Sample records for image analysis framework

  1. A Mathematical Framework for Image Analysis

    DTIC Science & Technology

    1991-08-01

    The results reported here were derived from the research project ’A Mathematical Framework for Image Analysis ’ supported by the Office of Naval...Research, contract N00014-88-K-0289 to Brown University. A common theme for the work reported is the use of probabilistic methods for problems in image ... analysis and image reconstruction. Five areas of research are described: rigid body recognition using a decision tree/combinatorial approach; nonrigid

  2. A high-level 3D visualization API for Java and ImageJ.

    PubMed

    Schmid, Benjamin; Schindelin, Johannes; Cardona, Albert; Longair, Mark; Heisenberg, Martin

    2010-05-21

    Current imaging methods such as Magnetic Resonance Imaging (MRI), Confocal microscopy, Electron Microscopy (EM) or Selective Plane Illumination Microscopy (SPIM) yield three-dimensional (3D) data sets in need of appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best approached from the 3D representation of the data set. Here we present a platform-independent framework based on Java and Java 3D for accelerated rendering of biological images. Our framework is seamlessly integrated into ImageJ, a free image processing package with a vast collection of community-developed biological image analysis tools. Our framework enriches the ImageJ software libraries with methods that greatly reduce the complexity of developing image analysis tools in an interactive 3D visualization environment. In particular, we provide high-level access to volume rendering, volume editing, surface extraction, and image annotation. The ability to rely on a library that removes the low-level details enables concentrating software development efforts on the algorithm implementation parts. Our framework enables biomedical image software development to be built with 3D visualization capabilities with very little effort. We offer the source code and convenient binary packages along with extensive documentation at http://3dviewer.neurofly.de.

  3. Theory and applications of structured light single pixel imaging

    NASA Astrophysics Data System (ADS)

    Stokoe, Robert J.; Stockton, Patrick A.; Pezeshki, Ali; Bartels, Randy A.

    2018-02-01

    Many single-pixel imaging techniques have been developed in recent years. Though the methods of image acquisition vary considerably, the methods share unifying features that make general analysis possible. Furthermore, the methods developed thus far are based on intuitive processes that enable simple and physically-motivated reconstruction algorithms, however, this approach may not leverage the full potential of single-pixel imaging. We present a general theoretical framework of single-pixel imaging based on frame theory, which enables general, mathematically rigorous analysis. We apply our theoretical framework to existing single-pixel imaging techniques, as well as provide a foundation for developing more-advanced methods of image acquisition and reconstruction. The proposed frame theoretic framework for single-pixel imaging results in improved noise robustness, decrease in acquisition time, and can take advantage of special properties of the specimen under study. By building on this framework, new methods of imaging with a single element detector can be developed to realize the full potential associated with single-pixel imaging.

  4. Neutron imaging data processing using the Mantid framework

    NASA Astrophysics Data System (ADS)

    Pouzols, Federico M.; Draper, Nicholas; Nagella, Sri; Yang, Erica; Sajid, Ahmed; Ross, Derek; Ritchie, Brian; Hill, John; Burca, Genoveva; Minniti, Triestino; Moreton-Smith, Christopher; Kockelmann, Winfried

    2016-09-01

    Several imaging instruments are currently being constructed at neutron sources around the world. The Mantid software project provides an extensible framework that supports high-performance computing for data manipulation, analysis and visualisation of scientific data. At ISIS, IMAT (Imaging and Materials Science & Engineering) will offer unique time-of-flight neutron imaging techniques which impose several software requirements to control the data reduction and analysis. Here we outline the extensions currently being added to Mantid to provide specific support for neutron imaging requirements.

  5. Integrated image data and medical record management for rare disease registries. A general framework and its instantiation to theGerman Calciphylaxis Registry.

    PubMed

    Deserno, Thomas M; Haak, Daniel; Brandenburg, Vincent; Deserno, Verena; Classen, Christoph; Specht, Paula

    2014-12-01

    Especially for investigator-initiated research at universities and academic institutions, Internet-based rare disease registries (RDR) are required that integrate electronic data capture (EDC) with automatic image analysis or manual image annotation. We propose a modular framework merging alpha-numerical and binary data capture. In concordance with the Office of Rare Diseases Research recommendations, a requirement analysis was performed based on several RDR databases currently hosted at Uniklinik RWTH Aachen, Germany. With respect to the study management tool that is already successfully operating at the Clinical Trial Center Aachen, the Google Web Toolkit was chosen with Hibernate and Gilead connecting a MySQL database management system. Image and signal data integration and processing is supported by Apache Commons FileUpload-Library and ImageJ-based Java code, respectively. As a proof of concept, the framework is instantiated to the German Calciphylaxis Registry. The framework is composed of five mandatory core modules: (1) Data Core, (2) EDC, (3) Access Control, (4) Audit Trail, and (5) Terminology as well as six optional modules: (6) Binary Large Object (BLOB), (7) BLOB Analysis, (8) Standard Operation Procedure, (9) Communication, (10) Pseudonymization, and (11) Biorepository. Modules 1-7 are implemented in the German Calciphylaxis Registry. The proposed RDR framework is easily instantiated and directly integrates image management and analysis. As open source software, it may assist improved data collection and analysis of rare diseases in near future.

  6. A Query Expansion Framework in Image Retrieval Domain Based on Local and Global Analysis

    PubMed Central

    Rahman, M. M.; Antani, S. K.; Thoma, G. R.

    2011-01-01

    We present an image retrieval framework based on automatic query expansion in a concept feature space by generalizing the vector space model of information retrieval. In this framework, images are represented by vectors of weighted concepts similar to the keyword-based representation used in text retrieval. To generate the concept vocabularies, a statistical model is built by utilizing Support Vector Machine (SVM)-based classification techniques. The images are represented as “bag of concepts” that comprise perceptually and/or semantically distinguishable color and texture patches from local image regions in a multi-dimensional feature space. To explore the correlation between the concepts and overcome the assumption of feature independence in this model, we propose query expansion techniques in the image domain from a new perspective based on both local and global analysis. For the local analysis, the correlations between the concepts based on the co-occurrence pattern, and the metrical constraints based on the neighborhood proximity between the concepts in encoded images, are analyzed by considering local feedback information. We also analyze the concept similarities in the collection as a whole in the form of a similarity thesaurus and propose an efficient query expansion based on the global analysis. The experimental results on a photographic collection of natural scenes and a biomedical database of different imaging modalities demonstrate the effectiveness of the proposed framework in terms of precision and recall. PMID:21822350

  7. Multiscale hidden Markov models for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Nowak, Robert D.

    1999-06-01

    Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.

  8. An open data mining framework for the analysis of medical images: application on obstructive nephropathy microscopy images.

    PubMed

    Doukas, Charalampos; Goudas, Theodosis; Fischer, Simon; Mierswa, Ingo; Chatziioannou, Aristotle; Maglogiannis, Ilias

    2010-01-01

    This paper presents an open image-mining framework that provides access to tools and methods for the characterization of medical images. Several image processing and feature extraction operators have been implemented and exposed through Web Services. Rapid-Miner, an open source data mining system has been utilized for applying classification operators and creating the essential processing workflows. The proposed framework has been applied for the detection of salient objects in Obstructive Nephropathy microscopy images. Initial classification results are quite promising demonstrating the feasibility of automated characterization of kidney biopsy images.

  9. Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    PubMed Central

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon

    2011-01-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532

  10. An automated image analysis framework for segmentation and division plane detection of single live Staphylococcus aureus cells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy

    NASA Astrophysics Data System (ADS)

    Wollman, Adam J. M.; Miller, Helen; Foster, Simon; Leake, Mark C.

    2016-10-01

    Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains such as Methicillin Resistant S. aureus (MRSA). Here we report an image analysis framework for automated detection and image segmentation of cells in S. aureus cell clusters, and explicit identification of their cell division planes. We use a new combination of several existing analytical tools of image analysis to detect cellular and subcellular morphological features relevant to cell division from millisecond time scale sampled images of live pathogens at a detection precision of single molecules. We demonstrate this approach using a fluorescent reporter GFP fused to the protein EzrA that localises to a mid-cell plane during division and is involved in regulation of cell size and division. This image analysis framework presents a valuable platform from which to study candidate new antimicrobials which target the cell division machinery, but may also have more general application in detecting morphologically complex structures of fluorescently labelled proteins present in clusters of other types of cells.

  11. Markov Random Fields, Stochastic Quantization and Image Analysis

    DTIC Science & Technology

    1990-01-01

    Markov random fields based on the lattice Z2 have been extensively used in image analysis in a Bayesian framework as a-priori models for the...of Image Analysis can be given some fundamental justification then there is a remarkable connection between Probabilistic Image Analysis , Statistical Mechanics and Lattice-based Euclidean Quantum Field Theory.

  12. Computer-aided pulmonary image analysis in small animal models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J.

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next.more » The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.« less

  13. Evidential Reasoning in Expert Systems for Image Analysis.

    DTIC Science & Technology

    1985-02-01

    techniques to image analysis (IA). There is growing evidence that these techniques offer significant improvements in image analysis , particularly in the...2) to provide a common framework for analysis, (3) to structure the ER process for major expert-system tasks in image analysis , and (4) to identify...approaches to three important tasks for expert systems in the domain of image analysis . This segment concluded with an assessment of the strengths

  14. Multiple Object Retrieval in Image Databases Using Hierarchical Segmentation Tree

    ERIC Educational Resources Information Center

    Chen, Wei-Bang

    2012-01-01

    The purpose of this research is to develop a new visual information analysis, representation, and retrieval framework for automatic discovery of salient objects of user's interest in large-scale image databases. In particular, this dissertation describes a content-based image retrieval framework which supports multiple-object retrieval. The…

  15. Lessons Learned From Developing A Streaming Data Framework for Scientific Analysis

    NASA Technical Reports Server (NTRS)

    Wheeler. Kevin R.; Allan, Mark; Curry, Charles

    2003-01-01

    We describe the development and usage of a streaming data analysis software framework. The framework is used for three different applications: Earth science hyper-spectral imaging analysis, Electromyograph pattern detection, and Electroencephalogram state determination. In each application the framework was used to answer a series of science questions which evolved with each subsequent answer. This evolution is summarized in the form of lessons learned.

  16. Exploring the complementarity of THz pulse imaging and DCE-MRIs: Toward a unified multi-channel classification and a deep learning framework.

    PubMed

    Yin, X-X; Zhang, Y; Cao, J; Wu, J-L; Hadjiloucas, S

    2016-12-01

    We provide a comprehensive account of recent advances in biomedical image analysis and classification from two complementary imaging modalities: terahertz (THz) pulse imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The work aims to highlight underlining commonalities in both data structures so that a common multi-channel data fusion framework can be developed. Signal pre-processing in both datasets is discussed briefly taking into consideration advances in multi-resolution analysis and model based fractional order calculus system identification. Developments in statistical signal processing using principal component and independent component analysis are also considered. These algorithms have been developed independently by the THz-pulse imaging and DCE-MRI communities, and there is scope to place them in a common multi-channel framework to provide better software standardization at the pre-processing de-noising stage. A comprehensive discussion of feature selection strategies is also provided and the importance of preserving textural information is highlighted. Feature extraction and classification methods taking into consideration recent advances in support vector machine (SVM) and extreme learning machine (ELM) classifiers and their complex extensions are presented. An outlook on Clifford algebra classifiers and deep learning techniques suitable to both types of datasets is also provided. The work points toward the direction of developing a new unified multi-channel signal processing framework for biomedical image analysis that will explore synergies from both sensing modalities for inferring disease proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2012-10-01

    The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.

  18. Improved biliary detection and diagnosis through intelligent machine analysis.

    PubMed

    Logeswaran, Rajasvaran

    2012-09-01

    This paper reports on work undertaken to improve automated detection of bile ducts in magnetic resonance cholangiopancreatography (MRCP) images, with the objective of conducting preliminary classification of the images for diagnosis. The proposed I-BDeDIMA (Improved Biliary Detection and Diagnosis through Intelligent Machine Analysis) scheme is a multi-stage framework consisting of successive phases of image normalization, denoising, structure identification, object labeling, feature selection and disease classification. A combination of multiresolution wavelet, dynamic intensity thresholding, segment-based region growing, region elimination, statistical analysis and neural networks, is used in this framework to achieve good structure detection and preliminary diagnosis. Tests conducted on over 200 clinical images with known diagnosis have shown promising results of over 90% accuracy. The scheme outperforms related work in the literature, making it a viable framework for computer-aided diagnosis of biliary diseases. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Supervised graph hashing for histopathology image retrieval and classification.

    PubMed

    Shi, Xiaoshuang; Xing, Fuyong; Xu, KaiDi; Xie, Yuanpu; Su, Hai; Yang, Lin

    2017-12-01

    In pathology image analysis, morphological characteristics of cells are critical to grade many diseases. With the development of cell detection and segmentation techniques, it is possible to extract cell-level information for further analysis in pathology images. However, it is challenging to conduct efficient analysis of cell-level information on a large-scale image dataset because each image usually contains hundreds or thousands of cells. In this paper, we propose a novel image retrieval based framework for large-scale pathology image analysis. For each image, we encode each cell into binary codes to generate image representation using a novel graph based hashing model and then conduct image retrieval by applying a group-to-group matching method to similarity measurement. In order to improve both computational efficiency and memory requirement, we further introduce matrix factorization into the hashing model for scalable image retrieval. The proposed framework is extensively validated with thousands of lung cancer images, and it achieves 97.98% classification accuracy and 97.50% retrieval precision with all cells of each query image used. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Simulation of bright-field microscopy images depicting pap-smear specimen

    PubMed Central

    Malm, Patrik; Brun, Anders; Bengtsson, Ewert

    2015-01-01

    As digital imaging is becoming a fundamental part of medical and biomedical research, the demand for computer-based evaluation using advanced image analysis is becoming an integral part of many research projects. A common problem when developing new image analysis algorithms is the need of large datasets with ground truth on which the algorithms can be tested and optimized. Generating such datasets is often tedious and introduces subjectivity and interindividual and intraindividual variations. An alternative to manually created ground-truth data is to generate synthetic images where the ground truth is known. The challenge then is to make the images sufficiently similar to the real ones to be useful in algorithm development. One of the first and most widely studied medical image analysis tasks is to automate screening for cervical cancer through Pap-smear analysis. As part of an effort to develop a new generation cervical cancer screening system, we have developed a framework for the creation of realistic synthetic bright-field microscopy images that can be used for algorithm development and benchmarking. The resulting framework has been assessed through a visual evaluation by experts with extensive experience of Pap-smear images. The results show that images produced using our described methods are realistic enough to be mistaken for real microscopy images. The developed simulation framework is very flexible and can be modified to mimic many other types of bright-field microscopy images. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of ISAC PMID:25573002

  1. Ethnicity identification from face images

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoguang; Jain, Anil K.

    2004-08-01

    Human facial images provide the demographic information, such as ethnicity and gender. Conversely, ethnicity and gender also play an important role in face-related applications. Image-based ethnicity identification problem is addressed in a machine learning framework. The Linear Discriminant Analysis (LDA) based scheme is presented for the two-class (Asian vs. non-Asian) ethnicity classification task. Multiscale analysis is applied to the input facial images. An ensemble framework, which integrates the LDA analysis for the input face images at different scales, is proposed to further improve the classification performance. The product rule is used as the combination strategy in the ensemble. Experimental results based on a face database containing 263 subjects (2,630 face images, with equal balance between the two classes) are promising, indicating that LDA and the proposed ensemble framework have sufficient discriminative power for the ethnicity classification problem. The normalized ethnicity classification scores can be helpful in the facial identity recognition. Useful as a "soft" biometric, face matching scores can be updated based on the output of ethnicity classification module. In other words, ethnicity classifier does not have to be perfect to be useful in practice.

  2. Design and applications of a multimodality image data warehouse framework.

    PubMed

    Wong, Stephen T C; Hoo, Kent Soo; Knowlton, Robert C; Laxer, Kenneth D; Cao, Xinhau; Hawkins, Randall A; Dillon, William P; Arenson, Ronald L

    2002-01-01

    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications--namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains.

  3. Design and Applications of a Multimodality Image Data Warehouse Framework

    PubMed Central

    Wong, Stephen T.C.; Hoo, Kent Soo; Knowlton, Robert C.; Laxer, Kenneth D.; Cao, Xinhau; Hawkins, Randall A.; Dillon, William P.; Arenson, Ronald L.

    2002-01-01

    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications—namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains. PMID:11971885

  4. Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery.

    PubMed

    Lu, Guolan; Wang, Dongsheng; Qin, Xulei; Halig, Luma; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Pogue, Brian W; Chen, Zhuo Georgia; Fei, Baowei

    2015-01-01

    Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor.

  5. Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Wang, Dongsheng; Qin, Xulei; Halig, Luma; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Pogue, Brian W.; Chen, Zhuo Georgia; Fei, Baowei

    2015-12-01

    Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor.

  6. A patient-specific segmentation framework for longitudinal MR images of traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Prastawa, Marcel; Irimia, Andrei; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.; Gerig, Guido

    2012-02-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Robust, reproducible segmentations of MR images with TBI are crucial for quantitative analysis of recovery and treatment efficacy. However, this is a significant challenge due to severe anatomy changes caused by edema (swelling), bleeding, tissue deformation, skull fracture, and other effects related to head injury. In this paper, we introduce a multi-modal image segmentation framework for longitudinal TBI images. The framework is initialized through manual input of primary lesion sites at each time point, which are then refined by a joint approach composed of Bayesian segmentation and construction of a personalized atlas. The personalized atlas construction estimates the average of the posteriors of the Bayesian segmentation at each time point and warps the average back to each time point to provide the updated priors for Bayesian segmentation. The difference between our approach and segmenting longitudinal images independently is that we use the information from all time points to improve the segmentations. Given a manual initialization, our framework automatically segments healthy structures (white matter, grey matter, cerebrospinal fluid) as well as different lesions such as hemorrhagic lesions and edema. Our framework can handle different sets of modalities at each time point, which provides flexibility in analyzing clinical scans. We show results on three subjects with acute baseline scans and chronic follow-up scans. The results demonstrate that joint analysis of all the points yields improved segmentation compared to independent analysis of the two time points.

  7. Analyzing prospective teachers' images of scientists using positive, negative and stereotypical images of scientists

    NASA Astrophysics Data System (ADS)

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David

    2013-04-01

    Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.

  8. Evaluation metrics for bone segmentation in ultrasound

    NASA Astrophysics Data System (ADS)

    Lougheed, Matthew; Fichtinger, Gabor; Ungi, Tamas

    2015-03-01

    Tracked ultrasound is a safe alternative to X-ray for imaging bones. The interpretation of bony structures is challenging as ultrasound has no specific intensity characteristic of bones. Several image segmentation algorithms have been devised to identify bony structures. We propose an open-source framework that would aid in the development and comparison of such algorithms by quantitatively measuring segmentation performance in the ultrasound images. True-positive and false-negative metrics used in the framework quantify algorithm performance based on correctly segmented bone and correctly segmented boneless regions. Ground-truth for these metrics are defined manually and along with the corresponding automatically segmented image are used for the performance analysis. Manually created ground truth tests were generated to verify the accuracy of the analysis. Further evaluation metrics for determining average performance per slide and standard deviation are considered. The metrics provide a means of evaluating accuracy of frames along the length of a volume. This would aid in assessing the accuracy of the volume itself and the approach to image acquisition (positioning and frequency of frame). The framework was implemented as an open-source module of the 3D Slicer platform. The ground truth tests verified that the framework correctly calculates the implemented metrics. The developed framework provides a convenient way to evaluate bone segmentation algorithms. The implementation fits in a widely used application for segmentation algorithm prototyping. Future algorithm development will benefit by monitoring the effects of adjustments to an algorithm in a standard evaluation framework.

  9. IMAGE EXPLORER: Astronomical Image Analysis on an HTML5-based Web Application

    NASA Astrophysics Data System (ADS)

    Gopu, A.; Hayashi, S.; Young, M. D.

    2014-05-01

    Large datasets produced by recent astronomical imagers cause the traditional paradigm for basic visual analysis - typically downloading one's entire image dataset and using desktop clients like DS9, Aladin, etc. - to not scale, despite advances in desktop computing power and storage. This paper describes Image Explorer, a web framework that offers several of the basic visualization and analysis functionality commonly provided by tools like DS9, on any HTML5 capable web browser on various platforms. It uses a combination of the modern HTML5 canvas, JavaScript, and several layers of lossless PNG tiles producted from the FITS image data. Astronomers are able to rapidly and simultaneously open up several images on their web-browser, adjust the intensity min/max cutoff or its scaling function, and zoom level, apply color-maps, view position and FITS header information, execute typically used data reduction codes on the corresponding FITS data using the FRIAA framework, and overlay tiles for source catalog objects, etc.

  10. Man-made objects cuing in satellite imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skurikhin, Alexei N

    2009-01-01

    We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka'smore » Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area monitoring to quickly guide the further analysis to regions of interest.« less

  11. Dictionary-based image reconstruction for superresolution in integrated circuit imaging.

    PubMed

    Cilingiroglu, T Berkin; Uyar, Aydan; Tuysuzoglu, Ahmet; Karl, W Clem; Konrad, Janusz; Goldberg, Bennett B; Ünlü, M Selim

    2015-06-01

    Resolution improvement through signal processing techniques for integrated circuit imaging is becoming more crucial as the rapid decrease in integrated circuit dimensions continues. Although there is a significant effort to push the limits of optical resolution for backside fault analysis through the use of solid immersion lenses, higher order laser beams, and beam apodization, signal processing techniques are required for additional improvement. In this work, we propose a sparse image reconstruction framework which couples overcomplete dictionary-based representation with a physics-based forward model to improve resolution and localization accuracy in high numerical aperture confocal microscopy systems for backside optical integrated circuit analysis. The effectiveness of the framework is demonstrated on experimental data.

  12. A framework for optimizing micro-CT in dual-modality micro-CT/XFCT small-animal imaging system

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Cho, Sang Hyun

    2017-09-01

    Dual-modality Computed Tomography (CT)/X-ray Fluorescence Computed Tomography (XFCT) can be a valuable tool for imaging and quantifying the organ and tissue distribution of small concentrations of high atomic number materials in small-animal system. In this work, the framework for optimizing the micro-CT imaging system component of the dual-modality system is described, either when the micro-CT images are concurrently acquired with XFCT and using the x-ray spectral conditions for XFCT, or when the micro-CT images are acquired sequentially and independently of XFCT. This framework utilizes the cascaded systems analysis for task-specific determination of the detectability index using numerical observer models at a given radiation dose, where the radiation dose is determined using Monte Carlo simulations.

  13. Amateur Image Pipeline Processing using Python plus PyRAF

    NASA Astrophysics Data System (ADS)

    Green, Wayne

    2012-05-01

    A template pipeline spanning observing planning to publishing is offered as a basis for establishing a long term observing program. The data reduction pipeline encapsulates all policy and procedures, providing an accountable framework for data analysis and a teaching framework for IRAF. This paper introduces the technical details of a complete pipeline processing environment using Python, PyRAF and a few other languages. The pipeline encapsulates all processing decisions within an auditable framework. The framework quickly handles the heavy lifting of image processing. It also serves as an excellent teaching environment for astronomical data management and IRAF reduction decisions.

  14. Model-based image analysis of a tethered Brownian fibre for shear stress sensing

    PubMed Central

    2017-01-01

    The measurement of fluid dynamic shear stress acting on a biologically relevant surface is a challenging problem, particularly in the complex environment of, for example, the vasculature. While an experimental method for the direct detection of wall shear stress via the imaging of a synthetic biology nanorod has recently been developed, the data interpretation so far has been limited to phenomenological random walk modelling, small-angle approximation, and image analysis techniques which do not take into account the production of an image from a three-dimensional subject. In this report, we develop a mathematical and statistical framework to estimate shear stress from rapid imaging sequences based firstly on stochastic modelling of the dynamics of a tethered Brownian fibre in shear flow, and secondly on a novel model-based image analysis, which reconstructs fibre positions by solving the inverse problem of image formation. This framework is tested on experimental data, providing the first mechanistically rational analysis of the novel assay. What follows further develops the established theory for an untethered particle in a semi-dilute suspension, which is of relevance to, for example, the study of Brownian nanowires without flow, and presents new ideas in the field of multi-disciplinary image analysis. PMID:29212755

  15. Towards a framework for agent-based image analysis of remote-sensing data

    PubMed Central

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-01-01

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects’ properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA). PMID:27721916

  16. Towards a framework for agent-based image analysis of remote-sensing data.

    PubMed

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-04-03

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).

  17. Rotation covariant image processing for biomedical applications.

    PubMed

    Skibbe, Henrik; Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  18. Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images.

    PubMed

    Ferro, Anabela; Mestre, Tânia; Carneiro, Patrícia; Sahumbaiev, Ivan; Seruca, Raquel; Sanches, João M

    2017-05-01

    In the past decades, there has been an amazing progress in the understanding of the molecular mechanisms of the cell cycle. This has been possible largely due to a better conceptualization of the cycle itself, but also as a consequence of technological advances. Herein, we propose a new fluorescence image-based framework targeted at the identification and segmentation of stained nuclei with the purpose to determine DNA content in distinct cell cycle stages. The method is based on discriminative features, such as total intensity and area, retrieved from in situ stained nuclei by fluorescence microscopy, allowing the determination of the cell cycle phase of both single and sub-population of cells. The analysis framework was built on a modified k-means clustering strategy and refined with a Gaussian mixture model classifier, which enabled the definition of highly accurate classification clusters corresponding to G1, S and G2 phases. Using the information retrieved from area and fluorescence total intensity, the modified k-means (k=3) cluster imaging framework classified 64.7% of the imaged nuclei, as being at G1 phase, 12.0% at G2 phase and 23.2% at S phase. Performance of the imaging framework was ascertained with normal murine mammary gland cells constitutively expressing the Fucci2 technology, exhibiting an overall sensitivity of 94.0%. Further, the results indicate that the imaging framework has a robust capacity to both identify a given DAPI-stained nucleus to its correct cell cycle phase, as well as to determine, with very high probability, true negatives. Importantly, this novel imaging approach is a non-disruptive method that allows an integrative and simultaneous quantitative analysis of molecular and morphological parameters, thus awarding the possibility of cell cycle profiling in cytological and histological samples.

  19. Computational model of lightness perception in high dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Krawczyk, Grzegorz; Myszkowski, Karol; Seidel, Hans-Peter

    2006-02-01

    An anchoring theory of lightness perception by Gilchrist et al. [1999] explains many characteristics of human visual system such as lightness constancy and its spectacular failures which are important in the perception of images. The principal concept of this theory is the perception of complex scenes in terms of groups of consistent areas (frameworks). Such areas, following the gestalt theorists, are defined by the regions of common illumination. The key aspect of the image perception is the estimation of lightness within each framework through the anchoring to the luminance perceived as white, followed by the computation of the global lightness. In this paper we provide a computational model for automatic decomposition of HDR images into frameworks. We derive a tone mapping operator which predicts lightness perception of the real world scenes and aims at its accurate reproduction on low dynamic range displays. Furthermore, such a decomposition into frameworks opens new grounds for local image analysis in view of human perception.

  20. Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures.

    PubMed

    Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo

    2017-03-21

    Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.

  1. Analysis of the Image of Scientists Portrayed in the Lebanese National Science Textbooks

    ERIC Educational Resources Information Center

    Yacoubian, Hagop A.; Al-Khatib, Layan; Mardirossian, Taline

    2017-01-01

    This article presents an analysis of how scientists are portrayed in the Lebanese national science textbooks. The purpose of this study was twofold. First, to develop a comprehensive analytical framework that can serve as a tool to analyze the image of scientists portrayed in educational resources. Second, to analyze the image of scientists…

  2. Localizing text in scene images by boundary clustering, stroke segmentation, and string fragment classification.

    PubMed

    Yi, Chucai; Tian, Yingli

    2012-09-01

    In this paper, we propose a novel framework to extract text regions from scene images with complex backgrounds and multiple text appearances. This framework consists of three main steps: boundary clustering (BC), stroke segmentation, and string fragment classification. In BC, we propose a new bigram-color-uniformity-based method to model both text and attachment surface, and cluster edge pixels based on color pairs and spatial positions into boundary layers. Then, stroke segmentation is performed at each boundary layer by color assignment to extract character candidates. We propose two algorithms to combine the structural analysis of text stroke with color assignment and filter out background interferences. Further, we design a robust string fragment classification based on Gabor-based text features. The features are obtained from feature maps of gradient, stroke distribution, and stroke width. The proposed framework of text localization is evaluated on scene images, born-digital images, broadcast video images, and images of handheld objects captured by blind persons. Experimental results on respective datasets demonstrate that the framework outperforms state-of-the-art localization algorithms.

  3. Rapid development of medical imaging tools with open-source libraries.

    PubMed

    Caban, Jesus J; Joshi, Alark; Nagy, Paul

    2007-11-01

    Rapid prototyping is an important element in researching new imaging analysis techniques and developing custom medical applications. In the last ten years, the open source community and the number of open source libraries and freely available frameworks for biomedical research have grown significantly. What they offer are now considered standards in medical image analysis, computer-aided diagnosis, and medical visualization. A cursory review of the peer-reviewed literature in imaging informatics (indeed, in almost any information technology-dependent scientific discipline) indicates the current reliance on open source libraries to accelerate development and validation of processes and techniques. In this survey paper, we review and compare a few of the most successful open source libraries and frameworks for medical application development. Our dual intentions are to provide evidence that these approaches already constitute a vital and essential part of medical image analysis, diagnosis, and visualization and to motivate the reader to use open source libraries and software for rapid prototyping of medical applications and tools.

  4. Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C.

    2015-01-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data,, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked auto-encoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework image registration experiments were conducted on 7.0-tesla brain MR images. In all experiments, the results showed the new image registration framework consistently demonstrated more accurate registration results when compared to state-of-the-art. PMID:26552069

  5. Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning.

    PubMed

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C; Shen, Dinggang

    2016-07-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked autoencoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework, image registration experiments were conducted on 7.0-T brain MR images. In all experiments, the results showed that the new image registration framework consistently demonstrated more accurate registration results when compared to state of the art.

  6. Toward standardized quantitative image quality (IQ) assessment in computed tomography (CT): A comprehensive framework for automated and comparative IQ analysis based on ICRU Report 87.

    PubMed

    Pahn, Gregor; Skornitzke, Stephan; Schlemmer, Hans-Peter; Kauczor, Hans-Ulrich; Stiller, Wolfram

    2016-01-01

    Based on the guidelines from "Report 87: Radiation Dose and Image-quality Assessment in Computed Tomography" of the International Commission on Radiation Units and Measurements (ICRU), a software framework for automated quantitative image quality analysis was developed and its usability for a variety of scientific questions demonstrated. The extendable framework currently implements the calculation of the recommended Fourier image quality (IQ) metrics modulation transfer function (MTF) and noise-power spectrum (NPS), and additional IQ quantities such as noise magnitude, CT number accuracy, uniformity across the field-of-view, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated lesions for a commercially available cone-beam phantom. Sample image data were acquired with different scan and reconstruction settings on CT systems from different manufacturers. Spatial resolution is analyzed in terms of edge-spread function, line-spread-function, and MTF. 3D NPS is calculated according to ICRU Report 87, and condensed to 2D and radially averaged 1D representations. Noise magnitude, CT numbers, and uniformity of these quantities are assessed on large samples of ROIs. Low-contrast resolution (CNR, SNR) is quantitatively evaluated as a function of lesion contrast and diameter. Simultaneous automated processing of several image datasets allows for straightforward comparative assessment. The presented framework enables systematic, reproducible, automated and time-efficient quantitative IQ analysis. Consistent application of the ICRU guidelines facilitates standardization of quantitative assessment not only for routine quality assurance, but for a number of research questions, e.g. the comparison of different scanner models or acquisition protocols, and the evaluation of new technology or reconstruction methods. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Multi-object segmentation framework using deformable models for medical imaging analysis.

    PubMed

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.

  8. Automatic classification for mammogram backgrounds based on bi-rads complexity definition and on a multi content analysis framework

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Besnehard, Quentin; Marchessoux, Cédric

    2011-03-01

    Clinical studies for the validation of new medical imaging devices require hundreds of images. An important step in creating and tuning the study protocol is the classification of images into "difficult" and "easy" cases. This consists of classifying the image based on features like the complexity of the background, the visibility of the disease (lesions). Therefore, an automatic medical background classification tool for mammograms would help for such clinical studies. This classification tool is based on a multi-content analysis framework (MCA) which was firstly developed to recognize image content of computer screen shots. With the implementation of new texture features and a defined breast density scale, the MCA framework is able to automatically classify digital mammograms with a satisfying accuracy. BI-RADS (Breast Imaging Reporting Data System) density scale is used for grouping the mammograms, which standardizes the mammography reporting terminology and assessment and recommendation categories. Selected features are input into a decision tree classification scheme in MCA framework, which is the so called "weak classifier" (any classifier with a global error rate below 50%). With the AdaBoost iteration algorithm, these "weak classifiers" are combined into a "strong classifier" (a classifier with a low global error rate) for classifying one category. The results of classification for one "strong classifier" show the good accuracy with the high true positive rates. For the four categories the results are: TP=90.38%, TN=67.88%, FP=32.12% and FN =9.62%.

  9. Segmentation of radiographic images under topological constraints: application to the femur.

    PubMed

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-09-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.

  10. Towards adaptive, streaming analysis of x-ray tomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing amore » framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.« less

  11. Rotation Covariant Image Processing for Biomedical Applications

    PubMed Central

    Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences. PMID:23710255

  12. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  13. UNC-Utah NA-MIC framework for DTI fiber tract analysis.

    PubMed

    Verde, Audrey R; Budin, Francois; Berger, Jean-Baptiste; Gupta, Aditya; Farzinfar, Mahshid; Kaiser, Adrien; Ahn, Mihye; Johnson, Hans; Matsui, Joy; Hazlett, Heather C; Sharma, Anuja; Goodlett, Casey; Shi, Yundi; Gouttard, Sylvain; Vachet, Clement; Piven, Joseph; Zhu, Hongtu; Gerig, Guido; Styner, Martin

    2014-01-01

    Diffusion tensor imaging has become an important modality in the field of neuroimaging to capture changes in micro-organization and to assess white matter integrity or development. While there exists a number of tractography toolsets, these usually lack tools for preprocessing or to analyze diffusion properties along the fiber tracts. Currently, the field is in critical need of a coherent end-to-end toolset for performing an along-fiber tract analysis, accessible to non-technical neuroimaging researchers. The UNC-Utah NA-MIC DTI framework represents a coherent, open source, end-to-end toolset for atlas fiber tract based DTI analysis encompassing DICOM data conversion, quality control, atlas building, fiber tractography, fiber parameterization, and statistical analysis of diffusion properties. Most steps utilize graphical user interfaces (GUI) to simplify interaction and provide an extensive DTI analysis framework for non-technical researchers/investigators. We illustrate the use of our framework on a small sample, cross sectional neuroimaging study of eight healthy 1-year-old children from the Infant Brain Imaging Study (IBIS) Network. In this limited test study, we illustrate the power of our method by quantifying the diffusion properties at 1 year of age on the genu and splenium fiber tracts.

  14. UNC-Utah NA-MIC framework for DTI fiber tract analysis

    PubMed Central

    Verde, Audrey R.; Budin, Francois; Berger, Jean-Baptiste; Gupta, Aditya; Farzinfar, Mahshid; Kaiser, Adrien; Ahn, Mihye; Johnson, Hans; Matsui, Joy; Hazlett, Heather C.; Sharma, Anuja; Goodlett, Casey; Shi, Yundi; Gouttard, Sylvain; Vachet, Clement; Piven, Joseph; Zhu, Hongtu; Gerig, Guido; Styner, Martin

    2014-01-01

    Diffusion tensor imaging has become an important modality in the field of neuroimaging to capture changes in micro-organization and to assess white matter integrity or development. While there exists a number of tractography toolsets, these usually lack tools for preprocessing or to analyze diffusion properties along the fiber tracts. Currently, the field is in critical need of a coherent end-to-end toolset for performing an along-fiber tract analysis, accessible to non-technical neuroimaging researchers. The UNC-Utah NA-MIC DTI framework represents a coherent, open source, end-to-end toolset for atlas fiber tract based DTI analysis encompassing DICOM data conversion, quality control, atlas building, fiber tractography, fiber parameterization, and statistical analysis of diffusion properties. Most steps utilize graphical user interfaces (GUI) to simplify interaction and provide an extensive DTI analysis framework for non-technical researchers/investigators. We illustrate the use of our framework on a small sample, cross sectional neuroimaging study of eight healthy 1-year-old children from the Infant Brain Imaging Study (IBIS) Network. In this limited test study, we illustrate the power of our method by quantifying the diffusion properties at 1 year of age on the genu and splenium fiber tracts. PMID:24409141

  15. Pneumothorax detection in chest radiographs using local and global texture signatures

    NASA Astrophysics Data System (ADS)

    Geva, Ofer; Zimmerman-Moreno, Gali; Lieberman, Sivan; Konen, Eli; Greenspan, Hayit

    2015-03-01

    A novel framework for automatic detection of pneumothorax abnormality in chest radiographs is presented. The suggested method is based on a texture analysis approach combined with supervised learning techniques. The proposed framework consists of two main steps: at first, a texture analysis process is performed for detection of local abnormalities. Labeled image patches are extracted in the texture analysis procedure following which local analysis values are incorporated into a novel global image representation. The global representation is used for training and detection of the abnormality at the image level. The presented global representation is designed based on the distinctive shape of the lung, taking into account the characteristics of typical pneumothorax abnormalities. A supervised learning process was performed on both the local and global data, leading to trained detection system. The system was tested on a dataset of 108 upright chest radiographs. Several state of the art texture feature sets were experimented with (Local Binary Patterns, Maximum Response filters). The optimal configuration yielded sensitivity of 81% with specificity of 87%. The results of the evaluation are promising, establishing the current framework as a basis for additional improvements and extensions.

  16. Cross contrast multi-channel image registration using image synthesis for MR brain images.

    PubMed

    Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L

    2017-02-01

    Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Second Harmonic Generation of Unpolarized Light

    NASA Astrophysics Data System (ADS)

    Ding, Changqin; Ulcickas, James R. W.; Deng, Fengyuan; Simpson, Garth J.

    2017-11-01

    A Mueller tensor mathematical framework was applied for predicting and interpreting the second harmonic generation (SHG) produced with an unpolarized fundamental beam. In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete depolarization of the incident light complicates polarization analysis. The proposed framework has the distinct advantage of seamlessly merging the purely polarized theory based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor framework capable of handling partial depolarized fundamental and/or SHG produced. The predictions of the model are in excellent agreement with experimental measurements of z -cut quartz and mouse tail tendon obtained with polarized and depolarized incident light. The polarization-dependent SHG produced with unpolarized fundamental allowed determination of collagen fiber orientation in agreement with orthogonal methods based on image analysis. This method has the distinct advantage of being immune to birefringence or depolarization of the fundamental beam for structural analysis of tissues.

  18. A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines.

    PubMed

    Khan, Arif Ul Maula; Mikut, Ralf; Reischl, Markus

    2016-01-01

    The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts.

  19. A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines

    PubMed Central

    Mikut, Ralf; Reischl, Markus

    2016-01-01

    The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts. PMID:27764213

  20. Brain imaging registry for neurologic diagnosis and research

    NASA Astrophysics Data System (ADS)

    Hoo, Kent S., Jr.; Wong, Stephen T. C.; Knowlton, Robert C.; Young, Geoffrey S.; Walker, John; Cao, Xinhua; Dillon, William P.; Hawkins, Randall A.; Laxer, Kenneth D.

    2002-05-01

    The purpose of this paper is to demonstrate the importance of building a brain imaging registry (BIR) on top of existing medical information systems including Picture Archiving Communication Systems (PACS) environment. We describe the design framework for a cluster of data marts whose purpose is to provide clinicians and researchers efficient access to a large volume of raw and processed patient images and associated data originating from multiple operational systems over time and spread out across different hospital departments and laboratories. The framework is designed using object-oriented analysis and design methodology. The BIR data marts each contain complete image and textual data relating to patients with a particular disease.

  1. Breast Mass Detection in Digital Mammogram Based on Gestalt Psychology

    PubMed Central

    Bu, Qirong; Liu, Feihong; Zhang, Min; Ren, Yu; Lv, Yi

    2018-01-01

    Inspired by gestalt psychology, we combine human cognitive characteristics with knowledge of radiologists in medical image analysis. In this paper, a novel framework is proposed to detect breast masses in digitized mammograms. It can be divided into three modules: sensation integration, semantic integration, and verification. After analyzing the progress of radiologist's mammography screening, a series of visual rules based on the morphological characteristics of breast masses are presented and quantified by mathematical methods. The framework can be seen as an effective trade-off between bottom-up sensation and top-down recognition methods. This is a new exploratory method for the automatic detection of lesions. The experiments are performed on Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) data sets. The sensitivity reached to 92% at 1.94 false positive per image (FPI) on MIAS and 93.84% at 2.21 FPI on DDSM. Our framework has achieved a better performance compared with other algorithms. PMID:29854359

  2. Object-Based Image Analysis Beyond Remote Sensing - the Human Perspective

    NASA Astrophysics Data System (ADS)

    Blaschke, T.; Lang, S.; Tiede, D.; Papadakis, M.; Györi, A.

    2016-06-01

    We introduce a prototypical methodological framework for a place-based GIS-RS system for the spatial delineation of place while incorporating spatial analysis and mapping techniques using methods from different fields such as environmental psychology, geography, and computer science. The methodological lynchpin for this to happen - when aiming to delineate place in terms of objects - is object-based image analysis (OBIA).

  3. A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback.

    PubMed

    Rahman, Md Mahmudur; Bhattacharya, Prabir; Desai, Bipin C

    2007-01-01

    A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework.

  4. A Framework of Hyperspectral Image Compression using Neural Networks

    DOE PAGES

    Masalmah, Yahya M.; Martínez Nieves, Christian; Rivera Soto, Rafael; ...

    2015-01-01

    Hyperspectral image analysis has gained great attention due to its wide range of applications. Hyperspectral images provide a vast amount of information about underlying objects in an image by using a large range of the electromagnetic spectrum for each pixel. However, since the same image is taken multiple times using distinct electromagnetic bands, the size of such images tend to be significant, which leads to greater processing requirements. The aim of this paper is to present a proposed framework for image compression and to study the possible effects of spatial compression on quality of unmixing results. Image compression allows usmore » to reduce the dimensionality of an image while still preserving most of the original information, which could lead to faster image processing. Lastly, this paper presents preliminary results of different training techniques used in Artificial Neural Network (ANN) based compression algorithm.« less

  5. Hierarchical Factoring Based On Image Analysis And Orthoblique Rotations.

    PubMed

    Stankov, L

    1979-07-01

    The procedure for hierarchical factoring suggested by Schmid and Leiman (1957) is applied within the framework of image analysis and orthoblique rotational procedures. It is shown that this approach necessarily leads to correlated higher order factors. Also, one can obtain a smaller number of factors than produced by typical hierarchical procedures.

  6. Infrared and visible image fusion based on robust principal component analysis and compressed sensing

    NASA Astrophysics Data System (ADS)

    Li, Jun; Song, Minghui; Peng, Yuanxi

    2018-03-01

    Current infrared and visible image fusion methods do not achieve adequate information extraction, i.e., they cannot extract the target information from infrared images while retaining the background information from visible images. Moreover, most of them have high complexity and are time-consuming. This paper proposes an efficient image fusion framework for infrared and visible images on the basis of robust principal component analysis (RPCA) and compressed sensing (CS). The novel framework consists of three phases. First, RPCA decomposition is applied to the infrared and visible images to obtain their sparse and low-rank components, which represent the salient features and background information of the images, respectively. Second, the sparse and low-rank coefficients are fused by different strategies. On the one hand, the measurements of the sparse coefficients are obtained by the random Gaussian matrix, and they are then fused by the standard deviation (SD) based fusion rule. Next, the fused sparse component is obtained by reconstructing the result of the fused measurement using the fast continuous linearized augmented Lagrangian algorithm (FCLALM). On the other hand, the low-rank coefficients are fused using the max-absolute rule. Subsequently, the fused image is superposed by the fused sparse and low-rank components. For comparison, several popular fusion algorithms are tested experimentally. By comparing the fused results subjectively and objectively, we find that the proposed framework can extract the infrared targets while retaining the background information in the visible images. Thus, it exhibits state-of-the-art performance in terms of both fusion effects and timeliness.

  7. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    PubMed

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  8. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling

    NASA Astrophysics Data System (ADS)

    Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.

    2017-09-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. [Figure not available: see fulltext.

  9. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling.

    PubMed

    Comi, Troy J; Neumann, Elizabeth K; Do, Thanh D; Sweedler, Jonathan V

    2017-09-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. Graphical Abstract ᅟ.

  10. Heterogeneous Optimization Framework: Reproducible Preprocessing of Multi-Spectral Clinical MRI for Neuro-Oncology Imaging Research.

    PubMed

    Milchenko, Mikhail; Snyder, Abraham Z; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L; Fouke, Sarah Jost; Marcus, Daniel S

    2016-07-01

    Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.

  11. MitoGen: A Framework for Generating 3D Synthetic Time-Lapse Sequences of Cell Populations in Fluorescence Microscopy.

    PubMed

    Svoboda, David; Ulman, Vladimir

    2017-01-01

    The proper analysis of biological microscopy images is an important and complex task. Therefore, it requires verification of all steps involved in the process, including image segmentation and tracking algorithms. It is generally better to verify algorithms with computer-generated ground truth datasets, which, compared to manually annotated data, nowadays have reached high quality and can be produced in large quantities even for 3D time-lapse image sequences. Here, we propose a novel framework, called MitoGen, which is capable of generating ground truth datasets with fully 3D time-lapse sequences of synthetic fluorescence-stained cell populations. MitoGen shows biologically justified cell motility, shape and texture changes as well as cell divisions. Standard fluorescence microscopy phenomena such as photobleaching, blur with real point spread function (PSF), and several types of noise, are simulated to obtain realistic images. The MitoGen framework is scalable in both space and time. MitoGen generates visually plausible data that shows good agreement with real data in terms of image descriptors and mean square displacement (MSD) trajectory analysis. Additionally, it is also shown in this paper that four publicly available segmentation and tracking algorithms exhibit similar performance on both real and MitoGen-generated data. The implementation of MitoGen is freely available.

  12. Visual Pattern Analysis in Histopathology Images Using Bag of Features

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, Angel; Caicedo, Juan C.; González, Fabio A.

    This paper presents a framework to analyse visual patterns in a collection of medical images in a two stage procedure. First, a set of representative visual patterns from the image collection is obtained by constructing a visual-word dictionary under a bag-of-features approach. Second, an analysis of the relationships between visual patterns and semantic concepts in the image collection is performed. The most important visual patterns for each semantic concept are identified using correlation analysis. A matrix visualization of the structure and organization of the image collection is generated using a cluster analysis. The experimental evaluation was conducted on a histopathology image collection and results showed clear relationships between visual patterns and semantic concepts, that in addition, are of easy interpretation and understanding.

  13. A neotropical Miocene pollen database employing image-based search and semantic modeling.

    PubMed

    Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren

    2014-08-01

    Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.

  14. Volumetric image classification using homogeneous decomposition and dictionary learning: A study using retinal optical coherence tomography for detecting age-related macular degeneration.

    PubMed

    Albarrak, Abdulrahman; Coenen, Frans; Zheng, Yalin

    2017-01-01

    Three-dimensional (3D) (volumetric) diagnostic imaging techniques are indispensable with respect to the diagnosis and management of many medical conditions. However there is a lack of automated diagnosis techniques to facilitate such 3D image analysis (although some support tools do exist). This paper proposes a novel framework for volumetric medical image classification founded on homogeneous decomposition and dictionary learning. In the proposed framework each image (volume) is recursively decomposed until homogeneous regions are arrived at. Each region is represented using a Histogram of Oriented Gradients (HOG) which is transformed into a set of feature vectors. The Gaussian Mixture Model (GMM) is then used to generate a "dictionary" and the Improved Fisher Kernel (IFK) approach is used to encode feature vectors so as to generate a single feature vector for each volume, which can then be fed into a classifier generator. The principal advantage offered by the framework is that it does not require the detection (segmentation) of specific objects within the input data. The nature of the framework is fully described. A wide range of experiments was conducted with which to analyse the operation of the proposed framework and these are also reported fully in the paper. Although the proposed approach is generally applicable to 3D volumetric images, the focus for the work is 3D retinal Optical Coherence Tomography (OCT) images in the context of the diagnosis of Age-related Macular Degeneration (AMD). The results indicate that excellent diagnostic predictions can be produced using the proposed framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A focus of attention mechanism for gaze control within a framework for intelligent image analysis tools

    NASA Astrophysics Data System (ADS)

    Rodrigo, Ranga P.; Ranaweera, Kamal; Samarabandu, Jagath K.

    2004-05-01

    Focus of attention is often attributed to biological vision system where the entire field of view is first monitored and then the attention is focused to the object of interest. We propose using a similar approach for object recognition in a color image sequence. The intention is to locate an object based on a prior motive, concentrate on the detected object so that the imaging device can be guided toward it. We use the abilities of the intelligent image analysis framework developed in our laboratory to generate an algorithm dynamically to detect the particular type of object based on the user's object description. The proposed method uses color clustering along with segmentation. The segmented image with labeled regions is used to calculate the shape descriptor parameters. These and the color information are matched with the input description. Gaze is then controlled by issuing camera movement commands as appropriate. We present some preliminary results that demonstrate the success of this approach.

  16. Distributed memory parallel Markov random fields using graph partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, C.; Perciano, T.; Ushizima, D.

    Markov random fields (MRF) based algorithms have attracted a large amount of interest in image analysis due to their ability to exploit contextual information about data. Image data generated by experimental facilities, though, continues to grow larger and more complex, making it more difficult to analyze in a reasonable amount of time. Applying image processing algorithms to large datasets requires alternative approaches to circumvent performance problems. Aiming to provide scientists with a new tool to recover valuable information from such datasets, we developed a general purpose distributed memory parallel MRF-based image analysis framework (MPI-PMRF). MPI-PMRF overcomes performance and memory limitationsmore » by distributing data and computations across processors. The proposed approach was successfully tested with synthetic and experimental datasets. Additionally, the performance of the MPI-PMRF framework is analyzed through a detailed scalability study. We show that a performance increase is obtained while maintaining an accuracy of the segmentation results higher than 98%. The contributions of this paper are: (a) development of a distributed memory MRF framework; (b) measurement of the performance increase of the proposed approach; (c) verification of segmentation accuracy in both synthetic and experimental, real-world datasets« less

  17. Model based inference from microvascular measurements: Combining experimental measurements and model predictions using a Bayesian probabilistic approach

    PubMed Central

    Rasmussen, Peter M.; Smith, Amy F.; Sakadžić, Sava; Boas, David A.; Pries, Axel R.; Secomb, Timothy W.; Østergaard, Leif

    2017-01-01

    Objective In vivo imaging of the microcirculation and network-oriented modeling have emerged as powerful means of studying microvascular function and understanding its physiological significance. Network-oriented modeling may provide the means of summarizing vast amounts of data produced by high-throughput imaging techniques in terms of key, physiological indices. To estimate such indices with sufficient certainty, however, network-oriented analysis must be robust to the inevitable presence of uncertainty due to measurement errors as well as model errors. Methods We propose the Bayesian probabilistic data analysis framework as a means of integrating experimental measurements and network model simulations into a combined and statistically coherent analysis. The framework naturally handles noisy measurements and provides posterior distributions of model parameters as well as physiological indices associated with uncertainty. Results We applied the analysis framework to experimental data from three rat mesentery networks and one mouse brain cortex network. We inferred distributions for more than five hundred unknown pressure and hematocrit boundary conditions. Model predictions were consistent with previous analyses, and remained robust when measurements were omitted from model calibration. Conclusion Our Bayesian probabilistic approach may be suitable for optimizing data acquisition and for analyzing and reporting large datasets acquired as part of microvascular imaging studies. PMID:27987383

  18. Music video shot segmentation using independent component analysis and keyframe extraction based on image complexity

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chen, Ting; Zhang, Wenjun; Shi, Yunyu; Li, Jun

    2012-04-01

    In recent years, Music video data is increasing at an astonishing speed. Shot segmentation and keyframe extraction constitute a fundamental unit in organizing, indexing, retrieving video content. In this paper a unified framework is proposed to detect the shot boundaries and extract the keyframe of a shot. Music video is first segmented to shots by illumination-invariant chromaticity histogram in independent component (IC) analysis feature space .Then we presents a new metric, image complexity, to extract keyframe in a shot which is computed by ICs. Experimental results show the framework is effective and has a good performance.

  19. Design and Evaluation of a Scalable and Reconfigurable Multi-Platform System for Acoustic Imaging

    PubMed Central

    Izquierdo, Alberto; Villacorta, Juan José; del Val Puente, Lara; Suárez, Luis

    2016-01-01

    This paper proposes a scalable and multi-platform framework for signal acquisition and processing, which allows for the generation of acoustic images using planar arrays of MEMS (Micro-Electro-Mechanical Systems) microphones with low development and deployment costs. Acoustic characterization of MEMS sensors was performed, and the beam pattern of a module, based on an 8 × 8 planar array and of several clusters of modules, was obtained. A flexible framework, formed by an FPGA, an embedded processor, a computer desktop, and a graphic processing unit, was defined. The processing times of the algorithms used to obtain the acoustic images, including signal processing and wideband beamforming via FFT, were evaluated in each subsystem of the framework. Based on this analysis, three frameworks are proposed, defined by the specific subsystems used and the algorithms shared. Finally, a set of acoustic images obtained from sound reflected from a person are presented as a case study in the field of biometric identification. These results reveal the feasibility of the proposed system. PMID:27727174

  20. A framework for joint image-and-shape analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain

    2014-03-01

    Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.

