

  5. Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol

    PubMed Central

    Chapman, Sarah E; Diener, Justin M; Sasser, Todd A; Correcher, Carlos; González, Antonio J; Avermaete, Tony Van; Leevy, W Matthew

    2012-01-01

    Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with 99mTc and 18F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies. PMID:23145357

  6. Quality controls for gamma cameras and PET cameras: development of a free open-source ImageJ program

    NASA Astrophysics Data System (ADS)

    Carlier, Thomas; Ferrer, Ludovic; Berruchon, Jean B.; Cuissard, Regis; Martineau, Adeline; Loonis, Pierre; Couturier, Olivier

    2005-04-01

    Acquisition data and treatments for quality controls of gamma cameras and Positron Emission Tomography (PET) cameras are commonly performed with dedicated program packages, which are running only on manufactured computers and differ from each other, depending on camera company and program versions. The aim of this work was to develop a free open-source program (written in JAVA language) to analyze data for quality control of gamma cameras and PET cameras. The program is based on the free application software ImageJ and can be easily loaded on any computer operating system (OS) and thus on any type of computer in every nuclear medicine department. Based on standard parameters of quality control, this program includes 1) for gamma camera: a rotation center control (extracted from the American Association of Physics in Medicine, AAPM, norms) and two uniformity controls (extracted from the Institute of Physics and Engineering in Medicine, IPEM, and National Electronic Manufacturers Association, NEMA, norms). 2) For PET systems, three quality controls recently defined by the French Medical Physicist Society (SFPM), i.e. spatial resolution and uniformity in a reconstructed slice and scatter fraction, are included. The determination of spatial resolution (thanks to the Point Spread Function, PSF, acquisition) allows to compute the Modulation Transfer Function (MTF) in both modalities of cameras. All the control functions are included in a tool box which is a free ImageJ plugin and could be soon downloaded from Internet. Besides, this program offers the possibility to save on HTML format the uniformity quality control results and a warning can be set to automatically inform users in case of abnormal results. The architecture of the program allows users to easily add any other specific quality control program. Finally, this toolkit is an easy and robust tool to perform quality control on gamma cameras and PET cameras based on standard computation parameters, is free, run on any type of computer and will soon be downloadable from the net (http://rsb.info.nih.gov/ij/plugins or http://nucleartoolkit.free.fr).

  7. Externally Calibrated Parallel Imaging for 3D Multispectral Imaging Near Metallic Implants Using Broadband Ultrashort Echo Time Imaging

    PubMed Central

    Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Reeder, Scott B.

    2017-01-01

    Purpose To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. Theory and Methods A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Results Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. Conclusion A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. PMID:27403613

  8. Three-Dimensional Computer Graphics Brain-Mapping Project.

    DTIC Science & Technology

    1987-03-15

    NEUROQUANT . This package was directed towards quantitative microneuroanatomic data acquisition and analysis. Using this interface, image frames captured...populations of brains. This would have been aprohibitive task if done manually with a densitometer and film, due to user error and bias. NEUROQUANT functioned...of cells were of interest. NEUROQUANT is presently being implemented with a more fully automatic method of localizing the cell bodies directly

  9. GPU accelerated Monte-Carlo simulation of SEM images for metrology

    NASA Astrophysics Data System (ADS)

    Verduin, T.; Lokhorst, S. R.; Hagen, C. W.

    2016-03-01

    In this work we address the computation times of numerical studies in dimensional metrology. In particular, full Monte-Carlo simulation programs for scanning electron microscopy (SEM) image acquisition are known to be notoriously slow. Our quest in reducing the computation time of SEM image simulation has led us to investigate the use of graphics processing units (GPUs) for metrology. We have succeeded in creating a full Monte-Carlo simulation program for SEM images, which runs entirely on a GPU. The physical scattering models of this GPU simulator are identical to a previous CPU-based simulator, which includes the dielectric function model for inelastic scattering and also refinements for low-voltage SEM applications. As a case study for the performance, we considered the simulated exposure of a complex feature: an isolated silicon line with rough sidewalls located on a at silicon substrate. The surface of the rough feature is decomposed into 408 012 triangles. We have used an exposure dose of 6 mC/cm2, which corresponds to 6 553 600 primary electrons on average (Poisson distributed). We repeat the simulation for various primary electron energies, 300 eV, 500 eV, 800 eV, 1 keV, 3 keV and 5 keV. At first we run the simulation on a GeForce GTX480 from NVIDIA. The very same simulation is duplicated on our CPU-based program, for which we have used an Intel Xeon X5650. Apart from statistics in the simulation, no difference is found between the CPU and GPU simulated results. The GTX480 generates the images (depending on the primary electron energy) 350 to 425 times faster than a single threaded Intel X5650 CPU. Although this is a tremendous speedup, we actually have not reached the maximum throughput because of the limited amount of available memory on the GTX480. Nevertheless, the speedup enables the fast acquisition of simulated SEM images for metrology. We now have the potential to investigate case studies in CD-SEM metrology, which otherwise would take unreasonable amounts of computation time.

  10. Quantitative evaluation of phase processing approaches in susceptibility weighted imaging

    NASA Astrophysics Data System (ADS)

    Li, Ningzhi; Wang, Wen-Tung; Sati, Pascal; Pham, Dzung L.; Butman, John A.

    2012-03-01

    Susceptibility weighted imaging (SWI) takes advantage of the local variation in susceptibility between different tissues to enable highly detailed visualization of the cerebral venous system and sensitive detection of intracranial hemorrhages. Thus, it has been increasingly used in magnetic resonance imaging studies of traumatic brain injury as well as other intracranial pathologies. In SWI, magnitude information is combined with phase information to enhance the susceptibility induced image contrast. Because of global susceptibility variations across the image, the rate of phase accumulation varies widely across the image resulting in phase wrapping artifacts that interfere with the local assessment of phase variation. Homodyne filtering is a common approach to eliminate this global phase variation. However, filter size requires careful selection in order to preserve image contrast and avoid errors resulting from residual phase wraps. An alternative approach is to apply phase unwrapping prior to high pass filtering. A suitable phase unwrapping algorithm guarantees no residual phase wraps but additional computational steps are required. In this work, we quantitatively evaluate these two phase processing approaches on both simulated and real data using different filters and cutoff frequencies. Our analysis leads to an improved understanding of the relationship between phase wraps, susceptibility effects, and acquisition parameters. Although homodyne filtering approaches are faster and more straightforward, phase unwrapping approaches perform more accurately in a wider variety of acquisition scenarios.

  11. Next Generation Image-Based Phenotyping of Root System Architecture

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Shaw, N. M.; Cheng, H.; Larson, B. G.; Craft, E. J.; Shaff, J. E.; Schneider, D. J.; Piñeros, M. A.; Kochian, L. V.

    2016-12-01

    The development of the Plant Root Imaging and Data Acquisition (PRIDA) hardware/software system enables researchers to collect digital images, along with all the relevant experimental details, of a range of hydroponically grown agricultural crop roots for 2D and 3D trait analysis. Previous efforts of image-based root phenotyping focused on young cereals, such as rice; however, there is a growing need to measure both older and larger root systems, such as those of maize and sorghum, to improve our understanding of the underlying genetics that control favorable rooting traits for plant breeding programs to combat the agricultural risks presented by climate change. Therefore, a larger imaging apparatus has been prototyped for capturing 3D root architecture with an adaptive control system and innovative plant root growth media that retains three-dimensional root architectural features. New publicly available multi-platform software has been released with considerations for both high throughput (e.g., 3D imaging of a single root system in under ten minutes) and high portability (e.g., support for the Raspberry Pi computer). The software features unified data collection, management, exploration and preservation for continued trait and genetics analysis of root system architecture. The new system makes data acquisition efficient and includes features that address the needs of researchers and technicians, such as reduced imaging time, semi-automated camera calibration with uncertainty characterization, and safe storage of the critical experimental data.

  12. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.

    PubMed

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2014-12-01

    Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The authors also demonstrate that the reconstructions from super-sampled data sets using a fine system matrix yield improved image quality compared to the reconstructions using a coarse system matrix. Super-sampling reconstructions with different count levels showed that the more spatial-resolution improvement can be obtained with higher count at a larger iteration number. The authors developed a super-sampling reconstruction framework that can reconstruct super-resolution images using the super-sampling data sets simultaneously with known acquisition motion. The super-sampling PET acquisition using the proposed algorithms provides an effective and economic way to improve image quality for PET imaging, which has an important implication in preclinical and clinical region-of-interest PET imaging applications.

  13. Graphical user interface for image acquisition and processing

    DOEpatents

    Goldberg, Kenneth A.

    2002-01-01

    An event-driven GUI-based image acquisition interface for the IDL programming environment designed for CCD camera control and image acquisition directly into the IDL environment where image manipulation and data analysis can be performed, and a toolbox of real-time analysis applications. Running the image acquisition hardware directly from IDL removes the necessity of first saving images in one program and then importing the data into IDL for analysis in a second step. Bringing the data directly into IDL creates an opportunity for the implementation of IDL image processing and display functions in real-time. program allows control over the available charge coupled device (CCD) detector parameters, data acquisition, file saving and loading, and image manipulation and processing, all from within IDL. The program is built using IDL's widget libraries to control the on-screen display and user interface.

  14. Optomechanical System Development of the AWARE Gigapixel Scale Camera

    NASA Astrophysics Data System (ADS)

    Son, Hui S.

    Electronic focal plane arrays (FPA) such as CMOS and CCD sensors have dramatically improved to the point that digital cameras have essentially phased out film (except in very niche applications such as hobby photography and cinema). However, the traditional method of mating a single lens assembly to a single detector plane, as required for film cameras, is still the dominant design used in cameras today. The use of electronic sensors and their ability to capture digital signals that can be processed and manipulated post acquisition offers much more freedom of design at system levels and opens up many interesting possibilities for the next generation of computational imaging systems. The AWARE gigapixel scale camera is one such computational imaging system. By utilizing a multiscale optical design, in which a large aperture objective lens is mated with an array of smaller, well corrected relay lenses, we are able to build an optically simple system that is capable of capturing gigapixel scale images via post acquisition stitching of the individual pictures from the array. Properly shaping the array of digital cameras allows us to form an effectively continuous focal surface using off the shelf (OTS) flat sensor technology. This dissertation details developments and physical implementations of the AWARE system architecture. It illustrates the optomechanical design principles and system integration strategies we have developed through the course of the project by summarizing the results of the two design phases for AWARE: AWARE-2 and AWARE-10. These systems represent significant advancements in the pursuit of scalable, commercially viable snapshot gigapixel imaging systems and should serve as a foundation for future development of such systems.

