Wen, Xin; She, Ying; Vinke, Petra Corianne; Chen, Hong
2016-01-01
Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress among overweight or obese young females. PMID:27764116
Gao, Xiao; Deng, Xiao; Wen, Xin; She, Ying; Vinke, Petra Corianne; Chen, Hong
2016-01-01
Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress among overweight or obese young females.
Leischik, Roman; Littwitz, Henning; Dworrak, Birgit; Garg, Pankaj; Zhu, Meihua; Sahn, David J; Horlitz, Marc
2015-01-01
Left atrial (LA) functional analysis has an established role in assessing left ventricular diastolic function. The current standard echocardiographic parameters used to study left ventricular diastolic function include pulsed-wave Doppler mitral inflow analysis, tissue Doppler imaging measurements, and LA dimension estimation. However, the above-mentioned parameters do not directly quantify LA performance. Deformation studies using strain and strain-rate imaging to assess LA function were validated in previous research, but this technique is not currently used in routine clinical practice. This review discusses the history, importance, and pitfalls of strain technology for the analysis of LA mechanics.
Cardot, J C; Berthout, P; Verdenet, J; Bidet, A; Faivre, R; Bassand, J P; Bidet, R; Maurat, J P
1982-01-01
Regional and global left ventricular wall motion was assessed in 120 patients using radionuclide cineangiography (RCA) and contrast angiography. Functional imaging procedures based on a temporal Fourier analysis of dynamic image sequences were applied to the study of cardiac contractility. Two images were constructed by taking the phase and amplitude values of the first harmonic in the Fourier transform for each pixel. These two images aided in determining the perimeter of the left ventricle to calculate the global ejection fraction. Regional left ventricular wall motion was studied by analyzing the phase value and by examining the distribution histogram of these values. The accuracy of global ejection fraction calculation was improved by the Fourier technique. This technique increased the sensitivity of RCA for determining segmental abnormalities especially in the left anterior oblique view (LAO).
Cameli, Matteo; Ciccone, Marco M; Maiello, Maria; Modesti, Pietro A; Muiesan, Maria L; Scicchitano, Pietro; Novo, Salvatore; Palmiero, Pasquale; Saba, Pier S; Pedrinelli, Roberto
2016-05-01
Speckle tracking echocardiography (STE) is an imaging technique applied to the analysis of left atrial function. STE provides a non-Doppler, angle-independent and objective quantification of left atrial myocardial deformation. Data regarding feasibility, accuracy and clinical applications of left atrial strain are rapidly gathering. This review describes the fundamental concepts of left atrial STE, illustrates its pathophysiological background and discusses its emerging role in systemic arterial hypertension.
Measurement of left ventricular mass in vivo using gated nuclear magnetic resonance imaging.
Florentine, M S; Grosskreutz, C L; Chang, W; Hartnett, J A; Dunn, V D; Ehrhardt, J C; Fleagle, S R; Collins, S M; Marcus, M L; Skorton, D J
1986-07-01
Alterations of left ventricular mass occur in a variety of congenital and acquired heart diseases. In vivo determination of left ventricular mass, using several different techniques, has been previously reported. Problems inherent in some previous methods include the use of ionizing radiation, complicated geometric assumptions and invasive techniques. We tested the ability of gated nuclear magnetic resonance imaging to determine in vivo left ventricular mass in animals. By studying both dogs (n = 9) and cats (n = 2) of various sizes, a broad range of left ventricular mass (7 to 133 g) was examined. With a 0.5 tesla superconducting nuclear magnetic resonance imaging system the left ventricle was imaged in the transaxial plane and multiple adjacent 10 mm thick slices were obtained. Endocardial and epicardial edges were manually traced in each computer-displayed image. The wall area of each image was determined by computer and the areas were summed and multiplied by the slice thickness and the specific gravity of muscle, providing calculated left ventricular mass. Calculated left ventricular mass was compared with actual postmortem left ventricular mass using linear regression analysis. An excellent relation between calculated and actual mass was found (r = 0.95; SEE = 13.1 g; regression equation: magnetic resonance mass = 0.95 X actual mass + 14.8 g). Intraobserver and interobserver reproducibility were also excellent (r = 0.99). Thus, gated nuclear magnetic resonance imaging can accurately determine in vivo left ventricular mass in anesthetized animals.
Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen
2014-01-01
The left ventricular myocardium plays a key role in the entire circulation system and an automatic delineation of the myocardium is a prerequisite for most of the subsequent functional analysis. In this paper, we present a complete system for an automatic segmentation of the left ventricular myocardium from cardiac computed tomography (CT) images using the shape information from images to be segmented. The system follows a coarse-to-fine strategy by first localizing the left ventricle and then deforming the myocardial surfaces of the left ventricle to refine the segmentation. In particular, the blood pool of a CT image is extracted and represented as a triangulated surface. Then, the left ventricle is localized as a salient component on this surface using geometric and anatomical characteristics. After that, the myocardial surfaces are initialized from the localization result and evolved by applying forces from the image intensities with a constraint based on the initial myocardial surface locations. The proposed framework has been validated on 34-human and 12-pig CT images, and the robustness and accuracy are demonstrated. PMID:24723531
Jiang, Ming-Ming; Zhou, Qing; Liu, Xiao-Yong; Shi, Chang-Zheng; Chen, Jian; Huang, Xiang-He
2017-03-01
To investigate structural and functional brain changes in patients with primary open-angle glaucoma (POAG) by using voxel-based morphometry based on diffeomorphic anatomical registration through exponentiated Lie algebra (VBM-DARTEL) and blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), respectively.Thirteen patients diagnosed with POAG and 13 age- and sex-matched healthy controls were enrolled in the study. For each participant, high-resolution structural brain imaging and blood flow imaging were acquired on a 3.0-Tesla magnetic resonance imaging (MRI) scanner. Structural and functional changes between the POAG and control groups were analyzed. An analysis was carried out to identify correlations between structural and functional changes acquired in the previous analysis and the retinal nerve fiber layer (RNFL).Patients in the POAG group showed a significant (P < 0.001) volume increase in the midbrain, left brainstem, frontal gyrus, cerebellar vermis, left inferior parietal lobule, caudate nucleus, thalamus, precuneus, and Brodmann areas 7, 18, and 46. Moreover, significant (P < 0.001) BOLD signal changes were observed in the right supramarginal gyrus, frontal gyrus, superior frontal gyrus, left inferior parietal lobule, left cuneus, and left midcingulate area; many of these regions had high correlations with the RNFL.Patients with POAG undergo widespread and complex changes in cortical brain structure and blood flow. (ClinicalTrials.gov number: NCT02570867).
Li, Yongxin; Hu, Yuzheng; Wang, Yunqi; Weng, Jian; Chen, Feiyan
2013-01-01
Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM) for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI) to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the gray matter (GM) volume in the left intraparietal sulcus (IPS). Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF), bilateral inferior longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA) values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children's arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren. PMID:24367320
White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis.
Perlaki, Gabor; Horvath, Reka; Orsi, Gergely; Aradi, Mihaly; Auer, Tibor; Varga, Eszter; Kantor, Gyongyi; Altbäcker, Anna; John, Flora; Doczi, Tamas; Komoly, Samuel; Kovacs, Norbert; Schwarcz, Attila; Janszky, Jozsef
2013-08-01
Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system. Copyright © 2013 Elsevier Inc. All rights reserved.
Hautvast, Gilion L T F; Salton, Carol J; Chuang, Michael L; Breeuwer, Marcel; O'Donnell, Christopher J; Manning, Warren J
2012-05-01
Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases. We quantified the impact of manual contour corrections on both analysis time and quantitative measurements obtained from left ventricular short-axis cine images acquired from 1555 participants of the Framingham Heart Study Offspring cohort using computer-aided contour detection methods. The total analysis time for a single case was 7.6 ± 1.7 min for an average of 221 ± 36 myocardial contours per participant. This included 4.8 ± 1.6 min for manual contour correction of 2% of all automatically detected endocardial contours and 8% of all automatically detected epicardial contours. However, the impact of these corrections on global left ventricular parameters was limited, introducing differences of 0.4 ± 4.1 mL for end-diastolic volume, -0.3 ± 2.9 mL for end-systolic volume, 0.7 ± 3.1 mL for stroke volume, and 0.3 ± 1.8% for ejection fraction. We conclude that left ventricular functional parameters can be obtained under 5 min from short-axis functional cardiac magnetic resonance images using automatic contour detection methods. Manual correction more than doubles analysis time, with minimal impact on left ventricular volumes and ejection fraction. Copyright © 2011 Wiley Periodicals, Inc.
Big Sky and Greenhorn Drill Holes and CheMin X-ray Diffraction
2015-12-17
The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Big Sky" and "Greenhorn" target locations, shown at left. X-ray diffraction analysis of the Greenhorn sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed an abundance of silica in the form of noncrystalline opal. The broad hump in the background of the X-ray diffraction pattern for Greenhorn, compared to Big Sky, is diagnostic of opal. The image of Big Sky at upper left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera the day the hole was drilled, Sept. 29, 2015, during the mission's 1,119th Martian day, or sol. The Greenhorn hole was drilled, and the MAHLI image at lower left was taken, on Oct. 18, 2015 (Sol 1137). http://photojournal.jpl.nasa.gov/catalog/PIA20272
NASA Astrophysics Data System (ADS)
Ben-Zikri, Yehuda Kfir; Linte, Cristian A.
2016-03-01
Region of interest detection is a precursor to many medical image processing and analysis applications, including segmentation, registration and other image manipulation techniques. The optimal region of interest is often selected manually, based on empirical knowledge and features of the image dataset. However, if inconsistently identified, the selected region of interest may greatly affect the subsequent image analysis or interpretation steps, in turn leading to incomplete assessment during computer-aided diagnosis or incomplete visualization or identification of the surgical targets, if employed in the context of pre-procedural planning or image-guided interventions. Therefore, the need for robust, accurate and computationally efficient region of interest localization techniques is prevalent in many modern computer-assisted diagnosis and therapy applications. Here we propose a fully automated, robust, a priori learning-based approach that provides reliable estimates of the left and right ventricle features from cine cardiac MR images. The proposed approach leverages the temporal frame-to-frame motion extracted across a range of short axis left ventricle slice images with small training set generated from les than 10% of the population. This approach is based on histogram of oriented gradients features weighted by local intensities to first identify an initial region of interest depicting the left and right ventricles that exhibits the greatest extent of cardiac motion. This region is correlated with the homologous region that belongs to the training dataset that best matches the test image using feature vector correlation techniques. Lastly, the optimal left ventricle region of interest of the test image is identified based on the correlation of known ground truth segmentations associated with the training dataset deemed closest to the test image. The proposed approach was tested on a population of 100 patient datasets and was validated against the ground truth region of interest of the test images manually annotated by experts. This tool successfully identified a mask around the LV and RV and furthermore the minimal region of interest around the LV that fully enclosed the left ventricle from all testing datasets, yielding a 98% overlap with their corresponding ground truth. The achieved mean absolute distance error between the two contours that normalized by the radius of the ground truth is 0.20 +/- 0.09.
Welker, Kirk M; De Jesus, Reordan O; Watson, Robert E; Machulda, Mary M; Jack, Clifford R
2012-10-01
To test the hypothesis that leukoaraiosis alters functional activation during a semantic decision language task. With institutional review board approval and written informed consent, 18 right-handed, cognitively healthy elderly participants with an aggregate leukoaraiosis lesion volume of more than 25 cm(3) and 18 age-matched control participants with less than 5 cm(3) of leukoaraiosis underwent functional MR imaging to allow comparison of activation during semantic decisions with that during visual perceptual decisions. Brain statistical maps were derived from the general linear model. Spatially normalized group t maps were created from individual contrast images. A cluster extent threshold of 215 voxels was used to correct for multiple comparisons. Intergroup random effects analysis was performed. Language laterality indexes were calculated for each participant. In control participants, semantic decisions activated the bilateral visual cortex, left posteroinferior temporal lobe, left posterior cingulate gyrus, left frontal lobe expressive language regions, and left basal ganglia. Visual perceptual decisions activated the right parietal and posterior temporal lobes. Participants with leukoaraiosis showed reduced activation in all regions associated with semantic decisions; however, activation associated with visual perceptual decisions increased in extent. Intergroup analysis showed significant activation decreases in the left anterior occipital lobe (P=.016), right posterior temporal lobe (P=.048), and right basal ganglia (P=.009) in particpants with leukoariosis. Individual participant laterality indexes showed a strong trend (P=.059) toward greater left lateralization in the leukoaraiosis group. Moderate leukoaraiosis is associated with atypical functional activation during semantic decision tasks. Consequently, leukoaraiosis is an important confounding variable in functional MR imaging studies of elderly individuals. © RSNA, 2012.
Robust boundary detection of left ventricles on ultrasound images using ASM-level set method.
Zhang, Yaonan; Gao, Yuan; Li, Hong; Teng, Yueyang; Kang, Yan
2015-01-01
Level set method has been widely used in medical image analysis, but it has difficulties when being used in the segmentation of left ventricular (LV) boundaries on echocardiography images because the boundaries are not very distinguish, and the signal-to-noise ratio of echocardiography images is not very high. In this paper, we introduce the Active Shape Model (ASM) into the traditional level set method to enforce shape constraints. It improves the accuracy of boundary detection and makes the evolution more efficient. The experiments conducted on the real cardiac ultrasound image sequences show a positive and promising result.
Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino
2018-01-01
Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P < 0.01). Blood flow analysis from manual and automatically corrected segmentations did not differ significantly (P > 0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Adolescents' behavioral and neural responses to e-cigarette advertising.
Chen, Yvonnes; Fowler, Carina H; Papa, Vlad B; Lepping, Rebecca J; Brucks, Morgan G; Fox, Andrew T; Martin, Laura E
2018-03-01
Although adolescents are a group heavily targeted by the e-cigarette industry, research in cue-reactivity has not previously examined adolescents' behavioral and neural responses to e-cigarette advertising. This study addressed this gap through two experiments. In Experiment One, adult traditional cigarette smokers (n = 41) and non-smokers (n = 41) answered questions about e-cigarette and neutral advertising images. The 40 e-cigarette advertising images that most increased desire to use the product were matched to 40 neutral advertising images with similar content. In Experiment Two, the 80 advertising images selected in Experiment One were presented to adolescents (n = 30) during an functional magnetic resonance imaging brain scan. There was a range of traditional cigarette smoking across the sample with some adolescents engaging in daily smoking and others who had never smoked. Adolescents self-reported that viewing the e-cigarette advertising images increased their desire to smoke. Additionally, all participants regardless of smoking statuses showed significantly greater brain activation to e-cigarette advertisements in areas associated with cognitive control (left middle frontal gyrus), reward (right medial frontal gyrus), visual processing/attention (left lingual gyrus/fusiform gyrus, right inferior parietal lobule, left posterior cingulate, left angular gyrus) and memory (right parahippocampus, left insula). Further, an exploratory analysis showed that compared with age-matched non-smokers (n = 7), adolescent smokers (n = 7) displayed significantly greater neural activation to e-cigarette advertising images in the left inferior temporal gyrus/fusiform gyrus, compared with their responses to neutral advertising images. Overall, participants' brain responses to e-cigarette advertisements suggest a need to further investigate the long-run impact of e-cigarette advertising on adolescents. © 2017 Society for the Study of Addiction.
Linkersdörfer, Janosch; Lonnemann, Jan; Lindberg, Sven; Hasselhorn, Marcus; Fiebach, Christian J.
2012-01-01
The neural correlates of developmental dyslexia have been investigated intensively over the last two decades and reliable evidence for a dysfunction of left-hemispheric reading systems in dyslexic readers has been found in functional neuroimaging studies. In addition, structural imaging studies using voxel-based morphometry (VBM) demonstrated grey matter reductions in dyslexics in several brain regions. To objectively assess the consistency of these findings, we performed activation likelihood estimation (ALE) meta-analysis on nine published VBM studies reporting 62 foci of grey matter reduction in dyslexic readers. We found six significant clusters of convergence in bilateral temporo-parietal and left occipito-temporal cortical regions and in the cerebellum bilaterally. To identify possible overlaps between structural and functional deviations in dyslexic readers, we conducted additional ALE meta-analyses of imaging studies reporting functional underactivations (125 foci from 24 studies) or overactivations (95 foci from 11 studies ) in dyslexics. Subsequent conjunction analyses revealed overlaps between the results of the VBM meta-analysis and the meta-analysis of functional underactivations in the fusiform and supramarginal gyri of the left hemisphere. An overlap between VBM results and the meta-analysis of functional overactivations was found in the left cerebellum. The results of our study provide evidence for consistent grey matter variations bilaterally in the dyslexic brain and substantial overlap of these structural variations with functional abnormalities in left hemispheric regions. PMID:22916214
Analysis and improvement of the quantum image matching
NASA Astrophysics Data System (ADS)
Dang, Yijie; Jiang, Nan; Hu, Hao; Zhang, Wenyin
2017-11-01
We investigate the quantum image matching algorithm proposed by Jiang et al. (Quantum Inf Process 15(9):3543-3572, 2016). Although the complexity of this algorithm is much better than the classical exhaustive algorithm, there may be an error in it: After matching the area between two images, only the pixel at the upper left corner of the matched area played part in following steps. That is to say, the paper only matched one pixel, instead of an area. If more than one pixels in the big image are the same as the one at the upper left corner of the small image, the algorithm will randomly measure one of them, which causes the error. In this paper, an improved version is presented which takes full advantage of the whole matched area to locate a small image in a big image. The theoretical analysis indicates that the network complexity is higher than the previous algorithm, but it is still far lower than the classical algorithm. Hence, this algorithm is still efficient.
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R., III; Gunawan, M. S.; Ge, X.; Karwoski, R. A.; Breen, J. F.; Packer, D. L.; Robb, R. A.
2012-03-01
Geometric analysis of the left atrium and pulmonary veins is important for studying reverse structural remodeling following cardiac ablation therapy. It has been shown that the left atrium decreases in volume and the pulmonary vein ostia decrease in diameter following ablation therapy. Most analysis techniques, however, require laborious manual tracing of image cross-sections. Pulmonary vein diameters are typically measured at the junction between the left atrium and pulmonary veins, called the pulmonary vein ostia, with manually drawn lines on volume renderings or on image cross-sections. In this work, we describe a technique for making semi-automatic measurements of the left atrium and pulmonary vein ostial diameters from high resolution CT scans and multi-phase datasets. The left atrium and pulmonary veins are segmented from a CT volume using a 3D volume approach and cut planes are interactively positioned to separate the pulmonary veins from the body of the left atrium. The cut plane is also used to compute the pulmonary vein ostial diameter. Validation experiments are presented which demonstrate the ability to repeatedly measure left atrial volume and pulmonary vein diameters from high resolution CT scans, as well as the feasibility of this approach for analyzing dynamic, multi-phase datasets. In the high resolution CT scans the left atrial volume measurements show high repeatability with approximately 4% intra-rater repeatability and 8% inter-rater repeatability. Intra- and inter-rater repeatability for pulmonary vein diameter measurements range from approximately 2 to 4 mm. For the multi-phase CT datasets, differences in left atrial volumes between a standard slice-by-slice approach and the proposed 3D volume approach are small, with percent differences on the order of 3% to 6%.
Guppy-Coles, Kristyan B; Prasad, Sandhir B; Smith, Kym C; Hillier, Samuel; Lo, Ada; Atherton, John J
2015-06-01
We aimed to determine the feasibility of training cardiac nurses to evaluate left ventricular function utilising a semi-automated, workstation-based protocol on three dimensional echocardiography images. Assessment of left ventricular function by nurses is an attractive concept. Recent developments in three dimensional echocardiography coupled with border detection assistance have reduced inter- and intra-observer variability and analysis time. This could allow abbreviated training of nurses to assess cardiac function. A comparative, diagnostic accuracy study evaluating left ventricular ejection fraction assessment utilising a semi-automated, workstation-based protocol performed by echocardiography-naïve nurses on previously acquired three dimensional echocardiography images. Nine cardiac nurses underwent two brief lectures about cardiac anatomy, physiology and three dimensional left ventricular ejection fraction assessment, before a hands-on demonstration in 20 cases. We then selected 50 cases from our three dimensional echocardiography library based on optimal image quality with a broad range of left ventricular ejection fractions, which was quantified by two experienced sonographers and the average used as the comparator for the nurses. Nurses independently measured three dimensional left ventricular ejection fraction using the Auto lvq package with semi-automated border detection. The left ventricular ejection fraction range was 25-72% (70% with a left ventricular ejection fraction <55%). All nurses showed excellent agreement with the sonographers. Minimal intra-observer variability was noted on both short-term (same day) and long-term (>2 weeks later) retest. It is feasible to train nurses to measure left ventricular ejection fraction utilising a semi-automated, workstation-based protocol on previously acquired three dimensional echocardiography images. Further study is needed to determine the feasibility of training nurses to acquire three dimensional echocardiography images on real-world patients to measure left ventricular ejection fraction. Nurse-performed evaluation of left ventricular function could facilitate the broader application of echocardiography to allow cost-effective screening and monitoring for left ventricular dysfunction in high-risk populations. © 2014 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Qin, J. X.; Shiota, T.; Thomas, J. D.
2000-01-01
Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.
Qin, J X; Shiota, T; Thomas, J D
2000-11-01
Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botvinick, E.H.; Frais, M.A.; Shosa, D.W.
1982-08-01
The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex andmore » then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.« less
Uruma, G; Kakuda, W; Abo, M
2010-03-01
The objective of this study was to clarify the influence of regional cerebral blood flow (rCBF) changes in language-relevant areas of the dominant hemisphere on rCBF in each region in the non-dominant hemisphere in post-stroke aphasic patients. The study subjects were 27 aphasic patients who suffered their first symptomatic stroke in the left hemisphere. In each subject, we measured rCBF by means of 99mTc-ethylcysteinate dimmer single photon emission computed tomography (SPECT). The SPECT images were analyzed by the statistical imaging analysis programs easy Z-score Imaging System (eZIS) and voxel-based stereotactic extraction estimation (vbSEE). Segmented into Brodmann Area (BA) levels, Regions of Interest (ROIs) were set in language-relevant areas bilaterally, and changes in the relative rCBF as average negative and positive Z-values were computed fully automatically. To assess the relationship between rCBF changes of each ROIs in the left and right hemispheres, the Spearman ranked correlation analysis and stepwise multiple regression analysis were applied. Globally, a negative and asymmetric influence of rCBF changes in the language-relevant areas of the dominant hemisphere on the right hemisphere was found. The rCBF decrease in left BA22 significantly influenced the rCBF increase in right BA39, BA40, BA44 and BA45. The results suggested that the chronic increase in rCBF in the right language-relevant areas is due at least in part to reduction in the trancallosal inhibitory activity of the language-dominant left hemisphere caused by the stroke lesion itself and that these relationships are not always symmetric.
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2013-01-01
Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488
NASA Astrophysics Data System (ADS)
Sheng, Yehua; Zhang, Ka; Ye, Chun; Liang, Cheng; Li, Jian
2008-04-01
Considering the problem of automatic traffic sign detection and recognition in stereo images captured under motion conditions, a new algorithm for traffic sign detection and recognition based on features and probabilistic neural networks (PNN) is proposed in this paper. Firstly, global statistical color features of left image are computed based on statistics theory. Then for red, yellow and blue traffic signs, left image is segmented to three binary images by self-adaptive color segmentation method. Secondly, gray-value projection and shape analysis are used to confirm traffic sign regions in left image. Then stereo image matching is used to locate the homonymy traffic signs in right image. Thirdly, self-adaptive image segmentation is used to extract binary inner core shapes of detected traffic signs. One-dimensional feature vectors of inner core shapes are computed by central projection transformation. Fourthly, these vectors are input to the trained probabilistic neural networks for traffic sign recognition. Lastly, recognition results in left image are compared with recognition results in right image. If results in stereo images are identical, these results are confirmed as final recognition results. The new algorithm is applied to 220 real images of natural scenes taken by the vehicle-borne mobile photogrammetry system in Nanjing at different time. Experimental results show a detection and recognition rate of over 92%. So the algorithm is not only simple, but also reliable and high-speed on real traffic sign detection and recognition. Furthermore, it can obtain geometrical information of traffic signs at the same time of recognizing their types.
Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F
2014-02-01
A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings. Copyright © 2012 Wiley Periodicals, Inc.
Ranging Apparatus and Method Implementing Stereo Vision System
NASA Technical Reports Server (NTRS)
Li, Larry C. (Inventor); Cox, Brian J. (Inventor)
1997-01-01
A laser-directed ranging system for use in telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a left and right video camera mounted on a camera platform, and a remotely positioned operator. The position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. A laser is provided between the left and right video camera and is directed by the user to point to a target device. The images produced by the left and right video cameras are processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. The horizontal disparity between the two processed images is calculated for use in a stereometric ranging analysis from which range is determined.
A Study on Analysis of EEG Caused by Grating Stimulation Imaging
NASA Astrophysics Data System (ADS)
Urakawa, Hiroshi; Nishimura, Toshihiro; Tsubai, Masayoshi; Itoh, Kenji
Recently, many researchers have studied a visual perception. Focus is attended to studies of the visual perception phenomenon by using the grating stimulation images. The previous researches have suggested that a subset of retinal ganglion cells responds to motion in the receptive field center, but only if the wider surround moves with a different trajectory. We discuss the function of human retina, and measure and analysis EEG(electroencephalography) of a normal subject who looks on grating stimulation images. We confirmed the visual perception of human by EEG signal analysis. We also have obtained that a sinusoidal grating stimulation was given, asymmetry was observed the α wave element in EEG of the symmetric part in a left hemisphere and a right hemisphere of the brain. Therefore, it is presumed that projected image is even when the still picture is seen and the image projected onto retinas of right and left eyes is not even for the dynamic scene. It evaluated it by taking the envelope curve for the detected α wave, and using the average and standard deviation.
Sievers, Burkhard; Schrader, Sebastian; Rehwald, Wolfgang; Hunold, Peter; Barkhausen, Joerg; Erbel, Raimund
2011-06-01
Papillary muscles and trabeculae for ventricular function analysis are known to significantly contribute to accurate volume and mass measurements. Fast imaging techniques such as three-dimensional steady-state free precession (3D SSFP) are increasingly being used to speed up imaging time, but sacrifice spatial resolution. It is unknown whether 3D SSFP, despite its reduced spatial resolution, allows for exact delineation of papillary muscles and trabeculations. We therefore compared 3D SSFP ventricular function measurements to those measured from standard multi-breath hold two-dimensional steady-state free precession cine images (standard 2D SSFP). 14 healthy subjects and 14 patients with impaired left ventricularfunction underwent 1.5 Tesla cine imaging. A stack of short axis images covering the left ventricle was acquired with 2D SSFP and 3D SSFP. Left ventricular volumes, ejection fraction, and mass were determined. Analysis was performed by substracting papillary muscles and trabeculae from left ventricular volumes. In addition, reproducibility was assessed. EDV, ESV, EF, and mass were not significantly different between 2D SSFP and 3D SSFP (mean difference healthy subjects: -0.06 +/- 3.2 ml, 0.54 +/- 2.2 ml, -0.45 +/- 1.8%, and 1.13 +/- 0.8 g, respectively; patients: 1.36 +/- 2.8 ml, -0.15 3.5 ml, 0.86 +/- 2.5%, and 0.91 +/- 0.9 g, respectively; P > or = 0.095). Intra- and interobserver variability was not different for 2D SSFP (P > or = 0.64 and P > or = 0.397) and 3D SSFP (P > or = 0.53 and P > or = 0.47). Differences in volumes, EF, and mass measurements between 3D SSFP and standard 2D SSFP are very small, and not statistically significant. 3D SSFP may be used for accurate ventricular function assessment when papillary muscles and trabeculations are to be taken into account.
NASA Astrophysics Data System (ADS)
Irshad, Mehreen; Muhammad, Nazeer; Sharif, Muhammad; Yasmeen, Mussarat
2018-04-01
Conventionally, cardiac MR image analysis is done manually. Automatic examination for analyzing images can replace the monotonous tasks of massive amounts of data to analyze the global and regional functions of the cardiac left ventricle (LV). This task is performed using MR images to calculate the analytic cardiac parameter like end-systolic volume, end-diastolic volume, ejection fraction, and myocardial mass, respectively. These analytic parameters depend upon genuine delineation of epicardial, endocardial, papillary muscle, and trabeculations contours. In this paper, we propose an automatic segmentation method using the sum of absolute differences technique to localize the left ventricle. Blind morphological operations are proposed to segment and detect the LV contours of the epicardium and endocardium, automatically. We test the benchmark Sunny Brook dataset for evaluation of the proposed work. Contours of epicardium and endocardium are compared quantitatively to determine contour's accuracy and observe high matching values. Similarity or overlapping of an automatic examination to the given ground truth analysis by an expert are observed with high accuracy as with an index value of 91.30% . The proposed method for automatic segmentation gives better performance relative to existing techniques in terms of accuracy.
NASA Technical Reports Server (NTRS)
Steele, P.; Kirch, D.
1975-01-01
In 47 men with arteriographically defined coronary artery disease comparative studies of left ventricular ejection fraction and segmental wall motion were made with radionuclide data obtained from the image intensifier camera computer system and with contrast cineventriculography. The radionuclide data was digitized and the images corresponding to left ventricular end-diastole and end-systole were identified from the left ventricular time-activity curve. The left ventricular end-diastolic and end-systolic images were subtracted to form a silhouette difference image which described wall motion of the anterior and inferior left ventricular segments. The image intensifier camera allows manipulation of dynamically acquired radionuclide data because of the high count rate and consequently improved resolution of the left ventricular image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja
2013-02-01
Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging systemmore » concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.« less
Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging.
Notomi, Yuichi; Lysyansky, Peter; Setser, Randolph M; Shiota, Takahiro; Popović, Zoran B; Martin-Miklovic, Maureen G; Weaver, Joan A; Oryszak, Stephanie J; Greenberg, Neil L; White, Richard D; Thomas, James D
2005-06-21
We sought to examine the accuracy/consistency of a novel ultrasound speckle tracking imaging (STI) method for left ventricular torsion (LVtor) measurement in comparison with tagged magnetic resonance imaging (MRI) (a time-domain method similar to STI) and Doppler tissue imaging (DTI) (a velocity-based approach). Left ventricular torsion from helically oriented myofibers is a key parameter of cardiac performance but is difficult to measure. Ultrasound STI is potentially suitable for measurement of angular motion because of its angle-independence. We acquired basal and apical short-axis left ventricular (LV) images in 15 patients to estimate LVtor by STI and compare it with tagged MRI and DTI. Left ventricular torsion was defined as the net difference of LV rotation at the basal and apical planes. For the STI analysis, we used high-frame (104 +/- 12 frames/s) second harmonic two-dimensional images. Data on 13 of 15 patients were usable for STI analysis, and LVtor profile estimated by STI strongly correlated with those by tagged MRI (y = 0.95x + 0.19, r = 0.93, p < 0.0001, analyzed by repeated-measures regression models). The STI torsional velocity profile also correlated well with that by the DTI method (y = 0.79x + 2.4, r = 0.76, p < 0.0001, by repeated-measures regression models) with acceptable bias. The STI estimation of LVtor is concordant with those analyzed by tagged MRI (data derived from tissue displacement) and also showed good agreement with those by DTI (data derived from tissue velocity). Ultrasound STI is a promising new method to assess LV torsional deformation and may make the assessment more available in clinical and research cardiology.
Pignatti, Marco; Mantovani, Francesca; Bertelli, Luca; Barbieri, Andrea; Pacchioni, Lucrezia; Loschi, Pietro; De Santis, Giorgio
2013-08-01
Use of silicone expanders and implants is the most common breast reconstruction technique after mastectomy. Postmastectomy patients often need echocardiographic monitoring of potential cardiotoxicity induced by cancer chemotherapy. The impairment of the echocardiographic acoustic window caused by silicone implants for breast augmentation has been reported. This study investigates whether the echocardiographic image quality was impaired in women reconstructed with silicone expanders and implants. The records of 44 consecutive women who underwent echocardiographic follow-up after breast reconstruction with expanders and implants at the authors' institution from January of 2000 to August of 2012 were reviewed. The population was divided into a study group (left or bilateral breast expanders/implants, n=30) and a control group (right breast expanders/implants, n=14). The impact of breast expanders/implants on echocardiographic image quality was tested (analysis of covariance model). Patients with a breast expander/implant (left or bilateral and right breast expanders/implants) were included. The mean volume of the breast devices was 353.2±125.5 cc. The quality of the echocardiographic images was good or sufficient in the control group; in the study group, it was judged as adequate in only 50 percent of cases (15 patients) and inadequate in the remaining 15 patients (p<0.001). At multivariable analysis, a persistent relationship between device position (left versus right) and image quality (p=0.001) was shown, independent from other factors. Silicone expanders and implants in postmastectomy left breast reconstruction considerably reduce the image quality of echocardiography. This may have important clinical implications, given the need for periodic echocardiographic surveillance before and during chemotherapy. Therapeutic, III.
Wörgötter, F
1999-10-01
In a stereoscopic system both eyes or cameras have a slightly different view. As a consequence small variations between the projected images exist ("disparities") which are spatially evaluated in order to retrieve depth information. We will show that two related algorithmic versions can be designed which recover disparity. Both approaches are based on the comparison of filter outputs from filtering the left and the right image. The difference of the phase components between left and right filter responses encodes the disparity. One approach uses regular Gabor filters and computes the spatial phase differences in a conventional way as described already in 1988 by Sanger. Novel to this approach, however, is that we formulate it in a way which is fully compatible with neural operations in the visual cortex. The second approach uses the apparently paradoxical similarity between the analysis of visual disparities and the determination of the azimuth of a sound source. Animals determine the direction of the sound from the temporal delay between the left and right ear signals. Similarly, in our second approach we transpose the spatially defined problem of disparity analysis into the temporal domain and utilize two resonators implemented in the form of causal (electronic) filters to determine the disparity as local temporal phase differences between the left and right filter responses. This approach permits video real-time analysis of stereo image sequences (see movies at http://www.neurop.ruhr-uni-bochum.de/Real- Time-Stereo) and a FPGA-based PC-board has been developed which performs stereo-analysis at full PAL resolution in video real-time. An ASIC chip will be available in March 2000.
Quantitative analysis of rib movement based on dynamic chest bone images: preliminary results
NASA Astrophysics Data System (ADS)
Tanaka, R.; Sanada, S.; Oda, M.; Mitsutaka, M.; Suzuki, K.; Sakuta, K.; Kawashima, H.