  1. Steganalysis based on reducing the differences of image statistical characteristics

    NASA Astrophysics Data System (ADS)

    Wang, Ran; Niu, Shaozhang; Ping, Xijian; Zhang, Tao

    2018-04-01

    Compared with the process of embedding, the image contents make a more significant impact on the differences of image statistical characteristics. This makes the image steganalysis to be a classification problem with bigger withinclass scatter distances and smaller between-class scatter distances. As a result, the steganalysis features will be inseparate caused by the differences of image statistical characteristics. In this paper, a new steganalysis framework which can reduce the differences of image statistical characteristics caused by various content and processing methods is proposed. The given images are segmented to several sub-images according to the texture complexity. Steganalysis features are separately extracted from each subset with the same or close texture complexity to build a classifier. The final steganalysis result is figured out through a weighted fusing process. The theoretical analysis and experimental results can demonstrate the validity of the framework.

  2. Slide Set: Reproducible image analysis and batch processing with ImageJ.

    PubMed

    Nanes, Benjamin A

    2015-11-01

    Most imaging studies in the biological sciences rely on analyses that are relatively simple. However, manual repetition of analysis tasks across multiple regions in many images can complicate even the simplest analysis, making record keeping difficult, increasing the potential for error, and limiting reproducibility. While fully automated solutions are necessary for very large data sets, they are sometimes impractical for the small- and medium-sized data sets common in biology. Here we present the Slide Set plugin for ImageJ, which provides a framework for reproducible image analysis and batch processing. Slide Set organizes data into tables, associating image files with regions of interest and other relevant information. Analysis commands are automatically repeated over each image in the data set, and multiple commands can be chained together for more complex analysis tasks. All analysis parameters are saved, ensuring transparency and reproducibility. Slide Set includes a variety of built-in analysis commands and can be easily extended to automate other ImageJ plugins, reducing the manual repetition of image analysis without the set-up effort or programming expertise required for a fully automated solution.

  3. Use of Mechanical Turk as a MapReduce Framework for Macular OCT Segmentation.

    PubMed

    Lee, Aaron Y; Lee, Cecilia S; Keane, Pearse A; Tufail, Adnan

    2016-01-01

    Purpose. To evaluate the feasibility of using Mechanical Turk as a massively parallel platform to perform manual segmentations of macular spectral domain optical coherence tomography (SD-OCT) images using a MapReduce framework. Methods. A macular SD-OCT volume of 61 slice images was map-distributed to Amazon Mechanical Turk. Each Human Intelligence Task was set to $0.01 and required the user to draw five lines to outline the sublayers of the retinal OCT image after being shown example images. Each image was submitted twice for segmentation, and interrater reliability was calculated. The interface was created using custom HTML5 and JavaScript code, and data analysis was performed using R. An automated pipeline was developed to handle the map and reduce steps of the framework. Results. More than 93,500 data points were collected using this framework for the 61 images submitted. Pearson's correlation of interrater reliability was 0.995 (p < 0.0001) and coefficient of determination was 0.991. The cost of segmenting the macular volume was $1.21. A total of 22 individual Mechanical Turk users provided segmentations, each completing an average of 5.5 HITs. Each HIT was completed in an average of 4.43 minutes. Conclusions. Amazon Mechanical Turk provides a cost-effective, scalable, high-availability infrastructure for manual segmentation of OCT images.

  4. Use of Mechanical Turk as a MapReduce Framework for Macular OCT Segmentation

    PubMed Central

    Lee, Aaron Y.; Lee, Cecilia S.; Keane, Pearse A.; Tufail, Adnan

    2016-01-01

    Purpose. To evaluate the feasibility of using Mechanical Turk as a massively parallel platform to perform manual segmentations of macular spectral domain optical coherence tomography (SD-OCT) images using a MapReduce framework. Methods. A macular SD-OCT volume of 61 slice images was map-distributed to Amazon Mechanical Turk. Each Human Intelligence Task was set to $0.01 and required the user to draw five lines to outline the sublayers of the retinal OCT image after being shown example images. Each image was submitted twice for segmentation, and interrater reliability was calculated. The interface was created using custom HTML5 and JavaScript code, and data analysis was performed using R. An automated pipeline was developed to handle the map and reduce steps of the framework. Results. More than 93,500 data points were collected using this framework for the 61 images submitted. Pearson's correlation of interrater reliability was 0.995 (p < 0.0001) and coefficient of determination was 0.991. The cost of segmenting the macular volume was $1.21. A total of 22 individual Mechanical Turk users provided segmentations, each completing an average of 5.5 HITs. Each HIT was completed in an average of 4.43 minutes. Conclusions. Amazon Mechanical Turk provides a cost-effective, scalable, high-availability infrastructure for manual segmentation of OCT images. PMID:27293877

  5. Computer-based analysis of microvascular alterations in a mouse model for Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Heinzer, Stefan; Müller, Ralph; Stampanoni, Marco; Abela, Rafael; Meyer, Eric P.; Ulmann-Schuler, Alexandra; Krucker, Thomas

    2007-03-01

    Vascular factors associated with Alzheimer's disease (AD) have recently gained increased attention. To investigate changes in vascular, particularly microvascular architecture, we developed a hierarchical imaging framework to obtain large-volume, high-resolution 3D images from brains of transgenic mice modeling AD. In this paper, we present imaging and data analysis methods which allow compiling unique characteristics from several hundred gigabytes of image data. Image acquisition is based on desktop micro-computed tomography (µCT) and local synchrotron-radiation µCT (SRµCT) scanning with a nominal voxel size of 16 µm and 1.4 µm, respectively. Two visualization approaches were implemented: stacks of Z-buffer projections for fast data browsing, and progressive-mesh based surface rendering for detailed 3D visualization of the large datasets. In a first step, image data was assessed visually via a Java client connected to a central database. Identified characteristics of interest were subsequently quantified using global morphometry software. To obtain even deeper insight into microvascular alterations, tree analysis software was developed providing local morphometric parameters such as number of vessel segments or vessel tortuosity. In the context of ever increasing image resolution and large datasets, computer-aided analysis has proven both powerful and indispensable. The hierarchical approach maintains the context of local phenomena, while proper visualization and morphometry provide the basis for detailed analysis of the pathology related to structure. Beyond analysis of microvascular changes in AD this framework will have significant impact considering that vascular changes are involved in other neurodegenerative diseases as well as in cancer, cardiovascular disease, asthma, and arthritis.

  6. Analysis of the Image of Scientists Portrayed in the Lebanese National Science Textbooks

    NASA Astrophysics Data System (ADS)

    Yacoubian, Hagop A.; Al-Khatib, Layan; Mardirossian, Taline

    2017-07-01

    This article presents an analysis of how scientists are portrayed in the Lebanese national science textbooks. The purpose of this study was twofold. First, to develop a comprehensive analytical framework that can serve as a tool to analyze the image of scientists portrayed in educational resources. Second, to analyze the image of scientists portrayed in the Lebanese national science textbooks that are used in Basic Education. An analytical framework, based on an extensive review of the relevant literature, was constructed that served as a tool for analyzing the textbooks. Based on evidence-based stereotypes, the framework focused on the individual and work-related characteristics of scientists. Fifteen science textbooks were analyzed using both quantitative and qualitative measures. Our analysis of the textbooks showed the presence of a number of stereotypical images. The scientists are predominantly white males of European descent. Non-Western scientists, including Lebanese and/or Arab scientists are mostly absent in the textbooks. In addition, the scientists are portrayed as rational individuals who work alone, who conduct experiments in their labs by following the scientific method, and by operating within Eurocentric paradigms. External factors do not influence their work. They are engaged in an enterprise which is objective, which aims for discovering the truth out there, and which involves dealing with direct evidence. Implications for science education are discussed.

  7. Collaborative Research and Development (CR&D) III Task Order 0090: Image Processing Framework: From Acquisition and Analysis to Archival Storage

    DTIC Science & Technology

    2013-05-01

    contract or a PhD di sse rtation typically are a " proo f- of-concept" code base that can onl y read a single set of inputs and are not designed ...AFRL-RX-WP-TR-2013-0210 COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) III Task Order 0090: Image Processing Framework: From...public release; distribution unlimited. See additional restrictions described on inside pages. STINFO COPY AIR FORCE RESEARCH LABORATORY

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurrus, Elizabeth R.; Hodas, Nathan O.; Baker, Nathan A.

    Forensic analysis of nanoparticles is often conducted through the collection and identifi- cation of electron microscopy images to determine the origin of suspected nuclear material. Each image is carefully studied by experts for classification of materials based on texture, shape, and size. Manually inspecting large image datasets takes enormous amounts of time. However, automatic classification of large image datasets is a challenging problem due to the complexity involved in choosing image features, the lack of training data available for effective machine learning methods, and the availability of user interfaces to parse through images. Therefore, a significant need exists for automatedmore » and semi-automated methods to help analysts perform accurate image classification in large image datasets. We present INStINCt, our Intelligent Signature Canvas, as a framework for quickly organizing image data in a web based canvas framework. Images are partitioned using small sets of example images, chosen by users, and presented in an optimal layout based on features derived from convolutional neural networks.« less

  9. Modeling 4D Pathological Changes by Leveraging Normative Models

    PubMed Central

    Wang, Bo; Prastawa, Marcel; Irimia, Andrei; Saha, Avishek; Liu, Wei; Goh, S.Y. Matthew; Vespa, Paul M.; Van Horn, John D.; Gerig, Guido

    2016-01-01

    With the increasing use of efficient multimodal 3D imaging, clinicians are able to access longitudinal imaging to stage pathological diseases, to monitor the efficacy of therapeutic interventions, or to assess and quantify rehabilitation efforts. Analysis of such four-dimensional (4D) image data presenting pathologies, including disappearing and newly appearing lesions, represents a significant challenge due to the presence of complex spatio-temporal changes. Image analysis methods for such 4D image data have to include not only a concept for joint segmentation of 3D datasets to account for inherent correlations of subject-specific repeated scans but also a mechanism to account for large deformations and the destruction and formation of lesions (e.g., edema, bleeding) due to underlying physiological processes associated with damage, intervention, and recovery. In this paper, we propose a novel framework that provides a joint segmentation-registration framework to tackle the inherent problem of image registration in the presence of objects not present in all images of the time series. Our methodology models 4D changes in pathological anatomy across time and and also provides an explicit mapping of a healthy normative template to a subject’s image data with pathologies. Since atlas-moderated segmentation methods cannot explain appearance and locality pathological structures that are not represented in the template atlas, the new framework provides different options for initialization via a supervised learning approach, iterative semisupervised active learning, and also transfer learning, which results in a fully automatic 4D segmentation method. We demonstrate the effectiveness of our novel approach with synthetic experiments and a 4D multimodal MRI dataset of severe traumatic brain injury (TBI), including validation via comparison to expert segmentations. However, the proposed methodology is generic in regard to different clinical applications requiring quantitative analysis of 4D imaging representing spatio-temporal changes of pathologies. PMID:27818606

  10. Non-lambertian reflectance modeling and shape recovery of faces using tensor splines.

    PubMed

    Kumar, Ritwik; Barmpoutis, Angelos; Banerjee, Arunava; Vemuri, Baba C

    2011-03-01

    Modeling illumination effects and pose variations of a face is of fundamental importance in the field of facial image analysis. Most of the conventional techniques that simultaneously address both of these problems work with the Lambertian assumption and thus fall short of accurately capturing the complex intensity variation that the facial images exhibit or recovering their 3D shape in the presence of specularities and cast shadows. In this paper, we present a novel Tensor-Spline-based framework for facial image analysis. We show that, using this framework, the facial apparent BRDF field can be accurately estimated while seamlessly accounting for cast shadows and specularities. Further, using local neighborhood information, the same framework can be exploited to recover the 3D shape of the face (to handle pose variation). We quantitatively validate the accuracy of the Tensor Spline model using a more general model based on the mixture of single-lobed spherical functions. We demonstrate the effectiveness of our technique by presenting extensive experimental results for face relighting, 3D shape recovery, and face recognition using the Extended Yale B and CMU PIE benchmark data sets.

  11. Web based tools for visualizing imaging data and development of XNATView, a zero footprint image viewer

    PubMed Central

    Gutman, David A.; Dunn, William D.; Cobb, Jake; Stoner, Richard M.; Kalpathy-Cramer, Jayashree; Erickson, Bradley

    2014-01-01

    Advances in web technologies now allow direct visualization of imaging data sets without necessitating the download of large file sets or the installation of software. This allows centralization of file storage and facilitates image review and analysis. XNATView is a light framework recently developed in our lab to visualize DICOM images stored in The Extensible Neuroimaging Archive Toolkit (XNAT). It consists of a PyXNAT-based framework to wrap around the REST application programming interface (API) and query the data in XNAT. XNATView was developed to simplify quality assurance, help organize imaging data, and facilitate data sharing for intra- and inter-laboratory collaborations. Its zero-footprint design allows the user to connect to XNAT from a web browser, navigate through projects, experiments, and subjects, and view DICOM images with accompanying metadata all within a single viewing instance. PMID:24904399

  12. Multi-Atlas Segmentation using Partially Annotated Data: Methods and Annotation Strategies.

    PubMed

    Koch, Lisa M; Rajchl, Martin; Bai, Wenjia; Baumgartner, Christian F; Tong, Tong; Passerat-Palmbach, Jonathan; Aljabar, Paul; Rueckert, Daniel

    2017-08-22

    Multi-atlas segmentation is a widely used tool in medical image analysis, providing robust and accurate results by learning from annotated atlas datasets. However, the availability of fully annotated atlas images for training is limited due to the time required for the labelling task. Segmentation methods requiring only a proportion of each atlas image to be labelled could therefore reduce the workload on expert raters tasked with annotating atlas images. To address this issue, we first re-examine the labelling problem common in many existing approaches and formulate its solution in terms of a Markov Random Field energy minimisation problem on a graph connecting atlases and the target image. This provides a unifying framework for multi-atlas segmentation. We then show how modifications in the graph configuration of the proposed framework enable the use of partially annotated atlas images and investigate different partial annotation strategies. The proposed method was evaluated on two Magnetic Resonance Imaging (MRI) datasets for hippocampal and cardiac segmentation. Experiments were performed aimed at (1) recreating existing segmentation techniques with the proposed framework and (2) demonstrating the potential of employing sparsely annotated atlas data for multi-atlas segmentation.

  13. ImageJ-MATLAB: a bidirectional framework for scientific image analysis interoperability.

    PubMed

    Hiner, Mark C; Rueden, Curtis T; Eliceiri, Kevin W

    2017-02-15

    ImageJ-MATLAB is a lightweight Java library facilitating bi-directional interoperability between MATLAB and ImageJ. By defining a standard for translation between matrix and image data structures, researchers are empowered to select the best tool for their image-analysis tasks. Freely available extension to ImageJ2 ( http://imagej.net/Downloads ). Installation and use instructions available at http://imagej.net/MATLAB_Scripting. Tested with ImageJ 2.0.0-rc-54 , Java 1.8.0_66 and MATLAB R2015b. eliceiri@wisc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model.

    PubMed

    Rusu, Mirabela; Golden, Thea; Wang, Haibo; Gow, Andrew; Madabhushi, Anant

    2015-08-01

    Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors' framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. The authors' image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology-MRI fusion, in the context of an initial use case involving characterization of chronic inflammation in a mouse model. The authors' evaluation considered three mice, two with an inflammation phenotype and one control. The authors' iterative 3D histology reconstruction yielded a 70.1% ± 2.7% overlap with the ex vivo MRI volume. Across a total of 17 anatomic landmarks manually delineated at the division of airways, the target registration error between the ex vivo MRI and 3D histology reconstruction was 0.85 ± 0.44 mm, suggesting that a good alignment of the ex vivo 3D histology and ex vivo MRI had been achieved. The 3D histology-in vivo MRI coregistered volumes resulted in an overlap of 73.7% ± 0.9%. Preliminary computerized feature analysis was performed on an additional four control mice, for a total of seven mice considered in this study. Gabor texture filters appeared to best capture differences between the inflamed and noninflamed regions on MRI. The authors' 3D histology reconstruction and multimodal registration framework were successfully employed to reconstruct the histology volume of the lung and fuse it with in vivo MRI to create a ground truth map for inflammation on in vivo MRI. The analytic platform presented here lays the framework for a rigorous validation of the identified imaging features for chronic lung inflammation on MRI in a large prospective cohort.

  15. The Role of Nonlinear Gradients in Parallel Imaging: A k-Space Based Analysis.

    PubMed

    Galiana, Gigi; Stockmann, Jason P; Tam, Leo; Peters, Dana; Tagare, Hemant; Constable, R Todd

    2012-09-01

    Sequences that encode the spatial information of an object using nonlinear gradient fields are a new frontier in MRI, with potential to provide lower peripheral nerve stimulation, windowed fields of view, tailored spatially-varying resolution, curved slices that mirror physiological geometry, and, most importantly, very fast parallel imaging with multichannel coils. The acceleration for multichannel images is generally explained by the fact that curvilinear gradient isocontours better complement the azimuthal spatial encoding provided by typical receiver arrays. However, the details of this complementarity have been more difficult to specify. We present a simple and intuitive framework for describing the mechanics of image formation with nonlinear gradients, and we use this framework to review some the main classes of nonlinear encoding schemes.

  16. A neotropical Miocene pollen database employing image-based search and semantic modeling1

    PubMed Central

    Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W.; Jaramillo, Carlos; Shyu, Chi-Ren

    2014-01-01

    • Premise of the study: Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Methods: Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Results: Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Discussion: Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery. PMID:25202648

  17. Interfaces and Integration of Medical Image Analysis Frameworks: Challenges and Opportunities.

    PubMed

    Covington, Kelsie; McCreedy, Evan S; Chen, Min; Carass, Aaron; Aucoin, Nicole; Landman, Bennett A

    2010-05-25

    Clinical research with medical imaging typically involves large-scale data analysis with interdependent software toolsets tied together in a processing workflow. Numerous, complementary platforms are available, but these are not readily compatible in terms of workflows or data formats. Both image scientists and clinical investigators could benefit from using the framework which is a most natural fit to the specific problem at hand, but pragmatic choices often dictate that a compromise platform is used for collaboration. Manual merging of platforms through carefully tuned scripts has been effective, but exceptionally time consuming and is not feasible for large-scale integration efforts. Hence, the benefits of innovation are constrained by platform dependence. Removing this constraint via integration of algorithms from one framework into another is the focus of this work. We propose and demonstrate a light-weight interface system to expose parameters across platforms and provide seamless integration. In this initial effort, we focus on four platforms Medical Image Analysis and Visualization (MIPAV), Java Image Science Toolkit (JIST), command line tools, and 3D Slicer. We explore three case studies: (1) providing a system for MIPAV to expose internal algorithms and utilize these algorithms within JIST, (2) exposing JIST modules through self-documenting command line interface for inclusion in scripting environments, and (3) detecting and using JIST modules in 3D Slicer. We review the challenges and opportunities for light-weight software integration both within development language (e.g., Java in MIPAV and JIST) and across languages (e.g., C/C++ in 3D Slicer and shell in command line tools).

  18. A generic framework to simulate realistic lung, liver and renal pathologies in CT imaging

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Samei, Ehsan

    2014-11-01

    Realistic three-dimensional (3D) mathematical models of subtle lesions are essential for many computed tomography (CT) studies focused on performance evaluation and optimization. In this paper, we develop a generic mathematical framework that describes the 3D size, shape, contrast, and contrast-profile characteristics of a lesion, as well as a method to create lesion models based on CT data of real lesions. Further, we implemented a technique to insert the lesion models into CT images in order to create hybrid CT datasets. This framework was used to create a library of realistic lesion models and corresponding hybrid CT images. The goodness of fit of the models was assessed using the coefficient of determination (R2) and the visual appearance of the hybrid images was assessed with an observer study using images of both real and simulated lesions and receiver operator characteristic (ROC) analysis. The average R2 of the lesion models was 0.80, implying that the models provide a good fit to real lesion data. The area under the ROC curve was 0.55, implying that the observers could not readily distinguish between real and simulated lesions. Therefore, we conclude that the lesion-modeling framework presented in this paper can be used to create realistic lesion models and hybrid CT images. These models could be instrumental in performance evaluation and optimization of novel CT systems.

  19. Collaborative classification of hyperspectral and visible images with convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Mengmeng; Li, Wei; Du, Qian

    2017-10-01

    Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.

  20. Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy

    PubMed Central

    Kauppi, Tomi; Kämäräinen, Joni-Kristian; Kalesnykiene, Valentina; Sorri, Iiris; Uusitalo, Hannu; Kälviäinen, Heikki

    2013-01-01

    We address the performance evaluation practices for developing medical image analysis methods, in particular, how to establish and share databases of medical images with verified ground truth and solid evaluation protocols. Such databases support the development of better algorithms, execution of profound method comparisons, and, consequently, technology transfer from research laboratories to clinical practice. For this purpose, we propose a framework consisting of reusable methods and tools for the laborious task of constructing a benchmark database. We provide a software tool for medical image annotation helping to collect class label, spatial span, and expert's confidence on lesions and a method to appropriately combine the manual segmentations from multiple experts. The tool and all necessary functionality for method evaluation are provided as public software packages. As a case study, we utilized the framework and tools to establish the DiaRetDB1 V2.1 database for benchmarking diabetic retinopathy detection algorithms. The database contains a set of retinal images, ground truth based on information from multiple experts, and a baseline algorithm for the detection of retinopathy lesions. PMID:23956787

  1. A median-Gaussian filtering framework for Moiré pattern noise removal from X-ray microscopy image.

    PubMed

    Wei, Zhouping; Wang, Jian; Nichol, Helen; Wiebe, Sheldon; Chapman, Dean

    2012-02-01

    Moiré pattern noise in Scanning Transmission X-ray Microscopy (STXM) imaging introduces significant errors in qualitative and quantitative image analysis. Due to the complex origin of the noise, it is difficult to avoid Moiré pattern noise during the image data acquisition stage. In this paper, we introduce a post-processing method for filtering Moiré pattern noise from STXM images. This method includes a semi-automatic detection of the spectral peaks in the Fourier amplitude spectrum by using a local median filter, and elimination of the spectral noise peaks using a Gaussian notch filter. The proposed median-Gaussian filtering framework shows good results for STXM images with the size of power of two, if such parameters as threshold, sizes of the median and Gaussian filters, and size of the low frequency window, have been properly selected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Prediction of compression-induced image interpretability degradation

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Chen, Hua-Mei; Irvine, John M.; Wang, Zhonghai; Chen, Genshe; Nagy, James; Scott, Stephen

    2018-04-01

    Image compression is an important component in modern imaging systems as the volume of the raw data collected is increasing. To reduce the volume of data while collecting imagery useful for analysis, choosing the appropriate image compression method is desired. Lossless compression is able to preserve all the information, but it has limited reduction power. On the other hand, lossy compression, which may result in very high compression ratios, suffers from information loss. We model the compression-induced information loss in terms of the National Imagery Interpretability Rating Scale or NIIRS. NIIRS is a user-based quantification of image interpretability widely adopted by the Geographic Information System community. Specifically, we present the Compression Degradation Image Function Index (CoDIFI) framework that predicts the NIIRS degradation (i.e., a decrease of NIIRS level) for a given compression setting. The CoDIFI-NIIRS framework enables a user to broker the maximum compression setting while maintaining a specified NIIRS rating.

  3. Geometric rectification of camera-captured document images.

    PubMed

    Liang, Jian; DeMenthon, Daniel; Doermann, David

    2008-04-01

    Compared to typical scanners, handheld cameras offer convenient, flexible, portable, and non-contact image capture, which enables many new applications and breathes new life into existing ones. However, camera-captured documents may suffer from distortions caused by non-planar document shape and perspective projection, which lead to failure of current OCR technologies. We present a geometric rectification framework for restoring the frontal-flat view of a document from a single camera-captured image. Our approach estimates 3D document shape from texture flow information obtained directly from the image without requiring additional 3D/metric data or prior camera calibration. Our framework provides a unified solution for both planar and curved documents and can be applied in many, especially mobile, camera-based document analysis applications. Experiments show that our method produces results that are significantly more OCR compatible than the original images.

  4. On-road anomaly detection by multimodal sensor analysis and multimedia processing

    NASA Astrophysics Data System (ADS)

    Orhan, Fatih; Eren, P. E.

    2014-03-01

    The use of smartphones in Intelligent Transportation Systems is gaining popularity, yet many challenges exist in developing functional applications. Due to the dynamic nature of transportation, vehicular social applications face complexities such as developing robust sensor management, performing signal and image processing tasks, and sharing information among users. This study utilizes a multimodal sensor analysis framework which enables the analysis of sensors in multimodal aspect. It also provides plugin-based analyzing interfaces to develop sensor and image processing based applications, and connects its users via a centralized application as well as to social networks to facilitate communication and socialization. With the usage of this framework, an on-road anomaly detector is being developed and tested. The detector utilizes the sensors of a mobile device and is able to identify anomalies such as hard brake, pothole crossing, and speed bump crossing. Upon such detection, the video portion containing the anomaly is automatically extracted in order to enable further image processing analysis. The detection results are shared on a central portal application for online traffic condition monitoring.

  5. Open-source software platform for medical image segmentation applications

    NASA Astrophysics Data System (ADS)

    Namías, R.; D'Amato, J. P.; del Fresno, M.

    2017-11-01

    Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.

  6. A Framework for Detecting Glaucomatous Progression in the Optic Nerve Head of an Eye using Proper Orthogonal Decomposition

    PubMed Central

    Balasubramanian, Madhusudhanan; Žabić, Stanislav; Bowd, Christopher; Thompson, Hilary W.; Wolenski, Peter; Iyengar, S. Sitharama; Karki, Bijaya B.; Zangwill, Linda M.

    2009-01-01

    Glaucoma is the second leading cause of blindness worldwide. Often the optic nerve head (ONH) glaucomatous damage and ONH changes occur prior to visual field loss and are observable in vivo. Thus, digital image analysis is a promising choice for detecting the onset and/or progression of glaucoma. In this work, we present a new framework for detecting glaucomatous changes in the ONH of an eye using the method of proper orthogonal decomposition (POD). A baseline topograph subspace was constructed for each eye to describe the structure of the ONH of the eye at a reference/baseline condition using POD. Any glaucomatous changes in the ONH of the eye present during a follow-up exam were estimated by comparing the follow-up ONH topography with its baseline topograph subspace representation. Image correspondence measures of L1 and L2 norms, correlation, and image Euclidean distance (IMED) were used to quantify the ONH changes. An ONH topographic library built from the Louisiana State University Experimental Glaucoma study was used to evaluate the performance of the proposed method. The area under the receiver operating characteristic curves (AUC) were used to compare the diagnostic performance of the POD induced parameters with the parameters of Topographic Change Analysis (TCA) method. The IMED and L2 norm parameters in the POD framework provided the highest AUC of 0.94 at 10° field of imaging and 0.91 at 15° field of imaging compared to the TCA parameters with an AUC of 0.86 and 0.88 respectively. The proposed POD framework captures the instrument measurement variability and inherent structure variability and shows promise for improving our ability to detect glaucomatous change over time in glaucoma management. PMID:19369163

  7. Low-contrast underwater living fish recognition using PCANet

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Yang, Jianping; Wang, Changgang; Dong, Junyu; Wang, Xinhua

    2018-04-01

    Quantitative and statistical analysis of ocean creatures is critical to ecological and environmental studies. And living fish recognition is one of the most essential requirements for fishery industry. However, light attenuation and scattering phenomenon are present in the underwater environment, which makes underwater images low-contrast and blurry. This paper tries to design a robust framework for accurate fish recognition. The framework introduces a two stage PCA Network to extract abstract features from fish images. On a real-world fish recognition dataset, we use a linear SVM classifier and set penalty coefficients to conquer data unbalanced issue. Feature visualization results show that our method can avoid the feature distortion in boundary regions of underwater image. Experiments results show that the PCA Network can extract discriminate features and achieve promising recognition accuracy. The framework improves the recognition accuracy of underwater living fishes and can be easily applied to marine fishery industry.

  8. A data colocation grid framework for big data medical image processing: backend design

    NASA Astrophysics Data System (ADS)

    Bao, Shunxing; Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J.; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A.

    2018-03-01

    When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework's performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop and HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available.

  9. A Data Colocation Grid Framework for Big Data Medical Image Processing: Backend Design.

    PubMed

    Bao, Shunxing; Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A

    2018-03-01

    When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework's performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop & HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available.

  10. A superpixel-based framework for automatic tumor segmentation on breast DCE-MRI

    NASA Astrophysics Data System (ADS)

    Yu, Ning; Wu, Jia; Weinstein, Susan P.; Gaonkar, Bilwaj; Keller, Brad M.; Ashraf, Ahmed B.; Jiang, YunQing; Davatzikos, Christos; Conant, Emily F.; Kontos, Despina

    2015-03-01

    Accurate and efficient automated tumor segmentation in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is highly desirable for computer-aided tumor diagnosis. We propose a novel automatic segmentation framework which incorporates mean-shift smoothing, superpixel-wise classification, pixel-wise graph-cuts partitioning, and morphological refinement. A set of 15 breast DCE-MR images, obtained from the American College of Radiology Imaging Network (ACRIN) 6657 I-SPY trial, were manually segmented to generate tumor masks (as ground truth) and breast masks (as regions of interest). Four state-of-the-art segmentation approaches based on diverse models were also utilized for comparison. Based on five standard evaluation metrics for segmentation, the proposed framework consistently outperformed all other approaches. The performance of the proposed framework was: 1) 0.83 for Dice similarity coefficient, 2) 0.96 for pixel-wise accuracy, 3) 0.72 for VOC score, 4) 0.79 mm for mean absolute difference, and 5) 11.71 mm for maximum Hausdorff distance, which surpassed the second best method (i.e., adaptive geodesic transformation), a semi-automatic algorithm depending on precise initialization. Our results suggest promising potential applications of our segmentation framework in assisting analysis of breast carcinomas.

  11. Performance characteristics of a visual-search human-model observer with sparse PET image data

    NASA Astrophysics Data System (ADS)

    Gifford, Howard C.

    2012-02-01

    As predictors of human performance in detection-localization tasks, statistical model observers can have problems with tasks that are primarily limited by target contrast or structural noise. Model observers with a visual-search (VS) framework may provide a more reliable alternative. This framework provides for an initial holistic search that identifies suspicious locations for analysis by a statistical observer. A basic VS observer for emission tomography focuses on hot "blobs" in an image and uses a channelized nonprewhitening (CNPW) observer for analysis. In [1], we investigated this model for a contrast-limited task with SPECT images; herein, a statisticalnoise limited task involving PET images is considered. An LROC study used 2D image slices with liver, lung and soft-tissue tumors. Human and model observers read the images in coronal, sagittal and transverse display formats. The study thus measured the detectability of tumors in a given organ as a function of display format. The model observers were applied under several task variants that tested their response to structural noise both at the organ boundaries alone and over the organs as a whole. As measured by correlation with the human data, the VS observer outperformed the CNPW scanning observer.

  12. The Effect of Water or Wax-based Binders on the Chemical and Morphological Characteristics of the Margin Ceramic-Framework Interface.

    PubMed

    Güler, Umut; de Queiroz, José Renato Cavalcanti; de Oliveira, Luiz Fernando Cappa; Canay, Senay; Ozcan, Mutlu

    2015-09-01

    This study evaluated the effect of binder choice in mixing ceramic powder on the chemical and morphological features between the margin ceramic-framework interfaces. Titanium and zirconia frameworks (15 x 5 x 0.5 mm3) were veneered with margin ceramics prepared with two different binders, namely a) water/conventional or b) wax-based. For each zirconia framework material, four different margin ceramics were used: a- Creation Zi (Creation Willi Geller International); b- GC Initial Zr (GC America); Triceram (Dentaurum); and d- IPS emax (voclar Vivadent). For the titanium framework, three different margin ceramics were used: a- Creation Ti (Creation Willi Geller International); b- Triceram (Dentaurum); and c- VITA Titaniumkeramik (Vita Zahnfabrik). The chemical composition of the framework-margin ceramic interface was analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and porosity level was quantified within the margin ceramic using an image program (ImageJ) from four random areas (100 x 100 pixels) on each SEM image. EDS analysis showed the presence of Carbon at the margin ceramic-framework interface in the groups where wax-based binder technique was used with the concentration being the highest for the IPS emax ZirCAD group. While IPS system (IPS ZirCAD and IPS Emax) presented higher porosity concentration using wax binder, in the other groups wax-based binder reduced the porosity of margin ceramic, except for Titanium - Triceram combination.

  13. ImagePy: an open-source, Python-based and platform-independent software package for boimage analysis.

    PubMed

    Wang, Anliang; Yan, Xiaolong; Wei, Zhijun

    2018-04-27

    This note presents the design of a scalable software package named ImagePy for analysing biological images. Our contribution is concentrated on facilitating extensibility and interoperability of the software through decoupling the data model from the user interface. Especially with assistance from the Python ecosystem, this software framework makes modern computer algorithms easier to be applied in bioimage analysis. ImagePy is free and open source software, with documentation and code available at https://github.com/Image-Py/imagepy under the BSD license. It has been tested on the Windows, Mac and Linux operating systems. wzjdlut@dlut.edu.cn or yxdragon@imagepy.org.

  14. A multimodal 3D framework for fire characteristics estimation

    NASA Astrophysics Data System (ADS)

    Toulouse, T.; Rossi, L.; Akhloufi, M. A.; Pieri, A.; Maldague, X.

    2018-02-01

    In the last decade we have witnessed an increasing interest in using computer vision and image processing in forest fire research. Image processing techniques have been successfully used in different fire analysis areas such as early detection, monitoring, modeling and fire front characteristics estimation. While the majority of the work deals with the use of 2D visible spectrum images, recent work has introduced the use of 3D vision in this field. This work proposes a new multimodal vision framework permitting the extraction of the three-dimensional geometrical characteristics of fires captured by multiple 3D vision systems. The 3D system is a multispectral stereo system operating in both the visible and near-infrared (NIR) spectral bands. The framework supports the use of multiple stereo pairs positioned so as to capture complementary views of the fire front during its propagation. Multimodal registration is conducted using the captured views in order to build a complete 3D model of the fire front. The registration process is achieved using multisensory fusion based on visual data (2D and NIR images), GPS positions and IMU inertial data. Experiments were conducted outdoors in order to show the performance of the proposed framework. The obtained results are promising and show the potential of using the proposed framework in operational scenarios for wildland fire research and as a decision management system in fighting.

  15. Characterizing Articulation in Apraxic Speech Using Real-Time Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Hagedorn, Christina; Proctor, Michael; Goldstein, Louis; Wilson, Stephen M.; Miller, Bruce; Gorno-Tempini, Maria Luisa; Narayanan, Shrikanth S.

    2017-01-01

    Purpose: Real-time magnetic resonance imaging (MRI) and accompanying analytical methods are shown to capture and quantify salient aspects of apraxic speech, substantiating and expanding upon evidence provided by clinical observation and acoustic and kinematic data. Analysis of apraxic speech errors within a dynamic systems framework is provided…

  16. A Robust Actin Filaments Image Analysis Framework

    PubMed Central

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-01-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in two different conditions: static (control) and fluid shear stress. The proposed methodology exhibited higher sensitivity values and similar accuracy compared to state-of-the-art methods. PMID:27551746

  17. Partial volume correction and image analysis methods for intersubject comparison of FDG-PET studies

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    2000-12-01

    Partial volume effect is an artifact mainly due to the limited imaging sensor resolution. It creates bias in the measured activity in small structures and around tissue boundaries. In brain FDG-PET studies, especially for Alzheimer's disease study where there is serious gray matter atrophy, accurate estimate of cerebral metabolic rate of glucose is even more problematic due to large amount of partial volume effect. In this dissertation, we developed a framework enabling inter-subject comparison of partial volume corrected brain FDG-PET studies. The framework is composed of the following image processing steps: (1)MRI segmentation, (2)MR-PET registration, (3)MR based PVE correction, (4)MR 3D inter-subject elastic mapping. Through simulation studies, we showed that the newly developed partial volume correction methods, either pixel based or ROI based, performed better than previous methods. By applying this framework to a real Alzheimer's disease study, we demonstrated that the partial volume corrected glucose rates vary significantly among the control, at risk and disease patient groups and this framework is a promising tool useful for assisting early identification of Alzheimer's patients.

  18. a Framework of Change Detection Based on Combined Morphologica Features and Multi-Index Classification

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, S.; Yang, D.

    2017-09-01

    Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.

  19. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusu, Mirabela, E-mail: mirabela.rusu@gmail.com; Wang, Haibo; Madabhushi, Anant

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering exmore » vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic inflammation in a mouse model. The authors’ evaluation considered three mice, two with an inflammation phenotype and one control. The authors’ iterative 3D histology reconstruction yielded a 70.1% ± 2.7% overlap with the ex vivo MRI volume. Across a total of 17 anatomic landmarks manually delineated at the division of airways, the target registration error between the ex vivo MRI and 3D histology reconstruction was 0.85 ± 0.44 mm, suggesting that a good alignment of the ex vivo 3D histology and ex vivo MRI had been achieved. The 3D histology-in vivo MRI coregistered volumes resulted in an overlap of 73.7% ± 0.9%. Preliminary computerized feature analysis was performed on an additional four control mice, for a total of seven mice considered in this study. Gabor texture filters appeared to best capture differences between the inflamed and noninflamed regions on MRI. Conclusions: The authors’ 3D histology reconstruction and multimodal registration framework were successfully employed to reconstruct the histology volume of the lung and fuse it with in vivo MRI to create a ground truth map for inflammation on in vivo MRI. The analytic platform presented here lays the framework for a rigorous validation of the identified imaging features for chronic lung inflammation on MRI in a large prospective cohort.« less

  20. Computational assessment of mammography accreditation phantom images and correlation with human observer analysis

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.

    2015-03-01

    Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.

  1. Novel permutation measures for image encryption algorithms

    NASA Astrophysics Data System (ADS)

    Abd-El-Hafiz, Salwa K.; AbdElHaleem, Sherif H.; Radwan, Ahmed G.

    2016-10-01

    This paper proposes two measures for the evaluation of permutation techniques used in image encryption. First, a general mathematical framework for describing the permutation phase used in image encryption is presented. Using this framework, six different permutation techniques, based on chaotic and non-chaotic generators, are described. The two new measures are, then, introduced to evaluate the effectiveness of permutation techniques. These measures are (1) Percentage of Adjacent Pixels Count (PAPC) and (2) Distance Between Adjacent Pixels (DBAP). The proposed measures are used to evaluate and compare the six permutation techniques in different scenarios. The permutation techniques are applied on several standard images and the resulting scrambled images are analyzed. Moreover, the new measures are used to compare the permutation algorithms on different matrix sizes irrespective of the actual parameters used in each algorithm. The analysis results show that the proposed measures are good indicators of the effectiveness of the permutation technique.

  2. Multi-scale Gaussian representation and outline-learning based cell image segmentation.

    PubMed

    Farhan, Muhammad; Ruusuvuori, Pekka; Emmenlauer, Mario; Rämö, Pauli; Dehio, Christoph; Yli-Harja, Olli

    2013-01-01

    High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks.

  3. Multi-scale Gaussian representation and outline-learning based cell image segmentation

    PubMed Central

    2013-01-01

    Background High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. Methods We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. Results and conclusions We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks. PMID:24267488

  4. An object-oriented framework for medical image registration, fusion, and visualization.

    PubMed

    Zhu, Yang-Ming; Cochoff, Steven M

    2006-06-01

    An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.

  5. Technical design and system implementation of region-line primitive association framework

    NASA Astrophysics Data System (ADS)

    Wang, Min; Xing, Jinjin; Wang, Jie; Lv, Guonian

    2017-08-01

    Apart from regions, image edge lines are an important information source, and they deserve more attention in object-based image analysis (OBIA) than they currently receive. In the region-line primitive association framework (RLPAF), we promote straight-edge lines as line primitives to achieve powerful OBIAs. Along with regions, straight lines become basic units for subsequent extraction and analysis of OBIA features. This study develops a new software system called remote-sensing knowledge finder (RSFinder) to implement RLPAF for engineering application purposes. This paper introduces the extended technical framework, a comprehensively designed feature set, key technology, and software implementation. To our knowledge, RSFinder is the world's first OBIA system based on two types of primitives, namely, regions and lines. It is fundamentally different from other well-known region-only-based OBIA systems, such as eCogntion and ENVI feature extraction module. This paper has important reference values for the development of similarly structured OBIA systems and line-involved extraction algorithms of remote sensing information.

  6. An Example-Based Brain MRI Simulation Framework.

    PubMed

    He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L

    2015-02-21

    The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.

  7. a Novel Framework for Remote Sensing Image Scene Classification

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Zhao, H.; Wu, W.; Tan, Q.

    2018-04-01

    High resolution remote sensing (HRRS) images scene classification aims to label an image with a specific semantic category. HRRS images contain more details of the ground objects and their spatial distribution patterns than low spatial resolution images. Scene classification can bridge the gap between low-level features and high-level semantics. It can be applied in urban planning, target detection and other fields. This paper proposes a novel framework for HRRS images scene classification. This framework combines the convolutional neural network (CNN) and XGBoost, which utilizes CNN as feature extractor and XGBoost as a classifier. Then, this framework is evaluated on two different HRRS images datasets: UC-Merced dataset and NWPU-RESISC45 dataset. Our framework achieved satisfying accuracies on two datasets, which is 95.57 % and 83.35 % respectively. From the experiments result, our framework has been proven to be effective for remote sensing images classification. Furthermore, we believe this framework will be more practical for further HRRS scene classification, since it costs less time on training stage.

  8. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia

    2017-07-24

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. We resolved the atomic structure of Ni-oxo species deposited in the MOF NU-1000 through atomic layer deposition using local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and difference envelope density analysis, with electron microscopy imaging and computational modeling.

  9. Introduction of High Throughput Magnetic Resonance T2-Weighted Image Texture Analysis for WHO Grade 2 and 3 Gliomas.

    PubMed

    Kinoshita, Manabu; Sakai, Mio; Arita, Hideyuki; Shofuda, Tomoko; Chiba, Yasuyoshi; Kagawa, Naoki; Watanabe, Yoshiyuki; Hashimoto, Naoya; Fujimoto, Yasunori; Yoshimine, Toshiki; Nakanishi, Katsuyuki; Kanemura, Yonehiro

    2016-01-01

    Reports have suggested that tumor textures presented on T2-weighted images correlate with the genetic status of glioma. Therefore, development of an image analyzing framework that is capable of objective and high throughput image texture analysis for large scale image data collection is needed. The current study aimed to address the development of such a framework by introducing two novel parameters for image textures on T2-weighted images, i.e., Shannon entropy and Prewitt filtering. Twenty-two WHO grade 2 and 28 grade 3 glioma patients were collected whose pre-surgical MRI and IDH1 mutation status were available. Heterogeneous lesions showed statistically higher Shannon entropy than homogenous lesions (p = 0.006) and ROC curve analysis proved that Shannon entropy on T2WI was a reliable indicator for discrimination of homogenous and heterogeneous lesions (p = 0.015, AUC = 0.73). Lesions with well-defined borders exhibited statistically higher Edge mean and Edge median values using Prewitt filtering than those with vague lesion borders (p = 0.0003 and p = 0.0005 respectively). ROC curve analysis also proved that both Edge mean and median values were promising indicators for discrimination of lesions with vague and well defined borders and both Edge mean and median values performed in a comparable manner (p = 0.0002, AUC = 0.81 and p < 0.0001, AUC = 0.83, respectively). Finally, IDH1 wild type gliomas showed statistically lower Shannon entropy on T2WI than IDH1 mutated gliomas (p = 0.007) but no difference was observed between IDH1 wild type and mutated gliomas in Edge median values using Prewitt filtering. The current study introduced two image metrics that reflect lesion texture described on T2WI. These two metrics were validated by readings of a neuro-radiologist who was blinded to the results. This observation will facilitate further use of this technique in future large scale image analysis of glioma.

  10. Optical method for measuring the surface area of a threaded fastener

    Treesearch

    Douglas Rammer; Samuel Zelinka

    2010-01-01

    This article highlights major aspects of a new optical technique to determine the surface area of a threaded fastener; the theoretical framework has been reported elsewhere. Specifically, this article describes general surface area expressions used in the analysis, details of image acquisition system, and major image processing steps contained within the measurement...

  11. Translating Radiometric Requirements for Satellite Sensors to Match International Standards.

    PubMed

    Pearlman, Aaron; Datla, Raju; Kacker, Raghu; Cao, Changyong

    2014-01-01

    International scientific standards organizations created standards on evaluating uncertainty in the early 1990s. Although scientists from many fields use these standards, they are not consistently implemented in the remote sensing community, where traditional error analysis framework persists. For a satellite instrument under development, this can create confusion in showing whether requirements are met. We aim to create a methodology for translating requirements from the error analysis framework to the modern uncertainty approach using the product level requirements of the Advanced Baseline Imager (ABI) that will fly on the Geostationary Operational Environmental Satellite R-Series (GOES-R). In this paper we prescribe a method to combine several measurement performance requirements, written using a traditional error analysis framework, into a single specification using the propagation of uncertainties formula. By using this approach, scientists can communicate requirements in a consistent uncertainty framework leading to uniform interpretation throughout the development and operation of any satellite instrument.

  12. Translating Radiometric Requirements for Satellite Sensors to Match International Standards

    PubMed Central

    Pearlman, Aaron; Datla, Raju; Kacker, Raghu; Cao, Changyong

    2014-01-01

    International scientific standards organizations created standards on evaluating uncertainty in the early 1990s. Although scientists from many fields use these standards, they are not consistently implemented in the remote sensing community, where traditional error analysis framework persists. For a satellite instrument under development, this can create confusion in showing whether requirements are met. We aim to create a methodology for translating requirements from the error analysis framework to the modern uncertainty approach using the product level requirements of the Advanced Baseline Imager (ABI) that will fly on the Geostationary Operational Environmental Satellite R-Series (GOES-R). In this paper we prescribe a method to combine several measurement performance requirements, written using a traditional error analysis framework, into a single specification using the propagation of uncertainties formula. By using this approach, scientists can communicate requirements in a consistent uncertainty framework leading to uniform interpretation throughout the development and operation of any satellite instrument. PMID:26601032

  13. STATISTICAL GROWTH MODELING OF LONGITUDINAL DT-MRI FOR REGIONAL CHARACTERIZATION OF EARLY BRAIN DEVELOPMENT.

    PubMed

    Sadeghi, Neda; Prastawa, Marcel; Fletcher, P Thomas; Gilmore, John H; Lin, Weili; Gerig, Guido

    2012-01-01

    A population growth model that represents the growth trajectories of individual subjects is critical to study and understand neurodevelopment. This paper presents a framework for jointly estimating and modeling individual and population growth trajectories, and determining significant regional differences in growth pattern characteristics applied to longitudinal neuroimaging data. We use non-linear mixed effect modeling where temporal change is modeled by the Gompertz function. The Gompertz function uses intuitive parameters related to delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions related to growth. Our proposed framework combines nonlinear modeling of individual trajectories, population analysis, and testing for regional differences. We apply this framework to the study of early maturation in white matter regions as measured with diffusion tensor imaging (DTI). Regional differences between anatomical regions of interest that are known to mature differently are analyzed and quantified. Experiments with image data from a large ongoing clinical study show that our framework provides descriptive, quantitative information on growth trajectories that can be directly interpreted by clinicians. To our knowledge, this is the first longitudinal analysis of growth functions to explain the trajectory of early brain maturation as it is represented in DTI.

  14. A framework for analysis of large database of old art paintings

    NASA Astrophysics Data System (ADS)

    Da Rugna, Jérome; Chareyron, Ga"l.; Pillay, Ruven; Joly, Morwena

    2011-03-01

    For many years, a lot of museums and countries organize the high definition digitalization of their own collections. In consequence, they generate massive data for each object. In this paper, we only focus on art painting collections. Nevertheless, we faced a very large database with heterogeneous data. Indeed, image collection includes very old and recent scans of negative photos, digital photos, multi and hyper spectral acquisitions, X-ray acquisition, and also front, back and lateral photos. Moreover, we have noted that art paintings suffer from much degradation: crack, softening, artifact, human damages and, overtime corruption. Considering that, it appears necessary to develop specific approaches and methods dedicated to digital art painting analysis. Consequently, this paper presents a complete framework to evaluate, compare and benchmark devoted to image processing algorithms.

  15. Steganalysis Techniques for Documents and Images

    DTIC Science & Technology

    2005-05-01

    steganography . We then illustrated the efficacy of our model using variations of LSB steganography . For binary images , we have made significant progress in...efforts have focused on two areas. The first area is LSB steganalysis for grayscale images . Here, as we had proposed (as a challenging task), we have...generalized our previous steganalysis technique of sample pair analysis to a theoretical framework for the detection of the LSB steganography . The new

  16. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.

    PubMed

    Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong

    2008-04-01

    The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka 'shotgun' proteomics, have been achieved, large-scale open initiatives such as the Human Proteome Organization (HUPO) Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this article is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline. The proposed method is based on robust automated image normalization (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a third-order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalized images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU (general purpose computation on graphics cards) implementation. Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.

  17. Change detection for synthetic aperture radar images based on pattern and intensity distinctiveness analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Gao, Feng; Dong, Junyu; Qi, Qiang

    2018-04-01

    Synthetic aperture radar (SAR) image is independent on atmospheric conditions, and it is the ideal image source for change detection. Existing methods directly analysis all the regions in the speckle noise contaminated difference image. The performance of these methods is easily affected by small noisy regions. In this paper, we proposed a novel change detection framework for saliency-guided change detection based on pattern and intensity distinctiveness analysis. The saliency analysis step can remove small noisy regions, and therefore makes the proposed method more robust to the speckle noise. In the proposed method, the log-ratio operator is first utilized to obtain a difference image (DI). Then, the saliency detection method based on pattern and intensity distinctiveness analysis is utilized to obtain the changed region candidates. Finally, principal component analysis and k-means clustering are employed to analysis pixels in the changed region candidates. Thus, the final change map can be obtained by classifying these pixels into changed or unchanged class. The experiment results on two real SAR images datasets have demonstrated the effectiveness of the proposed method.

  18. The Role of Body Image in the Relationship Between Internet Use and Bulimic Symptoms: Three Theoretical Frameworks.

    PubMed

    Melioli, Tiffany; Rodgers, Rachel F; Rodrigues, Marie; Chabrol, Henri

    2015-11-01

    Exposure to traditional media has been associated with bulimic symptoms. However, to date, little is known regarding the effects of Internet exposure. The aim of this study was to explore the relationships between Internet use and bulimic symptoms within the competing frameworks of sociocultural, impression management, and self-objectification theory. A sample of 289 French women aged 18-25 years completed an online questionnaire assessing bulimic symptoms, body dissatisfaction, body image avoidance, self-surveillance, body shame, and weekly Internet use. Bootstrapping analyses revealed that body shame and body image avoidance mediated the effect of weekly Internet use on bulimic symptoms. Furthermore, when entered into a multiple mediation analysis, these two variables provided independent mediation pathways of equal magnitude. The findings support the usefulness of both the self-objectification and impression management frameworks for investigating the relationship between Internet use and bulimic symptoms. Longitudinal research would help to clarify these pathways further.

  19. Automated analysis and classification of melanocytic tumor on skin whole slide images.

    PubMed

    Xu, Hongming; Lu, Cheng; Berendt, Richard; Jha, Naresh; Mandal, Mrinal

    2018-06-01

    This paper presents a computer-aided technique for automated analysis and classification of melanocytic tumor on skin whole slide biopsy images. The proposed technique consists of four main modules. First, skin epidermis and dermis regions are segmented by a multi-resolution framework. Next, epidermis analysis is performed, where a set of epidermis features reflecting nuclear morphologies and spatial distributions is computed. In parallel with epidermis analysis, dermis analysis is also performed, where dermal cell nuclei are segmented and a set of textural and cytological features are computed. Finally, the skin melanocytic image is classified into different categories such as melanoma, nevus or normal tissue by using a multi-class support vector machine (mSVM) with extracted epidermis and dermis features. Experimental results on 66 skin whole slide images indicate that the proposed technique achieves more than 95% classification accuracy, which suggests that the technique has the potential to be used for assisting pathologists on skin biopsy image analysis and classification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A Data Colocation Grid Framework for Big Data Medical Image Processing: Backend Design

    PubMed Central

    Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J.; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A.

    2018-01-01

    When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework’s performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop & HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available. PMID:29887668

  1. Framework for SEM contour analysis

    NASA Astrophysics Data System (ADS)

    Schneider, L.; Farys, V.; Serret, E.; Fenouillet-Beranger, C.

    2017-03-01

    SEM images provide valuable information about patterning capability. Geometrical properties such as Critical Dimension (CD) can be extracted from them and are used to calibrate OPC models, thus making OPC more robust and reliable. However, there is currently a shortage of appropriate metrology tools to inspect complex two-dimensional patterns in the same way as one would work with simple one-dimensional patterns. In this article we present a full framework for the analysis of SEM images. It has been proven to be fast, reliable and robust for every type of structure, and particularly for two-dimensional structures. To achieve this result, several innovative solutions have been developed and will be presented in the following pages. Firstly, we will present a new noise filter which is used to reduce noise on SEM images, followed by an efficient topography identifier, and finally we will describe the use of a topological skeleton as a measurement tool that can extend CD measurements on all kinds of patterns.

  2. Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification.

    PubMed

    Wen, Zaidao; Hou, Biao; Jiao, Licheng

    2017-05-03

    Linear synthesis model based dictionary learning framework has achieved remarkable performances in image classification in the last decade. Behaved as a generative feature model, it however suffers from some intrinsic deficiencies. In this paper, we propose a novel parametric nonlinear analysis cosparse model (NACM) with which a unique feature vector will be much more efficiently extracted. Additionally, we derive a deep insight to demonstrate that NACM is capable of simultaneously learning the task adapted feature transformation and regularization to encode our preferences, domain prior knowledge and task oriented supervised information into the features. The proposed NACM is devoted to the classification task as a discriminative feature model and yield a novel discriminative nonlinear analysis operator learning framework (DNAOL). The theoretical analysis and experimental performances clearly demonstrate that DNAOL will not only achieve the better or at least competitive classification accuracies than the state-of-the-art algorithms but it can also dramatically reduce the time complexities in both training and testing phases.