  15. PET/CT detectability and classification of simulated pulmonary lesions using an SUV correction scheme

    NASA Astrophysics Data System (ADS)

    Morrow, Andrew N.; Matthews, Kenneth L., II; Bujenovic, Steven

    2008-03-01

    Positron emission tomography (PET) and computed tomography (CT) together are a powerful diagnostic tool, but imperfect image quality allows false positive and false negative diagnoses to be made by any observer despite experience and training. This work investigates PET acquisition mode, reconstruction method and a standard uptake value (SUV) correction scheme on the classification of lesions as benign or malignant in PET/CT images, in an anthropomorphic phantom. The scheme accounts for partial volume effect (PVE) and PET resolution. The observer draws a region of interest (ROI) around the lesion using the CT dataset. A simulated homogenous PET lesion of the same shape as the drawn ROI is blurred with the point spread function (PSF) of the PET scanner to estimate the PVE, providing a scaling factor to produce a corrected SUV. Computer simulations showed that the accuracy of the corrected PET values depends on variations in the CT-drawn boundary and the position of the lesion with respect to the PET image matrix, especially for smaller lesions. Correction accuracy was affected slightly by mismatch of the simulation PSF and the actual scanner PSF. The receiver operating characteristic (ROC) study resulted in several observations. Using observer drawn ROIs, scaled tumor-background ratios (TBRs) more accurately represented actual TBRs than unscaled TBRs. For the PET images, 3D OSEM outperformed 2D OSEM, 3D OSEM outperformed 3D FBP, and 2D OSEM outperformed 2D FBP. The correction scheme significantly increased sensitivity and slightly increased accuracy for all acquisition and reconstruction modes at the cost of a small decrease in specificity.

  16. Multimodal Registration of White Matter Brain Data via Optimal Mass Transport.

    PubMed

    Rehman, Tauseefur; Haber, Eldad; Pohl, Kilian M; Haker, Steven; Halle, Mike; Talos, Florin; Wald, Lawrence L; Kikinis, Ron; Tannenbaum, Allen

    2008-09-01

    The elastic registration of medical scans from different acquisition sequences is becoming an important topic for many research labs that would like to continue the post-processing of medical scans acquired via the new generation of high-field-strength scanners. In this note, we present a parameter-free registration algorithm that is well suited for this scenario as it requires no tuning to specific acquisition sequences. The algorithm encompasses a new numerical scheme for computing elastic registration maps based on the minimizing flow approach to optimal mass transport. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A . Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. We apply the algorithm to register the white matter folds of two different scans and use the results to parcellate the cortex of the target image. To the best of our knowledge, this is the first time that the optimal mass transport function has been applied to register large 3D multimodal data sets.

  17. Multimodal Registration of White Matter Brain Data via Optimal Mass Transport

    PubMed Central

    Rehman, Tauseefur; Haber, Eldad; Pohl, Kilian M.; Haker, Steven; Halle, Mike; Talos, Florin; Wald, Lawrence L.; Kikinis, Ron; Tannenbaum, Allen

    2017-01-01

    The elastic registration of medical scans from different acquisition sequences is becoming an important topic for many research labs that would like to continue the post-processing of medical scans acquired via the new generation of high-field-strength scanners. In this note, we present a parameter-free registration algorithm that is well suited for this scenario as it requires no tuning to specific acquisition sequences. The algorithm encompasses a new numerical scheme for computing elastic registration maps based on the minimizing flow approach to optimal mass transport. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A. Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. We apply the algorithm to register the white matter folds of two different scans and use the results to parcellate the cortex of the target image. To the best of our knowledge, this is the first time that the optimal mass transport function has been applied to register large 3D multimodal data sets. PMID:28626844

  18. Three-dimensional printing in cardiology: Current applications and future challenges.

    PubMed

    Luo, Hongxing; Meyer-Szary, Jarosław; Wang, Zhongmin; Sabiniewicz, Robert; Liu, Yuhao

    2017-01-01

    Three-dimensional (3D) printing has attracted a huge interest in recent years. Broadly speaking, it refers to the technology which converts a predesigned virtual model to a touchable object. In clinical medicine, it usually converts a series of two-dimensional medical images acquired through computed tomography, magnetic resonance imaging or 3D echocardiography into a physical model. Medical 3D printing consists of three main steps: image acquisition, virtual reconstruction and 3D manufacturing. It is a promising tool for preoperative evaluation, medical device design, hemodynamic simulation and medical education, it is also likely to reduce operative risk and increase operative success. However, the most relevant studies are case reports or series which are underpowered in testing its actual effect on patient outcomes. The decision of making a 3D cardiac model may seem arbitrary since it is mostly based on a cardiologist's perceived difficulty in performing an interventional procedure. A uniform consensus is urgently necessary to standardize the key steps of 3D printing from imaging acquisition to final production. In the future, more clinical trials of rigorous design are possible to further validate the effect of 3D printing on the treatment of cardiovascular diseases. (Cardiol J 2017; 24, 4: 436-444).

  19. Face recognition: database acquisition, hybrid algorithms, and human studies

    NASA Astrophysics Data System (ADS)

    Gutta, Srinivas; Huang, Jeffrey R.; Singh, Dig; Wechsler, Harry

    1997-02-01

    One of the most important technologies absent in traditional and emerging frontiers of computing is the management of visual information. Faces are accessible `windows' into the mechanisms that govern our emotional and social lives. The corresponding face recognition tasks considered herein include: (1) Surveillance, (2) CBIR, and (3) CBIR subject to correct ID (`match') displaying specific facial landmarks such as wearing glasses. We developed robust matching (`classification') and retrieval schemes based on hybrid classifiers and showed their feasibility using the FERET database. The hybrid classifier architecture consist of an ensemble of connectionist networks--radial basis functions-- and decision trees. The specific characteristics of our hybrid architecture include (a) query by consensus as provided by ensembles of networks for coping with the inherent variability of the image formation and data acquisition process, and (b) flexible and adaptive thresholds as opposed to ad hoc and hard thresholds. Experimental results, proving the feasibility of our approach, yield (i) 96% accuracy, using cross validation (CV), for surveillance on a data base consisting of 904 images (ii) 97% accuracy for CBIR tasks, on a database of 1084 images, and (iii) 93% accuracy, using CV, for CBIR subject to correct ID match tasks on a data base of 200 images.

  20. [Advances in automatic detection technology for images of thin blood film of malaria parasite].

    PubMed

    Juan-Sheng, Zhang; Di-Qiang, Zhang; Wei, Wang; Xiao-Guang, Wei; Zeng-Guo, Wang

    2017-05-05

    This paper reviews the computer vision and image analysis studies aiming at automated diagnosis or screening of malaria in microscope images of thin blood film smears. On the basis of introducing the background and significance of automatic detection technology, the existing detection technologies are summarized and divided into several steps, including image acquisition, pre-processing, morphological analysis, segmentation, count, and pattern classification components. Then, the principles and implementation methods of each step are given in detail. In addition, the promotion and application in automatic detection technology of thick blood film smears are put forwarded as questions worthy of study, and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  1. Dual energy computed tomography for the head.

    PubMed

    Naruto, Norihito; Itoh, Toshihide; Noguchi, Kyo

    2018-02-01

    Dual energy CT (DECT) is a promising technology that provides better diagnostic accuracy in several brain diseases. DECT can generate various types of CT images from a single acquisition data set at high kV and low kV based on material decomposition algorithms. The two-material decomposition algorithm can separate bone/calcification from iodine accurately. The three-material decomposition algorithm can generate a virtual non-contrast image, which helps to identify conditions such as brain hemorrhage. A virtual monochromatic image has the potential to eliminate metal artifacts by reducing beam-hardening effects. DECT also enables exploration of advanced imaging to make diagnosis easier. One such novel application of DECT is the X-Map, which helps to visualize ischemic stroke in the brain without using iodine contrast medium.

  2. Embedded processor extensions for image processing

    NASA Astrophysics Data System (ADS)

    Thevenin, Mathieu; Paindavoine, Michel; Letellier, Laurent; Heyrman, Barthélémy

    2008-04-01

    The advent of camera phones marks a new phase in embedded camera sales. By late 2009, the total number of camera phones will exceed that of both conventional and digital cameras shipped since the invention of photography. Use in mobile phones of applications like visiophony, matrix code readers and biometrics requires a high degree of component flexibility that image processors (IPs) have not, to date, been able to provide. For all these reasons, programmable processor solutions have become essential. This paper presents several techniques geared to speeding up image processors. It demonstrates that a gain of twice is possible for the complete image acquisition chain and the enhancement pipeline downstream of the video sensor. Such results confirm the potential of these computing systems for supporting future applications.

  3. Precision of computer vision systems for real-time inspection of contact wire wear in railways

    NASA Astrophysics Data System (ADS)

    Borromeo, Susana; Aparicio, Jose L.

    2005-02-01

    This paper is oriented to study techniques to improve the precision of the systems for wear measurement of contact wire in the railways. The problematic of wear measurement characterized by some important determining factors like rate of sampling and auscultation conditions is studied in detail. The different solutions to resolve the problematic successfully are examined. Issues related to image acquisition and image processing are discussed. Type of illumination and sensors employed, image processing hardware and image processing algorithms are some topics studied. Once analyzed each one factor which have influence on the precision of the measurement system, there are proposed an assembly of solutions that allow to optimize the conditions under which the inspection can be carried out.

  4. Image-Based Computational Fluid Dynamics in Blood Vessel Models: Toward Developing a Prognostic Tool to Assess Cardiovascular Function Changes in Prolonged Space Flights

    NASA Technical Reports Server (NTRS)

    Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.

    2004-01-01

    One of NASA's objectives is to be able to perform a complete, pre-flight, evaluation of cardiovascular changes in astronauts scheduled for prolonged space missions. Computational fluid dynamics (CFD) has shown promise as a method for estimating cardiovascular function during reduced gravity conditions. For this purpose, MRI can provide geometrical information, to reconstruct vessel geometries, and measure all spatial velocity components, providing location specific boundary conditions. The objective of this study was to investigate the reliability of MRI-based model reconstruction and measured boundary conditions for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T Siemens MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction (slice thickness 3 and 5 mm; pixel size 1x1 and 0.5x0.5 square millimeters). Velocity acquisitions provided measured inlet boundary conditions and localized three-directional steady-flow velocity data (0.7-3.0 L/min). The vessel walls were isolated using NIH provided software (ImageJ) and lofted to form the geometric surface. Constructed and idealized geometries were imported into a commercial CFD code for meshing and simulation. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with less than 10% differences in the local velocity values. CFD results on models reconstructed from different MRI resolution settings showed insignificant differences (less than 5%). This study illustrated, quantitatively, that reliable CFD simulations can be performed with MRI reconstructed models and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system alteration during space travel is feasible.

  5. ENTROPY VS. ENERGY WAVEFORM PROCESSING: A COMPARISON ON THE HEAT EQUATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael S.; McCarthy, John; Bruillard, Paul J.

    2015-05-25

    Virtually all modern imaging devices function by collecting either electromagnetic or acoustic backscattered waves and using the energy carried by these waves to determine pixel values that build up what is basically an ”energy” picture. However, waves also carry ”informa- tion” that also may be used to compute the pixel values in an image. We have employed several measures of information, all of which are based on different forms of entropy. Numerous published studies have demonstrated the advantages of entropy, or “information imaging”, over conventional methods for materials characterization and medical imaging. Similar results also have been obtained with microwaves.more » The most sensitive information measure appears to be the joint entropy of the backscattered wave and a reference signal. A typical study is comprised of repeated acquisition of backscattered waves from a specimen that is changing slowing with acquisition time or location. The sensitivity of repeated experimental observations of such a slowly changing quantity may be defined as the mean variation (i.e., observed change) divided by mean variance (i.e., observed noise). We compute the sensitivity for joint entropy and signal energy measurements assuming that noise is Gaussian and using Wiener integration to compute the required mean values and variances. These can be written as solutions to the Heat equation, which permits estimation of their magnitudes. There always exists a reference such that joint entropy has larger variation and smaller variance than the corresponding quantities for signal energy, matching observations of several studies. Moreover, a general prescription for finding an “optimal” reference for the joint entropy emerges, which also has been validated in several studies.« less

  6. Heterogeneous Optimization Framework: Reproducible Preprocessing of Multi-Spectral Clinical MRI for Neuro-Oncology Imaging Research.