2014-03-01
Rib movement during respiration is one of the diagnostic criteria in pulmonary impairments. In general, the rib movement is assessed in fluoroscopy. However, the shadows of lung vessels and bronchi overlapping ribs prevent accurate quantitative analysis of rib movement. Recently, an image-processing technique for separating bones from soft tissue in static chest radiographs, called "bone suppression technique", has been developed. Our purpose in this study was to evaluate the usefulness of dynamic bone images created by the bone suppression technique in quantitative analysis of rib movement. Dynamic chest radiographs of 10 patients were obtained using a dynamic flat-panel detector (FPD). Bone suppression technique based on a massive-training artificial neural network (MTANN) was applied to the dynamic chest images to create bone images. Velocity vectors were measured in local areas on the dynamic bone images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as reduced rib velocity vectors. Vector maps in all normal cases exhibited left-right symmetric distributions, whereas those in abnormal cases showed nonuniform distributions. In conclusion, dynamic bone images were useful for accurate quantitative analysis of rib movements: Limited rib movements were indicated as a reduction of rib movement and left-right asymmetric distribution on vector maps. Thus, dynamic bone images can be a new diagnostic tool for quantitative analysis of rib movements without additional radiation dose.
Izgi, Cemil; Vassiliou, Vassilis; Baksi, A John; Prasad, Sanjay K
2016-11-01
Differential diagnosis of asymmetrical left ventricular hypertrophy may be challenging, particularly in patients with history of hypertension. A middle-aged man underwent an echocardiographic examination during workup for hypertension, which unexpectedly showed significant asymmetrical septal hypertrophy and raised suspicion for hypertrophic cardiomyopathy. Cardiovascular magnetic resonance confirmed the asymmetrical hypertrophy. No myocardial late gadolinium contrast enhancement was seen. However, precontrast T1 mapping revealed a low native myocardial T1 value. This was highly suggestive of Anderson-Fabry disease, which was subsequently proved with very low alpha galactosidase enzyme levels and mutation analysis. The case illustrates clinical usefulness of multimodality imaging and the novel tissue characterization techniques for assessment of left ventricular hypertrophy. © 2016, Wiley Periodicals, Inc.
Chen, Xin; Qin, Lei; Pan, Dan; Huang, Yanqi; Yan, Lifen; Wang, Guangyi; Liu, Yubao; Liang, Changhong; Liu, Zaiyi
2014-04-01
To prospectively compare the reproducibility of normal liver apparent diffusion coefficient (ADC) measurements by using different respiratory motion compensation techniques with multiple breath-hold (MBH), free-breathing (FB), respiratory-triggered (RT), and navigator-triggered (NT) diffusion-weighted (DW) imaging and to compare the ADCs at different liver anatomic locations. The study protocol was approved by the institutional review board, and written informed consent was obtained from each participant. Thirty-nine volunteers underwent liver DW imaging twice. Imaging was performed with a 1.5-T MR imager with MBH, FB, RT, and NT techniques (b = 0, 100, and 500 sec/mm(2)). Three representative sections--superior, central, and inferior--were selected on left and right liver lobes, respectively. On each selected section, three regions of interest were drawn, and ADCs were measured. Analysis of variance was used to assess ADCs among the four techniques and various anatomic locations. Reproducibility of ADCs was assessed with the Bland-Altman method. ADCs obtained with MBH (range: right lobe, [1.641-1.662] × 10(-3)mm(2)/sec; left lobe, [2.034-2.054] ×10(-3)mm(2)/sec) were higher than those obtained with FB (right, [1.349-1.391] ×10(-3)mm(2)/sec; left, [1.630-1.700] ×10(-3)mm(2)/sec), RT (right, [1.439-1.455] ×10(-3)mm(2)/sec; left, [1.720-1.755] ×10(-3)mm(2)/sec), or NT (right, [1.387-1.400] ×10(-3)mm(2)/sec; left, [1.661-1.736] ×10(-3)mm(2)/sec) techniques (P < .001); however, no significant difference was observed between ADCs obtained with FB, RT, and NT techniques (P = .130 to P >.99). ADCs showed a trend to decrease moving from left to right. Reproducibility in the left liver lobe was inferior to that in the right, and the central middle segment in the right lobe had the most reproducible ADC. Statistical differences in ADCs were observed in the left-right direction in the right lobe (P < .001), but they were not observed in the superior-inferior direction (P = .144-.450). However, in the left liver lobe, statistical differences existed in both directions (P = .001 to P = .016 in the left-right direction, P < .001 in the superior-inferior direction). Both anatomic location and DW imaging technique influence liver ADC measurements and their reproducibility. FB DW imaging is recommended for liver DW imaging because of its good reproducibility and shorter acquisition time compared with that of MBH, RT, and NT techniques. RSNA, 2014
Lin, Kai; Collins, Jeremy D; Lloyd-Jones, Donald M; Jolly, Marie-Pierre; Li, Debiao; Markl, Michael; Carr, James C
2016-03-01
To assess the performance of automated quantification of left ventricular function and mass based on heart deformation analysis (HDA) in asymptomatic older adults. This study complied with Health Insurance Portability and Accountability Act regulations. Following the approval of the institutional review board, 160 asymptomatic older participants were recruited for cardiac magnetic resonance imaging including two-dimensional cine images covering the entire left ventricle in short-axis view. Data analysis included the calculation of left ventricular ejection fraction (LVEF), left ventricular mass (LVM), and cardiac output (CO) using HDA and standard global cardiac function analysis (delineation of end-systolic and end-diastolic left ventricle epi- and endocardial borders). The agreement between methods was evaluated using intraclass correlation coefficient (ICC) and coefficient of variation (CoV). HDA had a shorter processing time than the standard method (1.5 ± 0.3 min/case vs. 5.8 ± 1.4 min/case, P < 0.001). There was good agreement for LVEF (ICC = 0.552, CoV = 10.5%), CO (ICC = 0.773, CoV = 13.5%), and LVM (ICC = 0.859, CoV = 14.5%) acquired with the standard method and HDA. There was a systemic bias toward lower LVEF (62.8% ± 8.3% vs. 69.3% ± 6.7%, P < 0.001) and CO (4.4 ± 1.0 L/min vs. 4.8 ± 1.3 L/min, P < 0.001) by HDA compared to the standard technique. Conversely, HDA overestimated LVM (114.8 ± 30.1 g vs. 100.2 ± 29.0 g, P < 0.001) as compared to the reference method. HDA has the potential to measure LVEF, CO, and LVM without the need for user interaction based on standard cardiac two-dimensional cine images. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Filtering and left ventricle segmentation of the fetal heart in ultrasound images
NASA Astrophysics Data System (ADS)
Vargas-Quintero, Lorena; Escalante-Ramírez, Boris
2013-11-01
In this paper, we propose to use filtering methods and a segmentation algorithm for the analysis of fetal heart in ultrasound images. Since noise speckle makes difficult the analysis of ultrasound images, the filtering process becomes a useful task in these types of applications. The filtering techniques consider in this work assume that the speckle noise is a random variable with a Rayleigh distribution. We use two multiresolution methods: one based on wavelet decomposition and the another based on the Hermite transform. The filtering process is used as way to strengthen the performance of the segmentation tasks. For the wavelet-based approach, a Bayesian estimator at subband level for pixel classification is employed. The Hermite method computes a mask to find those pixels that are corrupted by speckle. On the other hand, we picked out a method based on a deformable model or "snake" to evaluate the influence of the filtering techniques in the segmentation task of left ventricle in fetal echocardiographic images.
[A voxel-based morphometric analysis of brain gray matter in online game addicts].
Weng, Chuan-bo; Qian, Ruo-bing; Fu, Xian-ming; Lin, Bin; Ji, Xue-bing; Niu, Chao-shi; Wang, Ye-han
2012-12-04
To explore the possible brain mechanism of online game addiction (OGA) in terms of brain morphology through voxel-based morphometric (VBM) analysis. Seventeen subjects with OGA and 17 age- and gender-matched healthy controls (HC group) were recruited from Department of Psychology at our hospital during February-December 2011. The internet addiction scale (IAS) was used to measure the degree of OGA tendency. Magnetic resonance imaging (MRI) scans were performed to acquire 3-dimensional T1-weighted images. And FSL 4.1 software was employed to confirm regional gray matter volume changes. For the regions where OGA subjects showed significantly different gray matter volumes from the controls, the gray matter volumes of these areas were extracted, averaged and regressed against the scores of IAS. The OGA group had lower gray matter volume in left orbitofrontal cortex (OFC), left medial prefrontal cortex (mPFC), bilateral insula (INS), left posterior cingulate cortex (PCC) and left supplementary motor area (SMA). Gray matter volumes of left OFC and bilateral INS showed a negative correlation with the scores of IAS (r = -0.65, r = -0.78, P < 0.05). Gray matter volume changes are present in online game addicts and they may be correlated with the occurrence and maintenance of OGA.
Pahlevan, Niema M; Rinderknecht, Derek G; Tavallali, Peyman; Razavi, Marianne; Tran, Thao T; Fong, Michael W; Kloner, Robert A; Csete, Marie; Gharib, Morteza
2017-07-01
The study is based on previously reported mathematical analysis of arterial waveform that extracts hidden oscillations in the waveform that we called intrinsic frequencies. The goal of this clinical study was to compare the accuracy of left ventricular ejection fraction derived from intrinsic frequencies noninvasively versus left ventricular ejection fraction obtained with cardiac MRI, the most accurate method for left ventricular ejection fraction measurement. After informed consent, in one visit, subjects underwent cardiac MRI examination and noninvasive capture of a carotid waveform using an iPhone camera (The waveform is captured using a custom app that constructs the waveform from skin displacement images during the cardiac cycle.). The waveform was analyzed using intrinsic frequency algorithm. Outpatient MRI facility. Adults able to undergo MRI were referred by local physicians or self-referred in response to local advertisement and included patients with heart failure with reduced ejection fraction diagnosed by a cardiologist. Standard cardiac MRI sequences were used, with periodic breath holding for image stabilization. To minimize motion artifact, the iPhone camera was held in a cradle over the carotid artery during iPhone measurements. Regardless of neck morphology, carotid waveforms were captured in all subjects, within seconds to minutes. Seventy-two patients were studied, ranging in age from 20 to 92 years old. The main endpoint of analysis was left ventricular ejection fraction; overall, the correlation between ejection fraction-iPhone and ejection fraction-MRI was 0.74 (r = 0.74; p < 0.0001; ejection fraction-MRI = 0.93 × [ejection fraction-iPhone] + 1.9). Analysis of carotid waveforms using intrinsic frequency methods can be used to document left ventricular ejection fraction with accuracy comparable with that of MRI. The measurements require no training to perform or interpret, no calibration, and can be repeated at the bedside to generate almost continuous analysis of left ventricular ejection fraction without arterial cannulation.
Chang, Sung-A; Kim, Hyung-Kwan; Lee, Sang-Chol; Kim, Eun-Young; Hahm, Seung-Hee; Kwon, Oh Min; Park, Seung Woo; Choe, Yeon Hyeon; Oh, Jae K
2013-04-01
Left ventricular (LV) mass is an important prognostic indicator in hypertrophic cardiomyopathy. Although LV mass can be easily calculated using conventional echocardiography, it is based on geometric assumptions and has inherent limitations in asymmetric left ventricles. Real-time three-dimensional echocardiographic (RT3DE) imaging with single-beat capture provides an opportunity for the accurate estimation of LV mass. The aim of this study was to validate this new technique for LV mass measurement in patients with hypertrophic cardiomyopathy. Sixty-nine patients with adequate two-dimensional (2D) and three-dimensional echocardiographic image quality underwent cardiac magnetic resonance (CMR) imaging and echocardiography on the same day. Real-time three-dimensional echocardiographic images were acquired using an Acuson SC2000 system, and CMR-determined LV mass was considered the reference standard. Left ventricular mass was derived using the formula of the American Society of Echocardiography (M-mode mass), the 2D-based truncated ellipsoid method (2D mass), and the RT3DE technique (RT3DE mass). The mean time for RT3DE analysis was 5.85 ± 1.81 min. Intraclass correlation analysis showed a close relationship between RT3DE and CMR LV mass (r = 0.86, P < .0001). However, LV mass by the M-mode or 2D technique showed a smaller intraclass correlation coefficient compared with CMR-determined mass (r = 0.48, P = .01, and r = 0.71, P < .001, respectively). Bland-Altman analysis showed reasonable limits of agreement between LV mass by RT3DE imaging and by CMR, with a smaller positive bias (19.5 g [9.1%]) compared with that by the M-mode and 2D methods (-35.1 g [-20.2%] and 30.6 g [17.6%], respectively). RT3DE measurement of LV mass using the single-beat capture technique is practical and more accurate than 2D or M-mode LV mass in patients with hypertrophic cardiomyopathy. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.
Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto
2004-10-01
The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.
Buckskin Drill Hole and CheMin X-ray Diffraction
2015-12-17
The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Buckskin" target location, shown at left. X-ray diffraction analysis of the Buckskin sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed the presence of a silica-containing mineral named tridymite. This is the first detection of tridymite on Mars. Peaks in the X-ray diffraction pattern are from minerals in the sample, and every mineral has a diagnostic set of peaks that allows identification. The image of Buckskin at left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera on July 30, 2015, and is also available at PIA19804. http://photojournal.jpl.nasa.gov/catalog/PIA20271
Left Panorama of Spirit's Landing Site
NASA Technical Reports Server (NTRS)
2004-01-01
Left Panorama of Spirit's Landing Site
This is a version of the first 3-D stereo image from the rover's navigation camera, showing only the view from the left stereo camera onboard the Mars Exploration Rover Spirit. The left and right camera images are combined to produce a 3-D image.Chen, Hua Hsua; Nicoletti, Mark A; Hatch, John P; Sassi, Roberto B; Axelson, David; Brambilla, Paolo; Monkul, E Serap; Keshavan, Matcheri S; Ryan, Neal D; Birmaher, Boris; Soares, Jair C
2004-06-03
Abnormalities in left superior temporal gyrus (STG) have been reported in adult bipolar patients. However, it is not known whether such abnormalities are already present early in the course of this illness. Magnetic resonance imaging (MRI) morphometric analysis of STG was performed in 16 DSM-IV children and adolescents with bipolar disorder (mean age+/-SD 15.5+/-3.4 years) and 21 healthy controls (mean age+/-SD 16.9+/-3.8 years). Subjects underwent a 3D spoiled gradient recalled acquisition MRI examination. Using analysis of covariance with age, gender and intra-cranial brain volume as covariates, we found significantly smaller left total STG volumes in bipolar patients (12.5+/-1.5 cm(3)) compared with healthy controls (13.6+/-2.5 cm(3)) (F=4.45, d.f.=1, 32, P=0.04). This difference was accounted for by significantly smaller left and right STG white matter volumes in bipolar patients. Decreased white matter connections may be the core of abnormalities in STG, which is an important region for speech, language and communication, and could possibly underlie neurocognitive deficits present in bipolar patients.
Echocardiographic measurements of left ventricular mass by a non-geometric method
NASA Technical Reports Server (NTRS)
Parra, Beatriz; Buckey, Jay; Degraff, David; Gaffney, F. Andrew; Blomqvist, C. Gunnar
1987-01-01
The accuracy of a new nongeometric method for calculating left ventricular myocardial volumes from two-dimensional echocardiographic images was assessed in vitro using 20 formalin-fixed normal human hearts. Serial oblique short-axis images were acquired from one point at 5-deg intervals, for a total of 10-12 cross sections. Echocardiographic myocardial volumes were calculated as the difference between the volumes defined by the epi- and endocardial surfaces. Actual myocardial volumes were determined by water displacement. Volumes ranged from 80 to 174 ml (mean 130.8 ml). Linear regression analysis demonstrated excellent agreement between the echocardiographic and direct measurements.
Karnan, M; Thangavel, K
2007-07-01
The presence of microcalcifications in breast tissue is one of the most incident signs considered by radiologist for an early diagnosis of breast cancer, which is one of the most common forms of cancer among women. In this paper, the Genetic Algorithm (GA) is proposed for automatic look at commonly prone area the breast border and nipple position to discover the suspicious regions on digital mammograms based on asymmetries between left and right breast image. The basic idea of the asymmetry approach is to scan left and right images are subtracted to extract the suspicious region. The proposed system consists of two steps: First, the mammogram images are enhanced using median filter, normalize the image, at the pectoral muscle region is excluding the border of the mammogram and comparing for both left and right images from the binary image. Further GA is applied to magnify the detected border. The figure of merit is calculated to evaluate whether the detected border is exact or not. And the nipple position is identified using GA. The some comparisons method is adopted for detection of suspected area. Second, using the border points and nipple position as the reference the mammogram images are aligned and subtracted to extract the suspicious region. The algorithms are tested on 114 abnormal digitized mammograms from Mammogram Image Analysis Society database.
Chu, Shuilian; Xiao, Dan; Wang, Shuangkun; Peng, Peng; Xie, Teng; He, Yong; Wang, Chen
2014-01-01
Nicotine is primarily rsponsible for the highly addictive properties of cigarettes. Similar to other substances, nicotine dependence is related to many important brain regions, particular in mesolimbic reward circuit. This study was to further reveal the alteration of brain function activity during resting state in chronic smokers by fractional amplitude of low frequency fluctuation (fALFF) based on functional magnetic resonance imaging (fMRI), in order to provide the evidence of neurobiological mechanism of smoking. This case control study involved twenty healthy smokers and nineteen healthy nonsmokers recruited by advertisement. Sociodemographic, smoking related characteristics and fMRI images were collected and the data analyzed. Compared with nonsmokers, smokers showed fALFF increased significantly in the left middle occipital gyrus, left limbic lobe and left cerebellum posterior lobe but decreases in the right middle frontal gyrus, right superior temporal gyrus, right extra nuclear, left postcentral gyrus and left cerebellum anterior lobe (cluster size >100 voxels). Compared with light smokers (pack years ≤ 20), heavy smokers (pack years >20) showed fALFF increased significantly in the right superior temporal gyrus, right precentral gyrus, and right occipital lobe/cuneus but decreased in the right/left limbic lobe/cingulate gyrus, right/left frontal lobe/sub gyral, right/left cerebellum posterior lobe (cluster size >50 voxels). Compared with nonsevere nicotine dependent smokers (Fagerstrőm test for nicotine dependence, score ≤ 6), severe nicotine dependent smokers (score >6) showed fALFF increased significantly in the right/left middle frontal gyrus, right superior frontal gyrus and left inferior parietal lobule but decreased in the left limbic lobe/cingulate gyrus (cluster size >25 voxels). In smokers during rest, the activity of addiction related regions were increased and the activity of smoking feeling, memory, related regions were also changed. The resting state activity changes in many regions were associated with the cumulative amount of nicotine intake and the severity of nicotine dependence.
Functional changes of neural circuits in stroke patients with dysphagia: A meta-analysis.
Liu, Lu; Xiao, Yuan; Zhang, Wenjing; Yao, Li; Gao, Xin; Chandan, Shah; Lui, Su
2017-08-01
Dysphagia is a common problem in stroke patients with unclear pathogenesis. Several recent functional magnetic resonance imaging (fMRI) studies had been carried out to explore the cerebral functional changes in dysphagic stroke patients. The aim of this study was to analysis these imaging findings using a meta-analysis. We used seed-based d mapping (SDM) to conduct a meta-analysis for dysphagic stroke patients prior to any kind of special treatment for dysphagia. A systematic search was conducted for the relevant studies. SDM meta-analysis method was used to examine regions of increased and decreased functional activation between dysphagic stroke patients and healthy controls. Finally, six studies including 81 stroke patients with dysphagia and 78 healthy controls met the inclusion standards. When compared with healthy controls, stroke patients with dysphagia showed hyperactivation in left cingulate gyrus, left precentral gyrus and right posterior cingulate gyrus, and hypoactivation in right cuneus and left middle frontal gyrus. The hyperactivity of precentral gyrus is crucial in stroke patients with dysphagia and may be associated with the severity of stroke. Besides the motor areas, the default-mode network regions (DMN) and affective network regions (AN) circuits are also involved in dysphagia after stroke. © 2017 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.
Huttin, Olivier; Voilliot, Damien; Mandry, Damien; Venner, Clément; Juillière, Yves; Selton-Suty, Christine
2016-01-01
The acknowledgment of tricuspid regurgitation (TR) as a stand-alone and progressive entity, worsening the prognosis of patients whatever its aetiology, has led to renewed interest in the tricuspid-right ventricular complex. The tricuspid valve (TV) is a complex, dynamic and changing structure. As the TV is not easy to analyse, three-dimensional imaging, cardiac magnetic resonance imaging and computed tomography scans may add to two-dimensional transthoracic and transoesophageal echocardiographic data in the analysis of TR. Not only the severity of TR, but also its mechanisms, the mode of leaflet coaptation, the degree of tricuspid annulus enlargement and tenting, and the haemodynamic consequences for right atrial and right ventricular morphology and function have to be taken into account. TR is functional and is a satellite of left-sided heart disease and/or elevated pulmonary artery pressure most of the time; a particular form is characterized by TR worsening after left-sided valve surgery, which has been shown to impair patient prognosis. A better description of TV anatomy and function by multimodality imaging should help with the appropriate selection of patients who will benefit from either surgical TV repair/replacement or a percutaneous procedure for TR, especially among patients who are to undergo or have undergone primary left-sided valvular surgery. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Thoma, Volker; Henson, Richard N.
2011-01-01
The effects of attention and object configuration on the neural responses to short-lag visual image repetition were investigated with fMRI. Attention to one of two object images in a prime display was cued spatially. The images were either intact or split vertically; a manipulation that negates the influence of view-based representations. A subsequent single intact probe image was named covertly. Behavioural priming observed as faster button presses was found for attended primes in both intact and split configurations, but only for uncued primes in the intact configuration. In a voxel-wise analysis, fMRI repetition suppression (RS) was observed in a left mid-fusiform region for attended primes, both intact and split, whilst a right intraparietal region showed repetition enhancement (RE) for intact primes, regardless of attention. In a factorial analysis across regions of interest (ROIs) defined from independent localiser contrasts, RS for attended objects in the ventral stream was significantly left-lateralised, whilst repetition effects in ventral and dorsal ROIs correlated with the amount of priming in specific conditions. These fMRI results extend hybrid theories of object recognition, implicating left ventral stream regions in analytic processing (requiring attention), consistent with prior hypotheses about hemispheric specialisation, and implicating dorsal stream regions in holistic processing (independent of attention). PMID:21554967
Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters
NASA Technical Reports Server (NTRS)
Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)
2018-01-01
A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.
Lu, Haitao; Wu, Haiyan; Cheng, Hewei; Wei, Dongjie; Wang, Xiaoyan; Fan, Yong; Zhang, Hao; Zhang, Tong
2014-01-01
As a special aphasia, the occurrence of crossed aphasia in dextral (CAD) is unusual. This study aims to improve the language ability by applying 1 Hz repetitive transcranial magnetic stimulation (rTMS). We studied multiple modality imaging of structural connectivity (diffusion tensor imaging), functional connectivity (resting fMRI), PET, and neurolinguistic analysis on a patient with CAD. Furthermore, we applied rTMS of 1 Hz for 40 times and observed the language function improvement. The results indicated that a significantly reduced structural and function connectivity was found in DTI and fMRI data compared with the control. The PET imaging showed hypo-metabolism in right hemisphere and left cerebellum. In conclusion, one of the mechanisms of CAD is that right hemisphere is the language dominance. Stimulating left Wernicke area could improve auditory comprehension, stimulating left Broca's area could enhance expression, and the results outlasted 6 months by 1 Hz rTMS balancing the excitability inter-hemisphere in CAD.
Facial color processing in the face-selective regions: an fMRI study.
Nakajima, Kae; Minami, Tetsuto; Tanabe, Hiroki C; Sadato, Norihiro; Nakauchi, Shigeki
2014-09-01
Facial color is important information for social communication as it provides important clues to recognize a person's emotion and health condition. Our previous EEG study suggested that N170 at the left occipito-temporal site is related to facial color processing (Nakajima et al., [2012]: Neuropsychologia 50:2499-2505). However, because of the low spatial resolution of EEG experiment, the brain region is involved in facial color processing remains controversial. In the present study, we examined the neural substrates of facial color processing using functional magnetic resonance imaging (fMRI). We measured brain activity from 25 subjects during the presentation of natural- and bluish-colored face and their scrambled images. The bilateral fusiform face (FFA) area and occipital face area (OFA) were localized by the contrast of natural-colored faces versus natural-colored scrambled images. Moreover, region of interest (ROI) analysis showed that the left FFA was sensitive to facial color, whereas the right FFA and the right and left OFA were insensitive to facial color. In combination with our previous EEG results, these data suggest that the left FFA may play an important role in facial color processing. Copyright © 2014 Wiley Periodicals, Inc.
Brain Responses to Dynamic Facial Expressions: A Normative Meta-Analysis.
Zinchenko, Oksana; Yaple, Zachary A; Arsalidou, Marie
2018-01-01
Identifying facial expressions is crucial for social interactions. Functional neuroimaging studies show that a set of brain areas, such as the fusiform gyrus and amygdala, become active when viewing emotional facial expressions. The majority of functional magnetic resonance imaging (fMRI) studies investigating face perception typically employ static images of faces. However, studies that use dynamic facial expressions (e.g., videos) are accumulating and suggest that a dynamic presentation may be more sensitive and ecologically valid for investigating faces. By using quantitative fMRI meta-analysis the present study examined concordance of brain regions associated with viewing dynamic facial expressions. We analyzed data from 216 participants that participated in 14 studies, which reported coordinates for 28 experiments. Our analysis revealed bilateral fusiform and middle temporal gyri, left amygdala, left declive of the cerebellum and the right inferior frontal gyrus. These regions are discussed in terms of their relation to models of face processing.
Optical Methods in Fingerprint Imaging for Medical and Personality Applications
Wang, Jing-Wein; Lin, Ming-Hsun; Chang, Yao-Lang; Kuo, Chia-Ming
2017-01-01
Over the years, analysis and induction of personality traits has been a topic for individual subjective conjecture or speculation, rather than a focus of inductive scientific analysis. This study proposes a novel framework for analysis and induction of personality traits. First, 14 personality constructs based on the “Big Five” personality factors were developed. Next, a new fingerprint image algorithm was used for classification, and the fingerprints were classified into eight types. The relationship between personality traits and fingerprint type was derived from the results of the questionnaire survey. After comparison of pre-test and post-test results, this study determined the induction ability of personality traits from fingerprint type. Experimental results showed that the left/right thumbprint type of a majority of subjects was left loop/right loop and that the personalities of individuals with this fingerprint type were moderate with no significant differences in the 14 personality constructs. PMID:29065556
Optical Methods in Fingerprint Imaging for Medical and Personality Applications.
Wang, Chia-Nan; Wang, Jing-Wein; Lin, Ming-Hsun; Chang, Yao-Lang; Kuo, Chia-Ming
2017-10-23
Over the years, analysis and induction of personality traits has been a topic for individual subjective conjecture or speculation, rather than a focus of inductive scientific analysis. This study proposes a novel framework for analysis and induction of personality traits. First, 14 personality constructs based on the "Big Five" personality factors were developed. Next, a new fingerprint image algorithm was used for classification, and the fingerprints were classified into eight types. The relationship between personality traits and fingerprint type was derived from the results of the questionnaire survey. After comparison of pre-test and post-test results, this study determined the induction ability of personality traits from fingerprint type. Experimental results showed that the left/right thumbprint type of a majority of subjects was left loop/right loop and that the personalities of individuals with this fingerprint type were moderate with no significant differences in the 14 personality constructs.
Powell, J L; Parkes, L; Kemp, G J; Sluming, V; Barrick, T R; García-Fiñana, M
2012-04-05
Diffusion tensor magnetic resonance imaging provides a way of assessing the asymmetry of white matter (WM) connectivity, the degree of anisotropic diffusion within a given voxel being a marker of coherently bundled myelinated fibers. Voxel-based statistical analysis was performed on fractional anisotropy (FA) images of 42 right- and 40 left-handers, to assess differences in underlying WM anisotropy and FA asymmetry across the whole brain. Right-handers show greater anisotropy than left-handers in the uncinate fasciculus (UF) within the limbic lobe, and WM underlying prefrontal cortex, medial and inferior frontal gyri. Significantly greater leftward FA asymmetry in cerebellum posterior lobe is seen in left- than right-handers, and males show significantly greater rightward (right-greater-than-left) FA asymmetry in regions of middle occipital lobe, medial temporal gyrus, and a region of the superior longitudinal fasciculus underlying the supramarginal gyrus. Leftward (left-greater-than-right) anisotropy is found in regions of the arcuate fasciculus (AF), UF, and WM underlying pars triangularis in both handedness groups, with right-handers alone showing additional leftward FA asymmetry along the length of the superior temporal gyrus. Overall results indicate that although both handedness groups show anisotropy in similar WM regions, greater anisotropy is observed in right-handers compared with left-handers. The largest differences in FA asymmetry are found between males and females, suggesting a greater effect of sex than handedness on FA asymmetry. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo
2017-03-21
Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.
Loomba, Rohit S; Shah, Parinda H; Nijhawan, Karan; Aggarwal, Saurabh; Arora, Rohit
2015-03-01
Increased cardiothoracic ratio noted on chest radiographs often prompts concern and further evaluation with additional imaging. This study pools available data assessing the utility of cardiothoracic ratio in predicting left ventricular dilation. A systematic review of the literature was conducted to identify studies comparing cardiothoracic ratio by chest x-ray to left ventricular dilation by echocardiography. Electronic databases were used to identify studies which were then assessed for quality and bias, with those with adequate quality and minimal bias ultimately being included in the pooled analysis. The pooled data were used to determine the sensitivity, specificity, positive predictive value and negative predictive value of cardiomegaly in predicting left ventricular dilation. A total of six studies consisting of 466 patients were included in this analysis. Cardiothoracic ratio had 83.3% sensitivity, 45.4% specificity, 43.5% positive predictive value and 82.7% negative predictive value. When a secondary analysis was conducted with a pediatric study excluded, a total of five studies consisting of 371 patients were included. Cardiothoracic ratio had 86.2% sensitivity, 25.2% specificity, 42.5% positive predictive value and 74.0% negative predictive value. Cardiothoracic ratio as determined by chest radiograph is sensitive but not specific for identifying left ventricular dilation. Cardiothoracic ratio also has a strong negative predictive value for identifying left ventricular dilation.
Determining Angle of Humeral Torsion Using Image Software Technique.
Patil, Sachin; Sethi, Madhu; Vasudeva, Neelam
2016-10-01
Several researches have been done on the measurement of angles of humeral torsion in different parts of the world. Previously described methods were more complicated, not much accurate, cumbersome or required sophisticated instruments. The present study was conducted with the aim to determine the angles of humeral torsion with a newer simple technique using digital images and image tool software. A total of 250 dry normal adult human humeri were obtained from the bone bank of Department of Anatomy. The length and mid-shaft circumference of each bone was measured with the help of measuring tape. The angle of humeral torsion was measured directly from the digital images by the image analysis using Image Tool 3.0 software program. The data was analysed statistically with SPSS version 17 using unpaired t-test and Spearman's rank order correlation coefficient. The mean angle of torsion was 64.57°±7.56°. On the right side it was 66.84°±9.69°, whereas, on the left side it was found to be 63.31±9.50°. The mean humeral length was 31.6 cm on right side and 30.33 cm on left side. Mid shaft circumference was 5.79 on right side and 5.63 cm on left side. No statistical differences were seen in angles between right and left humeri (p>0.001). From our study, it was concluded that circumference of shaft is inversely proportional to angle of humeral torsion. The length and side of humerus has no relation with the humeral torsion. With advancement of digital technology, it is better to use new image softwares for anatomical studies.
Chang, Sung-A; Lee, Sang-Chol; Kim, Eun-Young; Hahm, Seung-Hee; Jang, Shin Yi; Park, Sung-Ji; Choi, Jin-Oh; Park, Seung Woo; Choe, Yeon Hyeon; Oh, Jae K
2011-08-01
With recent developments in echocardiographic technology, a new system using real-time three-dimensional echocardiography (RT3DE) that allows single-beat acquisition of the entire volume of the left ventricle and incorporates algorithms for automated border detection has been introduced. Provided that these techniques are acceptably reliable, three-dimensional echocardiography may be much more useful for clinical practice. The aim of this study was to evaluate the feasibility and accuracy of left ventricular (LV) volume measurements by RT3DE using the single-beat full-volume capture technique. One hundred nine consecutive patients scheduled for cardiac magnetic resonance imaging and RT3DE using the single-beat full-volume capture technique on the same day were recruited. LV end-systolic volume, end-diastolic volume, and ejection fraction were measured using an auto-contouring algorithm from data acquired on RT3DE. The data were compared with the same measurements obtained using cardiac magnetic resonance imaging. Volume measurements on RT3DE with single-beat full-volume capture were feasible in 84% of patients. Both interobserver and intraobserver variability of three-dimensional measurements of end-systolic and end-diastolic volumes showed excellent agreement. Pearson's correlation analysis showed a close correlation of end-systolic and end-diastolic volumes between RT3DE and cardiac magnetic resonance imaging (r = 0.94 and r = 0.91, respectively, P < .0001 for both). Bland-Altman analysis showed reasonable limits of agreement. After application of the auto-contouring algorithm, the rate of successful auto-contouring (cases requiring minimal manual corrections) was <50%. RT3DE using single-beat full-volume capture is an easy and reliable technique to assess LV volume and systolic function in clinical practice. However, the image quality and low frame rate still limit its application for dilated left ventricles, and the automated volume analysis program needs more development to make it clinically efficacious. Copyright © 2011 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Barkauskas, Kestutis J; Rajiah, Prabhakar; Ashwath, Ravi; Hamilton, Jesse I; Chen, Yong; Ma, Dan; Wright, Katherine L; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole
2014-09-11
The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data. Ten healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch's t-test) and qualitative image rating scores (Wilcoxon signed-rank test). Systolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was -0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5 min 40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging. The 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.
LORETA imaging of P300 in schizophrenia with individual MRI and 128-channel EEG.
Pae, Ji Soo; Kwon, Jun Soo; Youn, Tak; Park, Hae-Jeong; Kim, Myung Sun; Lee, Boreom; Park, Kwang Suk
2003-11-01
We investigated the characteristics of P300 generators in schizophrenics by using voxel-based statistical parametric mapping of current density images. P300 generators, produced by a rare target tone of 1500 Hz (15%) under a frequent nontarget tone of 1000 Hz (85%), were measured in 20 right-handed schizophrenics and 21 controls. Low-resolution electromagnetic tomography (LORETA), using a realistic head model of the boundary element method based on individual MRI, was applied to the 128-channel EEG. Three-dimensional current density images were reconstructed from the LORETA intensity maps that covered the whole cortical gray matter. Spatial normalization and intensity normalization of the smoothed current density images were used to reduce anatomical variance and subject-specific global activity and statistical parametric mapping (SPM) was applied for the statistical analysis. We found that the sources of P300 were consistently localized at the left superior parietal area in normal subjects, while those of schizophrenics were diversely distributed. Upon statistical comparison, schizophrenics, with globally reduced current densities, showed a significant P300 current density reduction in the left medial temporal area and in the left inferior parietal area, while both left prefrontal and right orbitofrontal areas were relatively activated. The left parietotemporal area was found to correlate negatively with Positive and Negative Syndrome Scale total scores of schizophrenic patients. In conclusion, the reduced and increased areas of current density in schizophrenic patients suggest that the medial temporal and frontal areas contribute to the pathophysiology of schizophrenia, the frontotemporal circuitry abnormality.