  3. Hello World Deep Learning in Medical Imaging.

    PubMed

    Lakhani, Paras; Gray, Daniel L; Pett, Carl R; Nagy, Paul; Shih, George

    2018-05-03

    There is recent popularity in applying machine learning to medical imaging, notably deep learning, which has achieved state-of-the-art performance in image analysis and processing. The rapid adoption of deep learning may be attributed to the availability of machine learning frameworks and libraries to simplify their use. In this tutorial, we provide a high-level overview of how to build a deep neural network for medical image classification, and provide code that can help those new to the field begin their informatics projects.

  4. Memory Analysis of the KBeast Linux Rootkit: Investigating Publicly Available Linux Rootkit Using the Volatility Memory Analysis Framework

    DTIC Science & Technology

    2015-06-01

    examine how a computer forensic investigator/incident handler, without specialised computer memory or software reverse engineering skills , can successfully...memory images and malware, this new series of reports will be directed at those who must analyse Linux malware-infected memory images. The skills ...disable 1287 1000 1000 /usr/lib/policykit-1-gnome/polkit-gnome-authentication- agent-1 1310 1000 1000 /usr/lib/pulseaudio/pulse/gconf- helper 1350

  5. Remote sensing image denoising application by generalized morphological component analysis

    NASA Astrophysics Data System (ADS)

    Yu, Chong; Chen, Xiong

    2014-12-01

    In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.

  6. Representation learning: a unified deep learning framework for automatic prostate MR segmentation.

    PubMed

    Liao, Shu; Gao, Yaozong; Oto, Aytekin; Shen, Dinggang

    2013-01-01

    Image representation plays an important role in medical image analysis. The key to the success of different medical image analysis algorithms is heavily dependent on how we represent the input data, namely features used to characterize the input image. In the literature, feature engineering remains as an active research topic, and many novel hand-crafted features are designed such as Haar wavelet, histogram of oriented gradient, and local binary patterns. However, such features are not designed with the guidance of the underlying dataset at hand. To this end, we argue that the most effective features should be designed in a learning based manner, namely representation learning, which can be adapted to different patient datasets at hand. In this paper, we introduce a deep learning framework to achieve this goal. Specifically, a stacked independent subspace analysis (ISA) network is adopted to learn the most effective features in a hierarchical and unsupervised manner. The learnt features are adapted to the dataset at hand and encode high level semantic anatomical information. The proposed method is evaluated on the application of automatic prostate MR segmentation. Experimental results show that significant segmentation accuracy improvement can be achieved by the proposed deep learning method compared to other state-of-the-art segmentation approaches.

  7. A new unified framework for the early detection of the progression to diabetic retinopathy from fundus images.

    PubMed

    Leontidis, Georgios

    2017-11-01

    Human retina is a diverse and important tissue, vastly studied for various retinal and other diseases. Diabetic retinopathy (DR), a leading cause of blindness, is one of them. This work proposes a novel and complete framework for the accurate and robust extraction and analysis of a series of retinal vascular geometric features. It focuses on studying the registered bifurcations in successive years of progression from diabetes (no DR) to DR, in order to identify the vascular alterations. Retinal fundus images are utilised, and multiple experimental designs are employed. The framework includes various steps, such as image registration and segmentation, extraction of features, statistical analysis and classification models. Linear mixed models are utilised for making the statistical inferences, alongside the elastic-net logistic regression, boruta algorithm, and regularised random forests for the feature selection and classification phases, in order to evaluate the discriminative potential of the investigated features and also build classification models. A number of geometric features, such as the central retinal artery and vein equivalents, are found to differ significantly across the experiments and also have good discriminative potential. The classification systems yield promising results with the area under the curve values ranging from 0.821 to 0.968, across the four different investigated combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A generic framework for internet-based interactive applications of high-resolution 3-D medical image data.

    PubMed

    Liu, Danzhou; Hua, Kien A; Sugaya, Kiminobu

    2008-09-01

    With the advances in medical imaging devices, large volumes of high-resolution 3-D medical image data have been produced. These high-resolution 3-D data are very large in size, and severely stress storage systems and networks. Most existing Internet-based 3-D medical image interactive applications therefore deal with only low- or medium-resolution image data. While it is possible to download the whole 3-D high-resolution image data from the server and perform the image visualization and analysis at the client site, such an alternative is infeasible when the high-resolution data are very large, and many users concurrently access the server. In this paper, we propose a novel framework for Internet-based interactive applications of high-resolution 3-D medical image data. Specifically, we first partition the whole 3-D data into buckets, remove the duplicate buckets, and then, compress each bucket separately. We also propose an index structure for these buckets to efficiently support typical queries such as 3-D slicer and region of interest, and only the relevant buckets are transmitted instead of the whole high-resolution 3-D medical image data. Furthermore, in order to better support concurrent accesses and to improve the average response time, we also propose techniques for efficient query processing, incremental transmission, and client sharing. Our experimental study in simulated and realistic environments indicates that the proposed framework can significantly reduce storage and communication requirements, and can enable real-time interaction with remote high-resolution 3-D medical image data for many concurrent users.

  9. Comprehensive, powerful, efficient, intuitive: a new software framework for clinical imaging applications

    NASA Astrophysics Data System (ADS)

    Augustine, Kurt E.; Holmes, David R., III; Hanson, Dennis P.; Robb, Richard A.

    2006-03-01

    One of the greatest challenges for a software engineer is to create a complex application that is comprehensive enough to be useful to a diverse set of users, yet focused enough for individual tasks to be carried out efficiently with minimal training. This "powerful yet simple" paradox is particularly prevalent in advanced medical imaging applications. Recent research in the Biomedical Imaging Resource (BIR) at Mayo Clinic has been directed toward development of an imaging application framework that provides powerful image visualization/analysis tools in an intuitive, easy-to-use interface. It is based on two concepts very familiar to physicians - Cases and Workflows. Each case is associated with a unique patient and a specific set of routine clinical tasks, or a workflow. Each workflow is comprised of an ordered set of general-purpose modules which can be re-used for each unique workflow. Clinicians help describe and design the workflows, and then are provided with an intuitive interface to both patient data and analysis tools. Since most of the individual steps are common to many different workflows, the use of general-purpose modules reduces development time and results in applications that are consistent, stable, and robust. While the development of individual modules may reflect years of research by imaging scientists, new customized workflows based on the new modules can be developed extremely fast. If a powerful, comprehensive application is difficult to learn and complicated to use, it will be unacceptable to most clinicians. Clinical image analysis tools must be intuitive and effective or they simply will not be used.

  10. Automatically detect and track infrared small targets with kernel Fukunaga-Koontz transform and Kalman prediction.

    PubMed

    Liu, Ruiming; Liu, Erqi; Yang, Jie; Zeng, Yong; Wang, Fanglin; Cao, Yuan

    2007-11-01

    Fukunaga-Koontz transform (FKT), stemming from principal component analysis (PCA), is used in many pattern recognition and image-processing fields. It cannot capture the higher-order statistical property of natural images, so its detection performance is not satisfying. PCA has been extended into kernel PCA in order to capture the higher-order statistics. However, thus far there have been no researchers who have definitely proposed kernel FKT (KFKT) and researched its detection performance. For accurately detecting potential small targets from infrared images, we first extend FKT into KFKT to capture the higher-order statistical properties of images. Then a framework based on Kalman prediction and KFKT, which can automatically detect and track small targets, is developed. Results of experiments show that KFKT outperforms FKT and the proposed framework is competent to automatically detect and track infrared point targets.

  11. Automatically detect and track infrared small targets with kernel Fukunaga-Koontz transform and Kalman prediction

    NASA Astrophysics Data System (ADS)

    Liu, Ruiming; Liu, Erqi; Yang, Jie; Zeng, Yong; Wang, Fanglin; Cao, Yuan

    2007-11-01

    Fukunaga-Koontz transform (FKT), stemming from principal component analysis (PCA), is used in many pattern recognition and image-processing fields. It cannot capture the higher-order statistical property of natural images, so its detection performance is not satisfying. PCA has been extended into kernel PCA in order to capture the higher-order statistics. However, thus far there have been no researchers who have definitely proposed kernel FKT (KFKT) and researched its detection performance. For accurately detecting potential small targets from infrared images, we first extend FKT into KFKT to capture the higher-order statistical properties of images. Then a framework based on Kalman prediction and KFKT, which can automatically detect and track small targets, is developed. Results of experiments show that KFKT outperforms FKT and the proposed framework is competent to automatically detect and track infrared point targets.

  12. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks.

    PubMed

    Yu, Lequan; Chen, Hao; Dou, Qi; Qin, Jing; Heng, Pheng-Ann

    2017-04-01

    Automated melanoma recognition in dermoscopy images is a very challenging task due to the low contrast of skin lesions, the huge intraclass variation of melanomas, the high degree of visual similarity between melanoma and non-melanoma lesions, and the existence of many artifacts in the image. In order to meet these challenges, we propose a novel method for melanoma recognition by leveraging very deep convolutional neural networks (CNNs). Compared with existing methods employing either low-level hand-crafted features or CNNs with shallower architectures, our substantially deeper networks (more than 50 layers) can acquire richer and more discriminative features for more accurate recognition. To take full advantage of very deep networks, we propose a set of schemes to ensure effective training and learning under limited training data. First, we apply the residual learning to cope with the degradation and overfitting problems when a network goes deeper. This technique can ensure that our networks benefit from the performance gains achieved by increasing network depth. Then, we construct a fully convolutional residual network (FCRN) for accurate skin lesion segmentation, and further enhance its capability by incorporating a multi-scale contextual information integration scheme. Finally, we seamlessly integrate the proposed FCRN (for segmentation) and other very deep residual networks (for classification) to form a two-stage framework. This framework enables the classification network to extract more representative and specific features based on segmented results instead of the whole dermoscopy images, further alleviating the insufficiency of training data. The proposed framework is extensively evaluated on ISBI 2016 Skin Lesion Analysis Towards Melanoma Detection Challenge dataset. Experimental results demonstrate the significant performance gains of the proposed framework, ranking the first in classification and the second in segmentation among 25 teams and 28 teams, respectively. This study corroborates that very deep CNNs with effective training mechanisms can be employed to solve complicated medical image analysis tasks, even with limited training data.

  13. Deep convolutional neural network training enrichment using multi-view object-based analysis of Unmanned Aerial systems imagery for wetlands classification

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Abd-Elrahman, Amr

    2018-05-01

    Deep convolutional neural network (DCNN) requires massive training datasets to trigger its image classification power, while collecting training samples for remote sensing application is usually an expensive process. When DCNN is simply implemented with traditional object-based image analysis (OBIA) for classification of Unmanned Aerial systems (UAS) orthoimage, its power may be undermined if the number training samples is relatively small. This research aims to develop a novel OBIA classification approach that can take advantage of DCNN by enriching the training dataset automatically using multi-view data. Specifically, this study introduces a Multi-View Object-based classification using Deep convolutional neural network (MODe) method to process UAS images for land cover classification. MODe conducts the classification on multi-view UAS images instead of directly on the orthoimage, and gets the final results via a voting procedure. 10-fold cross validation results show the mean overall classification accuracy increasing substantially from 65.32%, when DCNN was applied on the orthoimage to 82.08% achieved when MODe was implemented. This study also compared the performances of the support vector machine (SVM) and random forest (RF) classifiers with DCNN under traditional OBIA and the proposed multi-view OBIA frameworks. The results indicate that the advantage of DCNN over traditional classifiers in terms of accuracy is more obvious when these classifiers were applied with the proposed multi-view OBIA framework than when these classifiers were applied within the traditional OBIA framework.

  14. Image processing and analysis using neural networks for optometry area

    NASA Astrophysics Data System (ADS)

    Netto, Antonio V.; Ferreira de Oliveira, Maria C.

    2002-11-01

    In this work we describe the framework of a functional system for processing and analyzing images of the human eye acquired by the Hartmann-Shack technique (HS), in order to extract information to formulate a diagnosis of eye refractive errors (astigmatism, hypermetropia and myopia). The analysis is to be carried out using an Artificial Intelligence system based on Neural Nets, Fuzzy Logic and Classifier Combination. The major goal is to establish the basis of a new technology to effectively measure ocular refractive errors that is based on methods alternative those adopted in current patented systems. Moreover, analysis of images acquired with the Hartmann-Shack technique may enable the extraction of additional information on the health of an eye under exam from the same image used to detect refraction errors.

  15. GammaLib and ctools. A software framework for the analysis of astronomical gamma-ray data

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Mayer, M.; Deil, C.; Cayrou, J.-B.; Owen, E.; Kelley-Hoskins, N.; Lu, C.-C.; Buehler, R.; Forest, F.; Louge, T.; Siejkowski, H.; Kosack, K.; Gerard, L.; Schulz, A.; Martin, P.; Sanchez, D.; Ohm, S.; Hassan, T.; Brau-Nogué, S.

    2016-08-01

    The field of gamma-ray astronomy has seen important progress during the last decade, yet to date no common software framework has been developed for the scientific analysis of gamma-ray telescope data. We propose to fill this gap by means of the GammaLib software, a generic library that we have developed to support the analysis of gamma-ray event data. GammaLib was written in C++ and all functionality is available in Python through an extension module. Based on this framework we have developed the ctools software package, a suite of software tools that enables flexible workflows to be built for the analysis of Imaging Air Cherenkov Telescope event data. The ctools are inspired by science analysis software available for existing high-energy astronomy instruments, and they follow the modular ftools model developed by the High Energy Astrophysics Science Archive Research Center. The ctools were written in Python and C++, and can be either used from the command line via shell scripts or directly from Python. In this paper we present the GammaLib and ctools software versions 1.0 that were released at the end of 2015. GammaLib and ctools are ready for the science analysis of Imaging Air Cherenkov Telescope event data, and also support the analysis of Fermi-LAT data and the exploitation of the COMPTEL legacy data archive. We propose using ctools as the science tools software for the Cherenkov Telescope Array Observatory.

  16. Interactive segmentation of tongue contours in ultrasound video sequences using quality maps

    NASA Astrophysics Data System (ADS)

    Ghrenassia, Sarah; Ménard, Lucie; Laporte, Catherine

    2014-03-01

    Ultrasound (US) imaging is an effective and non invasive way of studying the tongue motions involved in normal and pathological speech, and the results of US studies are of interest for the development of new strategies in speech therapy. State-of-the-art tongue shape analysis techniques based on US images depend on semi-automated tongue segmentation and tracking techniques. Recent work has mostly focused on improving the accuracy of the tracking techniques themselves. However, occasional errors remain inevitable, regardless of the technique used, and the tongue tracking process must thus be supervised by a speech scientist who will correct these errors manually or semi-automatically. This paper proposes an interactive framework to facilitate this process. In this framework, the user is guided towards potentially problematic portions of the US image sequence by a segmentation quality map that is based on the normalized energy of an active contour model and automatically produced during tracking. When a problematic segmentation is identified, corrections to the segmented contour can be made on one image and propagated both forward and backward in the problematic subsequence, thereby improving the user experience. The interactive tools were tested in combination with two different tracking algorithms. Preliminary results illustrate the potential of the proposed framework, suggesting that the proposed framework generally improves user interaction time, with little change in segmentation repeatability.

  17. Research and Analysis of Image Processing Technologies Based on DotNet Framework

    NASA Astrophysics Data System (ADS)

    Ya-Lin, Song; Chen-Xi, Bai

    Microsoft.Net is a kind of most popular program development tool. This paper gave a detailed analysis concluded about some image processing technologies of the advantages and disadvantages by .Net processed image while the same algorithm is used in Programming experiments. The result shows that the two best efficient methods are unsafe pointer and Direct 3D, and Direct 3D used to 3D simulation development, and the others are useful in some fields while these technologies are poor efficiency and not suited to real-time processing. The experiment results in paper will help some projects about image processing and simulation based DotNet and it has strong practicability.

  18. Cost-effectiveness modelling in diagnostic imaging: a stepwise approach.

    PubMed

    Sailer, Anna M; van Zwam, Wim H; Wildberger, Joachim E; Grutters, Janneke P C

    2015-12-01

    Diagnostic imaging (DI) is the fastest growing sector in medical expenditures and takes a central role in medical decision-making. The increasing number of various and new imaging technologies induces a growing demand for cost-effectiveness analysis (CEA) in imaging technology assessment. In this article we provide a comprehensive framework of direct and indirect effects that should be considered for CEA in DI, suitable for all imaging modalities. We describe and explain the methodology of decision analytic modelling in six steps aiming to transfer theory of CEA to clinical research by demonstrating key principles of CEA in a practical approach. We thereby provide radiologists with an introduction to the tools necessary to perform and interpret CEA as part of their research and clinical practice. • DI influences medical decision making, affecting both costs and health outcome. • This article provides a comprehensive framework for CEA in DI. • A six-step methodology for conducting and interpreting cost-effectiveness modelling is proposed.

  19. Toyz: A framework for scientific analysis of large datasets and astronomical images

    NASA Astrophysics Data System (ADS)

    Moolekamp, F.; Mamajek, E.

    2015-11-01

    As the size of images and data products derived from astronomical data continues to increase, new tools are needed to visualize and interact with that data in a meaningful way. Motivated by our own astronomical images taken with the Dark Energy Camera (DECam) we present Toyz, an open source Python package for viewing and analyzing images and data stored on a remote server or cluster. Users connect to the Toyz web application via a web browser, making it ​a convenient tool for students to visualize and interact with astronomical data without having to install any software on their local machines. In addition it provides researchers with an easy-to-use tool that allows them to browse the files on a server and quickly view very large images (>2 Gb) taken with DECam and other cameras with a large FOV and create their own visualization tools that can be added on as extensions to the default Toyz framework.

  20. Combining deep learning with anatomical analysis for segmentation of the portal vein for liver SBRT planning

    NASA Astrophysics Data System (ADS)

    Ibragimov, Bulat; Toesca, Diego; Chang, Daniel; Koong, Albert; Xing, Lei

    2017-12-01

    Automated segmentation of the portal vein (PV) for liver radiotherapy planning is a challenging task due to potentially low vasculature contrast, complex PV anatomy and image artifacts originated from fiducial markers and vasculature stents. In this paper, we propose a novel framework for automated segmentation of the PV from computed tomography (CT) images. We apply convolutional neural networks (CNNs) to learn the consistent appearance patterns of the PV using a training set of CT images with reference annotations and then enhance the PV in previously unseen CT images. Markov random fields (MRFs) were further used to smooth the results of the enhancement of the CNN enhancement and remove isolated mis-segmented regions. Finally, CNN-MRF-based enhancement was augmented with PV centerline detection that relied on PV anatomical properties such as tubularity and branch composition. The framework was validated on a clinical database with 72 CT images of patients scheduled for liver stereotactic body radiation therapy. The obtained accuracy of the segmentation was DSC= 0.83 and \

  1. An ITK framework for deterministic global optimization for medical image registration

    NASA Astrophysics Data System (ADS)

    Dru, Florence; Wachowiak, Mark P.; Peters, Terry M.

    2006-03-01

    Similarity metric optimization is an essential step in intensity-based rigid and nonrigid medical image registration. For clinical applications, such as image guidance of minimally invasive procedures, registration accuracy and efficiency are prime considerations. In addition, clinical utility is enhanced when registration is integrated into image analysis and visualization frameworks, such as the popular Insight Toolkit (ITK). ITK is an open source software environment increasingly used to aid the development, testing, and integration of new imaging algorithms. In this paper, we present a new ITK-based implementation of the DIRECT (Dividing Rectangles) deterministic global optimization algorithm for medical image registration. Previously, it has been shown that DIRECT improves the capture range and accuracy for rigid registration. Our ITK class also contains enhancements over the original DIRECT algorithm by improving stopping criteria, adaptively adjusting a locality parameter, and by incorporating Powell's method for local refinement. 3D-3D registration experiments with ground-truth brain volumes and clinical cardiac volumes show that combining DIRECT with Powell's method improves registration accuracy over Powell's method used alone, is less sensitive to initial misorientation errors, and, with the new stopping criteria, facilitates adequate exploration of the search space without expending expensive iterations on non-improving function evaluations. Finally, in this framework, a new parallel implementation for computing mutual information is presented, resulting in near-linear speedup with two processors.

  2. Short-Term Global Horizontal Irradiance Forecasting Based on Sky Imaging and Pattern Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Feng, Cong; Cui, Mingjian

    Accurate short-term forecasting is crucial for solar integration in the power grid. In this paper, a classification forecasting framework based on pattern recognition is developed for 1-hour-ahead global horizontal irradiance (GHI) forecasting. Three sets of models in the forecasting framework are trained by the data partitioned from the preprocessing analysis. The first two sets of models forecast GHI for the first four daylight hours of each day. Then the GHI values in the remaining hours are forecasted by an optimal machine learning model determined based on a weather pattern classification model in the third model set. The weather pattern ismore » determined by a support vector machine (SVM) classifier. The developed framework is validated by the GHI and sky imaging data from the National Renewable Energy Laboratory (NREL). Results show that the developed short-term forecasting framework outperforms the persistence benchmark by 16% in terms of the normalized mean absolute error and 25% in terms of the normalized root mean square error.« less

  3. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

    PubMed Central

    Jia, Kebin

    2015-01-01

    This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D) images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs) and then identifies scale and translation parameters separately. For three-dimensional (3D) images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA) is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed. PMID:26120356

  4. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations.

    PubMed

    Zhao, Liya; Jia, Kebin

    2015-01-01

    This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D) images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs) and then identifies scale and translation parameters separately. For three-dimensional (3D) images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA) is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed.

  5. Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - II: prediction of reaction force history of meniscal cartilage specimens.

    PubMed

    Taylor, Zeike A; Kirk, Thomas B; Miller, Karol

    2007-10-01

    The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.

  6. Mingus Discontinuous Multiphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pat Notz, Dan Turner

    Mingus provides hybrid coupled local/non-local mechanics analysis capabilities that extend several traditional methods to applications with inherent discontinuities. Its primary features include adaptations of solid mechanics, fluid dynamics and digital image correlation that naturally accommodate dijointed data or irregular solution fields by assimilating a variety of discretizations (such as control volume finite elements, peridynamics and meshless control point clouds). The goal of this software is to provide an analysis framework form multiphysics engineering problems with an integrated image correlation capability that can be used for experimental validation and model

  7. Structure-Specific Statistical Mapping of White Matter Tracts

    PubMed Central

    Yushkevich, Paul A.; Zhang, Hui; Simon, Tony; Gee, James C.

    2008-01-01

    We present a new model-based framework for the statistical analysis of diffusion imaging data associated with specific white matter tracts. The framework takes advantage of the fact that several of the major white matter tracts are thin sheet-like structures that can be effectively modeled by medial representations. The approach involves segmenting major tracts and fitting them with deformable geometric medial models. The medial representation makes it possible to average and combine tensor-based features along directions locally perpendicular to the tracts, thus reducing data dimensionality and accounting for errors in normalization. The framework enables the analysis of individual white matter structures, and provides a range of possibilities for computing statistics and visualizing differences between cohorts. The framework is demonstrated in a study of white matter differences in pediatric chromosome 22q11.2 deletion syndrome. PMID:18407524

  8. The COST Action IC0604 "Telepathology Network in Europe" (EURO-TELEPATH).

    PubMed

    García-Rojo, Marcial; Gonçalves, Luís; Blobel, Bernd

    2012-01-01

    The COST Action IC0604 "Telepathology Network in Europe" (EURO-TELEPATH) is a European COST Action that has been running from 2007 to 2011. COST Actions are funded by the COST (European Cooperation in the field of Scientific and Technical Research) Agency, supported by the Seventh Framework Programme for Research and Technological Development (FP7), of the European Union. EURO-TELEPATH's main objectives were evaluating and validating the common technological framework and communication standards required to access, transmit and manage digital medical records by pathologists and other medical professionals in a networked environment. The project was organized in four working groups. orking Group 1 "Business modeling in pathology" has designed main pathology processes - Frozen Study, Formalin Fixed Specimen Study, Telepathology, Cytology, and Autopsy -using Business Process Modeling Notation (BPMN). orking Group 2 "Informatics standards in pathology" has been dedicated to promoting the development and application of informatics standards in pathology, collaborating with Integrating the Healthcare Enterprise (IHE), Digital Imaging and Communications in Medicine (DICOM), Health Level Seven (HL7), and other standardization bodies. Working Group 3 "Images: Analysis, Processing, Retrieval and Management" worked on the use of virtual or digital slides that are fostering the use of image processing and analysis in pathology not only for research purposes, but also in daily practice. Working Group 4 "Technology and Automation in Pathology" was focused on studying the adequacy of current existing technical solutions, including, e.g., the quality of images obtained by slide scanners, or the efficiency of image analysis applications. Major outcome of this action are the collaboration with international health informatics standardization bodies to foster the development of standards for digital pathology, offering a new approach for workflow analysis, based in business process modeling. Health terminology standardization research has become a topic of high interest. Future research work should focus on standardization of automatic image analysis and tissue microarrays imaging.

  9. Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images.

    PubMed

    Pang, Jincheng; Özkucur, Nurdan; Ren, Michael; Kaplan, David L; Levin, Michael; Miller, Eric L

    2015-11-01

    Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach.

  10. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    NASA Astrophysics Data System (ADS)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  11. AUTOMATED ANALYSIS OF QUANTITATIVE IMAGE DATA USING ISOMORPHIC FUNCTIONAL MIXED MODELS, WITH APPLICATION TO PROTEOMICS DATA.

    PubMed

    Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Herrick, Richard C; Sanna, Pietro; Gutstein, Howard

    2011-01-01

    Image data are increasingly encountered and are of growing importance in many areas of science. Much of these data are quantitative image data, which are characterized by intensities that represent some measurement of interest in the scanned images. The data typically consist of multiple images on the same domain and the goal of the research is to combine the quantitative information across images to make inference about populations or interventions. In this paper, we present a unified analysis framework for the analysis of quantitative image data using a Bayesian functional mixed model approach. This framework is flexible enough to handle complex, irregular images with many local features, and can model the simultaneous effects of multiple factors on the image intensities and account for the correlation between images induced by the design. We introduce a general isomorphic modeling approach to fitting the functional mixed model, of which the wavelet-based functional mixed model is one special case. With suitable modeling choices, this approach leads to efficient calculations and can result in flexible modeling and adaptive smoothing of the salient features in the data. The proposed method has the following advantages: it can be run automatically, it produces inferential plots indicating which regions of the image are associated with each factor, it simultaneously considers the practical and statistical significance of findings, and it controls the false discovery rate. Although the method we present is general and can be applied to quantitative image data from any application, in this paper we focus on image-based proteomic data. We apply our method to an animal study investigating the effects of opiate addiction on the brain proteome. Our image-based functional mixed model approach finds results that are missed with conventional spot-based analysis approaches. In particular, we find that the significant regions of the image identified by the proposed method frequently correspond to subregions of visible spots that may represent post-translational modifications or co-migrating proteins that cannot be visually resolved from adjacent, more abundant proteins on the gel image. Thus, it is possible that this image-based approach may actually improve the realized resolution of the gel, revealing differentially expressed proteins that would not have even been detected as spots by modern spot-based analyses.

  12. Improved cardiac motion detection from ultrasound images using TDIOF: a combined B-mode/ tissue Doppler approach

    NASA Astrophysics Data System (ADS)

    Tavakoli, Vahid; Stoddard, Marcus F.; Amini, Amir A.

    2013-03-01

    Quantitative motion analysis of echocardiographic images helps clinicians with the diagnosis and therapy of patients suffering from cardiac disease. Quantitative analysis is usually based on TDI (Tissue Doppler Imaging) or speckle tracking. These methods are based on two independent techniques - the Doppler Effect and image registration, respectively. In order to increase the accuracy of the speckle tracking technique and cope with the angle dependency of TDI, herein, a combined approach dubbed TDIOF (Tissue Doppler Imaging Optical Flow) is proposed. TDIOF is formulated based on the combination of B-mode and Doppler energy terms in an optical flow framework and minimized using algebraic equations. In this paper, we report on validations with simulated, physical cardiac phantom, and in-vivo patient data. It is shown that the additional Doppler term is able to increase the accuracy of speckle tracking, the basis for several commercially available echocardiography analysis techniques.

  13. Using SAR Interferograms and Coherence Images for Object-Based Delineation of Unstable Slopes

    NASA Astrophysics Data System (ADS)

    Friedl, Barbara; Holbling, Daniel

    2015-05-01

    This study uses synthetic aperture radar (SAR) interferometric products for the semi-automated identification and delineation of unstable slopes and active landslides. Single-pair interferograms and coherence images are therefore segmented and classified in an object-based image analysis (OBIA) framework. The rule-based classification approach has been applied to landslide-prone areas located in Taiwan and Southern Germany. The semi-automatically obtained results were validated against landslide polygons derived from manual interpretation.

  14. Texture analysis of ultrahigh field T2*-weighted MR images of the brain: application to Huntington's disease.

    PubMed

    Doan, Nhat Trung; van den Bogaard, Simon J A; Dumas, Eve M; Webb, Andrew G; van Buchem, Mark A; Roos, Raymund A C; van der Grond, Jeroen; Reiber, Johan H C; Milles, Julien

    2014-03-01

    To develop a framework for quantitative detection of between-group textural differences in ultrahigh field T2*-weighted MR images of the brain. MR images were acquired using a three-dimensional (3D) T2*-weighted gradient echo sequence on a 7 Tesla MRI system. The phase images were high-pass filtered to remove phase wraps. Thirteen textural features were computed for both the magnitude and phase images of a region of interest based on 3D Gray-Level Co-occurrence Matrix, and subsequently evaluated to detect between-group differences using a Mann-Whitney U-test. We applied the framework to study textural differences in subcortical structures between premanifest Huntington's disease (HD), manifest HD patients, and controls. In premanifest HD, four phase-based features showed a difference in the caudate nucleus. In manifest HD, 7 magnitude-based features showed a difference in the pallidum, 6 phase-based features in the caudate nucleus, and 10 phase-based features in the putamen. After multiple comparison correction, significant differences were shown in the putamen in manifest HD by two phase-based features (both adjusted P values=0.04). This study provides the first evidence of textural heterogeneity of subcortical structures in HD. Texture analysis of ultrahigh field T2*-weighted MR images can be useful for noninvasive monitoring of neurodegenerative diseases. Copyright © 2013 Wiley Periodicals, Inc.

  15. Myocardium Segmentation From DE MRI Using Multicomponent Gaussian Mixture Model and Coupled Level Set.

    PubMed

    Liu, Jie; Zhuang, Xiahai; Wu, Lianming; An, Dongaolei; Xu, Jianrong; Peters, Terry; Gu, Lixu

    2017-11-01

    Objective: In this paper, we propose a fully automatic framework for myocardium segmentation of delayed-enhancement (DE) MRI images without relying on prior patient-specific information. Methods: We employ a multicomponent Gaussian mixture model to deal with the intensity heterogeneity of myocardium caused by the infarcts. To differentiate the myocardium from other tissues with similar intensities, while at the same time maintain spatial continuity, we introduce a coupled level set (CLS) to regularize the posterior probability. The CLS, as a spatial regularization, can be adapted to the image characteristics dynamically. We also introduce an image intensity gradient based term into the CLS, adding an extra force to the posterior probability based framework, to improve the accuracy of myocardium boundary delineation. The prebuilt atlases are propagated to the target image to initialize the framework. Results: The proposed method was tested on datasets of 22 clinical cases, and achieved Dice similarity coefficients of 87.43 ± 5.62% (endocardium), 90.53 ± 3.20% (epicardium) and 73.58 ± 5.58% (myocardium), which have outperformed three variants of the classic segmentation methods. Conclusion: The results can provide a benchmark for the myocardial segmentation in the literature. Significance: DE MRI provides an important tool to assess the viability of myocardium. The accurate segmentation of myocardium, which is a prerequisite for further quantitative analysis of myocardial infarction (MI) region, can provide important support for the diagnosis and treatment management for MI patients. Objective: In this paper, we propose a fully automatic framework for myocardium segmentation of delayed-enhancement (DE) MRI images without relying on prior patient-specific information. Methods: We employ a multicomponent Gaussian mixture model to deal with the intensity heterogeneity of myocardium caused by the infarcts. To differentiate the myocardium from other tissues with similar intensities, while at the same time maintain spatial continuity, we introduce a coupled level set (CLS) to regularize the posterior probability. The CLS, as a spatial regularization, can be adapted to the image characteristics dynamically. We also introduce an image intensity gradient based term into the CLS, adding an extra force to the posterior probability based framework, to improve the accuracy of myocardium boundary delineation. The prebuilt atlases are propagated to the target image to initialize the framework. Results: The proposed method was tested on datasets of 22 clinical cases, and achieved Dice similarity coefficients of 87.43 ± 5.62% (endocardium), 90.53 ± 3.20% (epicardium) and 73.58 ± 5.58% (myocardium), which have outperformed three variants of the classic segmentation methods. Conclusion: The results can provide a benchmark for the myocardial segmentation in the literature. Significance: DE MRI provides an important tool to assess the viability of myocardium. The accurate segmentation of myocardium, which is a prerequisite for further quantitative analysis of myocardial infarction (MI) region, can provide important support for the diagnosis and treatment management for MI patients.

  16. Fusion and quality analysis for remote sensing images using contourlet transform

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.

  17. Filtering of high noise breast thermal images using fast non-local means.

    PubMed

    Suganthi, S S; Ramakrishnan, S

    2014-01-01

    Analyses of breast thermograms are still a challenging task primarily due to the limitations such as low contrast, low signal to noise ratio and absence of clear edges. Therefore, always there is a requirement for preprocessing techniques before performing any quantitative analysis. In this work, a noise removal framework using fast non-local means algorithm, method noise and median filter was used to denoise breast thermograms. The images considered were subjected to Anscombe transformation to convert the distribution from Poisson to Gaussian. The pre-denoised image was obtained by subjecting the transformed image to fast non-local means filtering. The method noise which is the difference between the original and pre-denoised image was observed with the noise component merged in few structures and fine detail of the image. The image details presented in the method noise was extracted by smoothing the noise part using the median filter. The retrieved image part was added to the pre-denoised image to obtain the final denoised image. The performance of this technique was compared with that of Wiener and SUSAN filters. The results show that all the filters considered are able to remove the noise component. The performance of the proposed denoising framework is found to be good in preserving detail and removing noise. Further, the method noise is observed with negligible image details. Similarly, denoised image with no noise and smoothed edges are observed using Wiener filter and its method noise is contained with few structures and image details. The performance results of SUSAN filter is found to be blurred denoised image with little noise and also method noise with extensive structure and image details. Hence, it appears that the proposed denoising framework is able to preserve the edge information and generate clear image that could help in enhancing the diagnostic relevance of breast thermograms. In this paper, the introduction, objectives, materials and methods, results and discussion and conclusions are presented in detail.

  18. Designing for Peta-Scale in the LSST Database

    NASA Astrophysics Data System (ADS)

    Kantor, J.; Axelrod, T.; Becla, J.; Cook, K.; Nikolaev, S.; Gray, J.; Plante, R.; Nieto-Santisteban, M.; Szalay, A.; Thakar, A.

    2007-10-01

    The Large Synoptic Survey Telescope (LSST), a proposed ground-based 8.4 m telescope with a 10 deg^2 field of view, will generate 15 TB of raw images every observing night. When calibration and processed data are added, the image archive, catalogs, and meta-data will grow 15 PB yr^{-1} on average. The LSST Data Management System (DMS) must capture, process, store, index, replicate, and provide open access to this data. Alerts must be triggered within 30 s of data acquisition. To do this in real-time at these data volumes will require advances in data management, database, and file system techniques. This paper describes the design of the LSST DMS and emphasizes features for peta-scale data. The LSST DMS will employ a combination of distributed database and file systems, with schema, partitioning, and indexing oriented for parallel operations. Image files are stored in a distributed file system with references to, and meta-data from, each file stored in the databases. The schema design supports pipeline processing, rapid ingest, and efficient query. Vertical partitioning reduces disk input/output requirements, horizontal partitioning allows parallel data access using arrays of servers and disks. Indexing is extensive, utilizing both conventional RAM-resident indexes and column-narrow, row-deep tag tables/covering indices that are extracted from tables that contain many more attributes. The DMS Data Access Framework is encapsulated in a middleware framework to provide a uniform service interface to all framework capabilities. This framework will provide the automated work-flow, replication, and data analysis capabilities necessary to make data processing and data quality analysis feasible at this scale.

  19. Fully automatic left ventricular myocardial strain estimation in 2D short-axis tagged magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Morais, Pedro; Queirós, Sandro; Heyde, Brecht; Engvall, Jan; 'hooge, Jan D.; Vilaça, João L.

    2017-09-01

    Cardiovascular diseases are among the leading causes of death and frequently result in local myocardial dysfunction. Among the numerous imaging modalities available to detect these dysfunctional regions, cardiac deformation imaging through tagged magnetic resonance imaging (t-MRI) has been an attractive approach. Nevertheless, fully automatic analysis of these data sets is still challenging. In this work, we present a fully automatic framework to estimate left ventricular myocardial deformation from t-MRI. This strategy performs automatic myocardial segmentation based on B-spline explicit active surfaces, which are initialized using an annular model. A non-rigid image-registration technique is then used to assess myocardial deformation. Three experiments were set up to validate the proposed framework using a clinical database of 75 patients. First, automatic segmentation accuracy was evaluated by comparing against manual delineations at one specific cardiac phase. The proposed solution showed an average perpendicular distance error of 2.35  ±  1.21 mm and 2.27  ±  1.02 mm for the endo- and epicardium, respectively. Second, starting from either manual or automatic segmentation, myocardial tracking was performed and the resulting strain curves were compared. It is shown that the automatic segmentation adds negligible differences during the strain-estimation stage, corroborating its accuracy. Finally, segmental strain was compared with scar tissue extent determined by delay-enhanced MRI. The results proved that both strain components were able to distinguish between normal and infarct regions. Overall, the proposed framework was shown to be accurate, robust, and attractive for clinical practice, as it overcomes several limitations of a manual analysis.

  20. A Graphical User Interface for Software-assisted Tracking of Protein Concentration in Dynamic Cellular Protrusions.

    PubMed

    Saha, Tanumoy; Rathmann, Isabel; Galic, Milos

    2017-07-11

    Filopodia are dynamic, finger-like cellular protrusions associated with migration and cell-cell communication. In order to better understand the complex signaling mechanisms underlying filopodial initiation, elongation and subsequent stabilization or retraction, it is crucial to determine the spatio-temporal protein activity in these dynamic structures. To analyze protein function in filopodia, we recently developed a semi-automated tracking algorithm that adapts to filopodial shape-changes, thus allowing parallel analysis of protrusion dynamics and relative protein concentration along the whole filopodial length. Here, we present a detailed step-by-step protocol for optimized cell handling, image acquisition and software analysis. We further provide instructions for the use of optional features during image analysis and data representation, as well as troubleshooting guidelines for all critical steps along the way. Finally, we also include a comparison of the described image analysis software with other programs available for filopodia quantification. Together, the presented protocol provides a framework for accurate analysis of protein dynamics in filopodial protrusions using image analysis software.

  1. NET: a new framework for the vectorization and examination of network data.

    PubMed

    Lasser, Jana; Katifori, Eleni

    2017-01-01

    The analysis of complex networks both in general and in particular as pertaining to real biological systems has been the focus of intense scientific attention in the past and present. In this paper we introduce two tools that provide fast and efficient means for the processing and quantification of biological networks like Drosophila tracheoles or leaf venation patterns: the Network Extraction Tool ( NET ) to extract data and the Graph-edit-GUI ( GeGUI ) to visualize and modify networks. NET is especially designed for high-throughput semi-automated analysis of biological datasets containing digital images of networks. The framework starts with the segmentation of the image and then proceeds to vectorization using methodologies from optical character recognition. After a series of steps to clean and improve the quality of the extracted data the framework produces a graph in which the network is represented only by its nodes and neighborhood-relations. The final output contains information about the adjacency matrix of the graph, the width of the edges and the positions of the nodes in space. NET also provides tools for statistical analysis of the network properties, such as the number of nodes or total network length. Other, more complex metrics can be calculated by importing the vectorized network to specialized network analysis packages. GeGUI is designed to facilitate manual correction of non-planar networks as these may contain artifacts or spurious junctions due to branches crossing each other. It is tailored for but not limited to the processing of networks from microscopy images of Drosophila tracheoles. The networks extracted by NET closely approximate the network depicted in the original image. NET is fast, yields reproducible results and is able to capture the full geometry of the network, including curved branches. Additionally GeGUI allows easy handling and visualization of the networks.

  2. MOVING BEYOND COLOR: THE CASE FOR MULTISPECTRAL IMAGING IN BRIGHTFIELD PATHOLOGY.

    PubMed

    Cukierski, William J; Qi, Xin; Foran, David J

    2009-01-01

    A multispectral camera is capable of imaging a histologic slide at narrow bandwidths over the range of the visible spectrum. While several uses for multispectral imaging (MSI) have been demonstrated in pathology [1, 2], there is no unified consensus over when and how MSI might benefit automated analysis [3, 4]. In this work, we use a linear-algebra framework to investigate the relationship between the spectral image and its standard-image counterpart. The multispectral "cube" is treated as an extension of a traditional image in a high-dimensional color space. The concept of metamers is introduced and used to derive regions of the visible spectrum where MSI may provide an advantage. Furthermore, histological stains which are amenable to analysis by MSI are reported. We show the Commission internationale de l'éclairage (CIE) 1931 transformation from spectrum to color is non-neighborhood preserving. Empirical results are demonstrated on multispectral images of peripheral blood smears.

  3. Microscopic medical image classification framework via deep learning and shearlet transform.

    PubMed

    Rezaeilouyeh, Hadi; Mollahosseini, Ali; Mahoor, Mohammad H

    2016-10-01

    Cancer is the second leading cause of death in US after cardiovascular disease. Image-based computer-aided diagnosis can assist physicians to efficiently diagnose cancers in early stages. Existing computer-aided algorithms use hand-crafted features such as wavelet coefficients, co-occurrence matrix features, and recently, histogram of shearlet coefficients for classification of cancerous tissues and cells in images. These hand-crafted features often lack generalizability since every cancerous tissue and cell has a specific texture, structure, and shape. An alternative approach is to use convolutional neural networks (CNNs) to learn the most appropriate feature abstractions directly from the data and handle the limitations of hand-crafted features. A framework for breast cancer detection and prostate Gleason grading using CNN trained on images along with the magnitude and phase of shearlet coefficients is presented. Particularly, we apply shearlet transform on images and extract the magnitude and phase of shearlet coefficients. Then we feed shearlet features along with the original images to our CNN consisting of multiple layers of convolution, max pooling, and fully connected layers. Our experiments show that using the magnitude and phase of shearlet coefficients as extra information to the network can improve the accuracy of detection and generalize better compared to the state-of-the-art methods that rely on hand-crafted features. This study expands the application of deep neural networks into the field of medical image analysis, which is a difficult domain considering the limited medical data available for such analysis.

  4. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    PubMed

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  5. Florida spaceports : an analysis of the regulatory framework : summary.

    DOT National Transportation Integrated Search

    2010-12-01

    Until recently, government control : has restricted space flight to a few : highly trained persons executing : missions in the public interest : using a very limited number : of facilities and vehicles. This : environment is changing. Imaging : and c...

  6. The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

    PubMed

    Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A

    2010-03-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

  7. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    PubMed Central

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  8. Embedded sparse representation of fMRI data via group-wise dictionary optimization

    NASA Astrophysics Data System (ADS)

    Zhu, Dajiang; Lin, Binbin; Faskowitz, Joshua; Ye, Jieping; Thompson, Paul M.

    2016-03-01

    Sparse learning enables dimension reduction and efficient modeling of high dimensional signals and images, but it may need to be tailored to best suit specific applications and datasets. Here we used sparse learning to efficiently represent functional magnetic resonance imaging (fMRI) data from the human brain. We propose a novel embedded sparse representation (ESR), to identify the most consistent dictionary atoms across different brain datasets via an iterative group-wise dictionary optimization procedure. In this framework, we introduced additional criteria to make the learned dictionary atoms more consistent across different subjects. We successfully identified four common dictionary atoms that follow the external task stimuli with very high accuracy. After projecting the corresponding coefficient vectors back into the 3-D brain volume space, the spatial patterns are also consistent with traditional fMRI analysis results. Our framework reveals common features of brain activation in a population, as a new, efficient fMRI analysis method.

  9. Multiresolution multiscale active mask segmentation of fluorescence microscope images

    NASA Astrophysics Data System (ADS)

    Srinivasa, Gowri; Fickus, Matthew; Kovačević, Jelena

    2009-08-01

    We propose an active mask segmentation framework that combines the advantages of statistical modeling, smoothing, speed and flexibility offered by the traditional methods of region-growing, multiscale, multiresolution and active contours respectively. At the crux of this framework is a paradigm shift from evolving contours in the continuous domain to evolving multiple masks in the discrete domain. Thus, the active mask framework is particularly suited to segment digital images. We demonstrate the use of the framework in practice through the segmentation of punctate patterns in fluorescence microscope images. Experiments reveal that statistical modeling helps the multiple masks converge from a random initial configuration to a meaningful one. This obviates the need for an involved initialization procedure germane to most of the traditional methods used to segment fluorescence microscope images. While we provide the mathematical details of the functions used to segment fluorescence microscope images, this is only an instantiation of the active mask framework. We suggest some other instantiations of the framework to segment different types of images.

  10. Branding Access through the Carolina Covenant: Fostering Institutional Image and Brand

    ERIC Educational Resources Information Center

    Harris, Michael S.; Barnes, Bradley

    2011-01-01

    This study analyzes the potential of major financial aid initiatives to serve as key elements of an institutional branding strategy. Concepts of branding and marketing serve as guiding frameworks for the analysis and interpretation of the findings. Using a case study approach, data were collected through interviews and document analysis at the…

  11. Design Criteria For Networked Image Analysis System

    NASA Astrophysics Data System (ADS)

    Reader, Cliff; Nitteberg, Alan

    1982-01-01

    Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.

  12. An approach to analyze the breast tissues in infrared images using nonlinear adaptive level sets and Riesz transform features.

    PubMed

    Prabha, S; Suganthi, S S; Sujatha, C M

    2015-01-01

    Breast thermography is a potential imaging method for the early detection of breast cancer. The pathological conditions can be determined by measuring temperature variations in the abnormal breast regions. Accurate delineation of breast tissues is reported as a challenging task due to inherent limitations of infrared images such as low contrast, low signal to noise ratio and absence of clear edges. Segmentation technique is attempted to delineate the breast tissues by detecting proper lower breast boundaries and inframammary folds. Characteristic features are extracted to analyze the asymmetrical thermal variations in normal and abnormal breast tissues. An automated analysis of thermal variations of breast tissues is attempted using nonlinear adaptive level sets and Riesz transform. Breast thermal images are initially subjected to Stein's unbiased risk estimate based orthonormal wavelet denoising. These denoised images are enhanced using contrast-limited adaptive histogram equalization method. The breast tissues are then segmented using non-linear adaptive level set method. The phase map of enhanced image is integrated into the level set framework for final boundary estimation. The segmented results are validated against the corresponding ground truth images using overlap and regional similarity metrics. The segmented images are further processed with Riesz transform and structural texture features are derived from the transformed coefficients to analyze pathological conditions of breast tissues. Results show that the estimated average signal to noise ratio of denoised images and average sharpness of enhanced images are improved by 38% and 6% respectively. The interscale consideration adopted in the denoising algorithm is able to improve signal to noise ratio by preserving edges. The proposed segmentation framework could delineate the breast tissues with high degree of correlation (97%) between the segmented and ground truth areas. Also, the average segmentation accuracy and sensitivity are found to be 98%. Similarly, the maximum regional overlap between segmented and ground truth images obtained using volume similarity measure is observed to be 99%. Directionality as a feature, showed a considerable difference between normal and abnormal tissues which is found to be 11%. The proposed framework for breast thermal image analysis that is aided with necessary preprocessing is found to be useful in assisting the early diagnosis of breast abnormalities.

  13. A memory learning framework for effective image retrieval.

    PubMed

    Han, Junwei; Ngan, King N; Li, Mingjing; Zhang, Hong-Jiang

    2005-04-01

    Most current content-based image retrieval systems are still incapable of providing users with their desired results. The major difficulty lies in the gap between low-level image features and high-level image semantics. To address the problem, this study reports a framework for effective image retrieval by employing a novel idea of memory learning. It forms a knowledge memory model to store the semantic information by simply accumulating user-provided interactions. A learning strategy is then applied to predict the semantic relationships among images according to the memorized knowledge. Image queries are finally performed based on a seamless combination of low-level features and learned semantics. One important advantage of our framework is its ability to efficiently annotate images and also propagate the keyword annotation from the labeled images to unlabeled images. The presented algorithm has been integrated into a practical image retrieval system. Experiments on a collection of 10,000 general-purpose images demonstrate the effectiveness of the proposed framework.

  14. MIA - A free and open source software for gray scale medical image analysis

    PubMed Central

    2013-01-01

    Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed. PMID:24119305

  15. MIA - A free and open source software for gray scale medical image analysis.

    PubMed

    Wollny, Gert; Kellman, Peter; Ledesma-Carbayo, María-Jesus; Skinner, Matthew M; Hublin, Jean-Jaques; Hierl, Thomas

    2013-10-11

    Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large.Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers.One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development.Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don't provide an clear approach when one wants to shape a new command line tool from a prototype shell script. The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.

  16. A graph-based approach to detect spatiotemporal dynamics in satellite image time series

    NASA Astrophysics Data System (ADS)

    Guttler, Fabio; Ienco, Dino; Nin, Jordi; Teisseire, Maguelonne; Poncelet, Pascal

    2017-08-01

    Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics.

  17. Nonlocal means-based speckle filtering for ultrasound images

    PubMed Central

    Coupé, Pierrick; Hellier, Pierre; Kervrann, Charles; Barillot, Christian

    2009-01-01

    In image processing, restoration is expected to improve the qualitative inspection of the image and the performance of quantitative image analysis techniques. In this paper, an adaptation of the Non Local (NL-) means filter is proposed for speckle reduction in ultrasound (US) images. Originally developed for additive white Gaussian noise, we propose to use a Bayesian framework to derive a NL-means filter adapted to a relevant ultrasound noise model. Quantitative results on synthetic data show the performances of the proposed method compared to well-established and state-of-the-art methods. Results on real images demonstrate that the proposed method is able to preserve accurately edges and structural details of the image. PMID:19482578

  18. A domain-knowledge-inspired mathematical framework for the description and classification of H&E stained histopathology images.

    PubMed

    Massar, Melody L; Bhagavatula, Ramamurthy; Ozolek, John A; Castro, Carlos A; Fickus, Matthew; Kovačević, Jelena

    2011-10-19

    We present the current state of our work on a mathematical framework for identification and delineation of histopathology images-local histograms and occlusion models. Local histograms are histograms computed over defined spatial neighborhoods whose purpose is to characterize an image locally. This unit of description is augmented by our occlusion models that describe a methodology for image formation. In the context of this image formation model, the power of local histograms with respect to appropriate families of images will be shown through various proved statements about expected performance. We conclude by presenting a preliminary study to demonstrate the power of the framework in the context of histopathology image classification tasks that, while differing greatly in application, both originate from what is considered an appropriate class of images for this framework.

  19. CALIBRATED ULTRA FAST IMAGE SIMULATIONS FOR THE DARK ENERGY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruderer, Claudio; Chang, Chihway; Refregier, Alexandre

    2016-01-20

    Image simulations are becoming increasingly important in understanding the measurement process of the shapes of galaxies for weak lensing and the associated systematic effects. For this purpose we present the first implementation of the Monte Carlo Control Loops (MCCL), a coherent framework for studying systematic effects in weak lensing. It allows us to model and calibrate the shear measurement process using image simulations from the Ultra Fast Image Generator (UFig) and the image analysis software SExtractor. We apply this framework to a subset of the data taken during the Science Verification period (SV) of the Dark Energy Survey (DES). Wemore » calibrate the UFig simulations to be statistically consistent with one of the SV images, which covers ∼0.5 square degrees. We then perform tolerance analyses by perturbing six simulation parameters and study their impact on the shear measurement at the one-point level. This allows us to determine the relative importance of different parameters. For spatially constant systematic errors and point-spread function, the calibration of the simulation reaches the weak lensing precision needed for the DES SV survey area. Furthermore, we find a sensitivity of the shear measurement to the intrinsic ellipticity distribution, and an interplay between the magnitude-size and the pixel value diagnostics in constraining the noise model. This work is the first application of the MCCL framework to data and shows how it can be used to methodically study the impact of systematics on the cosmic shear measurement.« less

  20. Fuzzy entropy thresholding and multi-scale morphological approach for microscopic image enhancement

    NASA Astrophysics Data System (ADS)

    Zhou, Jiancan; Li, Yuexiang; Shen, Linlin

    2017-07-01

    Microscopic images provide lots of useful information for modern diagnosis and biological research. However, due to the unstable lighting condition during image capturing, two main problems, i.e., high-level noises and low image contrast, occurred in the generated cell images. In this paper, a simple but efficient enhancement framework is proposed to address the problems. The framework removes image noises using a hybrid method based on wavelet transform and fuzzy-entropy, and enhances the image contrast with an adaptive morphological approach. Experiments on real cell dataset were made to assess the performance of proposed framework. The experimental results demonstrate that our proposed enhancement framework increases the cell tracking accuracy to an average of 74.49%, which outperforms the benchmark algorithm, i.e., 46.18%.

  1. GRAPE: a graphical pipeline environment for image analysis in adaptive magnetic resonance imaging.

    PubMed

    Gabr, Refaat E; Tefera, Getaneh B; Allen, William J; Pednekar, Amol S; Narayana, Ponnada A

    2017-03-01

    We present a platform, GRAphical Pipeline Environment (GRAPE), to facilitate the development of patient-adaptive magnetic resonance imaging (MRI) protocols. GRAPE is an open-source project implemented in the Qt C++ framework to enable graphical creation, execution, and debugging of real-time image analysis algorithms integrated with the MRI scanner. The platform provides the tools and infrastructure to design new algorithms, and build and execute an array of image analysis routines, and provides a mechanism to include existing analysis libraries, all within a graphical environment. The application of GRAPE is demonstrated in multiple MRI applications, and the software is described in detail for both the user and the developer. GRAPE was successfully used to implement and execute three applications in MRI of the brain, performed on a 3.0-T MRI scanner: (i) a multi-parametric pipeline for segmenting the brain tissue and detecting lesions in multiple sclerosis (MS), (ii) patient-specific optimization of the 3D fluid-attenuated inversion recovery MRI scan parameters to enhance the contrast of brain lesions in MS, and (iii) an algebraic image method for combining two MR images for improved lesion contrast. GRAPE allows graphical development and execution of image analysis algorithms for inline, real-time, and adaptive MRI applications.