    PubMed

    Milchenko, Mikhail; Snyder, Abraham Z; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L; Fouke, Sarah Jost; Marcus, Daniel S

    2016-07-01

    Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.

  7. Volumetric applications for spiral CT in the thorax

    NASA Astrophysics Data System (ADS)

    Rubin, Geoffrey D.; Napel, Sandy; Leung, Ann N.

    1994-05-01

    Spiral computed tomography (CT) is a new technique for rapidly acquiring volumetric data within the body. By combining a continuous gantry rotation and table feed, it is possible to image the entire thorax within a single breath-hold. This eliminates the ventilatory misregistration seen with conventional thoracic CT, which can result in small pulmonary lesions being undetected. An additional advantage of a continuous data set is that axial sections can be reconstructed at arbitrary intervals along the spiral path, resulting in the generation of overlapping sections which diminish partial volume effects resulting from lesions that straddle adjacent sections. The rapid acquisition of spiral CT enables up to a 50% reduction in the total iodinated contrast dose required for routine thoracic CT scanning. This can be very important for imaging patients with cardiac and renal diseases and could reduce the cost of thoracic CT scanning. Alternatively, by combining a high flow peripheral intravenous iodinated contrast injection with a spiral CT acquisition, it is possible to obtain images of the vasculature, which demonstrate pulmonary arterial thrombi, aortic aneurysms and dissections, and congenital vascular anomalies in detail previously unattainable without direct arterial access.

  8. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT.

    PubMed

    Isola, A A; Schmitt, H; van Stevendaal, U; Begemann, P G; Coulon, P; Boussel, L; Grass, M

    2011-09-21

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  9. Acquiring a 2D rolled equivalent fingerprint image from a non-contact 3D finger scan

    NASA Astrophysics Data System (ADS)

    Fatehpuria, Abhishika; Lau, Daniel L.; Hassebrook, Laurence G.

    2006-04-01

    The use of fingerprints as a biometric is both the oldest mode of computer aided personal identification and the most relied-upon technology in use today. But current fingerprint scanning systems have some challenging and peculiar difficulties. Often skin conditions and imperfect acquisition circumstances cause the captured fingerprint image to be far from ideal. Also some of the acquisition techniques can be slow and cumbersome to use and may not provide the complete information required for reliable feature extraction and fingerprint matching. Most of the difficulties arise due to the contact of the fingerprint surface with the sensor platen. To attain a fast-capture, non-contact, fingerprint scanning technology, we are developing a scanning system that employs structured light illumination as a means for acquiring a 3-D scan of the finger with sufficiently high resolution to record ridge-level details. In this paper, we describe the postprocessing steps used for converting the acquired 3-D scan of the subject's finger into a 2-D rolled equivalent image.

  10. Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico

    NASA Astrophysics Data System (ADS)

    Chavez-Perez, S.; Vargas-Meleza, L.

    2007-05-01

    We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.

  11. Real-time Interpolation for True 3-Dimensional Ultrasound Image Volumes

    PubMed Central

    Ji, Songbai; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2013-01-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1–2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm3 voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery. PMID:21266563

  12. Real-time interpolation for true 3-dimensional ultrasound image volumes.

    PubMed

    Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D

    2011-02-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.

  13. Validation of early image acquisitions following Tc-99 m sestamibi injection using a semiconductors camera of cadmium-zinc-telluride.

    PubMed

    Meyer, Celine; Weinmann, Pierre

    2017-08-01

    Cadmium-zinc-telluride (CZT) cameras allow to decrease significantly the acquisition time of myocardial perfusion imaging (MPI), but the duration of the examination is still long. Therefore, this study was performed to test the feasibility of early imaging following injection of Tc-99 m sestamibi using a CZT camera. Seventy patients underwent both an early and a delayed image acquisition after exercise stress test (n = 30), dipyridamole stress test (n = 20), and at rest (n = 20). After injection of Tc-99 m sestamibi, the early image acquisition started on average within 5 minutes for the exercise and rest groups, and 3 minutes 30 seconds for the dipyridamole group. Two independent observers evaluated image quality and extracardiac uptake on four-point scales. The difference between early and later images for each patient was scored on a five-point scale. The image quality and extracardiac uptake of early and delayed image acquisitions were not different for the three groups (P > .05). There was no significant difference between early and delayed image acquisitions in the exercise, dipyridamole, and rest groups, respectively, in 63%, 40%, and 80% of cases. In the exercise group and rest group, a defect was only present in early MPI, respectively, in 13% and 20% of cases. A defect was only present in delayed images in 10% of cases in the exercise group and in 45% of cases in the dipyridamole group. There was no difference between early and later image acquisitions in terms of quality. This protocol reduces the length of the procedure for the patient. Beginning with early image acquisitions may help to overcome the artifacts that are observed at the delayed time.

  14. Actively triggered 4d cone-beam CT acquisition.

    PubMed

    Fast, Martin F; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-01

    4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this "after-the-fact" binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor. The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective "Faraday" shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories. With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145 projections were acquired per respiratory phase resulting in a dose of ∼1.7-2.6 mGy per respiratory phase. Further dose savings and decreases in the scanning time are possible by acquiring only a subset of all respiratory phases, for example, peak-exhale and peak-inhale only scans. This study is the first experimental demonstration of a new 4d CBCT acquisition paradigm in which imaging dose is efficiently utilized by actively triggering only those projections that are desired for the reconstruction process.

  15. Comparison of 0.625-mm source computed tomographic images versus 5-mm thick reconstructed images in the evaluation for renal calculi in at-risk patients.

    PubMed

    Berkenblit, Robert; Hoenig, David; Lerer, Daniel; Moses, Melanie; Minsky, Lloyd

    2013-02-01

    CT has become a well-established modality in the evaluation of urinary calculi. The advent of multidetector CT (MDCT) scanners and submillimeter thick slice acquisitions has yielded CT images with even greater resolution. MDCT scanners allow for source data slice acquisition with submillimeter slice thickness. These source images can then be reconstructed to thicker slices for more convenient interpretation of the CT scan. Previous authors have looked at the effect of slice thickness on detection of urinary calculi. We investigated whether the thin slice source images yielded detection of additional stones and the potential significance of detecting these additional stones. Ninety-five consecutive patients who were referred to our outpatient imaging center for CT, with a clinical history placing them at risk for urinary calculi, were included in the study. In 49 (52%) of the 95 patients, more calculi were visualized using the 0.625-mm thick images than with the 5-mm thick images. In 34 (69%) of these 49 patients, the additional findings were thought to be "clinically significant," while in the remaining 15 (31%) patients, the additional findings were not thought to be clinically significant. In 46 (48%) of the 95 patients, there were no additional urinary calculi identified on the 0.625-mm thick images compared with that observed on 5-mm thick images. The results from this study encourage reviewing the thin slice source images of MDCTs in patients at risk for urinary calculi, because important clinical decisions may hinge on the additional findings made on these images.

  16. Prompt gamma ray imaging for verification of proton boron fusion therapy: A Monte Carlo study.

    PubMed

    Shin, Han-Back; Yoon, Do-Kun; Jung, Joo-Young; Kim, Moo-Sub; Suh, Tae Suk

    2016-10-01

    The purpose of this study was to verify acquisition feasibility of a single photon emission computed tomography image using prompt gamma rays for proton boron fusion therapy (PBFT) and to confirm an enhanced therapeutic effect of PBFT by comparison with conventional proton therapy without use of boron. Monte Carlo simulation was performed to acquire reconstructed image during PBFT. We acquired percentage depth dose (PDD) of the proton beams in a water phantom, energy spectrum of the prompt gamma rays, and tomographic images, including the boron uptake region (BUR; target). The prompt gamma ray image was reconstructed using maximum likelihood expectation maximisation (MLEM) with 64 projection raw data. To verify the reconstructed image, both an image profile and contrast analysis according to the iteration number were conducted. In addition, the physical distance between two BURs in the region of interest of each BUR was measured. The PDD of the proton beam from the water phantom including the BURs shows more efficient than that of conventional proton therapy on tumour region. A 719keV prompt gamma ray peak was clearly observed in the prompt gamma ray energy spectrum. The prompt gamma ray image was reconstructed successfully using 64 projections. Different image profiles including two BURs were acquired from the reconstructed image according to the iteration number. We confirmed successful acquisition of a prompt gamma ray image during PBFT. In addition, the quantitative image analysis results showed relatively good performance for further study. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Computer image analysis in obtaining characteristics of images: greenhouse tomatoes in the process of generating learning sets of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Przybył, J.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.

    2014-04-01

    The aim of the project was to make the software which on the basis on image of greenhouse tomato allows for the extraction of its characteristics. Data gathered during the image analysis and processing were used to build learning sets of artificial neural networks. Program enables to process pictures in jpeg format, acquisition of statistical information of the picture and export them to an external file. Produced software is intended to batch analyze collected research material and obtained information saved as a csv file. Program allows for analysis of 33 independent parameters implicitly to describe tested image. The application is dedicated to processing and image analysis of greenhouse tomatoes. The program can be used for analysis of other fruits and vegetables of a spherical shape.

  18. An enhanced approach for biomedical image restoration using image fusion techniques

    NASA Astrophysics Data System (ADS)

    Karam, Ghada Sabah; Abbas, Fatma Ismail; Abood, Ziad M.; Kadhim, Kadhim K.; Karam, Nada S.

    2018-05-01

    Biomedical image is generally noisy and little blur due to the physical mechanisms of the acquisition process, so one of the common degradations in biomedical image is their noise and poor contrast. The idea of biomedical image enhancement is to improve the quality of the image for early diagnosis. In this paper we are using Wavelet Transformation to remove the Gaussian noise from biomedical images: Positron Emission Tomography (PET) image and Radiography (Radio) image, in different color spaces (RGB, HSV, YCbCr), and we perform the fusion of the denoised images resulting from the above denoising techniques using add image method. Then some quantive performance metrics such as signal -to -noise ratio (SNR), peak signal-to-noise ratio (PSNR), and Mean Square Error (MSE), etc. are computed. Since this statistical measurement helps in the assessment of fidelity and image quality. The results showed that our approach can be applied of Image types of color spaces for biomedical images.

  19. Acquiring 4D Thoracic CT Scans Using Ciné CT Acquisition

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    One method for acquiring 4D thoracic CT scans is to use ciné acquisition. Ciné acquisition is conducted by rotating the gantry and acquiring x-ray projections while keeping the couch stationary. After a complete rotation, a single set of CT slices, the number corresponding to the number of CT detector rows, is produced. The rotation period is typically sub second so each image set corresponds to a single point in time. The ciné image acquisition is repeated for at least one breathing cycle to acquire images throughout the breathing cycle. Once the images are acquired at a single couch position, the couch is moved to the abutting position and the acquisition is repeated. Post-processing of the images sets typically resorts the sets into breathing phases, stacking images from a specific phase to produce a thoracic CT scan at that phase. Benefits of the ciné acquisition protocol include, the ability to precisely identify the phase with respect to the acquired image, the ability to resort images after reconstruction, and the ability to acquire images over arbitrarily long times and for arbitrarily many images (within dose constraints).