Earth observation taken by the Expedition 42 crew
2015-02-11
ISS042E241898 (02/11/2015) --- Texas and the Gulf Coast at night as seen by the International Space Stations Earth observation cameras. This wide-angle, nighttime image was taken by astronauts looking out southeastward over the Gulf of Mexico. Lower center left shows the twin lights of San Antonio Texas with a short string of lights to Austin (further left). Houston, the home of the Johnson Space Center is the brightest directly above (Center left). Moonlight reflects diffusely off the waters of the gulf (image center left) making the largest but diffused illuminated area in the image. The sharp edge of light patterns of coastal cities trace out the long curve of the gulf shoreline—from New Orleans at the mouth of the Mississippi River, to Houston (both image left), to Brownsville (image center) in the westernmost gulf. City lights at great distances in Florida (image top left) and on Mexico’s Yucatán peninsula (image center right) suggest the full extent of the gulf basin, more than 930 miles, from Brownsville to Florida.
Quantitative analysis of cardiovascular MR images.
van der Geest, R J; de Roos, A; van der Wall, E E; Reiber, J H
1997-06-01
The diagnosis of cardiovascular disease requires the precise assessment of both morphology and function. Nearly all aspects of cardiovascular function and flow can be quantified nowadays with fast magnetic resonance (MR) imaging techniques. Conventional and breath-hold cine MR imaging allow the precise and highly reproducible assessment of global and regional left ventricular function. During the same examination, velocity encoded cine (VEC) MR imaging provides measurements of blood flow in the heart and great vessels. Quantitative image analysis often still relies on manual tracing of contours in the images. Reliable automated or semi-automated image analysis software would be very helpful to overcome the limitations associated with the manual and tedious processing of the images. Recent progress in MR imaging of the coronary arteries and myocardial perfusion imaging with contrast media, along with the further development of faster imaging sequences, suggest that MR imaging could evolve into a single technique ('one stop shop') for the evaluation of many aspects of heart disease. As a result, it is very likely that the need for automated image segmentation and analysis software algorithms will further increase. In this paper the developments directed towards the automated image analysis and semi-automated contour detection for cardiovascular MR imaging are presented.
Martin, Anna; Schurz, Matthias; Kronbichler, Martin; Richlan, Fabio
2015-05-01
We used quantitative, coordinate-based meta-analysis to objectively synthesize age-related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23-34 years) were matched to 20 studies with children (age means: 7-12 years). The separate meta-analyses of these two sets showed a pattern of reading-related brain activation common to children and adults in left ventral occipito-temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta-analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading-related activation clusters in children and adults are provided. © 2015 Wiley Periodicals, Inc.
Lack of sex effect on brain activity during a visuomotor response task: functional MR imaging study.
Mikhelashvili-Browner, Nina; Yousem, David M; Wu, Colin; Kraut, Michael A; Vaughan, Christina L; Oguz, Kader Karli; Calhoun, Vince D
2003-03-01
As more individuals are enrolled in clinical functional MR imaging (fMRI) studies, an understanding of how sex may influence fMRI-measured brain activation is critical. We used fixed- and random-effects models to study the influence of sex on fMRI patterns of brain activation during a simple visuomotor reaction time task in the group of 26 age-matched men and women. We evaluated the right visual, left visual, left primary motor, left supplementary motor, and left anterior cingulate areas. Volumes of activations did not significantly differ between the groups in any defined regions. Analysis of variance failed to show any significant correlations between sex and volumes of brain activation in any location studied. Mean percentage signal-intensity changes for all locations were similar between men and women. A two-way t test of brain activation in men and women, performed as a part of random-effects modeling, showed no significant difference at any site. Our results suggest that sex seems to have little influence on fMRI brain activation when we compared performance on the simple reaction-time task. The need to control for sex effects is not critical in the analysis of this task with fMRI.
Changes in spontaneous brain activity in early Parkinson's disease.
Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue
2013-08-09
Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of p<0.05 was determined by AlphaSim and used in statistical analysis. Compared with the healthy controls, the early PD group showed significantly increased ReHo in a number of brain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0.69). These results indicate that the abnormal resting state spontaneous brain activity associated with patients with early PD can be revealed by Reho analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
2015-04-30
On March 18, 2011, MESSENGER made history by becoming the first spacecraft ever to orbit Mercury. Eleven days later, the spacecraft captured the first image ever obtained from Mercury orbit, shown here on the left. Originally planned as a one-year orbital mission, the MESSENGER spacecraft orbited Mercury for more than four years, accomplishing technological firsts and making new scientific discoveries about the origin and evolution of the Solar System's innermost planet. Check out the Top 10 Science Results. Dates acquired: March 29, 2011; April 30, 2015 Image IDs: 65056, 8422953 Instrument: Mercury Dual Imaging System (MDIS) Left Image Center Latitude: -53.3° Left Image Center Longitude: 13.0° E Left Image Resolution: 2.7 kilometers/pixel Left Image Scale: The rayed crater Debussy has a diameter of 80 kilometers (50 miles) Right Image Center Latitude: 72.0° Right Image Center Longitude: 223.8° E Right Image Resolution: 2.1 meters/pixel Right Image Scale: This image is about 1 kilometers (0.6 miles) across On April 30, 2015, MESSENGER again made history, becoming the first spacecraft to impact the planet. In total, MESSENGER acquired and returned to Earth more than 277,000 images from orbit about Mercury. The last of those images is shown here on the right. http://photojournal.jpl.nasa.gov/catalog/PIA19449
Sumiyoshi, Tatsuaki; Shima, Yasuo; Okabayashi, Takehiro; Noda, Yoshihiro; Hata, Yasuhiro; Murata, Yoriko; Kozuki, Akihito; Tokumaru, Teppei; Nakamura, Toshio; Uka, Kiminori
2014-11-01
To determine the functional discrepancy between the two liver lobes using technetium 99m ((99m)Tc) diethylenetriamine-pentaacetic acid-galactosyl human serum albumin ( GSA diethylenetriamine-pentaacetic acid-galactosyl human serum albumin ) single photon emission computed tomography (SPECT)/computed tomography (CT) fusion imaging following preoperative biliary drainage and portal vein embolization ( PVE portal vein embolization ) in patients with jaundice who have bile duct cancer ( BDC bile duct cancer ). This retrospective study was approved by the institutional review board, with waiver of informed consent. Preoperative (99m)Tc- GSA diethylenetriamine-pentaacetic acid-galactosyl human serum albumin SPECT/CT fusion images from 32 patients with extrahepatic BDC bile duct cancer were retrospectively reviewed. Patients were classified into four groups according to the extent of biliary drainage and presence of a preoperative right PVE portal vein embolization : right lobe drainage group (right drainage), bilateral lobe drainage group (bilateral drainage), left lobe drainage group (left drainage), and left lobe drainage with right PVE portal vein embolization group (left drainage with right PVE portal vein embolization ). Percentage volume and percentage function were measured in each lobe using fusion imaging. The ratio between percentage function and percentage volume (the function-to-volume ratio) was calculated for each lobe, and the results were compared among the four groups. Statistical analysis was performed with Wilcoxon signed-rank tests and Mann-Whitney U tests. The median values for the function-to-volume ratio in the right drainage, bilateral drainage, left drainage, and left drainage with right PVE portal vein embolization group were 1.12, 1.05, 1.02, and 0.81 in the right lobe; and 0.51, 0.88, 0.96, and 1.17 in the left lobe. Significant differences in the function-to-volume ratio were observed among the four groups (right drainage vs bilateral drainage vs left drainage vs left drainage with right PVE portal vein embolization ; with P < .002, P = .023, and P < .002 for the right lobe and P < .001, P = .023, and P < .002 for the left lobe). Hepatic lobar function significantly differs between the two lobes, depending on the extent of biliary drainage and the presence of portal vein embolization.
Distinct [18F]THK5351 binding patterns in primary progressive aphasia variants.
Schaeverbeke, Jolien; Evenepoel, Charlotte; Declercq, Lieven; Gabel, Silvy; Meersmans, Karen; Bruffaerts, Rose; Adamczuk, Kate; Dries, Eva; Van Bouwel, Karen; Sieben, Anne; Pijnenburg, Yolande; Peeters, Ronald; Bormans, Guy; Van Laere, Koen; Koole, Michel; Dupont, Patrick; Vandenberghe, Rik
2018-06-26
To assess the binding of the PET tracer [ 18 F]THK5351 in patients with different primary progressive aphasia (PPA) variants and its correlation with clinical deficits. The majority of patients with nonfluent variant (NFV) and logopenic variant (LV) PPA have underlying tauopathy of the frontotemporal lobar or Alzheimer disease type, respectively, while patients with the semantic variant (SV) have predominantly transactive response DNA binding protein 43-kDa pathology. The study included 20 PPA patients consecutively recruited through a memory clinic (12 NFV, 5 SV, 3 LV), and 20 healthy controls. All participants received an extensive neurolinguistic assessment, magnetic resonance imaging and amyloid biomarker tests. [ 18 F]THK5351 binding patterns were assessed on standardized uptake value ratio (SUVR) images with the cerebellar grey matter as the reference using statistical parametric mapping. Whole-brain voxel-wise regression analysis was performed to evaluate the association between [ 18 F]THK5351 SUVR images and neurolinguistic scores. Analyses were performed with and without partial volume correction. Patients with NFV showed increased binding in the supplementary motor area, left premotor cortex, thalamus, basal ganglia and midbrain compared with controls and patients with SV. Patients with SV had increased binding in the temporal lobes bilaterally and in the right ventromedial frontal cortex compared with controls and patients with NFV. The whole-brain voxel-wise regression analysis revealed a correlation between agrammatism and motor speech impairment, and [ 18 F]THK5351 binding in the left supplementary motor area and left postcentral gyrus. Analysis of [ 18 F]THK5351 scans without partial volume correction revealed similar results. [ 18 F]THK5351 imaging shows a topography closely matching the anatomical distribution of predicted underlying pathology characteristic of NFV and SV PPA. [ 18 F]THK5351 binding correlates with the severity of clinical impairment.
Martí-Bonmatí, Luis; Lull, Juan José; García-Martí, Gracián; Aguilar, Eduardo J; Moratal-Pérez, David; Poyatos, Cecilio; Robles, Montserrat; Sanjuán, Julio
2007-08-01
To prospectively evaluate if functional magnetic resonance (MR) imaging abnormalities associated with auditory emotional stimuli coexist with focal brain reductions in schizophrenic patients with chronic auditory hallucinations. Institutional review board approval was obtained and all participants gave written informed consent. Twenty-one right-handed male patients with schizophrenia and persistent hallucinations (started to hear hallucinations at a mean age of 23 years +/- 10, with 15 years +/- 8 of mean illness duration) and 10 healthy paired participants (same ethnic group [white], age, and education level [secondary school]) were studied. Functional echo-planar T2*-weighted (after both emotional and neutral auditory stimulation) and morphometric three-dimensional gradient-recalled echo T1-weighted MR images were analyzed using Statistical Parametric Mapping (SPM2) software. Brain activation images were extracted by subtracting those with emotional from nonemotional words. Anatomic differences were explored by optimized voxel-based morphometry. The functional and morphometric MR images were overlaid to depict voxels statistically reported by both techniques. A coincidence map was generated by multiplying the emotional subtracted functional MR and volume decrement morphometric maps. Statistical analysis used the general linear model, Student t tests, random effects analyses, and analysis of covariance with a correction for multiple comparisons following the false discovery rate method. Large coinciding brain clusters (P < .005) were found in the left and right middle temporal and superior temporal gyri. Smaller coinciding clusters were found in the left posterior and right anterior cingular gyri, left inferior frontal gyrus, and middle occipital gyrus. The middle and superior temporal and the cingular gyri are closely related to the abnormal neural network involved in the auditory emotional dysfunction seen in schizophrenic patients.
Rastgou, Fereydoon; Shojaeifard, Maryam; Amin, Ahmad; Ghaedian, Tahereh; Firoozabadi, Hasan; Malek, Hadi; Yaghoobi, Nahid; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amouzadeh, Hedieh; Barati, Hossein
2014-12-01
Recently, the phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has become feasible via several software packages for the evaluation of left ventricular mechanical dyssynchrony. We compared two quantitative software packages, quantitative gated SPECT (QGS) and Emory cardiac toolbox (ECTb), with tissue Doppler imaging (TDI) as the conventional method for the evaluation of left ventricular mechanical dyssynchrony. Thirty-one patients with severe heart failure (ejection fraction ≤35%) and regular heart rhythm, who referred for gated-SPECT MPI, were enrolled. TDI was performed within 3 days after MPI. Dyssynchrony parameters derived from gated-SPECT MPI were analyzed by QGS and ECTb and were compared with the Yu index and septal-lateral wall delay measured by TDI. QGS and ECTb showed a good correlation for assessment of phase histogram bandwidth (PHB) and phase standard deviation (PSD) (r = 0.664 and r = 0.731, P < .001, respectively). However, the mean value of PHB and PSD by ECTb was significantly higher than that of QGS. No significant correlation was found between ECTb and QGS and the Yu index. Nevertheless, PHB, PSD, and entropy derived from QGS revealed a significant (r = 0.424, r = 0.478, r = 0.543, respectively; P < .02) correlation with septal-lateral wall delay. Despite a good correlation between QGS and ECTb software packages, different normal cut-off values of PSD and PHB should be defined for each software package. There was only a modest correlation between phase analysis of gated-SPECT MPI and TDI data, especially in the population of heart failure patients with both narrow and wide QRS complex.
Kiyuna, Asanori; Kise, Norimoto; Hiratsuka, Munehisa; Kondo, Shunsuke; Uehara, Takayuki; Maeda, Hiroyuki; Ganaha, Akira; Suzuki, Mikio
2017-05-01
Spasmodic dysphonia (SD) is considered a focal dystonia. However, the detailed pathophysiology of SD remains unclear, despite the detection of abnormal activity in several brain regions. The aim of this study was to clarify the pathophysiological background of SD. This is a case-control study. Both task-related brain activity measured by functional magnetic resonance imaging by reading the five-digit numbers and resting-state functional connectivity (FC) measured by 150 T2-weighted echo planar images acquired without any task were investigated in 12 patients with adductor SD and in 16 healthy controls. The patients with SD showed significantly higher task-related brain activation in the left middle temporal gyrus, left thalamus, bilateral primary motor area, bilateral premotor area, bilateral cerebellum, bilateral somatosensory area, right insula, and right putamen compared with the controls. Region of interest voxel FC analysis revealed many FC changes within the cerebellum-basal ganglia-thalamus-cortex loop in the patients with SD. Of the significant connectivity changes between the patients with SD and the controls, the FC between the left thalamus and the left caudate nucleus was significantly correlated with clinical parameters in SD. The higher task-related brain activity in the insula and cerebellum was consistent with previous neuroimaging studies, suggesting that these areas are one of the unique characteristics of phonation-induced brain activity in SD. Based on FC analysis and their significant correlations with clinical parameters, the basal ganglia network plays an important role in the pathogenesis of SD. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Vikingstad, E M; George, K P; Johnson, A F; Cao, Y
2000-04-01
In 95% of right handed individuals the left hemisphere is dominant for speech and language function. The evidence for this is accumulated primarily from clinical populations. We investigated cortical topography of language function and lateralization in a sample of the right handed population using functional magnetic resonance imaging and two lexical-semantic paradigms. Activated cortical language networks were assessed topographically and quantitatively by using a lateralization index. As a group, we observed left hemispheric language dominance. Individually, the lateralization index varied continuously from left hemisphere dominant to bilateral representation. In males, language primarily lateralized to left, and in females, approximately half had left lateralization and the other half had bilateral representation. Our data indicate that a previous view of female bilateral hemispheric dominance for language (McGlone, 1980. Sex differences in human brain asymmetry: a critical survey. Behav Brain Sci 3:215-263; Shaywitz et al., 1995. Sex differences in the functional organization of the brain for language. Nature 373:607-609) simplifies the complexity of cortical language distribution in this population. Analysis of the distribution of the lateralization index in our study allowed us to make this difference in females apparent.
The left ventricle in aortic stenosis--imaging assessment and clinical implications.
Călin, Andreea; Roşca, Monica; Beladan, Carmen Cristiana; Enache, Roxana; Mateescu, Anca Doina; Ginghină, Carmen; Popescu, Bogdan Alexandru
2015-04-29
Aortic stenosis has an increasing prevalence in the context of aging population. In these patients non-invasive imaging allows not only the grading of valve stenosis severity, but also the assessment of left ventricular function. These two goals play a key role in clinical decision-making. Although left ventricular ejection fraction is currently the only left ventricular function parameter that guides intervention, current imaging techniques are able to detect early changes in LV structure and function even in asymptomatic patients with significant aortic stenosis and preserved ejection fraction. Moreover, new imaging parameters emerged as predictors of disease progression in patients with aortic stenosis. Although proper standardization and confirmatory data from large prospective studies are needed, these novel parameters have the potential of becoming useful tools in guiding intervention in asymptomatic patients with aortic stenosis and stratify risk in symptomatic patients undergoing aortic valve replacement.This review focuses on the mechanisms of transition from compensatory left ventricular hypertrophy to left ventricular dysfunction and heart failure in aortic stenosis and the role of non-invasive imaging assessment of the left ventricular geometry and function in these patients.
Regional brain changes in bipolar I depression: a functional magnetic resonance imaging study
Altshuler, Lori; Bookheimer, Susan; Townsend, Jennifer; Proenza, Manuel A; Sabb, Fred; Mintz, Jim; Cohen, Mark S
2011-01-01
Objective To investigate neural activity in prefrontal cortex and amygdala during bipolar depression. Methods Eleven bipolar I depressed and 17 normal subjects underwent functional magnetic resonance imaging (fMRI) while performing a task known to activate prefrontal cortex and amygdala. Whole brain activation patterns were determined using statistical parametric mapping (SPM) when subjects matched faces displaying neutral or negative affect (match condition) or matched a geometric form (control condition). Contrasts for each group for the match versus control conditions were used in a second-level random effects analysis. Results Random effects between-group analysis revealed significant attenuation in right and left orbitofrontal cortex (BA47) and right dorsolateral prefrontal cortex (DLPFC) (BA9) in bipolar depressed subjects. Additionally, random effects analysis showed a significantly increased activation in left lateral orbitofrontal cortex (BA10) in the bipolar depressed versus control subjects. Within-group contrasts demonstrated significant amygdala activation in the controls and no significant amygdala activation in the bipolar depressed subjects. The amygdala between-group difference, however, was not significant. Conclusions Bipolar depression is associated with attenuated bilateral orbitofrontal (BA47) activation, attenuated right DLPFC (BA9) activation and heightened left orbitofrontal (BA10) activation. BA47 attenuation has also been reported in mania and may thus represent a trait feature of the disorder. Increased left prefrontal (BA10) activation may be a state marker to bipolar depression. Our findings suggest dissociation between mood-dependent and disease-dependent functional brain abnormalities in bipolar disorder. PMID:18837865
Left main coronary artery stenosis: severity evaluation and implications for management.
Habibi, Susan E; Shah, Rahman; Berzingi, Chalak O; Melchior, Ryan; Sumption, Kevin F; Jovin, Ion S
2017-03-01
The significant stenosis of the left main coronary artery is associated with poor outcomes and is considered a strong indication for revascularization. However, deciding whether the stenosis is significant can sometimes be challenging, especially when the degree of stenosis is intermediate, and can necessitate additional tests and imaging modalities. Areas covered: We did a literature search using keywords like 'left main', 'imaging', 'intravascular ultrasound', 'fractional flow reserve', 'computed tomographic angiography' and 'magnetic resonance imaging'. The most commonly used methods for better characterizing intermediate left main coronary stenoses are intravascular ultrasound and fractional flow reserve, while optical coherence tomography is the newer technique that provides better images, but for which not as much data is available. The noninvasive techniques are coronary computed tomographic angiography and, to a lesser degree, coronary magnetic resonance imaging. Expert commentary: Accurately determining the severity of left main coronary stenosis can mean the difference between a major intervention and conservative therapy. The reviewed newer imaging modalities give us greater confidence that patients with left main stenosis are assigned to the right treatment modality.
Effect of Temporal Constraints on Hemispheric Asymmetries during Spatial Frequency Processing
ERIC Educational Resources Information Center
Peyrin, Carole; Mermillod, Martial; Chokron, Sylvie; Marendaz, Christian
2006-01-01
Studies on functional hemispheric asymmetries have suggested that the right vs. left hemisphere should be predominantly involved in low vs. high spatial frequency (SF) analysis, respectively. By manipulating exposure duration of filtered natural scene images, we examined whether the temporal characteristics of SF analysis (i.e., the temporal…
Chen, Chun; Li, Dianfu; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S; Chen, Ji
2012-07-01
The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4%) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI.
Method used to test the imaging consistency of binocular camera's left-right optical system
NASA Astrophysics Data System (ADS)
Liu, Meiying; Wang, Hu; Liu, Jie; Xue, Yaoke; Yang, Shaodong; Zhao, Hui
2016-09-01
To binocular camera, the consistency of optical parameters of the left and the right optical system is an important factor that will influence the overall imaging consistency. In conventional testing procedure of optical system, there lacks specifications suitable for evaluating imaging consistency. In this paper, considering the special requirements of binocular optical imaging system, a method used to measure the imaging consistency of binocular camera is presented. Based on this method, a measurement system which is composed of an integrating sphere, a rotary table and a CMOS camera has been established. First, let the left and the right optical system capture images in normal exposure time under the same condition. Second, a contour image is obtained based on the multiple threshold segmentation result and the boundary is determined using the slope of contour lines near the pseudo-contour line. Third, the constraint of gray level based on the corresponding coordinates of left-right images is established and the imaging consistency could be evaluated through standard deviation σ of the imaging grayscale difference D (x, y) between the left and right optical system. The experiments demonstrate that the method is suitable for carrying out the imaging consistency testing for binocular camera. When the standard deviation 3σ distribution of imaging gray difference D (x, y) between the left and right optical system of the binocular camera does not exceed 5%, it is believed that the design requirements have been achieved. This method could be used effectively and paves the way for the imaging consistency testing of the binocular camera.
Dynamic stimuli: accentuating aesthetic preference biases.
Friedrich, Trista E; Harms, Victoria L; Elias, Lorin J
2014-01-01
Despite humans' preference for symmetry, artwork often portrays asymmetrical characteristics that influence the viewer's aesthetic preference for the image. When presented with asymmetrical images, aesthetic preference is often given to images whose content flows from left-to-right and whose mass is located on the right of the image. Cerebral lateralization has been suggested to account for the left-to-right directionality bias; however, the influence of cultural factors, such as scanning habits, on aesthetic preference biases is debated. The current research investigates aesthetic preference for mobile objects and landscapes, as previous research has found contrasting preference for the two image types. Additionally, the current experiment examines the effects of dynamic movement on directionality preference to test the assumption that static images are perceived as aesthetically equivalent to dynamic images. After viewing mirror-imaged pairs of pictures and videos, right-to-left readers failed to show a preference bias, whereas left-to-right readers preferred stimuli with left-to-right directionality regardless of the location of the mass. The directionality bias in both reading groups was accentuated by the videos, but the bias was significantly stronger in left-to-right readers. The findings suggest that scanning habits moderate the leftward bias resulting from hemispheric specialization and that dynamic stimuli further fluent visual processing.
Left ventricular fluid mechanics: the long way from theoretical models to clinical applications.
Pedrizzetti, Gianni; Domenichini, Federico
2015-01-01
The flow inside the left ventricle is characterized by the formation of vortices that smoothly accompany blood from the mitral inlet to the aortic outlet. Computational fluid dynamics permitted to shed some light on the fundamental processes involved with vortex motion. More recently, patient-specific numerical simulations are becoming an increasingly feasible tool that can be integrated with the developing imaging technologies. The existing computational methods are reviewed in the perspective of their potential role as a novel aid for advanced clinical analysis. The current results obtained by simulation methods either alone or in combination with medical imaging are summarized. Open problems are highlighted and perspective clinical applications are discussed.
Electrocardiographically gated 16-section CT of the thorax: cardiac motion suppression.
Hofmann, Lars K; Zou, Kelly H; Costello, Philip; Schoepf, U Joseph
2004-12-01
Thirty patients underwent 16-section multi-detector row computed tomographic (CT) angiography of the thorax with retrospective electrocardiographic gating. Institutional review board approval was obtained for retrospective analysis of CT scan data and records; patient informed consent was not required. Images reconstructed at six different time points (0%, 20%, 40%, 50%, 60%, 80%) within the R-R interval on the electrocardiogram were analyzed by two radiologists for diagnostic quality, to identify suitable reconstruction intervals for optimal suppression of cardiac motion. Five regions of interest (left coronary artery, aortic root, ascending and descending aorta, pulmonary arteries) were evaluated. Best image quality was achieved by referencing image reconstruction to middiastole (50%-60%) for the left coronary artery, aortic root, and ascending aorta. The pulmonary arteries are best displayed during mid- to late diastole (80%). (c) RSNA, 2004
Automated gait analysis in the open-field test for laboratory mice.
Leroy, Toon; Silva, Mitchell; D'Hooge, Rudi; Aerts, Jean-Marie; Berckmans, Daniel
2009-02-01
In this article, an automated and accurate mouse observation method, based on a conventional test for motor function evaluation, is outlined. The proposed measurement technique was integrated in a regular open-field test, where the trajectory and locomotion of a free-moving mouse were measured simultaneously. The system setup consisted of a transparent cage and a camera placed below it with its lens pointing upward, allowing for images to be captured from underneath the cage while the mouse was walking on the transparent cage floor. Thus, additional information was obtained about the position of the limbs of the mice for gait reconstruction. In a first step, the camera was calibrated as soon as it was fixed in place. A linear calibration factor, relating distances in image coordinates to real-world dimensions, was determined. In a second step, the mouse was located and its body contour segmented from the image by subtracting a previously taken "background" image of the empty cage from the camera image. In a third step, the movement of the mouse was analyzed and its speed estimated from its location in the past few images. If the speed was above a 1-sec threshold, the mouse was recognized to be running, and the image was further processed for footprint recognition. In a fourth step, color filtering was applied within the recovered mouse region to measure the position of the mouse's paws, which were visible in the image as small pink spots. Paws that were detected at the same location in a number of subsequent images were kept as footprints-that is, paws in contact with the cage floor. The footprints were classified by their position relative to the mouse's outline as corresponding to the front left or right paw or the hind left or right paw. Finally, eight parameters were calculated from the footprint pattern to describe the locomotion of the mouse: right/left overlap, front/hind base, right/left front limb stride, and right/left hind limb stride. As an application, the system was tested using normal mice and mice displaying pentobarbital-induced ataxia. The footprint parameters measured using the proposed system showed differences of 10% to 20% between normal and ataxic mice.
Gap Acceptance During Lane Changes by Large-Truck Drivers—An Image-Based Analysis
Nobukawa, Kazutoshi; Bao, Shan; LeBlanc, David J.; Zhao, Ding; Peng, Huei; Pan, Christopher S.
2016-01-01
This paper presents an analysis of rearward gap acceptance characteristics of drivers of large trucks in highway lane change scenarios. The range between the vehicles was inferred from camera images using the estimated lane width obtained from the lane tracking camera as the reference. Six-hundred lane change events were acquired from a large-scale naturalistic driving data set. The kinematic variables from the image-based gap analysis were filtered by the weighted linear least squares in order to extrapolate them at the lane change time. In addition, the time-to-collision and required deceleration were computed, and potential safety threshold values are provided. The resulting range and range rate distributions showed directional discrepancies, i.e., in left lane changes, large trucks are often slower than other vehicles in the target lane, whereas they are usually faster in right lane changes. Video observations have confirmed that major motivations for changing lanes are different depending on the direction of move, i.e., moving to the left (faster) lane occurs due to a slower vehicle ahead or a merging vehicle on the right-hand side, whereas right lane changes are frequently made to return to the original lane after passing. PMID:26924947
Gap Acceptance During Lane Changes by Large-Truck Drivers-An Image-Based Analysis.
Nobukawa, Kazutoshi; Bao, Shan; LeBlanc, David J; Zhao, Ding; Peng, Huei; Pan, Christopher S
2016-03-01
This paper presents an analysis of rearward gap acceptance characteristics of drivers of large trucks in highway lane change scenarios. The range between the vehicles was inferred from camera images using the estimated lane width obtained from the lane tracking camera as the reference. Six-hundred lane change events were acquired from a large-scale naturalistic driving data set. The kinematic variables from the image-based gap analysis were filtered by the weighted linear least squares in order to extrapolate them at the lane change time. In addition, the time-to-collision and required deceleration were computed, and potential safety threshold values are provided. The resulting range and range rate distributions showed directional discrepancies, i.e., in left lane changes, large trucks are often slower than other vehicles in the target lane, whereas they are usually faster in right lane changes. Video observations have confirmed that major motivations for changing lanes are different depending on the direction of move, i.e., moving to the left (faster) lane occurs due to a slower vehicle ahead or a merging vehicle on the right-hand side, whereas right lane changes are frequently made to return to the original lane after passing.
Automated identification of retained surgical items in radiological images
NASA Astrophysics Data System (ADS)
Agam, Gady; Gan, Lin; Moric, Mario; Gluncic, Vicko
2015-03-01
Retained surgical items (RSIs) in patients is a major operating room (OR) patient safety concern. An RSI is any surgical tool, sponge, needle or other item inadvertently left in a patients body during the course of surgery. If left undetected, RSIs may lead to serious negative health consequences such as sepsis, internal bleeding, and even death. To help physicians efficiently and effectively detect RSIs, we are developing computer-aided detection (CADe) software for X-ray (XR) image analysis, utilizing large amounts of currently available image data to produce a clinically effective RSI detection system. Physician analysis of XRs for the purpose of RSI detection is a relatively lengthy process that may take up to 45 minutes to complete. It is also error prone due to the relatively low acuity of the human eye for RSIs in XR images. The system we are developing is based on computer vision and machine learning algorithms. We address the problem of low incidence by proposing synthesis algorithms. The CADe software we are developing may be integrated into a picture archiving and communication system (PACS), be implemented as a stand-alone software application, or be integrated into portable XR machine software through application programming interfaces. Preliminary experimental results on actual XR images demonstrate the effectiveness of the proposed approach.
2015-10-23
Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032
International Space Station from Space Shuttle Endeavour
NASA Technical Reports Server (NTRS)
2007-01-01
The crew of the Space Shuttle Endeavour took this spectacular image of the International Space Station during the STS118 mission, August 8-21, 2007. The image was acquired by an astronaut through one of the crew cabin windows, looking back over the length of the Shuttle. This oblique (looking at an angle from vertical, rather than straight down towards the Earth) image was acquired almost one hour after late inspection activities had begun. The sensor head of the Orbiter Boom Sensor System is visible at image top left. The entire Space Station is visible at image bottom center, set against the backdrop of the Ionian Sea approximately 330 kilometers below it. Other visible features of the southeastern Mediterranean region include the toe and heel of Italy's 'boot' at image lower left, and the western coastlines of Albania and Greece, which extend across image center. Farther towards the horizon, the Aegean and Black Seas are also visible. Featured astronaut photograph STS118-E-9469 was acquired by the STS-118 crew on August 19, 2007, with a Kodak 760C digital camera using a 28 mm lens, and is provided by the ISS Crew Earth Observations experiment and Image Science and Analysis Laboratory at Johnson Space Center.
Park, Bong Soo; Lee, Yoo Jin; Park, Jin-Han; Kim, Il Hwan; Park, Si Hyung; Lee, Ho-Joon; Park, Kang Min
2018-06-01
We evaluated global topology and organization of regional hubs in the brain networks and microstructural abnormalities in the white matter of patients with reflex syncope. Twenty patients with reflex syncope and thirty healthy subjects were recruited, and they underwent diffusion tensor imaging (DTI) scans. Graph theory was applied to obtain network measures based on extracted DTI data, using DSI Studio. We then investigated differences in the network measures between the patients with reflex syncope and the healthy subjects. We also analyzed microstructural abnormalities of white matter using tract-based spatial statistics analysis (TBSS). Measures of global topology were not different between patients with reflex syncope and healthy subjects. However, in reflex syncope patients, the strength measures of the right angular, left inferior frontal, left middle orbitofrontal, left superior medial frontal, and left middle temporal gyrus were lower than in healthy subjects. The betweenness centrality measures of the left middle orbitofrontal, left fusiform, and left lingual gyrus in patients were lower than those in healthy subjects. The PageRank centrality measures of the right angular, left middle orbitofrontal, and left superior medial frontal gyrus in patients were lower than those in healthy subjects. Regarding the analysis of the white matter microstructure, there were no differences in the fractional anisotropy and mean diffusivity values between the two groups. We have identified a reorganization of network hubs in the brain network of patients with reflex syncope. These alterations in brain network may play a role in the pathophysiologic mechanism underlying reflex syncope. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Image of a line is not shrunk but neglected. Absence of crossover in unilateral spatial neglect.
Ishiai, Sumio; Koyama, Yasumasa; Nakano, Naomi; Seki, Keiko; Nishida, Yoichiro; Hayashi, Kazuko
2004-01-01
Patients with left unilateral spatial neglect following right hemisphere lesions usually err rightward when bisecting a horizontal line. For very short lines (e.g. 25 mm), however, leftward errors or seemingly 'right' neglect is often observed. To explain this paradox of crossover in the direction of errors, rather complicated models have been introduced as to the distribution of attention. Neglect may be hypothesized to occur in representational process of a line or estimation of the midpoint on the formed image, or both. We devised a line image task using a computer display with a touch panel and approached the representational image of a line to be bisected. Three patients with typical left neglect were presented with a line and forced to see its whole extent with cueing to the left endpoint. After disappearance of the line, they pointed to the right endpoint, the left endpoint, or the subjective midpoint according to their representational image. The line image between the reproduced right and left endpoints was appropriately formed for the 200 mm lines. However, the images for the shorter 25 and 100 mm lines were longer than the physical lengths with overextension to the left side. These results proved the context effect that short lines may be perceived longer when they are presented in combination with longer lines. One of our patients had an extensive lesion that involved the frontal, temporal, and parietal lobes, and the other two had a lesion restricted to the posterior right hemisphere. The image for a fully perceived line may be represented far enough into left space even when left neglect occurs after a lesion that involves the right parietal lobe. The patients with neglect placed the subjective midpoint rightward from the centre of the stimulus line for the 100 and 200 mm lines and leftward for the 25 mm lines. This crossover of bisection errors disappeared when the displacement of the subjective midpoint was measured from the centre of the representational line image. Left neglect may occur consistently in estimation of the subjective midpoint on the representational image, which may be explained by a simple rightward bias of attentional distribution.