  2. IDL Object Oriented Software for Hinode/XRT Image Analysis

    NASA Astrophysics Data System (ADS)

    Higgins, P. A.; Gallagher, P. T.

    2008-09-01

    We have developed a set of object oriented IDL routines that enable users to search, download and analyse images from the X-Ray Telescope (XRT) on-board Hinode. In this paper, we give specific examples of how the object can be used and how multi-instrument data analysis can be performed. The XRT object is a highly versatile and powerful IDL object, which will prove to be a useful tool for solar researchers. This software utilizes the generic Framework object available within the GEN branch of SolarSoft.

  3. GAFFE: a gaze-attentive fixation finding engine.

    PubMed

    Rajashekar, U; van der Linde, I; Bovik, A C; Cormack, L K

    2008-04-01

    The ability to automatically detect visually interesting regions in images has many practical applications, especially in the design of active machine vision and automatic visual surveillance systems. Analysis of the statistics of image features at observers' gaze can provide insights into the mechanisms of fixation selection in humans. Using a foveated analysis framework, we studied the statistics of four low-level local image features: luminance, contrast, and bandpass outputs of both luminance and contrast, and discovered that image patches around human fixations had, on average, higher values of each of these features than image patches selected at random. Contrast-bandpass showed the greatest difference between human and random fixations, followed by luminance-bandpass, RMS contrast, and luminance. Using these measurements, we present a new algorithm that selects image regions as likely candidates for fixation. These regions are shown to correlate well with fixations recorded from human observers.

  4. Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET Images

    PubMed Central

    Bagci, Ulas; Yao, Jianhua; Miller-Jaster, Kirsten; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements significantly improves the prediction accuracy of morphological changes (Spearman correlation coefficient = 0.8715, p<2e-16). PMID:23431398

  5. Reference-free error estimation for multiple measurement methods.

    PubMed

    Madan, Hennadii; Pernuš, Franjo; Špiclin, Žiga

    2018-01-01

    We present a computational framework to select the most accurate and precise method of measurement of a certain quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze measurement methods based on similar principles, which may have correlated random errors. Furthermore, the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain magnetic resonance images. The estimates of bias and random error were in a good agreement with the corresponding least squares regression estimates against a reference.

  6. Effect of geometry on deformation of anterior implant-supported zirconia frameworks: An in vitro study using digital image correlation.

    PubMed

    Calha, Nuno; Messias, Ana; Guerra, Fernando; Martinho, Beatriz; Neto, Maria Augusta; Nicolau, Pedro

    2017-04-01

    To evaluate the effect of geometry on the displacement and the strain distribution of anterior implant-supported zirconia frameworks under static load using the 3D digital image correlation method. Two groups (n=5) of 4-unit zirconia frameworks were produced by CAD/CAM for the implant-abutment assembly. Group 1 comprised five straight configuration frameworks and group 2 consisted of five curved configuration frameworks. Specimens were cemented and submitted to static load up to 200N. Displacements were captured with two high-speed photographic cameras and analyzed with video correlation system in three spacial axes U, V, W. Statistical analysis was made using the nonparametric Mann-Whitney test. Up to 150N loads, the vertical displacements (V axis) were statistically higher for curved frameworks (-267.83±23.76μm), when compared to the straight frameworks (-120.73±36.17μm) (p=0.008), as well as anterior displacements in the W transformed axis (589.55±64.51μm vs 224.29±50.38μm for the curved and straight frameworks), respectively (p=0.008). The mean von Mises strains over the surface frameworks were statistically higher for the curved frameworks under any load. Within the limitations of this in vitro study, it is possible to conclude that the geometric configuration influences the deformation of 4-unit anterior frameworks under static load. The higher strain distribution and micro-movements of the curved frameworks reflect less rigidity and increased risk of fractures associated to FPDs. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Using Cell-ID 1.4 with R for Microscope-Based Cytometry

    PubMed Central

    Bush, Alan; Chernomoretz, Ariel; Yu, Richard; Gordon, Andrew

    2012-01-01

    This unit describes a method for quantifying various cellular features (e.g., volume, total and subcellular fluorescence localization) from sets of microscope images of individual cells. It includes procedures for tracking cells over time. One purposefully defocused transmission image (sometimes referred to as bright-field or BF) is acquired to segment the image and locate each cell. Fluorescent images (one for each of the color channels to be analyzed) are then acquired by conventional wide-field epifluorescence or confocal microscopy. This method uses the image processing capabilities of Cell-ID (Gordon et al., 2007, as updated here) and data analysis by the statistical programming framework R (R-Development-Team, 2008), which we have supplemented with a package of routines for analyzing Cell-ID output. Both Cell-ID and the analysis package are open-source. PMID:23026908

  8. Cascaded systems analysis of noise and detectability in dual-energy cone-beam CT

    PubMed Central

    Gang, Grace J.; Zbijewski, Wojciech; Webster Stayman, J.; Siewerdsen, Jeffrey H.

    2012-01-01

    Purpose: Dual-energy computed tomography and dual-energy cone-beam computed tomography (DE-CBCT) are promising modalities for applications ranging from vascular to breast, renal, hepatic, and musculoskeletal imaging. Accordingly, the optimization of imaging techniques for such applications would benefit significantly from a general theoretical description of image quality that properly incorporates factors of acquisition, reconstruction, and tissue decomposition in DE tomography. This work reports a cascaded systems analysis model that includes the Poisson statistics of x rays (quantum noise), detector model (flat-panel detectors), anatomical background, image reconstruction (filtered backprojection), DE decomposition (weighted subtraction), and simple observer models to yield a task-based framework for DE technique optimization. Methods: The theoretical framework extends previous modeling of DE projection radiography and CBCT. Signal and noise transfer characteristics are propagated through physical and mathematical stages of image formation and reconstruction. Dual-energy decomposition was modeled according to weighted subtraction of low- and high-energy images to yield the 3D DE noise-power spectrum (NPS) and noise-equivalent quanta (NEQ), which, in combination with observer models and the imaging task, yields the dual-energy detectability index (d′). Model calculations were validated with NPS and NEQ measurements from an experimental imaging bench simulating the geometry of a dedicated musculoskeletal extremities scanner. Imaging techniques, including kVp pair and dose allocation, were optimized using d′ as an objective function for three example imaging tasks: (1) kidney stone discrimination; (2) iodine vs bone in a uniform, soft-tissue background; and (3) soft tissue tumor detection on power-law anatomical background. Results: Theoretical calculations of DE NPS and NEQ demonstrated good agreement with experimental measurements over a broad range of imaging conditions. Optimization results suggest a lower fraction of total dose imparted by the low-energy acquisition, a finding consistent with previous literature. The selection of optimal kVp pair reveals the combined effect of both quantum noise and contrast in the kidney stone discrimination and soft-tissue tumor detection tasks, whereas the K-edge effect of iodine was the dominant factor in determining kVp pairs in the iodine vs bone task. The soft-tissue tumor task illustrated the benefit of dual-energy imaging in eliminating anatomical background noise and improving detectability beyond that achievable by single-energy scans. Conclusions: This work established a task-based theoretical framework that is predictive of DE image quality. The model can be utilized in optimizing a broad range of parameters in image acquisition, reconstruction, and decomposition, providing a useful tool for maximizing DE-CBCT image quality and reducing dose. PMID:22894440

  9. CognitionMaster: an object-based image analysis framework

    PubMed Central

    2013-01-01

    Background Automated image analysis methods are becoming more and more important to extract and quantify image features in microscopy-based biomedical studies and several commercial or open-source tools are available. However, most of the approaches rely on pixel-wise operations, a concept that has limitations when high-level object features and relationships between objects are studied and if user-interactivity on the object-level is desired. Results In this paper we present an open-source software that facilitates the analysis of content features and object relationships by using objects as basic processing unit instead of individual pixels. Our approach enables also users without programming knowledge to compose “analysis pipelines“ that exploit the object-level approach. We demonstrate the design and use of example pipelines for the immunohistochemistry-based cell proliferation quantification in breast cancer and two-photon fluorescence microscopy data about bone-osteoclast interaction, which underline the advantages of the object-based concept. Conclusions We introduce an open source software system that offers object-based image analysis. The object-based concept allows for a straight-forward development of object-related interactive or fully automated image analysis solutions. The presented software may therefore serve as a basis for various applications in the field of digital image analysis. PMID:23445542

  10. An Observation-Driven Agent-Based Modeling and Analysis Framework for C. elegans Embryogenesis.

    PubMed

    Wang, Zi; Ramsey, Benjamin J; Wang, Dali; Wong, Kwai; Li, Husheng; Wang, Eric; Bao, Zhirong

    2016-01-01

    With cutting-edge live microscopy and image analysis, biologists can now systematically track individual cells in complex tissues and quantify cellular behavior over extended time windows. Computational approaches that utilize the systematic and quantitative data are needed to understand how cells interact in vivo to give rise to the different cell types and 3D morphology of tissues. An agent-based, minimum descriptive modeling and analysis framework is presented in this paper to study C. elegans embryogenesis. The framework is designed to incorporate the large amounts of experimental observations on cellular behavior and reserve data structures/interfaces that allow regulatory mechanisms to be added as more insights are gained. Observed cellular behaviors are organized into lineage identity, timing and direction of cell division, and path of cell movement. The framework also includes global parameters such as the eggshell and a clock. Division and movement behaviors are driven by statistical models of the observations. Data structures/interfaces are reserved for gene list, cell-cell interaction, cell fate and landscape, and other global parameters until the descriptive model is replaced by a regulatory mechanism. This approach provides a framework to handle the ongoing experiments of single-cell analysis of complex tissues where mechanistic insights lag data collection and need to be validated on complex observations.

  11. Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning.

    PubMed

    Yousefi, Mina; Krzyżak, Adam; Suen, Ching Y

    2018-05-01

    Digital breast tomosynthesis (DBT) was developed in the field of breast cancer screening as a new tomographic technique to minimize the limitations of conventional digital mammography breast screening methods. A computer-aided detection (CAD) framework for mass detection in DBT has been developed and is described in this paper. The proposed framework operates on a set of two-dimensional (2D) slices. With plane-to-plane analysis on corresponding 2D slices from each DBT, it automatically learns complex patterns of 2D slices through a deep convolutional neural network (DCNN). It then applies multiple instance learning (MIL) with a randomized trees approach to classify DBT images based on extracted information from 2D slices. This CAD framework was developed and evaluated using 5040 2D image slices derived from 87 DBT volumes. The empirical results demonstrate that this proposed CAD framework achieves much better performance than CAD systems that use hand-crafted features and deep cardinality-restricted Bolzmann machines to detect masses in DBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Automated Geo/Co-Registration of Multi-Temporal Very-High-Resolution Imagery.

    PubMed

    Han, Youkyung; Oh, Jaehong

    2018-05-17

    For time-series analysis using very-high-resolution (VHR) multi-temporal satellite images, both accurate georegistration to the map coordinates and subpixel-level co-registration among the images should be conducted. However, applying well-known matching methods, such as scale-invariant feature transform and speeded up robust features for VHR multi-temporal images, has limitations. First, they cannot be used for matching an optical image to heterogeneous non-optical data for georegistration. Second, they produce a local misalignment induced by differences in acquisition conditions, such as acquisition platform stability, the sensor's off-nadir angle, and relief displacement of the considered scene. Therefore, this study addresses the problem by proposing an automated geo/co-registration framework for full-scene multi-temporal images acquired from a VHR optical satellite sensor. The proposed method comprises two primary steps: (1) a global georegistration process, followed by (2) a fine co-registration process. During the first step, two-dimensional multi-temporal satellite images are matched to three-dimensional topographic maps to assign the map coordinates. During the second step, a local analysis of registration noise pixels extracted between the multi-temporal images that have been mapped to the map coordinates is conducted to extract a large number of well-distributed corresponding points (CPs). The CPs are finally used to construct a non-rigid transformation function that enables minimization of the local misalignment existing among the images. Experiments conducted on five Kompsat-3 full scenes confirmed the effectiveness of the proposed framework, showing that the georegistration performance resulted in an approximately pixel-level accuracy for most of the scenes, and the co-registration performance further improved the results among all combinations of the georegistered Kompsat-3 image pairs by increasing the calculated cross-correlation values.

  13. A game-based platform for crowd-sourcing biomedical image diagnosis and standardized remote training and education of diagnosticians

    NASA Astrophysics Data System (ADS)

    Feng, Steve; Woo, Minjae; Chandramouli, Krithika; Ozcan, Aydogan

    2015-03-01

    Over the past decade, crowd-sourcing complex image analysis tasks to a human crowd has emerged as an alternative to energy-inefficient and difficult-to-implement computational approaches. Following this trend, we have developed a mathematical framework for statistically combining human crowd-sourcing of biomedical image analysis and diagnosis through games. Using a web-based smart game (BioGames), we demonstrated this platform's effectiveness for telediagnosis of malaria from microscopic images of individual red blood cells (RBCs). After public release in early 2012 (http://biogames.ee.ucla.edu), more than 3000 gamers (experts and non-experts) used this BioGames platform to diagnose over 2800 distinct RBC images, marking them as positive (infected) or negative (non-infected). Furthermore, we asked expert diagnosticians to tag the same set of cells with labels of positive, negative, or questionable (insufficient information for a reliable diagnosis) and statistically combined their decisions to generate a gold standard malaria image library. Our framework utilized minimally trained gamers' diagnoses to generate a set of statistical labels with an accuracy that is within 98% of our gold standard image library, demonstrating the "wisdom of the crowd". Using the same image library, we have recently launched a web-based malaria training and educational game allowing diagnosticians to compare their performance with their peers. After diagnosing a set of ~500 cells per game, diagnosticians can compare their quantified scores against a leaderboard and view their misdiagnosed cells. Using this platform, we aim to expand our gold standard library with new RBC images and provide a quantified digital tool for measuring and improving diagnostician training globally.

  14. Whole-body PET parametric imaging employing direct 4D nested reconstruction and a generalized non-linear Patlak model

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Rahmim, Arman

    2014-03-01

    Graphical analysis is employed in the research setting to provide quantitative estimation of PET tracer kinetics from dynamic images at a single bed. Recently, we proposed a multi-bed dynamic acquisition framework enabling clinically feasible whole-body parametric PET imaging by employing post-reconstruction parameter estimation. In addition, by incorporating linear Patlak modeling within the system matrix, we enabled direct 4D reconstruction in order to effectively circumvent noise amplification in dynamic whole-body imaging. However, direct 4D Patlak reconstruction exhibits a relatively slow convergence due to the presence of non-sparse spatial correlations in temporal kinetic analysis. In addition, the standard Patlak model does not account for reversible uptake, thus underestimating the influx rate Ki. We have developed a novel whole-body PET parametric reconstruction framework in the STIR platform, a widely employed open-source reconstruction toolkit, a) enabling accelerated convergence of direct 4D multi-bed reconstruction, by employing a nested algorithm to decouple the temporal parameter estimation from the spatial image update process, and b) enhancing the quantitative performance particularly in regions with reversible uptake, by pursuing a non-linear generalized Patlak 4D nested reconstruction algorithm. A set of published kinetic parameters and the XCAT phantom were employed for the simulation of dynamic multi-bed acquisitions. Quantitative analysis on the Ki images demonstrated considerable acceleration in the convergence of the nested 4D whole-body Patlak algorithm. In addition, our simulated and patient whole-body data in the postreconstruction domain indicated the quantitative benefits of our extended generalized Patlak 4D nested reconstruction for tumor diagnosis and treatment response monitoring.

  15. The Coronal Analysis of SHocks and Waves (CASHeW) framework

    NASA Astrophysics Data System (ADS)

    Kozarev, Kamen A.; Davey, Alisdair; Kendrick, Alexander; Hammer, Michael; Keith, Celeste

    2017-11-01

    Coronal bright fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed (mostly in extreme ultraviolet (EUV) light) as transient bright fronts of finite width, propagating away from the eruption source location. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between waves in the low corona and coronal mass ejection (CME)-driven shocks. EUV imaging with the atmospheric imaging assembly instrument on the solar dynamics observatory has proven particularly useful for detecting large-scale short-lived CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the coronal analysis of shocks and waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the interactive data language. In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.

  16. High efficient optical remote sensing images acquisition for nano-satellite-framework

    NASA Astrophysics Data System (ADS)

    Li, Feng; Xin, Lei; Liu, Yang; Fu, Jie; Liu, Yuhong; Guo, Yi

    2017-09-01

    It is more difficult and challenging to implement Nano-satellite (NanoSat) based optical Earth observation missions than conventional satellites because of the limitation of volume, weight and power consumption. In general, an image compression unit is a necessary onboard module to save data transmission bandwidth and disk space. The image compression unit can get rid of redundant information of those captured images. In this paper, a new image acquisition framework is proposed for NanoSat based optical Earth observation applications. The entire process of image acquisition and compression unit can be integrated in the photo detector array chip, that is, the output data of the chip is already compressed. That is to say, extra image compression unit is no longer needed; therefore, the power, volume, and weight of the common onboard image compression units consumed can be largely saved. The advantages of the proposed framework are: the image acquisition and image compression are combined into a single step; it can be easily built in CMOS architecture; quick view can be provided without reconstruction in the framework; Given a certain compression ratio, the reconstructed image quality is much better than those CS based methods. The framework holds promise to be widely used in the future.

  17. A framework for the recognition of high-level surgical tasks from video images for cataract surgeries

    PubMed Central

    Lalys, Florent; Riffaud, Laurent; Bouget, David; Jannin, Pierre

    2012-01-01

    The need for a better integration of the new generation of Computer-Assisted-Surgical (CAS) systems has been recently emphasized. One necessity to achieve this objective is to retrieve data from the Operating Room (OR) with different sensors, then to derive models from these data. Recently, the use of videos from cameras in the OR has demonstrated its efficiency. In this paper, we propose a framework to assist in the development of systems for the automatic recognition of high level surgical tasks using microscope videos analysis. We validated its use on cataract procedures. The idea is to combine state-of-the-art computer vision techniques with time series analysis. The first step of the framework consisted in the definition of several visual cues for extracting semantic information, therefore characterizing each frame of the video. Five different pieces of image-based classifiers were therefore implemented. A step of pupil segmentation was also applied for dedicated visual cue detection. Time series classification algorithms were then applied to model time-varying data. Dynamic Time Warping (DTW) and Hidden Markov Models (HMM) were tested. This association combined the advantages of all methods for better understanding of the problem. The framework was finally validated through various studies. Six binary visual cues were chosen along with 12 phases to detect, obtaining accuracies of 94%. PMID:22203700

  18. Parenchymal texture analysis in digital mammography: robust texture feature identification and equivalence across devices.

    PubMed

    Keller, Brad M; Oustimov, Andrew; Wang, Yan; Chen, Jinbo; Acciavatti, Raymond J; Zheng, Yuanjie; Ray, Shonket; Gee, James C; Maidment, Andrew D A; Kontos, Despina

    2015-04-01

    An analytical framework is presented for evaluating the equivalence of parenchymal texture features across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control setting. A panel of texture features, including gray-level histogram, co-occurrence, run length, and structural descriptors, are extracted. To identify features that are robust across imaging systems, a series of equivalence tests are performed on the feature distributions, in which the extent of their intersystem variation is compared to their intrasystem variation via the Hodges-Lehmann test statistic. Overall, histogram and structural features tend to be most robust across all systems, and certain features, such as edge enhancement, tend to be more robust to intergenerational differences between detectors of a single vendor than to intervendor differences. Texture features extracted from larger regions of interest (i.e., [Formula: see text]) and with a larger offset length (i.e., [Formula: see text]), when applicable, also appear to be more robust across imaging systems. This framework and observations from our experiments may benefit applications utilizing mammographic texture analysis on images acquired in multivendor settings, such as in multicenter studies of computer-aided detection and breast cancer risk assessment.

  19. Data Analysis with Graphical Models: Software Tools

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.

    1994-01-01

    Probabilistic graphical models (directed and undirected Markov fields, and combined in chain graphs) are used widely in expert systems, image processing and other areas as a framework for representing and reasoning with probabilities. They come with corresponding algorithms for performing probabilistic inference. This paper discusses an extension to these models by Spiegelhalter and Gilks, plates, used to graphically model the notion of a sample. This offers a graphical specification language for representing data analysis problems. When combined with general methods for statistical inference, this also offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper outlines the framework and then presents some basic tools for the task: a graphical version of the Pitman-Koopman Theorem for the exponential family, problem decomposition, and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.

  20. Unsupervised color normalisation for H and E stained histopathology image analysis

    NASA Astrophysics Data System (ADS)

    Celis, Raúl; Romero, Eduardo

    2015-12-01

    In histology, each dye component attempts to specifically characterise different microscopic structures. In the case of the Hematoxylin-Eosin (H&E) stain, universally used for routine examination, quantitative analysis may often require the inspection of different morphological signatures related mainly to nuclei patterns, but also to stroma distribution. Nevertheless, computer systems for automatic diagnosis are often fraught by color variations ranging from the capturing device to the laboratory specific staining protocol and stains. This paper presents a novel colour normalisation method for H&E stained histopathology images. This method is based upon the opponent process theory and blindly estimates the best color basis for the Hematoxylin and Eosin stains without relying on prior knowledge. Stain Normalisation and Color Separation are transversal to any Framework of Histopathology Image Analysis.

  1. Rapid analysis and exploration of fluorescence microscopy images.

    PubMed

    Pavie, Benjamin; Rajaram, Satwik; Ouyang, Austin; Altschuler, Jason M; Steininger, Robert J; Wu, Lani F; Altschuler, Steven J

    2014-03-19

    Despite rapid advances in high-throughput microscopy, quantitative image-based assays still pose significant challenges. While a variety of specialized image analysis tools are available, most traditional image-analysis-based workflows have steep learning curves (for fine tuning of analysis parameters) and result in long turnaround times between imaging and analysis. In particular, cell segmentation, the process of identifying individual cells in an image, is a major bottleneck in this regard. Here we present an alternate, cell-segmentation-free workflow based on PhenoRipper, an open-source software platform designed for the rapid analysis and exploration of microscopy images. The pipeline presented here is optimized for immunofluorescence microscopy images of cell cultures and requires minimal user intervention. Within half an hour, PhenoRipper can analyze data from a typical 96-well experiment and generate image profiles. Users can then visually explore their data, perform quality control on their experiment, ensure response to perturbations and check reproducibility of replicates. This facilitates a rapid feedback cycle between analysis and experiment, which is crucial during assay optimization. This protocol is useful not just as a first pass analysis for quality control, but also may be used as an end-to-end solution, especially for screening. The workflow described here scales to large data sets such as those generated by high-throughput screens, and has been shown to group experimental conditions by phenotype accurately over a wide range of biological systems. The PhenoBrowser interface provides an intuitive framework to explore the phenotypic space and relate image properties to biological annotations. Taken together, the protocol described here will lower the barriers to adopting quantitative analysis of image based screens.

  2. TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization.

    PubMed

    Ollion, Jean; Cochennec, Julien; Loll, François; Escudé, Christophe; Boudier, Thomas

    2013-07-15

    The cell nucleus is a highly organized cellular organelle that contains the genetic material. The study of nuclear architecture has become an important field of cellular biology. Extracting quantitative data from 3D fluorescence imaging helps understand the functions of different nuclear compartments. However, such approaches are limited by the requirement for processing and analyzing large sets of images. Here, we describe Tools for Analysis of Nuclear Genome Organization (TANGO), an image analysis tool dedicated to the study of nuclear architecture. TANGO is a coherent framework allowing biologists to perform the complete analysis process of 3D fluorescence images by combining two environments: ImageJ (http://imagej.nih.gov/ij/) for image processing and quantitative analysis and R (http://cran.r-project.org) for statistical processing of measurement results. It includes an intuitive user interface providing the means to precisely build a segmentation procedure and set-up analyses, without possessing programming skills. TANGO is a versatile tool able to process large sets of images, allowing quantitative study of nuclear organization. TANGO is composed of two programs: (i) an ImageJ plug-in and (ii) a package (rtango) for R. They are both free and open source, available (http://biophysique.mnhn.fr/tango) for Linux, Microsoft Windows and Macintosh OSX. Distribution is under the GPL v.2 licence. thomas.boudier@snv.jussieu.fr Supplementary data are available at Bioinformatics online.

  3. A framework for optimal kernel-based manifold embedding of medical image data.

    PubMed

    Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma

    2015-04-01

    Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. High-Throughput Histopathological Image Analysis via Robust Cell Segmentation and Hashing

    PubMed Central

    Zhang, Xiaofan; Xing, Fuyong; Su, Hai; Yang, Lin; Zhang, Shaoting

    2015-01-01

    Computer-aided diagnosis of histopathological images usually requires to examine all cells for accurate diagnosis. Traditional computational methods may have efficiency issues when performing cell-level analysis. In this paper, we propose a robust and scalable solution to enable such analysis in a real-time fashion. Specifically, a robust segmentation method is developed to delineate cells accurately using Gaussian-based hierarchical voting and repulsive balloon model. A large-scale image retrieval approach is also designed to examine and classify each cell of a testing image by comparing it with a massive database, e.g., half-million cells extracted from the training dataset. We evaluate this proposed framework on a challenging and important clinical use case, i.e., differentiation of two types of lung cancers (the adenocarcinoma and squamous carcinoma), using thousands of lung microscopic tissue images extracted from hundreds of patients. Our method has achieved promising accuracy and running time by searching among half-million cells. PMID:26599156

  5. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    PubMed

    Zhan, Mei; Crane, Matthew M; Entchev, Eugeni V; Caballero, Antonio; Fernandes de Abreu, Diana Andrea; Ch'ng, QueeLim; Lu, Hang

    2015-04-01

    Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM). These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a guide, we envision the broad utility of the framework for diverse problems across different length scales and imaging methods.

  6. SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research.

    PubMed

    Yaniv, Ziv; Lowekamp, Bradley C; Johnson, Hans J; Beare, Richard

    2018-06-01

    Modern scientific endeavors increasingly require team collaborations to construct and interpret complex computational workflows. This work describes an image-analysis environment that supports the use of computational tools that facilitate reproducible research and support scientists with varying levels of software development skills. The Jupyter notebook web application is the basis of an environment that enables flexible, well-documented, and reproducible workflows via literate programming. Image-analysis software development is made accessible to scientists with varying levels of programming experience via the use of the SimpleITK toolkit, a simplified interface to the Insight Segmentation and Registration Toolkit. Additional features of the development environment include user friendly data sharing using online data repositories and a testing framework that facilitates code maintenance. SimpleITK provides a large number of examples illustrating educational and research-oriented image analysis workflows for free download from GitHub under an Apache 2.0 license: github.com/InsightSoftwareConsortium/SimpleITK-Notebooks .

  7. Combining Monte Carlo methods with coherent wave optics for the simulation of phase-sensitive X-ray imaging

    PubMed Central

    Peter, Silvia; Modregger, Peter; Fix, Michael K.; Volken, Werner; Frei, Daniel; Manser, Peter; Stampanoni, Marco

    2014-01-01

    Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging. PMID:24763652

  8. A framework for activity detection in wide-area motion imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Reid B; Ruggiero, Christy E; Morrison, Jack D

    2009-01-01

    Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smallermore » than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.« less

  9. Computer vision for microscopy diagnosis of malaria.

    PubMed

    Tek, F Boray; Dempster, Andrew G; Kale, Izzet

    2009-07-13

    This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  10. Preclinical Feasibility of a Technology Framework for MRI-guided Iliac Angioplasty

    PubMed Central

    Rube, Martin A.; Fernandez-Gutierrez, Fabiola; Cox, Benjamin F.; Holbrook, Andrew B.; Houston, J. Graeme; White, Richard D.; McLeod, Helen; Fatahi, Mahsa; Melzer, Andreas

    2015-01-01

    Purpose Interventional MRI has significant potential for image guidance of iliac angioplasty and related vascular procedures. A technology framework with in-room image display, control, communication and MRI-guided intervention techniques was designed and tested for its potential to provide safe, fast and efficient MRI-guided angioplasty of the iliac arteries. Methods A 1.5T MRI scanner was adapted for interactive imaging during endovascular procedures using new or modified interventional devices such as guidewires and catheters. A perfused vascular phantom was used for testing. Pre-, intra- and post-procedural visualization and measurement of vascular morphology and flow was implemented. A detailed analysis of X-Ray fluoroscopic angiography workflow was conducted and applied. Two interventional radiologists and one physician in training performed 39 procedures. All procedures were timed and analyzed. Results MRI-guided iliac angioplasty procedures were successfully performed with progressive adaptation of techniques and workflow. The workflow, setup and protocol enabled a reduction in table time for a dedicated MRI-guided procedure to 6 min 33 s with a mean procedure time of 9 min 2 s, comparable to the mean procedure time of 8 min 42 s for the standard X-Ray guided procedure. Conclusions MRI-guided iliac vascular interventions were found to be feasible and practical using this framework and optimized workflow. In particular the real-time flow analysis was found to be helpful for pre- and post-interventional assessments. Design optimization of the catheters and in vivo experiments are required before clinical evaluation. PMID:25102933

  11. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  12. MOVING BEYOND COLOR: THE CASE FOR MULTISPECTRAL IMAGING IN BRIGHTFIELD PATHOLOGY

    PubMed Central

    Cukierski, William J.; Qi, Xin; Foran, David J.

    2009-01-01

    A multispectral camera is capable of imaging a histologic slide at narrow bandwidths over the range of the visible spectrum. While several uses for multispectral imaging (MSI) have been demonstrated in pathology [1, 2], there is no unified consensus over when and how MSI might benefit automated analysis [3, 4]. In this work, we use a linear-algebra framework to investigate the relationship between the spectral image and its standard-image counterpart. The multispectral “cube” is treated as an extension of a traditional image in a high-dimensional color space. The concept of metamers is introduced and used to derive regions of the visible spectrum where MSI may provide an advantage. Furthermore, histological stains which are amenable to analysis by MSI are reported. We show the Commission internationale de l’éclairage (CIE) 1931 transformation from spectrum to color is non-neighborhood preserving. Empirical results are demonstrated on multispectral images of peripheral blood smears. PMID:19997528

  13. Fully automatic cervical vertebrae segmentation framework for X-ray images.

    PubMed

    Al Arif, S M Masudur Rahman; Knapp, Karen; Slabaugh, Greg

    2018-04-01

    The cervical spine is a highly flexible anatomy and therefore vulnerable to injuries. Unfortunately, a large number of injuries in lateral cervical X-ray images remain undiagnosed due to human errors. Computer-aided injury detection has the potential to reduce the risk of misdiagnosis. Towards building an automatic injury detection system, in this paper, we propose a deep learning-based fully automatic framework for segmentation of cervical vertebrae in X-ray images. The framework first localizes the spinal region in the image using a deep fully convolutional neural network. Then vertebra centers are localized using a novel deep probabilistic spatial regression network. Finally, a novel shape-aware deep segmentation network is used to segment the vertebrae in the image. The framework can take an X-ray image and produce a vertebrae segmentation result without any manual intervention. Each block of the fully automatic framework has been trained on a set of 124 X-ray images and tested on another 172 images, all collected from real-life hospital emergency rooms. A Dice similarity coefficient of 0.84 and a shape error of 1.69 mm have been achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Registering and Analyzing Rat fMRI Data in the Stereotaxic Framework by Exploiting Intrinsic Anatomical Features

    PubMed Central

    Lu, Hanbing; Scholl, Clara A.; Zuo, Yantao; Demny, Steven; Rea, William; Stein, Elliot A.; Yang, Yihong

    2009-01-01

    The value of analyzing neuroimaging data on a group level has been well established in human studies. However, there is no standard procedure for registering and analyzing fMRI data into common space in rodent functional magnetic resonance imaging (fMRI) studies. An approach for performing rat imaging data analysis in the stereotaxic framework is presented. This method is rooted in the biological observation that the skull shape and size of rat brain are essentially the same as long as their weights are within certain range. Registration is performed using rigid-body transformations without scaling or shearing, preserving the unique properties of the stable shape and size inherent in rat brain structure. Also, it does not require brain tissue masking, and is not biased towards surface coil sensitivity profile. A standard rat brain atlas is used to facilitate the identification of activated areas in common space, allowing accurate region-of-interest (ROI) analysis. This technique is evaluated from a group of rats (n = 11) undergoing routine MRI scans; the registration accuracy is estimated to be within 400 μm. The analysis of fMRI data acquired with an electrical forepaw stimulation model demonstrates the utility of this technique. The method is implemented within the AFNI framework and can be readily extended to other studies. PMID:19608368

  15. Hierarchical image feature extraction by an irregular pyramid of polygonal partitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skurikhin, Alexei N

    2008-01-01

    We present an algorithmic framework for hierarchical image segmentation and feature extraction. We build a successive fine-to-coarse hierarchy of irregular polygonal partitions of the original image. This multiscale hierarchy forms the basis for object-oriented image analysis. The framework incorporates the Gestalt principles of visual perception, such as proximity and closure, and exploits spectral and textural similarities of polygonal partitions, while iteratively grouping them until dissimilarity criteria are exceeded. Seed polygons are built upon a triangular mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is achieved by building the triangular mesh on themore » top of detected spectral discontinuities (such as edges), which form a network of constraints for the Delaunay triangulation. The image is then represented as a spatial network in the form of a graph with vertices corresponding to the polygonal partitions and edges reflecting their relations. The iterative agglomeration of partitions into object-oriented segments is formulated as Minimum Spanning Tree (MST) construction. An important characteristic of the approach is that the agglomeration of polygonal partitions is constrained by the detected edges; thus the shapes of agglomerated partitions are more likely to correspond to the outlines of real-world objects. The constructed partitions and their spatial relations are characterized using spectral, textural and structural features based on proximity graphs. The framework allows searching for object-oriented features of interest across multiple levels of details of the built hierarchy and can be generalized to the multi-criteria MST to account for multiple criteria important for an application.« less

  16. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  17. Theoretical and Empirical Comparison of Big Data Image Processing with Apache Hadoop and Sun Grid Engine.

    PubMed

    Bao, Shunxing; Weitendorf, Frederick D; Plassard, Andrew J; Huo, Yuankai; Gokhale, Aniruddha; Landman, Bennett A

    2017-02-11

    The field of big data is generally concerned with the scale of processing at which traditional computational paradigms break down. In medical imaging, traditional large scale processing uses a cluster computer that combines a group of workstation nodes into a functional unit that is controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host imaging data. However, data transfer from storage to processing nodes can saturate network bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., "short" processing times and/or "large" datasets. Recently, an alternative approach using Hadoop and HBase was presented for medical imaging to enable co-location of data storage and computation while minimizing data transfer. The benefits of using such a framework must be formally evaluated against a traditional approach to characterize the point at which simply "large scale" processing transitions into "big data" and necessitates alternative computational frameworks. The proposed Hadoop system was implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical models for wall-clock time and resource time for both approaches are introduced and validated. To provide real example data, three T1 image archives were retrieved from a university secure, shared web database and used to empirically assess computational performance under three configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. Empirical results match the theoretical models. Based on these data, a comparative analysis is presented for when the Hadoop framework will be relevant and non-relevant for medical imaging.

  18. Theoretical and empirical comparison of big data image processing with Apache Hadoop and Sun Grid Engine

    NASA Astrophysics Data System (ADS)

    Bao, Shunxing; Weitendorf, Frederick D.; Plassard, Andrew J.; Huo, Yuankai; Gokhale, Aniruddha; Landman, Bennett A.

    2017-03-01

    The field of big data is generally concerned with the scale of processing at which traditional computational paradigms break down. In medical imaging, traditional large scale processing uses a cluster computer that combines a group of workstation nodes into a functional unit that is controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host imaging data. However, data transfer from storage to processing nodes can saturate network bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., "short" processing times and/or "large" datasets. Recently, an alternative approach using Hadoop and HBase was presented for medical imaging to enable co-location of data storage and computation while minimizing data transfer. The benefits of using such a framework must be formally evaluated against a traditional approach to characterize the point at which simply "large scale" processing transitions into "big data" and necessitates alternative computational frameworks. The proposed Hadoop system was implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical models for wall-clock time and resource time for both approaches are introduced and validated. To provide real example data, three T1 image archives were retrieved from a university secure, shared web database and used to empirically assess computational performance under three configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. Empirical results match the theoretical models. Based on these data, a comparative analysis is presented for when the Hadoop framework will be relevant and nonrelevant for medical imaging.

  19. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  20. Algorithms and Array Design Criteria for Robust Imaging in Interferometry

    NASA Astrophysics Data System (ADS)

    Kurien, Binoy George

    Optical interferometry is a technique for obtaining high-resolution imagery of a distant target by interfering light from multiple telescopes. Image restoration from interferometric measurements poses a unique set of challenges. The first challenge is that the measurement set provides only a sparse-sampling of the object's Fourier Transform and hence image formation from these measurements is an inherently ill-posed inverse problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the Fourier samples. We develop array design conditions for unique Fourier phase recovery, as well as a comprehensive algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which together achieve reliable image reconstruction in spite of these challenges. Within this framework, we see that classical interferometric observables such as the bispectrum and closure phase can limit sensitivity, and that generalized notions of these observables can improve both theoretical and empirical performance. Our framework leverages techniques from lattice theory to resolve integer phase ambiguities in the interferometric phase measurements, and from graph theory, to select a reliable set of generalized observables. We analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures and corroborate this analysis with simulation results. We apply techniques from the field of compressed sensing to perform image reconstruction from the estimates of the object's Fourier coefficients. The end result is a comprehensive strategy to achieve well-posed and easily-predictable reconstruction performance in optical interferometry.

  1. Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches.

    PubMed

    Araki, Tadashi; Kumar, P Krishna; Suri, Harman S; Ikeda, Nobutaka; Gupta, Ajay; Saba, Luca; Rajan, Jeny; Lavra, Francesco; Sharma, Aditya M; Shafique, Shoaib; Nicolaides, Andrew; Laird, John R; Suri, Jasjit S

    2016-07-01

    The degree of stenosis in the carotid artery can be predicted using automated carotid lumen diameter (LD) measured from B-mode ultrasound images. Systolic velocity-based methods for measurement of LD are subjective. With the advancement of high resolution imaging, image-based methods have started to emerge. However, they require robust image analysis for accurate LD measurement. This paper presents two different algorithms for automated segmentation of the lumen borders in carotid ultrasound images. Both algorithms are modeled as a two stage process. Stage one consists of a global-based model using scale-space framework for the extraction of the region of interest. This stage is common to both algorithms. Stage two is modeled using a local-based strategy that extracts the lumen interfaces. At this stage, the algorithm-1 is modeled as a region-based strategy using a classification framework, whereas the algorithm-2 is modeled as a boundary-based approach that uses the level set framework. Two sets of databases (DB), Japan DB (JDB) (202 patients, 404 images) and Hong Kong DB (HKDB) (50 patients, 300 images) were used in this study. Two trained neuroradiologists performed manual LD tracings. The mean automated LD measured was 6.35 ± 0.95 mm for JDB and 6.20 ± 1.35 mm for HKDB. The precision-of-merit was: 97.4 % and 98.0 % w.r.t to two manual tracings for JDB and 99.7 % and 97.9 % w.r.t to two manual tracings for HKDB. Statistical tests such as ANOVA, Chi-Squared, T-test, and Mann-Whitney test were conducted to show the stability and reliability of the automated techniques.

  2. A statistical image analysis framework for pore-free islands derived from heterogeneity distribution of nuclear pore complexes.

    PubMed

    Mimura, Yasuhiro; Takemoto, Satoko; Tachibana, Taro; Ogawa, Yutaka; Nishimura, Masaomi; Yokota, Hideo; Imamoto, Naoko

    2017-11-24

    Nuclear pore complexes (NPCs) maintain cellular homeostasis by mediating nucleocytoplasmic transport. Although cyclin-dependent kinases (CDKs) regulate NPC assembly in interphase, the location of NPC assembly on the nuclear envelope is not clear. CDKs also regulate the disappearance of pore-free islands, which are nuclear envelope subdomains; this subdomain gradually disappears with increase in homogeneity of the NPC in response to CDK activity. However, a causal relationship between pore-free islands and NPC assembly remains unclear. Here, we elucidated mechanisms underlying NPC assembly from a new perspective by focusing on pore-free islands. We proposed a novel framework for image-based analysis to automatically determine the detailed 'landscape' of pore-free islands from a large quantity of images, leading to the identification of NPC intermediates that appear in pore-free islands with increased frequency in response to CDK activity. Comparison of the spatial distribution between simulated and the observed NPC intermediates within pore-free islands showed that their distribution was spatially biased. These results suggested that the disappearance of pore-free islands is highly related to de novo NPC assembly and indicated the existence of specific regulatory mechanisms for the spatial arrangement of NPC assembly on nuclear envelopes.

  3. A new method for fusion, denoising and enhancement of x-ray images retrieved from Talbot-Lau grating interferometry.

    PubMed

    Scholkmann, Felix; Revol, Vincent; Kaufmann, Rolf; Baronowski, Heidrun; Kottler, Christian

    2014-03-21

    This paper introduces a new image denoising, fusion and enhancement framework for combining and optimal visualization of x-ray attenuation contrast (AC), differential phase contrast (DPC) and dark-field contrast (DFC) images retrieved from x-ray Talbot-Lau grating interferometry. The new image fusion framework comprises three steps: (i) denoising each input image (AC, DPC and DFC) through adaptive Wiener filtering, (ii) performing a two-step image fusion process based on the shift-invariant wavelet transform, i.e. first fusing the AC with the DPC image and then fusing the resulting image with the DFC image, and finally (iii) enhancing the fused image to obtain a final image using adaptive histogram equalization, adaptive sharpening and contrast optimization. Application examples are presented for two biological objects (a human tooth and a cherry) and the proposed method is compared to two recently published AC/DPC/DFC image processing techniques. In conclusion, the new framework for the processing of AC, DPC and DFC allows the most relevant features of all three images to be combined in one image while reducing the noise and enhancing adaptively the relevant image features. The newly developed framework may be used in technical and medical applications.

  4. Entropy-functional-based online adaptive decision fusion framework with application to wildfire detection in video.

    PubMed

    Gunay, Osman; Toreyin, Behçet Ugur; Kose, Kivanc; Cetin, A Enis

    2012-05-01

    In this paper, an entropy-functional-based online adaptive decision fusion (EADF) framework is developed for image analysis and computer vision applications. In this framework, it is assumed that the compound algorithm consists of several subalgorithms, each of which yields its own decision as a real number centered around zero, representing the confidence level of that particular subalgorithm. Decision values are linearly combined with weights that are updated online according to an active fusion method based on performing entropic projections onto convex sets describing subalgorithms. It is assumed that there is an oracle, who is usually a human operator, providing feedback to the decision fusion method. A video-based wildfire detection system was developed to evaluate the performance of the decision fusion algorithm. In this case, image data arrive sequentially, and the oracle is the security guard of the forest lookout tower, verifying the decision of the combined algorithm. The simulation results are presented.

  5. An Approach for Stitching Satellite Images in a Bigdata Mapreduce Framework

    NASA Astrophysics Data System (ADS)

    Sarı, H.; Eken, S.; Sayar, A.

    2017-11-01

    In this study we present a two-step map/reduce framework to stitch satellite mosaic images. The proposed system enable recognition and extraction of objects whose parts falling in separate satellite mosaic images. However this is a time and resource consuming process. The major aim of the study is improving the performance of the image stitching processes by utilizing big data framework. To realize this, we first convert the images into bitmaps (first mapper) and then String formats in the forms of 255s and 0s (second mapper), and finally, find the best possible matching position of the images by a reduce function.

  6. Physiome-model-based state-space framework for cardiac deformation recovery.

    PubMed

    Wong, Ken C L; Zhang, Heye; Liu, Huafeng; Shi, Pengcheng

    2007-11-01

    To more reliably recover cardiac information from noise-corrupted, patient-specific measurements, it is essential to employ meaningful constraining models and adopt appropriate optimization criteria to couple the models with the measurements. Although biomechanical models have been extensively used for myocardial motion recovery with encouraging results, the passive nature of such constraints limits their ability to fully count for the deformation caused by active forces of the myocytes. To overcome such limitations, we propose to adopt a cardiac physiome model as the prior constraint for cardiac motion analysis. The cardiac physiome model comprises an electric wave propagation model, an electromechanical coupling model, and a biomechanical model, which are connected through a cardiac system dynamics for a more complete description of the macroscopic cardiac physiology. Embedded within a multiframe state-space framework, the uncertainties of the model and the patient's measurements are systematically dealt with to arrive at optimal cardiac kinematic estimates and possibly beyond. Experiments have been conducted to compare our proposed cardiac-physiome-model-based framework with the solely biomechanical model-based framework. The results show that our proposed framework recovers more accurate cardiac deformation from synthetic data and obtains more sensible estimates from real magnetic resonance image sequences. With the active components introduced by the cardiac physiome model, cardiac deformations recovered from patient's medical images are more physiologically plausible.

  7. Low-rank Atlas Image Analyses in the Presence of Pathologies

    PubMed Central

    Liu, Xiaoxiao; Niethammer, Marc; Kwitt, Roland; Singh, Nikhil; McCormick, Matt; Aylward, Stephen

    2015-01-01

    We present a common framework, for registering images to an atlas and for forming an unbiased atlas, that tolerates the presence of pathologies such as tumors and traumatic brain injury lesions. This common framework is particularly useful when a sufficient number of protocol-matched scans from healthy subjects cannot be easily acquired for atlas formation and when the pathologies in a patient cause large appearance changes. Our framework combines a low-rank-plus-sparse image decomposition technique with an iterative, diffeomorphic, group-wise image registration method. At each iteration of image registration, the decomposition technique estimates a “healthy” version of each image as its low-rank component and estimates the pathologies in each image as its sparse component. The healthy version of each image is used for the next iteration of image registration. The low-rank and sparse estimates are refined as the image registrations iteratively improve. When that framework is applied to image-to-atlas registration, the low-rank image is registered to a pre-defined atlas, to establish correspondence that is independent of the pathologies in the sparse component of each image. Ultimately, image-to-atlas registrations can be used to define spatial priors for tissue segmentation and to map information across subjects. When that framework is applied to unbiased atlas formation, at each iteration, the average of the low-rank images from the patients is used as the atlas image for the next iteration, until convergence. Since each iteration’s atlas is comprised of low-rank components, it provides a population-consistent, pathology-free appearance. Evaluations of the proposed methodology are presented using synthetic data as well as simulated and clinical tumor MRI images from the brain tumor segmentation (BRATS) challenge from MICCAI 2012. PMID:26111390

  8. Spectral Regression Discriminant Analysis for Hyperspectral Image Classification

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wu, J.; Huang, H.; Liu, J.

    2012-08-01

    Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for Hyperspectral Image Classification. The manifold learning methods are popular for dimensionality reduction, such as Locally Linear Embedding, Isomap, and Laplacian Eigenmap. However, a disadvantage of many manifold learning methods is that their computations usually involve eigen-decomposition of dense matrices which is expensive in both time and memory. In this paper, we introduce a new dimensionality reduction method, called Spectral Regression Discriminant Analysis (SRDA). SRDA casts the problem of learning an embedding function into a regression framework, which avoids eigen-decomposition of dense matrices. Also, with the regression based framework, different kinds of regularizes can be naturally incorporated into our algorithm which makes it more flexible. It can make efficient use of data points to discover the intrinsic discriminant structure in the data. Experimental results on Washington DC Mall and AVIRIS Indian Pines hyperspectral data sets demonstrate the effectiveness of the proposed method.

  9. A stochastically fully connected conditional random field framework for super resolution OCT

    NASA Astrophysics Data System (ADS)

    Boroomand, A.; Tan, B.; Wong, A.; Bizheva, K.

    2017-02-01

    A number of factors can degrade the resolution and contrast of OCT images, such as: (1) changes of the OCT pointspread function (PSF) resulting from wavelength dependent scattering and absorption of light along the imaging depth (2) speckle noise, as well as (3) motion artifacts. We propose a new Super Resolution OCT (SR OCT) imaging framework that takes advantage of a Stochastically Fully Connected Conditional Random Field (SF-CRF) model to generate a Super Resolved OCT (SR OCT) image of higher quality from a set of Low-Resolution OCT (LR OCT) images. The proposed SF-CRF SR OCT imaging is able to simultaneously compensate for all of the factors mentioned above, that degrade the OCT image quality, using a unified computational framework. The proposed SF-CRF SR OCT imaging framework was tested on a set of simulated LR human retinal OCT images generated from a high resolution, high contrast retinal image, and on a set of in-vivo, high resolution, high contrast rat retinal OCT images. The reconstructed SR OCT images show considerably higher spatial resolution, less speckle noise and higher contrast compared to other tested methods. Visual assessment of the results demonstrated the usefulness of the proposed approach in better preservation of fine details and structures of the imaged sample, retaining biological tissue boundaries while reducing speckle noise using a unified computational framework. Quantitative evaluation using both Contrast to Noise Ratio (CNR) and Edge Preservation (EP) parameter also showed superior performance of the proposed SF-CRF SR OCT approach compared to other image processing approaches.

  10. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    PubMed Central

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available. PMID:23112602

  11. Multi-sensor fusion of infrared and electro-optic signals for high resolution night images.

    PubMed

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  12. Fundamental analysis and ex vivo validation of thermal lesion mapping using harmonic motion imaging for focused ultrasound (HMIFU)

    NASA Astrophysics Data System (ADS)

    Hou, Gary Y.; Luo, Jianwen; Maleke, Caroline; Vappou, Jonathan; Marquet, Fabrice; Konofagou, Elisa E.

    2012-10-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on Amplitude-modulated (AM) - Harmonic Motion Imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module, and an image-formation model. The objective of this study is to develop such a framework in order to 1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and 2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25-Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6, and 9, the estimated HMI displacement ratios were equal to 1.65, 3.19, 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28, 1.78 at 10-s, 20-s, and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was also found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.

  13. Data Analysis of the Gated-LEH X-Ray Imaging Diagnostic at the NIF

    NASA Astrophysics Data System (ADS)

    Thibodeau, Matthew; Chen, Hui

    2017-10-01

    The Gated Laser Entrance Hole (G-LEH) x-ray imaging diagnostic in use at the NIF offers a desirable combination of spatial and temporal resolution. By looking inside of NIF hohlraums with time resolution, G-LEH measures target features including LEH size and capsule size. A framework is presented for automated and systematic analysis of G-LEH images that measures several physical parameters of interest and their evolution over time. The results from these analyses enable comparisons with hohlraum models and allow model validation of LEH closure velocity and the extent of capsule blow-off. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. A sub-sampled approach to extremely low-dose STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, A.; Luzi, L.; Yang, H.

    The inpainting of randomly sub-sampled images acquired by scanning transmission electron microscopy (STEM) is an attractive method for imaging under low-dose conditions (≤ 1 e -Å 2) without changing either the operation of the microscope or the physics of the imaging process. We show that 1) adaptive sub-sampling increases acquisition speed, resolution, and sensitivity; and 2) random (non-adaptive) sub-sampling is equivalent, but faster than, traditional low-dose techniques. Adaptive sub-sampling opens numerous possibilities for the analysis of beam sensitive materials and in-situ dynamic processes at the resolution limit of the aberration corrected microscope and is demonstrated here for the analysis ofmore » the node distribution in metal-organic frameworks (MOFs).« less

  15. Image analysis in modern ophthalmology: from acquisition to computer assisted diagnosis and telemedicine

    NASA Astrophysics Data System (ADS)

    Marrugo, Andrés G.; Millán, María S.; Cristóbal, Gabriel; Gabarda, Salvador; Sorel, Michal; Sroubek, Filip

    2012-06-01

    Medical digital imaging has become a key element of modern health care procedures. It provides visual documentation and a permanent record for the patients, and most important the ability to extract information about many diseases. Modern ophthalmology thrives and develops on the advances in digital imaging and computing power. In this work we present an overview of recent image processing techniques proposed by the authors in the area of digital eye fundus photography. Our applications range from retinal image quality assessment to image restoration via blind deconvolution and visualization of structural changes in time between patient visits. All proposed within a framework for improving and assisting the medical practice and the forthcoming scenario of the information chain in telemedicine.

  16. Conceptual framework for patient-important treatment outcomes for pelvic organ prolapse.

    PubMed

    Sung, Vivian W; Rogers, Rebecca G; Barber, Matthew D; Clark, Melissa A

    2014-04-01

    To develop a comprehensive conceptual framework representing the most important outcomes for women seeking treatment for pelvic organ prolapse (POP). Twenty-five women with POP were recruited and participated in four semi-structured focus groups to refine and assess the content validity of a conceptual framework representing patient-important outcomes for POP. Specifically, the focus groups addressed the following three aims: (1) to evaluate the content and appropriateness of domains in our framework; (2) to identify gaps in the framework; and (3) to determine the relative importance of our framework domains from the patient perspective. Sessions were transcribed, coded, and qualitatively and quantitatively analyzed using analytic induction and deductive analysis to identify themes and domains relevant to women with POP. Our focus groups confirmed the importance of vaginal bulge symptoms (discomfort, bother, and adaptation), and the overarching domains and subdomains of physical (physical function and participation), social (social function, relationships, and sexual function), and mental health (emotional distress, preoccupation, and body image). Patients ranked outcomes in the following order of importance: (1) the resolution of vaginal bulge symptoms, (2) improvement in physical function; (3) improvement in sexual function; (4) improvement in body image perception; and (5) improvement in social function. We developed a conceptual framework for patient important outcomes of women seeking treatment for POP. This framework can improve the transparency and interpretation of POP study findings from the patient perspective. Vaginal bulge and its associated discomfort are most important for the definition of POP treatment success from the patient perspective. © 2013 Wiley Periodicals, Inc.