  20. Practical considerations for obtaining high quality quantitative computed tomography data of the skeletal system.

    PubMed

    Troy, Karen L; Edwards, W Brent

    2018-05-01

    Quantitative CT (QCT) analysis involves the calculation of specific parameters such as bone volume and density from CT image data, and can be a powerful tool for understanding bone quality and quantity. However, without careful attention to detail during all steps of the acquisition and analysis process, data can be of poor- to unusable-quality. Good quality QCT for research requires meticulous attention to detail and standardization of all aspects of data collection and analysis to a degree that is uncommon in a clinical setting. Here, we review the literature to summarize practical and technical considerations for obtaining high quality QCT data, and provide examples of how each recommendation affects calculated variables. We also provide an overview of the QCT analysis technique to illustrate additional opportunities to improve data reproducibility and reliability. Key recommendations include: standardizing the scanner and data acquisition settings, minimizing image artifacts, selecting an appropriate reconstruction algorithm, and maximizing repeatability and objectivity during QCT analysis. The goal of the recommendations is to reduce potential sources of error throughout the analysis, from scan acquisition to the interpretation of results. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Imaging industry expectations for compressed sensing in MRI

    NASA Astrophysics Data System (ADS)

    King, Kevin F.; Kanwischer, Adriana; Peters, Rob

    2015-09-01

    Compressed sensing requires compressible data, incoherent acquisition and a nonlinear reconstruction algorithm to force creation of a compressible image consistent with the acquired data. MRI images are compressible using various transforms (commonly total variation or wavelets). Incoherent acquisition of MRI data by appropriate selection of pseudo-random or non-Cartesian locations in k-space is straightforward. Increasingly, commercial scanners are sold with enough computing power to enable iterative reconstruction in reasonable times. Therefore integration of compressed sensing into commercial MRI products and clinical practice is beginning. MRI frequently requires the tradeoff of spatial resolution, temporal resolution and volume of spatial coverage to obtain reasonable scan times. Compressed sensing improves scan efficiency and reduces the need for this tradeoff. Benefits to the user will include shorter scans, greater patient comfort, better image quality, more contrast types per patient slot, the enabling of previously impractical applications, and higher throughput. Challenges to vendors include deciding which applications to prioritize, guaranteeing diagnostic image quality, maintaining acceptable usability and workflow, and acquisition and reconstruction algorithm details. Application choice depends on which customer needs the vendor wants to address. The changing healthcare environment is putting cost and productivity pressure on healthcare providers. The improved scan efficiency of compressed sensing can help alleviate some of this pressure. Image quality is strongly influenced by image compressibility and acceleration factor, which must be appropriately limited. Usability and workflow concerns include reconstruction time and user interface friendliness and response. Reconstruction times are limited to about one minute for acceptable workflow. The user interface should be designed to optimize workflow and minimize additional customer training. Algorithm concerns include the decision of which algorithms to implement as well as the problem of optimal setting of adjustable parameters. It will take imaging vendors several years to work through these challenges and provide solutions for a wide range of applications.

  2. 48 CFR 27.405-3 - Commercial computer software.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... software. 27.405-3 Section 27.405-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Commercial computer software. (a) When contracting other than from GSA's Multiple Award Schedule contracts for the acquisition of commercial computer software, no specific contract clause prescribed in this...

  3. 48 CFR 27.405-3 - Commercial computer software.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... software. 27.405-3 Section 27.405-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Commercial computer software. (a) When contracting other than from GSA's Multiple Award Schedule contracts for the acquisition of commercial computer software, no specific contract clause prescribed in this...

  4. 48 CFR 27.405-3 - Commercial computer software.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... software. 27.405-3 Section 27.405-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Commercial computer software. (a) When contracting other than from GSA's Multiple Award Schedule contracts for the acquisition of commercial computer software, no specific contract clause prescribed in this...

  5. 48 CFR 27.405-3 - Commercial computer software.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... software. 27.405-3 Section 27.405-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Commercial computer software. (a) When contracting other than from GSA's Multiple Award Schedule contracts for the acquisition of commercial computer software, no specific contract clause prescribed in this...

  6. 48 CFR 27.405-3 - Commercial computer software.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... software. 27.405-3 Section 27.405-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Commercial computer software. (a) When contracting other than from GSA's Multiple Award Schedule contracts for the acquisition of commercial computer software, no specific contract clause prescribed in this...

  7. Externally calibrated parallel imaging for 3D multispectral imaging near metallic implants using broadband ultrashort echo time imaging.

    PubMed

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Reeder, Scott B

    2017-06-01

    To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. Magn Reson Med 77:2303-2309, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Extension of the International Atomic Energy Agency phantom study in image quantification: results of multicentre evaluation in Croatia.

    PubMed

    Grošev, Darko; Gregov, Marin; Wolfl, Miroslava Radić; Krstonošić, Branislav; Debeljuh, Dea Dundara

    2018-06-07

    To make quantitative methods of nuclear medicine more available, four centres in Croatia participated in the national intercomparison study, following the materials and methods used in the previous international study organized by the International Atomic Energy Agency (IAEA). The study task was to calculate the activities of four Ba sources (T1/2=10.54 years; Eγ=356 keV) using planar and single-photon emission computed tomography (SPECT) or SPECT/CT acquisitions of the sources inside a water-filled cylindrical phantom. The sources were previously calibrated by the US National Institute of Standards and Technology. Triple-energy window was utilized for scatter correction. Planar studies were corrected for attenuation correction (AC) using the conjugate-view method. For SPECT/CT studies, data from X-ray computed tomography were used for attenuation correction (CT-AC), whereas for SPECT-only acquisition, the Chang-AC method was applied. Using the lessons learned from the IAEA study, data were acquired according to the harmonized data acquisition protocol, and the acquired images were then processed using centralized data analysis. The accuracy of the activity quantification was evaluated as the ratio R between the calculated activity and the value obtained from National Institute of Standards and Technology. For planar studies, R=1.06±0.08; for SPECT/CT study using CT-AC, R=1.00±0.08; and for Chang-AC, R=0.89±0.12. The results are in accordance with those obtained within the larger IAEA study and confirm that SPECT/CT method is the most appropriate for accurate activity quantification.

  9. Increased Speed and Image Quality for Pelvic Single-Shot Fast Spin-Echo Imaging with Variable Refocusing Flip Angles and Full-Fourier Acquisition

    PubMed Central

    Litwiller, Daniel V.; Saranathan, Manojkumar; Vasanawala, Shreyas S.

    2017-01-01

    Purpose To assess image quality and speed improvements for single-shot fast spin-echo (SSFSE) with variable refocusing flip angles and full-Fourier acquisition (vrfSSFSE) pelvic imaging via a prospective trial performed in the context of uterine leiomyoma evaluation. Materials and Methods Institutional review board approval and informed consent were obtained. vrfSSFSE and conventional SSFSE sagittal and coronal oblique acquisitions were performed in 54 consecutive female patients referred for 3-T magnetic resonance (MR) evaluation of known or suspected uterine leiomyomas. Two radiologists who were blinded to the image acquisition technique semiquantitatively scored images on a scale from −2 to 2 for noise, image contrast, sharpness, artifacts, and perceived ability to evaluate uterine, ovarian, and musculoskeletal structures. The null hypothesis of no significant difference between pulse sequences was assessed with a Wilcoxon signed rank test by using a Holm-Bonferroni correction for multiple comparisons. Results Because of reductions in specific absorption rate, vrfSSFSE imaging demonstrated significantly increased speed (more than twofold, P < .0001), with mean repetition times compared with conventional SSFSE imaging decreasing from 1358 to 613 msec for sagittal acquisitions and from 1494 to 621 msec for coronal oblique acquisitions. Almost all assessed image quality and perceived diagnostic capability parameters were significantly improved with vrfSSFSE imaging. These improvements included noise, sharpness, and ability to evaluate the junctional zone, myometrium, and musculoskeletal structures for both sagittal acquisitions (mean values of 0.56, 0.63, 0.42, 0.56, and 0.80, respectively; all P values < .0001) and coronal oblique acquisitions (mean values of 0.81, 1.09, 0.65, 0.93, and 1.12, respectively; all P values < .0001). For evaluation of artifacts, there was an insufficient number of cases with differences to allow statistical testing. Conclusion Compared with conventional SSFSE acquisition, vrfSSFSE acquisition increases 3-T imaging speed via reduced specific absorption rate and leads to significant improvements in perceived image quality and perceived diagnostic capability when evaluating pelvic structures. © RSNA, 2016 Online supplemental material is available for this article. PMID:27564132

  10. Energy conservation using face detection

    NASA Astrophysics Data System (ADS)

    Deotale, Nilesh T.; Kalbande, Dhananjay R.; Mishra, Akassh A.

    2011-10-01

    Computerized Face Detection, is concerned with the difficult task of converting a video signal of a person to written text. It has several applications like face recognition, simultaneous multiple face processing, biometrics, security, video surveillance, human computer interface, image database management, digital cameras use face detection for autofocus, selecting regions of interest in photo slideshows that use a pan-and-scale and The Present Paper deals with energy conservation using face detection. Automating the process to a computer requires the use of various image processing techniques. There are various methods that can be used for Face Detection such as Contour tracking methods, Template matching, Controlled background, Model based, Motion based and color based. Basically, the video of the subject are converted into images are further selected manually for processing. However, several factors like poor illumination, movement of face, viewpoint-dependent Physical appearance, Acquisition geometry, Imaging conditions, Compression artifacts makes Face detection difficult. This paper reports an algorithm for conservation of energy using face detection for various devices. The present paper suggests Energy Conservation can be done by Detecting the Face and reducing the brightness of complete image and then adjusting the brightness of the particular area of an image where the face is located using histogram equalization.

  11. Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array.

    PubMed

    Phillips, Zachary F; D'Ambrosio, Michael V; Tian, Lei; Rulison, Jared J; Patel, Hurshal S; Sadras, Nitin; Gande, Aditya V; Switz, Neil A; Fletcher, Daniel A; Waller, Laura

    2015-01-01

    We demonstrate the design and application of an add-on device for improving the diagnostic and research capabilities of CellScope--a low-cost, smartphone-based point-of-care microscope. We replace the single LED illumination of the original CellScope with a programmable domed LED array. By leveraging recent advances in computational illumination, this new device enables simultaneous multi-contrast imaging with brightfield, darkfield, and phase imaging modes. Further, we scan through illumination angles to capture lightfield datasets, which can be used to recover 3D intensity and phase images without any hardware changes. This digital refocusing procedure can be used for either 3D imaging or software-only focus correction, reducing the need for precise mechanical focusing during field experiments. All acquisition and processing is performed on the mobile phone and controlled through a smartphone application, making the computational microscope compact and portable. Using multiple samples and different objective magnifications, we demonstrate that the performance of our device is comparable to that of a commercial microscope. This unique device platform extends the field imaging capabilities of CellScope, opening up new clinical and research possibilities.