Wagner, M; Klessen, C; Rief, M; Elgeti, T; Taupitz, M; Hamm, B; Asbach, P
2008-05-01
Respiratory triggering allows the acquisition of high-resolution magnetic resonance (MR) images of the upper abdomen. However, the depiction of organs close to the gastrointestinal tract can be considerably impaired by ghosting artifacts and blurring caused by bowel peristalsis. To evaluate the effect of gastrointestinal motion suppression by intramuscular butylscopolamine administration on the image quality of a respiratory-triggered T2-weighted turbo spin-echo (T2w TSE) sequence of the upper abdomen. Images of 46 patients were retrospectively analyzed. Twenty-four patients had received intramuscular injection of 40 mg butylscopolamine immediately before MR imaging. Fourteen of the 24 patients in the butylscopolamine group underwent repeat imaging after a mean of 29 min. Quantitative analysis of the ghosting artifacts was done by measuring signal intensities in regions of interest placed in air anterior to the patient. In addition, image quality was assessed qualitatively by two radiologists by consensus. Spasmolytic medication with butylscopolamine reduced ghosting artifacts and significantly improved image quality of the respiratory-triggered T2w TSE sequence. The most pronounced effect of butylscopolamine administration on image quality was found for the pancreas and the left hepatic lobe. The rate of examinations with excellent or good depiction of the pancreas and the left hepatic lobe in the group without premedication and in the butylscopolamine group was 55% vs. 96% (pancreatic head), 35% vs. 88% (pancreatic body), 43% vs. 96% (pancreatic tail), and 45% vs. 83% (left hepatic lobe), respectively. Regarding the duration of the effect of intramuscular butylscopolamine, repeat imaging after a mean of 29 min did not result in a significant deterioration of image quality. Intramuscular butylscopolamine administration significantly improves image quality of respiratory-triggered T2-weighted abdominal MR imaging by persistent reduction of peristaltic artifacts. MR imaging of the liver and pancreas in particular benefits from the suppression of gastrointestinal peristalsis by butylscopolamine.
Fleming, John; Conway, Joy; Majoral, Caroline; Tossici-Bolt, Livia; Katz, Ira; Caillibotte, Georges; Perchet, Diane; Pichelin, Marine; Muellinger, Bernhard; Martonen, Ted; Kroneberg, Philipp; Apiou-Sbirlea, Gabriela
2011-02-01
Gamma camera imaging is widely used to assess pulmonary aerosol deposition. Conventional planar imaging provides limited information on its regional distribution. In this study, single photon emission computed tomography (SPECT) was used to describe deposition in three dimensions (3D) and combined with X-ray computed tomography (CT) to relate this to lung anatomy. Its performance was compared to planar imaging. Ten SPECT/CT studies were performed on five healthy subjects following carefully controlled inhalation of radioaerosol from a nebulizer, using a variety of inhalation regimes. The 3D spatial distribution was assessed using a central-to-peripheral ratio (C/P) normalized to lung volume and for the right lung was compared to planar C/P analysis. The deposition by airway generation was calculated for each lung and the conducting airways deposition fraction compared to 24-h clearance. The 3D normalized C/P ratio correlated more closely with 24-h clearance than the 2D ratio for the right lung [coefficient of variation (COV), 9% compared to 15% p < 0.05]. Analysis of regional distribution was possible for both lungs in 3D but not in 2D due to overlap of the stomach on the left lung. The mean conducting airways deposition fraction from SPECT for both lungs was not significantly different from 24-h clearance (COV 18%). Both spatial and generational measures of central deposition were significantly higher for the left than for the right lung. Combined SPECT/CT enabled improved analysis of aerosol deposition from gamma camera imaging compared to planar imaging. 3D radionuclide imaging combined with anatomical information from CT and computer analysis is a useful approach for applications requiring regional information on deposition.
Semi-automation of Doppler Spectrum Image Analysis for Grading Aortic Valve Stenosis Severity.
Niakšu, O; Balčiunaitė, G; Kizlaitis, R J; Treigys, P
2016-01-01
Doppler echocardiography analysis has become a golden standard in the modern diagnosis of heart diseases. In this paper, we propose a set of techniques for semi-automated parameter extraction for aortic valve stenosis severity grading. The main objectives of the study is to create echocardiography image processing techniques, which minimize manual image processing work of clinicians and leads to reduced human error rates. Aortic valve and left ventricle output tract spectrogram images have been processed and analyzed. A novel method was developed to trace systoles and to extract diagnostic relevant features. The results of the introduced method have been compared to the findings of the participating cardiologists. The experimental results showed the accuracy of the proposed method is comparable to the manual measurement performed by medical professionals. Linear regression analysis of the calculated parameters and the measurements manually obtained by the cardiologists resulted in the strongly correlated values: peak systolic velocity's and mean pressure gradient's R2 both equal to 0.99, their means' differences equal to 0.02 m/s and 4.09 mmHg, respectively, and aortic valve area's R2 of 0.89 with the two methods means' difference of 0.19 mm. The introduced Doppler echocardiography images processing method can be used as a computer-aided assistance in the aortic valve stenosis diagnostics. In our future work, we intend to improve precision of left ventricular outflow tract spectrogram measurements and apply data mining methods to propose a clinical decision support system for diagnosing aortic valve stenosis.
Neural correlates of gait variability in people with multiple sclerosis with fall history.
Kalron, Alon; Allali, Gilles; Achiron, Anat
2018-05-28
Investigate the association between step time variability and related brain structures in accordance with fall status in people with multiple sclerosis (PwMS). The study included 225 PwMS. A whole-brain MRI was performed by a high-resolution 3.0-Telsa MR scanner in addition to volumetric analysis based on 3D T1-weighted images using the FreeSurfer image analysis suite. Step time variability was measured by an electronic walkway. Participants were defined as "fallers" (at least two falls during the previous year) and "non-fallers". One hundred and five PwMS were defined as fallers and had a greater step time variability compared to non-fallers (5.6% (S.D.=3.4) vs. 3.4% (S.D.=1.5); p=0.001). MS fallers exhibited a reduced volume in the left caudate and both cerebellum hemispheres compared to non-fallers. By using a linear regression analysis no association was found between gait variability and related brain structures in the total cohort and non-fallers group. However, the analysis found an association between the left hippocampus and left putamen volumes with step time variability in the faller group; p=0.031, 0.048, respectively, controlling for total cranial volume, walking speed, disability, age and gender. Nevertheless, according to the hierarchical regression model, the contribution of these brain measures to predict gait variability was relatively small compared to walking speed. An association between low left hippocampal, putamen volumes and step time variability was found in PwMS with a history of falls, suggesting brain structural characteristics may be related to falls and increased gait variability in PwMS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Gowd, Snigdha; Shankar, T; Dash, Samarendra; Sahoo, Nivedita; Chatterjee, Suravi; Mohanty, Pritam
2017-01-01
The aim of the study was to evaluate the reliability of cone beam computed tomography (CBCT) obtained image over plaster model for the assessment of mixed dentition analysis. Thirty CBCT-derived images and thirty plaster models were derived from the dental archives, and Moyer's and Tanaka-Johnston analyses were performed. The data obtained were interpreted and analyzed statistically using SPSS 10.0/PC (SPSS Inc., Chicago, IL, USA). Descriptive and analytical analysis along with Student's t -test was performed to qualitatively evaluate the data and P < 0.05 was considered statistically significant. Statistically, significant results were obtained on data comparison between CBCT-derived images and plaster model; the mean for Moyer's analysis in the left and right lower arch for CBCT and plaster model was 21.2 mm, 21.1 mm and 22.5 mm, 22.5 mm, respectively. CBCT-derived images were less reliable as compared to data obtained directly from plaster model for mixed dentition analysis.
Martin, Anna; Schurz, Matthias; Kronbichler, Martin
2015-01-01
Abstract We used quantitative, coordinate‐based meta‐analysis to objectively synthesize age‐related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23–34 years) were matched to 20 studies with children (age means: 7–12 years). The separate meta‐analyses of these two sets showed a pattern of reading‐related brain activation common to children and adults in left ventral occipito‐temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta‐analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading‐related activation clusters in children and adults are provided. Hum Brain Mapp 36:1963–1981, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:25628041
Standardized unfold mapping: a technique to permit left atrial regional data display and analysis.
Williams, Steven E; Tobon-Gomez, Catalina; Zuluaga, Maria A; Chubb, Henry; Butakoff, Constantine; Karim, Rashed; Ahmed, Elena; Camara, Oscar; Rhode, Kawal S
2017-10-01
Left atrial arrhythmia substrate assessment can involve multiple imaging and electrical modalities, but visual analysis of data on 3D surfaces is time-consuming and suffers from limited reproducibility. Unfold maps (e.g., the left ventricular bull's eye plot) allow 2D visualization, facilitate multimodal data representation, and provide a common reference space for inter-subject comparison. The aim of this work is to develop a method for automatic representation of multimodal information on a left atrial standardized unfold map (LA-SUM). The LA-SUM technique was developed and validated using 18 electroanatomic mapping (EAM) LA geometries before being applied to ten cardiac magnetic resonance/EAM paired geometries. The LA-SUM was defined as an unfold template of an average LA mesh, and registration of clinical data to this mesh facilitated creation of new LA-SUMs by surface parameterization. The LA-SUM represents 24 LA regions on a flattened surface. Intra-observer variability of LA-SUMs for both EAM and CMR datasets was minimal; root-mean square difference of 0.008 ± 0.010 and 0.007 ± 0.005 ms (local activation time maps), 0.068 ± 0.063 gs (force-time integral maps), and 0.031 ± 0.026 (CMR LGE signal intensity maps). Following validation, LA-SUMs were used for automatic quantification of post-ablation scar formation using CMR imaging, demonstrating a weak but significant relationship between ablation force-time integral and scar coverage (R 2 = 0.18, P < 0.0001). The proposed LA-SUM displays an integrated unfold map for multimodal information. The method is applicable to any LA surface, including those derived from imaging and EAM systems. The LA-SUM would facilitate standardization of future research studies involving segmental analysis of the LA.
[Effects of acupuncture at left and right Hegu (LI 4) for cerebral function laterality].
Wang, Linying; Xu, Chunsheng; Zhu, Yifang; Li, Chuanfu; Yang, Jun
2015-08-01
To explore the cerebral function laterality of acupuncture at left and right Hegu (LI 4) by using functional magnetic resonance imaging (fMRI) and provide objective evidences for side selection of Hegu (LI 4) in the clinical application. Eighty healthy volunteers were randomly divided into a left-acupoint group and a right-acupoint group, and they were treated with acupuncture at left Hegu (LI 4) and right Hegu (LI 4) respectively. After the arrival of qi, the task-state fMRI data in both groups was collected, and analysis of functional neuroimages (AFNI) software was used to perform intra-group and between-group comparisons. After acupuncture, acupuncture feelings were recorded and MGH acupuncture sensation scale (MASS) was recorded. The difference of MASS between the two groups was not significant (P>0. 05). The result of left-acupoint group showed an increased signal on right cerebral hemisphere, while the right-acupoint group showed extensive signal changes in both cerebral hemispheres. The analysis between left-acupoint group and retroflex right-acupoint group showed differences in brain areas. The central effect of acupuncture at left and right Hegu (LI 4) is dissymmetry, indicating right hemisphere laterality. The right lobus insularis and cingulate gyrus may be the key regions in the acupuncture at Hegu (LI 4).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, K.; Bunko, H.; Tada, A.
1984-01-01
Phase analysis has been applied to Wolff-Parkinson-White syndrome (WPW) to detect the site of accessory conduction pathway (ACP); however, there was a limitation to estimate the precise location of ACP by planar phase analysis. In this study, the authors applied phase analysis to gated blood pool tomography. Twelve patients with WPW who underwent epicardial mapping and surgical division of ACP were studied by both of gated emission computed tomography (GECT) and routine gated blood pool study (GBPS). The GBPS was performed with Tc-99m red blood cells in multiple projections; modified left anterior oblique, right anterior oblique and/or left lateral views.more » In GECT, short axial, horizontal and vertical long axial blood pool images were reconstructed. Phase analysis was performed using fundamental frequency of the Fourier transform in both GECT and GBPS images, and abnormal initial contractions on both the planar and tomographic phase analysis were compared with the location of surgically confirmed ACPs. In planar phase analysis, abnormal initial phase was identified in 7 out of 12 (58%) patients, while in tomographic phase analysis, the localization of ACP was predicted in 11 out of 12 (92%) patients. Tomographic phase analysis is superior to planar phase images in 8 out of 12 patients to estimate the location of ACP. Phase analysis by GECT can avoid overlap of blood pool in cardiac chambers and has advantage to identify the propagation of phase three-dimensionally. Tomographic phase analysis is a good adjunctive method for patients with WPW to estimate the site of ACP.« less
9. THIRD IMAGE OF THE PANORAMIC SERIES WITH CONSIDERABLE OVERLAP. ...
9. THIRD IMAGE OF THE PANORAMIC SERIES WITH CONSIDERABLE OVERLAP. A SETTLING TANK, SMOKESTACK FROM THE MILL'S BOILER ROOM, MILL ANNEX AND OTHER MILL OUT BUILDINGS ARE IN THE MIDDLE RIGHT OF THE IMAGE THE SUPERINTENDENTS HOUSE IS IN THE MIDDLE LEFT OF THE IMAGE SPANNING FROM LEFT TO RIGHT IN THE BACKGROUND IS THE TOWN OF BODIE. IN THE FAR BACKGROUND LEFT IS THE ROAD THAT IS THE ACCESS PARK. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Yoshifuku, Shiro; Chen, Shigao; McMahon, Eileen; Korinek, Josef; Yoshikawa, Akiko; Ochiai, Izuru; Sengupta, Partho P; Belohlavek, Marek
2007-06-01
Attenuation of radio frequency (RF) signals limits the use of contrast echocardiography. The harmonic-to-fundamental ratio (HFR) of the RF signals compensates for attenuation. We tested whether HFR analysis measures the left ventricular nonperfused area under simulated experimental attenuation. Radio frequency image data from short axis systolic projections were obtained from 11 open-chest dogs with left anterior descending or left circumflex coronary artery occlusion followed by left atrial bolus injection of a perflutren microbubble contrast agent. Clinical attenuation was simulated by calibrated silicone pads interposed between the epicardial surface and the transducer to induce mild (7-dB) and severe (14-dB) reduction of the backscattered RF signals. Harmonic-to-fundamental ratio values were calculated for each image pixel for 0-, 7-, and 14-dB attenuation conditions and reproducibly showed a "perfused area" and a "nonperfused area." A reference nonperfused area was obtained by manual delineation in high-quality contrast scans. Correlations of the HFR-detected and manually outlined perfusion defect areas were R = 0.92 for 0 dB, R = 0.94 for 7 dB, and R = 0.90 for 14 dB; the mean difference was less than 0.36 cm(2) (negligible) in all 3 attenuation settings. Conclusions. Attenuation compensation by our HFR method allows precise measurement of myocardial perfusion defect areas in contrast scans with simulated high level of attenuation.
Kunst, P W; Vonk Noordegraaf, A; Hoekstra, O S; Postmus, P E; de Vries, P M
1998-11-01
Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of radionuclide imaging. Following routine ventilation (81mKr) and perfusion scanning (99mTc-MAA), EIT measurements were performed at the third and the sixth intercostal level in 14 patients with lung cancer. A correlation (r = 0.98, p < 0.005) between the left-right division for the ventilation measured with EIT and that with 81mKr was found. For the left-right division of pulmonary perfusion a correlation of 0.95 (p < 0.005) was found between the two methods. The reliability coefficient (RC) was calculated for estimating the left-right division with EIT. The RC for the ventilation measurements was 94% and 96% for the perfusion measurements. The correlation analysis for reproducibility of the EIT measurements was 0.95 (p < 0.001) for the ventilation and 0.93 (p < 0.001) for the perfusion measurements. In conclusion, EIT can be regarded as a promising technique to estimate the left-right division of pulmonary perfusion and ventilation.
Analysis and design of stereoscopic display in stereo television endoscope system
NASA Astrophysics Data System (ADS)
Feng, Dawei
2008-12-01
Many 3D displays have been proposed for medical use. When we design and evaluate new system, there are three demands from surgeons. Priority is the precision. Secondly, displayed images should be easy to understand, In addition, surgery lasts hours and hours, they do not like fatiguing display. The stereo television endoscope researched in this paper make celiac viscera image on the photosurface of the left and right CCD by imitating human binocular stereo vision effect by using the double-optical lines system. The left and right video signal will be processed by frequency multiplication and display on the monitor, people can observe the stereo image which has depth impression by using a polarized LCD screen and a pair of polarized glasses. Clinical experiments show that by using the stereo TV endoscope people can make minimally invasive surgery more safe and reliable, and can shorten the operation time, and can improve the operation accuracy.
Analysis on the 3D crosstalk in stereoscopic display
NASA Astrophysics Data System (ADS)
Choi, Hee-Jin
2010-11-01
Nowadays, with the rapid progresses in flat panel display (FPD) technologies, the three-dimensional (3D) display is now becoming a next mainstream of display market. Among the various 3D display techniques, the stereoscopic 3D display shows different left/right images for each eye of observer using special glasses and is the most popular 3D technique with the advantages of low price and high 3D resolution. However, current stereoscopic 3D displays suffer with the 3D crosstalk which means the interference between the left eye mage and right eye images since it degrades the quality of 3D image severely. In this paper, the meaning and causes of the 3D crosstalk in stereoscopic 3D display are introduced and the pre-proposed methods of 3D crosstalk measurement vision science are reviewed. Based on them The threshold of 3D crosstalk to realize a 3D display with no degradation is analyzed.
Teipel, S J; Willoch, F; Ishii, K; Bürger, K; Drzezga, A; Engel, R; Bartenstein, P; Möller, H-J; Schwaiger, M; Hampel, H
2006-05-01
The present study examined the cortical functional representation of neuropsychological domains in Alzheimer's disease (AD) using positron emission tomography (PET) and the neuropsychological assessment battery of the Consortium to Establish a Registry of Alzheimer's Disease (CERAD). Thirty patients with clinical probable AD and 10 elderly healthy controls underwent (18)FDG brain PET imaging during a resting state. Correlations between metabolic values and cognitive measures were determined using a region of interest analysis with NEUROSTAT (University of Michigan, USA) and a voxel-based analysis with SPM96 (Wellcome Department, London, UK). Specific correlations were seen between measures of episodic memory, verbal fluency and naming and left hemispheric temporal and prefrontal metabolism. Drawing was correlated with metabolism in left prefrontal and left inferior parietal regions. The presented data support the use of metabolic-cognitive correlations to demonstrate the neuronal substrates of cognitive impairment in AD. Subtests of the CERAD battery give a good representation of left, but not of right hemisphere function in AD.
Kelly, Rachel; Mizelle, J C; Wheaton, Lewis A
2015-08-01
Prior work has demonstrated that perspective and handedness of observed actions can affect action understanding differently in right and left-handed persons, suggesting potential differences in the neural networks underlying action understanding between right and left-handed individuals. We sought to evaluate potential differences in these neural networks using electroencephalography (EEG). Right- and left-handed participants observed images of tool-use actions from egocentric and allocentric perspectives, with right- and left-handed actors performing the actions. Participants judged the outcome of the observed actions, and response accuracy and latency were recorded. Behaviorally, the highest accuracy and shortest latency was found in the egocentric perspective for right- and left-handed observers. Handedness of subject showed an effect on accuracy and latency also, where right-handed observers were faster to respond than left-handed observers, but on average were less accurate. Mu band (8-10 Hz) cortico-cortical coherence analysis indicated that right-handed observers have coherence in the motor dominant left parietal-premotor networks when looking at an egocentric right or allocentric left hands. When looking in an egocentric perspective at a left hand or allocentric right hand, coherence was lateralized to right parietal-premotor areas. In left-handed observers, bilateral parietal-premotor coherence patterns were observed regardless of actor handedness. These findings suggest that the cortical networks involved in understanding action outcomes are dependent on hand dominance, and notably right handed participants seem to utilize motor systems based on the limb seen performing the action. The decreased accuracy for right-handed participants on allocentric images could be due to asymmetrical lateralization of encoding action and motoric dominance, which may interfere with translating allocentric limb action outcomes. Further neurophysiological studies will determine the specific processes of how left- and right-handed participants understand actions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rover, Airbags, & Surrounding Rocks
1997-07-05
This image of the Martian surface was taken by the Imager for Mars Pathfinder (IMP) before sunset on July 4, 1997 (Sol 1), the spacecraft's first day on Mars. The airbags have been partially retracted, and portions the petal holding the undeployed rover Sojourner can be seen at lower left. The rock in the center of the image may be a future target for chemical analysis. The soil in the foreground has been disturbed by the movement of the airbags as they retracted. http://photojournal.jpl.nasa.gov/catalog/PIA00619
Hand-independent representation of tool-use pantomimes in the left anterior intraparietal cortex.
Ogawa, Kenji; Imai, Fumihito
2016-12-01
Previous neuropsychological studies of ideomotor apraxia (IMA) indicated impairments in pantomime actions for tool use for both right and left hands following lesions of parieto-premotor cortices in the left hemisphere. Using functional magnetic resonance imaging (fMRI) with multi-voxel pattern analysis (MVPA), we tested the hypothesis that the left parieto-premotor cortices are involved in the storage or retrieval of hand-independent representation of tool-use actions. In the fMRI scanner, one of three kinds of tools was displayed in pictures or letters, and the participants made pantomimes of the use of these tools using the right hand for the picture stimuli or with the left hand for the letters. We then used MVPA to classify which kind of tool the subjects were pantomiming. Whole-brain searchlight analysis revealed successful decoding using the activities largely in the contralateral primary sensorimotor region, ipsilateral cerebellum, and bilateral early visual area, which may reflect differences in low-level sensorimotor components for three types of pantomimes. Furthermore, a successful cross-classification between the right and left hands was possible using the activities of the left inferior parietal lobule (IPL) near the junction of the anterior intraparietal sulcus. Our finding indicates that the left anterior intraparietal cortex plays an important role in the production of tool-use pantomimes in a hand-independent manner, and independent of stimuli modality.
Gulel, Okan; Akcay, Murat; Soylu, Korhan; Aksan, Gokhan; Yuksel, Serkan; Zengin, Halit; Meric, Murat; Sahin, Mahmut
2016-05-01
The coronary slow flow phenomenon (CSFP) is defined as a delayed distal vessel contrast opacification in the absence of obstructive epicardial coronary artery disease during coronary angiography. There is conflicting data in medical literature regarding the effects of CSFP on the left ventricular functions assessed by conventional echocardiography or tissue Doppler imaging. Therefore, we aimed to evaluate whether there is any abnormality in the myocardial deformation parameters (strain, strain rate (SR), rotation, twist) of the left ventricle obtained by speckle tracking echocardiography (STE) in patients with CSFP. Twenty patients with CSFP were included prospectively in the study. Another 20 patients with similar demographics and cardiovascular risk factors as well as normal coronary angiography were used as the control group. Two-dimensional echocardiographic images of the left ventricle from the apical long-axis, two-chamber, four-chamber, and parasternal short-axis views were used for STE analysis. The analysis of left ventricular circumferential deformation parameters showed that the averaged peak systolic strain, systolic SR, and early diastolic SR values were significantly lower in patients with CSFP (P = 0.009, P = 0.02, and P = 0.02, respectively). Among the left ventricular rotation and twist values, apical rotation was significantly lower in patients with CSFP (P = 0.02). Further, the mean thrombolysis in myocardial infarction frame count value was found to be negatively correlated with the averaged peak circumferential early diastolic SR (r = -0.35, P = 0.03). It was positively correlated with the averaged peak circumferential systolic strain (r = 0.47, P = 0.003) and circumferential systolic SR (r = 0.46, P = 0.005). Coronary slow flow phenomenon leads to significant alterations in the myocardial deformation parameters of the left ventricle as assessed by STE. Specifically, circumferential deformation parameters are affected in CSFP patients. © 2015, Wiley Periodicals, Inc.
Chen, Chun; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S.; Chen, Ji
2013-01-01
Purpose The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Methods Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2–3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Results Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p<0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p<0.01). Conclusion Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. PMID:22532253
NASA Astrophysics Data System (ADS)
Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II
1995-05-01
Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.
Composite View of Asteroid Braille from Deep Space 1
1999-08-03
The two images on the left hand side of this composite image frame were taken 914 seconds and 932 seconds after the NASA Deep Space 1 encounter with the asteroid 9969 Braille. The image on the right was created by combining the two images on the left.
Alexithymia is related to differences in gray matter volume: a voxel-based morphometry study.
Ihme, Klas; Dannlowski, Udo; Lichev, Vladimir; Stuhrmann, Anja; Grotegerd, Dominik; Rosenberg, Nicole; Kugel, Harald; Heindel, Walter; Arolt, Volker; Kersting, Anette; Suslow, Thomas
2013-01-23
Alexithymia has been characterized as the inability to identify and describe feelings. Functional imaging studies have revealed that alexithymia is linked to reactivity changes in emotion- and face-processing-relevant brain areas. In this respect, anterior cingulate cortex (ACC), amygdala, anterior insula and fusiform gyrus (FFG) have been consistently reported. However, it remains to be clarified whether alexithymia is also associated with structural differences. Voxel-based morphometry on T1-weighted magnetic resonance images was used to investigate gray matter volume in 17 high alexithymics (HA) and 17 gender-matched low alexithymics (LA), which were selected from a sample of 161 healthy volunteers on basis of the 20-item Toronto Alexithymia Scale. Data were analyzed as statistic parametric maps for the comparisons LA>HA and HA>LA in a priori determined regions of interests (ROIs), i.e., ACC, amygdala, anterior insula and FFG. Moreover, an exploratory whole brain analysis was accomplished. For the contrast LA>HA, significant clusters were detected in the ACC, left amygdala and left anterior insula. Additionally, the whole brain analysis revealed volume differences in the left middle temporal gyrus. No significant differences were found for the comparison HA>LA. Our findings suggest that high compared to low alexithymics show less gray matter volume in several emotion-relevant brain areas. These structural differences might contribute to the functional alterations found in previous imaging studies in alexithymia. Copyright © 2012 Elsevier B.V. All rights reserved.
Yoon, Seo Yeon; Kim, Je-Kyung; An, Young-Sil; Kim, Yong Wook
2015-01-01
Aphasia is one of the most common neurologic deficits occurring after stroke. Although the speech-language therapy is a mainstream option for poststroke aphasia, pharmacotherapy is recently being tried to modulate different neurotransmitter systems. However, the efficacy of those treatments is still controversial. We present a case of a 53-year-old female patient with Wernicke aphasia, after the old infarction in the territory of left middle cerebral artery for 8 years and the recent infarction in the right middle cerebral artery for 4 months. On the initial evaluation, the Aphasia Quotient in Korean version of the Western Aphasia Battery was 25.6 of 100. Baseline brain F-18 fluorodeoxyglucose positron emission tomographic images demonstrated a decreased cerebral metabolism in the left temporoparietal area and right temporal lobe. Donepezil hydrochloride, a reversible acetylcholinesterase inhibitor, was orally administered 5 mg/d for 6 weeks after the initial evaluation and was increased to 10 mg/d for the following 6 weeks. After the donepezil treatment, the patient showed improvement in language function, scoring 51.0 of 100 on Aphasia Quotient. A subtraction analysis of the brain F-18 fluorodeoxyglucose positron emission tomographic images after donepezil medication demonstrated increased uptake in both middle temporal gyri, extended to the occipital area and the left cerebellum. Thus, we suggest that donepezil can be an effective therapeutic choice for the treatment of Wernicke aphasia.
Characterizing Response to Elemental Unit of Acoustic Imaging Noise: An fMRI Study
Luh, Wen-Ming; Talavage, Thomas M.
2010-01-01
Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation. PMID:19304477
A new method of cardiographic image segmentation based on grammar
NASA Astrophysics Data System (ADS)
Hamdi, Salah; Ben Abdallah, Asma; Bedoui, Mohamed H.; Alimi, Adel M.
2011-10-01
The measurement of the most common ultrasound parameters, such as aortic area, mitral area and left ventricle (LV) volume, requires the delineation of the organ in order to estimate the area. In terms of medical image processing this translates into the need to segment the image and define the contours as accurately as possible. The aim of this work is to segment an image and make an automated area estimation based on grammar. The entity "language" will be projected to the entity "image" to perform structural analysis and parsing of the image. We will show how the idea of segmentation and grammar-based area estimation is applied to real problems of cardio-graphic image processing.
Thomas, W P; Gaber, C E; Jacobs, G J; Kaplan, P M; Lombard, C W; Moise, N S; Moses, B L
1993-01-01
Recommendations are presented for standardized imaging planes and display conventions for two-dimensional echocardiography in the dog and cat. Three transducer locations ("windows") provide access to consistent imaging planes: the right parasternal location, the left caudal (apical) parasternal location, and the left cranial parasternal location. Recommendations for image display orientations are very similar to those for comparable human cardiac images, with the heart base or cranial aspect of the heart displayed to the examiner's right on the video display. From the right parasternal location, standard views include a long-axis four-chamber view and a long-axis left ventricular outflow view, and short-axis views at the levels of the left ventricular apex, papillary muscles, chordae tendineae, mitral valve, aortic valve, and pulmonary arteries. From the left caudal (apical) location, standard views include long-axis two-chamber and four-chamber views. From the left cranial parasternal location, standard views include a long-axis view of the left ventricular outflow tract and ascending aorta (with variations to image the right atrium and tricuspid valve, and the pulmonary valve and pulmonary artery), and a short-axis view of the aortic root encircled by the right heart. These images are presented by means of idealized line drawings. Adoption of these standards should facilitate consistent performance, recording, teaching, and communicating results of studies obtained by two-dimensional echocardiography.
Fang, Peng; An, Jie; Zeng, Ling-Li; Shen, Hui; Chen, Fanglin; Wang, Wensheng; Qiu, Shijun; Hu, Dewen
2015-01-01
Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE), but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right) mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE.
Left-Right Conversions in a Plane Mirror.
ERIC Educational Resources Information Center
Galili, Igal; Goldberg, Fred
1993-01-01
Expands upon the popular belief that mirrors cause the left-right reversal of objects placed in front of them. The image-location rule and image-symmetry rule are applied throughout the article to help summarize some important properties of mirror images. (ZWH)
Wu, Yazhou; He, Qinghua; Huang, Hua; Zhang, Ling; Zhuo, Yu; Xie, Qi; Wu, Baoming
2008-10-01
This is a research carried out to explore a pragmatic way of BCI based imaging movement, i. e. to extract the feature of EEG for reflecting different thinking by searching suitable methods of signal extraction and recognition algorithm processing, to boost the recognition rate of communication for BCI system, and finally to establish a substantial theory and experimental support for BCI application. In this paper, different mental tasks for imaging left-right hands movement from 6 subjects were studied in three different time sections (hint keying at 2s, 1s and 0s after appearance of arrow). Then we used wavelet analysis and Feed-forward Back-propagation Neural Network (BP-NN) method for processing and analyzing the experimental data of off-line. Delay time delta t2, delta t1 and delta t0 for all subjects in the three different time sections were analyzed. There was significant difference between delta to and delta t2 or delta t1 (P<0.05), but no significant difference was noted between delta t2 and delta t1 (P>0.05). The average results of recognition rate were 65%, 86.67% and 72%, respectively. There were obviously different features for imaging left-right hands movement about 0.5-1s before actual movement; these features displayed significant difference. We got higher recognition rate of communication under the hint keying at about 1s after the appearance of arrow. These showed the feasibility of using the feature signals extracted from the project as the external control signals for BCI system, and demon strated that the project provided new ideas and methods for feature extraction and classification of mental tasks for BCI.
2007-10-01
The atrial chamber that is connected to the inferior vena cava is typically the right atrium . The pulmonary veins typically empty into the left ...only “a left chest wall 6 cm scar consistent with surgical history.” The screening chest x-ray is presented below (Fig 1A). Technical limitations...Cardiac MRI images further define the internal cardiac anatomy. On a coronal bright blood MRI image (Fig. 1B; LA = left atrium ; LPA = left
Zhang, Chuan; Zha, Dao-Gang; DU, Rong-Sheng; Hu, Feng; Li, Sheng-Hui; Wu, Xiao-Yuan; Liu, Yi-Li
2009-07-01
To assess the value of velocity vector imaging (VVI) and quantitative tissue velocity imaging (QTVI) in assessing left ventricular diastolic function of the dogs with acute myocardial ischemia. Six healthy mongrel dogs were subjected to ligation of the left circumflex artery or left anterior descending artery to induce coronary artery stenosis of varying degrees. The mean peak diastolic velocity (Em) of the ventricular walls around the mitral annulus was recorded with VVI or QTVI in the coronary blood flow. The left ventricular end diastolic pressure (LVEDP) was measured with pigtail catheter in the left ventricle. As the coronary blood flow decreased, LVEDP was gradually increased, and Em measured by VVI or QTVI were also gradually decreased. A good linear correlation was shown between Em measured by VVI or QTVI and LVEDP (r=-0.834, P<0.001, and r=-0.68, P<0.001, respectively). A significant difference was observed in the correlation coefficient between VVI and QTVI (Z=2.625, P=0.0087). VVI and QTVI both provide good noninvasive means for measuring left ventricular diastolic function. VVI, a new echocardiographic modality without angular dependence, is better than QTVI in evaluating left ventricular diastolic function.
Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong
2016-01-01
This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.
Floré, Vincent; Brown, Adam J; Pettit, Stephen J; West, Nick E J; Lewis, Clive; Parameshwar, Jayan; Hoole, Stephen P
2018-02-01
Cardiac allograft vasculopathy (CAV) can be detected early with intravascular ultrasound (IVUS), but there is limited information on the most efficient imaging protocol. Coronary angiography and IVUS of the three coronary arteries were performed. Volumetric IVUS analysis was performed, and a Stanford grade determined for each vessel. Eighteen patients were included 18 (range 12-24) months after transplantation. Angiographic CAV severity ranged from none (CAV0) to mild (CAV1), whereas IVUS CAV severity ranged from none (Stanford grade I) to severe (grade IV). Maximal intimal thickness measured with IVUS was significantly greater in the LAD (0.84 ± 0.48 mm) than in the LCX (0.46 ± 0.32 mm) or the RCA (0.53 ± 0.41 mm, P = .005). Diagnostic accuracy of IVUS in the left anterior descending artery was 100% (18 of 18 Stanford grades matched the patient's highest overall Stanford grade), 66% in the right coronary artery (12 of 18), and 56% in the left circumflex artery (11 of 18). The minimal required length of left anterior descending artery pullbacks to attain 100% accuracy was 36 mm (range 3-36 mm) distal from the guide catheter ostium. These data suggest that focal IVUS imaging of the proximal LAD followed by volumetric analysis may suffice when screening for transplant vasculopathy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Alignment by Maximization of Mutual Information
1995-06-01
Davi Geiger, David Chapman, Jose Robles, Tao Alter, Misha Bolotski, Jonathan Connel, Karen Sarachik, Maja Mataric , Ian Horswill, Colin Angle...the same pose. These images are very different and are in fact anti-correlated: bright pixels in the left image correspond to dark pixels in the right...image; dark pixels in the left image correspond to bright pixels in the right image. No variant of correlation could match these images together
White matter correlates of cognitive domains in normal aging with diffusion tensor imaging.