  17. Multifit / Polydefix : a framework for the analysis of polycrystal deformation using X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, Sébastien; Hilairet, Nadège

    2015-06-27

    Multifit/Polydefixis an open source IDL software package for the efficient processing of diffraction data obtained in deformation apparatuses at synchrotron beamlines.Multifitallows users to decompose two-dimensional diffraction images into azimuthal slices, fit peak positions, shapes and intensities, and propagate the results to other azimuths and images.Polydefixis for analysis of deformation experiments. Starting from output files created inMultifitor other packages, it will extract elastic lattice strains, evaluate sample pressure and differential stress, and prepare input files for further texture analysis. TheMultifit/Polydefixpackage is designed to make the tedious data analysis of synchrotron-based plasticity, rheology or other time-dependent experiments very straightforward and accessible tomore » a wider community.« less

  18. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    PubMed Central

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  19. Fractal analysis of INSAR and correlation with graph-cut based image registration for coastline deformation analysis: post seismic hazard assessment of the 2011 Tohoku earthquake region

    NASA Astrophysics Data System (ADS)

    Dutta, P. K.; Mishra, O. P.

    2012-04-01

    Satellite imagery for 2011 earthquake off the Pacific coast of Tohoku has provided an opportunity to conduct image transformation analyses by employing multi-temporal images retrieval techniques. In this study, we used a new image segmentation algorithm to image coastline deformation by adopting graph cut energy minimization framework. Comprehensive analysis of available INSAR images using coastline deformation analysis helped extract disaster information of the affected region of the 2011 Tohoku tsunamigenic earthquake source zone. We attempted to correlate fractal analysis of seismic clustering behavior with image processing analogies and our observations suggest that increase in fractal dimension distribution is associated with clustering of events that may determine the level of devastation of the region. The implementation of graph cut based image registration technique helps us to detect the devastation across the coastline of Tohoku through change of intensity of pixels that carries out regional segmentation for the change in coastal boundary after the tsunami. The study applies transformation parameters on remotely sensed images by manually segmenting the image to recovering translation parameter from two images that differ by rotation. Based on the satellite image analysis through image segmentation, it is found that the area of 0.997 sq km for the Honshu region was a maximum damage zone localized in the coastal belt of NE Japan forearc region. The analysis helps infer using matlab that the proposed graph cut algorithm is robust and more accurate than other image registration methods. The analysis shows that the method can give a realistic estimate for recovered deformation fields in pixels corresponding to coastline change which may help formulate the strategy for assessment during post disaster need assessment scenario for the coastal belts associated with damages due to strong shaking and tsunamis in the world under disaster risk mitigation programs.

  20. A Compressive Sensing Approach for Glioma Margin Delineation Using Mass Spectrometry

    PubMed Central

    Gholami, Behnood; Agar, Nathalie Y. R.; Jolesz, Ferenc A.; Haddad, Wassim M.; Tannenbaum, Allen R.

    2013-01-01

    Surgery, and specifically, tumor resection, is the primary treatment for most patients suffering from brain tumors. Medical imaging techniques, and in particular, magnetic resonance imaging are currently used in diagnosis as well as image-guided surgery procedures. However, studies show that computed tomography and magnetic resonance imaging fail to accurately identify the full extent of malignant brain tumors and their microscopic infiltration. Mass spectrometry is a well-known analytical technique used to identify molecules in a given sample based on their mass. In a recent study, it is proposed to use mass spectrometry as an intraoperative tool for discriminating tumor and non-tumor tissue. Integration of mass spectrometry with the resection module allows for tumor resection and immediate molecular analysis. In this paper, we propose a framework for tumor margin delineation using compressive sensing. Specifically, we show that the spatial distribution of tumor cell concentration can be efficiently reconstructed and updated using mass spectrometry information from the resected tissue. In addition, our proposed framework is model-free, and hence, requires no prior information of spatial distribution of the tumor cell concentration. PMID:22255629

  1. A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences

    PubMed Central

    Zhu, Youding; Fujimura, Kikuo

    2010-01-01

    This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach. PMID:22399933

  2. A JOINT FRAMEWORK FOR 4D SEGMENTATION AND ESTIMATION OF SMOOTH TEMPORAL APPEARANCE CHANGES.

    PubMed

    Gao, Yang; Prastawa, Marcel; Styner, Martin; Piven, Joseph; Gerig, Guido

    2014-04-01

    Medical imaging studies increasingly use longitudinal images of individual subjects in order to follow-up changes due to development, degeneration, disease progression or efficacy of therapeutic intervention. Repeated image data of individuals are highly correlated, and the strong causality of information over time lead to the development of procedures for joint segmentation of the series of scans, called 4D segmentation. A main aim was improved consistency of quantitative analysis, most often solved via patient-specific atlases. Challenging open problems are contrast changes and occurance of subclasses within tissue as observed in multimodal MRI of infant development, neurodegeneration and disease. This paper proposes a new 4D segmentation framework that enforces continuous dynamic changes of tissue contrast patterns over time as observed in such data. Moreover, our model includes the capability to segment different contrast patterns within a specific tissue class, for example as seen in myelinated and unmyelinated white matter regions in early brain development. Proof of concept is shown with validation on synthetic image data and with 4D segmentation of longitudinal, multimodal pediatric MRI taken at 6, 12 and 24 months of age, but the methodology is generic w.r.t. different application domains using serial imaging.

  3. Local linear discriminant analysis framework using sample neighbors.

    PubMed

    Fan, Zizhu; Xu, Yong; Zhang, David

    2011-07-01

    The linear discriminant analysis (LDA) is a very popular linear feature extraction approach. The algorithms of LDA usually perform well under the following two assumptions. The first assumption is that the global data structure is consistent with the local data structure. The second assumption is that the input data classes are Gaussian distributions. However, in real-world applications, these assumptions are not always satisfied. In this paper, we propose an improved LDA framework, the local LDA (LLDA), which can perform well without needing to satisfy the above two assumptions. Our LLDA framework can effectively capture the local structure of samples. According to different types of local data structure, our LLDA framework incorporates several different forms of linear feature extraction approaches, such as the classical LDA and principal component analysis. The proposed framework includes two LLDA algorithms: a vector-based LLDA algorithm and a matrix-based LLDA (MLLDA) algorithm. MLLDA is directly applicable to image recognition, such as face recognition. Our algorithms need to train only a small portion of the whole training set before testing a sample. They are suitable for learning large-scale databases especially when the input data dimensions are very high and can achieve high classification accuracy. Extensive experiments show that the proposed algorithms can obtain good classification results.

  4. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter.

    PubMed

    Dupont, Sara M; De Leener, Benjamin; Taso, Manuel; Le Troter, Arnaud; Nadeau, Sylvie; Stikov, Nikola; Callot, Virginie; Cohen-Adad, Julien

    2017-04-15

    The spinal cord white and gray matter can be affected by various pathologies such as multiple sclerosis, amyotrophic lateral sclerosis or trauma. Being able to precisely segment the white and gray matter could help with MR image analysis and hence be useful in further understanding these pathologies, and helping with diagnosis/prognosis and drug development. Up to date, white/gray matter segmentation has mostly been done manually, which is time consuming, induces a bias related to the rater and prevents large-scale multi-center studies. Recently, few methods have been proposed to automatically segment the spinal cord white and gray matter. However, no single method exists that combines the following criteria: (i) fully automatic, (ii) works on various MRI contrasts, (iii) robust towards pathology and (iv) freely available and open source. In this study we propose a multi-atlas based method for the segmentation of the spinal cord white and gray matter that addresses the previous limitations. Moreover, to study the spinal cord morphology, atlas-based approaches are increasingly used. These approaches rely on the registration of a spinal cord template to an MR image, however the registration usually doesn't take into account the spinal cord internal structure and thus lacks accuracy. In this study, we propose a new template registration framework that integrates the white and gray matter segmentation to account for the specific gray matter shape of each individual subject. Validation of segmentation was performed in 24 healthy subjects using T 2 * -weighted images, in 8 healthy subjects using diffusion weighted images (exhibiting inverted white-to-gray matter contrast compared to T 2 *-weighted), and in 5 patients with spinal cord injury. The template registration was validated in 24 subjects using T 2 *-weighted data. Results of automatic segmentation on T 2 *-weighted images was in close correspondence with the manual segmentation (Dice coefficient in the white/gray matter of 0.91/0.71 respectively). Similarly, good results were obtained in data with inverted contrast (diffusion-weighted image) and in patients. When compared to the classical template registration framework, the proposed framework that accounts for gray matter shape significantly improved the quality of the registration (comparing Dice coefficient in gray matter: p=9.5×10 -6 ). While further validation is needed to show the benefits of the new registration framework in large cohorts and in a variety of patients, this study provides a fully-integrated tool for quantitative assessment of white/gray matter morphometry and template-based analysis. All the proposed methods are implemented in the Spinal Cord Toolbox (SCT), an open-source software for processing spinal cord multi-parametric MRI data. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. FAST: framework for heterogeneous medical image computing and visualization.

    PubMed

    Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank

    2015-11-01

    Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.

  6. Observer model optimization of a spectral mammography system

    NASA Astrophysics Data System (ADS)

    Fredenberg, Erik; Åslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2010-04-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.

  7. A New Framework of Removing Salt and Pepper Impulse Noise for the Noisy Image Including Many Noise-Free White and Black Pixels

    NASA Astrophysics Data System (ADS)

    Li, Song; Wang, Caizhu; Li, Yeqiu; Wang, Ling; Sakata, Shiro; Sekiya, Hiroo; Kuroiwa, Shingo

    In this paper, we propose a new framework of removing salt and pepper impulse noise. In our proposed framework, the most important point is that the number of noise-free white and black pixels in a noisy image can be determined by using the noise rates estimated by Fuzzy Impulse Noise Detection and Reduction Method (FINDRM) and Efficient Detail-Preserving Approach (EDPA). For the noisy image includes many noise-free white and black pixels, the detected noisy pixel from the FINDRM is re-checked by using the alpha-trimmed mean. Finally, the impulse noise filtering phase of the FINDRM is used to restore the image. Simulation results show that for the noisy image including many noise-free white and black pixels, the proposed framework can decrease the False Hit Rate (FHR) efficiently compared with the FINDRM. Therefore, the proposed framework can be used more widely than the FINDRM.

  8. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  9. Patient-controlled sharing of medical imaging data across unaffiliated healthcare organizations

    PubMed Central

    Ahn, David K; Unde, Bhagyashree; Gage, H Donald; Carr, J Jeffrey

    2013-01-01

    Background Current image sharing is carried out by manual transportation of CDs by patients or organization-coordinated sharing networks. The former places a significant burden on patients and providers. The latter faces challenges to patient privacy. Objective To allow healthcare providers efficient access to medical imaging data acquired at other unaffiliated healthcare facilities while ensuring strong protection of patient privacy and minimizing burden on patients, providers, and the information technology infrastructure. Methods An image sharing framework is described that involves patients as an integral part of, and with full control of, the image sharing process. Central to this framework is the Patient Controlled Access-key REgistry (PCARE) which manages the access keys issued by image source facilities. When digitally signed by patients, the access keys are used by any requesting facility to retrieve the associated imaging data from the source facility. A centralized patient portal, called a PCARE patient control portal, allows patients to manage all the access keys in PCARE. Results A prototype of the PCARE framework has been developed by extending open-source technology. The results for feasibility, performance, and user assessments are encouraging and demonstrate the benefits of patient-controlled image sharing. Discussion The PCARE framework is effective in many important clinical cases of image sharing and can be used to integrate organization-coordinated sharing networks. The same framework can also be used to realize a longitudinal virtual electronic health record. Conclusion The PCARE framework allows prior imaging data to be shared among unaffiliated healthcare facilities while protecting patient privacy with minimal burden on patients, providers, and infrastructure. A prototype has been implemented to demonstrate the feasibility and benefits of this approach. PMID:22886546

  10. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and differencemore » envelope density analysis, with electron microscopy imag-ing and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO xH y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield hetero-bimetallic metal-oxo nanowires. Finally, this bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering-resistance of these clusters during the hydrogenation of light olefins.« less

  11. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    DOE PAGES

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia; ...

    2017-07-11

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and differencemore » envelope density analysis, with electron microscopy imag-ing and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO xH y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield hetero-bimetallic metal-oxo nanowires. Finally, this bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering-resistance of these clusters during the hydrogenation of light olefins.« less

  12. An Efficient Computational Framework for the Analysis of Whole Slide Images: Application to Follicular Lymphoma Immunohistochemistry

    PubMed Central

    Samsi, Siddharth; Krishnamurthy, Ashok K.; Gurcan, Metin N.

    2012-01-01

    Follicular Lymphoma (FL) is one of the most common non-Hodgkin Lymphoma in the United States. Diagnosis and grading of FL is based on the review of histopathological tissue sections under a microscope and is influenced by human factors such as fatigue and reader bias. Computer-aided image analysis tools can help improve the accuracy of diagnosis and grading and act as another tool at the pathologist’s disposal. Our group has been developing algorithms for identifying follicles in immunohistochemical images. These algorithms have been tested and validated on small images extracted from whole slide images. However, the use of these algorithms for analyzing the entire whole slide image requires significant changes to the processing methodology since the images are relatively large (on the order of 100k × 100k pixels). In this paper we discuss the challenges involved in analyzing whole slide images and propose potential computational methodologies for addressing these challenges. We discuss the use of parallel computing tools on commodity clusters and compare performance of the serial and parallel implementations of our approach. PMID:22962572

  13. Using the living laboratory framework as a basis for understanding next-generation analyst work

    NASA Astrophysics Data System (ADS)

    McNeese, Michael D.; Mancuso, Vincent; McNeese, Nathan; Endsley, Tristan; Forster, Pete

    2013-05-01

    The preparation of next generation analyst work requires alternative levels of understanding and new methodological departures from the way current work transpires. Current work practices typically do not provide a comprehensive approach that emphasizes the role of and interplay between (a) cognition, (b) emergent activities in a shared situated context, and (c) collaborative teamwork. In turn, effective and efficient problem solving fails to take place, and practice is often composed of piecemeal, techno-centric tools that isolate analysts by providing rigid, limited levels of understanding of situation awareness. This coupled with the fact that many analyst activities are classified produces a challenging situation for researching such phenomena and designing and evaluating systems to support analyst cognition and teamwork. Through our work with cyber, image, and intelligence analysts we have realized that there is more required of researchers to study human-centered designs to provide for analyst's needs in a timely fashion. This paper identifies and describes how The Living Laboratory Framework can be utilized as a means to develop a comprehensive, human-centric, and problem-focused approach to next generation analyst work, design, and training. We explain how the framework is utilized for specific cases in various applied settings (e.g., crisis management analysis, image analysis, and cyber analysis) to demonstrate its value and power in addressing an area of utmost importance to our national security. Attributes of analyst work settings are delineated to suggest potential design affordances that could help improve cognitive activities and awareness. Finally, the paper puts forth a research agenda for the use of the framework for future work that will move the analyst profession in a viable manner to address the concerns identified.

  14. BIRAM: a content-based image retrieval framework for medical images

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; Furuie, Sergio S.

    2006-03-01

    In the medical field, digital images are becoming more and more important for diagnostics and therapy of the patients. At the same time, the development of new technologies has increased the amount of image data produced in a hospital. This creates a demand for access methods that offer more than text-based queries for retrieval of the information. In this paper is proposed a framework for the retrieval of medical images that allows the use of different algorithms for the search of medical images by similarity. The framework also enables the search for textual information from an associated medical report and DICOM header information. The proposed system can be used for support of clinical decision making and is intended to be integrated with an open source picture, archiving and communication systems (PACS). The BIRAM has the following advantages: (i) Can receive several types of algorithms for image similarity search; (ii) Allows the codification of the report according to a medical dictionary, improving the indexing of the information and retrieval; (iii) The algorithms can be selectively applied to images with the appropriated characteristics, for instance, only in magnetic resonance images. The framework was implemented in Java language using a MS Access 97 database. The proposed framework can still be improved, by the use of regions of interest (ROI), indexing with slim-trees and integration with a PACS Server.

  15. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire

    2017-12-01

    Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. SU-E-J-110: A Novel Level Set Active Contour Algorithm for Multimodality Joint Segmentation/Registration Using the Jensen-Rényi Divergence.

    PubMed

    Markel, D; Naqa, I El; Freeman, C; Vallières, M

    2012-06-01

    To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. It was found that JR divergence when used for segmentation has an improved robustness to noise compared to using mutual information, or other entropy-based metrics. The MI metric failed at around 2/3 the noise power than the JR divergence. The JR divergence metric is useful for the task of joint segmentation/registration of multimodality images and shows improved results compared entropy based metric. The algorithm can be easily modified to incorporate non-intensity based images, which would allow applications into multi-modality and texture analysis. © 2012 American Association of Physicists in Medicine.

  17. Unsupervised Detection of Planetary Craters by a Marked Point Process

    NASA Technical Reports Server (NTRS)

    Troglio, G.; Benediktsson, J. A.; Le Moigne, J.; Moser, G.; Serpico, S. B.

    2011-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features.

  18. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction

    PubMed Central

    Karakatsanis, Nicolas A.; Casey, Michael E.; Lodge, Martin A.; Rahmim, Arman; Zaidi, Habib

    2016-01-01

    Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce quantitative WB images of the tracer influx rate Ki as a complimentary metric to the semi-quantitative standardized uptake value (SUV). The resulting Ki images may suffer from high noise due to the need for short acquisition frames. Meanwhile, a generalized Patlak (gPatlak) WB post-reconstruction method had been suggested to limit Ki bias of sPatlak analysis at regions with non-negligible 18F-FDG uptake reversibility; however, gPatlak analysis is non-linear and thus can further amplify noise. In the present study, we implemented, within the open-source Software for Tomographic Image Reconstruction (STIR) platform, a clinically adoptable 4D WB reconstruction framework enabling efficient estimation of sPatlak and gPatlak images directly from dynamic multi-bed PET raw data with substantial noise reduction. Furthermore, we employed the optimization transfer methodology to accelerate 4D expectation-maximization (EM) convergence by nesting the fast image-based estimation of Patlak parameters within each iteration cycle of the slower projection-based estimation of dynamic PET images. The novel gPatlak 4D method was initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM convergence. Initially, realistic simulations were conducted utilizing published 18F-FDG kinetic parameters coupled with the XCAT phantom. Quantitative analyses illustrated enhanced Ki target-to-background ratio (TBR) and especially contrast-to-noise ratio (CNR) performance for the 4D vs. the indirect methods and static SUV. Furthermore, considerable convergence acceleration was observed for the nested algorithms involving 10–20 sub-iterations. Moreover, systematic reduction in Ki % bias and improved TBR were observed for gPatlak vs. sPatlak. Finally, validation on clinical WB dynamic data demonstrated the clinical feasibility and superior Ki CNR performance for the proposed 4D framework compared to indirect Patlak and SUV imaging. PMID:27383991

  19. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Casey, Michael E.; Lodge, Martin A.; Rahmim, Arman; Zaidi, Habib

    2016-08-01

    Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce quantitative WB images of the tracer influx rate K i as a complimentary metric to the semi-quantitative standardized uptake value (SUV). The resulting K i images may suffer from high noise due to the need for short acquisition frames. Meanwhile, a generalized Patlak (gPatlak) WB post-reconstruction method had been suggested to limit K i bias of sPatlak analysis at regions with non-negligible 18F-FDG uptake reversibility; however, gPatlak analysis is non-linear and thus can further amplify noise. In the present study, we implemented, within the open-source software for tomographic image reconstruction platform, a clinically adoptable 4D WB reconstruction framework enabling efficient estimation of sPatlak and gPatlak images directly from dynamic multi-bed PET raw data with substantial noise reduction. Furthermore, we employed the optimization transfer methodology to accelerate 4D expectation-maximization (EM) convergence by nesting the fast image-based estimation of Patlak parameters within each iteration cycle of the slower projection-based estimation of dynamic PET images. The novel gPatlak 4D method was initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM convergence. Initially, realistic simulations were conducted utilizing published 18F-FDG kinetic parameters coupled with the XCAT phantom. Quantitative analyses illustrated enhanced K i target-to-background ratio (TBR) and especially contrast-to-noise ratio (CNR) performance for the 4D versus the indirect methods and static SUV. Furthermore, considerable convergence acceleration was observed for the nested algorithms involving 10-20 sub-iterations. Moreover, systematic reduction in K i % bias and improved TBR were observed for gPatlak versus sPatlak. Finally, validation on clinical WB dynamic data demonstrated the clinical feasibility and superior K i CNR performance for the proposed 4D framework compared to indirect Patlak and SUV imaging.

  20. Analyzing Prospective Teachers' Images of Scientists Using Positive, Negative and Stereotypical Images of Scientists

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan; Harrell, Pamela Esprivalo; Wojnowski, David

    2013-01-01

    Background and purpose: This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the…

  1. Interpretation of Radiological Images: Towards a Framework of Knowledge and Skills

    ERIC Educational Resources Information Center

    van der Gijp, A.; van der Schaaf, M. F.; van der Schaaf, I. C.; Huige, J. C. B. M.; Ravesloot, C. J.; van Schaik, J. P. J.; ten Cate, Th. J.

    2014-01-01

    The knowledge and skills that are required for radiological image interpretation are not well documented, even though medical imaging is gaining importance. This study aims to develop a comprehensive framework of knowledge and skills, required for two-dimensional and multiplanar image interpretation in radiology. A mixed-method study approach was…

  2. A novel framework of tissue membrane systems for image fusion.

    PubMed

    Zhang, Zulin; Yi, Xinzhong; Peng, Hong

    2014-01-01

    This paper proposes a tissue membrane system-based framework to deal with the optimal image fusion problem. A spatial domain fusion algorithm is given, and a tissue membrane system of multiple cells is used as its computing framework. Based on the multicellular structure and inherent communication mechanism of the tissue membrane system, an improved velocity-position model is developed. The performance of the fusion framework is studied with comparison of several traditional fusion methods as well as genetic algorithm (GA)-based and differential evolution (DE)-based spatial domain fusion methods. Experimental results show that the proposed fusion framework is superior or comparable to the other methods and can be efficiently used for image fusion.

  3. Integration of electro-anatomical and imaging data of the left ventricle: An evaluation framework.

    PubMed

    Soto-Iglesias, David; Butakoff, Constantine; Andreu, David; Fernández-Armenta, Juan; Berruezo, Antonio; Camara, Oscar

    2016-08-01

    Integration of electrical and structural information for scar characterization in the left ventricle (LV) is a crucial step to better guide radio-frequency ablation therapies, which are usually performed in complex ventricular tachycardia (VT) cases. This integration requires finding a common representation where to map the electrical information from the electro-anatomical map (EAM) surfaces and tissue viability information from delay-enhancement magnetic resonance images (DE-MRI). However, the development of a consistent integration method is still an open problem due to the lack of a proper evaluation framework to assess its accuracy. In this paper we present both: (i) an evaluation framework to assess the accuracy of EAM and imaging integration strategies with simulated EAM data and a set of global and local measures; and (ii) a new integration methodology based on a planar disk representation where the LV surface meshes are quasi-conformally mapped (QCM) by flattening, allowing for simultaneous visualization and joint analysis of the multi-modal data. The developed evaluation framework was applied to estimate the accuracy of the QCM-based integration strategy on a benchmark dataset of 128 synthetically generated ground-truth cases presenting different scar configurations and EAM characteristics. The obtained results demonstrate a significant reduction in global overlap errors (50-100%) with respect to state-of-the-art integration techniques, also better preserving the local topology of small structures such as conduction channels in scars. Data from seventeen VT patients were also used to study the feasibility of the QCM technique in a clinical setting, consistently outperforming the alternative integration techniques in the presence of sparse and noisy clinical data. The proposed evaluation framework has allowed a rigorous comparison of different EAM and imaging data integration strategies, providing useful information to better guide clinical practice in complex cardiac interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images

    PubMed Central

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  5. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Data Analysis and Visualization; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii)more » evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.« less

  6. Sensor-based architecture for medical imaging workflow analysis.

    PubMed

    Silva, Luís A Bastião; Campos, Samuel; Costa, Carlos; Oliveira, José Luis

    2014-08-01

    The growing use of computer systems in medical institutions has been generating a tremendous quantity of data. While these data have a critical role in assisting physicians in the clinical practice, the information that can be extracted goes far beyond this utilization. This article proposes a platform capable of assembling multiple data sources within a medical imaging laboratory, through a network of intelligent sensors. The proposed integration framework follows a SOA hybrid architecture based on an information sensor network, capable of collecting information from several sources in medical imaging laboratories. Currently, the system supports three types of sensors: DICOM repository meta-data, network workflows and examination reports. Each sensor is responsible for converting unstructured information from data sources into a common format that will then be semantically indexed in the framework engine. The platform was deployed in the Cardiology department of a central hospital, allowing identification of processes' characteristics and users' behaviours that were unknown before the utilization of this solution.

  7. Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging.

    PubMed

    Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P

    2016-09-09

    The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics.

  8. Depth-Based Selective Blurring in Stereo Images Using Accelerated Framework

    NASA Astrophysics Data System (ADS)

    Mukherjee, Subhayan; Guddeti, Ram Mohana Reddy

    2014-09-01

    We propose a hybrid method for stereo disparity estimation by combining block and region-based stereo matching approaches. It generates dense depth maps from disparity measurements of only 18 % image pixels (left or right). The methodology involves segmenting pixel lightness values using fast K-Means implementation, refining segment boundaries using morphological filtering and connected components analysis; then determining boundaries' disparities using sum of absolute differences (SAD) cost function. Complete disparity maps are reconstructed from boundaries' disparities. We consider an application of our method for depth-based selective blurring of non-interest regions of stereo images, using Gaussian blur to de-focus users' non-interest regions. Experiments on Middlebury dataset demonstrate that our method outperforms traditional disparity estimation approaches using SAD and normalized cross correlation by up to 33.6 % and some recent methods by up to 6.1 %. Further, our method is highly parallelizable using CPU-GPU framework based on Java Thread Pool and APARAPI with speed-up of 5.8 for 250 stereo video frames (4,096 × 2,304).

  9. Pansharpening on the Narrow Vnir and SWIR Spectral Bands of SENTINEL-2

    NASA Astrophysics Data System (ADS)

    Vaiopoulos, A. D.; Karantzalos, K.

    2016-06-01

    In this paper results from the evaluation of several state-of-the-art pansharpening techniques are presented for the VNIR and SWIR bands of Sentinel-2. A procedure for the pansharpening is also proposed which aims at respecting the closest spectral similarities between the higher and lower resolution bands. The evaluation included 21 different fusion algorithms and three evaluation frameworks based both on standard quantitative image similarity indexes and qualitative evaluation from remote sensing experts. The overall analysis of the evaluation results indicated that remote sensing experts disagreed with the outcomes and method ranking from the quantitative assessment. The employed image quality similarity indexes and quantitative evaluation framework based on both high and reduced resolution data from the literature didn't manage to highlight/evaluate mainly the spatial information that was injected to the lower resolution images. Regarding the SWIR bands none of the methods managed to deliver significantly better results than a standard bicubic interpolation on the original low resolution bands.

  10. An Accurate Framework for Arbitrary View Pedestrian Detection in Images

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Wen, G.; Qiu, S.

    2018-01-01

    We consider the problem of detect pedestrian under from images collected under various viewpoints. This paper utilizes a novel framework called locality-constrained affine subspace coding (LASC). Firstly, the positive training samples are clustered into similar entities which represent similar viewpoint. Then Principal Component Analysis (PCA) is used to obtain the shared feature of each viewpoint. Finally, the samples that can be reconstructed by linear approximation using their top- k nearest shared feature with a small error are regarded as a correct detection. No negative samples are required for our method. Histograms of orientated gradient (HOG) features are used as the feature descriptors, and the sliding window scheme is adopted to detect humans in images. The proposed method exploits the sparse property of intrinsic information and the correlations among the multiple-views samples. Experimental results on the INRIA and SDL human datasets show that the proposed method achieves a higher performance than the state-of-the-art methods in form of effect and efficiency.

  11. dPIRPLE: a joint estimation framework for deformable registration and penalized-likelihood CT image reconstruction using prior images

    NASA Astrophysics Data System (ADS)

    Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.

    2014-09-01

    Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and prior image penalized-likelihood estimation with rigid registration of a prior image (PIRPLE) over a wide range of sampling sparsity and exposure levels.

  12. Automatic single-image-based rain streaks removal via image decomposition.

    PubMed

    Kang, Li-Wei; Lin, Chia-Wen; Fu, Yu-Hsiang

    2012-04-01

    Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.

  13. Theoretical and Empirical Comparison of Big Data Image Processing with Apache Hadoop and Sun Grid Engine

    PubMed Central

    Bao, Shunxing; Weitendorf, Frederick D.; Plassard, Andrew J.; Huo, Yuankai; Gokhale, Aniruddha; Landman, Bennett A.

    2016-01-01

    The field of big data is generally concerned with the scale of processing at which traditional computational paradigms break down. In medical imaging, traditional large scale processing uses a cluster computer that combines a group of workstation nodes into a functional unit that is controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host imaging data. However, data transfer from storage to processing nodes can saturate network bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., “short” processing times and/or “large” datasets. Recently, an alternative approach using Hadoop and HBase was presented for medical imaging to enable co-location of data storage and computation while minimizing data transfer. The benefits of using such a framework must be formally evaluated against a traditional approach to characterize the point at which simply “large scale” processing transitions into “big data” and necessitates alternative computational frameworks. The proposed Hadoop system was implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical models for wall-clock time and resource time for both approaches are introduced and validated. To provide real example data, three T1 image archives were retrieved from a university secure, shared web database and used to empirically assess computational performance under three configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. Empirical results match the theoretical models. Based on these data, a comparative analysis is presented for when the Hadoop framework will be relevant and non-relevant for medical imaging. PMID:28736473

  14. Dialoguing with Dreams in Existential Art Therapy

    ERIC Educational Resources Information Center

    Moon, Bruce L.

    2007-01-01

    This article presents a theoretical and methodological framework for interactive dialogue and analysis of dream images in existential art therapy. In this phenomenological-existential approach, the client and art therapist are regarded as equal partners with respect to sharing in the process of creation and discovery of meaning (Frankl, 1955,…

  15. Comparative analysis of imaging configurations and objectives for Fourier microscopy.

    PubMed

    Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid

    2015-11-01

    Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies.

  16. Learning a No-Reference Quality Assessment Model of Enhanced Images With Big Data.

    PubMed

    Gu, Ke; Tao, Dacheng; Qiao, Jun-Fei; Lin, Weisi

    2018-04-01

    In this paper, we investigate into the problem of image quality assessment (IQA) and enhancement via machine learning. This issue has long attracted a wide range of attention in computational intelligence and image processing communities, since, for many practical applications, e.g., object detection and recognition, raw images are usually needed to be appropriately enhanced to raise the visual quality (e.g., visibility and contrast). In fact, proper enhancement can noticeably improve the quality of input images, even better than originally captured images, which are generally thought to be of the best quality. In this paper, we present two most important contributions. The first contribution is to develop a new no-reference (NR) IQA model. Given an image, our quality measure first extracts 17 features through analysis of contrast, sharpness, brightness and more, and then yields a measure of visual quality using a regression module, which is learned with big-data training samples that are much bigger than the size of relevant image data sets. The results of experiments on nine data sets validate the superiority and efficiency of our blind metric compared with typical state-of-the-art full-reference, reduced-reference and NA IQA methods. The second contribution is that a robust image enhancement framework is established based on quality optimization. For an input image, by the guidance of the proposed NR-IQA measure, we conduct histogram modification to successively rectify image brightness and contrast to a proper level. Thorough tests demonstrate that our framework can well enhance natural images, low-contrast images, low-light images, and dehazed images. The source code will be released at https://sites.google.com/site/guke198701/publications.

  17. TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics.

    PubMed

    Hou, Yue; Konen, Jessica; Brat, Daniel J; Marcus, Adam I; Cooper, Lee A D

    2018-05-08

    Spheroid cultures derived from explanted cancer specimens are an increasingly utilized resource for studying complex biological processes like tumor cell invasion and metastasis, representing an important bridge between the simplicity and practicality of 2-dimensional monolayer cultures and the complexity and realism of in vivo animal models. Temporal imaging of spheroids can capture the dynamics of cell behaviors and microenvironments, and when combined with quantitative image analysis methods, enables deep interrogation of biological mechanisms. This paper presents a comprehensive open-source software framework for Temporal Analysis of Spheroid Imaging (TASI) that allows investigators to objectively characterize spheroid growth and invasion dynamics. TASI performs spatiotemporal segmentation of spheroid cultures, extraction of features describing spheroid morpho-phenotypes, mathematical modeling of spheroid dynamics, and statistical comparisons of experimental conditions. We demonstrate the utility of this tool in an analysis of non-small cell lung cancer spheroids that exhibit variability in metastatic and proliferative behaviors.

  18. IQM: An Extensible and Portable Open Source Application for Image and Signal Analysis in Java

    PubMed Central

    Kainz, Philipp; Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2015-01-01

    Image and signal analysis applications are substantial in scientific research. Both open source and commercial packages provide a wide range of functions for image and signal analysis, which are sometimes supported very well by the communities in the corresponding fields. Commercial software packages have the major drawback of being expensive and having undisclosed source code, which hampers extending the functionality if there is no plugin interface or similar option available. However, both variants cannot cover all possible use cases and sometimes custom developments are unavoidable, requiring open source applications. In this paper we describe IQM, a completely free, portable and open source (GNU GPLv3) image and signal analysis application written in pure Java. IQM does not depend on any natively installed libraries and is therefore runnable out-of-the-box. Currently, a continuously growing repertoire of 50 image and 16 signal analysis algorithms is provided. The modular functional architecture based on the three-tier model is described along the most important functionality. Extensibility is achieved using operator plugins, and the development of more complex workflows is provided by a Groovy script interface to the JVM. We demonstrate IQM’s image and signal processing capabilities in a proof-of-principle analysis and provide example implementations to illustrate the plugin framework and the scripting interface. IQM integrates with the popular ImageJ image processing software and is aiming at complementing functionality rather than competing with existing open source software. Machine learning can be integrated into more complex algorithms via the WEKA software package as well, enabling the development of transparent and robust methods for image and signal analysis. PMID:25612319

  19. IQM: an extensible and portable open source application for image and signal analysis in Java.

    PubMed

    Kainz, Philipp; Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2015-01-01

    Image and signal analysis applications are substantial in scientific research. Both open source and commercial packages provide a wide range of functions for image and signal analysis, which are sometimes supported very well by the communities in the corresponding fields. Commercial software packages have the major drawback of being expensive and having undisclosed source code, which hampers extending the functionality if there is no plugin interface or similar option available. However, both variants cannot cover all possible use cases and sometimes custom developments are unavoidable, requiring open source applications. In this paper we describe IQM, a completely free, portable and open source (GNU GPLv3) image and signal analysis application written in pure Java. IQM does not depend on any natively installed libraries and is therefore runnable out-of-the-box. Currently, a continuously growing repertoire of 50 image and 16 signal analysis algorithms is provided. The modular functional architecture based on the three-tier model is described along the most important functionality. Extensibility is achieved using operator plugins, and the development of more complex workflows is provided by a Groovy script interface to the JVM. We demonstrate IQM's image and signal processing capabilities in a proof-of-principle analysis and provide example implementations to illustrate the plugin framework and the scripting interface. IQM integrates with the popular ImageJ image processing software and is aiming at complementing functionality rather than competing with existing open source software. Machine learning can be integrated into more complex algorithms via the WEKA software package as well, enabling the development of transparent and robust methods for image and signal analysis.

  20. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.

    2003-01-01

    Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.

  1. Rectification of curved document images based on single view three-dimensional reconstruction.

    PubMed

    Kang, Lai; Wei, Yingmei; Jiang, Jie; Bai, Liang; Lao, Songyang

    2016-10-01

    Since distortions in camera-captured document images significantly affect the accuracy of optical character recognition (OCR), distortion removal plays a critical role for document digitalization systems using a camera for image capturing. This paper proposes a novel framework that performs three-dimensional (3D) reconstruction and rectification of camera-captured document images. While most existing methods rely on additional calibrated hardware or multiple images to recover the 3D shape of a document page, or make a simple but not always valid assumption on the corresponding 3D shape, our framework is more flexible and practical since it only requires a single input image and is able to handle a general locally smooth document surface. The main contributions of this paper include a new iterative refinement scheme for baseline fitting from connected components of text line, an efficient discrete vertical text direction estimation algorithm based on convex hull projection profile analysis, and a 2D distortion grid construction method based on text direction function estimation using 3D regularization. In order to examine the performance of our proposed method, both qualitative and quantitative evaluation and comparison with several recent methods are conducted in our experiments. The experimental results demonstrate that the proposed method outperforms relevant approaches for camera-captured document image rectification, in terms of improvements on both visual distortion removal and OCR accuracy.

  2. Physics-based deformable organisms for medical image analysis

    NASA Astrophysics Data System (ADS)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  3. Texture Analysis of Chaotic Coupled Map Lattices Based Image Encryption Algorithm

    NASA Astrophysics Data System (ADS)

    Khan, Majid; Shah, Tariq; Batool, Syeda Iram

    2014-09-01

    As of late, data security is key in different enclosures like web correspondence, media frameworks, therapeutic imaging, telemedicine and military correspondence. In any case, a large portion of them confronted with a few issues, for example, the absence of heartiness and security. In this letter, in the wake of exploring the fundamental purposes of the chaotic trigonometric maps and the coupled map lattices, we have presented the algorithm of chaos-based image encryption based on coupled map lattices. The proposed mechanism diminishes intermittent impact of the ergodic dynamical systems in the chaos-based image encryption. To assess the security of the encoded image of this scheme, the association of two nearby pixels and composition peculiarities were performed. This algorithm tries to minimize the problems arises in image encryption.

  4. iSBatch: a batch-processing platform for data analysis and exploration of live-cell single-molecule microscopy images and other hierarchical datasets.

    PubMed

    Caldas, Victor E A; Punter, Christiaan M; Ghodke, Harshad; Robinson, Andrew; van Oijen, Antoine M

    2015-10-01

    Recent technical advances have made it possible to visualize single molecules inside live cells. Microscopes with single-molecule sensitivity enable the imaging of low-abundance proteins, allowing for a quantitative characterization of molecular properties. Such data sets contain information on a wide spectrum of important molecular properties, with different aspects highlighted in different imaging strategies. The time-lapsed acquisition of images provides information on protein dynamics over long time scales, giving insight into expression dynamics and localization properties. Rapid burst imaging reveals properties of individual molecules in real-time, informing on their diffusion characteristics, binding dynamics and stoichiometries within complexes. This richness of information, however, adds significant complexity to analysis protocols. In general, large datasets of images must be collected and processed in order to produce statistically robust results and identify rare events. More importantly, as live-cell single-molecule measurements remain on the cutting edge of imaging, few protocols for analysis have been established and thus analysis strategies often need to be explored for each individual scenario. Existing analysis packages are geared towards either single-cell imaging data or in vitro single-molecule data and typically operate with highly specific algorithms developed for particular situations. Our tool, iSBatch, instead allows users to exploit the inherent flexibility of the popular open-source package ImageJ, providing a hierarchical framework in which existing plugins or custom macros may be executed over entire datasets or portions thereof. This strategy affords users freedom to explore new analysis protocols within large imaging datasets, while maintaining hierarchical relationships between experiments, samples, fields of view, cells, and individual molecules.

  5. Dynamic whole body PET parametric imaging: II. Task-oriented statistical estimation

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15–20cm) of a single bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical FDG patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection. PMID:24080994

  6. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical (18)F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection.

  7. Performance assessment of HIFU lesion detection by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): A 3D finite-element-based framework with experimental validation

    PubMed Central

    Hou, Gary Y.; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E.

    2014-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on Amplitude-modulated (AM) - Harmonic Motion Imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module, and an image-formation model. The objective of this study is to develop such a framework in order to 1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and 2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6, and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69, 5.39 and 1.65, 3.19, 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28, and 1.78 at 10-s, 20-s, and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was also found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo. PMID:22036637

  8. [Self-images and perceptions of other professions among students of nursing, physiotherapy, and occupational therapy and their importance for interprofessional cooperation].

    PubMed

    Boggatz, Thomas; Altmeppen, Sandra; Unger, Angelika

    2010-07-01

    Interdisciplinary cooperation is necessary to provide effective and high quality treatment for clients of the health care system. Interaction between professional groups depends on how their members perceive their self-image and the image of other professions. Within the framework of the project "Quality in the education of health-professionals" a qualitative study with 23 nurses, 24 physiotherapists and 15 occupational therapists in the second or third year of training was conducted. Participants were asked to report their self-image and the image of the other two professions. A qualitative content analysis according to Mayring was used for data analysis. Four categories emerged that allowed describing the self image and the image of the other professions: roles of the respective health professions, relation of the health professionals to their clients, attributes that typically characterized members of a particular profession, and relationship between the health professions. Latent conflicts between professional groups became apparent. Contradicting perceptions are due to subjective bias in favour of the own professional group. Interdisciplinary collaboration requires a new culture of co-operation.

  9. Deep learning for media analysis in defense scenariosan evaluation of an open source framework for object detection in intelligence related image sets

    DTIC Science & Technology

    2017-06-01

    Training time statistics from Jones’ thesis. . . . . . . . . . . . . . 15 Table 2.2 Evaluation runtime statistics from Camp’s thesis for a single image. 17...Table 2.3 Training and evaluation runtime statistics from Sharpe’s thesis. . . 19 Table 2.4 Sharpe’s screenshot detector results for combinations of...training resources available and time required for each algorithm Jones [15] tested. Table 2.1. Training time statistics from Jones’ [15] thesis. Algorithm

  10. WE-EF-207-01: FEATURED PRESENTATION and BEST IN PHYSICS (IMAGING): Task-Driven Imaging for Cone-Beam CT in Interventional Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gang, G; Stayman, J; Ouadah, S

    2015-06-15

    Purpose: This work introduces a task-driven imaging framework that utilizes a patient-specific anatomical model, mathematical definition of the imaging task, and a model of the imaging system to prospectively design acquisition and reconstruction techniques that maximize task-based imaging performance. Utility of the framework is demonstrated in the joint optimization of tube current modulation and view-dependent reconstruction kernel in filtered-backprojection reconstruction and non-circular orbit design in model-based reconstruction. Methods: The system model is based on a cascaded systems analysis of cone-beam CT capable of predicting the spatially varying noise and resolution characteristics as a function of the anatomical model and amore » wide range of imaging parameters. Detectability index for a non-prewhitening observer model is used as the objective function in a task-driven optimization. The combination of tube current and reconstruction kernel modulation profiles were identified through an alternating optimization algorithm where tube current was updated analytically followed by a gradient-based optimization of reconstruction kernel. The non-circular orbit is first parameterized as a linear combination of bases functions and the coefficients were then optimized using an evolutionary algorithm. The task-driven strategy was compared with conventional acquisitions without modulation, using automatic exposure control, and in a circular orbit. Results: The task-driven strategy outperformed conventional techniques in all tasks investigated, improving the detectability of a spherical lesion detection task by an average of 50% in the interior of a pelvis phantom. The non-circular orbit design successfully mitigated photon starvation effects arising from a dense embolization coil in a head phantom, improving the conspicuity of an intracranial hemorrhage proximal to the coil. Conclusion: The task-driven imaging framework leverages a knowledge of the imaging task within a patient-specific anatomical model to optimize image acquisition and reconstruction techniques, thereby improving imaging performance beyond that achievable with conventional approaches. 2R01-CA-112163; R01-EB-017226; U01-EB-018758; Siemens Healthcare (Forcheim, Germany)« less

  11. Reconstruction of color biomedical images by means of quaternion generic Jacobi-Fourier moments in the framework of polar pixels

    PubMed Central

    Camacho-Bello, César; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Báez-Rojas, José Javier

    2016-01-01

    Abstract. A detailed analysis of the quaternion generic Jacobi-Fourier moments (QGJFMs) for color image description is presented. In order to reach numerical stability, a recursive approach is used during the computation of the generic Jacobi radial polynomials. Moreover, a search criterion is performed to establish the best values for the parameters α and β of the radial Jacobi polynomial families. Additionally, a polar pixel approach is taken into account to increase the numerical accuracy in the calculation of the QGJFMs. To prove the mathematical theory, some color images from optical microscopy and human retina are used. Experiments and results about color image reconstruction are presented. PMID:27014716

  12. Applying time series Landsat data for vegetation change analysis in the Florida Everglades Water Conservation Area 2A during 1996-2016

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun; Smith, Molly; Lv, Jie; Fang, Chaoyang

    2017-05-01

    Mapping plant communities and documenting their changes is critical to the on-going Florida Everglades restoration project. In this study, a framework was designed to map dominant vegetation communities and inventory their changes in the Florida Everglades Water Conservation Area 2A (WCA-2A) using time series Landsat images spanning 1996-2016. The object-based change analysis technique was combined in the framework. A hybrid pixel/object-based change detection approach was developed to effectively collect training samples for historical images with sparse reference data. An object-based quantification approach was also developed to assess the expansion/reduction of a specific class such as cattail (an invasive species in the Everglades) from the object-based classifications of two dates of imagery. The study confirmed the results in the literature that cattail was largely expanded during 1996-2007. It also revealed that cattail expansion was constrained after 2007. Application of time series Landsat data is valuable to document vegetation changes for the WCA-2A impoundment. The digital techniques developed will benefit global wetland mapping and change analysis in general, and the Florida Everglades WCA-2A in particular.

  13. Target-Oriented High-Resolution SAR Image Formation via Semantic Information Guided Regularizations

    NASA Astrophysics Data System (ADS)

    Hou, Biao; Wen, Zaidao; Jiao, Licheng; Wu, Qian

    2018-04-01

    Sparsity-regularized synthetic aperture radar (SAR) imaging framework has shown its remarkable performance to generate a feature enhanced high resolution image, in which a sparsity-inducing regularizer is involved by exploiting the sparsity priors of some visual features in the underlying image. However, since the simple prior of low level features are insufficient to describe different semantic contents in the image, this type of regularizer will be incapable of distinguishing between the target of interest and unconcerned background clutters. As a consequence, the features belonging to the target and clutters are simultaneously affected in the generated image without concerning their underlying semantic labels. To address this problem, we propose a novel semantic information guided framework for target oriented SAR image formation, which aims at enhancing the interested target scatters while suppressing the background clutters. Firstly, we develop a new semantics-specific regularizer for image formation by exploiting the statistical properties of different semantic categories in a target scene SAR image. In order to infer the semantic label for each pixel in an unsupervised way, we moreover induce a novel high-level prior-driven regularizer and some semantic causal rules from the prior knowledge. Finally, our regularized framework for image formation is further derived as a simple iteratively reweighted $\\ell_1$ minimization problem which can be conveniently solved by many off-the-shelf solvers. Experimental results demonstrate the effectiveness and superiority of our framework for SAR image formation in terms of target enhancement and clutters suppression, compared with the state of the arts. Additionally, the proposed framework opens a new direction of devoting some machine learning strategies to image formation, which can benefit the subsequent decision making tasks.

  14. Volumetric image interpretation in radiology: scroll behavior and cognitive processes.

    PubMed

    den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk

    2018-05-16

    The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.

  15. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    PubMed

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines

    PubMed Central

    Kurç, Tahsin M.; Taveira, Luís F. R.; Melo, Alba C. M. A.; Gao, Yi; Kong, Jun; Saltz, Joel H.

    2017-01-01

    Abstract Motivation: Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. Results: The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Conclusions: Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Availability and Implementation: Source code: https://github.com/SBU-BMI/region-templates/. Contact: teodoro@unb.br Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28062445

  17. Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines.

    PubMed

    Teodoro, George; Kurç, Tahsin M; Taveira, Luís F R; Melo, Alba C M A; Gao, Yi; Kong, Jun; Saltz, Joel H

    2017-04-01

    Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Source code: https://github.com/SBU-BMI/region-templates/ . teodoro@unb.br. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  18. A partial differential equation-based general framework adapted to Rayleigh's, Rician's and Gaussian's distributed noise for restoration and enhancement of magnetic resonance image.

    PubMed

    Yadav, Ram Bharos; Srivastava, Subodh; Srivastava, Rajeev

    2016-01-01

    The proposed framework is obtained by casting the noise removal problem into a variational framework. This framework automatically identifies the various types of noise present in the magnetic resonance image and filters them by choosing an appropriate filter. This filter includes two terms: the first term is a data likelihood term and the second term is a prior function. The first term is obtained by minimizing the negative log likelihood of the corresponding probability density functions: Gaussian or Rayleigh or Rician. Further, due to the ill-posedness of the likelihood term, a prior function is needed. This paper examines three partial differential equation based priors which include total variation based prior, anisotropic diffusion based prior, and a complex diffusion (CD) based prior. A regularization parameter is used to balance the trade-off between data fidelity term and prior. The finite difference scheme is used for discretization of the proposed method. The performance analysis and comparative study of the proposed method with other standard methods is presented for brain web dataset at varying noise levels in terms of peak signal-to-noise ratio, mean square error, structure similarity index map, and correlation parameter. From the simulation results, it is observed that the proposed framework with CD based prior is performing better in comparison to other priors in consideration.

  19. Geometry Of Discrete Sets With Applications To Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Sinha, Divyendu

    1990-03-01

    In this paper we present a new framework for discrete black and white images that employs only integer arithmetic. This framework is shown to retain the essential characteristics of the framework for Euclidean images. We propose two norms and based on them, the permissible geometric operations on images are defined. The basic invariants of our geometry are line images, structure of image and the corresponding local property of strong attachment of pixels. The permissible operations also preserve the 3x3 neighborhoods, area, and perpendicularity. The structure, patterns, and the inter-pattern gaps in a discrete image are shown to be conserved by the magnification and contraction process. Our notions of approximate congruence, similarity and symmetry are similar, in character, to the corresponding notions, for Euclidean images [1]. We mention two discrete pattern recognition algorithms that work purely with integers, and which fit into our framework. Their performance has been shown to be at par with the performance of traditional geometric schemes. Also, all the undesired effects of finite length registers in fixed point arithmetic that plague traditional algorithms, are non-existent in this family of algorithms.

  20. Zernike analysis of all-sky night brightness maps.

    PubMed

    Bará, Salvador; Nievas, Miguel; Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2014-04-20

    All-sky night brightness maps (calibrated images of the night sky with hemispherical field-of-view (FOV) taken at standard photometric bands) provide useful data to assess the light pollution levels at any ground site. We show that these maps can be efficiently described and analyzed using Zernike circle polynomials. The relevant image information can be compressed into a low-dimensional coefficients vector, giving an analytical expression for the sky brightness and alleviating the effects of noise. Moreover, the Zernike expansions allow us to quantify in a straightforward way the average and zenithal sky brightness and its variation across the FOV, providing a convenient framework to study the time course of these magnitudes. We apply this framework to analyze the results of a one-year campaign of night sky brightness measurements made at the UCM observatory in Madrid.

  1. Integral-geometry characterization of photobiomodulation effects on retinal vessel morphology

    PubMed Central

    Barbosa, Marconi; Natoli, Riccardo; Valter, Kriztina; Provis, Jan; Maddess, Ted

    2014-01-01

    The morphological characterization of quasi-planar structures represented by gray-scale images is challenging when object identification is sub-optimal due to registration artifacts. We propose two alternative procedures that enhances object identification in the integral-geometry morphological image analysis (MIA) framework. The first variant streamlines the framework by introducing an active contours segmentation process whose time step is recycled as a multi-scale parameter. In the second variant, we used the refined object identification produced in the first variant to perform the standard MIA with exact dilation radius as multi-scale parameter. Using this enhanced MIA we quantify the extent of vaso-obliteration in oxygen-induced retinopathic vascular growth, the preventative effect (by photobiomodulation) of exposure during tissue development to near-infrared light (NIR, 670 nm), and the lack of adverse effects due to exposure to NIR light. PMID:25071966

  2. Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.

    PubMed

    Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J

    2017-09-01

    A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.

  3. A Sparsity-based Framework for Resolution Enhancement in Optical Fault Analysis of Integrated Circuits

    DTIC Science & Technology

    2015-01-01

    for IC fault detection . This section provides background information on inversion methods. Conventional inversion techniques and their shortcomings are...physical techniques, electron beam imaging/analysis, ion beam techniques, scanning probe techniques. Electrical tests are used to detect faults in 13 an...hand, there is also the second harmonic technique through which duty cycle degradation faults are detected by collecting the magnitude and the phase of

  4. Integrated approach to multimodal media content analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Kuo, C.-C. Jay

    1999-12-01

    In this work, we present a system for the automatic segmentation, indexing and retrieval of audiovisual data based on the combination of audio, visual and textural content analysis. The video stream is demultiplexed into audio, image and caption components. Then, a semantic segmentation of the audio signal based on audio content analysis is conducted, and each segment is indexed as one of the basic audio types. The image sequence is segmented into shots based on visual information analysis, and keyframes are extracted from each shot. Meanwhile, keywords are detected from the closed caption. Index tables are designed for both linear and non-linear access to the video. It is shown by experiments that the proposed methods for multimodal media content analysis are effective. And that the integrated framework achieves satisfactory results for video information filtering and retrieval.

  5. Supervised detection of exoplanets in high-contrast imaging sequences

    NASA Astrophysics Data System (ADS)

    Gomez Gonzalez, C. A.; Absil, O.; Van Droogenbroeck, M.