  12. Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array

    PubMed Central

    Phillips, Zachary F.; D'Ambrosio, Michael V.; Tian, Lei; Rulison, Jared J.; Patel, Hurshal S.; Sadras, Nitin; Gande, Aditya V.; Switz, Neil A.; Fletcher, Daniel A.; Waller, Laura

    2015-01-01

    We demonstrate the design and application of an add-on device for improving the diagnostic and research capabilities of CellScope—a low-cost, smartphone-based point-of-care microscope. We replace the single LED illumination of the original CellScope with a programmable domed LED array. By leveraging recent advances in computational illumination, this new device enables simultaneous multi-contrast imaging with brightfield, darkfield, and phase imaging modes. Further, we scan through illumination angles to capture lightfield datasets, which can be used to recover 3D intensity and phase images without any hardware changes. This digital refocusing procedure can be used for either 3D imaging or software-only focus correction, reducing the need for precise mechanical focusing during field experiments. All acquisition and processing is performed on the mobile phone and controlled through a smartphone application, making the computational microscope compact and portable. Using multiple samples and different objective magnifications, we demonstrate that the performance of our device is comparable to that of a commercial microscope. This unique device platform extends the field imaging capabilities of CellScope, opening up new clinical and research possibilities. PMID:25969980

  13. Predicting the amount of coke deposition on catalyst pellets through image analysis and soft computing

    NASA Astrophysics Data System (ADS)

    Zhang, Jingqiong; Zhang, Wenbiao; He, Yuting; Yan, Yong

    2016-11-01

    The amount of coke deposition on catalyst pellets is one of the most important indexes of catalytic property and service life. As a result, it is essential to measure this and analyze the active state of the catalysts during a continuous production process. This paper proposes a new method to predict the amount of coke deposition on catalyst pellets based on image analysis and soft computing. An image acquisition system consisting of a flatbed scanner and an opaque cover is used to obtain catalyst images. After imaging processing and feature extraction, twelve effective features are selected and two best feature sets are determined by the prediction tests. A neural network optimized by a particle swarm optimization algorithm is used to establish the prediction model of the coke amount based on various datasets. The root mean square error of the prediction values are all below 0.021 and the coefficient of determination R 2, for the model, are all above 78.71%. Therefore, a feasible, effective and precise method is demonstrated, which may be applied to realize the real-time measurement of coke deposition based on on-line sampling and fast image analysis.

  14. MAJOR SOURCE OF SIDE-LOOKING AIRBORNE RADAR IMAGERY FOR RESEARCH AND EXPLORATION: THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Kover, Allan N.; Jones, John Edwin; ,

    1985-01-01

    The US Geological Survey (USGS) instituted a program in 1980 to acquire side-looking airbore radar (SLAR) data and make these data readily available to the public in a mosaic format comparable to the USGS 1:250,000-scale topographic map series. The SLAR data are also available as strip images at an acquisition scale of 1:250,000 or 1:400,000 (depending on the acquisition system), as a variety of print products and indexes, and in a limited amount in digital form on computer compatible tapes. Three different commercial X-band (3-cm) systems were used to acquire the imagery for producing the mosaics.

  15. Quantitative myocardial perfusion from static cardiac and dynamic arterial CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.

    2018-05-01

    Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative perfusion imaging with an acquisition strategy offering substantial radiation dose and computational complexity savings over dynamic CT.

  16. Learning the manifold of quality ultrasound acquisition.

    PubMed

    El-Zehiry, Noha; Yan, Michelle; Good, Sara; Fang, Tong; Zhou, S Kevin; Grady, Leo

    2013-01-01

    Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of "good quality" images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images.

  17. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  18. Poster - Thurs Eve-16: Just-in-time tomography (JiTT).

    PubMed

    Pang, G; Rowlands, J A

    2008-07-01

    Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room for image-guided radiation therapy. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus is not adequate for imaging targets with intrafraction motion. In this work, a new concept for image-guided radiation therapy- just-in-time tomography (JiTT) - is introduced. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. A system to achieve JiTT is proposed and its feasibility is investigated. Research supported by Siemens. © 2008 American Association of Physicists in Medicine.

  19. Physics of cardiac imaging with multiple-row detector CT.

    PubMed

    Mahesh, Mahadevappa; Cody, Dianna D

    2007-01-01

    Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.

  20. Analysis of neoplastic lesions in magnetic resonance imaging using self-organizing maps.

    PubMed

    Mei, Paulo Afonso; de Carvalho Carneiro, Cleyton; Fraser, Stephen J; Min, Li Li; Reis, Fabiano

    2015-12-15

    To provide an improved method for the identification and analysis of brain tumors in MRI scans using a semi-automated computational approach, that has the potential to provide a more objective, precise and quantitatively rigorous analysis, compared to human visual analysis. Self-Organizing Maps (SOM) is an unsupervised, exploratory data analysis tool, which can automatically domain an image into selfsimilar regions or clusters, based on measures of similarity. It can be used to perform image-domain of brain tissue on MR images, without prior knowledge. We used SOM to analyze T1, T2 and FLAIR acquisitions from two MRI machines in our service from 14 patients with brain tumors confirmed by biopsies--three lymphomas, six glioblastomas, one meningioma, one ganglioglioma, two oligoastrocytomas and one astrocytoma. The SOM software was used to analyze the data from the three image acquisitions from each patient and generated a self-organized map for each containing 25 clusters. Damaged tissue was separated from the normal tissue using the SOM technique. Furthermore, in some cases it allowed to separate different areas from within the tumor--like edema/peritumoral infiltration and necrosis. In lesions with less precise boundaries in FLAIR, the estimated damaged tissue area in the resulting map appears bigger. Our results showed that SOM has the potential to be a powerful MR imaging analysis technique for the assessment of brain tumors. Copyright © 2015. Published by Elsevier B.V.

  1. Task-driven imaging in cone-beam computed tomography.

    PubMed

    Gang, G J; Stayman, J W; Ouadah, S; Ehtiati, T; Siewerdsen, J H

    Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. This work demonstrated the potential of a task-driven imaging framework to improve image quality and reduce dose beyond that achievable with conventional imaging approaches.

  2. Cardiac SPECT/CCTA hybrid imaging : One answer to two questions?

    PubMed

    Kaufmann, P A; Buechel, R R

    2016-08-01

    Noninvasive cardiac imaging has witnessed tremendous advances in the recent past, particularly with regard to coronary computed tomography angiography (CCTA) where substantial improvements in image quality have been achieved while at the same time patients' radiation dose exposure has been reduced to the sub-millisievert range. Similarly, for single-photon emission computed tomography (SPECT) the introduction of novel cadmium-zinc-telluride-based semiconductor detectors has significantly improved system sensitivity and image quality, enabling fast image acquisition within less than 2-3 min or reduction of radiation dose exposure to less than 5 mSv. However, neither imaging modality alone is able to fully cover the two aspects of coronary artery disease (CAD), that is, morphology and function. Both modalities have distinct advantages and shortcomings: While CCTA may prove a superb modality for excluding CAD through its excellent negative predictive value, it does not allow for assessment of hemodynamic relevance if obstructive coronary lesions are detected. Conversely, SPECT myocardial perfusion imaging cannot provide any information on the presence or absence of subclinical coronary atherosclerosis. This article aims to highlight the great potential of cardiac hybrid imaging that allows for a comprehensive evaluation of CAD through combination of both morphological and functional information by fusing SPECT with CCTA.

  3. Acquisition of a High Performance Computing Instrument for Big Data Research and Education

    DTIC Science & Technology

    2015-12-03

    Security and Privacy , University of Texas at Dallas, TX, September 16-17, 2014. • Chopade, P., Zhan, J., Community Detection in Large Scale Big Data...Security and Privacy in Communication Networks, Beijing, China, September 24-26, 2014. • Pravin Chopade, Kenneth Flurchick, Justin Zhan and Marwan...Balkirat Kaur, Malcolm Blow, and Justin Zhan, Digital Image Authentication in Social Media, The Sixth ASE International Conference on Privacy

  4. High-resolution computed tomography of single breast cancer microcalcifications in vivo.

    PubMed

    Inoue, Kazumasa; Liu, Fangbing; Hoppin, Jack; Lunsford, Elaine P; Lackas, Christian; Hesterman, Jacob; Lenkinski, Robert E; Fujii, Hirofumi; Frangioni, John V

    2011-08-01

    Microcalcification is a hallmark of breast cancer and a key diagnostic feature for mammography. We recently described the first robust animal model of breast cancer microcalcification. In this study, we hypothesized that high-resolution computed tomography (CT) could potentially detect the genesis of a single microcalcification in vivo and quantify its growth over time. Using a commercial CT scanner, we systematically optimized acquisition and reconstruction parameters. Two ray-tracing image reconstruction algorithms were tested: a voxel-driven "fast" cone beam algorithm (FCBA) and a detector-driven "exact" cone beam algorithm (ECBA). By optimizing acquisition and reconstruction parameters, we were able to achieve a resolution of 104 μm full width at half-maximum (FWHM). At an optimal detector sampling frequency, the ECBA provided a 28 μm (21%) FWHM improvement in resolution over the FCBA. In vitro, we were able to image a single 300 μm × 100 μm hydroxyapatite crystal. In a syngeneic rat model of breast cancer, we were able to detect the genesis of a single microcalcification in vivo and follow its growth longitudinally over weeks. Taken together, this study provides an in vivo "gold standard" for the development of calcification-specific contrast agents and a model system for studying the mechanism of breast cancer microcalcification.

  5. Computed Tomography Scanner Productivity and Entry-Level Models in the Global Market

    PubMed Central

    Almeida, R. M. V. R.

    2017-01-01

    Objective This study evaluated the productivity of computed tomography (CT) models and characterized their simplest (entry-level) models' supply in the world market. Methods CT exam times were measured in eight health facilities in the state of Rio de Janeiro, Brazil. Exams were divided into six stages: (1) arrival of patient records to the examination room; (2) patient arrival; (3) patient positioning; (4) data input prior to exam; (5) image acquisition; and (6) patient departure. CT exam productivity was calculated by dividing the total weekly working time by the total exam time for each model. Additionally, an internet search identified full-body CT manufacturers and their offered entry-level models. Results The time durations of 111 CT exams were obtained. Differences among average exam times were not large, and they were mainly due to stages not directly related to data acquisition or image reconstruction. The survey identified that most manufacturers offer 2- to 4-slice models for Asia, South America, and Africa, and one offers single-slice models (Asia). In the USA, two manufacturers offer models below 16-slice. Conclusion Productivity gains are not linearly related to “slice” number. It is suggested that the use of “shareable platforms” could make CTs cheaper, increasing their availability. PMID:29093804

  6. The acquisition, storage, and dissemination of LANDSAT and other LACIE support data

    NASA Technical Reports Server (NTRS)

    Abbotts, L. F.; Nelson, R. M. (Principal Investigator)

    1979-01-01

    Activities performed at the LACIE physical data library are described. These include the researching, acquisition, indexing, maintenance, distribution, tracking, and control of LACIE operational data and documents. Much of the data available can be incorporated into an Earth resources data base. Elements of the data collection that can support future remote sensing programs include: (1) the LANDSAT full-frame image files; (2) the microfilm file of aerial and space photographic and multispectral maps and charts that encompasses a large portion of the Earth's surface; (3) the map/chart collection that includes various scale maps and charts for a good portion of the U.S. and the LACIE area in foreign countries; (4) computer-compatible tapes of good quality LANDSAT scenes; (5) basic remote sensing data, project data, reference material, and associated publications; (6) visual aids to support presentation on remote sensing projects; and (7) research acquisition and handling procedures for managing data.