Sasson, Efrat; Doniger, Glen M; Pasternak, Ofer; Tarrasch, Ricardo; Assaf, Yaniv
2013-01-01
The ability to perform complex as well as simple cognitive tasks engages a network of brain regions that is mediated by the white matter fiber bundles connecting them. Different cognitive tasks employ distinctive white matter fiber bundles. The temporal lobe and its projections subserve a variety of key functions known to deteriorate during aging. In a cohort of 52 healthy subjects (ages 25-82 years), we performed voxel-wise regression analysis correlating performance in higher-order cognitive domains (executive function, information processing speed, and memory) with white matter integrity, as measured by diffusion tensor imaging (DTI) fiber tracking in the temporal lobe projections [uncinate fasciculus (UF), fornix, cingulum, inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF)]. The fiber tracts were spatially registered and statistical parametric maps were produced to spatially localize the significant correlations. Results showed that performance in the executive function domain is correlated with DTI parameters in the left SLF and right UF; performance in the information processing speed domain is correlated with fractional anisotropy (FA) in the left cingulum, left fornix, right and left ILF and SLF; and the memory domain shows significant correlations with DTI parameters in the right fornix, right cingulum, left ILF, left SLF and right UF. These findings suggest that DTI tractography enables anatomical definition of region of interest (ROI) for correlation of behavioral parameters with diffusion indices, and functionality can be correlated with white matter integrity.
Hogan, R E; Wang, L; Bertrand, M E; Willmore, L J; Bucholz, R D; Nassif, A S; Csernansky, J G
2006-01-01
We objectively assessed surface structural changes of the hippocampus in mesial temporal sclerosis (MTS) and assessed the ability of large-deformation high-dimensional mapping (HDM-LD) to demonstrate hippocampal surface symmetry and predict group classification of MTS in right and left MTS groups compared with control subjects. Using eigenvector field analysis of HDM-LD segmentations of the hippocampus, we compared the symmetry of changes in the right and left MTS groups with a group of 15 matched controls. To assess the ability of HDM-LD to predict group classification, eigenvectors were selected by a logistic regression procedure when comparing the MTS group with control subjects. Multivariate analysis of variance on the coefficients from the first 9 eigenvectors accounted for 75% of the total variance between groups. The first 3 eigenvectors showed the largest differences between the control group and each of the MTS groups, but with eigenvector 2 showing the greatest difference in the MTS groups. Reconstruction of the hippocampal deformation vector fields due solely to eigenvector 2 shows symmetrical patterns in the right and left MTS groups. A "leave-one-out" (jackknife) procedure correctly predicted group classification in 14 of 15 (93.3%) left MTS subjects and all 15 right MTS subjects. Analysis of principal dimensions of hippocampal shape change suggests that MTS, after accounting for normal right-left asymmetries, affects the right and left hippocampal surface structure very symmetrically. Preliminary analysis using HDM-LD shows it can predict group classification of MTS and control hippocampi in this well-defined population of patients with MTS and mesial temporal lobe epilepsy (MTLE).
NASA Technical Reports Server (NTRS)
1990-01-01
These color visualizations of the Moon were obtained by the Galileo spacecraft as it left the Earth after completing its first Earth Gravity Assist. The image on the right was acquired at 6:47 p.m. PST Dec. 8, 1990, from a distance of almost 220,000 miles, while that on the left was obtained at 9:35 a.m. PST Dec. 9, at a range of more than 350,000 miles. On the right, the nearside of the Moon and about 30 degrees of the far side (left edge) are visible. In the full disk on the left, a little less than half the nearside and more than half the far side (to the right) are visible. The color composites used images taken through the violet and two near infrared filters. The visualizations depict spectral properties of the lunar surface known from analysis of returned samples to be related to composition or weathering of surface materials. The greenish-blue region at the upper right in the full disk and the upper part of the right hand picture is Oceanus Procellarum. The deeper blue mare regions here and elsewhere are relatively rich in titanium, while the greens, yellows and light oranges indicate basalts low in titanium but rich in iron and magnesium. The reds (deep orange in the right hand picture) are typically cratered highlands relatively poor in titanium, iron and magnesium. In the full disk picture on the left, the yellowish area to the south is part of the newly confirmed South Pole Aitken basin, a large circular depression some 1,200 miles across, perhaps rich in iron and magnesium. Analysis of Apollo lunar samples provided the basis for calibration of this spectral map; Galileo data, in turn, permit broad extrapolation of the Apollo based composition information, reaching ultimately to the far side of the Moon.
NASA Astrophysics Data System (ADS)
Lee, Juhun; Nishikawa, Robert M.; Rohde, Gustavo K.
2018-02-01
We propose using novel imaging biomarkers for detecting mammographically-occult (MO) cancer in women with dense breast tissue. MO cancer indicates visually occluded, or very subtle, cancer that radiologists fail to recognize as a sign of cancer. We used the Radon Cumulative Distribution Transform (RCDT) as a novel image transformation to project the difference between left and right mammograms into a space, increasing the detectability of occult cancer. We used a dataset of 617 screening full-field digital mammograms (FFDMs) of 238 women with dense breast tissue. Among 238 women, 173 were normal with 2 - 4 consecutive screening mammograms, 552 normal mammograms in total, and the remaining 65 women had an MO cancer with a negative screening mammogram. We used Principal Component Analysis (PCA) to find representative patterns in normal mammograms in the RCDT space. We projected all mammograms to the space constructed by the first 30 eigenvectors of the RCDT of normal cases. Under 10-fold crossvalidation, we conducted quantitative feature analysis to classify normal mammograms and mammograms with MO cancer. We used receiver operating characteristic (ROC) analysis to evaluate the classifier's output using the area under the ROC curve (AUC) as the figure of merit. Four eigenvectors were selected via a feature selection method. The mean and standard deviation of the AUC of the trained classifier on the test set were 0.74 and 0.08, respectively. In conclusion, we utilized imaging biomarkers to highlight differences between left and right mammograms to detect MO cancer using novel imaging transformation.
Breier, J.I.; Hasan, K.M.; Zhang, W.; Men, D.; Papanicolaou, A.C.
2011-01-01
BACKGROUND AND PURPOSE Knowledge of the anatomic basis of aphasia after stroke has both theoretic and clinical implications by informing models of cortical connectivity and providing data for diagnosis and prognosis. In this study we use diffusion tensor imaging to address the relationship between damage to specific white matter tracts and linguistic deficits after left hemisphere stroke. MATERIALS AND METHODS Twenty patients aged 38–77 years with a history of stroke in the left hemisphere underwent diffusion tensor imaging, structural MR imaging, and language testing. All of the patients were premorbidly right handed and underwent imaging and language testing at least 1 month after stroke. RESULTS Lower fractional anisotropy (FA) values in the superior longitudinal and arcuate fasciculi of the left hemisphere, an indication of greater damage to these tracts, were correlated with decreased ability to repeat spoken language. Comprehension deficits after stroke were associated with lower FA values in the arcuate fasciculus of the left hemisphere. The findings for repetition were independent of MR imaging ratings of the degree of damage to cortical areas of the left hemisphere involved in language function. There were no findings for homotopic tracts in the right hemisphere. CONCLUSION This study provides support for a specific role for damage to the superior longitudinal and arcuate fasciculi in the left hemisphere in patients with deficits in repetition of speech in aphasia after stroke. PMID:18039757
Patient specific 3-d modeling of blood flow in a multi-stenosed left coronary artery.
Kamangar, Sarfaraz; Badruddin, Irfan Anjum; Ameer Ahamad, N; Soudagar, Manzoor Elahi M; Govindaraju, Kalimuthu; Nik-Ghazali, N; Salman Ahmed, N J; Yunus Khan, T M
2017-01-01
The current study investigates the effect of multi stenosis on the hemodynamic parameters such as wall pressure, velocity and wall shear stress in the realistic left coronary artery. Patients CT scan image data of normal and diseased left coronary artery was chosen for the reconstruction of 3D coronary artery models. The diseased 3D model of left coronary artery shows a narrowing of more than 70% and 80% of area stenosis (AS) at the left main stem (LMS) and left circumflex (LCX) respectively. The results show that the decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. The maximum pressure drop was noted across the 80% AS at the left circumflex branch. The recirculation zone was also observed immediate to the stenosis and highest wall shear stress was found across the 80% area stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding on the hemodynamics in realistic coronary artery.
Left inferior-parietal lobe activity in perspective tasks: identity statements
Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C.; Perner, Josef
2015-01-01
We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., “the tour guide is also the driver” activate the left IPL in contrast to a control statements, “the tour guide has an apprentice.” This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL. PMID:26175677
Moon - North Polar Mosaic, Color
NASA Technical Reports Server (NTRS)
1996-01-01
During its flight, the Galileo spacecraft returned images of the Moon. The Galileo spacecraft surveyed the Moon on December 7, 1992, on its way to explore the Jupiter system in 1995-1997. The left part of this north pole view is visible from Earth. This color picture is a mosaic assembled from 18 images taken by Galileo's imaging system through a green filter. The left part of this picture shows the dark, lava-filled Mare Imbrium (upper left); Mare Serenitatis (middle left), Mare Tranquillitatis (lower left), and Mare Crisium, the dark circular feature toward the bottom of the mosaic. Also visible in this view are the dark lava plains of the Marginis and Smythii Basins at the lower right. The Humboldtianum Basin, a 650-kilometer (400-mile) impact structure partly filled with dark volcanic deposits, is seen at the center of the image. The Moon's north pole is located just inside the shadow zone, about a third of the way from the top left of the illuminated region. The Galileo project is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.
NASA Astrophysics Data System (ADS)
McCollough, Cynthia H.
Healthy portions of the left ventricle (LV) can often compensate for regional dysfunction, thereby masking regional disease when global indices of LV function are employed. Thus, quantitation of regional function provides a more useful method of assessing LV function, especially in diseases that have regional effects such as coronary artery disease. This dissertation studied the ability of a phase -matched dual-energy digital subtraction angiography (DE -DSA) technique to quantitate changes in regional LV systolic volume. The potential benefits and a theoretical description of the DE imaging technique are detailed. A correlated noise reduction algorithm is also presented which raises the signal-to-noise ratio of DE images by a factor of 2 -4. Ten open-chest dogs were instrumented with transmural ultrasonic crystals to assess regional LV function in terms of systolic normalized-wall-thickening rate (NWTR) and percent-systolic-thickening (PST). A pneumatic occluder was placed on the left-anterior-descending (LAD) coronary artery to temporarily reduce myocardial blood flow, thereby changing regional LV function in the LAD bed. DE-DSA intravenous left ventriculograms were obtained at control and four levels of graded myocardial ischemia, as determined by reductions in PST. Phase-matched images displaying changes in systolic contractile function were created by subtracting an end-systolic (ES) control image from ES images acquired at each level of myocardial ischemia. The resulting wall-motion difference signal (WMD), which represents a change in regional systolic volume between the control and ischemic states, was quantitated by videodensitometry and compared with changes in NWTR and PST. Regression analysis of 56 data points from 10 animals shows a linear relationship between WMD and both NWTR and PST: WMD = -2.46 NWTR + 13.9, r = 0.64, p < 0.001; WMD = -2.11 PST + 18.4, r = 0.54, p < 0.001. Thus, changes in regional ES LV volume between rest and ischemic states, as measured using the described imaging technique, appear linearly related to changes in wall-thickening, as measured using transmural ultrasonic crystals. This type of image analysis may prove useful in a variety of clinical and research applications and further investigation is proposed.
Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee
2013-12-01
Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications.
Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report December 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renae Soelberg
2014-12-01
• PNNL has completed sectioning of the U.C. Berkeley hydride fuel rodlet 1 (highest burn-up) and is currently polishing samples in preparation for optical metallography. • A disk was successfully sectioned from rodlet 1 at the location of the internal thermocouple tip as desired. The transition from annular pellet to solid pellet is verified by the eutectic-filled inner cavity located on the back face of this disk (top left) and the solid front face (bottom left). Preliminary low-resolution images indicate interesting sample characteristics in the eutectic surrounding the rodlet at the location of the outer thermocouple tip (right). This samplemore » has been potted and is currently being polished for high-resolution optical microscopy and subsequent SEM analysis. (See images.)« less
Software for Verifying Image-Correlation Tie Points
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Yagi, Gary
2008-01-01
A computer program enables assessment of the quality of tie points in the image-correlation processes of the software described in the immediately preceding article. Tie points are computed in mappings between corresponding pixels in the left and right images of a stereoscopic pair. The mappings are sometimes not perfect because image data can be noisy and parallax can cause some points to appear in one image but not the other. The present computer program relies on the availability of a left- right correlation map in addition to the usual right left correlation map. The additional map must be generated, which doubles the processing time. Such increased time can now be afforded in the data-processing pipeline, since the time for map generation is now reduced from about 60 to 3 minutes by the parallelization discussed in the previous article. Parallel cluster processing time, therefore, enabled this better science result. The first mapping is typically from a point (denoted by coordinates x,y) in the left image to a point (x',y') in the right image. The second mapping is from (x',y') in the right image to some point (x",y") in the left image. If (x,y) and(x",y") are identical, then the mapping is considered perfect. The perfect-match criterion can be relaxed by introducing an error window that admits of round-off error and a small amount of noise. The mapping procedure can be repeated until all points in each image not connected to points in the other image are eliminated, so that what remains are verified correlation data.
Individuated finger control in focal hand dystonia: an fMRI study
Moore, Ryan D; Gallea, Cecile; Horovitz, Silvina G; Hallett, Mark
2012-01-01
Objectives To better understand deficient selective motor control in focal hand dystonia by determining changes in striatal activation and connectivity in patients performing individuated finger control. Methods Functional imaging with a 3-Tesla magnetic resonance scanner was performed on 18 patients and 17 controls during non-symptom producing tasks requiring right-handed individuated or coupled finger control. A global linear model and psychophysiologic interactions model compared individuated to coupled tasks for patients and controls separately, and the results were submitted to a group analysis. The sensorimotor (posterior) and associative (anterior) putamen were considered as seed regions for the connectivity analysis. Results Compared to controls, patients had significant differences in activations and connectivity during individuated compared to coupled tasks: (i) decreased activations in the bilateral postcentral gyri, right associative posterior parietal areas, right cerebellum and left posterior putamen, while activations in the left anterior putamen were not different; (ii) increased connectivity of the left posterior putamen with the left cerebellum and left sensorimotor cortex; (iii) increased connectivity of the left anterior putamen with bilateral supplementary motor areas, the left premotor cortex, and left cerebellum. Interpretation Decreased activations in the sensorimotor putamen and cerebellum controlling the affected hand might underlie low levels of surround inhibition during individuated tasks. For identical motor performance in both groups, increased connectivity of sensorimotor and associative striato-cortical circuits in FHD suggests that both affected and unaffected territories of the striatum participate in compensatory processes. PMID:22484405
Individuated finger control in focal hand dystonia: an fMRI study.
Moore, Ryan D; Gallea, Cecile; Horovitz, Silvina G; Hallett, Mark
2012-07-16
To better understand deficient selective motor control in focal hand dystonia by determining changes in striatal activation and connectivity in patients performing individuated finger control. Functional imaging with a 3-Tesla magnetic resonance scanner was performed on 18 patients and 17 controls during non-symptom producing tasks requiring right-handed individuated or coupled finger control. A global linear model and psychophysiologic interaction model compared individuated to coupled tasks for patients and controls separately, and the results were submitted to a group analysis. The sensorimotor (posterior) and associative (anterior) parts of the putamen were considered as seed regions for the connectivity analysis. Compared to controls, patients had significant differences in activations and connectivity during individuated compared to coupled tasks: (i) decreased activations in the bilateral postcentral gyri, right associative posterior parietal areas, right cerebellum and left posterior putamen, while activations in the left anterior putamen were not different; (ii) increased connectivity of the left posterior putamen with the left cerebellum and left sensorimotor cortex; and (iii) increased connectivity of the left anterior putamen with bilateral supplementary motor areas, the left premotor cortex, and left cerebellum. Decreased activations in the sensorimotor putamen and cerebellum controlling the affected hand might underlie low levels of surround inhibition during individuated tasks. For identical motor performance in both groups, increased connectivity of sensorimotor and associative striato-cortical circuits in FHD suggests that both affected and unaffected territories of the striatum participate in compensatory processes. Published by Elsevier Inc.
Gowd, Snigdha; Shankar, T; Dash, Samarendra; Sahoo, Nivedita; Chatterjee, Suravi; Mohanty, Pritam
2017-01-01
Aims and Objective: The aim of the study was to evaluate the reliability of cone beam computed tomography (CBCT) obtained image over plaster model for the assessment of mixed dentition analysis. Materials and Methods: Thirty CBCT-derived images and thirty plaster models were derived from the dental archives, and Moyer's and Tanaka-Johnston analyses were performed. The data obtained were interpreted and analyzed statistically using SPSS 10.0/PC (SPSS Inc., Chicago, IL, USA). Descriptive and analytical analysis along with Student's t-test was performed to qualitatively evaluate the data and P < 0.05 was considered statistically significant. Results: Statistically, significant results were obtained on data comparison between CBCT-derived images and plaster model; the mean for Moyer's analysis in the left and right lower arch for CBCT and plaster model was 21.2 mm, 21.1 mm and 22.5 mm, 22.5 mm, respectively. Conclusion: CBCT-derived images were less reliable as compared to data obtained directly from plaster model for mixed dentition analysis. PMID:28852639
Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto
2006-02-15
Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.
Symmetry analysis of talus bone: A Geometric morphometric approach.
Islam, K; Dobbe, A; Komeili, A; Duke, K; El-Rich, M; Dhillon, S; Adeeb, S; Jomha, N M
2014-01-01
The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139-45.
Symmetry analysis of talus bone
Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.
2014-01-01
Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391
Schurz, Matthias; Aichhorn, Markus; Martin, Anna; Perner, Josef
2013-01-01
We performed a quantitative meta-analysis of functional neuroimaging studies to identify brain areas which are commonly engaged in social and visuo-spatial perspective taking. Specifically, we compared brain activation for visual-perspective taking to activation for false belief reasoning, which requires awareness of perspective to understand someone's mistaken belief about the world which contrasts with reality. In support of a previous account by Perner and Leekam (2008), our meta-analytic conjunction analysis found common activation for false belief reasoning and visual perspective taking in the left but not the right dorsal temporo-parietal junction (TPJ). This fits with the idea that the left dorsal TPJ is responsible for representing different perspectives in a domain-general fashion. Moreover, our conjunction analysis found activation in the precuneus and the left middle occipital gyrus close to the putative Extrastriate Body Area (EBA). The precuneus is linked to mental-imagery which may aid in the construction of a different perspective. The EBA may be engaged due to imagined body-transformations when another's viewpoint is adopted.
Schurz, Matthias; Aichhorn, Markus; Martin, Anna; Perner, Josef
2013-01-01
We performed a quantitative meta-analysis of functional neuroimaging studies to identify brain areas which are commonly engaged in social and visuo-spatial perspective taking. Specifically, we compared brain activation for visual-perspective taking to activation for false belief reasoning, which requires awareness of perspective to understand someone's mistaken belief about the world which contrasts with reality. In support of a previous account by Perner and Leekam (2008), our meta-analytic conjunction analysis found common activation for false belief reasoning and visual perspective taking in the left but not the right dorsal temporo-parietal junction (TPJ). This fits with the idea that the left dorsal TPJ is responsible for representing different perspectives in a domain-general fashion. Moreover, our conjunction analysis found activation in the precuneus and the left middle occipital gyrus close to the putative Extrastriate Body Area (EBA). The precuneus is linked to mental-imagery which may aid in the construction of a different perspective. The EBA may be engaged due to imagined body-transformations when another's viewpoint is adopted. PMID:24198773
Li, Chiang-Shan Ray; Kosten, Thomas R; Sinha, Rajita
2005-03-01
Because stress mediates drug seeking and relapse, and sex differences have been observed in stress and in the development of cocaine addiction, in this study we used functional neuroimaging to examine the effect of sex on stress responses in abstinent cocaine users. In a functional magnetic resonance imaging session, 17 male and 10 female cocaine-dependent subjects participated in script-guided imagery of neutral or stress situations. Subjects rated imagery vividness, anxiety, and cocaine craving for each trial. Brain activation during the stress and neutral imagery periods relative to their own baseline was examined in individual subjects. Sex contrast was obtained in second-level group analysis. Female subjects demonstrated more activation, compared with male subjects, in left middle frontal, anterior cingulate, and inferior frontal cortices and insula, and right cingulate cortex during stress imagery. Region of interest analysis showed that the change of activity in left anterior cingulate and right posterior cingulate cortices both correlated inversely with the change of craving rating during stress imagery. The greater left frontolimbic activity in women suggests that women might use more verbal coping strategies than do men while experiencing stress. The results also suggest a distinct role of the cingulate cortices in modulating stress-induced cocaine craving.
Darmawan, M F; Yusuf, Suhaila M; Kadir, M R Abdul; Haron, H
2015-02-01
Sex estimation is used in forensic anthropology to assist the identification of individual remains. However, the estimation techniques tend to be unique and applicable only to a certain population. This paper analyzed sex estimation on living individual child below 19 years old using the length of 19 bones of left hand applied for three classification techniques, which were Discriminant Function Analysis (DFA), Support Vector Machine (SVM) and Artificial Neural Network (ANN) multilayer perceptron. These techniques were carried out on X-ray images of the left hand taken from an Asian population data set. All the 19 bones of the left hand were measured using Free Image software, and all the techniques were performed using MATLAB. The group of age "16-19" years old and "7-9" years old were the groups that could be used for sex estimation with as their average of accuracy percentage was above 80%. ANN model was the best classification technique with the highest average of accuracy percentage in the two groups of age compared to other classification techniques. The results show that each classification technique has the best accuracy percentage on each different group of age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ducharme, N G; Hackett, R P; Fubini, S L; Erb, H N
1991-01-01
Twenty Thoroughbred and Standardbred horses underwent endoscopic evaluation of arytenoid cartilage movement twice within 1 week. Each time, a flexible endoscope was passed without sedation through the right nostril and the left nostril, and through the right nostril 5 minutes after administration of xylazine hydrochloride (0.55 mg/kg or 1.1 mg/kg intravenously). Laryngeal cartilage movement was videorecorded. All videotaped images were reviewed by three veterinarians and subjectively placed in one of four grades. The intraobserver agreement rate varied from 52.6% for examination under sedation with 1.1 mg/kg of xylazine to 89.5% for unsedated reexamination through the left nostril. The effect of the various observations on median laryngeal grade was calculated. Examination under xylazine hydrochloride at either dosage yielded a change in median laryngeal grade from the unsedated examination in 45% of the evaluations. Reevaluation through the right or left nostril resulted in a different median laryngeal grade in 21% and 5% of the examinations, respectively. Objective measurements of the rima glottidis obtained by computer-assisted morphometric analysis of the recorded laryngeal images allowed laryngeal images to be dichotomized regardless of the condition of endoscopic examination. Endoscopic evaluation of laryngeal cartilage movement is subjective and is influenced by sedation with xylazine, evaluation through the alternate nostril, and different day of examination. The most consistent evaluation was obtained during repeated examination through the left nostril.
Do Left- and Right-Handed People Have Similar Iron Deposition in the Basal Ganglia?
Wang, Dan; Li, Yue-Hua; Wang, He
2016-01-01
This study aimed to investigate whether right-, left-, or mixed-handed people differ in terms of iron deposition using susceptibility weighted imaging in healthy subjects. A total of 87 people (right-handed, 51 subjects; left-handed, 19 subjects; mixed-handed, 17 subjects) aged 20 to 40 years participated. All underwent magnetic resonance examination, including conventional and susceptibility weighted imaging sequences. Phase images were used to quantify iron deposition in the head of the caudate nucleus and lenticular nucleus. The radian angle value was calculated and compared between the 3 (right-, left-, or mixed-handed) groups. There was no significant difference in the radian angle values between left-, right-, or mixed-handed people for either the right or left side of the caudate nucleus head. However, the amount of iron deposition in the left lenticular nucleus was significantly higher for right-handed than for the left-handed subjects (P < 0.001) and significantly higher for mixed-handed than for left-handed subjects (P = 0.006). In addition, the amount of iron deposition in the right lenticular nucleus was significantly lower for left-handed than for right-handed subjects (P < 0.001). The results revealed no significant differences in iron deposition in the head of the caudate nucleus. However, there was a significant difference in iron deposition in the lenticular nucleus between left- and right-handed subjects and between left- and mixed-handed subjects.
Pathophysiology of Degenerative Mitral Regurgitation: New 3-Dimensional Imaging Insights.
Antoine, Clemence; Mantovani, Francesca; Benfari, Giovanni; Mankad, Sunil V; Maalouf, Joseph F; Michelena, Hector I; Enriquez-Sarano, Maurice
2018-01-01
Despite its high prevalence, little is known about mechanisms of mitral regurgitation in degenerative mitral valve disease apart from the leaflet prolapse itself. Mitral valve is a complex structure, including mitral annulus, mitral leaflets, papillary muscles, chords, and left ventricular walls. All these structures are involved in physiological and pathological functioning of this valvuloventricular complex but up to now were difficult to analyze because of inherent limitations of 2-dimensional imaging. The advent of 3-dimensional echocardiography, computed tomography, and cardiac magnetic resonance imaging overcoming these limitations provides new insights into mechanistic analysis of degenerative mitral regurgitation. This review will detail the contribution of quantitative and qualitative dynamic analysis of mitral annulus and mitral leaflets by new imaging methods in the understanding of degenerative mitral regurgitation pathophysiology. © 2018 American Heart Association, Inc.
Aviram, Galit; Rozenbaum, Zach; Ziv-Baran, Tomer; Berliner, Shlomo; Topilsky, Yan; Fleischmann, Dominik; Sung, Yon K; Zamanian, Roham T; Guo, Haiwei Henry
2017-10-01
Evaluations of patients with pulmonary hypertension (PH) commonly include chest CT imaging. We hypothesized that cardiac chamber volumes calculated from the same CT scans can yield additional information to distinguish PH related to left-sided heart disease (World Health Organization group 2) from other PH subtypes. Patients who had PH confirmed by right heart catheterization and contrast-enhanced chest CT studies were enrolled in this retrospective multicenter study. Cardiac chamber volumes were calculated using automated segmentation software and compared between group 2 and non-group 2 patients with PH. This study included 114 patients with PH, 27 (24%) of whom were classified as group 2 based on their pulmonary capillary wedge pressure. Patients with group 2 PH exhibited significantly larger median left atrial (LA) volumes (118 mL vs 63 mL; P < .001), larger median left ventricular (LV) volumes (90 mL vs 76 mL; P = .02), and smaller median right ventricular (RV) volumes (173 mL vs 210 mL; P = .005) than did non-group 2 patients. On multivariate analysis adjusted for age, sex, and mean pulmonary arterial pressure, group 2 PH was significantly associated with larger median LA and LV volumes (P < .001 and P = .008, respectively) and decreased volume ratios of RA/LA, RV/LV, and RV/LA (P = .001, P = .004, and P < .001, respectively). Enlarged LA volumes demonstrated a high discriminatory ability for group 2 PH (area under the curve, 0.92; 95% CI, 0.870-0.968). Volumetric analysis of the cardiac chambers from nongated chest CT scans, particularly with findings of an enlarged left atrium, exhibited high discriminatory ability for identifying patients with PH due to left-sided heart disease. Copyright © 2017. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
2002-01-01
Hurricane Iris hit the small Central American country of Belize around midnight on October 8, 2001. At the time, Iris was the strongest Atlantic hurricane of the season, with sustained winds up to 225 kilometers per hour (140 mph). The hurricane caused severe damage-destroying homes, flooding streets, and leveling trees-in coastal towns south of Belize City. In addition, a boat of American recreational scuba divers docked along the coast was capsized by the storm, leaving 20 of the 28 passengers missing. Within hours the winds had subsided to only 56 kph (35 mph), a modest tropical depression, but Mexico, Guatemala, El Salvador, and Honduras were still expecting heavy rains. The above image is a combination of visible and thermal infrared data (for clouds) acquired by a NOAA Geostationary Operational Environmental Satellite (GOES-8) on October 8, 2001, at 2:45 p.m., and the Moderate-resolution Imaging Spectroradiometer (MODIS) (for the color of the ground). The three-dimensional view is from the south-southeast (north is towards the upper left). Belize is off the image to the left. Image courtesy Marit Jentoft-Nilsen, NASA GSFC Visualization Analysis Lab
Omran, H; Jung, W; Rabahieh, R; Wirtz, P; Becher, H; Illien, S; Schimpf, R; Luderitz, B
1999-01-01
Objective—To compare the value of current transthoracic echocardiographic systems and transoesophageal echocardiography for assessing left atrial appendage function and imaging thrombi. Design—Single blind prospective study. Patients were first investigated by transthoracic echocardiography and thereafter by a second investigator using transoesophageal echocardiography. The feasibility of imaging the left atrial appendage, recording its velocities, and identifying thrombi within the appendage were determined by both methods. Patients—117 consecutive patients with a stroke or transient neurological deficit. Setting—Tertiary cardiac and neurological care centre. Results—Imaging of the complete appendage was feasible in 75% of the patients by transthoracic echocardiography and in 95% by transoesophageal echocardiography. Both methods were concordant for the detection of thrombi in 10 cases. Transoesophageal echocardiography revealed two additional thrombi. In one of these patients, transthoracic echocardiography was not feasible and in the other the thrombus had been missed by transthoracic examination. In patients with adequate transthoracic echogenicity, the specificity and sensitivity of detecting left atrial appendage thrombi were 100% and 91%, respectively. Recording of left atrial appendage velocities by transthoracic echocardiography was feasible in 69% of cases. None of the patients with a velocity > 0.3 m/s had left atrial appendage thrombi. In the one patient in whom transthoracic echocardiographic evaluation missed a left atrial appendage thrombus, the peak emptying velocity of the left atrial appendage was 0.25 m/s. Conclusions—A new generation echocardiographic system allows for the transthoracic detection of left atrial appendage thrombi and accurate determination of left atrial appendage function in most patients with a neurological deficit. Keywords: echocardiography; left atrial appendage thrombi; stroke; thromboembolism PMID:9922358
Cortical complexity in bipolar disorder applying a spherical harmonics approach.
Nenadic, Igor; Yotter, Rachel A; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian
2017-05-30
Recent studies using surface-based morphometry of structural magnetic resonance imaging data have suggested that some changes in bipolar disorder (BP) might be neurodevelopmental in origin. We applied a novel analysis of cortical complexity based on fractal dimensions in high-resolution structural MRI scans of 18 bipolar disorder patients and 26 healthy controls. Our region-of-interest based analysis revealed increases in fractal dimensions (in patients relative to controls) in left lateral orbitofrontal cortex and right precuneus, and decreases in right caudal middle frontal, entorhinal cortex, and right pars orbitalis, and left fusiform and posterior cingulate cortices. While our analysis is preliminary, it suggests that early neurodevelopmental pathologies might contribute to bipolar disorder, possibly through genetic mechanisms. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Retention assessment of magnetic nanoparticles in rat arteries with micro-computed tomography
NASA Astrophysics Data System (ADS)
Tu, Shu-Ju; Wu, Siao-Yun; Wang, Fu-Sheng; Ma, Yunn-Hwa
2014-03-01
Magnetic nanoparticles (MNPs) may serve as carriers for pharmacological agents to the target in a magnetic-force guiding system. It is essential to achieve effective retention of MNPs through the external magnet placement. However, it is difficult to estimate the retention efficiency of MNPs and validate the experimental strategies. Micro-CT was used to identify the spatial distribution of MNP retention and image analysis is then extended to evaluate the MNP delivery efficiency. Male Sprague Dawley rats were anesthetized to expose abdominal arteries with an NdFeB magnet of 4.9 kG placed by the left iliac artery. After a 20 min equilibrium period, arteries were ligated, removed and fixed in a paraformaldehyde solution. Experiments were performed with intravenous injection in our platform with two independent groups. MNPs were used in the first group, while chemical compounds of recombinant tissue plaminogen activator were attached to MNPs as rtPA (recombinant tissue plaminogen activator)-MNPs in the second group. Image analysis of micro-CT shows the average retention volume of MNPs and rtPA-MNPs in the left iliac arteries is 9.3 and 6.3 fold of that in the right. Large local aggregation of MNPs and rtPA-MNPs in the left iliac arteries is the consequence of external magnet placement, suggesting feasibility of magnetic targeting through the intravenous administration. We also determined that on average 0.57% and 0.064% of MNPs and rtPA-MNPs respectively were retained in the left iliac artery. It was estimated that the average rtPA concentration of 60.16 µg mL-1 may be achieved with rtPA-MNPs. With the micro-CT imaging approach, we accomplished visualization of the aggregation of retained particles; reconstructed 3D distribution of relative retention; estimated the average particle number of local retention; determined efficiency of targeted delivery. In particular, our quantitative image assessment suggests that intravenous administration of rtPA-MNPs may retain local concentration of rtPA high enough to induce thrombolysis.
Celebrity chefs put their left cheek forward: Cover image orientation in celebrity cookbooks.
Lindell, Annukka K
2017-09-01
Portrait pose orientations influence perception: the left cheek is more emotionally expressive; females' right cheeks appear more attractive. Posing biases are established in paintings, photographs, and advertisements, however, book covers have not previously been examined. This paper assesses cover image orientation in a book genre that frequently features a cover portrait: the celebrity cookbook. If marketers intuitively choose to enhance chefs' emotional expressivity, left cheek poses should predominate; if attractiveness is more important, right cheek poses will be more frequent for females, with a left or no cheek bias for males. Celebrity cookbook covers (N = 493) were sourced online; identity, portrait orientation, photo type, and sex were coded. For celebrity cookbooks, left cheek covers (39.6%) were more frequent than right cheek (31.6%) or midline covers (28.8%); sex did not predict pose orientation. An interaction between photo type and sex bordered on significance: photo type did not influence females' pose orientation; for males, the left cheek bias present for head and torso images was absent for full body and head only photos. Overall, the left cheek bias for celebrity cookbook covers implies that marketers intuitively select images that make the chefs appear happier and/or more emotionally expressive, enhancing engagement with the audience.