    2018-06-01

    Context. Post-processing algorithms play a key role in pushing the detection limits of high-contrast imaging (HCI) instruments. State-of-the-art image processing approaches for HCI enable the production of science-ready images relying on unsupervised learning techniques, such as low-rank approximations, for generating a model point spread function (PSF) and subtracting the residual starlight and speckle noise. Aims: In order to maximize the detection rate of HCI instruments and survey campaigns, advanced algorithms with higher sensitivities to faint companions are needed, especially for the speckle-dominated innermost region of the images. Methods: We propose a reformulation of the exoplanet detection task (for ADI sequences) that builds on well-established machine learning techniques to take HCI post-processing from an unsupervised to a supervised learning context. In this new framework, we present algorithmic solutions using two different discriminative models: SODIRF (random forests) and SODINN (neural networks). We test these algorithms on real ADI datasets from VLT/NACO and VLT/SPHERE HCI instruments. We then assess their performances by injecting fake companions and using receiver operating characteristic analysis. This is done in comparison with state-of-the-art ADI algorithms, such as ADI principal component analysis (ADI-PCA). Results: This study shows the improved sensitivity versus specificity trade-off of the proposed supervised detection approach. At the diffraction limit, SODINN improves the true positive rate by a factor ranging from 2 to 10 (depending on the dataset and angular separation) with respect to ADI-PCA when working at the same false-positive level. Conclusions: The proposed supervised detection framework outperforms state-of-the-art techniques in the task of discriminating planet signal from speckles. In addition, it offers the possibility of re-processing existing HCI databases to maximize their scientific return and potentially improve the demographics of directly imaged exoplanets.

  6. 2D-pattern matching image and video compression: theory, algorithms, and experiments.

    PubMed

    Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth

    2002-01-01

    In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.

  7. Large-Scale medical image analytics: Recent methodologies, applications and Future directions.

    PubMed

    Zhang, Shaoting; Metaxas, Dimitris

    2016-10-01

    Despite the ever-increasing amount and complexity of annotated medical image data, the development of large-scale medical image analysis algorithms has not kept pace with the need for methods that bridge the semantic gap between images and diagnoses. The goal of this position paper is to discuss and explore innovative and large-scale data science techniques in medical image analytics, which will benefit clinical decision-making and facilitate efficient medical data management. Particularly, we advocate that the scale of image retrieval systems should be significantly increased at which interactive systems can be effective for knowledge discovery in potentially large databases of medical images. For clinical relevance, such systems should return results in real-time, incorporate expert feedback, and be able to cope with the size, quality, and variety of the medical images and their associated metadata for a particular domain. The design, development, and testing of the such framework can significantly impact interactive mining in medical image databases that are growing rapidly in size and complexity and enable novel methods of analysis at much larger scales in an efficient, integrated fashion. Copyright © 2016. Published by Elsevier B.V.

  8. Propagation of registration uncertainty during multi-fraction cervical cancer brachytherapy

    NASA Astrophysics Data System (ADS)

    Amir-Khalili, A.; Hamarneh, G.; Zakariaee, R.; Spadinger, I.; Abugharbieh, R.

    2017-10-01

    Multi-fraction cervical cancer brachytherapy is a form of image-guided radiotherapy that heavily relies on 3D imaging during treatment planning, delivery, and quality control. In this context, deformable image registration can increase the accuracy of dosimetric evaluations, provided that one can account for the uncertainties associated with the registration process. To enable such capability, we propose a mathematical framework that first estimates the registration uncertainty and subsequently propagates the effects of the computed uncertainties from the registration stage through to the visualizations, organ segmentations, and dosimetric evaluations. To ensure the practicality of our proposed framework in real world image-guided radiotherapy contexts, we implemented our technique via a computationally efficient and generalizable algorithm that is compatible with existing deformable image registration software. In our clinical context of fractionated cervical cancer brachytherapy, we perform a retrospective analysis on 37 patients and present evidence that our proposed methodology for computing and propagating registration uncertainties may be beneficial during therapy planning and quality control. Specifically, we quantify and visualize the influence of registration uncertainty on dosimetric analysis during the computation of the total accumulated radiation dose on the bladder wall. We further show how registration uncertainty may be leveraged into enhanced visualizations that depict the quality of the registration and highlight potential deviations from the treatment plan prior to the delivery of radiation treatment. Finally, we show that we can improve the transfer of delineated volumetric organ segmentation labels from one fraction to the next by encoding the computed registration uncertainties into the segmentation labels.

  9. Efficient processing of fluorescence images using directional multiscale representations.

    PubMed

    Labate, D; Laezza, F; Negi, P; Ozcan, B; Papadakis, M

    2014-01-01

    Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data.

  10. Efficient processing of fluorescence images using directional multiscale representations

    PubMed Central

    Labate, D.; Laezza, F.; Negi, P.; Ozcan, B.; Papadakis, M.

    2017-01-01

    Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data. PMID:28804225

  11. A configurable distributed high-performance computing framework for satellite's TDI-CCD imaging simulation

    NASA Astrophysics Data System (ADS)

    Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang

    2010-11-01

    This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.

  12. The Open Microscopy Environment: open image informatics for the biological sciences

    NASA Astrophysics Data System (ADS)

    Blackburn, Colin; Allan, Chris; Besson, Sébastien; Burel, Jean-Marie; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gault, David; Gillen, Kenneth; Leigh, Roger; Leo, Simone; Li, Simon; Lindner, Dominik; Linkert, Melissa; Moore, Josh; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Swedlow, Jason R.

    2016-07-01

    Despite significant advances in biological imaging and analysis, major informatics challenges remain unsolved: file formats are proprietary, storage and analysis facilities are lacking, as are standards for sharing image data and results. While the open FITS file format is ubiquitous in astronomy, astronomical imaging shares many challenges with biological imaging, including the need to share large image sets using secure, cross-platform APIs, and the need for scalable applications for processing and visualization. The Open Microscopy Environment (OME) is an open-source software framework developed to address these challenges. OME tools include: an open data model for multidimensional imaging (OME Data Model); an open file format (OME-TIFF) and library (Bio-Formats) enabling free access to images (5D+) written in more than 145 formats from many imaging domains, including FITS; and a data management server (OMERO). The Java-based OMERO client-server platform comprises an image metadata store, an image repository, visualization and analysis by remote access, allowing sharing and publishing of image data. OMERO provides a means to manage the data through a multi-platform API. OMERO's model-based architecture has enabled its extension into a range of imaging domains, including light and electron microscopy, high content screening, digital pathology and recently into applications using non-image data from clinical and genomic studies. This is made possible using the Bio-Formats library. The current release includes a single mechanism for accessing image data of all types, regardless of original file format, via Java, C/C++ and Python and a variety of applications and environments (e.g. ImageJ, Matlab and R).

  13. Anatomical background and generalized detectability in tomosynthesis and cone-beam CT.

    PubMed

    Gang, G J; Tward, D J; Lee, J; Siewerdsen, J H

    2010-05-01

    Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone-beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background "noise" in cascaded systems analysis of 2D and 3D imaging performance to yield "generalized" metrics of noise-equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source-detector orbit. A physical phantom was designed based on principles of fractal self-similarity to exhibit power-law spectral density (kappa/Fbeta) comparable to various anatomical sites (e.g., breast and lung). Background power spectra [S(B)(F)] were computed as a function of source-detector orbital extent, including tomosynthesis (approximately 10 degrees -180 degrees) and CBCT (180 degrees + fan to 360 degrees) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting S(B) was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks. The phantom yielded power-law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude (kappa) and correlation (beta) with increasing tomosynthesis angle. Incorporation of S(B) in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design-applications varying significantly in kappa and beta, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low-frequency tasks (e.g., soft-tissue masses or nodules) tend to benefit from larger orbital extent and more fully 3D tomographic imaging, whereas high-frequency tasks (e.g., microcalcifications) require careful, application-specific selection of orbital extent and number of projections to minimize negative effects of quantum and electronic noise. The complex tradeoffs among anatomical background, quantum noise, and electronic noise in projection imaging, tomosynthesis, and CBCT can be described by generalized cascaded systems analysis, providing a useful framework for system design and optimization.

  14. Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping1[C][W][OPEN

    PubMed Central

    Klukas, Christian; Chen, Dijun; Pape, Jean-Michel

    2014-01-01

    High-throughput phenotyping is emerging as an important technology to dissect phenotypic components in plants. Efficient image processing and feature extraction are prerequisites to quantify plant growth and performance based on phenotypic traits. Issues include data management, image analysis, and result visualization of large-scale phenotypic data sets. Here, we present Integrated Analysis Platform (IAP), an open-source framework for high-throughput plant phenotyping. IAP provides user-friendly interfaces, and its core functions are highly adaptable. Our system supports image data transfer from different acquisition environments and large-scale image analysis for different plant species based on real-time imaging data obtained from different spectra. Due to the huge amount of data to manage, we utilized a common data structure for efficient storage and organization of data for both input data and result data. We implemented a block-based method for automated image processing to extract a representative list of plant phenotypic traits. We also provide tools for build-in data plotting and result export. For validation of IAP, we performed an example experiment that contains 33 maize (Zea mays ‘Fernandez’) plants, which were grown for 9 weeks in an automated greenhouse with nondestructive imaging. Subsequently, the image data were subjected to automated analysis with the maize pipeline implemented in our system. We found that the computed digital volume and number of leaves correlate with our manually measured data in high accuracy up to 0.98 and 0.95, respectively. In summary, IAP provides a multiple set of functionalities for import/export, management, and automated analysis of high-throughput plant phenotyping data, and its analysis results are highly reliable. PMID:24760818

  15. SU-F-J-14: Kilovoltage Cone-Beam CT Dose Estimation of Varian On-Board Imager Using GMctdospp Monte Carlo Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Rangaraj, D

    2016-06-15

    Purpose: Although cone-beam CT (CBCT) imaging became popular in radiation oncology, its imaging dose estimation is still challenging. The goal of this study is to assess the kilovoltage CBCT doses using GMctdospp - an EGSnrc based Monte Carlo (MC) framework. Methods: Two Varian OBI x-ray tube models were implemented in the GMctpdospp framework of EGSnrc MC System. The x-ray spectrum of 125 kVp CBCT beam was acquired from an EGSnrc/BEAMnrc simulation and validated with IPEM report 78. Then, the spectrum was utilized as an input spectrum in GMctdospp dose calculations. Both full and half bowtie pre-filters of the OBI systemmore » were created by using egs-prism module. The x-ray tube MC models were verified by comparing calculated dosimetric profiles (lateral and depth) to ion chamber measurements for a static x-ray beam irradiation to a cuboid water phantom. An abdominal CBCT imaging doses was simulated in GMctdospp framework using a 5-year-old anthropomorphic phantom. The organ doses and effective dose (ED) from the framework were assessed and compared to the MOSFET measurements and convolution/superposition dose calculations. Results: The lateral and depth dose profiles in the water cuboid phantom were well matched within 6% except a few areas - left shoulder of the half bowtie lateral profile and surface of water phantom. The organ doses and ED from the MC framework were found to be closer to MOSFET measurements and CS calculations within 2 cGy and 5 mSv respectively. Conclusion: This study implemented and validated the Varian OBI x-ray tube models in the GMctdospp MC framework using a cuboid water phantom and CBCT imaging doses were also evaluated in a 5-year-old anthropomorphic phantom. In future study, various CBCT imaging protocols will be implemented and validated and consequently patient CT images will be used to estimate the CBCT imaging doses in patients.« less

  16. Developing a clinical utility framework to evaluate prediction models in radiogenomics

    NASA Astrophysics Data System (ADS)

    Wu, Yirong; Liu, Jie; Munoz del Rio, Alejandro; Page, David C.; Alagoz, Oguzhan; Peissig, Peggy; Onitilo, Adedayo A.; Burnside, Elizabeth S.

    2015-03-01

    Combining imaging and genetic information to predict disease presence and behavior is being codified into an emerging discipline called "radiogenomics." Optimal evaluation methodologies for radiogenomics techniques have not been established. We aim to develop a clinical decision framework based on utility analysis to assess prediction models for breast cancer. Our data comes from a retrospective case-control study, collecting Gail model risk factors, genetic variants (single nucleotide polymorphisms-SNPs), and mammographic features in Breast Imaging Reporting and Data System (BI-RADS) lexicon. We first constructed three logistic regression models built on different sets of predictive features: (1) Gail, (2) Gail+SNP, and (3) Gail+SNP+BI-RADS. Then, we generated ROC curves for three models. After we assigned utility values for each category of findings (true negative, false positive, false negative and true positive), we pursued optimal operating points on ROC curves to achieve maximum expected utility (MEU) of breast cancer diagnosis. We used McNemar's test to compare the predictive performance of the three models. We found that SNPs and BI-RADS features augmented the baseline Gail model in terms of the area under ROC curve (AUC) and MEU. SNPs improved sensitivity of the Gail model (0.276 vs. 0.147) and reduced specificity (0.855 vs. 0.912). When additional mammographic features were added, sensitivity increased to 0.457 and specificity to 0.872. SNPs and mammographic features played a significant role in breast cancer risk estimation (p-value < 0.001). Our decision framework comprising utility analysis and McNemar's test provides a novel framework to evaluate prediction models in the realm of radiogenomics.

  17. A unified framework for physical print quality

    NASA Astrophysics Data System (ADS)

    Eid, Ahmed; Cooper, Brian; Rippetoe, Ed

    2007-01-01

    In this paper we present a unified framework for physical print quality. This framework includes a design for a testbed, testing methodologies and quality measures of physical print characteristics. An automatic belt-fed flatbed scanning system is calibrated to acquire L* data for a wide range of flat field imagery. Testing methodologies based on wavelet pre-processing and spectral/statistical analysis are designed. We apply the proposed framework to three common printing artifacts: banding, jitter, and streaking. Since these artifacts are directional, wavelet based approaches are used to extract one artifact at a time and filter out other artifacts. Banding is characterized as a medium-to-low frequency, vertical periodic variation down the page. The same definition is applied to the jitter artifact, except that the jitter signal is characterized as a high-frequency signal above the banding frequency range. However, streaking is characterized as a horizontal aperiodic variation in the high-to-medium frequency range. Wavelets at different levels are applied to the input images in different directions to extract each artifact within specified frequency bands. Following wavelet reconstruction, images are converted into 1-D signals describing the artifact under concern. Accurate spectral analysis using a DFT with Blackman-Harris windowing technique is used to extract the power (strength) of periodic signals (banding and jitter). Since streaking is an aperiodic signal, a statistical measure is used to quantify the streaking strength. Experiments on 100 print samples scanned at 600 dpi from 10 different printers show high correlation (75% to 88%) between the ranking of these samples by the proposed metrologies and experts' visual ranking.

  18. ProstateAnalyzer: Web-based medical application for the management of prostate cancer using multiparametric MR imaging.

    PubMed

    Mata, Christian; Walker, Paul M; Oliver, Arnau; Brunotte, François; Martí, Joan; Lalande, Alain

    2016-01-01

    In this paper, we present ProstateAnalyzer, a new web-based medical tool for prostate cancer diagnosis. ProstateAnalyzer allows the visualization and analysis of magnetic resonance images (MRI) in a single framework. ProstateAnalyzer recovers the data from a PACS server and displays all the associated MRI images in the same framework, usually consisting of 3D T2-weighted imaging for anatomy, dynamic contrast-enhanced MRI for perfusion, diffusion-weighted imaging in the form of an apparent diffusion coefficient (ADC) map and MR Spectroscopy. ProstateAnalyzer allows annotating regions of interest in a sequence and propagates them to the others. From a representative case, the results using the four visualization platforms are fully detailed, showing the interaction among them. The tool has been implemented as a Java-based applet application to facilitate the portability of the tool to the different computer architectures and software and allowing the possibility to work remotely via the web. ProstateAnalyzer enables experts to manage prostate cancer patient data set more efficiently. The tool allows delineating annotations by experts and displays all the required information for use in diagnosis. According to the current European Society of Urogenital Radiology guidelines, it also includes the PI-RADS structured reporting scheme.

  19. Culture in English as a Foreign Language (EFL) Textbooks: A Semiotic Approach

    ERIC Educational Resources Information Center

    Weninger, Csilla; Kiss, Tamas

    2013-01-01

    This article problematizes current, quantitative approaches to the analysis of culture in foreign language textbooks as objectifying culture, and offers an alternative, semiotic framework that examines texts, images, and tasks as merely engendering particular meanings in the act of semiosis. The authors take as a point of departure developments…

  20. Communicating CSR and Business Identity in the Chemical Industry through Mission Slogans

    ERIC Educational Resources Information Center

    Verboven, Hans

    2011-01-01

    This article analyzes the communication of corporate social responsibility (CSR) and corporate image in the chemical industry through mission slogans. Morsing's (2006) CSR communication framework is adapted for a comparative analysis of the strategies behind mission slogans. By grouping rhetorical strategies in a mission slogan into a mission…

  1. A framework for automatic creation of gold-standard rigid 3D-2D registration datasets.

    PubMed

    Madan, Hennadii; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2017-02-01

    Advanced image-guided medical procedures incorporate 2D intra-interventional information into pre-interventional 3D image and plan of the procedure through 3D/2D image registration (32R). To enter clinical use, and even for publication purposes, novel and existing 32R methods have to be rigorously validated. The performance of a 32R method can be estimated by comparing it to an accurate reference or gold standard method (usually based on fiducial markers) on the same set of images (gold standard dataset). Objective validation and comparison of methods are possible only if evaluation methodology is standardized, and the gold standard  dataset is made publicly available. Currently, very few such datasets exist and only one contains images of multiple patients acquired during a procedure. To encourage the creation of gold standard 32R datasets, we propose an automatic framework. The framework is based on rigid registration of fiducial markers. The main novelty is spatial grouping of fiducial markers on the carrier device, which enables automatic marker localization and identification across the 3D and 2D images. The proposed framework was demonstrated on clinical angiograms of 20 patients. Rigid 32R computed by the framework was more accurate than that obtained manually, with the respective target registration error below 0.027 mm compared to 0.040 mm. The framework is applicable for gold standard setup on any rigid anatomy, provided that the acquired images contain spatially grouped fiducial markers. The gold standard datasets and software will be made publicly available.

  2. Calcium (Ca2+) waves data calibration and analysis using image processing techniques

    PubMed Central

    2013-01-01

    Background Calcium (Ca2+) propagates within tissues serving as an important information carrier. In particular, cilia beat frequency in oviduct cells is partially regulated by Ca2+ changes. Thus, measuring the calcium density and characterizing the traveling wave plays a key role in understanding biological phenomena. However, current methods to measure propagation velocities and other wave characteristics involve several manual or time-consuming procedures. This limits the amount of information that can be extracted, and the statistical quality of the analysis. Results Our work provides a framework based on image processing procedures that enables a fast, automatic and robust characterization of data from two-filter fluorescence Ca2+ experiments. We calculate the mean velocity of the wave-front, and use theoretical models to extract meaningful parameters like wave amplitude, decay rate and time of excitation. Conclusions Measurements done by different operators showed a high degree of reproducibility. This framework is also extended to a single filter fluorescence experiments, allowing higher sampling rates, and thus an increased accuracy in velocity measurements. PMID:23679062

  3. A Unified Framework for Street-View Panorama Stitching

    PubMed Central

    Li, Li; Yao, Jian; Xie, Renping; Xia, Menghan; Zhang, Wei

    2016-01-01

    In this paper, we propose a unified framework to generate a pleasant and high-quality street-view panorama by stitching multiple panoramic images captured from the cameras mounted on the mobile platform. Our proposed framework is comprised of four major steps: image warping, color correction, optimal seam line detection and image blending. Since the input images are captured without a precisely common projection center from the scenes with the depth differences with respect to the cameras to different extents, such images cannot be precisely aligned in geometry. Therefore, an efficient image warping method based on the dense optical flow field is proposed to greatly suppress the influence of large geometric misalignment at first. Then, to lessen the influence of photometric inconsistencies caused by the illumination variations and different exposure settings, we propose an efficient color correction algorithm via matching extreme points of histograms to greatly decrease color differences between warped images. After that, the optimal seam lines between adjacent input images are detected via the graph cut energy minimization framework. At last, the Laplacian pyramid blending algorithm is applied to further eliminate the stitching artifacts along the optimal seam lines. Experimental results on a large set of challenging street-view panoramic images captured form the real world illustrate that the proposed system is capable of creating high-quality panoramas. PMID:28025481

  4. NiftyNet: a deep-learning platform for medical imaging.

    PubMed

    Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom

    2018-05-01

    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Simulation-Based Joint Estimation of Body Deformation and Elasticity Parameters for Medical Image Analysis

    PubMed Central

    Foskey, Mark; Niethammer, Marc; Krajcevski, Pavel; Lin, Ming C.

    2014-01-01

    Estimation of tissue stiffness is an important means of noninvasive cancer detection. Existing elasticity reconstruction methods usually depend on a dense displacement field (inferred from ultrasound or MR images) and known external forces. Many imaging modalities, however, cannot provide details within an organ and therefore cannot provide such a displacement field. Furthermore, force exertion and measurement can be difficult for some internal organs, making boundary forces another missing parameter. We propose a general method for estimating elasticity and boundary forces automatically using an iterative optimization framework, given the desired (target) output surface. During the optimization, the input model is deformed by the simulator, and an objective function based on the distance between the deformed surface and the target surface is minimized numerically. The optimization framework does not depend on a particular simulation method and is therefore suitable for different physical models. We show a positive correlation between clinical prostate cancer stage (a clinical measure of severity) and the recovered elasticity of the organ. Since the surface correspondence is established, our method also provides a non-rigid image registration, where the quality of the deformation fields is guaranteed, as they are computed using a physics-based simulation. PMID:22893381

  6. High-Performance Computational Analysis of Glioblastoma Pathology Images with Database Support Identifies Molecular and Survival Correlates.

    PubMed

    Kong, Jun; Wang, Fusheng; Teodoro, George; Cooper, Lee; Moreno, Carlos S; Kurc, Tahsin; Pan, Tony; Saltz, Joel; Brat, Daniel

    2013-12-01

    In this paper, we present a novel framework for microscopic image analysis of nuclei, data management, and high performance computation to support translational research involving nuclear morphometry features, molecular data, and clinical outcomes. Our image analysis pipeline consists of nuclei segmentation and feature computation facilitated by high performance computing with coordinated execution in multi-core CPUs and Graphical Processor Units (GPUs). All data derived from image analysis are managed in a spatial relational database supporting highly efficient scientific queries. We applied our image analysis workflow to 159 glioblastomas (GBM) from The Cancer Genome Atlas dataset. With integrative studies, we found statistics of four specific nuclear features were significantly associated with patient survival. Additionally, we correlated nuclear features with molecular data and found interesting results that support pathologic domain knowledge. We found that Proneural subtype GBMs had the smallest mean of nuclear Eccentricity and the largest mean of nuclear Extent, and MinorAxisLength. We also found gene expressions of stem cell marker MYC and cell proliferation maker MKI67 were correlated with nuclear features. To complement and inform pathologists of relevant diagnostic features, we queried the most representative nuclear instances from each patient population based on genetic and transcriptional classes. Our results demonstrate that specific nuclear features carry prognostic significance and associations with transcriptional and genetic classes, highlighting the potential of high throughput pathology image analysis as a complementary approach to human-based review and translational research.

  7. MO-D-213-06: Quantitative Image Quality Metrics Are for Physicists, Not Radiologists: How to Communicate to Your Radiologists Using Their Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczykutowicz, T; Rubert, N; Ranallo, F

    Purpose: A framework for explaining differences in image quality to non-technical audiences in medial imaging is needed. Currently, this task is something that is learned “on the job.” The lack of a formal methodology for communicating optimal acquisition parameters into the clinic effectively mitigates many technological advances. As a community, medical physicists need to be held responsible for not only advancing image science, but also for ensuring its proper use in the clinic. This work outlines a framework that bridges the gap between the results from quantitative image quality metrics like detectability, MTF, and NPS and their effect on specificmore » anatomical structures present in diagnostic imaging tasks. Methods: Specific structures of clinical importance were identified for a body, an extremity, a chest, and a temporal bone protocol. Using these structures, quantitative metrics were used to identify the parameter space that should yield optimal image quality constrained within the confines of clinical logistics and dose considerations. The reading room workflow for presenting the proposed changes for imaging each of these structures is presented. The workflow consists of displaying images for physician review consisting of different combinations of acquisition parameters guided by quantitative metrics. Examples of using detectability index, MTF, NPS, noise and noise non-uniformity are provided. During review, the physician was forced to judge the image quality solely on those features they need for diagnosis, not on the overall “look” of the image. Results: We found that in many cases, use of this framework settled mis-agreements between physicians. Once forced to judge images on the ability to detect specific structures inter reader agreement was obtained. Conclusion: This framework will provide consulting, research/industrial, or in-house physicists with clinically relevant imaging tasks to guide reading room image review. This framework avoids use of the overall “look” or “feel” to dictate acquisition parameter selection. Equipment grants GE Healthcare.« less

  8. TU-CD-BRB-01: Normal Lung CT Texture Features Improve Predictive Models for Radiation Pneumonitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krafft, S; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Briere, T

    2015-06-15

    Purpose: Existing normal tissue complication probability (NTCP) models for radiation pneumonitis (RP) traditionally rely on dosimetric and clinical data but are limited in terms of performance and generalizability. Extraction of pre-treatment image features provides a potential new category of data that can improve NTCP models for RP. We consider quantitative measures of total lung CT intensity and texture in a framework for prediction of RP. Methods: Available clinical and dosimetric data was collected for 198 NSCLC patients treated with definitive radiotherapy. Intensity- and texture-based image features were extracted from the T50 phase of the 4D-CT acquired for treatment planning. Amore » total of 3888 features (15 clinical, 175 dosimetric, and 3698 image features) were gathered and considered candidate predictors for modeling of RP grade≥3. A baseline logistic regression model with mean lung dose (MLD) was first considered. Additionally, a least absolute shrinkage and selection operator (LASSO) logistic regression was applied to the set of clinical and dosimetric features, and subsequently to the full set of clinical, dosimetric, and image features. Model performance was assessed by comparing area under the curve (AUC). Results: A simple logistic fit of MLD was an inadequate model of the data (AUC∼0.5). Including clinical and dosimetric parameters within the framework of the LASSO resulted in improved performance (AUC=0.648). Analysis of the full cohort of clinical, dosimetric, and image features provided further and significant improvement in model performance (AUC=0.727). Conclusions: To achieve significant gains in predictive modeling of RP, new categories of data should be considered in addition to clinical and dosimetric features. We have successfully incorporated CT image features into a framework for modeling RP and have demonstrated improved predictive performance. Validation and further investigation of CT image features in the context of RP NTCP modeling is warranted. This work was supported by the Rosalie B. Hite Fellowship in Cancer research awarded to SPK.« less

  9. Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework.

    PubMed

    González-Avalos, P; Mürnseer, M; Deeg, J; Bachmann, A; Spatz, J; Dooley, S; Eils, R; Gladilin, E

    2017-05-01

    The mechanical cell environment is a key regulator of biological processes . In living tissues, cells are embedded into the 3D extracellular matrix and permanently exposed to mechanical forces. Quantification of the cellular strain state in a 3D matrix is therefore the first step towards understanding how physical cues determine single cell and multicellular behaviour. The majority of cell assays are, however, based on 2D cell cultures that lack many essential features of the in vivo cellular environment. Furthermore, nondestructive measurement of substrate and cellular mechanics requires appropriate computational tools for microscopic image analysis and interpretation. Here, we present an experimental and computational framework for generation and quantification of the cellular strain state in 3D cell cultures using a combination of 3D substrate stretcher, multichannel microscopic imaging and computational image analysis. The 3D substrate stretcher enables deformation of living cells embedded in bead-labelled 3D collagen hydrogels. Local substrate and cell deformations are determined by tracking displacement of fluorescent beads with subsequent finite element interpolation of cell strains over a tetrahedral tessellation. In this feasibility study, we debate diverse aspects of deformable 3D culture construction, quantification and evaluation, and present an example of its application for quantitative analysis of a cellular model system based on primary mouse hepatocytes undergoing transforming growth factor (TGF-β) induced epithelial-to-mesenchymal transition. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  10. Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis[W][OPEN

    PubMed Central

    Chen, Dijun; Neumann, Kerstin; Friedel, Swetlana; Kilian, Benjamin; Chen, Ming; Altmann, Thomas; Klukas, Christian

    2014-01-01

    Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing climates. While genome sequence information and excellent genomic tools are in place for major crop species, the systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand plant development and to further quantify growth and crop performance features. We tested various growth models to predict plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying plant development and their responses to environmental cues. PMID:25501589

  11. An Integrative Object-Based Image Analysis Workflow for Uav Images

    NASA Astrophysics Data System (ADS)

    Yu, Huai; Yan, Tianheng; Yang, Wen; Zheng, Hong

    2016-06-01

    In this work, we propose an integrative framework to process UAV images. The overall process can be viewed as a pipeline consisting of the geometric and radiometric corrections, subsequent panoramic mosaicking and hierarchical image segmentation for later Object Based Image Analysis (OBIA). More precisely, we first introduce an efficient image stitching algorithm after the geometric calibration and radiometric correction, which employs a fast feature extraction and matching by combining the local difference binary descriptor and the local sensitive hashing. We then use a Binary Partition Tree (BPT) representation for the large mosaicked panoramic image, which starts by the definition of an initial partition obtained by an over-segmentation algorithm, i.e., the simple linear iterative clustering (SLIC). Finally, we build an object-based hierarchical structure by fully considering the spectral and spatial information of the super-pixels and their topological relationships. Moreover, an optimal segmentation is obtained by filtering the complex hierarchies into simpler ones according to some criterions, such as the uniform homogeneity and semantic consistency. Experimental results on processing the post-seismic UAV images of the 2013 Ya'an earthquake demonstrate the effectiveness and efficiency of our proposed method.

  12. An improved level set method for brain MR images segmentation and bias correction.

    PubMed

    Chen, Yunjie; Zhang, Jianwei; Macione, Jim

    2009-10-01

    Intensity inhomogeneities cause considerable difficulty in the quantitative analysis of magnetic resonance (MR) images. Thus, bias field estimation is a necessary step before quantitative analysis of MR data can be undertaken. This paper presents a variational level set approach to bias correction and segmentation for images with intensity inhomogeneities. Our method is based on an observation that intensities in a relatively small local region are separable, despite of the inseparability of the intensities in the whole image caused by the overall intensity inhomogeneity. We first define a localized K-means-type clustering objective function for image intensities in a neighborhood around each point. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. The objective function is then integrated over the entire domain to define the data term into the level set framework. Our method is able to capture bias of quite general profiles. Moreover, it is robust to initialization, and thereby allows fully automated applications. The proposed method has been used for images of various modalities with promising results.

  13. RANZCR Body Systems Framework of diagnostic imaging examination descriptors.

    PubMed

    Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia

    2014-08-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.

  14. Spectral-spatial classification using tensor modeling for cancer detection with hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2014-03-01

    As an emerging technology, hyperspectral imaging (HSI) combines both the chemical specificity of spectroscopy and the spatial resolution of imaging, which may provide a non-invasive tool for cancer detection and diagnosis. Early detection of malignant lesions could improve both survival and quality of life of cancer patients. In this paper, we introduce a tensor-based computation and modeling framework for the analysis of hyperspectral images to detect head and neck cancer. The proposed classification method can distinguish between malignant tissue and healthy tissue with an average sensitivity of 96.97% and an average specificity of 91.42% in tumor-bearing mice. The hyperspectral imaging and classification technology has been demonstrated in animal models and can have many potential applications in cancer research and management.

  15. WormSizer: high-throughput analysis of nematode size and shape.

    PubMed

    Moore, Brad T; Jordan, James M; Baugh, L Ryan

    2013-01-01

    The fundamental phenotypes of growth rate, size and morphology are the result of complex interactions between genotype and environment. We developed a high-throughput software application, WormSizer, which computes size and shape of nematodes from brightfield images. Existing methods for estimating volume either coarsely model the nematode as a cylinder or assume the worm shape or opacity is invariant. Our estimate is more robust to changes in morphology or optical density as it only assumes radial symmetry. This open source software is written as a plugin for the well-known image-processing framework Fiji/ImageJ. It may therefore be extended easily. We evaluated the technical performance of this framework, and we used it to analyze growth and shape of several canonical Caenorhabditis elegans mutants in a developmental time series. We confirm quantitatively that a Dumpy (Dpy) mutant is short and fat and that a Long (Lon) mutant is long and thin. We show that daf-2 insulin-like receptor mutants are larger than wild-type upon hatching but grow slow, and WormSizer can distinguish dauer larvae from normal larvae. We also show that a Small (Sma) mutant is actually smaller than wild-type at all stages of larval development. WormSizer works with Uncoordinated (Unc) and Roller (Rol) mutants as well, indicating that it can be used with mutants despite behavioral phenotypes. We used our complete data set to perform a power analysis, giving users a sense of how many images are needed to detect different effect sizes. Our analysis confirms and extends on existing phenotypic characterization of well-characterized mutants, demonstrating the utility and robustness of WormSizer.

  16. Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun

    2015-06-01

    Accurate mapping and effective monitoring of benthic habitat in the Florida Keys are critical in developing management strategies for this valuable coral reef ecosystem. For this study, a framework was designed for automated benthic habitat mapping by combining multiple data sources (hyperspectral, aerial photography, and bathymetry data) and four contemporary imagery processing techniques (data fusion, Object-based Image Analysis (OBIA), machine learning, and ensemble analysis). In the framework, 1-m digital aerial photograph was first merged with 17-m hyperspectral imagery and 10-m bathymetry data using a pixel/feature-level fusion strategy. The fused dataset was then preclassified by three machine learning algorithms (Random Forest, Support Vector Machines, and k-Nearest Neighbor). Final object-based habitat maps were produced through ensemble analysis of outcomes from three classifiers. The framework was tested for classifying a group-level (3-class) and code-level (9-class) habitats in a portion of the Florida Keys. Informative and accurate habitat maps were achieved with an overall accuracy of 88.5% and 83.5% for the group-level and code-level classifications, respectively.

  17. Framework for shape analysis of white matter fiber bundles.

    PubMed

    Glozman, Tanya; Bruckert, Lisa; Pestilli, Franco; Yecies, Derek W; Guibas, Leonidas J; Yeom, Kristen W

    2018-02-15

    Diffusion imaging coupled with tractography algorithms allows researchers to image human white matter fiber bundles in-vivo. These bundles are three-dimensional structures with shapes that change over time during the course of development as well as in pathologic states. While most studies on white matter variability focus on analysis of tissue properties estimated from the diffusion data, e.g. fractional anisotropy, the shape variability of white matter fiber bundle is much less explored. In this paper, we present a set of tools for shape analysis of white matter fiber bundles, namely: (1) a concise geometric model of bundle shapes; (2) a method for bundle registration between subjects; (3) a method for deformation estimation. Our framework is useful for analysis of shape variability in white matter fiber bundles. We demonstrate our framework by applying our methods on two datasets: one consisting of data for 6 normal adults and another consisting of data for 38 normal children of age 11 days to 8.5 years. We suggest a robust and reproducible method to measure changes in the shape of white matter fiber bundles. We demonstrate how this method can be used to create a model to assess age-dependent changes in the shape of specific fiber bundles. We derive such models for an ensemble of white matter fiber bundles on our pediatric dataset and show that our results agree with normative human head and brain growth data. Creating these models for a large pediatric longitudinal dataset may improve understanding of both normal development and pathologic states and propose novel parameters for the examination of the pediatric brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The holistic grail: possible implications of an initial mistake in the reading of digital mammograms

    NASA Astrophysics Data System (ADS)

    Mello-Thoms, Claudia

    2009-02-01

    In 1967 Ulric Neisser, studying how laypeople examined pictures, hypothesized that image perception occurs in two stages, a pre-attentive stage in which the entire image is processed in parallel, where a 'holistic' view of what is being displayed is formed, and a secondary stage in which items or groups of items are examined by focal attention. Later, the proponents of Neisser's theory suggested that the pre-attentive stage may bias the selection of the areas that will be subjected to further analysis. This is easily seen in those dual interpretation figures; once one 'sees' the figure in a certain way, it is very hard to instruct the eye-brain system to let go of that perception and 'see' the figure in the alternative way. In medical image perception, Harold Kundel and Calvin Nodine proposed a model of medical image interpretation that is based upon Neisser's two stages, and have become so convinced of the influence of the 'holistic' view on the subsequent reading of the image that they have recently questioned the traditional framework that determines how lesions are found. In other words, as opposed to the traditional view of SEARCH THE IMAGE - DETECT A POSSIBLE FINDING - IDENTIFY THE FINDING - DECIDE WHAT TO DO ABOUT THE IMAGE, Kundel and Nodine have recently suggested a new framework: DETECT A POSSIBLE FINDING - IDENTIFY THE FINDING - SEARCH THE IMAGE - DECIDE WHAT TO DO ABOUT THE IMAGE. In light of this significant switch, we decided to investigate what happens when the 'holistic' view is incorrect.

  19. A novel framework for the temporal analysis of bone mineral density in metastatic lesions using CT images of the femur

    NASA Astrophysics Data System (ADS)

    Knoop, Tom H.; Derikx, Loes C.; Verdonschot, Nico; Slump, Cornelis H.

    2015-03-01

    In the progressive stages of cancer, metastatic lesions in often develop in the femur. The accompanying pain and risk of fracture dramatically affect the quality of life of the patient. Radiotherapy is often administered as palliative treatment to relieve pain and restore the bone around the lesion. It is thought to affect the bone mineralization of the treated region, but the quantitative relation between radiation dose and femur remineralization remains unclear. A new framework for the longitudinal analysis of CT-scans of patients receiving radiotherapy is presented to investigate this relationship. The implemented framework is capable of automatic calibration of Hounsfield Units to calcium equivalent values and the estimation of a prediction interval per scan. Other features of the framework are temporal registration of femurs using elastix, transformation of arbitrary Regions Of Interests (ROI), and extraction of metrics for analysis. Build in Matlab, the modular approach aids easy adaptation to the pertinent questions in the explorative phase of the research. For validation purposes, an in-vitro model consisting of a human cadaver femur with a milled hole in the intertrochanteric region was used, representing a femur with a metastatic lesion. The hole was incrementally stacked with plates of PMMA bone cement with variable radiopaqueness. Using a Kolmogorov-Smirnov (KS) test, changes in density distribution due to an increase of the calcium concentration could be discriminated. In a 21 cm3 ROI, changes in 8% of the volume from 888 ± 57mg • ml-1 to 1000 ± 80mg • ml-1 could be statistically proven using the proposed framework. In conclusion, the newly developed framework proved to be a useful and flexible tool for the analysis of longitudinal CT data.

  20. Alzheimer's Disease Early Diagnosis Using Manifold-Based Semi-Supervised Learning.

    PubMed

    Khajehnejad, Moein; Saatlou, Forough Habibollahi; Mohammadzade, Hoda

    2017-08-20

    Alzheimer's disease (AD) is currently ranked as the sixth leading cause of death in the United States and recent estimates indicate that the disorder may rank third, just behind heart disease and cancer, as a cause of death for older people. Clearly, predicting this disease in the early stages and preventing it from progressing is of great importance. The diagnosis of Alzheimer's disease (AD) requires a variety of medical tests, which leads to huge amounts of multivariate heterogeneous data. It can be difficult and exhausting to manually compare, visualize, and analyze this data due to the heterogeneous nature of medical tests; therefore, an efficient approach for accurate prediction of the condition of the brain through the classification of magnetic resonance imaging (MRI) images is greatly beneficial and yet very challenging. In this paper, a novel approach is proposed for the diagnosis of very early stages of AD through an efficient classification of brain MRI images, which uses label propagation in a manifold-based semi-supervised learning framework. We first apply voxel morphometry analysis to extract some of the most critical AD-related features of brain images from the original MRI volumes and also gray matter (GM) segmentation volumes. The features must capture the most discriminative properties that vary between a healthy and Alzheimer-affected brain. Next, we perform a principal component analysis (PCA)-based dimension reduction on the extracted features for faster yet sufficiently accurate analysis. To make the best use of the captured features, we present a hybrid manifold learning framework which embeds the feature vectors in a subspace. Next, using a small set of labeled training data, we apply a label propagation method in the created manifold space to predict the labels of the remaining images and classify them in the two groups of mild Alzheimer's and normal condition (MCI/NC). The accuracy of the classification using the proposed method is 93.86% for the Open Access Series of Imaging Studies (OASIS) database of MRI brain images, providing, compared to the best existing methods, a 3% lower error rate.

  1. A unified framework for image retrieval using keyword and visual features.

    PubMed

    Jing, Feng; Li, Mingling; Zhang, Hong-Jiang; Zhang, Bo

    2005-07-01

    In this paper, a unified image retrieval framework based on both keyword annotations and visual features is proposed. In this framework, a set of statistical models are built based on visual features of a small set of manually labeled images to represent semantic concepts and used to propagate keywords to other unlabeled images. These models are updated periodically when more images implicitly labeled by users become available through relevance feedback. In this sense, the keyword models serve the function of accumulation and memorization of knowledge learned from user-provided relevance feedback. Furthermore, two sets of effective and efficient similarity measures and relevance feedback schemes are proposed for query by keyword scenario and query by image example scenario, respectively. Keyword models are combined with visual features in these schemes. In particular, a new, entropy-based active learning strategy is introduced to improve the efficiency of relevance feedback for query by keyword. Furthermore, a new algorithm is proposed to estimate the keyword features of the search concept for query by image example. It is shown to be more appropriate than two existing relevance feedback algorithms. Experimental results demonstrate the effectiveness of the proposed framework.

  2. A computational framework to detect normal and tuberculosis infected lung from H and E-stained whole slide images

    NASA Astrophysics Data System (ADS)

    Niazi, M. Khalid Khan; Beamer, Gillian; Gurcan, Metin N.

    2017-03-01

    Accurate detection and quantification of normal lung tissue in the context of Mycobacterium tuberculosis infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.

  3. A validation framework for brain tumor segmentation.

    PubMed

    Archip, Neculai; Jolesz, Ferenc A; Warfield, Simon K

    2007-10-01

    We introduce a validation framework for the segmentation of brain tumors from magnetic resonance (MR) images. A novel unsupervised semiautomatic brain tumor segmentation algorithm is also presented. The proposed framework consists of 1) T1-weighted MR images of patients with brain tumors, 2) segmentation of brain tumors performed by four independent experts, 3) segmentation of brain tumors generated by a semiautomatic algorithm, and 4) a software tool that estimates the performance of segmentation algorithms. We demonstrate the validation of the novel segmentation algorithm within the proposed framework. We show its performance and compare it with existent segmentation. The image datasets and software are available at http://www.brain-tumor-repository.org/. We present an Internet resource that provides access to MR brain tumor image data and segmentation that can be openly used by the research community. Its purpose is to encourage the development and evaluation of segmentation methods by providing raw test and image data, human expert segmentation results, and methods for comparing segmentation results.

  4. A framework for secure and decentralized sharing of medical imaging data via blockchain consensus.

    PubMed

    Patel, Vishal

    2018-04-01

    The electronic sharing of medical imaging data is an important element of modern healthcare systems, but current infrastructure for cross-site image transfer depends on trust in third-party intermediaries. In this work, we examine the blockchain concept, which enables parties to establish consensus without relying on a central authority. We develop a framework for cross-domain image sharing that uses a blockchain as a distributed data store to establish a ledger of radiological studies and patient-defined access permissions. The blockchain framework is shown to eliminate third-party access to protected health information, satisfy many criteria of an interoperable health system, and readily generalize to domains beyond medical imaging. Relative drawbacks of the framework include the complexity of the privacy and security models and an unclear regulatory environment. Ultimately, the large-scale feasibility of such an approach remains to be demonstrated and will depend on a number of factors which we discuss in detail.

  5. MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance

    PubMed Central

    2014-01-01

    Background Computer simulations are important for validating novel image acquisition and reconstruction strategies. In cardiovascular magnetic resonance (CMR), numerical simulations need to combine anatomical information and the effects of cardiac and/or respiratory motion. To this end, a framework for realistic CMR simulations is proposed and its use for image reconstruction from undersampled data is demonstrated. Methods The extended Cardiac-Torso (XCAT) anatomical phantom framework with various motion options was used as a basis for the numerical phantoms. Different tissue, dynamic contrast and signal models, multiple receiver coils and noise are simulated. Arbitrary trajectories and undersampled acquisition can be selected. The utility of the framework is demonstrated for accelerated cine and first-pass myocardial perfusion imaging using k-t PCA and k-t SPARSE. Results MRXCAT phantoms allow for realistic simulation of CMR including optional cardiac and respiratory motion. Example reconstructions from simulated undersampled k-t parallel imaging demonstrate the feasibility of simulated acquisition and reconstruction using the presented framework. Myocardial blood flow assessment from simulated myocardial perfusion images highlights the suitability of MRXCAT for quantitative post-processing simulation. Conclusion The proposed MRXCAT phantom framework enables versatile and realistic simulations of CMR including breathhold and free-breathing acquisitions. PMID:25204441

  6. A general framework for regularized, similarity-based image restoration.

    PubMed

    Kheradmand, Amin; Milanfar, Peyman

    2014-12-01

    Any image can be represented as a function defined on a weighted graph, in which the underlying structure of the image is encoded in kernel similarity and associated Laplacian matrices. In this paper, we develop an iterative graph-based framework for image restoration based on a new definition of the normalized graph Laplacian. We propose a cost function, which consists of a new data fidelity term and regularization term derived from the specific definition of the normalized graph Laplacian. The normalizing coefficients used in the definition of the Laplacian and associated regularization term are obtained using fast symmetry preserving matrix balancing. This results in some desired spectral properties for the normalized Laplacian such as being symmetric, positive semidefinite, and returning zero vector when applied to a constant image. Our algorithm comprises of outer and inner iterations, where in each outer iteration, the similarity weights are recomputed using the previous estimate and the updated objective function is minimized using inner conjugate gradient iterations. This procedure improves the performance of the algorithm for image deblurring, where we do not have access to a good initial estimate of the underlying image. In addition, the specific form of the cost function allows us to render the spectral analysis for the solutions of the corresponding linear equations. In addition, the proposed approach is general in the sense that we have shown its effectiveness for different restoration problems, including deblurring, denoising, and sharpening. Experimental results verify the effectiveness of the proposed algorithm on both synthetic and real examples.

  7. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    NASA Astrophysics Data System (ADS)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  8. A Comprehensive Texture Segmentation Framework for Segmentation of Capillary Non-Perfusion Regions in Fundus Fluorescein Angiograms

    PubMed Central

    Zheng, Yalin; Kwong, Man Ting; MacCormick, Ian J. C.; Beare, Nicholas A. V.; Harding, Simon P.

    2014-01-01

    Capillary non-perfusion (CNP) in the retina is a characteristic feature used in the management of a wide range of retinal diseases. There is no well-established computation tool for assessing the extent of CNP. We propose a novel texture segmentation framework to address this problem. This framework comprises three major steps: pre-processing, unsupervised total variation texture segmentation, and supervised segmentation. It employs a state-of-the-art multiphase total variation texture segmentation model which is enhanced by new kernel based region terms. The model can be applied to texture and intensity-based multiphase problems. A supervised segmentation step allows the framework to take expert knowledge into account, an AdaBoost classifier with weighted cost coefficient is chosen to tackle imbalanced data classification problems. To demonstrate its effectiveness, we applied this framework to 48 images from malarial retinopathy and 10 images from ischemic diabetic maculopathy. The performance of segmentation is satisfactory when compared to a reference standard of manual delineations: accuracy, sensitivity and specificity are 89.0%, 73.0%, and 90.8% respectively for the malarial retinopathy dataset and 80.8%, 70.6%, and 82.1% respectively for the diabetic maculopathy dataset. In terms of region-wise analysis, this method achieved an accuracy of 76.3% (45 out of 59 regions) for the malarial retinopathy dataset and 73.9% (17 out of 26 regions) for the diabetic maculopathy dataset. This comprehensive segmentation framework can quantify capillary non-perfusion in retinopathy from two distinct etiologies, and has the potential to be adopted for wider applications. PMID:24747681

  9. Content-based histopathology image retrieval using CometCloud.

    PubMed

    Qi, Xin; Wang, Daihou; Rodero, Ivan; Diaz-Montes, Javier; Gensure, Rebekah H; Xing, Fuyong; Zhong, Hua; Goodell, Lauri; Parashar, Manish; Foran, David J; Yang, Lin

    2014-08-26

    The development of digital imaging technology is creating extraordinary levels of accuracy that provide support for improved reliability in different aspects of the image analysis, such as content-based image retrieval, image segmentation, and classification. This has dramatically increased the volume and rate at which data are generated. Together these facts make querying and sharing non-trivial and render centralized solutions unfeasible. Moreover, in many cases this data is often distributed and must be shared across multiple institutions requiring decentralized solutions. In this context, a new generation of data/information driven applications must be developed to take advantage of the national advanced cyber-infrastructure (ACI) which enable investigators to seamlessly and securely interact with information/data which is distributed across geographically disparate resources. This paper presents the development and evaluation of a novel content-based image retrieval (CBIR) framework. The methods were tested extensively using both peripheral blood smears and renal glomeruli specimens. The datasets and performance were evaluated by two pathologists to determine the concordance. The CBIR algorithms that were developed can reliably retrieve the candidate image patches exhibiting intensity and morphological characteristics that are most similar to a given query image. The methods described in this paper are able to reliably discriminate among subtle staining differences and spatial pattern distributions. By integrating a newly developed dual-similarity relevance feedback module into the CBIR framework, the CBIR results were improved substantially. By aggregating the computational power of high performance computing (HPC) and cloud resources, we demonstrated that the method can be successfully executed in minutes on the Cloud compared to weeks using standard computers. In this paper, we present a set of newly developed CBIR algorithms and validate them using two different pathology applications, which are regularly evaluated in the practice of pathology. Comparative experimental results demonstrate excellent performance throughout the course of a set of systematic studies. Additionally, we present and evaluate a framework to enable the execution of these algorithms across distributed resources. We show how parallel searching of content-wise similar images in the dataset significantly reduces the overall computational time to ensure the practical utility of the proposed CBIR algorithms.

  10. Binary partition tree analysis based on region evolution and its application to tree simplification.

    PubMed

    Lu, Huihai; Woods, John C; Ghanbari, Mohammed

    2007-04-01

    Pyramid image representations via tree structures are recognized methods for region-based image analysis. Binary partition trees can be applied which document the merging process with small details found at the bottom levels and larger ones close to the root. Hindsight of the merging process is stored within the tree structure and provides the change histories of an image property from the leaf to the root node. In this work, the change histories are modelled by evolvement functions and their second order statistics are analyzed by using a knee function. Knee values show the reluctancy of each merge. We have systematically formulated these findings to provide a novel framework for binary partition tree analysis, where tree simplification is demonstrated. Based on an evolvement function, for each upward path in a tree, the tree node associated with the first reluctant merge is considered as a pruning candidate. The result is a simplified version providing a reduced solution space and still complying with the definition of a binary tree. The experiments show that image details are preserved whilst the number of nodes is dramatically reduced. An image filtering tool also results which preserves object boundaries and has applications for segmentation.

  11. Extrinsic local regression on manifold-valued data

    PubMed Central

    Lin, Lizhen; St Thomas, Brian; Zhu, Hongtu; Dunson, David B.

    2017-01-01

    We propose an extrinsic regression framework for modeling data with manifold valued responses and Euclidean predictors. Regression with manifold responses has wide applications in shape analysis, neuroscience, medical imaging and many other areas. Our approach embeds the manifold where the responses lie onto a higher dimensional Euclidean space, obtains a local regression estimate in that space, and then projects this estimate back onto the image of the manifold. Outside the regression setting both intrinsic and extrinsic approaches have been proposed for modeling i.i.d manifold-valued data. However, to our knowledge our work is the first to take an extrinsic approach to the regression problem. The proposed extrinsic regression framework is general, computationally efficient and theoretically appealing. Asymptotic distributions and convergence rates of the extrinsic regression estimates are derived and a large class of examples are considered indicating the wide applicability of our approach. PMID:29225385

  12. A Mechanics-Based Framework Leading to Improved Diagnosis and Treatment of Hydrocephalus

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Soren, Vedels; Wagshul, Mark; Egnor, Michael; Voorhees, Abram; Wei, Timothy

    2007-11-01

    Hydrocephalus is defined as an accumulation of cerebrospinal fluid (CSF) in the cranium, at the expense of brain tissue. The result is a disruption of the normal pressure and/or flow dynamics of the intracranial blood and CSF. We seek to introduce integral control volume analysis to the study of hydrocephalus. The goal is to provide a first principles framework to integrate a broad spectrum of sometimes disparate investigations into a highly complex, multidisciplinary problem. The general technique for the implementation of control volumes to hydrocephalus will be presented. This includes factors faced in choosing control volumes and making the required measurements to evaluate mass and momentum conservation. In addition, the use of our Digital Particle Image Velocimetry (DPIV) processing program has been extended to measure the displacement of the ventricles' walls from Magnetic Resonance (MR) images. This is done to determine the volume change of the intracranial fluid spaces.

  13. Applying image quality in cell phone cameras: lens distortion

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  14. Task-based image quality assessment in radiation therapy: initial characterization and demonstration with CT simulation images

    NASA Astrophysics Data System (ADS)

    Dolly, Steven R.; Anastasio, Mark A.; Yu, Lifeng; Li, Hua

    2017-03-01

    In current radiation therapy practice, image quality is still assessed subjectively or by utilizing physically-based metrics. Recently, a methodology for objective task-based image quality (IQ) assessment in radiation therapy was proposed by Barrett et al.1 In this work, we present a comprehensive implementation and evaluation of this new IQ assessment methodology. A modular simulation framework was designed to perform an automated, computer-simulated end-to-end radiation therapy treatment. A fully simulated framework was created that utilizes new learning-based stochastic object models (SOM) to obtain known organ boundaries, generates a set of images directly from the numerical phantoms created with the SOM, and automates the image segmentation and treatment planning steps of a radiation therapy work ow. By use of this computational framework, therapeutic operating characteristic (TOC) curves can be computed and the area under the TOC curve (AUTOC) can be employed as a figure-of-merit to guide optimization of different components of the treatment planning process. The developed computational framework is employed to optimize X-ray CT pre-treatment imaging. We demonstrate that use of the radiation therapy-based-based IQ measures lead to different imaging parameters than obtained by use of physical-based measures.

  15. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    NASA Astrophysics Data System (ADS)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  16. 'What women want': Using image theory to develop expectations of maternity care framework.