  7. Toward a Global Bundle Adjustment of SPOT 5 - HRS Images

    NASA Astrophysics Data System (ADS)

    Massera, S.; Favé, P.; Gachet, R.; Orsoni, A.

    2012-07-01

    The HRS (High Resolution Stereoscopic) instrument carried on SPOT 5 enables quasi-simultaneous acquisition of stereoscopic images on wide segments - 120 km wide - with two forward and backward-looking telescopes observing the Earth with an angle of 20° ahead and behind the vertical. For 8 years IGN (Institut Géographique National) has been developing techniques to achieve spatiotriangulation of these images. During this time the capacities of bundle adjustment of SPOT 5 - HRS spatial images have largely improved. Today a global single block composed of about 20,000 images can be computed in reasonable calculation time. The progression was achieved step by step: first computed blocks were only composed of 40 images, then bigger blocks were computed. Finally only one global block is now computed. In the same time calculation tools have improved: for example the adjustment of 2,000 images of North Africa takes about 2 minutes whereas 8 hours were needed two years ago. To reach such a result a new independent software was developed to compute fast and efficient bundle adjustments. In the same time equipment - GCPs (Ground Control Points) and tie points - and techniques have also evolved over the last 10 years. Studies were made to get recommendations about the equipment in order to make an accurate single block. Tie points can now be quickly and automatically computed with SURF (Speeded Up Robust Features) techniques. Today the updated equipment is composed of about 500 GCPs and studies show that the ideal configuration is around 100 tie points by square degree. With such an equipment, the location of the global HRS block becomes a few meters accurate whereas non adjusted images are only 15 m accurate. This paper will describe the methods used in IGN Espace to compute a global single block composed of almost 20,000 HRS images, 500 GCPs and several million of tie points in reasonable calculation time. Many advantages can be found to use such a block. Because the global block is unique it becomes easier to manage the historic and the different evolutions of the computations (new images, new GCPs or tie points). The location is now unique and consequently coherent all around the world, avoiding steps and artifacts on the borders of DSMs (Digital Surface Models) and OrthoImages historically calculated from different blocks. No extrapolation far from GCPs in the limits of images is done anymore. Using the global block as a reference will allow new images from other sources to be easily located on this reference.

  8. Smartphone based hemispherical photography for canopy structure measurement

    NASA Astrophysics Data System (ADS)

    Wan, Xuefen; Cui, Jian; Jiang, Xueqin; Zhang, Jingwen; Yang, Yi; Zheng, Tao

    2018-01-01

    The canopy is the most direct and active interface layer of the interaction between plant and environment, and has important influence on energy exchange, biodiversity, ecosystem matter and climate change. The measurement about canopy structure of plant is an important foundation to analyze the pattern, process and operation mechanism of forest ecosystem. Through the study of canopy structure of plant, solar radiation, ambient wind speed, air temperature and humidity, soil evaporation, soil temperature and other forest environmental climate characteristics can be evaluated. Because of its accuracy and effectiveness, canopy structure measurement based on hemispherical photography has been widely studied. However, the traditional method of canopy structure hemispherical photogrammetry based on SLR camera and fisheye lens. This method is expensive and difficult to be used in some low-cost occasions. In recent years, smartphone technology has been developing rapidly. The smartphone not only has excellent image acquisition ability, but also has the considerable computational processing ability. In addition, the gyroscope and positioning function on the smartphone will also help to measure the structure of the canopy. In this paper, we present a smartphone based hemispherical photography system. The system consists of smart phones, low-cost fisheye lenses and PMMA adapters. We designed an Android based App to obtain the canopy hemisphere images through low-cost fisheye lenses and provide horizontal collimation information. In addition, the App will add the acquisition location tag obtained by GPS and auxiliary positioning method in hemisphere image information after the canopy structure hemisphere image acquisition. The system was tested in the urban forest after it was completed. The test results show that the smartphone based hemispherical photography system can effectively collect the high-resolution canopy structure image of the plant.

  9. Active hemorrhage and vascular injuries in splenic trauma: utility of the arterial phase in multidetector CT.

    PubMed

    Uyeda, Jennifer W; LeBedis, Christina A; Penn, David R; Soto, Jorge A; Anderson, Stephan W

    2014-01-01

    To determine whether the addition of arterial phase computed tomography (CT) to the standard combination of portal venous and delayed phase imaging increases sensitivity in the diagnosis of active hemorrhage and/or contained vascular injuries in patients with splenic trauma. The institutional review board approved this HIPAA-compliant retrospective study; the requirement to obtain informed consent was waived. The study included all patients aged 15 years and older who sustained a splenic injury from blunt or penetrating trauma and who underwent CT in the arterial and portal venous phases of image acquisition during a 74-month period (September 2005 to November 2011). CT scans were reviewed by three radiologists, and a consensus interpretation was made to classify the splenic injuries according to the American Association for the Surgery of Trauma splenic injury scale. One radiologist independently recorded the presence of contained vascular injuries or active hemorrhage and the phase or phases at which these lesions were seen. Clinical outcome was assessed by reviewing medical records. The relationship between imaging findings and clinical management was assessed with the Fisher exact test. One hundred forty-seven patients met the inclusion criteria; 32 patients (22%) had active hemorrhage and 22 (15%) had several contained vascular injuries. In 13 of the 22 patients with contained injuries, the vascular lesion was visualized only at the arterial phase of image acquisition; the other nine contained vascular injuries were seen at all phases. Surgery or embolization was performed in 11 of the 22 patients with contained vascular injury. The arterial phase of image acquisition improves detection of traumatic contained splenic vascular injuries and should be considered to optimize detection of splenic injuries in trauma with CT. ©RSNA, 2013.

  10. Simultaneous 99mtc/111in spect reconstruction using accelerated convolution-based forced detection monte carlo

    NASA Astrophysics Data System (ADS)

    Karamat, Muhammad I.; Farncombe, Troy H.

    2015-10-01

    Simultaneous multi-isotope Single Photon Emission Computed Tomography (SPECT) imaging has a number of applications in cardiac, brain, and cancer imaging. The major concern however, is the significant crosstalk contamination due to photon scatter between the different isotopes. The current study focuses on a method of crosstalk compensation between two isotopes in simultaneous dual isotope SPECT acquisition applied to cancer imaging using 99mTc and 111In. We have developed an iterative image reconstruction technique that simulates the photon down-scatter from one isotope into the acquisition window of a second isotope. Our approach uses an accelerated Monte Carlo (MC) technique for the forward projection step in an iterative reconstruction algorithm. The MC estimated scatter contamination of a radionuclide contained in a given projection view is then used to compensate for the photon contamination in the acquisition window of other nuclide. We use a modified ordered subset-expectation maximization (OS-EM) algorithm named simultaneous ordered subset-expectation maximization (Sim-OSEM), to perform this step. We have undertaken a number of simulation tests and phantom studies to verify this approach. The proposed reconstruction technique was also evaluated by reconstruction of experimentally acquired phantom data. Reconstruction using Sim-OSEM showed very promising results in terms of contrast recovery and uniformity of object background compared to alternative reconstruction methods implementing alternative scatter correction schemes (i.e., triple energy window or separately acquired projection data). In this study the evaluation is based on the quality of reconstructed images and activity estimated using Sim-OSEM. In order to quantitate the possible improvement in spatial resolution and signal to noise ratio (SNR) observed in this study, further simulation and experimental studies are required.

  11. Non-rigid CT/CBCT to CBCT registration for online external beam radiotherapy guidance

    NASA Astrophysics Data System (ADS)

    Zachiu, Cornel; de Senneville, Baudouin Denis; Tijssen, Rob H. N.; Kotte, Alexis N. T. J.; Houweling, Antonetta C.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; Moonen, Chrit T. W.; Ries, Mario

    2018-01-01

    Image-guided external beam radiotherapy (EBRT) allows radiation dose deposition with a high degree of accuracy and precision. Guidance is usually achieved by estimating the displacements, via image registration, between cone beam computed tomography (CBCT) and computed tomography (CT) images acquired at different stages of the therapy. The resulting displacements are then used to reposition the patient such that the location of the tumor at the time of treatment matches its position during planning. Moreover, ongoing research aims to use CBCT-CT image registration for online plan adaptation. However, CBCT images are usually acquired using a small number of x-ray projections and/or low beam intensities. This often leads to the images being subject to low contrast, low signal-to-noise ratio and artifacts, which ends-up hampering the image registration process. Previous studies addressed this by integrating additional image processing steps into the registration procedure. However, these steps are usually designed for particular image acquisition schemes, therefore limiting their use on a case-by-case basis. In the current study we address CT to CBCT and CBCT to CBCT registration by the means of the recently proposed EVolution registration algorithm. Contrary to previous approaches, EVolution does not require the integration of additional image processing steps in the registration scheme. Moreover, the algorithm requires a low number of input parameters, is easily parallelizable and provides an elastic deformation on a point-by-point basis. Results have shown that relative to a pure CT-based registration, the intrinsic artifacts present in typical CBCT images only have a sub-millimeter impact on the accuracy and precision of the estimated deformation. In addition, the algorithm has low computational requirements, which are compatible with online image-based guidance of EBRT treatments.

  12. Material Separation Using Dual-Energy CT: Current and Emerging Applications.

    PubMed

    Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V

    2016-01-01

    Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016.

  13. SU-D-207-05: Real-Time Intrafractional Motion Tracking During VMAT Delivery Using a Conventional Elekta CBCT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yang-Kyun; Sharp, Gregory C.; Gierga, David P.

    2015-06-15

    Purpose: Real-time kV projection streaming capability has become recently available for Elekta XVI version 5.0. This study aims to investigate the feasibility and accuracy of real-time fiducial marker tracking during CBCT acquisition with or without simultaneous VMAT delivery using a conventional Elekta linear accelerator. Methods: A client computer was connected to an on-board kV imaging system computer, and receives and processes projection images immediately after image acquisition. In-house marker tracking software based on FFT normalized cross-correlation was developed and installed in the client computer. Three gold fiducial markers with 3 mm length were implanted in a pelvis-shaped phantom with 36more » cm width. The phantom was placed on a programmable motion platform oscillating in anterior-posterior and superior-inferior directions simultaneously. The marker motion was tracked in real-time for (1) a kV-only CBCT scan with treatment beam off and (2) a kV CBCT scan during a 6-MV VMAT delivery. The exposure parameters per projection were 120 kVp and 1.6 mAs. Tracking accuracy was assessed by comparing superior-inferior positions between the programmed and tracked trajectories. Results: The projection images were successfully transferred to the client computer at a frequency of about 5 Hz. In the kV-only scan, highly accurate marker tracking was achieved over the entire range of cone-beam projection angles (detection rate / tracking error were 100.0% / 0.6±0.5 mm). In the kV-VMAT scan, MV-scatter degraded image quality, particularly for lateral projections passing through the thickest part of the phantom (kV source angle ranging 70°-110° and 250°-290°), resulting in a reduced detection rate (90.5%). If the lateral projections are excluded, tracking performance was comparable to the kV-only case (detection rate / tracking error were 100.0% / 0.8±0.5 mm). Conclusion: Our phantom study demonstrated a promising Result for real-time motion tracking using a conventional Elekta linear accelerator. MV-scatter suppression is needed to improve tracking accuracy during MV delivery. This research is funded by Motion Management Research Grant from Elekta.« less

  14. Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy

    PubMed Central

    Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin

    2016-01-01

    Objectives We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. Methods We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. Results An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. Conclusions The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis. PMID:27525165

  15. Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy.