Lindell, Annukka K; Savill, Nicola J
2010-11-01
The human face expresses emotion asymmetrically. Whereas the left cheek is more emotionally expressive, the right cheek appears more impassive, hence the appropriate cheek to put forward depends on the circumstance. Nicholls, Clode, Wood, and Wood (1999, Proceedings of the Royal Society (Section B), 266, 1517-1522) demonstrated that people posing for family portraits offer the left cheek, whereas those posing as a Royal Society scientist favour the right. Given that the stereotypical representations of members of different academic disciplines differ markedly in their perceived openness and emotionality (e.g., "serious" scientist vs. "creative" writer), we reasoned that people may use cheek as a cue when determining a model's area of academic interest. Two hundred and nine participants (M=90, F=119) viewed pairs of left and right cheek poses, and made a forced-choice decision indicating which image depicted a Chemistry, Psychology or English student. Half the images were mirror-reversed to control for perceptual and aesthetic biases. Consistent with prediction, participants were more likely to select left cheek images for English students, and right cheek images for Chemistry students, irrespective of image orientation. The results confirm that determining the best cheek to put forward depends on your academic expertise: an impassive right cheek suggests hard science, whereas an emotive left cheek implies the arts. Psychology produced no left or right bias, consistent with its position as a discipline perpetually straddling the boundary between art and science.
Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging.
Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Chung, June-Key; Zhang, Hong; Tian, Mei
2017-06-01
Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing.
MR image analytics to characterize upper airway architecture in children with OSAS
NASA Astrophysics Data System (ADS)
Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.; Matsumoto, Monica M. S.; Sin, Sanghun; Arens, Raanan
2015-03-01
Mechanisms leading to Obstructive Sleep Apnea Syndrome (OSAS) in obese children are not well understood. We previously analyzed polysomnographic and demographic data to study the anatomical characteristics of the upper airway and body composition in two groups of obese children with and without OSAS, where object volume was evaluated. In this paper, in order to better understand the disease we expand the analysis considering a variety of features that include object-specific features such as size, surface area, sphericity, and image intensity properties of fourteen objects in the vicinity of the upper airway, as well as inter-object relationships such as distance between objects. Our preliminary results indicate several interesting phenomena: volumes and surface areas of adenoid and tonsils increase statistically significantly in OSAS. Standardized T2-weighted MR image intensities differ statistically significantly between the two groups, implying that perhaps intrinsic tissue composition undergoes changes in OSAS. Inter-object distances are significantly different between the two groups for object pairs (skin, oropharynx), (skin, fat pad), (skin, soft palate), (mandible, tongue), (oropharynx, soft palate), (left tonsil, oropharynx), (left tonsil, fat pad) and (left tonsil, right tonsil). We conclude that treatment methods for OSAS such as adenotonsillectomy should respect proportional object size relationships and spatial arrangement of objects as they exist in control subjects.
Speech and oromotor outcome in adolescents born preterm: relationship to motor tract integrity.
Northam, Gemma B; Liégeois, Frédérique; Chong, Wui K; Baker, Kate; Tournier, Jacques-Donald; Wyatt, John S; Baldeweg, Torsten; Morgan, Angela
2012-03-01
To assess speech abilities in adolescents born preterm and investigate whether there is an association between specific speech deficits and brain abnormalities. Fifty adolescents born prematurely (<33 weeks' gestation) with a spectrum of brain injuries were recruited (mean age, 16 years). Speech examination included tests of speech-sound processing and production and speech and oromotor control. Conventional magnetic resonance imaging and diffusion-weighted imaging was acquired in all adolescents born preterm and 30 term-born control subjects. Radiological ratings of brain injury were recorded and the integrity of the primary motor projections was measured (corticospinal tract and speech-motor corticobulbar tract [CST/CBT]). There were no clinical diagnoses of developmental dysarthria, dyspraxia, or a speech-sound disorder, but difficulties in speech and oromotor control were common. A regression analysis revealed that presence of a neurologic impairment, and diffusion-weighted imaging abnormalities in the left CST/CBT were significant independent predictors of poor speech and oromotor outcome. These left-lateralized abnormalities were most evident at the level of the posterior limb of the internal capsule. Difficulties in speech and oromotor control are common in adolescents born preterm, and adolescents with injury to the CST/CBT pathways in the left-hemisphere may be most at risk. Copyright © 2012 Mosby, Inc. All rights reserved.
Coffee, Robert E; Nicholas, Joyce S; Egan, Brent M; Rumboldt, Zoran; D'Agostino, Sabino; Patel, Sunil J
2005-11-01
Pulsatile arterial compression (AC) of the ventrolateral medulla (VLM) has been postulated to cause neurogenically mediated essential hypertension (EHTN). We aimed to establish whether the association between AC of specifically the retro-olivary sulcus (ROS) of the VLM and EHTN was significant, while controlling for other risks associated with EHTN. Case-control study. Posterior fossa magnetic resonance imaging scans of 131 subjects, including 58 subjects with EHTN and 73 normotensives, were reviewed to determine the presence of AC in the ROS. The history of other risk factors for EHTN was obtained by reviewing medical records. Multivariate logistic regression analysis of these data shows a significant association between AC in the ROS (right and/or left) and EHTN [odds ratio (OR) = 3.03, 95% confidence interval (CI) = 1.30, 7.06]. This analysis was done controlling for other known EHTN risk factors such as age, race, sex, diabetes, and obesity. A secondary analysis also controlling for these variables shows that AC of both the right and left ROS are independently associated with EHTN (right AC: OR = 5.04, 95% CI = 1.33, 19.17; left AC: OR = 3.39, 95% CI = 1.20, 9.60). In this retrospective study of subjects with EHTN and normotensive controls that had undergone magnetic resonance imaging of the posterior fossa, AC of the ROS on either side of the medulla is a significant independent risk factor in EHTN. Further studies are required to determine whether this is true for the general population of patients with neurogenically mediated EHTN.
Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging.
Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P
2016-09-09
The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics.
NASA Astrophysics Data System (ADS)
Rebelo, Marina de Sá; Aarre, Ann Kirstine Hummelgaard; Clemmesen, Karen-Louise; Brandão, Simone Cristina Soares; Giorgi, Maria Clementina; Meneghetti, José Cláudio; Gutierrez, Marco Antonio
2009-12-01
A method to compute three-dimension (3D) left ventricle (LV) motion and its color coded visualization scheme for the qualitative analysis in SPECT images is proposed. It is used to investigate some aspects of Cardiac Resynchronization Therapy (CRT). The method was applied to 3D gated-SPECT images sets from normal subjects and patients with severe Idiopathic Heart Failure, before and after CRT. Color coded visualization maps representing the LV regional motion showed significant difference between patients and normal subjects. Moreover, they indicated a difference between the two groups. Numerical results of regional mean values representing the intensity and direction of movement in radial direction are presented. A difference of one order of magnitude in the intensity of the movement on patients in relation to the normal subjects was observed. Quantitative and qualitative parameters gave good indications of potential application of the technique to diagnosis and follow up of patients submitted to CRT.
Coronary artery disease detection - limitations of stress testing in left ventricular dysfunction
Bomb, Ritin; Kumar, Senthil; Chockalingam, Anand
2017-01-01
Incidental diagnosis of left ventricular systolic dysfunction (LVD) is common in clinical practice. The prevalence of asymptomatic LVD (Ejection Fraction, EF < 50%) is 6.0% in men and 0.8% in women and is twice as common as symptomatic LVD. The timely and definitive exclusion of an ischemic etiology is central to optimizing care and reducing mortality in LVD. Advances in cardiovascular imaging provide many options for imaging of patients with left ventricular dysfunction. Clinician experience, patient endurance, imaging modality characteristics, cost and safety determine the choice of testing. In this review, we have compared the diagnostic utility of established tests - nuclear and echocardiographic stress testing with newer techniques like coronary computerized tomography and cardiac magnetic resonance imaging and highlight their inherent limitations in patients with underlying left ventricular dysfunction. PMID:28515848
Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V
2015-03-01
Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm(3)) as compared to the right (1824.11 ± 582.81 mm(3)) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities.
NASA Astrophysics Data System (ADS)
Yang, Guang; Zhuang, Xiahai; Khan, Habib; Haldar, Shouvik; Nyktari, Eva; Li, Lei; Ye, Xujiong; Slabaugh, Greg; Wong, Tom; Mohiaddin, Raad; Keegan, Jennifer; Firmin, David
2017-03-01
Late Gadolinium-Enhanced Cardiac MRI (LGE CMRI) is an emerging non-invasive technique to image and quantify preablation native and post-ablation atrial scarring. Previous studies have reported that enhanced image intensities of the atrial scarring in the LGE CMRI inversely correlate with the left atrial endocardial voltage invasively obtained by electro-anatomical mapping. However, the reported reproducibility of using LGE CMRI to identify and quantify atrial scarring is variable. This may be due to two reasons: first, delineation of the left atrium (LA) and pulmonary veins (PVs) anatomy generally relies on manual operation that is highly subjective, and this could substantially affect the subsequent atrial scarring segmentation; second, simple intensity based image features may not be good enough to detect subtle changes in atrial scarring. In this study, we hypothesized that texture analysis can provide reliable image features for the LGE CMRI images subject to accurate and objective delineation of the heart anatomy based on a fully-automated whole heart segmentation (WHS) method. We tested the extracted texture features to differentiate between pre-ablation and post-ablation LGE CMRI studies in longstanding persistent atrial fibrillation patients. These patients often have extensive native scarring and differentiation from post-ablation scarring can be difficult. Quantification results showed that our method is capable of solving this classification task, and we can envisage further deployment of this texture analysis based method for other clinical problems using LGE CMRI.
Fujimoto, Hiroshi; Matsuoka, Teruyuki; Kato, Yuka; Shibata, Keisuke; Nakamura, Kaeko; Yamada, Kei; Narumoto, Jin
2017-01-01
Patients with Alzheimer's disease (AD) are frequently unaware of their cognitive symptoms and medical diagnosis. The term "anosognosia" is used to indicate a general lack of awareness of one's disease or disorder. The neural substrate underlying anosognosia in AD is unclear. Since anosognosia for memory disturbance might be an initial sign of AD, it is important to determine the neural correlates. This study was designed to investigate the characteristics and neural correlates of anosognosia for memory disturbance in patients with mild AD. The subjects were 49 patients with mild AD who participated in a retrospective cross-sectional study. None of the patients had been treated with cholinesterase inhibitors, memantine, or psychotropic drugs. All patients underwent magnetic resonance imaging (MRI). Anosognosia for memory disturbance was assessed based on the discrepancy between questionnaire scores of patients and their caregivers. Structural MRI data were analyzed to explore the association between anosognosia and brain atrophy, using a voxel-based approach. Statistical parametric mapping software was used to explore neural correlations. In image analysis, multiple regression analysis was performed to examine the relationship between anosognosia score and regional gray matter volume. Age, years of education, and total intracranial volume were entered as covariates. The anosognosia score for memory disturbance was significantly negatively correlated with gray matter volume in the left superior frontal gyrus. The left superior frontal gyrus was involved in anosognosia for memory disturbance, while the medial temporal lobe, which is usually damaged in mild AD, was not associated with anosognosia. The left superior frontal gyrus might be an important region for anosognosia in mild AD.
NASA Astrophysics Data System (ADS)
Hosoda, Masaki; Wang, Jing; Tsikudi, Diane; Nadkarni, Seemantini
2016-02-01
Acute myocardial infarction is frequently caused by the rupture of coronary plaques with severely compromised viscoelastic properties. We have developed a new optical technology termed intravascular laser speckle imaging (ILSI) that evaluates plaque viscoelastic properties, by measuring the time scale (time constant, τ) of temporally evolving laser speckle fluctuations. To enable coronary evaluation in vivo, an optical ILSI catheter has been developed that accomplishes omni-directional illumination and viewing of the entire coronary circumference without the need for mechanical rotation. Here, we describe the capability of ILSI for evaluating human coronary atherosclerosis in cadaveric hearts. ILSI was conducted in conjunction with optical coherence tomography (OCT) imaging in five human cadaveric hearts. The left coronary artery (LCA), left anterior descending (LAD), left circumflex artery (LCx), and right coronary artery (RCA) segments were resected and secured on custom-developed coronary holders to enable accurate co-registration between ILSI, OCT, and histopathology. Speckle time constants, τ, calculated from each ILSI section were compared with lipid and collagen content measured from quantitative Histopathological analysis of the corresponding Oil Red O and Picrosirius Red stained sections. Because the presence of low viscosity lipid elicits rapid speckle fluctuations, we observed an inverse correlation between τ measured by ILSI and lipid content (R= -0.64, p< 0.05). In contrast, the higher viscoelastic modulus of fibrous regions resulted in a positive correlation between τ and collagen content (R= 0.54, p< 0.05). These results demonstrate the feasibility of conducting ILSI evaluation of arterial mechanical properties using a miniaturized omni-directional catheter.
Pampapati, Praveenkumar; Rao, Hejmadi Tati Gururaj; Radhesh, Srinivasan; Anand, Hejjaji Krishnamurthy; Praveen, Lokkur Srinivasamurthy
2011-01-01
Sinus of valsalva aneurysm is a rare condition arising from any of the three aortic sinuses. Among them, an aneurysm arising from the left coronary sinus is the rarest. Most of these cases were earlier diagnosed using echocardiography and conventional angiography. But with the availability of advanced imaging modalities like 64 slice cardiac CT and MR modalities, this condition can be accurately assessed noninvasively. We report a case of ruptured aneurysm originating from the left coronary sinus with a long windsock type of fistulous track between the aneurysm and right atrium evaluated by 64 slice cardiac CT imaging. This was later confirmed perioperatively.
[Evoked potentials in the human visual cortex when observing whole figures and their elements].
Slavutskaia, A V; Mikhaĭlova, E S
2010-01-01
Evoked potentials changes were analyzed in 32 subjects in a task of observing whole and disintegrated images. In the occipital and parietal regions, reactions to a disintegrated image appeared early (within the period of P1 development), and their characteristics were determined by the magnitude of the response to the whole image. In the occipital cortex, a low-amplitude P1 (the 1st group of subjects) increased in response to image disintegration, whereas in cases of a high P1 amplitude (the 2nd group), the tendency to its reduction was observed. In the parietal regions, the effects were distinct only in the 1st group of subjects and different in the right and left hemispheres: in the left hemisphere, the P1 amplitude increased when simpler elements appeared in the image, in the right hemisphere, a change in the spatial disposition of details was more significant. In the inferior temporal cortex, the amplitude of the later wave N1 decreased in response to disintegration, the effect being significant only in the 2nd group of subjects. The appearance of simpler elements in the image resulted in a P3 wave increase in both groups. The results point to topographic and temporal specificity of the reactions of the visual cortex to image disintegration and suggest the existence of various strategies of the visual image analysis at the early stages.
Saji, Mike; Rossi, Ann M; Ailawadi, Gorav; Dent, John; Ragosta, Michael; Lim, D Scott
2016-02-01
We evaluated intracardiac echocardiography (ICE) for adjunctively guiding the MitraClip procedure in patients with prior surgical rings. Transesophageal echocardiography (TEE) is the standard imaging modality used to guide the MitraClip procedure (Abbott Vascular, CA). However, in patients with post-surgical anatomy, clear imaging of the mitral valve leaflets may be complex because of shadowing from the surgical ring. In these patients, TEE may be suboptimal for guiding the procedure, even using three-dimensional imaging. This retrospective analysis included data from 121 consecutive patients with mitral regurgitation who underwent MitraClip procedures at the University of Virginia. ICE was used adjunctively when there was difficulty with TEE, particularly for assessing the insertion of the posterior leaflet into the MitraClip's arms. The ICE catheter was introduced transarterially into the left ventricle and flexed to obtain the short-axis view. Six patients had prior surgical rings, and in five, we used adjunctive ICE. The etiology of the mitral regurgitation was prolapse of the posterior leaflet in one patient and restriction of the posterior leaflet due to ischemic tethering in the remainder. All images were obtained from the left ventricle, and were adequate for assessing posterior leaflet insertion and the perpendicularity of the MitraClip arms. The procedural success rate was 80%. There was no adverse event related to the ICE procedure. Mitral valve repair with the MitraClip system assisted by ICE is feasible in patients with prior surgical rings, achieving an excellent risk profile and satisfactory procedural success. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
1992-01-01
This view of the Moon's north pole is a mosaic assembled from 18 images taken by Galileo's imaging system through a green filter as the spacecraft flew by on December 7, 1992. The left part of the Moon is visible from Earth; this region includes the dark, lava-filled Mare Imbrium (upper left); Mare Serenitatis (middle left); Mare Tranquillitatis (lower left), and Mare Crisium, the dark circular feature toward the bottom of the mosaic. Also visible in this view are the dark lava plains of the Marginis and Smythii Basins at the lower right. The Humboldtianum Basin, a 650-kilometer (400-mile) impact structure partly filled with dark volcanic deposits, is seen at the center of the image. The Moon's north pole is located just inside the shadow zone, about a third of the way from the top left of the illuminated region.
Badran, Hala Mahfouz; Soltan, Ghada; Hassan, Hesham; Nazmy, Ahmed; Faheem, Naglaa; Saadan, Haythem; Yacoub, Magdi H.
2012-01-01
Abstract: Objectives: Hypertrophic cardiomyopathy (HCM) represents a generalized myopathic process affecting both ventricular and atrial myocardium. We assessed the global and regional left atrial (LA) function and its relation to left ventricular (LV) mechanics and clinical status in patients with HCM using Vector Velocity Imaging (VVI). Methods: VVI of the LA and LV was acquired from apical four- and two-chamber views of 108 HCM patients (age 40 ± 19years, 56.5% men) and 33 healthy subjects, all had normal LV systolic function. The LA subendocardium was traced to obtain atrial volumes, ejection fraction, velocities, and strain (ϵ)/strain rate (SR) measurements. Results: Left atrial reservoir (ϵsys,SRsys) and conduit (early diastolic SRe) function were significantly reduced in HCM compared to controls (P < .0001). Left atrial deformation directly correlated to LVϵsys, SRsys and negatively correlated to age, NYHA class, left ventricular outflow tract (LVOT) gradient, left ventricular mass index (LVMI), LA volume index and severity of mitral regurge (P < 0.001). Receiver operating characterist was constructed to explore the cutoff value of LA deformation in differentiation of LA dysfunction; ϵsys < 40% was 75% sensitive, 50% specific, SRsys < 1.7s− 1 was 70% sensitive, 61% specific, SRe> − 1.8s− 1 was 81% sensitive and 30% specific, SRa> − 1.5s− 1 was 73% sensitive and 40% specific. By multivariate analysis global LVϵsys and LV septal thickness are independent predictors for LAϵsys, while end systolic diameter is the only independent predictor for SRsys, P < .001. Conclusion: Left atrial reservoir and conduit function as measured by VVI were significantly impaired while contractile function was preserved among HCM patients. Left atrial deformation was greatly influenced by LV mechanics and correlated to severity of phenotype. PMID:24688992
Axillary silicone lymphadenopathy secondary to augmentation mammaplasty
Dragoumis, Dimitrios M.; Assimaki, Anthoula S.; Vrizas, Triantafyllos I.; Tsiftsoglou, Aris P.
2010-01-01
We report a case involving a 45-year-old woman, who presented with an axillary mass 10 years after bilateral cosmetic augmentation mammaplasty. A lump was detected in the left axilla, and subsequent mammography and magnetic resonance imaging demonstrated intracapsular rupture of the left breast prosthesis. An excisional biopsy of the left axillary lesion and replacement of the ruptured implant was performed. Histological analysis showed that the axillary lump was lymph nodes containing large amounts of silicone. Silicone lymphadenopathy is an obscure complication of procedures involving the use of silicone. It is thought to occur following the transit of silicone droplets from breast implants to lymph nodes by macrophages and should always be considered as a differential diagnosis in patients in whom silicone prostheses are present. PMID:21217983
Cerebral correlates of heart rate variations during a spontaneous panic attack in the fMRI scanner.
Spiegelhalder, Kai; Hornyak, Magdolna; Kyle, Simon David; Paul, Dominik; Blechert, Jens; Seifritz, Erich; Hennig, Jürgen; Tebartz van Elst, Ludger; Riemann, Dieter; Feige, Bernd
2009-12-01
We report the first published case study of a suddenly occurring panic attack in a patient with no prior history of panic disorder during combined functional magnetic resonance imaging (fMRI, 1.5 Tesla) and electrocardiogram (ECG) recording. The single case was a 46-year-old woman who developed a panic attack near the planned end of the fMRI acquisition session, which therefore had to be aborted. Correlational analysis of heart rate fluctuations and fMRI data revealed a significant negative association in the left middle temporal gyrus. Additionally, regions-of-interest (ROI) analyses indicated significant positive associations in the left amygdala, and trends towards significance in the right amygdala and left insula.
NASA Technical Reports Server (NTRS)
Ritman, E. L.; Sturm, R. E.; Wood, E. H.
1973-01-01
An operator interactive video system for the measurement of roentgen angiographically outlined structures is described. Left ventricular volume and three-dimensional shapes are calculated from up to 200 pairs of diameters measured from ventriculograms at the rate of 60 pairs of biplane images per second. The accuracy and reproducibility of volumes calculated by the system were established by analysis of roentgenograms of inanimate objects of known volume and by comparison of left ventricular stroke volumes calculated by the system with the stroke volumes calculated by an indicator-dilution technique and an aortic root electromagnetic flowmeter. Computer-generated display of the large amounts of data obtained by the videometry system is described.
Castorina, Sergio; Luca, Tonia; Privitera, Giovanna; Riccioli, Vincenzo
2010-01-01
In this paper, we describe two cases of anomalous origin of the left coronary artery and two cases of aneurysm on the left coronary artery. Detailed three-dimensional images were acquired by the multislice computed tomography (MSCT) SOMATOM Sensation Cardiac 64 during clinical studies of cardiac diseases. Copyright 2010. Published by Elsevier Inc.
Magnetic resonance imaging as a tool for extravehicular activity analysis
NASA Technical Reports Server (NTRS)
Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.
1992-01-01
The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.
Hypoplastic left heart syndrome (image)
Hypoplastic left heart syndrome is a congenital heart condition that occurs during the development of the heart in the ... womb. During the heart's development, parts of the left side of the heart (mitral valve, left ventricle ...
Matsumoto, M; Hanrath, P; Kremer, P; Tams, C; Langenstein, B A; Schlüter, M; Weiter, R; Bleifeld, W
1982-01-01
In order to evaluate left ventricular function during dynamic exercise transoesophageal M-mode recordings of the left ventricle were carried out with a newly developed transducer gastroscope system. Twelve healthy subjects performed a graded supine bicycle exercise test. Stable and good quality images of the left ventricle at rest and during exercise at different steps up to a maximum workload of 100 watts were obtained in all patients. Isotonic maximum exercise resulted in a significant increase in fractional shortening of the left ventricle, peak shortening rate, and peak lengthening rate of the left ventricular minor axis. Left ventricular end-diastolic dimension decreased significantly. With increasing workload the pressure rate product increased significantly. It is concluded that transoesophageal M-mode echocardiography is a useful method of evaluating left ventricular performance during dynamic exercise. Images PMID:7082515
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon
2013-07-01
This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.
Hattingh, Coenraad J.; Ipser, J.; Tromp, S. A.; Syal, S.; Lochner, C.; Brooks, S. J.; Stein, D. J.
2012-01-01
Background: Social anxiety disorder (SAD) is characterized by abnormal fear and anxiety in social situations. Functional magnetic resonance imaging (fMRI) is a brain imaging technique that can be used to demonstrate neural activation to emotionally salient stimuli. However, no attempt has yet been made to statistically collate fMRI studies of brain activation, using the activation likelihood-estimate (ALE) technique, in response to emotion recognition tasks in individuals with SAD. Methods: A systematic search of fMRI studies of neural responses to socially emotive cues in SAD was undertaken. ALE meta-analysis, a voxel-based meta-analytic technique, was used to estimate the most significant activations during emotional recognition. Results: Seven studies were eligible for inclusion in the meta-analysis, constituting a total of 91 subjects with SAD, and 93 healthy controls. The most significant areas of activation during emotional vs. neutral stimuli in individuals with SAD compared to controls were: bilateral amygdala, left medial temporal lobe encompassing the entorhinal cortex, left medial aspect of the inferior temporal lobe encompassing perirhinal cortex and parahippocampus, right anterior cingulate, right globus pallidus, and distal tip of right postcentral gyrus. Conclusion: The results are consistent with neuroanatomic models of the role of the amygdala in fear conditioning, and the importance of the limbic circuitry in mediating anxiety symptoms. PMID:23335892
Hemispheric asymmetries and gender influence Rembrandt's portrait orientations.
Schirillo, J A
2000-01-01
For centuries painters have predominantly painted portraits with the model's left-cheek facing the viewer. This has been even more prevalent with females ( approximately 68%) than males ( approximately 56%). Numerous portraits painted by Rembrandt typify this unexplained phenomenon. In a preliminary experiment, subjects judged 24 emotional and social character traits in 20 portraits by Rembrandt. A factor analysis revealed that females with their left cheek exposed were judged to be much less socially appealing than less commonly painted right-cheeked females. Conversely, the more commonly painted right-cheeked males were judged to be more socially appealing than either left-cheeked males or females facing either direction. It is hypothesized that hemispheric asymmetries regulating emotional facial displays of approach and avoidance influenced the side of the face Rembrandt's models exposed due to prevailing social norms. A second experiment had different subjects judge a different collection of 20 portraits by Rembrandt and their mirror images. Mirror-reversed images produced the same pattern of results as their original orientation counterparts. Consequently, hemispheric asymmetries that specify the emotional expression on each side of the face are posited to account for the obtained results.
Family matters: Directionality of turning bias while kissing is modulated by context.
Sedgewick, Jennifer R; Elias, Lorin J
2016-01-28
When leaning forward to kiss to a romantic partner, individuals tend to direct their kiss to the right more often than the left. Studies have consistently demonstrated this kissing asymmetry, although other factors known to influence lateral biases, such as sex or situational context, had yet to be explored. The primary purpose of our study was to investigate if turning direction was consistent between a romantic (parent-parent) and parental (parent-child) kissing context, and secondly, to examine if sex differences influenced turning bias between parent-child kissing partners. An archival analysis coded the direction of turning bias for 161 images of romantic kissing (mothers kissing fathers) and 529 images of parental kissing (mothers or fathers kissing sons or daughters). The results indicated that the direction of turning bias differed between kissing contexts. As expected, a right-turn bias was observed for romantic kissing; however, a left-turn bias was exhibited for parental kissing. There was no significant difference of turning bias between any parent-child kissing partners. Interpretations for the left-turn bias discuss parental kissing as a learned lateral behaviour.
McGill, L A; Ferreira, P F; Scott, A D; Nielles-Vallespin, S; Giannakidis, A; Kilner, P J; Gatehouse, P D; de Silva, R; Firmin, D N; Pennell, D J
2016-01-06
In vivo cardiac diffusion tensor imaging (cDTI) is uniquely capable of interrogating laminar myocardial dynamics non-invasively. A comprehensive dataset of quantative parameters and comparison with subject anthropometrics is required. cDTI was performed at 3T with a diffusion weighted STEAM sequence. Data was acquired from the mid left ventricle in 43 subjects during the systolic and diastolic pauses. Global and regional values were determined for fractional anisotropy (FA), mean diffusivity (MD), helix angle gradient (HAg, degrees/%depth) and the secondary eigenvector angulation (E2A). Regression analysis was performed between global values and subject anthropometrics. All cDTI parameters displayed regional heterogeneity. The RR interval had a significant, but clinically small effect on systolic values for FA, HAg and E2A. Male sex and increasing left ventricular end diastolic volume were associated with increased systolic HAg. Diastolic HAg and systolic E2A were both directly related to left ventricular mass and body surface area. There was an inverse relationship between E2A mobility and both age and ejection fraction. Future interpretations of quantitative cDTI data should take into account anthropometric variations observed with patient age, body surface area and left ventricular measurements. Further work determining the impact of technical factors such as strain and SNR is required.
Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.
Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng
2015-01-01
The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.
Supernova The Supernova Cosmology Project The image above and the movie clips ( QuickTime, or MPEG), show Centaurus A galaxy. The image on the left shows how a supernova appears as it brightens and fades brightness is, from the image at left. The bottom right graph shows how the spectrum of the supernova changes
Stereo View of Martian Rock Target 'Funzie'
2018-02-08
The surface of the Martian rock target in this stereo image includes small hollows with a "swallowtail" shape characteristic of some gypsum crystals, most evident in the lower left quadrant. These hollows may have resulted from the original crystallizing mineral subsequently dissolving away. The view appears three-dimensional when seen through blue-red glasses with the red lens on the left. The scene spans about 2.5 inches (6.5 centimeters). This rock target, called "Funzie," is near the southern, uphill edge of "Vera Rubin Ridge" on lower Mount Sharp. The stereo view combines two images taken from slightly different angles by the Mars Hand Lens Imager (MAHLI) camera on NASA's Curiosity Mars rover, with the camera about 4 inches (10 centimeters) above the target. Fig. 1 and Fig. 2 are the separate "right-eye" and "left-eye" images, taken on Jan. 11, 2018, during the 1,932nd Martian day, or sol, of the rover's work on Mars. Right-eye and left-eye images are available at https://photojournal.jpl.nasa.gov/catalog/PIA22212
Multimodal imaging of language reorganization in patients with left temporal lobe epilepsy.
Chang, Yu-Hsuan A; Kemmotsu, Nobuko; Leyden, Kelly M; Kucukboyaci, N Erkut; Iragui, Vicente J; Tecoma, Evelyn S; Kansal, Leena; Norman, Marc A; Compton, Rachelle; Ehrlich, Tobin J; Uttarwar, Vedang S; Reyes, Anny; Paul, Brianna M; McDonald, Carrie R
2017-07-01
This study explored the relationships among multimodal imaging, clinical features, and language impairment in patients with left temporal lobe epilepsy (LTLE). Fourteen patients with LTLE and 26 controls underwent structural MRI, functional MRI, diffusion tensor imaging, and neuropsychological language tasks. Laterality indices were calculated for each imaging modality and a principal component (PC) was derived from language measures. Correlations were performed among imaging measures, as well as to the language PC. In controls, better language performance was associated with stronger left-lateralized temporo-parietal and temporo-occipital activations. In LTLE, better language performance was associated with stronger right-lateralized inferior frontal, temporo-parietal, and temporo-occipital activations. These right-lateralized activations in LTLE were associated with right-lateralized arcuate fasciculus fractional anisotropy. These data suggest that interhemispheric language reorganization in LTLE is associated with alterations to perisylvian white matter. These concurrent structural and functional shifts from left to right may help to mitigate language impairment in LTLE. Copyright © 2017 Elsevier Inc. All rights reserved.
MARS PATHFINDER CAMERA TEST IN SAEF-2
NASA Technical Reports Server (NTRS)
1996-01-01
In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers from the Jet Propulsion Laboratory (JPL) are conducting a systems test of the imager for the Mars Pathfinder. The imager (white and metallic cylindrical element close to hand of worker at left) is a specially designed camera featuring a stereo- imaging system with color capability provided by a set of selectable filters. It is mounted atop an extendable mast on the Pathfinder lander. Visible to the far left is the small rover which will be deployed from the lander to explore the Martian surface. Transmitting back to Earth images of the trail left by the rover will be one of the mission objectives for the imager. To the left of the worker standing near the imager is the mast for the low-gain antenna; the round high-gain antenna is to the right. Visible in the background is the cruise stage that will carry the Pathfinder on a direct trajectory to Mars. The Mars Pathfinder is one of two Mars-bound spacecraft slated for launch aboard Delta II expendable launch vehicles this year.
Damage to the Left Precentral Gyrus Is Associated With Apraxia of Speech in Acute Stroke.
Itabashi, Ryo; Nishio, Yoshiyuki; Kataoka, Yuka; Yazawa, Yukako; Furui, Eisuke; Matsuda, Minoru; Mori, Etsuro
2016-01-01
Apraxia of speech (AOS) is a motor speech disorder, which is clinically characterized by the combination of phonemic segmental changes and articulatory distortions. AOS has been believed to arise from impairment in motor speech planning/programming and differentiated from both aphasia and dysarthria. The brain regions associated with AOS are still a matter of debate. The aim of this study was to address this issue in a large number of consecutive acute ischemic stroke patients. We retrospectively studied 136 patients with isolated nonlacunar infarcts in the left middle cerebral artery territory (70.5±12.9 years old, 79 males). In accordance with speech and language assessments, the patients were classified into the following groups: pure form of AOS (pure AOS), AOS with aphasia (AOS-aphasia), and without AOS (non-AOS). Voxel-based lesion-symptom mapping analysis was performed on T2-weighted images or fluid-attenuated inversion recovery images. Using the Liebermeister method, group-wise comparisons were made between the all AOS (pure AOS plus AOS-aphasia) and non-AOS, pure AOS and non-AOS, AOS-aphasia and non-AOS, and pure AOS and AOS-aphasia groups. Of the 136 patients, 22 patients were diagnosed with AOS (7 patients with pure AOS and 15 patients with AOS-aphasia). The voxel-based lesion-symptom mapping analysis demonstrated that the brain regions associated with AOS were centered on the left precentral gyrus. Damage to the left precentral gyrus is associated with AOS in acute to subacute stroke patients, suggesting a role of this brain region in motor speech production. © 2015 American Heart Association, Inc.
[Memory peculiarities in patients with schizophrenia and their first-degree relatives].
Savina, T D; Orlova, V A; Shcherbakova, N P; Korsakova, N K; Malova, Iu A; Efanova, N N; Ganisheva, T K; Nikolaev, R A
2008-01-01
Eighty-four families with schizophrenia: 84 patients (probands) and 73 their first-degree unaffected relatives as well as 37 normals and their relatives have been studied using pathopsychological (pictogram) and Luria's neuropsychological tests. The most prominent abnormalities both in patients and relatives were global characteristics of auditory-speech memory predominantly related to left subcortical and left temporal regions. Abnormalities of immediate recall of short logic story (SLS) were connected with dysfunction of the same brain regions. Less prominent delayed recall abnormalities of SLS were revealed only in patients and connected with left subcortical, left subcortical-frontal and left subcortical-temporal zones. This abnormality was absent in relatives and age-matched controls. The span of mediated retention was decreased in patients and, to a less degree, in relatives. A quantitative psychological analysis has demonstrated the disintegration ("schizys") between semantic conception and image memory structure in patients and, to a less degree, in relatives. Data obtained show primary memory abnormalities in families with schizophrenia related to the impairment of decoding information process in the subcortical structures, the left-side dysfunction of brain structures being predominantly typical.