    PubMed

    Clark, Kim; Beatty, Shelley; Reibel, Tracy

    2015-05-01

    to develop, in consultation with women, a theoretically-grounded framework to guide the assessment of women's maternity-care experiences. qualitative research was undertaken with women to examine the appropriateness of Image Theory as a heuristic for understanding how women plan and evaluate their maternity-care experiences. maternity-care services in metropolitan and regional communities in Western Australia. an Episodes of Maternity Care Framework grounded in Image Theory was established that addressed various domains of women's perceptions and expectations of their maternity-care experience. previously-identified weaknesses of methods used to measure patient satisfaction were addressed and a valid framework for investigating women's perception of their maternity-services experiences was developed. This framework has the potential to contribute to the ongoing development and improvement of maternity-care service. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Coupled dictionary learning for joint MR image restoration and segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Xuesong; Fan, Yong

    2018-03-01

    To achieve better segmentation of MR images, image restoration is typically used as a preprocessing step, especially for low-quality MR images. Recent studies have demonstrated that dictionary learning methods could achieve promising performance for both image restoration and image segmentation. These methods typically learn paired dictionaries of image patches from different sources and use a common sparse representation to characterize paired image patches, such as low-quality image patches and their corresponding high quality counterparts for the image restoration, and image patches and their corresponding segmentation labels for the image segmentation. Since learning these dictionaries jointly in a unified framework may improve the image restoration and segmentation simultaneously, we propose a coupled dictionary learning method to concurrently learn dictionaries for joint image restoration and image segmentation based on sparse representations in a multi-atlas image segmentation framework. Particularly, three dictionaries, including a dictionary of low quality image patches, a dictionary of high quality image patches, and a dictionary of segmentation label patches, are learned in a unified framework so that the learned dictionaries of image restoration and segmentation can benefit each other. Our method has been evaluated for segmenting the hippocampus in MR T1 images collected with scanners of different magnetic field strengths. The experimental results have demonstrated that our method achieved better image restoration and segmentation performance than state of the art dictionary learning and sparse representation based image restoration and image segmentation methods.

  18. Real Time 3D Facial Movement Tracking Using a Monocular Camera

    PubMed Central

    Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng

    2016-01-01

    The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference. PMID:27463714

  19. Real Time 3D Facial Movement Tracking Using a Monocular Camera.

    PubMed

    Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng

    2016-07-25

    The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.

  20. A Validation Framework for the Long Term Preservation of High Energy Physics Data

    NASA Astrophysics Data System (ADS)

    Ozerov, Dmitri; South, David M.

    2014-06-01

    The study group on data preservation in high energy physics, DPHEP, is moving to a new collaboration structure, which will focus on the implementation of preservation projects, such as those described in the group's large scale report published in 2012. One such project is the development of a validation framework, which checks the compatibility of evolving computing environments and technologies with the experiments software for as long as possible, with the aim of substantially extending the lifetime of the analysis software, and hence of the usability of the data. The framework is designed to automatically test and validate the software and data of an experiment against changes and upgrades to the computing environment, as well as changes to the experiment software itself. Technically, this is realised using a framework capable of hosting a number of virtual machine images, built with different configurations of operating systems and the relevant software, including any necessary external dependencies.

  1. An application framework of three-dimensional reconstruction and measurement for endodontic research.

    PubMed

    Gao, Yuan; Peters, Ove A; Wu, Hongkun; Zhou, Xuedong

    2009-02-01

    The purpose of this study was to customize an application framework by using the MeVisLab image processing and visualization platform for three-dimensional reconstruction and assessment of tooth and root canal morphology. One maxillary first molar was scanned before and after preparation with ProTaper by using micro-computed tomography. With a customized application framework based on MeVisLab, internal and external anatomy was reconstructed. Furthermore, the dimensions of root canal and radicular dentin were quantified, and effects of canal preparation were assessed. Finally, a virtual preparation with risk analysis was performed to simulate the removal of a broken instrument. This application framework provided an economical platform and met current requirements of endodontic research. The broad-based use of high-quality free software and the resulting exchange of experience might help to improve the quality of endodontic research with micro-computed tomography.

  2. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    NASA Astrophysics Data System (ADS)

    Mader, Kevin; Stampanoni, Marco

    2016-01-01

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures.

  3. Spectral Unmixing Analysis of Time Series Landsat 8 Images

    NASA Astrophysics Data System (ADS)

    Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.

    2018-05-01

    Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.

  4. Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.

    PubMed

    Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien

    2017-01-01

    Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.

  5. Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos.

    PubMed

    Stegmaier, Johannes; Amat, Fernando; Lemon, William C; McDole, Katie; Wan, Yinan; Teodoro, George; Mikut, Ralf; Keller, Philipp J

    2016-01-25

    We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55-330 times faster and 2-5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Multi-object segmentation using coupled nonparametric shape and relative pose priors

    NASA Astrophysics Data System (ADS)

    Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep

    2009-02-01

    We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.

  7. Practical no-gold-standard evaluation framework for quantitative imaging methods: application to lesion segmentation in positron emission tomography

    PubMed Central

    Jha, Abhinav K.; Mena, Esther; Caffo, Brian; Ashrafinia, Saeed; Rahmim, Arman; Frey, Eric; Subramaniam, Rathan M.

    2017-01-01

    Abstract. Recently, a class of no-gold-standard (NGS) techniques have been proposed to evaluate quantitative imaging methods using patient data. These techniques provide figures of merit (FoMs) quantifying the precision of the estimated quantitative value without requiring repeated measurements and without requiring a gold standard. However, applying these techniques to patient data presents several practical difficulties including assessing the underlying assumptions, accounting for patient-sampling-related uncertainty, and assessing the reliability of the estimated FoMs. To address these issues, we propose statistical tests that provide confidence in the underlying assumptions and in the reliability of the estimated FoMs. Furthermore, the NGS technique is integrated within a bootstrap-based methodology to account for patient-sampling-related uncertainty. The developed NGS framework was applied to evaluate four methods for segmenting lesions from F-Fluoro-2-deoxyglucose positron emission tomography images of patients with head-and-neck cancer on the task of precisely measuring the metabolic tumor volume. The NGS technique consistently predicted the same segmentation method as the most precise method. The proposed framework provided confidence in these results, even when gold-standard data were not available. The bootstrap-based methodology indicated improved performance of the NGS technique with larger numbers of patient studies, as was expected, and yielded consistent results as long as data from more than 80 lesions were available for the analysis. PMID:28331883

  8. SU-F-J-34: Automatic Target-Based Patient Positioning Framework for Image-Guided Radiotherapy in Prostate Cancer Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasahara, M; Arimura, H; Hirose, T

    Purpose: Current image-guided radiotherapy (IGRT) procedure is bonebased patient positioning, followed by subjective manual correction using cone beam computed tomography (CBCT). This procedure might cause the misalignment of the patient positioning. Automatic target-based patient positioning systems achieve the better reproducibility of patient setup. Our aim of this study was to develop an automatic target-based patient positioning framework for IGRT with CBCT images in prostate cancer treatment. Methods: Seventy-three CBCT images of 10 patients and 24 planning CT images with digital imaging and communications in medicine for radiotherapy (DICOM-RT) structures were used for this study. Our proposed framework started from themore » generation of probabilistic atlases of bone and prostate from 24 planning CT images and prostate contours, which were made in the treatment planning. Next, the gray-scale histograms of CBCT values within CTV regions in the planning CT images were obtained as the occurrence probability of the CBCT values. Then, CBCT images were registered to the atlases using a rigid registration with mutual information. Finally, prostate regions were estimated by applying the Bayesian inference to CBCT images with the probabilistic atlases and CBCT value occurrence probability. The proposed framework was evaluated by calculating the Euclidean distance of errors between two centroids of prostate regions determined by our method and ground truths of manual delineations by a radiation oncologist and a medical physicist on CBCT images for 10 patients. Results: The average Euclidean distance between the centroids of extracted prostate regions determined by our proposed method and ground truths was 4.4 mm. The average errors for each direction were 1.8 mm in anteroposterior direction, 0.6 mm in lateral direction and 2.1 mm in craniocaudal direction. Conclusion: Our proposed framework based on probabilistic atlases and Bayesian inference might be feasible to automatically determine prostate regions on CBCT images.« less

  9. Inverse problems in heterogeneous and fractured media using peridynamics

    DOE PAGES

    Turner, Daniel Z.; van Bloemen Waanders, Bart G.; Parks, Michael L.

    2015-12-10

    The following work presents an adjoint-based methodology for solving inverse problems in heterogeneous and fractured media using state-based peridynamics. We show that the inner product involving the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical examples with constant and spatially varying material parameters as well as in the context of fractures. We also present a framework for obtaining material parameters by integrating digital image correlation (DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting measuredmore » values correspond well with other results reported in the literature. Lastly, we show that this framework can be used to determine the load state given observed measurements of a crack opening. Furthermore, this type of analysis has many applications in characterizing subsurface stress-state conditions given fracture patterns in cores of geologic material.« less

  10. Automated Detection of Leakage in Fluorescein Angiography Images with Application to Malarial Retinopathy

    PubMed Central

    Zhao, Yitian; J. C. MacCormick, Ian; G. Parry, David; Leach, Sophie; A. V. Beare, Nicholas; P. Harding, Simon; Zheng, Yalin

    2015-01-01

    The detection and assessment of leakage in retinal fluorescein angiogram images is important for the management of a wide range of retinal diseases. We have developed a framework that can automatically detect three types of leakage (large focal, punctate focal, and vessel segment leakage) and validated it on images from patients with malarial retinopathy. This framework comprises three steps: vessel segmentation, saliency feature generation and leakage detection. We tested the effectiveness of this framework by applying it to images from 20 patients with large focal leak, 10 patients with punctate focal leak, and 5,846 vessel segments from 10 patients with vessel leakage. The sensitivity in detecting large focal, punctate focal and vessel segment leakage are 95%, 82% and 81%, respectively, when compared to manual annotation by expert human observers. Our framework has the potential to become a powerful new tool for studying malarial retinopathy, and other conditions involving retinal leakage. PMID:26030010

  11. Automated detection of leakage in fluorescein angiography images with application to malarial retinopathy.

    PubMed

    Zhao, Yitian; MacCormick, Ian J C; Parry, David G; Leach, Sophie; Beare, Nicholas A V; Harding, Simon P; Zheng, Yalin

    2015-06-01

    The detection and assessment of leakage in retinal fluorescein angiogram images is important for the management of a wide range of retinal diseases. We have developed a framework that can automatically detect three types of leakage (large focal, punctate focal, and vessel segment leakage) and validated it on images from patients with malarial retinopathy. This framework comprises three steps: vessel segmentation, saliency feature generation and leakage detection. We tested the effectiveness of this framework by applying it to images from 20 patients with large focal leak, 10 patients with punctate focal leak, and 5,846 vessel segments from 10 patients with vessel leakage. The sensitivity in detecting large focal, punctate focal and vessel segment leakage are 95%, 82% and 81%, respectively, when compared to manual annotation by expert human observers. Our framework has the potential to become a powerful new tool for studying malarial retinopathy, and other conditions involving retinal leakage.

  12. A two-step framework for the registration of HE stained and FTIR images

    NASA Astrophysics Data System (ADS)

    Peñaranda, Francisco; Naranjo, Valery; Verdú, Rafaél.; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick

    2016-03-01

    FTIR spectroscopy is an emerging technology with high potential for cancer diagnosis but with particular physical phenomena that require special processing. Little work has been done in the field with the aim of registering hyperspectral Fourier-Transform Infrared (FTIR) spectroscopic images and Hematoxilin and Eosin (HE) stained histological images of contiguous slices of tissue. This registration is necessary to transfer the location of relevant structures that the pathologist may identify in the gold standard HE images. A two-step registration framework is presented where a representative gray image extracted from the FTIR hypercube is used as an input. This representative image, which must have a spatial contrast as similar as possible to a gray image obtained from the HE image, is calculated through the spectrum variation in the fingerprint region. In the first step of the registration algorithm a similarity transformation is estimated from interest points, which are automatically detected by the popular SURF algorithm. In the second stage, a variational registration framework defined in the frequency domain compensates for local anatomical variations between both images. After a proper tuning of some parameters the proposed registration framework works in an automated way. The method was tested on 7 samples of colon tissue in different stages of cancer. Very promising qualitative and quantitative results were obtained (a mean correlation ratio of 92.16% with a standard deviation of 3.10%).

  13. Different Aspects of Secondary School Students' Mental Frameworks Related to Concept of Scientist

    ERIC Educational Resources Information Center

    Karaçam, Sedat

    2015-01-01

    The aim of this study is to examine secondary school students' images and conceptualisations about scientists by contextual data analysis, and to determine relationships between them. The respondents were 356 students attending 6th and 7th grades of secondary school in Duzce. Tests were conducted during 2013-2014 academic year. Students' images…

  14. Temps, aspect et modalisation dans un acte de communication (Tense, Aspect and Mood in an Act of Communication)

    ERIC Educational Resources Information Center

    Bentolila, Alain

    1977-01-01

    Syntactic analysis identifies the "conductor wires" permitting the listener to conceptualize the speaker's image of reality from information furnished by the linguistic message. Syntactic study is thus situated in the economy of the communication process. Mood, aspect and tense are studied in this framework. (Text is in French.) (AMH)

  15. Concurrent EEG And NIRS Tomographic Imaging Based on Wearable Electro-Optodes

    DTIC Science & Technology

    2014-04-13

    Interfaces   ( BCIs ),   and   other   systems   in   the   same   computational   framework.   Figure   11   below   shows...Improving  Brain-­‐Computer   Interfaces  Using   Independent  Component   Analysis,  In:  Towards  Future   BCIs ,  2012

  16. Automatic classification of pathological myopia in retinal fundus images using PAMELA

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Wong, Damon W. K.; Tan, Ngan Meng; Zhang, Zhuo; Lu, Shijian; Lim, Joo Hwee; Li, Huiqi; Saw, Seang Mei; Tong, Louis; Wong, Tien Yin

    2010-03-01

    Pathological myopia is the seventh leading cause of blindness. We introduce a framework based on PAMELA (PAthological Myopia dEtection through peripapilLary Atrophy) for the detection of pathological myopia from fundus images. The framework consists of a pre-processing stage which extracts a region of interest centered on the optic disc. Subsequently, three analysis modules focus on detecting specific visual indicators. The optic disc tilt ratio module gives a measure of the axial elongation of the eye through inference from the deformation of the optic disc. In the texturebased ROI assessment module, contextual knowledge is used to demarcate the ROI into four distinct, clinically-relevant zones in which information from an entropy transform of the ROI is analyzed and metrics generated. In particular, the preferential appearance of peripapillary atrophy (PPA) in the temporal zone compared to the nasal zone is utilized by calculating ratios of the metrics. The PPA detection module obtains an outer boundary through a level-set method, and subtracts this region against the optic disc boundary. Temporal and nasal zones are obtained from the remnants to generate associated hue and color values. The outputs of the three modules are used as in a SVM model to determine the presence of pathological myopia in a retinal fundus image. Using images from the Singapore Eye Research Institute, the proposed framework reported an optimized accuracy of 90% and a sensitivity and specificity of 0.85 and 0.95 respectively, indicating promise for the use of the proposed system as a screening tool for pathological myopia.

  17. Restored low-dose digital breast tomosynthesis: a perception study

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2018-03-01

    This work investigates the perception of noise from restored low-dose digital breast tomosynthesis (DBT) images. First, low-dose DBT projections were generated using a dose reduction simulation algorithm. A dataset of clinical images from the Hospital of the University of Pennsylvania was used for this purpose. Low-dose projections were then denoised with a denoising pipeline developed specifically for DBT images. Denoised and noisy projections were combined to generate images with signal-to-noise ratio comparable to the full-dose images. The quality of restored low-dose and full-dose projections were first compared in terms of an objective no-reference image quality metric previously validated for mammography. In the second analysis, regions of interest (ROIs) were selected from reconstructed full-dose and restored low-dose slices, and were displayed side-by-side on a high-resolution medical display. Five medical physics specialists were asked to choose the image containing less noise and less blur using a 2-AFC experiment. The objective metric shows that, after the proposed image restoration framework was applied, images with as little as 60% of the AEC dose yielded similar quality indices when compared to images acquired with the full-dose. In the 2-AFC experiments results showed that when the denoising framework was used, 30% reduction in dose was possible without any perceived difference in noise or blur. Note that this study evaluated the observers perception to noise and blur and does not claim that the dose of DBT examinations can be reduced with no harm to the detection of cancer. Future work is necessary to make any claims regarding detection, localization and characterization of lesions.

  18. Determination of differential cross sections and kinetic energy release of co-products from central sliced images in photo-initiated dynamic processes.

    PubMed

    Chen, Kuo-mei; Chen, Yu-wei

    2011-04-07

    For photo-initiated inelastic and reactive collisions, dynamic information can be extracted from central sliced images of state-selected Newton spheres of product species. An analysis framework has been established to determine differential cross sections and the kinetic energy release of co-products from experimental images. When one of the reactants exhibits a high recoil speed in a photo-initiated dynamic process, the present theory can be employed to analyze central sliced images from ion imaging or three-dimensional sliced fluorescence imaging experiments. It is demonstrated that the differential cross section of a scattering process can be determined from the central sliced image by a double Legendre moment analysis, for either a fixed or continuously distributed recoil speeds in the center-of-mass reference frame. Simultaneous equations which lead to the determination of the kinetic energy release of co-products can be established from the second-order Legendre moment of the experimental image, as soon as the differential cross section is extracted. The intensity distribution of the central sliced image, along with its outer and inner ring sizes, provide all the clues to decipher the differential cross section and the kinetic energy release of co-products.

  19. Adoption of high technology medical imaging and hospital quality and efficiency: Towards a conceptual framework.

    PubMed

    Sandoval, Guillermo A; Brown, Adalsteinn D; Wodchis, Walter P; Anderson, Geoffrey M

    2018-05-17

    Measuring the value of medical imaging is challenging, in part, due to the lack of conceptual frameworks underlying potential mechanisms where value may be assessed. To address this gap, this article proposes a framework that builds on the large body of literature on quality of hospital care and the classic structure-process-outcome paradigm. The framework was also informed by the literature on adoption of technological innovations and introduces 2 distinct though related aspects of imaging technology not previously addressed specifically in the literature on quality of hospital care: adoption (a structural hospital characteristic) and use (an attribute of the process of care). The framework hypothesizes a 2-part causality where adoption is proposed to be a central, linking factor between hospital structural characteristics, market factors, and hospital outcomes (ie, quality and efficiency). The first part indicates that hospital structural characteristics and market factors influence or facilitate the adoption of high technology medical imaging within an institution. The presence of this technology, in turn, is hypothesized to improve the ability of the hospital to deliver high quality and efficient care. The second part describes this ability throughout 3 main mechanisms pointing to the importance of imaging use on patients, to the presence of staff and qualified care providers, and to some elements of organizational capacity capturing an enhanced clinical environment. The framework has the potential to assist empirical investigations of the value of adoption and use of medical imaging, and to advance understanding of the mechanisms that produce quality and efficiency in hospitals. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution.

    PubMed

    Zhao, Fengjun; Liang, Jimin; Chen, Xueli; Liu, Junting; Chen, Dongmei; Yang, Xiang; Tian, Jie

    2016-03-01

    Previous studies showed that all the vascular parameters from both the morphological and topological parameters were affected with the altering of imaging resolutions. However, neither the sensitivity analysis of the vascular parameters at multiple resolutions nor the distinguishability estimation of vascular parameters from different data groups has been discussed. In this paper, we proposed a quantitative analysis method of vascular parameters for vascular networks of multi-resolution, by analyzing the sensitivity of vascular parameters at multiple resolutions and estimating the distinguishability of vascular parameters from different data groups. Combining the sensitivity and distinguishability, we designed a hybrid formulation to estimate the integrated performance of vascular parameters in a multi-resolution framework. Among the vascular parameters, degree of anisotropy and junction degree were two insensitive parameters that were nearly irrelevant with resolution degradation; vascular area, connectivity density, vascular length, vascular junction and segment number were five parameters that could better distinguish the vascular networks from different groups and abide by the ground truth. Vascular area, connectivity density, vascular length and segment number not only were insensitive to multi-resolution but could also better distinguish vascular networks from different groups, which provided guidance for the quantification of the vascular networks in multi-resolution frameworks.

  1. Combining multiple features for color texture classification

    NASA Astrophysics Data System (ADS)

    Cusano, Claudio; Napoletano, Paolo; Schettini, Raimondo

    2016-11-01

    The analysis of color and texture has a long history in image analysis and computer vision. These two properties are often considered as independent, even though they are strongly related in images of natural objects and materials. Correlation between color and texture information is especially relevant in the case of variable illumination, a condition that has a crucial impact on the effectiveness of most visual descriptors. We propose an ensemble of hand-crafted image descriptors designed to capture different aspects of color textures. We show that the use of these descriptors in a multiple classifiers framework makes it possible to achieve a very high classification accuracy in classifying texture images acquired under different lighting conditions. A powerful alternative to hand-crafted descriptors is represented by features obtained with deep learning methods. We also show how the proposed combining strategy hand-crafted and convolutional neural networks features can be used together to further improve the classification accuracy. Experimental results on a food database (raw food texture) demonstrate the effectiveness of the proposed strategy.

  2. A content analysis of visual cancer information: prevalence and use of photographs and illustrations in printed health materials.

    PubMed

    King, Andy J

    2015-01-01

    Researchers and practitioners have an increasing interest in visual components of health information and health communication messages. This study contributes to this evolving body of research by providing an account of the visual images and information featured in printed cancer communication materials. Using content analysis, 147 pamphlets and 858 images were examined to determine how frequently images are used in printed materials, what types of images are used, what information is conveyed visually, and whether or not current recommendations for the inclusion of visual content were being followed. Although visual messages were found to be common in printed health materials, existing recommendations about the inclusion of visual content were only partially followed. Results are discussed in terms of how relevant theoretical frameworks in the areas of behavior change and visual persuasion seem to be used in these materials, as well as how more theory-oriented research is necessary in visual messaging efforts.

  3. Malware Memory Analysis of the IVYL Linux Rootkit: Investigating a Publicly Available Linux Rootkit Using the Volatility Memory Analysis Framework

    DTIC Science & Technology

    2015-04-01

    report is to examine how a computer forensic investigator/incident handler, without specialised computer memory or software reverse engineering skills ...The skills amassed by incident handlers and investigators alike while using Volatility to examine Windows memory images will be of some help...bin/pulseaudio --start --log-target=syslog 1362 1000 1000 nautilus 1366 1000 1000 /usr/lib/pulseaudio/pulse/gconf- helper 1370 1000 1000 nm-applet

  4. Generic framework for vessel detection and tracking based on distributed marine radar image data

    NASA Astrophysics Data System (ADS)

    Siegert, Gregor; Hoth, Julian; Banyś, Paweł; Heymann, Frank

    2018-04-01

    Situation awareness is understood as a key requirement for safe and secure shipping at sea. The primary sensor for maritime situation assessment is still the radar, with the AIS being introduced as supplemental service only. In this article, we present a framework to assess the current situation picture based on marine radar image processing. Essentially, the framework comprises a centralized IMM-JPDA multi-target tracker in combination with a fully automated scheme for track management, i.e., target acquisition and track depletion. This tracker is conditioned on measurements extracted from radar images. To gain a more robust and complete situation picture, we are exploiting the aspect angle diversity of multiple marine radars, by fusing them a priori to the tracking process. Due to the generic structure of the proposed framework, different techniques for radar image processing can be implemented and compared, namely the BLOB detector and SExtractor. The overall framework performance in terms of multi-target state estimation will be compared for both methods based on a dedicated measurement campaign in the Baltic Sea with multiple static and mobile targets given.

  5. An analysis of image storage systems for scalable training of deep neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Young, Steven R; Patton, Robert M

    This study presents a principled empirical evaluation of image storage systems for training deep neural networks. We employ the Caffe deep learning framework to train neural network models for three different data sets, MNIST, CIFAR-10, and ImageNet. While training the models, we evaluate five different options to retrieve training image data: (1) PNG-formatted image files on local file system; (2) pushing pixel arrays from image files into a single HDF5 file on local file system; (3) in-memory arrays to hold the pixel arrays in Python and C++; (4) loading the training data into LevelDB, a log-structured merge tree based key-valuemore » storage; and (5) loading the training data into LMDB, a B+tree based key-value storage. The experimental results quantitatively highlight the disadvantage of using normal image files on local file systems to train deep neural networks and demonstrate reliable performance with key-value storage based storage systems. When training a model on the ImageNet dataset, the image file option was more than 17 times slower than the key-value storage option. Along with measurements on training time, this study provides in-depth analysis on the cause of performance advantages/disadvantages of each back-end to train deep neural networks. We envision the provided measurements and analysis will shed light on the optimal way to architect systems for training neural networks in a scalable manner.« less

  6. Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

    PubMed Central

    Chung, Ji Ryang; Sung, Chul; Mayerich, David; Kwon, Jaerock; Miller, Daniel E.; Huffman, Todd; Keyser, John; Abbott, Louise C.; Choe, Yoonsuck

    2011-01-01

    Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions. PMID:22275895

  7. CASPER: computer-aided segmentation of imperceptible motion-a learning-based tracking of an invisible needle in ultrasound.

    PubMed

    Beigi, Parmida; Rohling, Robert; Salcudean, Septimiu E; Ng, Gary C

    2017-11-01

    This paper presents a new micro-motion-based approach to track a needle in ultrasound images captured by a handheld transducer. We propose a novel learning-based framework to track a handheld needle by detecting microscale variations of motion dynamics over time. The current state of the art on using motion analysis for needle detection uses absolute motion and hence work well only when the transducer is static. We have introduced and evaluated novel spatiotemporal and spectral features, obtained from the phase image, in a self-supervised tracking framework to improve the detection accuracy in the subsequent frames using incremental training. Our proposed tracking method involves volumetric feature selection and differential flow analysis to incorporate the neighboring pixels and mitigate the effects of the subtle tremor motion of a handheld transducer. To evaluate the detection accuracy, the method is tested on porcine tissue in-vivo, during the needle insertion in the biceps femoris muscle. Experimental results show the mean, standard deviation and root-mean-square errors of [Formula: see text], [Formula: see text] and [Formula: see text] in the insertion angle, and 0.82, 1.21, 1.47 mm, in the needle tip, respectively. Compared to the appearance-based detection approaches, the proposed method is especially suitable for needles with ultrasonic characteristics that are imperceptible in the static image and to the naked eye.

  8. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; hide

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for many purposes.

  9. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  10. A framework for small infrared target real-time visual enhancement

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoliang; Long, Gucan; Shang, Yang; Liu, Xiaolin

    2015-03-01

    This paper proposes a framework for small infrared target real-time visual enhancement. The framework is consisted of three parts: energy accumulation for small infrared target enhancement, noise suppression and weighted fusion. Dynamic programming based track-before-detection algorithm is adopted in the energy accumulation to detect the target accurately and enhance the target's intensity notably. In the noise suppression, the target region is weighted by a Gaussian mask according to the target's Gaussian shape. In order to fuse the processed target region and unprocessed background smoothly, the intensity in the target region is treated as weight in the fusion. Experiments on real small infrared target images indicate that the framework proposed in this paper can enhances the small infrared target markedly and improves the image's visual quality notably. The proposed framework outperforms tradition algorithms in enhancing the small infrared target, especially for image in which the target is hardly visible.

  11. High-resolution electron microscopy and its applications.

    PubMed

    Li, F H

    1987-12-01

    A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given.

  12. BASTet: Shareable and Reproducible Analysis and Visualization of Mass Spectrometry Imaging Data via OpenMSI.

    PubMed

    Rubel, Oliver; Bowen, Benjamin P

    2018-01-01

    Mass spectrometry imaging (MSI) is a transformative imaging method that supports the untargeted, quantitative measurement of the chemical composition and spatial heterogeneity of complex samples with broad applications in life sciences, bioenergy, and health. While MSI data can be routinely collected, its broad application is currently limited by the lack of easily accessible analysis methods that can process data of the size, volume, diversity, and complexity generated by MSI experiments. The development and application of cutting-edge analytical methods is a core driver in MSI research for new scientific discoveries, medical diagnostics, and commercial-innovation. However, the lack of means to share, apply, and reproduce analyses hinders the broad application, validation, and use of novel MSI analysis methods. To address this central challenge, we introduce the Berkeley Analysis and Storage Toolkit (BASTet), a novel framework for shareable and reproducible data analysis that supports standardized data and analysis interfaces, integrated data storage, data provenance, workflow management, and a broad set of integrated tools. Based on BASTet, we describe the extension of the OpenMSI mass spectrometry imaging science gateway to enable web-based sharing, reuse, analysis, and visualization of data analyses and derived data products. We demonstrate the application of BASTet and OpenMSI in practice to identify and compare characteristic substructures in the mouse brain based on their chemical composition measured via MSI.

  13. Development of a Multi-Centre Clinical Trial Data Archiving and Analysis Platform for Functional Imaging

    NASA Astrophysics Data System (ADS)

    Driscoll, Brandon; Jaffray, David; Coolens, Catherine

    2014-03-01

    Purpose: To provide clinicians & researchers participating in multi-centre clinical trials with a central repository for large volume dynamic imaging data as well as a set of tools for providing end-to-end testing and image analysis standards of practice. Methods: There are three main pieces to the data archiving and analysis system; the PACS server, the data analysis computer(s) and the high-speed networks that connect them. Each clinical trial is anonymized using a customizable anonymizer and is stored on a PACS only accessible by AE title access control. The remote analysis station consists of a single virtual machine per trial running on a powerful PC supporting multiple simultaneous instances. Imaging data management and analysis is performed within ClearCanvas Workstation® using custom designed plug-ins for kinetic modelling (The DCE-Tool®), quality assurance (The DCE-QA Tool) and RECIST. Results: A framework has been set up currently serving seven clinical trials spanning five hospitals with three more trials to be added over the next six months. After initial rapid image transfer (+ 2 MB/s), all data analysis is done server side making it robust and rapid. This has provided the ability to perform computationally expensive operations such as voxel-wise kinetic modelling on very large data archives (+20 GB/50k images/patient) remotely with minimal end-user hardware. Conclusions: This system is currently in its proof of concept stage but has been used successfully to send and analyze data from remote hospitals. Next steps will involve scaling up the system with a more powerful PACS and multiple high powered analysis machines as well as adding real-time review capabilities.

  14. Looking back to inform the future: The role of cognition in forest disturbance characterization from remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Bianchetti, Raechel Anne

    Remotely sensed images have become a ubiquitous part of our daily lives. From novice users, aiding in search and rescue missions using tools such as TomNod, to trained analysts, synthesizing disparate data to address complex problems like climate change, imagery has become central to geospatial problem solving. Expert image analysts are continually faced with rapidly developing sensor technologies and software systems. In response to these cognitively demanding environments, expert analysts develop specialized knowledge and analytic skills to address increasingly complex problems. This study identifies the knowledge, skills, and analytic goals of expert image analysts tasked with identification of land cover and land use change. Analysts participating in this research are currently working as part of a national level analysis of land use change, and are well versed with the use of TimeSync, forest science, and image analysis. The results of this study benefit current analysts as it improves their awareness of their mental processes used during the image interpretation process. The study also can be generalized to understand the types of knowledge and visual cues that analysts use when reasoning with imagery for purposes beyond land use change studies. Here a Cognitive Task Analysis framework is used to organize evidence from qualitative knowledge elicitation methods for characterizing the cognitive aspects of the TimeSync image analysis process. Using a combination of content analysis, diagramming, semi-structured interviews, and observation, the study highlights the perceptual and cognitive elements of expert remote sensing interpretation. Results show that image analysts perform several standard cognitive processes, but flexibly employ these processes in response to various contextual cues. Expert image analysts' ability to think flexibly during their analysis process was directly related to their amount of image analysis experience. Additionally, results show that the basic Image Interpretation Elements continue to be important despite technological augmentation of the interpretation process. These results are used to derive a set of design guidelines for developing geovisual analytic tools and training to support image analysis.

  15. Color model comparative analysis for breast cancer diagnosis using H and E stained images

    NASA Astrophysics Data System (ADS)

    Li, Xingyu; Plataniotis, Konstantinos N.

    2015-03-01

    Digital cancer diagnosis is a research realm where signal processing techniques are used to analyze and to classify color histopathology images. Different from grayscale image analysis of magnetic resonance imaging or X-ray, colors in histopathology images convey large amount of histological information and thus play significant role in cancer diagnosis. Though color information is widely used in histopathology works, as today, there is few study on color model selections for feature extraction in cancer diagnosis schemes. This paper addresses the problem of color space selection for digital cancer classification using H and E stained images, and investigates the effectiveness of various color models (RGB, HSV, CIE L*a*b*, and stain-dependent H and E decomposition model) in breast cancer diagnosis. Particularly, we build a diagnosis framework as a comparison benchmark and take specific concerns of medical decision systems into account in evaluation. The evaluation methodologies include feature discriminate power evaluation and final diagnosis performance comparison. Experimentation on a publicly accessible histopathology image set suggests that the H and E decomposition model outperforms other assessed color spaces. For reasons behind various performance of color spaces, our analysis via mutual information estimation demonstrates that color components in the H and E model are less dependent, and thus most feature discriminate power is collected in one channel instead of spreading out among channels in other color spaces.

  16. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and detection/characterization of human beings in complex scenarios. These goals are planned to be reached following a plan of research activities and researchers secondments which cover a period of three years. ACKNOWLEDGMENTS This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157).

  17. High Throughput Multispectral Image Processing with Applications in Food Science.

    PubMed

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  18. Privacy Protection by Masking Moving Objects for Security Cameras

    NASA Astrophysics Data System (ADS)

    Yabuta, Kenichi; Kitazawa, Hitoshi; Tanaka, Toshihisa

    Because of an increasing number of security cameras, it is crucial to establish a system that protects the privacy of objects in the recorded images. To this end, we propose a framework of image processing and data hiding for security monitoring and privacy protection. First, we state the requirements of the proposed monitoring systems and suggest possible implementation that satisfies those requirements. The underlying concept of our proposed framework is as follows: (1) in the recorded images, the objects whose privacy should be protected are deteriorated by appropriate image processing; (2) the original objects are encrypted and watermarked into the output image, which is encoded using an image compression standard; (3) real-time processing is performed such that no future frame is required to generate on output bitstream. It should be noted that in this framework, anyone can observe the decoded image that includes the deteriorated objects that are unrecognizable or invisible. On the other hand, for crime investigation, this system allows a limited number of users to observe the original objects by using a special viewer that decrypts and decodes the watermarked objects with a decoding password. Moreover, the special viewer allows us to select the objects to be decoded and displayed. We provide an implementation example, experimental results, and performance evaluations to support our proposed framework.

  19. Investigation of methods to search for the boundaries on the image and their use on lung hardware of methods finding saliency map

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Marchuk, V. I.; Fedosov, V. P.; Stradanchenko, S. G.; Ruslyakov, D. V.

    2015-05-01

    This work aimed to study computationally simple method of saliency map calculation. Research in this field received increasing interest for the use of complex techniques in portable devices. A saliency map allows increasing the speed of many subsequent algorithms and reducing the computational complexity. The proposed method of saliency map detection based on both image and frequency space analysis. Several examples of test image from the Kodak dataset with different detalisation considered in this paper demonstrate the effectiveness of the proposed approach. We present experiments which show that the proposed method providing better results than the framework Salience Toolbox in terms of accuracy and speed.

  20. Semantic Integrative Digital Pathology: Insights into Microsemiological Semantics and Image Analysis Scalability.

    PubMed

    Racoceanu, Daniel; Capron, Frédérique

    2016-01-01

    Being able to provide a traceable and dynamic second opinion has become an ethical priority for patients and health care professionals in modern computer-aided medicine. In this perspective, a semantic cognitive virtual microscopy approach has been recently initiated, the MICO project, by focusing on cognitive digital pathology. This approach supports the elaboration of pathology-compliant daily protocols dedicated to breast cancer grading, in particular mitotic counts and nuclear atypia. A proof of concept has thus been elaborated, and an extension of these approaches is now underway in a collaborative digital pathology framework, the FlexMIm project. As important milestones on the way to routine digital pathology, a series of pioneer international benchmarking initiatives have been launched for mitosis detection (MITOS), nuclear atypia grading (MITOS-ATYPIA) and glandular structure detection (GlaS), some of the fundamental grading components in diagnosis and prognosis. These initiatives allow envisaging a consolidated validation referential database for digital pathology in the very near future. This reference database will need coordinated efforts from all major teams working in this area worldwide, and it will certainly represent a critical bottleneck for the acceptance of all future imaging modules in clinical practice. In line with recent advances in molecular imaging and genetics, keeping the microscopic modality at the core of future digital systems in pathology is fundamental to insure the acceptance of these new technologies, as well as for a deeper systemic, structured comprehension of the pathologies. After all, at the scale of routine whole-slide imaging (WSI; ∼0.22 µm/pixel), the microscopic image represents a structured 'genomic cluster', enabling a naturally structured support for integrative digital pathology approaches. In order to accelerate and structure the integration of this heterogeneous information, a major effort is and will continue to be devoted to morphological microsemiology (microscopic morphology semantics). Besides insuring the traceability of the results (second opinion) and supporting the orchestration of high-content image analysis modules, the role of semantics will be crucial for the correlation between digital pathology and noninvasive medical imaging modalities. In addition, semantics has an important role in modelling the links between traditional microscopy and recent label-free technologies. The massive amount of visual data is challenging and represents a characteristic intrinsic to digital pathology. The design of an operational integrative microscopy framework needs to focus on scalable multiscale imaging formalism. In this sense, we prospectively consider some of the most recent scalable methodologies adapted to digital pathology as marked point processes for nuclear atypia and point-set mathematical morphology for architecture grading. To orchestrate this scalable framework, semantics-based WSI management (analysis, exploration, indexing, retrieval and report generation support) represents an important means towards approaches to integrating big data into biomedicine. This insight reflects our vision through an instantiation of essential bricks of this type of architecture. The generic approach introduced here is applicable to a number of challenges related to molecular imaging, high-content image management and, more generally, bioinformatics. © 2016 S. Karger AG, Basel.

  1. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): a 3-D finite-element-based framework with experimental validation.

    PubMed

    Hou, Gary Y; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E

    2011-12-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Automatic media-adventitia IVUS image segmentation based on sparse representation framework and dynamic directional active contour model.

    PubMed

    Zakeri, Fahimeh Sadat; Setarehdan, Seyed Kamaledin; Norouzi, Somayye

    2017-10-01

    Segmentation of the arterial wall boundaries from intravascular ultrasound images is an important image processing task in order to quantify arterial wall characteristics such as shape, area, thickness and eccentricity. Since manual segmentation of these boundaries is a laborious and time consuming procedure, many researchers attempted to develop (semi-) automatic segmentation techniques as a powerful tool for educational and clinical purposes in the past but as yet there is no any clinically approved method in the market. This paper presents a deterministic-statistical strategy for automatic media-adventitia border detection by a fourfold algorithm. First, a smoothed initial contour is extracted based on the classification in the sparse representation framework which is combined with the dynamic directional convolution vector field. Next, an active contour model is utilized for the propagation of the initial contour toward the interested borders. Finally, the extracted contour is refined in the leakage, side branch openings and calcification regions based on the image texture patterns. The performance of the proposed algorithm is evaluated by comparing the results to those manually traced borders by an expert on 312 different IVUS images obtained from four different patients. The statistical analysis of the results demonstrates the efficiency of the proposed method in the media-adventitia border detection with enough consistency in the leakage and calcification regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Application-Driven No-Reference Quality Assessment for Dermoscopy Images With Multiple Distortions.

    PubMed

    Xie, Fengying; Lu, Yanan; Bovik, Alan C; Jiang, Zhiguo; Meng, Rusong

    2016-06-01

    Dermoscopy images often suffer from blur and uneven illumination distortions that occur during acquisition, which can adversely influence consequent automatic image analysis results on potential lesion objects. The purpose of this paper is to deploy an algorithm that can automatically assess the quality of dermoscopy images. Such an algorithm could be used to direct image recapture or correction. We describe an application-driven no-reference image quality assessment (IQA) model for dermoscopy images affected by possibly multiple distortions. For this purpose, we created a multiple distortion dataset of dermoscopy images impaired by varying degrees of blur and uneven illumination. The basis of this model is two single distortion IQA metrics that are sensitive to blur and uneven illumination, respectively. The outputs of these two metrics are combined to predict the quality of multiply distorted dermoscopy images using a fuzzy neural network. Unlike traditional IQA algorithms, which use human subjective score as ground truth, here ground truth is driven by the application, and generated according to the degree of influence of the distortions on lesion analysis. The experimental results reveal that the proposed model delivers accurate and stable quality prediction results for dermoscopy images impaired by multiple distortions. The proposed model is effective for quality assessment of multiple distorted dermoscopy images. An application-driven concept for IQA is introduced, and at the same time, a solution framework for the IQA of multiple distortions is proposed.

  4. Multiobject relative fuzzy connectedness and its implications in image segmentation

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Saha, Punam K.

    2001-07-01

    The notion of fuzzy connectedness captures the idea of hanging-togetherness of image elements in an object by assigning a strength of connectedness to every possible path between every possible pair of image elements. This concept leads to powerful image segmentation algorithms based on dynamic programming whose effectiveness has been demonstrated on 1000s of images in a variety of applications. In a previous framework, we introduced the notion of relative fuzzy connectedness for separating a foreground object from a background object. In this framework, an image element c is considered to belong to that among these two objects with respect to whose reference image element c has the higher strength of connectedness. In fuzzy connectedness, a local fuzzy reflation called affinity is used on the image domain. This relation was required for theoretical reasons to be of fixed form in the previous framework. In the present paper, we generalize relative connectedness to multiple objects, allowing all objects (of importance) to compete among themselves to grab membership of image elements based on their relative strength of connectedness to reference elements. We also allow affinity to be tailored to the individual objects. We present a theoretical and algorithmic framework and demonstrate that the objects defined are independent of the reference elements chosen as long as they are not in the fuzzy boundary between objects. Examples from medical imaging are presented to illustrate visually the effectiveness of multiple object relative fuzzy connectedness. A quantitative evaluation based on 160 mathematical phantom images demonstrates objectively the effectiveness of relative fuzzy connectedness with object- tailored affinity relation.

  5. Intermediate Templates Guided Groupwise Registration of Diffusion Tensor Images

    PubMed Central

    Jia, Hongjun; Yap, Pew-Thian; Wu, Guorong; Wang, Qian; Shen, Dinggang

    2010-01-01

    Registration of a population of diffusion tensor images (DTIs) is one of the key steps in medical image analysis, and it plays an important role in the statistical analysis of white matter related neurological diseases. However, pairwise registration with respect to a pre-selected template may not give precise results if the selected template deviates significantly from the distribution of images. To cater for more accurate and consistent registration, a novel framework is proposed for groupwise registration with the guidance from one or more intermediate templates determined from the population of images. Specifically, we first use a Euclidean distance, defined as a combinative measure based on the FA map and ADC map, for gauging the similarity of each pair of DTIs. A fully connected graph is then built with each node denoting an image and each edge denoting the distance between a pair of images. The root template image is determined automatically as the image with the overall shortest path length to all other images on the minimum spanning tree (MST) of the graph. Finally, a sequence of registration steps is applied to progressively warping each image towards the root template image with the help of intermediate templates distributed along its path to the root node on the MST. Extensive experimental results using diffusion tensor images of real subjects indicate that registration accuracy and fiber tract alignment are significantly improved, compared with the direct registration from each image to the root template image. PMID:20851197

  6. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu

    2016-12-10

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imagingmore » come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.« less

  7. A Note on the Temporary Misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery

    NASA Technical Reports Server (NTRS)

    Storey, James; Roy, David P.; Masek, Jeffrey; Gascon, Ferran; Dwyer, John; Choate, Michael

    2016-01-01

    The Landsat-8 and Sentinel-2 sensors provide multi-spectral image data with similar spectral and spatial characteristics that together provide improved temporal coverage globally. Both systems are designed to register Level 1 products to a reference image framework, however, the Landsat-8 framework, based upon the Global Land Survey images, contains residual geolocation errors leading to an expected sensor-to-sensor misregistration of 38 m (2sigma). These misalignments vary geographically but should be stable for a given area. The Landsat framework will be readjusted for consistency with the Sentinel-2 Global Reference Image, with completion expected in 2018. In the interim, users can measure Landsat-to-Sentinel tie points to quantify the misalignment in their area of interest and if appropriate to reproject the data to better alignment.

  8. A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery

    USGS Publications Warehouse

    Storey, James C.; Roy, David P.; Masek, Jeffrey; Gascon, Ferran; Dwyer, John L.; Choate, Michael J.

    2016-01-01

    The Landsat-8 and Sentinel-2 sensors provide multi-spectral image data with similar spectral and spatial characteristics that together provide improved temporal coverage globally. Both systems are designed to register Level 1 products to a reference image framework, however, the Landsat-8 framework, based upon the Global Land Survey images, contains residual geolocation errors leading to an expected sensor-to-sensor misregistration of 38 m (2σ). These misalignments vary geographically but should be stable for a given area. The Landsat framework will be readjusted for consistency with the Sentinel-2 Global Reference Image, with completion expected in 2018. In the interim, users can measure Landsat-to-Sentinel tie points to quantify the misalignment in their area of interest and if appropriate to reproject the data to better alignment.

  9. Fisher information theory for parameter estimation in single molecule microscopy: tutorial

    PubMed Central

    Chao, Jerry; Ward, E. Sally; Ober, Raimund J.

    2016-01-01

    Estimation of a parameter of interest from image data represents a task that is commonly carried out in single molecule microscopy data analysis. The determination of the positional coordinates of a molecule from its image, for example, forms the basis of standard applications such as single molecule tracking and localization-based superresolution image reconstruction. Assuming that the estimator used recovers, on average, the true value of the parameter, its accuracy, or standard deviation, is then at best equal to the square root of the Cramér-Rao lower bound. The Cramér-Rao lower bound can therefore be used as a benchmark in the evaluation of the accuracy of an estimator. Additionally, as its value can be computed and assessed for different experimental settings, it is useful as an experimental design tool. This tutorial demonstrates a mathematical framework that has been specifically developed to calculate the Cramér-Rao lower bound for estimation problems in single molecule microscopy and, more broadly, fluorescence microscopy. The material includes a presentation of the photon detection process that underlies all image data, various image data models that describe images acquired with different detector types, and Fisher information expressions that are necessary for the calculation of the lower bound. Throughout the tutorial, examples involving concrete estimation problems are used to illustrate the effects of various factors on the accuracy of parameter estimation, and more generally, to demonstrate the flexibility of the mathematical framework. PMID:27409706

  10. Experimenting liver fibrosis diagnostic by two photon excitation microscopy and Bag-of-Features image classification.

    PubMed

    Stanciu, Stefan G; Xu, Shuoyu; Peng, Qiwen; Yan, Jie; Stanciu, George A; Welsch, Roy E; So, Peter T C; Csucs, Gabor; Yu, Hanry

    2014-04-10

    The accurate staging of liver fibrosis is of paramount importance to determine the state of disease progression, therapy responses, and to optimize disease treatment strategies. Non-linear optical microscopy techniques such as two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) can image the endogenous signals of tissue structures and can be used for fibrosis assessment on non-stained tissue samples. While image analysis of collagen in SHG images was consistently addressed until now, cellular and tissue information included in TPEF images, such as inflammatory and hepatic cell damage, equally important as collagen deposition imaged by SHG, remain poorly exploited to date. We address this situation by experimenting liver fibrosis quantification and scoring using a combined approach based on TPEF liver surface imaging on a Thioacetamide-induced rat model and a gradient based Bag-of-Features (BoF) image classification strategy. We report the assessed performance results and discuss the influence of specific BoF parameters to the performance of the fibrosis scoring framework.

  11. Experimenting Liver Fibrosis Diagnostic by Two Photon Excitation Microscopy and Bag-of-Features Image Classification

    PubMed Central

    Stanciu, Stefan G.; Xu, Shuoyu; Peng, Qiwen; Yan, Jie; Stanciu, George A.; Welsch, Roy E.; So, Peter T. C.; Csucs, Gabor; Yu, Hanry

    2014-01-01

    The accurate staging of liver fibrosis is of paramount importance to determine the state of disease progression, therapy responses, and to optimize disease treatment strategies. Non-linear optical microscopy techniques such as two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) can image the endogenous signals of tissue structures and can be used for fibrosis assessment on non-stained tissue samples. While image analysis of collagen in SHG images was consistently addressed until now, cellular and tissue information included in TPEF images, such as inflammatory and hepatic cell damage, equally important as collagen deposition imaged by SHG, remain poorly exploited to date. We address this situation by experimenting liver fibrosis quantification and scoring using a combined approach based on TPEF liver surface imaging on a Thioacetamide-induced rat model and a gradient based Bag-of-Features (BoF) image classification strategy. We report the assessed performance results and discuss the influence of specific BoF parameters to the performance of the fibrosis scoring framework. PMID:24717650

  12. Experimenting Liver Fibrosis Diagnostic by Two Photon Excitation Microscopy and Bag-of-Features Image Classification

    NASA Astrophysics Data System (ADS)

    Stanciu, Stefan G.; Xu, Shuoyu; Peng, Qiwen; Yan, Jie; Stanciu, George A.; Welsch, Roy E.; So, Peter T. C.; Csucs, Gabor; Yu, Hanry

    2014-04-01

    The accurate staging of liver fibrosis is of paramount importance to determine the state of disease progression, therapy responses, and to optimize disease treatment strategies. Non-linear optical microscopy techniques such as two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) can image the endogenous signals of tissue structures and can be used for fibrosis assessment on non-stained tissue samples. While image analysis of collagen in SHG images was consistently addressed until now, cellular and tissue information included in TPEF images, such as inflammatory and hepatic cell damage, equally important as collagen deposition imaged by SHG, remain poorly exploited to date. We address this situation by experimenting liver fibrosis quantification and scoring using a combined approach based on TPEF liver surface imaging on a Thioacetamide-induced rat model and a gradient based Bag-of-Features (BoF) image classification strategy. We report the assessed performance results and discuss the influence of specific BoF parameters to the performance of the fibrosis scoring framework.

  13. Quantifying Morphological Features of α-U3O8 with Image Analysis for Nuclear Forensics.

    PubMed

    Olsen, Adam M; Richards, Bryony; Schwerdt, Ian; Heffernan, Sean; Lusk, Robert; Smith, Braxton; Jurrus, Elizabeth; Ruggiero, Christy; McDonald, Luther W

    2017-03-07

    Morphological changes in U 3 O 8 based on calcination temperature have been quantified enabling a morphological feature to serve as a signature of processing history in nuclear forensics. Five separate calcination temperatures were used to synthesize α-U 3 O 8 , and each sample was characterized using powder X-ray diffraction (p-XRD) and scanning electron microscopy (SEM). The p-XRD spectra were used to evaluate the purity of the synthesized U-oxide; the morphological analysis for materials (MAMA) software was utilized to quantitatively characterize the particle shape and size as indicated by the SEM images. Analysis comparing the particle attributes, such as particle area at each of the temperatures, was completed using the Kolmogorov-Smirnov two sample test (K-S test). These results illustrate a distinct statistical difference between each calcination temperature. To provide a framework for forensic analysis of an unknown sample, the sample distributions at each temperature were compared to randomly selected distributions (100, 250, 500, and 750 particles) from each synthesized temperature to determine if they were statistically different. It was found that 750 particles were required to differentiate between all of the synthesized temperatures with a confidence interval of 99.0%. Results from this study provide the first quantitative morphological study of U-oxides, and reveals the potential strength of morphological particle analysis in nuclear forensics by providing a framework for a more rapid characterization of interdicted uranium oxide samples.

  14. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network.

    PubMed

    Li, Yuexiang; Shen, Linlin

    2018-02-11

    Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved.

  15. ARGALI: an automatic cup-to-disc ratio measurement system for glaucoma detection and AnaLysIs framework

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wong, D. W. K.; Lim, J. H.; Li, H.; Tan, N. M.; Wong, T. Y.

    2009-02-01

    Glaucoma is an irreversible ocular disease leading to permanent blindness. However, early detection can be effective in slowing or halting the progression of the disease. Physiologically, glaucoma progression is quantified by increased excavation of the optic cup. This progression can be quantified in retinal fundus images via the optic cup to disc ratio (CDR), since in increased glaucomatous neuropathy, the relative size of the optic cup to the optic disc is increased. The ARGALI framework constitutes of various segmentation approaches employing level set, color intensity thresholds and ellipse fitting for the extraction of the optic cup and disc from retinal images as preliminary steps. Following this, different combinations of the obtained results are then utilized to calculate the corresponding CDR values. The individual results are subsequently fused using a neural network. The learning function of the neural network is trained with a set of 100 retinal images For testing, a separate set 40 images is then used to compare the obtained CDR against a clinically graded CDR, and it is shown that the neural network-based result performs better than the individual components, with 96% of the results within intra-observer variability. The results indicate good promise for the further development of ARGALI as a tool for the early detection of glaucoma.

  16. Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems.

    PubMed

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.

  17. Modeling the Transfer Function for the Dark Energy Survey

    DOE PAGES

    Chang, C.

    2015-03-04

    We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function—a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg 2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared withmore » the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples—star-galaxy classification and proximity effects on object detection—are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.« less

  18. An elastography framework for use in dermoscopy

    NASA Astrophysics Data System (ADS)

    Miga, Michael I.; Ou, Jao J.; Ellis, Darrel L.

    2007-03-01

    Multiple skin conditions exist which involve clinically significant changes in elastic properties. Early detection of such changes may prove critical in formulating a proper treatment plan. However, most diagnoses still rely primarily on visual inspection followed by biopsy for histological analysis. As a result, there would be considerable clinical benefit if a noninvasive technology to study the skin were available. The primary hypothesis of this work is that skin elasticity may serve as an important method for assisting diagnosis and treatment. Perhaps the most apparent application would be for the differentiation of skin cancers, which are a growing health concern in the United States as total annual cases are now being reported in the millions by the American Cancer Society. In this paper, we use our novel modality independent elastography (MIE) method to perform dermoscopic skin elasticity evaluation. The framework involves applying a lateral stretching to the skin in which dermoscopic images are acquired before and after mechanical excitation. Once collected, an iterative elastographic reconstruction method is used to generate images of tissue elastic properties and is based on a twodimensional (2-D) membrane model framework. Simulation studies are performed that show the effects of three-dimensional data, varying subdermal tissue thickness, and nonlinear large deformations on the framework. In addition, a preliminary in vivo reconstruction is demonstrated. The results are encouraging and indicate good localization with satisfactory degrees of elastic contrast resolution.