    PubMed

    Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin; Sohn, Dae Kyung

    2016-07-01

    We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis.

  16. 48 CFR 227.7203-2 - Acquisition of noncommercial computer software and computer software documentation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... noncommercial computer software and computer software documentation. 227.7203-2 Section 227.7203-2 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-2 Acquisition of noncommercial computer software and computer software documentation. (a...

  17. 48 CFR 227.7203-2 - Acquisition of noncommercial computer software and computer software documentation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... noncommercial computer software and computer software documentation. 227.7203-2 Section 227.7203-2 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-2 Acquisition of noncommercial computer software and computer software documentation. (a...

  18. 48 CFR 227.7203-2 - Acquisition of noncommercial computer software and computer software documentation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... noncommercial computer software and computer software documentation. 227.7203-2 Section 227.7203-2 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-2 Acquisition of noncommercial computer software and computer software documentation. (a...

  19. 48 CFR 227.7203-2 - Acquisition of noncommercial computer software and computer software documentation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... noncommercial computer software and computer software documentation. 227.7203-2 Section 227.7203-2 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-2 Acquisition of noncommercial computer software and computer software documentation. (a...

  20. 48 CFR 227.7203-2 - Acquisition of noncommercial computer software and computer software documentation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... noncommercial computer software and computer software documentation. 227.7203-2 Section 227.7203-2 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-2 Acquisition of noncommercial computer software and computer software documentation. (a...

  1. Observing hydrological processes: recent advancements in surface flow monitoring through image analysis

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Grimaldi, Salvatore

    2017-04-01

    Recently, several efforts have been devoted to the design and development of innovative, and often unintended, approaches for the acquisition of hydrological data. Among such pioneering techniques, this presentation reports recent advancements towards the establishment of a novel noninvasive and potentially continuous methodology based on the acquisition and analysis of images for spatially distributed observations of the kinematics of surface waters. The approach aims at enabling rapid, affordable, and accurate surface flow monitoring of natural streams. Flow monitoring is an integral part of hydrological sciences and is essential for disaster risk reduction and the comprehension of natural phenomena. However, water processes are inherently complex to observe: they are characterized by multiscale and highly heterogeneous phenomena which have traditionally demanded sophisticated and costly measurement techniques. Challenges in the implementation of such techniques have also resulted in lack of hydrological data during extreme events, in difficult-to-access environments, and at high temporal resolution. By combining low-cost yet high-resolution images and several velocimetry algorithms, noninvasive flow monitoring has been successfully conducted at highly heterogeneous scales, spanning from rills to highly turbulent streams, and medium-scale rivers, with minimal supervision by external users. Noninvasive image data acquisition has also afforded observations in high flow conditions. Latest novelties towards continuous flow monitoring at the catchment scale have entailed the development of a remote gauge-cam station on the Tiber River and integration of flow monitoring through image analysis with unmanned aerial systems (UASs) technology. The gauge-cam station and the UAS platform both afford noninvasive image acquisition and calibration through an innovative laser-based setup. Compared to traditional point-based instrumentation, images allow for generating surface flow velocity maps which fully describe the kinematics of the velocity field in natural streams. Also, continuous observations provide a close picture of the evolving dynamics of natural water bodies. Despite such promising achievements, dealing with images also involves coping with adverse illumination, massive data handling and storage, and data-intensive computing. Most importantly, establishing a novel observational technique requires estimation of the uncertainty associated to measurements and thorough comparison to existing benchmark approaches. In this presentation, we provide answers to some of these issues and perspectives for future research.

  2. GPU accelerated optical coherence tomography angiography using strip-based registration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Heisler, Morgan; Lee, Sieun; Mammo, Zaid; Jian, Yifan; Ju, Myeong Jin; Miao, Dongkai; Raposo, Eric; Wahl, Daniel J.; Merkur, Andrew; Navajas, Eduardo; Balaratnasingam, Chandrakumar; Beg, Mirza Faisal; Sarunic, Marinko V.

    2017-02-01

    High quality visualization of the retinal microvasculature can improve our understanding of the onset and development of retinal vascular diseases, which are a major cause of visual morbidity and are increasing in prevalence. Optical Coherence Tomography Angiography (OCT-A) images are acquired over multiple seconds and are particularly susceptible to motion artifacts, which are more prevalent when imaging patients with pathology whose ability to fixate is limited. The acquisition of multiple OCT-A images sequentially can be performed for the purpose of removing motion artifact and increasing the contrast of the vascular network through averaging. Due to the motion artifacts, a robust registration pipeline is needed before feature preserving image averaging can be performed. In this report, we present a novel method for a GPU-accelerated pipeline for acquisition, processing, segmentation, and registration of multiple, sequentially acquired OCT-A images to correct for the motion artifacts in individual images for the purpose of averaging. High performance computing, blending CPU and GPU, was introduced to accelerate processing in order to provide high quality visualization of the retinal microvasculature and to enable a more accurate quantitative analysis in a clinically useful time frame. Specifically, image discontinuities caused by rapid micro-saccadic movements and image warping due to smoother reflex movements were corrected by strip-wise affine registration estimated using Scale Invariant Feature Transform (SIFT) keypoints and subsequent local similarity-based non-rigid registration. These techniques improve the image quality, increasing the value for clinical diagnosis and increasing the range of patients for whom high quality OCT-A images can be acquired.

  3. Bariatric CT Imaging: Challenges and Solutions.

    PubMed

    Fursevich, Dzmitry M; LiMarzi, Gary M; O'Dell, Matthew C; Hernandez, Manuel A; Sensakovic, William F

    2016-01-01

    The obesity epidemic in the adult and pediatric populations affects all aspects of health care, including diagnostic imaging. With the increasing prevalence of obese and morbidly obese patients, bariatric computed tomographic (CT) imaging is becoming common in day-to-day radiology practice, and a basic understanding of the unique problems that bariatric patients pose to the imaging community is crucial in any setting. Because larger patients may not fit into conventional scanners, having a CT scanner with an adequate table load limit, a large gantry aperture, a large scan field of view, and a high-power generator is a prerequisite for bariatric imaging. Iterative reconstruction methods, high tube current, and high tube voltage can reduce the image noise that is frequently seen in bariatric CT images. Truncation artifacts, cropping artifacts, and ring artifacts frequently complicate the interpretation of CT images of larger patients. If recognized, these artifacts can be easily reduced by using the proper CT equipment, scan acquisition parameters, and postprocessing options. Lastly, because of complex contrast material dynamics, contrast material-enhanced studies of bariatric patients require special attention. Understanding how the rate of injection, the scan timing, and the total mass of iodine affect vascular and parenchymal enhancement will help to optimize contrast-enhanced studies in the bariatric population. This article familiarizes the reader with the challenges that are frequently encountered at CT imaging of bariatric patients, beginning with equipment selection and ending with a review of the most commonly encountered obesity-related artifacts and the technical considerations in the acquisition of contrast-enhanced images. (©)RSNA, 2016.

  4. Application of Structure-from-Motion photogrammetry in laboratory flumes

    NASA Astrophysics Data System (ADS)

    Morgan, Jacob A.; Brogan, Daniel J.; Nelson, Peter A.

    2017-01-01

    Structure-from-Motion (SfM) photogrammetry has become widely used for topographic data collection in field and laboratory studies. However, the relative performance of SfM against other methods of topographic measurement in a laboratory flume environment has not been systematically evaluated, and there is a general lack of guidelines for SfM application in flume settings. As the use of SfM in laboratory flume settings becomes more widespread, it is increasingly critical to develop an understanding of how to acquire and process SfM data for a given flume size and sediment characteristics. In this study, we: (1) compare the resolution and accuracy of SfM topographic measurements to terrestrial laser scanning (TLS) measurements in laboratory flumes of varying physical dimensions containing sediments of varying grain sizes; (2) explore the effects of different image acquisition protocols and data processing methods on the resolution and accuracy of topographic data derived from SfM techniques; and (3) provide general guidance for image acquisition and processing for SfM applications in laboratory flumes. To investigate the effects of flume size, sediment size, and photo overlap on the density and accuracy of SfM data, we collected topographic data using both TLS and SfM in five flumes with widths ranging from 0.22 to 6.71 m, lengths ranging from 9.14 to 30.48 m, and median sediment sizes ranging from 0.2 to 31 mm. Acquisition time, image overlap, point density, elevation data, and computed roughness parameters were compared to evaluate the performance of SfM against TLS. We also collected images of a pan of gravel where we varied the distance and angle between the camera and sediment in order to explore how photo acquisition affects the ability to capture grain-scale microtopographic features in SfM-derived point clouds. A variety of image combinations and SfM software package settings were also investigated to determine optimal processing techniques. Results from this study suggest that SfM provides topographic data of similar accuracy to TLS, at higher resolution and lower cost. We found that about 100pixels per grain are required to resolve grain-scale topography. We suggest protocols for image acquisition and SfM software settings to achieve best results when using SfM in laboratory settings. In general, convergent imagery, taken from a higher angle, with at least several overlapping images for each desired point in the flume will result in an acceptable point cloud.

  5. Computational Modeling for Language Acquisition: A Tutorial with Syntactic Islands

    ERIC Educational Resources Information Center

    Pearl, Lisa S.; Sprouse, Jon

    2015-01-01

    Purpose: Given the growing prominence of computational modeling in the acquisition research community, we present a tutorial on how to use computational modeling to investigate learning strategies that underlie the acquisition process. This is useful for understanding both typical and atypical linguistic development. Method: We provide a general…

  6. Magnetic resonance for laryngeal cancer.

    PubMed

    Maroldi, Roberto; Ravanelli, Marco; Farina, Davide

    2014-04-01

    This review summarizes the most recent experiences on the integration of magnetic resonance in assessing the local extent of laryngeal cancer and detecting submucosal recurrences. Advances in magnetic resonance have been characterized by the development of technical solutions that shorten the acquisition time, thereby reducing motion artifacts, and increase the spatial resolution. Phased-array surface coils, directly applied to the neck, enable the use of parallel-imaging techniques, which greatly reduce the acquisition time, and amplify the signal intensity, being closer to the larynx. One of the most important drawbacks of this technique is the small field-of-view, restricting the imaged area to the larynx. Furthermore, diffusion-weighted imaging (DWI) has increased the set of magnetic resonance sequences. Differently from computed tomography (CT), which has only two variables (precontrast/postcontrast), magnetic resonance is based on a multiparameter analysis (T2-weighting and T1-weighting, DWI, and postcontrast acquisition). This multiparameter approach amplifies the contrast resolution. It has, also, permitted to differentiate scar tissue (after laser resection) from submucosal recurrent disease. In addition, DWI sequences have the potential of a more precise discrimination of peritumoral edema from neoplastic tissue, which may lead to improve the assessment of paraglottic space invasion. Magnetic resonance of the larynx is technically challenging. The use of surface coils and motion-reducing techniques is critical to achieve adequate image quality. The intrinsic high-contrast resolution is further increased by the integration of information from different sequences. When CT has not been conclusive, magnetic resonance is indicated in the pretreatment local assessment and in the suspicion of submucosal recurrence.

  7. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube.