Maracaja Neto, Luiz F; Modak, Raj; Schonberger, Robert B
2017-04-01
Coronary blood flow can be disrupted during cardiac interventions such as mitral valve surgeries, left atrial appendage ligation, transcatheter aortic valve implantation, and aortic procedures involving reimplantation of coronary buttons. Although difficult to accomplish, coronary imaging using transesophageal echocardiography can be performed by the use of orthogonal imaging with the ability for real-time tilt for angle adjustment. The technique described herein allows imaging of the right coronary artery, left main coronary artery bifurcation, left anterior descending, and circumflex coronary arteries. The imaging is facilitated by acquisition during the delivery of blood cardioplegia. Coronary sinus and great cardiac vein imaging also can be obtained during the delivery of retrograde cardioplegia. Although further studies are needed, this imaging technique may prove useful in procedures where coronary flow disruption is suspected or as an additional parameter to confirm delivery of cardioplegia.
Akeo, Keiichiro; Kameya, Shuhei; Gocho, Kiyoko; Kubota, Daiki; Yamaki, Kunihiko; Takahashi, Hiroshi
2015-01-01
Purpose. To report the morphological and functional changes associated with a regression of foveoschisis in a patient with X-linked retinoschisis (XLRS). Methods. A 42-year-old man with XLRS underwent genetic analysis and detailed ophthalmic examinations. Functional assessments included best-corrected visual acuity (BCVA), full-field electroretinograms (ERGs), and multifocal ERGs (mfERGs). Morphological assessments included fundus photography, spectral-domain optical coherence tomography (SD-OCT), and adaptive optics (AO) fundus imaging. After the baseline clinical data were obtained, topical dorzolamide was applied to the patient. The patient was followed for 24 months. Results. A reported RS1 gene mutation was found (P203L) in the patient. At the baseline, his decimal BCVA was 0.15 in the right and 0.3 in the left eye. Fundus photographs showed bilateral spoke wheel-appearing maculopathy. SD-OCT confirmed the foveoschisis in the left eye. The AO images of the left eye showed spoke wheel retinal folds, and the folds were thinner than those in fundus photographs. During the follow-up period, the foveal thickness in the SD-OCT images and the number of retinal folds in the AO images were reduced. Conclusions. We have presented the detailed morphological changes of foveoschisis in a patient with XLRS detected by SD-OCT and AO fundus camera. However, the findings do not indicate whether the changes were influenced by topical dorzolamide or the natural history.
Marui, Akira; Saji, Yoshiaki; Nishina, Takeshi; Tadamura, Eiji; Kanao, Shotaro; Shimamoto, Takeshi; Sasahashi, Nozomu; Ikeda, Tadashi; Komeda, Masashi
2008-06-01
Left atrial geometry and mechanical functions exert a profound effect on left ventricular filling and overall cardiovascular performance. We sought to investigate the perioperative factors that influence left atrial geometry and mechanical functions after the Maze procedure in patients with refractory atrial fibrillation and left atrial enlargement. Seventy-four patients with atrial fibrillation and left atrial enlargement (diameter > or = 60 mm) underwent the Maze procedure in association with mitral valve surgery. The maximum left atrial volume and left atrial mechanical functions (booster pump, reservoir, and conduit function [%]) were calculated from the left atrial volume-cardiac cycle curves obtained by magnetic resonance imaging. A stepwise multiple regression analysis was performed to determine the independent variables that influenced the postoperative left atrial geometry and function. The multivariate analysis showed that left atrial reduction surgery concomitant with the Maze procedure and the postoperative maintenance of sinus rhythm were predominant independent variables for postoperative left atrial geometry and mechanical functions. Among the 58 patients who recovered sinus rhythm, the postoperative left atrial geometry and function were compared between patients with (VR group) and without (control group) left atrial volume reduction. At a mean follow-up period of 13.8 months, sinus rhythm recovery rate was better (85% vs 68%, P < .05) in the VR group and maximum left atrial volume was less (116 +/- 25 mL vs 287 +/- 73 mL, P < .001) than in the control group. The maximum left atrial volume reduced with time only in the VR group (reverse remodeling). Postoperative booster pump and reservoir function in the VR group were better than in the control group (25% +/- 6% vs 11% +/- 4% and 34% +/- 7% vs 16% +/- 4%, respectively, P < .001), whereas the conduit function in the VR group was lower than in the control group, indicating that the improvement of the booster pump and reservoir function compensated for the conduit function to left ventricular filling. Left atrial reduction concomitant with the Maze procedure helped restore both contraction (booster pump) and compliance (reservoir) of the left atrium and facilitated left atrial reverse remolding. Left atrial volume reduction and postoperative maintenance of sinus rhythm may be desirable in patients with refractory AF and left atrial enlargement.
Hua, Wei; Guang-you, Zhu; Lei, Wan; Chong-liang, Ying; Ya-hui, Wang
2014-11-01
The aim of this study was to evaluate the correlation between age and the parameters of medial epiphysis of clavicle based on CT volume rendering (VR) images. The CT images of the medial clavicle from 795 teenagers (387 male and 408 female) between 15 and 25 years were collected in East and South China. VR images were recombined from 0.60 mm thickness slice CT images. The ratio of epiphyseal diameter/metaphyseal diameter and the ratio of epiphyseal area/metaphyseal area of two sides of medial clavicle were measured and calculated by three different examiners, the quantitative data consistency was checked by intraclass correlation coefficients (ICC). The diameter ratio of left and right side are depicted as X1 and X3, and the area ratio of left and right side as X2 and X4. Descriptive statistic analysis of the data was performed and several mathematical models were established using least square. CT images from additional 60 teenagers (30 male and 30 female) were used to verify the accuracy of the established mathematical models. ICC indicated that the measurement of epiphyseal diameter, metaphyseal diameter, the ratio of epiphyseal diameter/metaphyseal diameter, epiphyseal area, metaphyseal area and the ratio of epiphyseal area/metaphyseal area of medial clavicle in the left and right side of the three examiners was approaching 1. The 95% reference range for the mean of every examination of both genders gradually increased with age. Females' data indicated by medial epiphysis of the clavicle development were earlier than male's, especially from 15 to 21 years. The difference of medial epiphysis of the clavicle development in gender becomes smaller after 21 years. The highest accuracy of the mathematical models made clear that male's accuracy was 73.5% (±1.0 year) and 85.3% (±1.5 year), and female's was 68.6% (±1.0 year) and 82.2% (±1.5 year) respectively. The methods of data collection and analysis were reliable and feasible. Combined the high accuracy of these established mathematical models, it is applicable to use the ratio of epiphyseal diameter/metaphyseal diameter and the ratio of epiphyseal area/metaphyseal area of left and right side of medial clavicle to estimate the teenager's age. Bearing this in mind, further studies are needed to evaluate slice thickness as the most critical parameter. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Superior Temporal Sulcus Disconnectivity During Processing of Metaphoric Gestures in Schizophrenia
Straube, Benjamin; Green, Antonia; Sass, Katharina; Kircher, Tilo
2014-01-01
The left superior temporal sulcus (STS) plays an important role in integrating audiovisual information and is functionally connected to disparate regions of the brain. For the integration of gesture information in an abstract sentence context (metaphoric gestures), intact connectivity between the left STS and the inferior frontal gyrus (IFG) should be important. Patients with schizophrenia have problems with the processing of metaphors (concretism) and show aberrant structural connectivity of long fiber bundles. Thus, we tested the hypothesis that patients with schizophrenia differ in the functional connectivity of the left STS to the IFG for the processing of metaphoric gestures. During functional magnetic resonance imaging data acquisition, 16 patients with schizophrenia (P) and a healthy control group (C) were shown videos of an actor performing gestures in a concrete (iconic, IC) and abstract (metaphoric, MP) sentence context. A psychophysiological interaction analysis based on the seed region from a previous analysis in the left STS was performed. In both groups we found common positive connectivity for IC and MP of the STS seed region to the left middle temporal gyrus (MTG) and left ventral IFG. The interaction of group (C>P) and gesture condition (MP>IC) revealed effects in the connectivity to the bilateral IFG and the left MTG with patients exhibiting lower connectivity for the MP condition. In schizophrenia the left STS is misconnected to the IFG, particularly during the processing of MP gestures. Dysfunctional integration of gestures in an abstract sentence context might be the basis of certain interpersonal communication problems in the patients. PMID:23956120
Contrast in Terahertz Images of Archival Documents—Part II: Influence of Topographic Features
NASA Astrophysics Data System (ADS)
Bardon, Tiphaine; May, Robert K.; Taday, Philip F.; Strlič, Matija
2017-04-01
We investigate the potential of terahertz time-domain imaging in reflection mode to reveal archival information in documents in a non-invasive way. In particular, this study explores the parameters and signal processing tools that can be used to produce well-contrasted terahertz images of topographic features commonly found in archival documents, such as indentations left by a writing tool, as well as sieve lines. While the amplitude of the waveforms at a specific time delay can provide the most contrasted and legible images of topographic features on flat paper or parchment sheets, this parameter may not be suitable for documents that have a highly irregular surface, such as water- or fire-damaged documents. For analysis of such documents, cross-correlation of the time-domain signals can instead yield images with good contrast. Analysis of the frequency-domain representation of terahertz waveforms can also provide well-contrasted images of topographic features, with improved spatial resolution when utilising high-frequency content. Finally, we point out some of the limitations of these means of analysis for extracting information relating to topographic features of interest from documents.
Lottonen-Raikaslehto, Line; Rissanen, Riina; Gurzeler, Erika; Merentie, Mari; Huusko, Jenni; Schneider, Jurgen E; Liimatainen, Timo; Ylä-Herttuala, Seppo
2017-03-01
Cardiac-specific overexpression of vascular endothelial growth factor (VEGF)-B 167 is known to induce left ventricular hypertrophy due to altered lipid metabolism, in which ceramides accumulate to the heart and cause mitochondrial damage. The aim of this study was to evaluate and compare different imaging methods to find the most sensitive way to diagnose at early stage the progressive left ventricular remodeling leading to heart failure. Echocardiography and cardiovascular magnetic resonance imaging were compared for imaging the hearts of transgenic mice with cardiac-specific overexpression of VEGF-B 167 and wild-type mice from 5 to 14 months of age at several time points. Disease progression was verified by molecular biology methods and histology. We showed that left ventricular remodeling is already ongoing at the age of 5 months in transgenic mice leading to heart failure by the age of 14 months. Measurements from echocardiography and cardiovascular magnetic resonance imaging revealed similar changes in cardiac structure and function in the transgenic mice. Changes in histology, gene expressions, and electrocardiography supported the progression of left ventricular hypertrophy. Longitudinal relaxation time in rotating frame (T 1 ρ ) in cardiovascular magnetic resonance imaging could be suitable for detecting severe fibrosis in the heart. We conclude that cardiac-specific overexpression of VEGF-B 167 leads to left ventricular remodeling at early age and is a suitable model to study heart failure development with different imaging methods. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
NASA Technical Reports Server (NTRS)
1997-01-01
These two views of Io were acquired by NASA's Galileo spacecraft during its seventh orbit (G7) of Jupiter. The images were designed to view large features on Io at low sun angles when the lighting conditions emphasize the topography or relief of the volcanic satellite. Sun angles are low near the terminator which is the day-night boundary near the left side of the images. These images reveal that the topography is very flat near the active volcanic centers such as Loki Patera (the large dark horseshoe-shaped feature near the terminator in the left-hand image) and that a variety of mountains and plateaus exist elsewhere.
North is to the top of the picture. The resolution is about 6 kilometers per picture element (6.1 for the left hand image and 5.7 for the right). The images were taken on April 4th, 1997 at a ranges of 600,000 kilometers (left image) and 563,000 kilometers (right image) by the solid state imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoAnthropomorphic cardiac ultrasound phantom.
Smith, S W; Rinaldi, J E
1989-10-01
A new phantom is described which simulates the human cardiac anatomy for applications in ultrasound imaging, ultrasound Doppler, and color-flow Doppler imaging. The phantom consists of a polymer left ventricle which includes a prosthetic mitral and aortic valve and is connected to a mock circulatory loop. Aerated tap water serves as a blood simulating fluid and ultrasound contrast medium within the circulatory loop. The left ventricle is housed in a Lexan ultrasound visualization chamber which includes ultrasound viewing ports and acoustic absorbers. A piston pump connected to the visualization chamber by a single port pumps degassed water within the chamber which in turn pumps the left ventricle. Real-time ultrasound images and Doppler studies measure flow patterns through the valves and within the left ventricle.
Khan, Muhammad Shoaib; Reddy, Sahadev; Lombardi, Richard; Isabel, Pitti; Mcgregor, Walter E; Tang, Bang; Gabriel, George; Biederman, Robert W
2018-02-01
Left atrial appendage mass can occasionally pose a serious challenge to physicians to identify the nature of the mass with the aid of imaging techniques. We present a case of 67-year-old man, who was evaluated for suspected left atria myxoma. Transesophageal echocardiography revealed a heterogeneous density originating from left atrial appendage, thought to be most consistent with a myxoma. Cardiac magnetic resonance imaging, uncharacteristically, gave an equivocal picture, suggesting the mass to be a myxoma on initial imaging and a thrombus with evidence of liquefaction necrosis following postcontrast enhancement. Surprisingly, histopathology of the mass following its surgical excision yielded a rare diagnosis of myxofibrosarcoma. © 2017, Wiley Periodicals, Inc.
The Left Occipitotemporal Cortex Does Not Show Preferential Activity for Words
Petersen, Steven E.; Schlaggar, Bradley L.
2012-01-01
Regions in left occipitotemporal (OT) cortex, including the putative visual word form area, are among the most commonly activated in imaging studies of single-word reading. It remains unclear whether this part of the brain is more precisely characterized as specialized for words and/or letters or contains more general-use visual regions having properties useful for processing word stimuli, among others. In Analysis 1, we found no evidence of greater activity in left OT regions for words or letter strings relative to other high–spatial frequency high-contrast stimuli, including line drawings and Amharic strings (which constitute the Ethiopian writing system). In Analysis 2, we further investigated processing characteristics of OT cortex potentially useful in reading. Analysis 2 showed that a specific part of OT cortex 1) is responsive to visual feature complexity, measured by the number of strokes forming groups of letters or Amharic strings and 2) processes learned combinations of characters, such as those in words and pseudowords, as groups but does not do so in consonant and Amharic strings. Together, these results indicate that while regions of left OT cortex are not specialized for words, at least part of OT cortex has properties particularly useful for processing words and letters. PMID:22235035
Distinct Aging Effects on Functional Networks in Good and Poor Cognitive Performers
Lee, Annie; Tan, Mingzhen; Qiu, Anqi
2016-01-01
Brain network hubs are susceptible to normal aging processes and disruptions of their functional connectivity are detrimental to decline in cognitive functions in older adults. However, it remains unclear how the functional connectivity of network hubs cope with cognitive heterogeneity in an aging population. This study utilized cognitive and resting-state functional magnetic resonance imaging data, cluster analysis, and graph network analysis to examine age-related alterations in the network hubs’ functional connectivity of good and poor cognitive performers. Our results revealed that poor cognitive performers showed age-dependent disruptions in the functional connectivity of the right insula and posterior cingulate cortex (PCC), while good cognitive performers showed age-related disruptions in the functional connectivity of the left insula and PCC. Additionally, the left PCC had age-related declines in the functional connectivity with the left medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). Most interestingly, good cognitive performers showed age-related declines in the functional connectivity of the left insula and PCC with their right homotopic structures. These results may provide insights of neuronal correlates for understanding individual differences in aging. In particular, our study suggests prominent protection roles of the left insula and PCC and bilateral ACC in good performers. PMID:27667972
Tang, Dalin; Yang, Chun; Geva, Tal; Gaudette, Glenn; del Nido, Pedro J.
2011-01-01
Multi-physics right and left ventricle (RV/LV) fluid-structure interaction (FSI) models were introduced to perform mechanical stress analysis and evaluate the effect of patch materials on RV function. The FSI models included three different patch materials (Dacron scaffold, treated pericardium, and contracting myocardium), two-layer construction, fiber orientation, and active anisotropic material properties. The models were constructed based on cardiac magnetic resonance (CMR) images acquired from a patient with severe RV dilatation and solved by ADINA. Our results indicate that the patch model with contracting myocardium leads to decreased stress level in the patch area, improved RV function and patch area contractility. PMID:21765559
Analysis of speech sounds is left-hemisphere predominant at 100-150ms after sound onset.
Rinne, T; Alho, K; Alku, P; Holi, M; Sinkkonen, J; Virtanen, J; Bertrand, O; Näätänen, R
1999-04-06
Hemispheric specialization of human speech processing has been found in brain imaging studies using fMRI and PET. Due to the restricted time resolution, these methods cannot, however, determine the stage of auditory processing at which this specialization first emerges. We used a dense electrode array covering the whole scalp to record the mismatch negativity (MMN), an event-related brain potential (ERP) automatically elicited by occasional changes in sounds, which ranged from non-phonetic (tones) to phonetic (vowels). MMN can be used to probe auditory central processing on a millisecond scale with no attention-dependent task requirements. Our results indicate that speech processing occurs predominantly in the left hemisphere at the early, pre-attentive level of auditory analysis.
Bae, Kyongtae T; Tao, Cheng; Wang, Jinhong; Kaya, Diana; Wu, Zhiyuan; Bae, Junu T; Chapman, Arlene B; Torres, Vicente E; Grantham, Jared J; Mrug, Michal; Bennett, William M; Flessner, Michael F; Landsittel, Doug P
2013-01-01
Objective To evaluate whether kidney and cyst volumes can be accurately estimated based on limited area measurements from MR images of patients with autosomal dominant polycystic kidney disease (ADPKD). Materials and Methods MR coronal images of 178 ADPKD participants from the Consortium for Radiologic Imaging Studies of ADPKD (CRISP) were analyzed. For each MR image slice, we measured kidney and renal cyst areas using stereology and region-based thresholding methods, respectively. The kidney and cyst ‘observed’ volumes were calculated by summing up the area measurements of all the slices covering the kidney. To estimate the volume, we selected a coronal mid-slice in each kidney and multiplied its area by the total number of slices (‘PANK2’ for kidney and ‘PANC2’ for cyst). We then compared the kidney and cyst volumes predicted from PANK2 and PANC2, respectively, to the corresponding observed volumes, using a linear regression analysis. Results The kidney volume predicted from PANK2 correlated extremely well with the observed kidney volume: R2=0.994 for right and 0.991 for left kidney. The linear regression coefficient multiplier to PANK2 that best fit the kidney volume was 0.637 (95%CI: 0.629–0.644) for right and 0.624 (95%CI: 0.616–0.633) for left kidney. The correlation between the cyst volume predicted from PANC2 and the observed cyst volume was also very high: R2=0.984 for right and 0.967 for left kidney. The least squares linear regression coefficient for PANC2 was 0.637 (95%CI: 0.624–0.649) for right and 0.608 (95%CI: 0.591–0.625) for left kidney. Conclusion Kidney and cyst volumes can be closely approximated by multiplying the product of the mid-slice area measurement and the total number of slices in the coronal MR images of ADPKD kidneys by 0.61–0.64. This information will help save processing time needed to estimate total kidney and cyst volumes of ADPKD kidneys. PMID:24107679
Cuberas-Borrós, Gemma; Pineda, Victor; Aguadé-Bruix, Santiago; Romero-Farina, Guillermo; Pizzi, M Nazarena; de León, Gustavo; Castell-Conesa, Joan; García-Dorado, David; Candell-Riera, Jaume
2013-09-01
The aim of this study was to compare magnetic resonance and gated-SPECT myocardial perfusion imaging in patients with chronic myocardial infarction. Magnetic resonance imaging and gated-SPECT were performed in 104 patients (mean age, 61 [12] years; 87.5% male) with a previous infarction. Left ventricular volumes and ejection fraction and classic late gadolinium enhancement viability criteria (<75% transmurality) were correlated with those of gated-SPECT (uptake >50%) in the 17 segments of the left ventricle. Motion, thickening, and ischemia on SPECT were analyzed in segments showing nonviable tissue or equivocal enhancement features (50%-75% transmurality). A good correlation was observed between the 2 techniques for volumes, ejection fraction (P<.05), and estimated necrotic mass (P<.01). In total, 82 of 264 segments (31%) with >75% enhancement had >50% single SPECT uptake. Of the 106 equivocal segments on magnetic resonance imaging, 68 (64%) had >50% uptake, 41 (38.7%) had normal motion, 46 (43.4%) had normal thickening, and 17 (16%) had ischemic criteria on SPECT. A third of nonviable segments on magnetic resonance imaging showed >50% uptake on SPECT. Gated-SPECT can be useful in the analysis of motion, thickening, and ischemic criteria in segments with questionable viability on magnetic resonance imaging. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Afonso, Luis; Kondur, Ashok; Simegn, Mengistu; Niraj, Ashutosh; Hari, Pawan; Kaur, Ramanjit; Ramappa, Preeti; Pradhan, Jyotiranjan; Bhandare, Deepti; Williams, Kim A; Zalawadiya, Sandip; Pinheiro, Aurelio; Abraham, Theodore P
2012-01-01
This study was designed to examine the utility of two-dimensional strain (2DS) or speckle tracking imaging to typify functional adaptations of the left ventricle in variant forms of left ventricular hypertrophy (LVH). Cross-sectional study. Urban tertiary care academic medical centres. A total of 129 subjects, 56 with hypertrophic cardiomyopathy (HCM), 34 with hypertensive left ventricular hypertrophy (H-LVH), 27 professional athletes with LVH (AT-LVH) and 12 healthy controls in sinus rhythm with preserved left ventricular systolic function. Conventional echocardiographic and tissue Doppler examinations were performed in all study subjects. Bi-dimensional acquisitions were analysed to map longitudinal systolic strain (automated function imaging, AFI, GE Healthcare, Waukesha, Wisconsin, USA) from apical views. Subjects with HCM had significantly lower regional and average global peak longitudinal systolic strain (GLS-avg) compared with controls and other forms of LVH. Strain dispersion index, a measure of regional contractile heterogeneity, was higher in HCM compared with the rest of the groups. On receiver operator characteristics analysis, GLS-avg had excellent discriminatory ability to distinguish HCM from H-LVH area under curve (AUC) (0.893, p<0.001) or AT-LVH AUC (0.920, p<0.001). Tissue Doppler and LV morphological parameters were better suited to differentiate the athlete heart from HCM. 2DS (AFI) allows rapid characterisation of regional and global systolic function and may have the potential to differentiate HCM from variant forms of LVH.
Atalayer, Deniz; Pantazatos, Spiro P; Gibson, Charlisa D; McOuatt, Haley; Puma, Lauren; Astbury, Nerys M; Geliebter, Allan
2014-10-15
Sexually-dimorphic behavioral and biological aspects of human eating have been described. Using psychophysiological interaction (PPI) analysis, we investigated sex-based differences in functional connectivity with a key emotion-processing region (amygdala, AMG) and a key reward-processing area (ventral striatum, VS) in response to high vs. low energy-dense (ED) food images using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in obese persons in fasted and fed states. When fed, in response to high vs. low-ED food cues, obese men (vs. women) had greater functional connectivity with AMG in right subgenual anterior cingulate, whereas obese women had greater functional connectivity with AMG in left angular gyrus and right primary motor areas. In addition, when fed, AMG functional connectivity with pre/post-central gyrus was more associated with BMI in women (vs. men). When fasted, obese men (vs. women) had greater functional connectivity with AMG in bilateral supplementary frontal and primary motor areas, left precuneus, and right cuneus, whereas obese women had greater functional connectivity with AMG in left inferior frontal gyrus, right thalamus, and dorsomedial prefrontal cortex. When fed, greater functional connectivity with VS was observed in men in bilateral supplementary and primary motor areas, left postcentral gyrus, and left precuneus. These sex-based differences in functional connectivity in response to visual food cues may help partly explain differential eating behavior, pathology prevalence, and outcomes in men and women. Published by Elsevier Inc.
Image guided biopsy of the pleura: a useful diagnostic tool even when fluid is minimal.
Manu, Mohan K; Prakashini, Koteshwara; Mohapatra, Aswini Kumar; Kudva, Ranjini
2014-06-30
A man in his late thirties presented with left-sided chest pain, recurrent fever and cough. Radiographical study revealed left pleural effusion which on ultrasonic imaging was minimal and non-tappable. Image guided trucut pleural biopsy yielded pleural specimens which helped in confirming the diagnosis of tuberculosis. 2014 BMJ Publishing Group Ltd.
Image guided biopsy of the pleura: a useful diagnostic tool even when fluid is minimal
Manu, Mohan K; Prakashini, Koteshwara; Mohapatra, Aswini Kumar; Kudva, Ranjini
2014-01-01
A man in his late thirties presented with left-sided chest pain, recurrent fever and cough. Radiographical study revealed left pleural effusion which on ultrasonic imaging was minimal and non-tappable. Image guided trucut pleural biopsy yielded pleural specimens which helped in confirming the diagnosis of tuberculosis. PMID:24980995
Hovnanians, Ninel; Win, Theresa; Makkiya, Mohammed; Zheng, Qi; Taub, Cynthia
2017-11-01
To assess the efficiency and reproducibility of automated measurements of left ventricular (LV) volumes and LV ejection fraction (LVEF) in comparison to manually traced biplane Simpson's method. This is a single-center prospective study. Apical four- and two-chamber views were acquired in patients in sinus rhythm. Two operators independently measured LV volumes and LVEF using biplane Simpson's method. In addition, the image analysis software a2DQ on the Philips EPIQ system was applied to automatically assess the LV volumes and LVEF. Time spent on each analysis, using both methods, was documented. Concordance of echocardiographic measures was evaluated using intraclass correlation (ICC) and Bland-Altman analysis. Manual tracing and automated measurement of LV volumes and LVEF were performed in 184 patients with a mean age of 67.3 ± 17.3 years and BMI 28.0 ± 6.8 kg/m 2 . ICC and Bland-Altman analysis showed good agreements between manual and automated methods measuring LVEF, end-systolic, and end-diastolic volumes. The average analysis time was significantly less using the automated method than manual tracing (116 vs 217 seconds/patient, P < .0001). Automated measurement using the novel image analysis software a2DQ on the Philips EPIQ system produced accurate, efficient, and reproducible assessment of LV volumes and LVEF compared with manual measurement. © 2017, Wiley Periodicals, Inc.
Kero, Tanja; Lindsjö, Lars; Sörensen, Jens; Lubberink, Mark
2016-08-01
(11)C-PIB PET is a promising non-invasive diagnostic tool for cardiac amyloidosis. Semiautomatic analysis of PET data is now available but it is not known how accurate these methods are for amyloid imaging. The aim of this study was to evaluate the feasibility of one semiautomatic software tool for analysis and visualization of (11)C-PIB left ventricular retention index (RI) in cardiac amyloidosis. Patients with systemic amyloidosis and cardiac involvement (n = 10) and healthy controls (n = 5) were investigated with dynamic (11)C-PIB PET. Two observers analyzed the PET studies with semiautomatic software to calculate the left ventricular RI of (11)C-PIB and to create parametric images. The mean RI at 15-25 min from the semiautomatic analysis was compared with RI based on manual analysis and showed comparable values (0.056 vs 0.054 min(-1) for amyloidosis patients and 0.024 vs 0.025 min(-1) in healthy controls; P = .78) and the correlation was excellent (r = 0.98). Inter-reader reproducibility also was excellent (intraclass correlation coefficient, ICC > 0.98). Parametric polarmaps and histograms made visual separation of amyloidosis patients and healthy controls fast and simple. Accurate semiautomatic analysis of cardiac (11)C-PIB RI in amyloidosis patients is feasible. Parametric polarmaps and histograms make visual interpretation fast and simple.
Before the Deep Impact Collision
2011-02-18
This series of images shows the area where NASA Deep Impact probe collided with the surface of comet Tempel 1 in 2005. The view zooms in as the images progress from top left to right, and then bottom left to right.
NASA Technical Reports Server (NTRS)
2004-01-01
This is the left-eye version of the 3-D cylindrical-perspective mosaic showing the view south of the martian crater dubbed 'Bonneville.' The image was taken by the navigation camera on the Mars Exploration Rover Spirit. The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.
Evaluating the Patient with Left Lower Quadrant Abdominal Pain.
Bodmer, Nicholas A; Thakrar, Kiran H
2015-11-01
Left lower quadrant pain is a frequent indication for imaging in the emergency department. Most causes of pain originate from the colon, including diverticulitis, colitis, fecal impaction, and epiploic appendagitis. Left-sided urolithiasis and spontaneous hemorrhage in the retroperitoneum or rectus sheath are additional causes of pain. Computed tomography is the preferred imaging modality in the emergent setting for all of these pathologic conditions. Gynecologic, testicular, and neoplastic pathology may also cause left lower quadrant pain but are not discussed in this article. Copyright © 2015 Elsevier Inc. All rights reserved.
Dose assessment according to changes in algorithm in cardiac CT
NASA Astrophysics Data System (ADS)
Jang, H. C.; Cho, J. H.; Lee, H. K.; Hong, I. S.; Cho, M. S.; Park, C. S.; Lee, S. Y.; Dong, K. R.; Goo, E. H.; Chung, W. K.; Ryu, Y. H.; Lim, C. S.
2012-06-01
The principal objective of this study was to determine the effects of the application of the adaptive statistical iterative reconstruction (ASIR) technique in combination with another two factors (body mass index (BMI) and tube potential) on radiation dose in cardiac computed tomography (CT). For quantitative analysis, regions of interest were positioned on the central region of the great coronary artery, the right coronary artery, and the left anterior descending artery, after which the means and standard deviations of measured CT numbers were obtained. For qualitative analysis, images taken from the major coronary arteries (right coronary, left anterior descending, and left circumflex) were graded on a scale of 1-5, with 5 indicating the best image quality. Effective dose, which was calculated by multiplying the value of the dose length product by a standard conversion factor of 0.017 for the chest, was employed as a measure of radiation exposure dose. In cardiac CT in patients with BMI of less than 25 kg/m2, the use of 40% ASIR in combination with a low tube potential of 100 kVp resulted in a significant reduction in the radiation dose without compromising diagnostic quality. Additionally, the combination of the 120 kVp protocol and the application of 40% ASIR application for patients with BMI higher than 25 kg/m2 yielded similar results.
2011-03-01
protocol. Unfortunately for this grant project, this approval has come too late to acquire human subjects. Nonetheless, the MMI Lab will continue to...Gaussian filter ) of 10X clinical activity concentration (0.36 µCi/mL) images acquired on Day 1 with (LEFT) VAOR, (CENTER) TPB and (RIGHT) PROJSINE...trajectories. (ROW 3) Coronal and (ROW 4) transverse slices (smoothed with a Gaussian filter ) showing the placement and size of the VOI used to
Yoo, Albert J; Romero, Javier; Hakimelahi, Reza; Nogueira, Raul G; Rabinov, James D; Pryor, Johnny C; González, R Gilberto; Hirsch, Joshua A; Schaefer, Pamela W
2010-04-23
Conflicting data exists regarding the effect of hemispheric lateralization on acute ischemic stroke outcome. Some of this variability may be related to heterogeneous study populations, particularly with respect to the level of arterial occlusion. Furthermore, little is known about the relationship between stroke lateralization and predictors of outcome. The purpose of this study was to characterize the impact of stroke lateralization on both functional outcome and its predictors in a well-defined population of anterior circulation proximal artery occlusions treated with IAT. Thirty-five consecutive left- and 35 consecutive right-sided stroke patients with intracranial ICA and/or MCA occlusions who underwent IAT were retrospectively analyzed. Ischemic change on pre-treatment imaging was quantified. Reperfusion success was graded using the Mori scale. Good outcome at three months was defined as an mRS
Autonomous Selection of a Rover Laser Target on Mars
2016-07-21
NASA's Curiosity Mars rover autonomously selects some of the targets for the laser and telescopic camera of the rover's Chemistry and Camera (ChemCam) instrument. For example, on-board software analyzed the image on the left, chose the target highlighted with the yellow dot, and pointed ChemCam to acquire laser analysis and the image on the right. Most ChemCam targets are still selected by scientists discussing rocks or soil seen in images the rover has sent to Earth, but the autonomous targeting provides an added capability. It can offer a head start on acquiring composition information at a location just reached by a drive. The software for target selection and instrument pointing is called AEGIS, for Autonomous Exploration for Gathering Increased Science. The image on the left was taken by the left eye of Curiosity's stereo Navigation Camera (Navcam) a few minutes after the rover completed a drive of about 43 feet (13 meters) on July 14, 2016, during the 1,400th Martian day, or sol, of the rover's work on Mars. Using AEGIS for target selection and pointing based on the Navcam imagery, Curiosity's ChemCam zapped a grid of nine points on a rock chosen for meeting criteria set by the science team. In this run, parameters were set to find bright-toned outcrop rock rather than darker rocks, which in this area tend to be loose on the surface. Within less than 30 minutes after the Navcam image was taken, ChemCam had used its laser on all nine points and had taken before-and-after images of the target area with its remote micro-imager (RMI) camera. The image at right combines those two RMI exposures. The nine laser targets are marked in red at the center. On the Navcam image at left, the yellow dot identifies the selected target area, which is about 2.2 inches (5.6 centimeters) in diameter. An unannotated version of this Sol 1400 Navcam image is available. ChemCam records spectra of glowing plasma generated when the laser hits a target point. These spectra provide information about the chemical elements present in the target. The light-toned patch of bedrock identified by AEGIS on Sol 1400 appears, geochemically, to belong to the "Stimson" sandstone unit of lower Mount Sharp. In mid-2016, Curiosity typically uses AEGIS for selecting a ChemCam target more than once per week. http://photojournal.jpl.nasa.gov/catalog/PIA20762
Symmetricity analysis of time to peak parameter of indocyanine green dynamics
NASA Astrophysics Data System (ADS)
An, Yuri; Lee, Jungsul; Choi, Chulhee
2013-03-01
We have previously discovered that near-infrared optical imaging of indocyanine green (ICG) signal and analyzing its dynamics can be applied for measurement of blood perfusion rate and detection of Raynaud's phenomenon (RP). Especially, RP is closely associated with abnormal vasomotor responses and can progress to tissue necrosis due to excessively sustained vasoconstriction. Therefore, early detecting of RP is one of important implication to prevent tissue damage from peripheral vascular disorders. In the present study, we propose new analysis and scoring method of symmetricity of Tmax value of left and right extremities. Moreover, this symmetricity analysis can give further information about microvascular insufficiency. For validation of the proposed method, we tested whether the segmental and paired analysis of Tmax value (time-to-peak) of ICG dynamics can be used for sensitive diagnosis of microvascular abnormalities which cannot be detected by conventional methods. From the near-infrared images of diabetes mellitus patients with vascular complications, the trend of asymmetry in Tmax value was observed. We assumed that decreasing local blood perfusion by autonomic nerve dysfunction causes the asymmetric Tmax value of right and left feet. These results collectively indicate that the proposed method can be used as a useful diagnostic tool for RP or other microvascular disorders.