  19. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.

  20. Fast image interpolation via random forests.

    PubMed

    Huang, Jun-Jie; Siu, Wan-Chi; Liu, Tian-Rui

    2015-10-01

    This paper proposes a two-stage framework for fast image interpolation via random forests (FIRF). The proposed FIRF method gives high accuracy, as well as requires low computation. The underlying idea of this proposed work is to apply random forests to classify the natural image patch space into numerous subspaces and learn a linear regression model for each subspace to map the low-resolution image patch to high-resolution image patch. The FIRF framework consists of two stages. Stage 1 of the framework removes most of the ringing and aliasing artifacts in the initial bicubic interpolated image, while Stage 2 further refines the Stage 1 interpolated image. By varying the number of decision trees in the random forests and the number of stages applied, the proposed FIRF method can realize computationally scalable image interpolation. Extensive experimental results show that the proposed FIRF(3, 2) method achieves more than 0.3 dB improvement in peak signal-to-noise ratio over the state-of-the-art nonlocal autoregressive modeling (NARM) method. Moreover, the proposed FIRF(1, 1) obtains similar or better results as NARM while only takes its 0.3% computational time.

  1. Quantifying and visualizing variations in sets of images using continuous linear optimal transport

    NASA Astrophysics Data System (ADS)

    Kolouri, Soheil; Rohde, Gustavo K.

    2014-03-01

    Modern advancements in imaging devices have enabled us to explore the subcellular structure of living organisms and extract vast amounts of information. However, interpreting the biological information mined in the captured images is not a trivial task. Utilizing predetermined numerical features is usually the only hope for quantifying this information. Nonetheless, direct visual or biological interpretation of results obtained from these selected features is non-intuitive and difficult. In this paper, we describe an automatic method for modeling visual variations in a set of images, which allows for direct visual interpretation of the most significant differences, without the need for predefined features. The method is based on a linearized version of the continuous optimal transport (OT) metric, which provides a natural linear embedding for the image data set, in which linear combination of images leads to a visually meaningful image. This enables us to apply linear geometric data analysis techniques such as principal component analysis and linear discriminant analysis in the linearly embedded space and visualize the most prominent modes, as well as the most discriminant modes of variations, in the dataset. Using the continuous OT framework, we are able to analyze variations in shape and texture in a set of images utilizing each image at full resolution, that otherwise cannot be done by existing methods. The proposed method is applied to a set of nuclei images segmented from Feulgen stained liver tissues in order to investigate the major visual differences in chromatin distribution of Fetal-Type Hepatoblastoma (FHB) cells compared to the normal cells.

  2. Gender Analysis of the Development of School and University Theme in Soviet and Russian Audiovisual Media Texts

    ERIC Educational Resources Information Center

    Levitskaya, Anastasia; Seliverstova, Lyudmila; Mamadaliev, Anvar

    2017-01-01

    The article is written within the framework of a broader study investigating school and university representation in the Soviet/Russian and foreign audiovisual media texts. The research outlines that in Soviet cinema the image of the female teacher was transformed in the following sequence: a heroine-revolutionary; a heroine of hard work; an…

  3. Speed-Accuracy Tradeoffs in Speech Production

    DTIC Science & Technology

    2017-06-01

    imaging data of speech production. A theoretical framework for considering Fitts’ law in the domain of speech production is elucidated. Methodological ...articulatory kinematics conform to Fitts’ law. A second, associated goal is to address the methodological challenges inherent in performing Fitts-style...analysis on rtMRI data of speech production. Methodological challenges include segmenting continuous speech into specific motor tasks, defining key

  4. Sixth-Grade Students' Views of the Nature of Engineering and Images of Engineers

    ERIC Educational Resources Information Center

    Karatas, Faik O.; Micklos, Amy; Bodner, George M.

    2011-01-01

    This study investigated the views of the nature of engineering held by 6th-grade students to provide a baseline upon which activities or curriculum materials might be developed to introduce middle-school students to the work of engineers and the process of engineering design. A phenomenographic framework was used to guide the analysis of data…

  5. The Practice: An Analysis of the Factors Influencing the Training of Health Care Participants through Innovative Technology

    ERIC Educational Resources Information Center

    Gattoni, Ali; Tenzek, Kelly E.

    2010-01-01

    The aim of this paper is to develop a theoretical framework for understanding how new technologies become a part of culture and change our traditional images of health care and providers. Using the diffusion of innovations theory provides an understanding of how providers can adopt technology into practice. More specifically, this paper focuses on…

  6. Computable visually observed phenotype ontological framework for plants

    PubMed Central

    2011-01-01

    Background The ability to search for and precisely compare similar phenotypic appearances within and across species has vast potential in plant science and genetic research. The difficulty in doing so lies in the fact that many visual phenotypic data, especially visually observed phenotypes that often times cannot be directly measured quantitatively, are in the form of text annotations, and these descriptions are plagued by semantic ambiguity, heterogeneity, and low granularity. Though several bio-ontologies have been developed to standardize phenotypic (and genotypic) information and permit comparisons across species, these semantic issues persist and prevent precise analysis and retrieval of information. A framework suitable for the modeling and analysis of precise computable representations of such phenotypic appearances is needed. Results We have developed a new framework called the Computable Visually Observed Phenotype Ontological Framework for plants. This work provides a novel quantitative view of descriptions of plant phenotypes that leverages existing bio-ontologies and utilizes a computational approach to capture and represent domain knowledge in a machine-interpretable form. This is accomplished by means of a robust and accurate semantic mapping module that automatically maps high-level semantics to low-level measurements computed from phenotype imagery. The framework was applied to two different plant species with semantic rules mined and an ontology constructed. Rule quality was evaluated and showed high quality rules for most semantics. This framework also facilitates automatic annotation of phenotype images and can be adopted by different plant communities to aid in their research. Conclusions The Computable Visually Observed Phenotype Ontological Framework for plants has been developed for more efficient and accurate management of visually observed phenotypes, which play a significant role in plant genomics research. The uniqueness of this framework is its ability to bridge the knowledge of informaticians and plant science researchers by translating descriptions of visually observed phenotypes into standardized, machine-understandable representations, thus enabling the development of advanced information retrieval and phenotype annotation analysis tools for the plant science community. PMID:21702966

  7. SU-D-BRA-04: Computerized Framework for Marker-Less Localization of Anatomical Feature Points in Range Images Based On Differential Geometry Features for Image-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufi, M; Arimura, H; Toyofuku, F

    Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patientmore » surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed framework might be useful for tasks involving feature-based image registration in range-image guided radiation therapy.« less

  8. RAMTaB: Robust Alignment of Multi-Tag Bioimages

    PubMed Central

    Raza, Shan-e-Ahmed; Humayun, Ahmad; Abouna, Sylvie; Nattkemper, Tim W.; Epstein, David B. A.; Khan, Michael; Rajpoot, Nasir M.

    2012-01-01

    Background In recent years, new microscopic imaging techniques have evolved to allow us to visualize several different proteins (or other biomolecules) in a visual field. Analysis of protein co-localization becomes viable because molecules can interact only when they are located close to each other. We present a novel approach to align images in a multi-tag fluorescence image stack. The proposed approach is applicable to multi-tag bioimaging systems which (a) acquire fluorescence images by sequential staining and (b) simultaneously capture a phase contrast image corresponding to each of the fluorescence images. To the best of our knowledge, there is no existing method in the literature, which addresses simultaneous registration of multi-tag bioimages and selection of the reference image in order to maximize the overall overlap between the images. Methodology/Principal Findings We employ a block-based method for registration, which yields a confidence measure to indicate the accuracy of our registration results. We derive a shift metric in order to select the Reference Image with Maximal Overlap (RIMO), in turn minimizing the total amount of non-overlapping signal for a given number of tags. Experimental results show that the Robust Alignment of Multi-Tag Bioimages (RAMTaB) framework is robust to variations in contrast and illumination, yields sub-pixel accuracy, and successfully selects the reference image resulting in maximum overlap. The registration results are also shown to significantly improve any follow-up protein co-localization studies. Conclusions For the discovery of protein complexes and of functional protein networks within a cell, alignment of the tag images in a multi-tag fluorescence image stack is a key pre-processing step. The proposed framework is shown to produce accurate alignment results on both real and synthetic data. Our future work will use the aligned multi-channel fluorescence image data for normal and diseased tissue specimens to analyze molecular co-expression patterns and functional protein networks. PMID:22363510

  9. IJ-OpenCV: Combining ImageJ and OpenCV for processing images in biomedicine.

    PubMed

    Domínguez, César; Heras, Jónathan; Pascual, Vico

    2017-05-01

    The effective processing of biomedical images usually requires the interoperability of diverse software tools that have different aims but are complementary. The goal of this work is to develop a bridge to connect two of those tools: ImageJ, a program for image analysis in life sciences, and OpenCV, a computer vision and machine learning library. Based on a thorough analysis of ImageJ and OpenCV, we detected the features of these systems that could be enhanced, and developed a library to combine both tools, taking advantage of the strengths of each system. The library was implemented on top of the SciJava converter framework. We also provide a methodology to use this library. We have developed the publicly available library IJ-OpenCV that can be employed to create applications combining features from both ImageJ and OpenCV. From the perspective of ImageJ developers, they can use IJ-OpenCV to easily create plugins that use any functionality provided by the OpenCV library and explore different alternatives. From the perspective of OpenCV developers, this library provides a link to the ImageJ graphical user interface and all its features to handle regions of interest. The IJ-OpenCV library bridges the gap between ImageJ and OpenCV, allowing the connection and the cooperation of these two systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Multi-atlas learner fusion: An efficient segmentation approach for large-scale data.

    PubMed

    Asman, Andrew J; Huo, Yuankai; Plassard, Andrew J; Landman, Bennett A

    2015-12-01

    We propose multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on fusing local learners. In the largest whole-brain multi-atlas study yet reported, multi-atlas segmentations are estimated for a training set of 3464 MR brain images. Using these multi-atlas estimates we (1) estimate a low-dimensional representation for selecting locally appropriate example images, and (2) build AdaBoost learners that map a weak initial segmentation to the multi-atlas segmentation result. Thus, to segment a new target image we project the image into the low-dimensional space, construct a weak initial segmentation, and fuse the trained, locally selected, learners. The MLF framework cuts the runtime on a modern computer from 36 h down to 3-8 min - a 270× speedup - by completely bypassing the need for deformable atlas-target registrations. Additionally, we (1) describe a technique for optimizing the weak initial segmentation and the AdaBoost learning parameters, (2) quantify the ability to replicate the multi-atlas result with mean accuracies approaching the multi-atlas intra-subject reproducibility on a testing set of 380 images, (3) demonstrate significant increases in the reproducibility of intra-subject segmentations when compared to a state-of-the-art multi-atlas framework on a separate reproducibility dataset, (4) show that under the MLF framework the large-scale data model significantly improve the segmentation over the small-scale model under the MLF framework, and (5) indicate that the MLF framework has comparable performance as state-of-the-art multi-atlas segmentation algorithms without using non-local information. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Clustering and Dimensionality Reduction to Discover Interesting Patterns in Binary Data

    NASA Astrophysics Data System (ADS)

    Palumbo, Francesco; D'Enza, Alfonso Iodice

    The attention towards binary data coding increased consistently in the last decade due to several reasons. The analysis of binary data characterizes several fields of application, such as market basket analysis, DNA microarray data, image mining, text mining and web-clickstream mining. The paper illustrates two different approaches exploiting a profitable combination of clustering and dimensionality reduction for the identification of non-trivial association structures in binary data. An application in the Association Rules framework supports the theory with the empirical evidence.

  12. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.

    PubMed

    Michez, Adrien; Piégay, Hervé; Lisein, Jonathan; Claessens, Hugues; Lejeune, Philippe

    2016-03-01

    Riparian forests are critically endangered many anthropogenic pressures and natural hazards. The importance of riparian zones has been acknowledged by European Directives, involving multi-scale monitoring. The use of this very-high-resolution and hyperspatial imagery in a multi-temporal approach is an emerging topic. The trend is reinforced by the recent and rapid growth of the use of the unmanned aerial system (UAS), which has prompted the development of innovative methodology. Our study proposes a methodological framework to explore how a set of multi-temporal images acquired during a vegetative period can differentiate some of the deciduous riparian forest species and their health conditions. More specifically, the developed approach intends to identify, through a process of variable selection, which variables derived from UAS imagery and which scale of image analysis are the most relevant to our objectives.The methodological framework is applied to two study sites to describe the riparian forest through two fundamental characteristics: the species composition and the health condition. These characteristics were selected not only because of their use as proxies for the riparian zone ecological integrity but also because of their use for river management.The comparison of various scales of image analysis identified the smallest object-based image analysis (OBIA) objects (ca. 1 m(2)) as the most relevant scale. Variables derived from spectral information (bands ratios) were identified as the most appropriate, followed by variables related to the vertical structure of the forest. Classification results show good overall accuracies for the species composition of the riparian forest (five classes, 79.5 and 84.1% for site 1 and site 2). The classification scenario regarding the health condition of the black alders of the site 1 performed the best (90.6%).The quality of the classification models developed with a UAS-based, cost-effective, and semi-automatic approach competes successfully with those developed using more expensive imagery, such as multi-spectral and hyperspectral airborne imagery. The high overall accuracy results obtained by the classification of the diseased alders open the door to applications dedicated to monitoring of the health conditions of riparian forest. Our methodological framework will allow UAS users to manage large imagery metric datasets derived from those dense time series.

  13. Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients

    PubMed Central

    Onofrey, John A.; Staib, Lawrence H.; Papademetris, Xenophon

    2015-01-01

    This paper describes a framework for learning a statistical model of non-rigid deformations induced by interventional procedures. We make use of this learned model to perform constrained non-rigid registration of pre-procedural and post-procedural imaging. We demonstrate results applying this framework to non-rigidly register post-surgical computed tomography (CT) brain images to pre-surgical magnetic resonance images (MRIs) of epilepsy patients who had intra-cranial electroencephalography electrodes surgically implanted. Deformations caused by this surgical procedure, imaging artifacts caused by the electrodes, and the use of multi-modal imaging data make non-rigid registration challenging. Our results show that the use of our proposed framework to constrain the non-rigid registration process results in significantly improved and more robust registration performance compared to using standard rigid and non-rigid registration methods. PMID:26900569

  14. A framework for longitudinal data analysis via shape regression

    NASA Astrophysics Data System (ADS)

    Fishbaugh, James; Durrleman, Stanley; Piven, Joseph; Gerig, Guido

    2012-02-01

    Traditional longitudinal analysis begins by extracting desired clinical measurements, such as volume or head circumference, from discrete imaging data. Typically, the continuous evolution of a scalar measurement is estimated by choosing a 1D regression model, such as kernel regression or fitting a polynomial of fixed degree. This type of analysis not only leads to separate models for each measurement, but there is no clear anatomical or biological interpretation to aid in the selection of the appropriate paradigm. In this paper, we propose a consistent framework for the analysis of longitudinal data by estimating the continuous evolution of shape over time as twice differentiable flows of deformations. In contrast to 1D regression models, one model is chosen to realistically capture the growth of anatomical structures. From the continuous evolution of shape, we can simply extract any clinical measurements of interest. We demonstrate on real anatomical surfaces that volume extracted from a continuous shape evolution is consistent with a 1D regression performed on the discrete measurements. We further show how the visualization of shape progression can aid in the search for significant measurements. Finally, we present an example on a shape complex of the brain (left hemisphere, right hemisphere, cerebellum) that demonstrates a potential clinical application for our framework.

  15. A super resolution framework for low resolution document image OCR

    NASA Astrophysics Data System (ADS)

    Ma, Di; Agam, Gady

    2013-01-01

    Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.

  16. Probability-Based Recognition Framework for Underwater Landmarks Using Sonar Images †.

    PubMed

    Lee, Yeongjun; Choi, Jinwoo; Ko, Nak Yong; Choi, Hyun-Taek

    2017-08-24

    This paper proposes a probability-based framework for recognizing underwater landmarks using sonar images. Current recognition methods use a single image, which does not provide reliable results because of weaknesses of the sonar image such as unstable acoustic source, many speckle noises, low resolution images, single channel image, and so on. However, using consecutive sonar images, if the status-i.e., the existence and identity (or name)-of an object is continuously evaluated by a stochastic method, the result of the recognition method is available for calculating the uncertainty, and it is more suitable for various applications. Our proposed framework consists of three steps: (1) candidate selection, (2) continuity evaluation, and (3) Bayesian feature estimation. Two probability methods-particle filtering and Bayesian feature estimation-are used to repeatedly estimate the continuity and feature of objects in consecutive images. Thus, the status of the object is repeatedly predicted and updated by a stochastic method. Furthermore, we develop an artificial landmark to increase detectability by an imaging sonar, which we apply to the characteristics of acoustic waves, such as instability and reflection depending on the roughness of the reflector surface. The proposed method is verified by conducting basin experiments, and the results are presented.

  17. A Framework for Integration of Heterogeneous Medical Imaging Networks

    PubMed Central

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS. PMID:25279021

  18. A framework for integration of heterogeneous medical imaging networks.

    PubMed

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS.

  19. A New Effort for Atmospherical Forecast: Meteorological Image Processing Software (MIPS) for Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Shameoni Niaei, M.; Kilic, Y.; Yildiran, B. E.; Yüzlükoglu, F.; Yesilyaprak, C.

    2016-12-01

    We have described a new software (MIPS) about the analysis and image processing of the meteorological satellite (Meteosat) data for an astronomical observatory. This software will be able to help to make some atmospherical forecast (cloud, humidity, rain) using meteosat data for robotic telescopes. MIPS uses a python library for Eumetsat data that aims to be completely open-source and licenced under GNU/General Public Licence (GPL). MIPS is a platform independent and uses h5py, numpy, and PIL with the general-purpose and high-level programming language Python and the QT framework.

  20. A general framework to learn surrogate relevance criterion for atlas based image segmentation

    NASA Astrophysics Data System (ADS)

    Zhao, Tingting; Ruan, Dan

    2016-09-01

    Multi-atlas based image segmentation sees great opportunities in the big data era but also faces unprecedented challenges in identifying positive contributors from extensive heterogeneous data. To assess data relevance, image similarity criteria based on various image features widely serve as surrogates for the inaccessible geometric agreement criteria. This paper proposes a general framework to learn image based surrogate relevance criteria to better mimic the behaviors of segmentation based oracle geometric relevance. The validity of its general rationale is verified in the specific context of fusion set selection for image segmentation. More specifically, we first present a unified formulation for surrogate relevance criteria and model the neighborhood relationship among atlases based on the oracle relevance knowledge. Surrogates are then trained to be small for geometrically relevant neighbors and large for irrelevant remotes to the given targets. The proposed surrogate learning framework is verified in corpus callosum segmentation. The learned surrogates demonstrate superiority in inferring the underlying oracle value and selecting relevant fusion set, compared to benchmark surrogates.

  1. Localized lossless authentication watermark (LAW)

    NASA Astrophysics Data System (ADS)

    Celik, Mehmet U.; Sharma, Gaurav; Tekalp, A. Murat; Saber, Eli S.

    2003-06-01

    A novel framework is proposed for lossless authentication watermarking of images which allows authentication and recovery of original images without any distortions. This overcomes a significant limitation of traditional authentication watermarks that irreversibly alter image data in the process of watermarking and authenticate the watermarked image rather than the original. In particular, authenticity is verified before full reconstruction of the original image, whose integrity is inferred from the reversibility of the watermarking procedure. This reduces computational requirements in situations when either the verification step fails or the zero-distortion reconstruction is not required. A particular instantiation of the framework is implemented using a hierarchical authentication scheme and the lossless generalized-LSB data embedding mechanism. The resulting algorithm, called localized lossless authentication watermark (LAW), can localize tampered regions of the image; has a low embedding distortion, which can be removed entirely if necessary; and supports public/private key authentication and recovery options. The effectiveness of the framework and the instantiation is demonstrated through examples.

  2. A Framework to Learn Physics from Atomically Resolved Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, L.; Maksov, A.; Pan, M.

    Here, we present a generalized framework for physics extraction, i.e., knowledge, from atomically resolved images, and show its utility by applying it to a model system of segregation of chalcogen atoms in an FeSe 0.45Te 0.55 superconductor system. We emphasize that the framework can be used for any imaging data for which a generative physical model exists. Consider that a generative physical model can produce a very large number of configurations, not all of which are observable. By applying a microscope function to a sub-set of this generated data, we form a simulated dataset on which statistics can be computed.

  3. Exploring hyperspectral imaging data sets with topological data analysis.

    PubMed

    Duponchel, Ludovic

    2018-02-13

    Analytical chemistry is rapidly changing. Indeed we acquire always more data in order to go ever further in the exploration of complex samples. Hyperspectral imaging has not escaped this trend. It quickly became a tool of choice for molecular characterisation of complex samples in many scientific domains. The main reason is that it simultaneously provides spectral and spatial information. As a result, chemometrics has provided many exploration tools (PCA, clustering, MCR-ALS …) well-suited for such data structure at early stage. However we are today facing a new challenge considering the always increasing number of pixels in the data cubes we have to manage. The idea is therefore to introduce a new paradigm of Topological Data Analysis in order explore hyperspectral imaging data sets highlighting its nice properties and specific features. With this paper, we shall also point out the fact that conventional chemometric methods are often based on variance analysis or simply impose a data model which implicitly defines the geometry of the data set. Thus we will show that it is not always appropriate in the framework of hyperspectral imaging data sets exploration. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ultrasound tissue analysis and characterization

    NASA Astrophysics Data System (ADS)

    Kaufhold, John; Chan, Ray C.; Karl, William C.; Castanon, David A.

    1999-07-01

    On the battlefield of the future, it may become feasible for medics to perform, via application of new biomedical technologies, more sophisticated diagnoses and surgery than is currently practiced. Emerging biomedical technology may enable the medic to perform laparoscopic surgical procedures to remove, for example, shrapnel from injured soldiers. Battlefield conditions constrain the types of medical image acquisition and interpretation which can be performed. Ultrasound is the only viable biomedical imaging modality appropriate for deployment on the battlefield -- which leads to image interpretation issues because of the poor quality of ultrasound imagery. To help overcome these issues, we develop and implement a method of image enhancement which could aid non-experts in the rapid interpretation and use of ultrasound imagery. We describe an energy minimization approach to finding boundaries in medical images and show how prior information on edge orientation can be incorporated into this framework to detect tissue boundaries oriented at a known angle.

  5. Architecture of distributed picture archiving and communication systems for storing and processing high resolution medical images

    NASA Astrophysics Data System (ADS)

    Tokareva, Victoria

    2018-04-01

    New generation medicine demands a better quality of analysis increasing the amount of data collected during checkups, and simultaneously decreasing the invasiveness of a procedure. Thus it becomes urgent not only to develop advanced modern hardware, but also to implement special software infrastructure for using it in everyday clinical practice, so-called Picture Archiving and Communication Systems (PACS). Developing distributed PACS is a challenging task for nowadays medical informatics. The paper discusses the architecture of distributed PACS server for processing large high-quality medical images, with respect to technical specifications of modern medical imaging hardware, as well as international standards in medical imaging software. The MapReduce paradigm is proposed for image reconstruction by server, and the details of utilizing the Hadoop framework for this task are being discussed in order to provide the design of distributed PACS as ergonomic and adapted to the needs of end users as possible.

  6. Quantitative mouse brain phenotyping based on single and multispectral MR protocols

    PubMed Central

    Badea, Alexandra; Gewalt, Sally; Avants, Brian B.; Cook, James J.; Johnson, G. Allan

    2013-01-01

    Sophisticated image analysis methods have been developed for the human brain, but such tools still need to be adapted and optimized for quantitative small animal imaging. We propose a framework for quantitative anatomical phenotyping in mouse models of neurological and psychiatric conditions. The framework encompasses an atlas space, image acquisition protocols, and software tools to register images into this space. We show that a suite of segmentation tools (Avants, Epstein et al., 2008) designed for human neuroimaging can be incorporated into a pipeline for segmenting mouse brain images acquired with multispectral magnetic resonance imaging (MR) protocols. We present a flexible approach for segmenting such hyperimages, optimizing registration, and identifying optimal combinations of image channels for particular structures. Brain imaging with T1, T2* and T2 contrasts yielded accuracy in the range of 83% for hippocampus and caudate putamen (Hc and CPu), but only 54% in white matter tracts, and 44% for the ventricles. The addition of diffusion tensor parameter images improved accuracy for large gray matter structures (by >5%), white matter (10%), and ventricles (15%). The use of Markov random field segmentation further improved overall accuracy in the C57BL/6 strain by 6%; so Dice coefficients for Hc and CPu reached 93%, for white matter 79%, for ventricles 68%, and for substantia nigra 80%. We demonstrate the segmentation pipeline for the widely used C57BL/6 strain, and two test strains (BXD29, APP/TTA). This approach appears promising for characterizing temporal changes in mouse models of human neurological and psychiatric conditions, and may provide anatomical constraints for other preclinical imaging, e.g. fMRI and molecular imaging. This is the first demonstration that multiple MR imaging modalities combined with multivariate segmentation methods lead to significant improvements in anatomical segmentation in the mouse brain. PMID:22836174

  7. Landmark-based deep multi-instance learning for brain disease diagnosis.

    PubMed

    Liu, Mingxia; Zhang, Jun; Adeli, Ehsan; Shen, Dinggang

    2018-01-01

    In conventional Magnetic Resonance (MR) image based methods, two stages are often involved to capture brain structural information for disease diagnosis, i.e., 1) manually partitioning each MR image into a number of regions-of-interest (ROIs), and 2) extracting pre-defined features from each ROI for diagnosis with a certain classifier. However, these pre-defined features often limit the performance of the diagnosis, due to challenges in 1) defining the ROIs and 2) extracting effective disease-related features. In this paper, we propose a landmark-based deep multi-instance learning (LDMIL) framework for brain disease diagnosis. Specifically, we first adopt a data-driven learning approach to discover disease-related anatomical landmarks in the brain MR images, along with their nearby image patches. Then, our LDMIL framework learns an end-to-end MR image classifier for capturing both the local structural information conveyed by image patches located by landmarks and the global structural information derived from all detected landmarks. We have evaluated our proposed framework on 1526 subjects from three public datasets (i.e., ADNI-1, ADNI-2, and MIRIAD), and the experimental results show that our framework can achieve superior performance over state-of-the-art approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dependence of quantitative accuracy of CT perfusion imaging on system parameters

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2017-03-01

    Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.

  9. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment.

    PubMed

    Raunig, David L; McShane, Lisa M; Pennello, Gene; Gatsonis, Constantine; Carson, Paul L; Voyvodic, James T; Wahl, Richard L; Kurland, Brenda F; Schwarz, Adam J; Gönen, Mithat; Zahlmann, Gudrun; Kondratovich, Marina V; O'Donnell, Kevin; Petrick, Nicholas; Cole, Patricia E; Garra, Brian; Sullivan, Daniel C

    2015-02-01

    Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers to measure changes in these features. Critical to the performance of a quantitative imaging biomarker in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method, and metrics used to assess a quantitative imaging biomarker for clinical use. It is therefore difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America and the Quantitative Imaging Biomarker Alliance with technical, radiological, and statistical experts developed a set of technical performance analysis methods, metrics, and study designs that provide terminology, metrics, and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of quantitative imaging biomarker performance studies so that results from multiple studies can be compared, contrasted, or combined. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. SCIFIO: an extensible framework to support scientific image formats.

    PubMed

    Hiner, Mark C; Rueden, Curtis T; Eliceiri, Kevin W

    2016-12-07

    No gold standard exists in the world of scientific image acquisition; a proliferation of instruments each with its own proprietary data format has made out-of-the-box sharing of that data nearly impossible. In the field of light microscopy, the Bio-Formats library was designed to translate such proprietary data formats to a common, open-source schema, enabling sharing and reproduction of scientific results. While Bio-Formats has proved successful for microscopy images, the greater scientific community was lacking a domain-independent framework for format translation. SCIFIO (SCientific Image Format Input and Output) is presented as a freely available, open-source library unifying the mechanisms of reading and writing image data. The core of SCIFIO is its modular definition of formats, the design of which clearly outlines the components of image I/O to encourage extensibility, facilitated by the dynamic discovery of the SciJava plugin framework. SCIFIO is structured to support coexistence of multiple domain-specific open exchange formats, such as Bio-Formats' OME-TIFF, within a unified environment. SCIFIO is a freely available software library developed to standardize the process of reading and writing scientific image formats.

  11. Matching forensic sketches to mug shot photos.

    PubMed

    Klare, Brendan F; Li, Zhifeng; Jain, Anil K

    2011-03-01

    The problem of matching a forensic sketch to a gallery of mug shot images is addressed in this paper. Previous research in sketch matching only offered solutions to matching highly accurate sketches that were drawn while looking at the subject (viewed sketches). Forensic sketches differ from viewed sketches in that they are drawn by a police sketch artist using the description of the subject provided by an eyewitness. To identify forensic sketches, we present a framework called local feature-based discriminant analysis (LFDA). In LFDA, we individually represent both sketches and photos using SIFT feature descriptors and multiscale local binary patterns (MLBP). Multiple discriminant projections are then used on partitioned vectors of the feature-based representation for minimum distance matching. We apply this method to match a data set of 159 forensic sketches against a mug shot gallery containing 10,159 images. Compared to a leading commercial face recognition system, LFDA offers substantial improvements in matching forensic sketches to the corresponding face images. We were able to further improve the matching performance using race and gender information to reduce the target gallery size. Additional experiments demonstrate that the proposed framework leads to state-of-the-art accuracys when matching viewed sketches.

  12. Learning Using Dynamic and Static Visualizations: Students' Comprehension, Prior Knowledge and Conceptual Status of a Biotechnological Method

    NASA Astrophysics Data System (ADS)

    Yarden, Hagit; Yarden, Anat

    2010-05-01

    The importance of biotechnology education at the high-school level has been recognized in a number of international curriculum frameworks around the world. One of the most problematic issues in learning biotechnology has been found to be the biotechnological methods involved. Here, we examine the unique contribution of an animation of the polymerase chain reaction (PCR) in promoting conceptual learning of the biotechnological method among 12th-grade biology majors. All of the students learned about the PCR using still images ( n = 83) or the animation ( n = 90). A significant advantage to the animation treatment was identified following learning. Students’ prior content knowledge was found to be an important factor for students who learned PCR using still images, serving as an obstacle to learning the PCR method in the case of low prior knowledge. Through analysing students’ discourse, using the framework of the conceptual status analysis, we found that students who learned about PCR using still images faced difficulties in understanding some mechanistic aspects of the method. On the other hand, using the animation gave the students an advantage in understanding those aspects.

  13. Image-based multi-scale simulation and experimental validation of thermal conductivity of lanthanum zirconate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xingye; Hu, Bin; Wei, Changdong

    Lanthanum zirconate (La2Zr2O7) is a promising candidate material for thermal barrier coating (TBC) applications due to its low thermal conductivity and high-temperature phase stability. In this work, a novel image-based multi-scale simulation framework combining molecular dynamics (MD) and finite element (FE) calculations is proposed to study the thermal conductivity of La2Zr2O7 coatings. Since there is no experimental data of single crystal La2Zr2O7 thermal conductivity, a reverse non-equilibrium molecular dynamics (reverse NEMD) approach is first employed to compute the temperature-dependent thermal conductivity of single crystal La2Zr2O7. The single crystal data is then passed to a FE model which takes into accountmore » of realistic thermal barrier coating microstructures. The predicted thermal conductivities from the FE model are in good agreement with experimental validations using both flash laser technique and pulsed thermal imaging-multilayer analysis. The framework proposed in this work provides a powerful tool for future design of advanced coating systems. (C) 2016 Elsevier Ltd. All rights reserved.« less

  14. Hierarchical multivariate covariance analysis of metabolic connectivity.

    PubMed

    Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J

    2014-12-01

    Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).

  15. Flexible real-time magnetic resonance imaging framework.

    PubMed

    Santos, Juan M; Wright, Graham A; Pauly, John M

    2004-01-01

    The extension of MR imaging to new applications has demonstrated the limitations of the architecture of current real-time systems. Traditional real-time implementations provide continuous acquisition of data and modification of basic sequence parameters on the fly. We have extended the concept of real-time MRI by designing a system that drives the examinations from a real-time localizer and then gets reconfigured for different imaging modes. Upon operator request or automatic feedback the system can immediately generate a new pulse sequence or change fundamental aspects of the acquisition such as gradient waveforms excitation pulses and scan planes. This framework has been implemented by connecting a data processing and control workstation to a conventional clinical scanner. Key components on the design of this framework are the data communication and control mechanisms, reconstruction algorithms optimized for real-time and adaptability, flexible user interface and extensible user interaction. In this paper we describe the various components that comprise this system. Some of the applications implemented in this framework include real-time catheter tracking embedded in high frame rate real-time imaging and immediate switching between real-time localizer and high-resolution volume imaging for coronary angiography applications.

  16. Integrated framework for developing search and discrimination metrics

    NASA Astrophysics Data System (ADS)

    Copeland, Anthony C.; Trivedi, Mohan M.

    1997-06-01

    This paper presents an experimental framework for evaluating target signature metrics as models of human visual search and discrimination. This framework is based on a prototype eye tracking testbed, the Integrated Testbed for Eye Movement Studies (ITEMS). ITEMS determines an observer's visual fixation point while he studies a displayed image scene, by processing video of the observer's eye. The utility of this framework is illustrated with an experiment using gray-scale images of outdoor scenes that contain randomly placed targets. Each target is a square region of a specific size containing pixel values from another image of an outdoor scene. The real-world analogy of this experiment is that of a military observer looking upon the sensed image of a static scene to find camouflaged enemy targets that are reported to be in the area. ITEMS provides the data necessary to compute various statistics for each target to describe how easily the observers located it, including the likelihood the target was fixated or identified and the time required to do so. The computed values of several target signature metrics are compared to these statistics, and a second-order metric based on a model of image texture was found to be the most highly correlated.

  17. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.

  18. Operational data fusion framework for building frequent Landsat-like imagery in a cloudy region

    USDA-ARS?s Scientific Manuscript database

    An operational data fusion framework is built to generate dense time-series Landsat-like images for a cloudy region by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) data products and Landsat imagery. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is integrated in ...

  19. Ship dynamics for maritime ISAR imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2008-02-01

    Demand is increasing for imaging ships at sea. Conventional SAR fails because the ships are usually in motion, both with a forward velocity, and other linear and angular motions that accompany sea travel. Because the target itself is moving, this becomes an Inverse- SAR, or ISAR problem. Developing useful ISAR techniques and algorithms is considerably aided by first understanding the nature and characteristics of ship motion. Consequently, a brief study of some principles of naval architecture sheds useful light on this problem. We attempt to do so here. Ship motions are analyzed for their impact on range-Doppler imaging using Inversemore » Synthetic Aperture Radar (ISAR). A framework for analysis is developed, and limitations of simple ISAR systems are discussed.« less

  20. A computational framework to characterize and compare the geometry of coronary networks.

    PubMed

    Bulant, C A; Blanco, P J; Lima, T P; Assunção, A N; Liberato, G; Parga, J R; Ávila, L F R; Pereira, A C; Feijóo, R A; Lemos, P A

    2017-03-01

    This work presents a computational framework to perform a systematic and comprehensive assessment of the morphometry of coronary arteries from in vivo medical images. The methodology embraces image segmentation, arterial vessel representation, characterization and comparison, data storage, and finally analysis. Validation is performed using a sample of 48 patients. Data mining of morphometric information of several coronary arteries is presented. Results agree to medical reports in terms of basic geometric and anatomical variables. Concerning geometric descriptors, inter-artery and intra-artery correlations are studied. Data reported here can be useful for the construction and setup of blood flow models of the coronary circulation. Finally, as an application example, similarity criterion to assess vasculature likelihood based on geometric features is presented and used to test geometric similarity among sibling patients. Results indicate that likelihood, measured through geometric descriptors, is stronger between siblings compared with non-relative patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. ImTK: an open source multi-center information management toolkit

    NASA Astrophysics Data System (ADS)

    Alaoui, Adil; Ingeholm, Mary Lou; Padh, Shilpa; Dorobantu, Mihai; Desai, Mihir; Cleary, Kevin; Mun, Seong K.

    2008-03-01

    The Information Management Toolkit (ImTK) Consortium is an open source initiative to develop robust, freely available tools related to the information management needs of basic, clinical, and translational research. An open source framework and agile programming methodology can enable distributed software development while an open architecture will encourage interoperability across different environments. The ISIS Center has conceptualized a prototype data sharing network that simulates a multi-center environment based on a federated data access model. This model includes the development of software tools to enable efficient exchange, sharing, management, and analysis of multimedia medical information such as clinical information, images, and bioinformatics data from multiple data sources. The envisioned ImTK data environment will include an open architecture and data model implementation that complies with existing standards such as Digital Imaging and Communications (DICOM), Health Level 7 (HL7), and the technical framework and workflow defined by the Integrating the Healthcare Enterprise (IHE) Information Technology Infrastructure initiative, mainly the Cross Enterprise Document Sharing (XDS) specifications.

  2. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    PubMed

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  3. A benchmark for comparison of dental radiography analysis algorithms.

    PubMed

    Wang, Ching-Wei; Huang, Cheng-Ta; Lee, Jia-Hong; Li, Chung-Hsing; Chang, Sheng-Wei; Siao, Ming-Jhih; Lai, Tat-Ming; Ibragimov, Bulat; Vrtovec, Tomaž; Ronneberger, Olaf; Fischer, Philipp; Cootes, Tim F; Lindner, Claudia

    2016-07-01

    Dental radiography plays an important role in clinical diagnosis, treatment and surgery. In recent years, efforts have been made on developing computerized dental X-ray image analysis systems for clinical usages. A novel framework for objective evaluation of automatic dental radiography analysis algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2015 Bitewing Radiography Caries Detection Challenge and Cephalometric X-ray Image Analysis Challenge. In this article, we present the datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. The main contributions of the challenge include the creation of the dental anatomy data repository of bitewing radiographs, the creation of the anatomical abnormality classification data repository of cephalometric radiographs, and the definition of objective quantitative evaluation for comparison and ranking of the algorithms. With this benchmark, seven automatic methods for analysing cephalometric X-ray image and two automatic methods for detecting bitewing radiography caries have been compared, and detailed quantitative evaluation results are presented in this paper. Based on the quantitative evaluation results, we believe automatic dental radiography analysis is still a challenging and unsolved problem. The datasets and the evaluation software will be made available to the research community, further encouraging future developments in this field. (http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Large-scale image region documentation for fully automated image biomarker algorithm development and evaluation.

    PubMed

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2017-04-01

    With the advent of fully automated image analysis and modern machine learning methods, there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. This paper presents a method and implementation for facilitating such datasets that addresses the critical issue of size scaling for algorithm validation and evaluation; current evaluation methods that are usually used in academic studies do not scale to large datasets. This method includes protocols for the documentation of many regions in very large image datasets; the documentation may be incrementally updated by new image data and by improved algorithm outcomes. This method has been used for 5 years in the context of chest health biomarkers from low-dose chest CT images that are now being used with increasing frequency in lung cancer screening practice. The lung scans are segmented into over 100 different anatomical regions, and the method has been applied to a dataset of over 20,000 chest CT images. Using this framework, the computer algorithms have been developed to achieve over 90% acceptable image segmentation on the complete dataset.

  5. Dual domain watermarking for authentication and compression of cultural heritage images.

    PubMed

    Zhao, Yang; Campisi, Patrizio; Kundur, Deepa

    2004-03-01

    This paper proposes an approach for the combined image authentication and compression of color images by making use of a digital watermarking and data hiding framework. The digital watermark is comprised of two components: a soft-authenticator watermark for authentication and tamper assessment of the given image, and a chrominance watermark employed to improve the efficiency of compression. The multipurpose watermark is designed by exploiting the orthogonality of various domains used for authentication, color decomposition and watermark insertion. The approach is implemented as a DCT-DWT dual domain algorithm and is applied for the protection and compression of cultural heritage imagery. Analysis is provided to characterize the behavior of the scheme under ideal conditions. Simulations and comparisons of the proposed approach with state-of-the-art existing work demonstrate the potential of the overall scheme.

  6. Framework for Smart Electronic Health Record-Linked Predictive Models to Optimize Care for Complex Digestive Diseases

    DTIC Science & Technology

    2012-06-01

    indices was independent of the presence or absence of hepatic steatosis on abdominal imaging. Key Research Accomplishments Abstracts presented at...transplant; 3) hepatic encephalopathy; and 4) hepatocellular carcinoma. Logistic regression analysis confirmed that the clinical predictive value of the...Gumus S, Saul,MI Bae KT. Noninvasive Hepatic Fibrosis Scores Predict Liver-Related Outcomes in Diabetic Patients [abstract]. Gastroenterology. 2012

  7. Re-Visioning Disability and Dyslexia down the Camera Lens: Interpretations of Representations on UK University Websites and in a UK Government Guidance Paper

    ERIC Educational Resources Information Center

    Collinson, Craig; Dunne, Linda; Woolhouse, Clare

    2012-01-01

    The focus of this article is to consider visual portrayals and representations of disability. The images selected for analysis came from online university prospectuses as well as a governmental guidance framework on the tuition of dyslexic students. Greater understanding, human rights and cultural change have been characteristic of much UK…

  8. Supplemental Analysis on Compressed Sensing Based Interior Tomography

    PubMed Central

    Yu, Hengyong; Yang, Jiansheng; Jiang, Ming; Wang, Ge

    2010-01-01

    Recently, in the compressed sensing framework we proved that an interior ROI can be exactly reconstructed via the total variation minimization if the ROI is piecewise constant. In the proofs, we implicitly utilized the property that if an artifact image assumes a constant value within the ROI then this constant must be zero. Here we prove this property in the space of square integrable functions. PMID:19717891

  9. Designing a stable feedback control system for blind image deconvolution.

    PubMed

    Cheng, Shichao; Liu, Risheng; Fan, Xin; Luo, Zhongxuan

    2018-05-01

    Blind image deconvolution is one of the main low-level vision problems with wide applications. Many previous works manually design regularization to simultaneously estimate the latent sharp image and the blur kernel under maximum a posterior framework. However, it has been demonstrated that such joint estimation strategies may lead to the undesired trivial solution. In this paper, we present a novel perspective, using a stable feedback control system, to simulate the latent sharp image propagation. The controller of our system consists of regularization and guidance, which decide the sparsity and sharp features of latent image, respectively. Furthermore, the formational model of blind image is introduced into the feedback process to avoid the image restoration deviating from the stable point. The stability analysis of the system indicates the latent image propagation in blind deconvolution task can be efficiently estimated and controlled by cues and priors. Thus the kernel estimation used for image restoration becomes more precision. Experimental results show that our system is effective on image propagation, and can perform favorably against the state-of-the-art blind image deconvolution methods on different benchmark image sets and special blurred images. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Robust Dehaze Algorithm for Degraded Image of CMOS Image Sensors.

    PubMed

    Qu, Chen; Bi, Du-Yan; Sui, Ping; Chao, Ai-Nong; Wang, Yun-Fei

    2017-09-22

    The CMOS (Complementary Metal-Oxide-Semiconductor) is a new type of solid image sensor device widely used in object tracking, object recognition, intelligent navigation fields, and so on. However, images captured by outdoor CMOS sensor devices are usually affected by suspended atmospheric particles (such as haze), causing a reduction in image contrast, color distortion problems, and so on. In view of this, we propose a novel dehazing approach based on a local consistent Markov random field (MRF) framework. The neighboring clique in traditional MRF is extended to the non-neighboring clique, which is defined on local consistent blocks based on two clues, where both the atmospheric light and transmission map satisfy the character of local consistency. In this framework, our model can strengthen the restriction of the whole image while incorporating more sophisticated statistical priors, resulting in more expressive power of modeling, thus, solving inadequate detail recovery effectively and alleviating color distortion. Moreover, the local consistent MRF framework can obtain details while maintaining better results for dehazing, which effectively improves the image quality captured by the CMOS image sensor. Experimental results verified that the method proposed has the combined advantages of detail recovery and color preservation.

  11. Feasibility study for application of the compressed-sensing framework to interior computed tomography (ICT) for low-dose, high-accurate dental x-ray imaging

    NASA Astrophysics Data System (ADS)

    Je, U. K.; Cho, H. M.; Cho, H. S.; Park, Y. O.; Park, C. K.; Lim, H. W.; Kim, K. S.; Kim, G. A.; Park, S. Y.; Woo, T. H.; Choi, S. I.

    2016-02-01

    In this paper, we propose a new/next-generation type of CT examinations, the so-called Interior Computed Tomography (ICT), which may presumably lead to dose reduction to the patient outside the target region-of-interest (ROI), in dental x-ray imaging. Here an x-ray beam from each projection position covers only a relatively small ROI containing a target of diagnosis from the examined structure, leading to imaging benefits such as decreasing scatters and system cost as well as reducing imaging dose. We considered the compressed-sensing (CS) framework, rather than common filtered-backprojection (FBP)-based algorithms, for more accurate ICT reconstruction. We implemented a CS-based ICT algorithm and performed a systematic simulation to investigate the imaging characteristics. Simulation conditions of two ROI ratios of 0.28 and 0.14 between the target and the whole phantom sizes and four projection numbers of 360, 180, 90, and 45 were tested. We successfully reconstructed ICT images of substantially high image quality by using the CS framework even with few-view projection data, still preserving sharp edges in the images.

  12. Optical Methods in Fingerprint Imaging for Medical and Personality Applications

    PubMed Central

    Wang, Jing-Wein; Lin, Ming-Hsun; Chang, Yao-Lang; Kuo, Chia-Ming

    2017-01-01

    Over the years, analysis and induction of personality traits has been a topic for individual subjective conjecture or speculation, rather than a focus of inductive scientific analysis. This study proposes a novel framework for analysis and induction of personality traits. First, 14 personality constructs based on the “Big Five” personality factors were developed. Next, a new fingerprint image algorithm was used for classification, and the fingerprints were classified into eight types. The relationship between personality traits and fingerprint type was derived from the results of the questionnaire survey. After comparison of pre-test and post-test results, this study determined the induction ability of personality traits from fingerprint type. Experimental results showed that the left/right thumbprint type of a majority of subjects was left loop/right loop and that the personalities of individuals with this fingerprint type were moderate with no significant differences in the 14 personality constructs. PMID:29065556

  13. COINSTAC: Decentralizing the future of brain imaging analysis

    PubMed Central

    Ming, Jing; Verner, Eric; Sarwate, Anand; Kelly, Ross; Reed, Cory; Kahleck, Torran; Silva, Rogers; Panta, Sandeep; Turner, Jessica; Plis, Sergey; Calhoun, Vince

    2017-01-01

    In the era of Big Data, sharing neuroimaging data across multiple sites has become increasingly important. However, researchers who want to engage in centralized, large-scale data sharing and analysis must often contend with problems such as high database cost, long data transfer time, extensive manual effort, and privacy issues for sensitive data. To remove these barriers to enable easier data sharing and analysis, we introduced a new, decentralized, privacy-enabled infrastructure model for brain imaging data called COINSTAC in 2016. We have continued development of COINSTAC since this model was first introduced. One of the challenges with such a model is adapting the required algorithms to function within a decentralized framework. In this paper, we report on how we are solving this problem, along with our progress on several fronts, including additional decentralized algorithms implementation, user interface enhancement, decentralized regression statistic calculation, and complete pipeline specifications. PMID:29123643

  14. Optical Methods in Fingerprint Imaging for Medical and Personality Applications.

    PubMed

    Wang, Chia-Nan; Wang, Jing-Wein; Lin, Ming-Hsun; Chang, Yao-Lang; Kuo, Chia-Ming

    2017-10-23

    Over the years, analysis and induction of personality traits has been a topic for individual subjective conjecture or speculation, rather than a focus of inductive scientific analysis. This study proposes a novel framework for analysis and induction of personality traits. First, 14 personality constructs based on the "Big Five" personality factors were developed. Next, a new fingerprint image algorithm was used for classification, and the fingerprints were classified into eight types. The relationship between personality traits and fingerprint type was derived from the results of the questionnaire survey. After comparison of pre-test and post-test results, this study determined the induction ability of personality traits from fingerprint type. Experimental results showed that the left/right thumbprint type of a majority of subjects was left loop/right loop and that the personalities of individuals with this fingerprint type were moderate with no significant differences in the 14 personality constructs.

  15. Graph-based urban scene analysis using symbolic data

    NASA Astrophysics Data System (ADS)

    Moissinac, Henri; Maitre, Henri; Bloch, Isabelle

    1995-07-01

    A framework is presented for the interpretation of a urban landscape based on the analysis of aerial pictures. This method has been designed for the use of a priori knowledge provided by a geographic map in order to improve the image analysis stage. A coherent final interpretation of the studied area is proposed. It relies on a graph based data structure to modelize the urban landscape, and on a global uncertainty management to evaluate the final confidence we can have in the results presented. This structure and uncertainty management tend to reflect the hierarchy of the available data and the interpretation levels.

  16. Wavelet Analysis for Wind Fields Estimation

    PubMed Central

    Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699

  17. From Curves to Trees: A Tree-like Shapes Distance Using the Elastic Shape Analysis Framework.

    PubMed

    Mottini, A; Descombes, X; Besse, F

    2015-04-01

    Trees are a special type of graph that can be found in various disciplines. In the field of biomedical imaging, trees have been widely studied as they can be used to describe structures such as neurons, blood vessels and lung airways. It has been shown that the morphological characteristics of these structures can provide information on their function aiding the characterization of pathological states. Therefore, it is important to develop methods that analyze their shape and quantify differences between their structures. In this paper, we present a method for the comparison of tree-like shapes that takes into account both topological and geometrical information. This method, which is based on the Elastic Shape Analysis Framework, also computes the mean shape of a population of trees. As a first application, we have considered the comparison of axon morphology. The performance of our method has been evaluated on two sets of images. For the first set of images, we considered four different populations of neurons from different animals and brain sections from the NeuroMorpho.org open database. The second set was composed of a database of 3D confocal microscopy images of three populations of axonal trees (normal and two types of mutations) of the same type of neurons. We have calculated the inter and intra class distances between the populations and embedded the distance in a classification scheme. We have compared the performance of our method against three other state of the art algorithms, and results showed that the proposed method better distinguishes between the populations. Furthermore, we present the mean shape of each population. These shapes present a more complete picture of the morphological characteristics of each population, compared to the average value of certain predefined features.

  18. Signature detection and matching for document image retrieval.

    PubMed

    Zhu, Guangyu; Zheng, Yefeng; Doermann, David; Jaeger, Stefan

    2009-11-01

    As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches.

  19. Bold-Independent Computational Entropy Assesses Functional Donut-Like Structures in Brain fMRI Images

    PubMed Central

    Peters, James F.; Ramanna, Sheela; Tozzi, Arturo; İnan, Ebubekir

    2017-01-01

    We introduce a novel method for the measurement of information level in fMRI (functional Magnetic Resonance Imaging) neural data sets, based on image subdivision in small polygons equipped with different entropic content. We show how this method, called maximal nucleus clustering (MNC), is a novel, fast and inexpensive image-analysis technique, independent from the standard blood-oxygen-level dependent signals. MNC facilitates the objective detection of hidden temporal patterns of entropy/information in zones of fMRI images generally not taken into account by the subjective standpoint of the observer. This approach befits the geometric character of fMRIs. The main purpose of this study is to provide a computable framework for fMRI that not only facilitates analyses, but also provides an easily decipherable visualization of structures. This framework commands attention because it is easily implemented using conventional software systems. In order to evaluate the potential applications of MNC, we looked for the presence of a fourth dimension's distinctive hallmarks in a temporal sequence of 2D images taken during spontaneous brain activity. Indeed, recent findings suggest that several brain activities, such as mind-wandering and memory retrieval, might take place in the functional space of a four dimensional hypersphere, which is a double donut-like structure undetectable in the usual three dimensions. We found that the Rényi entropy is higher in MNC areas than in the surrounding ones, and that these temporal patterns closely resemble the trajectories predicted by the possible presence of a hypersphere in the brain. PMID:28203153

  20. In vivo spatial correlation between (18)F-BPA and (18)F-FDG uptakes in head and neck cancer.

    PubMed

    Kobayashi, Kazuma; Kurihara, Hiroaki; Watanabe, Yoshiaki; Murakami, Naoya; Inaba, Koji; Nakamura, Satoshi; Wakita, Akihisa; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Igaki, Hiroshi; Ito, Yoshinori; Yoshimoto, Seiichi; Shigematsu, Naoyuki; Itami, Jun

    2016-09-01

    Borono-2-(18)F-fluoro-phenylalanine ((18)F-BPA) has been used to estimate the therapeutic effects of boron neutron capture therapy (BNCT), while (18)F-fluorodeoxyglucose ((18)F-FDG) is the most commonly used positron emission tomography (PET) radiopharmaceutical in a routine clinical use. The aim of the present study was to evaluate spatial correlation between (18)F-BPA and (18)F-FDG uptakes using a deformable image registration-based technique. Ten patients with head and neck cancer were recruited from January 2014 to December 2014. All patients underwent whole-body (18)F-BPA PET/computed tomography (CT) and (18)F-FDG PET/CT within a 2-week period. For each patient, (18)F-BPA PET/CT and (18)F-FDG PET/CT images were aligned based on a deformable image registration framework. The voxel-by-voxel spatial correlation of standardized uptake value (SUV) within the tumor was analyzed. Our image processing framework achieved accurate and validated registration results for each PET/CT image. In 9/10 patients, the spatial distribution of SUVs between (18)F-BPA and (18)F-FDG showed a significant, positive correlation in the tumor volume. Deformable image registration-based voxel-wise analysis demonstrated a spatial correlation between (18)F-BPA and (18)F-FDG uptakes in the head and neck cancer. A tumor sub-volume with a high (18)F-FDG uptake may predict high accumulation of (18)F-BPA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

Top