    PubMed

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi

    2011-10-01

    To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO(4) scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. The focal spots were measured at about 1 × 2 mm(2) using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.

  8. Practical considerations for optimizing cardiac computed tomography protocols for comprehensive acquisition prior to transcatheter aortic valve replacement.

    PubMed

    Khalique, Omar K; Pulerwitz, Todd C; Halliburton, Sandra S; Kodali, Susheel K; Hahn, Rebecca T; Nazif, Tamim M; Vahl, Torsten P; George, Isaac; Leon, Martin B; D'Souza, Belinda; Einstein, Andrew J

    2016-01-01

    Transcatheter aortic valve replacement (TAVR) is performed frequently in patients with severe, symptomatic aortic stenosis who are at high risk or inoperable for open surgical aortic valve replacement. Computed tomography angiography (CTA) has become the gold standard imaging modality for pre-TAVR cardiac anatomic and vascular access assessment. Traditionally, cardiac CTA has been most frequently used for assessment of coronary artery stenosis, and scanning protocols have generally been tailored for this purpose. Pre-TAVR CTA has different goals than coronary CTA and the high prevalence of chronic kidney disease in the TAVR patient population creates a particular need to optimize protocols for a reduction in iodinated contrast volume. This document reviews details which allow the physician to tailor CTA examinations to maximize image quality and minimize harm, while factoring in multiple patient and scanner variables which must be considered in customizing a pre-TAVR protocol. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  9. The European computer model for optronic system performance prediction (ECOMOS)

    NASA Astrophysics Data System (ADS)

    Keßler, Stefan; Bijl, Piet; Labarre, Luc; Repasi, Endre; Wittenstein, Wolfgang; Bürsing, Helge

    2017-10-01

    ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defence and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses and combines well-accepted existing European tools to build up a strong competitive position. This includes two TA models: the analytical TRM4 model and the image-based TOD model. In addition, it uses the atmosphere model MATISSE. In this paper, the central idea of ECOMOS is exposed. The overall software structure and the underlying models are shown and elucidated. The status of the project development is given as well as a short discussion of validation tests and an outlook on the future potential of simulation for sensor assessment.

  10. Radiation dose-reduction strategies in thoracic CT.

    PubMed

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT).

    PubMed

    Hutchinson, J Ciaran; Shelmerdine, Susan C; Simcock, Ian C; Sebire, Neil J; Arthurs, Owen J

    2017-07-01

    Microfocus CT (micro-CT) has traditionally been used in industry and preclinical studies, although it may find new applicability in the routine clinical setting. It can provide high-resolution three-dimensional digital imaging data sets to the same level of detail as microscopic examination without the need for tissue dissection. Micro-CT is already enabling non-invasive detailed internal assessment of various tissue specimens, particularly in breast imaging and early gestational fetal autopsy, not previously possible from more conventional modalities such as MRI or CT. In this review, we discuss the technical aspects behind micro-CT image acquisition, how early work with small animal studies have informed our knowledge of human disease and the imaging performed so far on human tissue specimens. We conclude with potential future clinical applications of this novel and emerging technique.

  12. Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography

    PubMed Central

    Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V.

    2015-01-01

    Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium. PMID:26503834

  13. A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi

    1997-01-01

    A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.

  14. Automatic creation of three-dimensional avatars

    NASA Astrophysics Data System (ADS)

    Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader

    2003-01-01

    Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.

  15. Investigation of Readout RF Pulse Impact on the Chemical Exchange Saturation Transfer Spectrum

    PubMed Central

    Huang, Sheng-Min; Jan, Meei-Ling; Liang, Hsin-Chin; Chang, Chia-Hao; Wu, Yi-Chun; Tsai, Shang-Yueh; Wang, Fu-Nien

    2015-01-01

    Chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) is capable of both microenvironment and molecular imaging. The optimization of scanning parameters is important since the CEST effect is sensitive to factors such as saturation power and field homogeneity. The aim of this study was to determine if the CEST effect would be altered by changing the length of readout RF pulses. Both theoretical computer simulation and phantom experiments were performed to examine the influence of readout RF pulses. Our results showed that the length of readout RF pulses has unremarkable impact on the Z-spectrum and CEST effect in both computer simulation and phantom experiment. Moreover, we demonstrated that multiple refocusing RF pulses used in rapid acquisition with relaxation enhancement (RARE) sequence induced no obvious saturation transfer contrast. Therefore, readout RF pulse has negligible effect on CEST Z-spectrum and the optimization of readout RF pulse length can be disregarded in CEST imaging protocol. PMID:26455576

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingerfelt, Eric J; Endeve, Eirik; Hui, Yawei

    Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now--with the rise of multimodal acquisition systems and the associated processing capability--the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalablemore » data analysis and simulation and manage uploaded data files via an intuitive, cross-platform client user interface. This framework delivers authenticated, "push-button" execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing compute-and-data cloud infrastructures and HPC environments like Titan at the Oak Ridge Leadershp Computing Facility (OLCF).« less

  17. Image-based surface reconstruction in geomorphometry - merits, limits and developments

    NASA Astrophysics Data System (ADS)

    Eltner, Anette; Kaiser, Andreas; Castillo, Carlos; Rock, Gilles; Neugirg, Fabian; Abellán, Antonio

    2016-05-01

    Photogrammetry and geosciences have been closely linked since the late 19th century due to the acquisition of high-quality 3-D data sets of the environment, but it has so far been restricted to a limited range of remote sensing specialists because of the considerable cost of metric systems for the acquisition and treatment of airborne imagery. Today, a wide range of commercial and open-source software tools enable the generation of 3-D and 4-D models of complex geomorphological features by geoscientists and other non-experts users. In addition, very recent rapid developments in unmanned aerial vehicle (UAV) technology allow for the flexible generation of high-quality aerial surveying and ortho-photography at a relatively low cost.The increasing computing capabilities during the last decade, together with the development of high-performance digital sensors and the important software innovations developed by computer-based vision and visual perception research fields, have extended the rigorous processing of stereoscopic image data to a 3-D point cloud generation from a series of non-calibrated images. Structure-from-motion (SfM) workflows are based upon algorithms for efficient and automatic orientation of large image sets without further data acquisition information, examples including robust feature detectors like the scale-invariant feature transform for 2-D imagery. Nevertheless, the importance of carrying out well-established fieldwork strategies, using proper camera settings, ground control points and ground truth for understanding the different sources of errors, still needs to be adapted in the common scientific practice.This review intends not only to summarise the current state of the art on using SfM workflows in geomorphometry but also to give an overview of terms and fields of application. Furthermore, this article aims to quantify already achieved accuracies and used scales, using different strategies in order to evaluate possible stagnations of current developments and to identify key future challenges. It is our belief that some lessons learned from former articles, scientific reports and book chapters concerning the identification of common errors or "bad practices" and some other valuable information may help in guiding the future use of SfM photogrammetry in geosciences.

  18. A fully 3D approach for metal artifact reduction in computed tomography.

    PubMed

    Kratz, Barbel; Weyers, Imke; Buzug, Thorsten M

    2012-11-01

    In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial domain with the well-known one-dimensional linear interpolation strategy. In conclusion, it is recommended to include as much spatial information into the recomputation step as possible. This is realized by increasing the dimension of the NFFT. The resulting image quality can be enhanced considerably.

  19. Use of computed tomography renal angiography for screening feline renal transplant donors.

    PubMed

    Bouma, Jennifer L; Aronson, Lillian R; Keith, Dennis G; Saunders, H Mark

    2003-01-01

    Preoperative knowledge of the renal vascular anatomy is important for selection of the appropriate feline renal donor. Intravenous urograms (IVUs) have been performed routinely to screen potential donors at the Veterinary Hospital of the University of Pennsylvania (VHUP), but the vascular phase views lack sufficient detail of the renal vascular anatomy. Computed tomography angiography (CTA), which requires a helical computed tomography (CT) scanner, has been found to provide superior renal vascular anatomic information of prospective human renal donors. The specific aims of this study were as follows: 1) develop the CTA technique for the feline patient; and 2) obtain preliminary information on feline renal vessel anatomy in potential renal donors. Ten healthy, potential feline renal donors were anesthetized and imaged using a third-generation helical CT scanner. The time delay between i.v. contrast medium injection and image acquisition, and other parameters of slice collimation, slice interval, pitch, exposure settings, and reconstruction algorithms were varied to maximize contrast medium opacification of the renal vascular anatomy. Optimal CTA acquisition parameters were determined to be: 1) 10-sec delay post-i.v. bolus of iodinated contrast medium; 2) two serially acquired (corresponding to arterial and venous phases) helical scans through the renal vasculature; 3) pitch of 2 (4 mm/sec patient translation, 2 mm slice collimation); and 4) 120-kVp, 160-mA, and 1-sec exposure settings. Retrospective reconstructed CTA transverse images obtained at a 2-mm slice width and a 1-mm slice interval in combination with two-dimensional reformatted images and three-dimensional reconstructed images were qualitatively evaluated for vascular anatomy; vascular anatomy was confirmed at surgery. Four cats had single renal arteries and veins bilaterally; four cats had double renal veins. One cat had a small accessory artery supplying the caudal pole of the left kidney. One cat had a left renal artery originating from the aorta at a 90 degrees angle with the cranial mesenteric artery. CTA of the feline renal vascular anatomy is feasible, and reconstruction techniques provide excellent anatomic vascular detail. CTA is now used routinely at VHUP to screen all potential feline renal donors.

  20. Comparison between low (3:1) and high (6:1) pitch for routine abdominal/pelvic imaging with multislice computed tomography.

    PubMed

    Sahani, Dushyant; Saini, Sanjay; D'Souza, Roy V; O'Neill, Mary Jane; Prasad, Srinivasa R; Kalra, Mannudeep K; Halpern, Elkan F; Mueller, Peter

    2003-01-01

    The purpose of this study was to compare the performance of low helical pitch acquisition (3:1) and high helical pitch acquisition (6:1) for routine abdominal/pelvic imaging with multislice computed tomography (CT). Three hundred eighty-four patients referred for abdominal/pelvic CT were examined in a breath-hold on a multislice CT scanner (LightSpeed QX/I; General Electric Medical Systems, Milwaukee, WI). Patients were randomized and scanned with pitch of 3:1 or 6:1 using a constant 140 peak kV and 280-300 mA. Images were reconstructed at a 3.75-mm slice thickness. Direct comparison between the two pitches was possible in a subset of 40 patients who had a follow-up scan performed with the second pitch used in each patient. A comparison was also performed between standard dose CT using a pitch of 6:1 and 20% reduced radiation dose CT using a pitch of 3:1. Two readers performed a blind evaluation using a three-point scale for image quality, anatomic details, and motion artifacts. Statistical analysis was performed using a rank sum test and the Wilcoxon signed rank test. Overall image quality mean scores were 2.5 and 2.3 for a pitch of 3:1 and a pitch of 6:1, respectively (P = 0.134). Likewise, mean anatomic detail and motion artifact scores were 2.5 and 2.6 for a 3:1 pitch and 2.3 and 2.5 for a 6:1 pitch, respectively (P > 0.05). In patients with a direct comparison of the two pitches (with the standard radiation dose as well as with a 20% reduction in milliamperes), no statistically significant difference in the performance of the two pitches was observed (P > 0.05). Image quality with a high pitch (6:1) is acceptable for routine abdominal/pelvic CT.

Top