Structural brain alterations in primary open angle glaucoma: a 3T MRI study
Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang
2016-01-01
Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811
Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.
Kurkela, Kyle A; Dennis, Nancy A
2016-01-29
Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2006-01-01
21 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small portion of the floor of Kaiser Crater in the Noachis Terra region, Mars. The terrain in the upper (northern) half of the image is covered by large windblown ripples and a few smoother-surfaced sand dunes. The dominant winds responsible for these features blew from the west/southwest (left/lower left). Location near: 47.2oS, 341.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter6. VIEW LOOKING NORTHWEST FROM THE IMAGE LEFT TO THE ...
6. VIEW LOOKING NORTHWEST FROM THE IMAGE LEFT TO THE IMAGE RIGHT IS THE CHARCOAL HOUSE, THE RETORT SHED IN THE BACKGROUND, THE MILL ANNEX, THE MACHINE SHOP, AND THE ELECTRIC MOTOR ROOM. THE MILL BUILDING IS IN THE BACKGROUND CENTER RIGHT AND ONE OF THE ORE DELIVERY TRESTLES EXTENDING FROM THE MILL BUILDING TO RIGHT IMAGE EDGE. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Loffing, Florian; Nickel, Stefanie; Hagemann, Norbert
2017-01-01
Left-to-right readers are assumed to demonstrate a left-to-right bias in aesthetic preferences and performance evaluation. Here we tested the hypothesis that such bias occurs in left-to-right reading laypeople and gymnastic judges (n = 48 each) when asked to select the more beautiful image from a picture pair showing gymnastic or non-gymnastic actions (Experiment 1) and to evaluate videos of gymnasts’ balance beam performances (Experiment 2). Overall, laypeople demonstrated a stronger left-to-right bias than judges. Unlike judges, laypeople rated images with left-to-right trajectory as more beautiful than content-wise identical images with right-to-left trajectory (Experiment 1). Also, laypeople tended to award slightly more points to videos showing left-to-right as opposed to right-to-left oriented actions (Experiment 2); however, in contrast to initial predictions the effect was weak and statistically unreliable. Collectively, judges, when considered as a group, seem less prone to directional bias than laypeople, thus tentatively suggesting that directionality may be an issue for unskilled but not for skilled judging. Possible mechanisms underlying the skill effect in Experiment 1 and the absence of clear bias in Experiment 2 are discussed alongside propositions for a broadening of perspectives in future research. PMID:29259568
Wu, Chris Y; Jansen, Michael E; Andrade, Jorge; Chui, Toco Y P; Do, Anna T; Rosen, Richard B; Deobhakta, Avnish
2018-01-01
Solar retinopathy is a rare form of retinal injury that occurs after direct sungazing. To enhance understanding of the structural changes that occur in solar retinopathy by obtaining high-resolution in vivo en face images. Case report of a young adult woman who presented to the New York Eye and Ear Infirmary with symptoms of acute solar retinopathy after viewing the solar eclipse on August 21, 2017. Results of comprehensive ophthalmic examination and images obtained by fundus photography, microperimetry, spectral-domain optical coherence tomography (OCT), adaptive optics scanning light ophthalmoscopy, OCT angiography, and en face OCT. The patient was examined after viewing the solar eclipse. Visual acuity was 20/20 OD and 20/25 OS. The patient was left-eye dominant. Spectral-domain OCT images were consistent with mild and severe acute solar retinopathy in the right and left eye, respectively. Microperimetry was normal in the right eye but showed paracentral decreased retinal sensitivity in the left eye with a central absolute scotoma. Adaptive optics images of the right eye showed a small region of nonwaveguiding photoreceptors, while images of the left eye showed a large area of abnormal and nonwaveguiding photoreceptors. Optical coherence tomography angiography images were normal in both eyes. En face OCT images of the right eye showed a small circular hyperreflective area, with central hyporeflectivity in the outer retina of the right eye. The left eye showed a hyperreflective lesion that intensified in area from inner to middle retina and became mostly hyporeflective in the outer retina. The shape of the lesion on adaptive optics and en face OCT images of the left eye corresponded to the shape of the scotoma drawn by the patient on Amsler grid. Acute solar retinopathy can present with foveal cone photoreceptor mosaic disturbances on adaptive optics scanning light ophthalmoscopy imaging. Corresponding reflectivity changes can be seen on en face OCT, especially in the middle and outer retina. Young adults may be especially vulnerable and need to be better informed of the risks of viewing the sun with inadequate protective eyewear.
Cardiac structure and function in the obese: a cardiovascular magnetic resonance imaging study.
Danias, Peter G; Tritos, Nicholas A; Stuber, Matthias; Kissinger, Kraig V; Salton, Carol J; Manning, Warren J
2003-07-01
Obesity is a major health problem in the Western world. Among obese subjects cardiac pathology is common, but conventional noninvasive imaging modalities are often suboptimal for detailed evaluation of cardiac structure and function. We investigated whether cardiovascular magnetic resonance imaging (CMR) can better characterize possible cardiac abnormalities associated with obesity, in the absence of other confounding comorbidities. In this prospective cross-sectional study, CMR was used to quantify left and right ventricular volumes, ejection fraction, mass, cardiac output, and apical left ventricular rotation in 25 clinically healthy obese men and 25 age-matched lean controls. Obese subjects had higher left ventricular mass (203 +/- 38 g vs. 163 +/- 22 g, p < 0.001), end-diastolic volume (176 +/- 29 mL vs. 156 +/- 25 mL, p < 0.05), and cardiac output (8.2 +/- 1.2 L/min vs. 6.4 +/- 1.3 L/min, p < 0.001). The obese also had increased right ventricular mass (105 +/- 25 g vs. 87 +/- 18 g, p < 0.005) and end-diastolic volume (179 +/- 36 mL vs. 155 +/- 28 mL, p < 0.05). When indexed for height, differences in left and right ventricular mass, and left ventricular end-diastolic volume remained significant. Apical left ventricular rotation and rotational velocity patterns were also different between obese and lean subjects. Obesity is independently associated with remodeling of the heart. Cardiovascular magnetic resonance imaging identifies subtle cardiac abnormalities and may be the preferred imaging technique to evaluate cardiac structure and function in the obese.
Shen, Jiaqi; Zhou, Qiao; Liu, Yue; Luo, Runlan; Tan, Bijun; Li, Guangsen
2016-08-23
Iron-deficiency anemia (IDA) is a global health problem and a common medical condition that can be seen in everyday clinical practice. And two-dimensional speckle tracking echocardiography (2D-STE) has been reported very useful in evaluating left atrial (LA) function, as well as left ventricular (LV) function. The aim of our study is to evaluate the LA function in patients with IDA by 2D-STE. 65 patients with IDA were selected. This group of patients was then divided into two groups according to the degree of hemoglobin: group B (Hb > 90 g/L) and group C (Hb60 ~ 90 g/L). Another 30 healthy people were also selected as control group A. Conventional echocardiography parameters, such as left atrial diameter (LAD), peak E and A of mitralis (E, A), E/A, end-diastolic thickness of ventricular septum (IVST d), end-diastolic thickness of LV posterior wall (PWTd) and left ventricular end-diastolic dimension (LVDd) were obtained from these three groups. Left atrial minimum volume (LAVmin), left atrial pre-atrial contraction volume (LAVp) and left atrial maximum volume (LAVmax) were measured by Simpson's rule, whereas left atrial active ejection fraction (LAAEF) and left atrial passive ejection fraction (LAPEF) were obtained from calculation. Two-dimensional images were acquired from apical four-chamber view and two-chamber view to store images for offline analysis. The global peak atrial longitudinal strain and strain rate of systolic LV (GLSs, GLSRs) as well as early and late diastolic LV strain rate (GLSRe, GLSRa) curves of LA were acquired in each LA segment from basal segment to top segment of LA by 2D-STE. Compared with group A, there were no differences between group B and group A (all P > 0.05). The LAAEF and GLSRa were significantly higher in group C compared with those of group A and group B (all P < 0.01). The LAPEF, GLSs, GLSRs and GLSRe were significantly lower in group C compared with those of group A and group B (all P < 0.01). 2D-STE could evaluate the LA function in patients with IDA.
Reese, Timothy G.; Jackowski, Marcel P.; Cauley, Stephen F.; Setsompop, Kawin; Bhat, Himanshu; Sosnovik, David E.
2017-01-01
Purpose To develop a clinically feasible whole-heart free-breathing diffusion-tensor (DT) magnetic resonance (MR) imaging approach with an imaging time of approximately 15 minutes to enable three-dimensional (3D) tractography. Materials and Methods The study was compliant with HIPAA and the institutional review board and required written consent from the participants. DT imaging was performed in seven healthy volunteers and three patients with pulmonary hypertension by using a stimulated echo sequence. Twelve contiguous short-axis sections and six four-chamber sections that covered the entire left ventricle were acquired by using simultaneous multisection (SMS) excitation with a blipped-controlled aliasing in parallel imaging readout. Rate 2 and rate 3 SMS excitation was defined as two and three times accelerated in the section axis, respectively. Breath-hold and free-breathing images with and without SMS acceleration were acquired. Diffusion-encoding directions were acquired sequentially, spatiotemporally registered, and retrospectively selected by using an entropy-based approach. Myofiber helix angle, mean diffusivity, fractional anisotropy, and 3D tractograms were analyzed by using paired t tests and analysis of variance. Results No significant differences (P > .63) were seen between breath-hold rate 3 SMS and free-breathing rate 2 SMS excitation in transmural myofiber helix angle, mean diffusivity (mean ± standard deviation, [0.89 ± 0.09] × 10−3 mm2/sec vs [0.9 ± 0.09] × 10−3 mm2/sec), or fractional anisotropy (0.43 ± 0.05 vs 0.42 ± 0.06). Three-dimensional tractograms of the left ventricle with no SMS and rate 2 and rate 3 SMS excitation were qualitatively similar. Conclusion Free-breathing DT imaging of the entire human heart can be performed in approximately 15 minutes without section gaps by using SMS excitation with a blipped-controlled aliasing in parallel imaging readout, followed by spatiotemporal registration and entropy-based retrospective image selection. This method may lead to clinical translation of whole-heart DT imaging, enabling broad application in patients with cardiac disease. © RSNA, 2016 Online supplemental material is available for this article. PMID:27681278
Mekkaoui, Choukri; Reese, Timothy G; Jackowski, Marcel P; Cauley, Stephen F; Setsompop, Kawin; Bhat, Himanshu; Sosnovik, David E
2017-03-01
Purpose To develop a clinically feasible whole-heart free-breathing diffusion-tensor (DT) magnetic resonance (MR) imaging approach with an imaging time of approximately 15 minutes to enable three-dimensional (3D) tractography. Materials and Methods The study was compliant with HIPAA and the institutional review board and required written consent from the participants. DT imaging was performed in seven healthy volunteers and three patients with pulmonary hypertension by using a stimulated echo sequence. Twelve contiguous short-axis sections and six four-chamber sections that covered the entire left ventricle were acquired by using simultaneous multisection (SMS) excitation with a blipped-controlled aliasing in parallel imaging readout. Rate 2 and rate 3 SMS excitation was defined as two and three times accelerated in the section axis, respectively. Breath-hold and free-breathing images with and without SMS acceleration were acquired. Diffusion-encoding directions were acquired sequentially, spatiotemporally registered, and retrospectively selected by using an entropy-based approach. Myofiber helix angle, mean diffusivity, fractional anisotropy, and 3D tractograms were analyzed by using paired t tests and analysis of variance. Results No significant differences (P > .63) were seen between breath-hold rate 3 SMS and free-breathing rate 2 SMS excitation in transmural myofiber helix angle, mean diffusivity (mean ± standard deviation, [0.89 ± 0.09] × 10 -3 mm 2 /sec vs [0.9 ± 0.09] × 10 -3 mm 2 /sec), or fractional anisotropy (0.43 ± 0.05 vs 0.42 ± 0.06). Three-dimensional tractograms of the left ventricle with no SMS and rate 2 and rate 3 SMS excitation were qualitatively similar. Conclusion Free-breathing DT imaging of the entire human heart can be performed in approximately 15 minutes without section gaps by using SMS excitation with a blipped-controlled aliasing in parallel imaging readout, followed by spatiotemporal registration and entropy-based retrospective image selection. This method may lead to clinical translation of whole-heart DT imaging, enabling broad application in patients with cardiac disease. © RSNA, 2016 Online supplemental material is available for this article.
Power, Alyssa; Poonja, Sabrina; Disler, Dal; Myers, Kimberley; Patton, David J; Mah, Jean K; Fine, Nowell M; Greenway, Steven C
2017-01-01
Advances in medical care for patients with Duchenne muscular dystrophy (DMD) have resulted in improved survival and an increased prevalence of cardiomyopathy. Serial echocardiographic surveillance is recommended to detect early cardiac dysfunction and initiate medical therapy. Clinical anecdote suggests that echocardiographic quality diminishes over time, impeding accurate assessment of left ventricular systolic function. Furthermore, evidence-based guidelines for the use of cardiac imaging in DMD, including cardiac magnetic resonance imaging (CMR), are limited. The objective of our single-center, retrospective study was to quantify the deterioration in echocardiographic image quality with increasing patient age and identify an age at which CMR should be considered. We retrospectively reviewed and graded the image quality of serial echocardiograms obtained in young patients with DMD. The quality of 16 left ventricular segments in two echocardiographic views was visually graded using a binary scoring system. An endocardial border delineation percentage (EBDP) score was calculated by dividing the number of segments with adequate endocardial delineation in each imaging window by the total number of segments present in that window and multiplying by 100. Linear regression analysis was performed to model the relationship between the EBDP scores and patient age. Fifty-five echocardiograms from 13 patients (mean age 11.6 years, range 3.6-19.9) were systematically reviewed. By 13 years of age, 50% of the echocardiograms were classified as suboptimal with ≥30% of segments inadequately visualized, and by 15 years of age, 78% of studies were suboptimal. Linear regression analysis revealed a negative correlation between patient age and EBDP score ( r = -2.49, 95% confidence intervals -4.73, -0.25; p = 0.032), with the score decreasing by 2.5% for each 1 year increase in age. Echocardiographic image quality declines with increasing age in DMD. Alternate imaging modalities may play a role in cases of poor echocardiographic image quality.
Mengotti, Paola; D'Agostini, Serena; Terlevic, Robert; De Colle, Cristina; Biasizzo, Elsa; Londero, Danielle; Ferro, Adele; Rambaldelli, Gianluca; Balestrieri, Matteo; Zanini, Sergio; Fabbro, Franco; Molteni, Massimo; Brambilla, Paolo
2011-02-01
A combined protocol of voxel-based morphometry (VBM) and diffusion-weighted imaging (DWI) was applied to investigate the neurodevelopment of gray and white matter in autism. Twenty children with autism (mean age= 7 ± 2.75 years old; age range: 4-14; 2 girls) and 22 matched normally developing children (mean age = 7.68 ± 2.03 years old; age range: 4-11; 2 girls) underwent magnetic resonance imaging (MRI). VBM was employed by applying the Template-o-Matic toolbox (TOM), a new approach which constructs the age-matched customized template for tissue segmentation. Also, the apparent diffusion coefficients (ADC) of water molecules were obtained from the analysis of DWI. Regions of interests (ROIs), standardized at 5 pixels, were placed in cortical lobes and corpus callosum on the non-diffusion weighted echo-planar images (b = 0) and were then automatically transferred to the corresponding maps to obtain the ADC values. Compared to normal children, individuals with autism had significantly: (1) increased white matter volumes in the right inferior frontal gyrus, the right fusiform gyrus, the left precentral and supplementary motor area and the left hippocampus, (2) increased gray matter volumes in the inferior temporal gyri bilaterally, the right inferior parietal cortex, the right superior occipital lobe and the left superior parietal lobule, and (3) decreased gray matter volumes in the right inferior frontal gyrus and the left supplementary motor area. Abnormally increased ADC values in the bilateral frontal cortex and in the left side of the genu of the corpus callosum were also reported in autism. Finally, age correlated negatively with lobar and callosal ADC measurements in individuals with autism, but not in children with normal development. These findings suggest cerebral dysconnectivity in the early phases of autism coupled with an altered white matter maturation trajectory during childhood potentially taking place in the frontal and parietal lobes, which may represent a neurodevelopmental marker of the disorder, possibly accounting for the cognitive and social deficits. Copyright © 2010 Elsevier Inc. All rights reserved.
Li, Fang; Wang, Qian; Yao, Gui Hua; Zhang, Peng Fei; Ge, Zhi Ming; Zhang, Mei; Zhang, Yun
2008-01-01
Real-time three-dimensional (3D) echocardiography (RT-3DE) has emerged as a new technique in measuring left atrial and ventricular volume. However, the impact of cutting planes of RT-3DE on the accuracy of volume measurement in patients with a normal or enlarged heart is still unknown. We enrolled 30 normal subjects (control group) and 30 patients with heart failure (patient group). RT-3DE was performed to measure maximal volume of the left atrium (LAVmax) and left ventricular end-diastole volume (LVEDV) with 2-, 4-, 8- and 16-cutting planes, compared with cardiac magnetic resonance imaging (CMRI). In both groups, LAVmax by RT-3DE using 2- and 4-cutting planes was significantly underestimated (mean difference: -10.4 +/- 16.6 mL, p = 0.001 and -8.8 +/- 14.2 mL, p = 0.002 in the control group and -13.4 +/- 19.6 mL, p = 0.001 and -11.2 +/- 17.5 mL, p = 0.001 in the patient group, respectively). These differences became nonsignificant when 8- and 16-cutting planes were adopted (mean difference: -2.1 +/- 7.6 mL and -1.9 +/- 7.4 mL in the control group and -2.7 +/- 8.4 mL and -2.2 +/- 8.3 mL in the patient group, respectively). The agreement for LVEDV was acceptable when 4- or more cutting planes were used in the control group and when 8- or 16-cutting planes were used in the patient group. The time expense for data analysis of LAVmax with 8-image planes was only 7 +/- 4 min in the control group and 6 +/- 5 min in the patient group, almost halving that of the 16-image planes. Similarly, 4- and 8-cutting planes were required for an accurate measurement of LVEDV in the control and patient groups, respectively. In conclusion, RT-3DE with 8-cutting planes is both accurate and timesaving for measurement of LAVmax and LVEDV in patients with normal or enlarged left atria and ventricles.
Chen, Bing-Hua; Wu, Rui; An, Dong-Aolei; Shi, Ruo-Yang; Yao, Qiu-Ying; Lu, Qing; Hu, Jiani; Jiang, Meng; Deen, James; Chandra, Ankush; Xu, Jian-Rong; Wu, Lian-Ming
2018-05-07
BOLD (blood oxygen level dependent) MRI can detect regional condition of myocardial oxygen supply and demand by means of paramagnetic properties. Noninvasive assessment of myocardial oxygenation by BOLD MRI in hypertensive patients with hypertension (HTN) left ventricular myocardial hypertrophy (LVMH) and HTN non-LVMH and its correlation with myocardial mechanics were performed. Prospective. Twenty patients with HTN LVMH, 21 patients with HTN non-LVMH, and 23 normotensive controls were enrolled. Cine imaging, T2* and T1 mapping sequences were achieved at 3.0T. Dedicated T1 mapping, T2*, and cine imaging analysis were performed by two radiologists using cvi42. One-way analysis of variance, Kruskal-Wallis test, Bland-Altman analysis, Pearson's correlation coefficient, Spearman's rank correlation. T2* values of HTN LVMH group were significantly lower versus the controls (23.78 ± 3.09 versus 30.77 ± 2.71; P < 0.001) and HTN non-LVMH group (23.78 ± 3.09 versus 28.64 ± 4.23; P < 0.001). Left ventricular peak circumferential strain were reduced in HTN LVMH patients compared with other two groups (-11.32 [-15.64, -10.3], -16.78 [-19.35, -15.34], and -19.73 [-20.57, -18.73]; P < 0.05); and longitudinal strain of HTN LVMH patients were lower than other two groups (-11.31 ± 2.91, -15.1 ± 3.06, and -18.85 ± 1.85; P < 0.05); radial strain of HTN LVMH patients were also lower than other two groups (25.03 ± 16, 40.95 ± 17.5 and 47.9 ± 10.23; P < 0.05). Extracellular volume correlated with peak circumferential, longitudinal, and radial strain (spearman rho = 0.6, 0.64, and -0.69; P < 0.05), respectively; T2* negatively correlated with peak circumferential and longitudinal strain (spearman rho = -0.43 and -0.49; P < 0.05), respectively. Patients with lower T2* values had significant decreases in myocardial mechanics (P < 0.05). HTN LVMH patients have both impaired myocardial mechanics and decreased T2* values compared with HTN non-LVMH and normotensive groups. BOLD MRI could provide a feasible assessment modality for detecting altered T2* due to the change of de-oxygenated hemoglobin and hence to the change of signal intensity in oxygenation-sensitive images. 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Lee, Seung-Hwan; Wynn, Jonathan K; Green, Michael F; Kim, Hyun; Lee, Kang-Joon; Nam, Min; Park, Joong-Kyu; Chung, Young-Cho
2006-04-01
Electrophysiological studies have demonstrated gamma and beta frequency oscillations in response to auditory stimuli. The purpose of this study was to test whether auditory hallucinations (AH) in schizophrenia patients reflect abnormalities in gamma and beta frequency oscillations and to investigate source generators of these abnormalities. This theory was tested using quantitative electroencephalography (qEEG) and low-resolution electromagnetic tomography (LORETA) source imaging. Twenty-five schizophrenia patients with treatment refractory AH, lasting for at least 2 years, and 23 schizophrenia patients with non-AH (N-AH) in the past 2 years were recruited for the study. Spectral analysis of the qEEG and source imaging of frequency bands of artifact-free 30 s epochs were examined during rest. AH patients showed significantly increased beta 1 and beta 2 frequency amplitude compared with N-AH patients. Gamma and beta (2 and 3) frequencies were significantly correlated in AH but not in N-AH patients. Source imaging revealed significantly increased beta (1 and 2) activity in the left inferior parietal lobule and the left medial frontal gyrus in AH versus N-AH patients. These results imply that AH is reflecting increased beta frequency oscillations with neural generators localized in speech-related areas.
Left ventricular endocardial surface detection based on real-time 3D echocardiographic data
NASA Technical Reports Server (NTRS)
Corsi, C.; Borsari, M.; Consegnati, F.; Sarti, A.; Lamberti, C.; Travaglini, A.; Shiota, T.; Thomas, J. D.
2001-01-01
OBJECTIVE: A new computerized semi-automatic method for left ventricular (LV) chamber segmentation is presented. METHODS: The LV is imaged by real-time three-dimensional echocardiography (RT3DE). The surface detection model, based on level set techniques, is applied to RT3DE data for image analysis. The modified level set partial differential equation we use is solved by applying numerical methods for conservation laws. The initial conditions are manually established on some slices of the entire volume. The solution obtained for each slice is a contour line corresponding with the boundary between LV cavity and LV endocardium. RESULTS: The mathematical model has been applied to sequences of frames of human hearts (volume range: 34-109 ml) imaged by 2D and reconstructed off-line and RT3DE data. Volume estimation obtained by this new semi-automatic method shows an excellent correlation with those obtained by manual tracing (r = 0.992). Dynamic change of LV volume during the cardiac cycle is also obtained. CONCLUSION: The volume estimation method is accurate; edge based segmentation, image completion and volume reconstruction can be accomplished. The visualization technique also allows to navigate into the reconstructed volume and to display any section of the volume.
Cai, Stephen S; von Coelln, Rainer; Kouo, Theresa J
2016-12-01
Imaging findings of adult-onset mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is poorly documented. The authors present a 48-year-old woman with subacute onset of word-finding difficulties and right arm stiffness. Magnetic resonance imaging performed 2 weeks prior revealed left temporal lobe diffusion and fluid-attenuated inversion recovery hyperintensity predominantly involving the cortex. The apparent diffusion coefficient map showed preserved signal in the temporal cortex. Subsequent magnetic resonance imagings demonstrated a new diffusion signal abnormality extending to the left parietal cortex and occipital cortex with resolving diffusion hyperintensity in the temporal lobe. MR spectroscopy showed scattered areas of lactate deposition. Diagnosis of MELAS syndrome was confirmed by genetic analysis. Fluctuating, migratory stroke-like lesions with a predilection for the parietal, temporal, and occipital cortex that do not conform to a vascular territory and a lactate spike at 1.3 ppm on MR spectroscopy are characteristic of MELAS syndrome. Preserved signal intensity on apparent diffusion coefficient is useful to distinguish MELAS syndrome from ischemic infarction where the signal is typically reduced.
NASA Astrophysics Data System (ADS)
Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu
2009-10-01
Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with p<0.05. For left-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.
Enhanced Video-Oculography System
NASA Technical Reports Server (NTRS)
Moore, Steven T.; MacDougall, Hamish G.
2009-01-01
A previously developed video-oculography system has been enhanced for use in measuring vestibulo-ocular reflexes of a human subject in a centrifuge, motor vehicle, or other setting. The system as previously developed included a lightweight digital video camera mounted on goggles. The left eye was illuminated by an infrared light-emitting diode via a dichroic mirror, and the camera captured images of the left eye in infrared light. To extract eye-movement data, the digitized video images were processed by software running in a laptop computer. Eye movements were calibrated by having the subject view a target pattern, fixed with respect to the subject s head, generated by a goggle-mounted laser with a diffraction grating. The system as enhanced includes a second camera for imaging the scene from the subject s perspective, and two inertial measurement units (IMUs) for measuring linear accelerations and rates of rotation for computing head movements. One IMU is mounted on the goggles, the other on the centrifuge or vehicle frame. All eye-movement and head-motion data are time-stamped. In addition, the subject s point of regard is superimposed on each scene image to enable analysis of patterns of gaze in real time.
Bien, Nina; Sack, Alexander T
2014-07-01
In the current study we aimed to empirically test previously proposed accounts of a division of labour between the left and right posterior parietal cortices during visuospatial mental imagery. The representation of mental images in the brain has been a topic of debate for several decades. Although the posterior parietal cortex is involved bilaterally, previous studies have postulated that hemispheric specialisation might result in a division of labour between the left and right parietal cortices. In the current fMRI study, we used an elaborated version of a behaviourally-controlled spatial imagery paradigm, the mental clock task, which involves mental image generation and a subsequent spatial comparison between two angles. By systematically varying the difference between the two angles that are mentally compared, we induced a symbolic distance effect: smaller differences between the two angles result in higher task difficulty. We employed parametrically weighed brain imaging to reveal brain areas showing a graded activation pattern in accordance with the induced distance effect. The parametric difficulty manipulation influenced behavioural data and brain activation patterns in a similar matter. Moreover, since this difficulty manipulation only starts to play a role from the angle comparison phase onwards, it allows for a top-down dissociation between the initial mental image formation, and the subsequent angle comparison phase of the spatial imagery task. Employing parametrically weighed fMRI analysis enabled us to top-down disentangle brain activation related to mental image formation, and activation reflecting spatial angle comparison. The results provide first empirical evidence for the repeatedly proposed division of labour between the left and right posterior parietal cortices during spatial imagery. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Zhi-Ye; Ma, Lin
2014-04-01
To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.
Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola
2005-01-01
Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.
Magnetic resonance imaging findings in Ménière's disease.
Patel, V A; Oberman, B S; Zacharia, T T; Isildak, H
2017-07-01
To identify and evaluate cranial magnetic resonance imaging findings associated with Ménière's disease. Seventy-eight patients with a documented diagnosis of Ménière's disease and 35 controls underwent 1.5 T or 3 T magnetic resonance imaging of the brain. Patients also underwent otological, vestibular and audiometric examinations. Lack of visualisation of the left and right vestibular aqueducts was identified as statistically significant amongst Ménière's disease patients (left, p = 0.0001, odds ratio = 0.02; right, p = 0.0004, odds ratio = 0.03). Both vestibular aqueducts were of abnormal size in the Ménière's disease group, albeit with left-sided significance (left, p = 0.008, odds ratio = 10.91; right, p = 0.49, odds ratio = 2.47). Lack of vestibular aqueduct visualisation on magnetic resonance imaging was statistically significant in Ménière's disease patients compared to the general population. The study findings suggest that magnetic resonance imaging can be useful to rule out retrocochlear pathology and provide radiological data to support the clinical diagnosis of Ménière's disease.
Ekström, Kaj; Lehtonen, Jukka; Hänninen, Helena; Kandolin, Riina; Kivistö, Sari; Kupari, Markku
2016-05-02
Cardiac magnetic resonance imaging has a key role in today's diagnosis of cardiac sarcoidosis. We set out to investigate whether cardiac magnetic resonance imaging also helps predict outcome in cardiac sarcoidosis. Our work involved 59 patients with cardiac sarcoidosis (38 female, mean age 46±10 years) seen at our hospital since February 2004 and followed up after contrast-enhanced cardiac magnetic resonance imaging. The extent of myocardial late gadolinium enhancement (measured as percentage of left ventricular mass), the volumes and ejection fractions of the left and right ventricles, and the thickness of the basal interventricular septum were determined and analyzed for prognostic significance. By April 2015, 23 patients had reached the study's end point, consisting of a composite of cardiac death (n=3), cardiac transplantation (n=1), and occurrence of life-threatening ventricular tachyarrhythmias (n=19; ventricular fibrillation in 5 and sustained ventricular tachycardia in 14 patients). In univariate analysis, myocardial extent of late gadolinium enhancement predicted event-free survival, as did scar-like thinning (<4 mm) of the basal interventricular septum and the ejection fraction of the right ventricle (P<0.05 for all). In multivariate Cox regression analysis, extent of late gadolinium enhancement was the only independent predictor of outcome events on cardiac magnetic resonance imaging, with a hazard ratio of 2.22 per tertile (95% CI 1.07-4.59). An extent of late gadolinium enhancement >22% (third tertile) had positive and negative predictive values for serious cardiac events of 75% and 76%, respectively. Findings on cardiac magnetic resonance imaging and the extent of myocardial late gadolinium enhancement in particular help predict serious cardiac events in cardiac sarcoidosis. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Mariner, R.H.; Venezky, D.Y.; Hurwitz, S.
2006-01-01
Chemical and isotope data accumulated by two USGS Projects (led by I. Barnes and R. Mariner) over a time period of about 40 years can now be found using a basic web search or through an image search (left). The data are primarily chemical and isotopic analyses of waters (thermal, mineral, or fresh) and associated gas (free and/or dissolved) collected from hot springs, mineral springs, cold springs, geothermal wells, fumaroles, and gas seeps. Additional information is available about the collection methods and analysis procedures.The chemical and isotope data are stored in a MySQL database and accessed using PHP from a basic search form below. Data can also be accessed using an Open Source GIS called WorldKit by clicking on the image to the left. Additional information is available about WorldKit including the files used to set up the site.
Dyscalculia, dysgraphia, and left-right confusion from a left posterior peri-insular infarct.
Bhattacharyya, S; Cai, X; Klein, J P
2014-01-01
The Gerstmann syndrome of dyscalculia, dysgraphia, left-right confusion, and finger agnosia is generally attributed to lesions near the angular gyrus of the dominant hemisphere. A 68-year-old right-handed woman presented with sudden difficulty completing a Sudoku grid and was found to have dyscalculia, dysgraphia, and left-right confusion. Magnetic resonance imaging (MRI) showed a focus of abnormal reduced diffusivity in the left posterior insula and temporoparietal operculum consistent with acute infarct. Gerstmann syndrome from an insular or peri-insular lesion has not been described in the literature previously. Pathological and functional imaging studies show connections between left posterior insular region and inferior parietal lobe. We postulate that the insula and operculum lesion disrupted key functional networks resulting in a pseudoparietal presentation.
Dyscalculia, Dysgraphia, and Left-Right Confusion from a Left Posterior Peri-Insular Infarct
Bhattacharyya, S.; Cai, X.; Klein, J. P.
2014-01-01
The Gerstmann syndrome of dyscalculia, dysgraphia, left-right confusion, and finger agnosia is generally attributed to lesions near the angular gyrus of the dominant hemisphere. A 68-year-old right-handed woman presented with sudden difficulty completing a Sudoku grid and was found to have dyscalculia, dysgraphia, and left-right confusion. Magnetic resonance imaging (MRI) showed a focus of abnormal reduced diffusivity in the left posterior insula and temporoparietal operculum consistent with acute infarct. Gerstmann syndrome from an insular or peri-insular lesion has not been described in the literature previously. Pathological and functional imaging studies show connections between left posterior insular region and inferior parietal lobe. We postulate that the insula and operculum lesion disrupted key functional networks resulting in a pseudoparietal presentation. PMID:24817791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakovec, P.; Kranjec, I.; Fettich, J.J.
1985-01-01
Coinciding left bundle-branch block and Wolff-Parkinson-White syndrome type B, a very rare electrocardiographic occurrence, was found in a patient with dilated cardiomyopathy. Electrophysiologic study revealed eccentric retrograde atrial activation during ventricular pacing, suggesting right-sided accessory pathway. At programmed atrial pacing, effective refractory period of the accessory pathway was 310 ms; at shorter pacing coupling intervals, normal atrioventricular conduction with left bundle-branch block was seen. Left bundle-branch block was seen also with His bundle pacing. Radionuclide phase imaging demonstrated right ventricular phase advance and left ventricular phase delay; both right and left ventricular phase images revealed broad phase distribution histograms. Combinedmore » electrophysiologic and radionuclide investigations are useful to disclose complex conduction abnormalities and their mechanical correlates.« less
Functional mapping of language networks in the normal brain using a word-association task.
Ghosh, Shantanu; Basu, Amrita; Kumaran, Senthil S; Khushu, Subash
2010-08-01
Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI) in normal human subjects. Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR 4523 ms, TE 64 ms, flip angle 90°) with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s) with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2) with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD) signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Single subject analysis of the functional data (FWE-corrected, P≤0.001) revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG), superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG), anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001) revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these areas facilitate language comprehension by activating a semantic association network of words processed postlexical access. This finding is important when assessing the extent of cognitive damage and/or recovery and can be used for presurgical planning after optimization.
A novel cardiac MR chamber volume model for mechanical dyssynchrony assessment
NASA Astrophysics Data System (ADS)
Song, Ting; Fung, Maggie; Stainsby, Jeffrey A.; Hood, Maureen N.; Ho, Vincent B.
2009-02-01
A novel cardiac chamber volume model is proposed for the assessment of left ventricular mechanical dyssynchrony. The tool is potentially useful for assessment of regional cardiac function and identification of mechanical dyssynchrony on MRI. Dyssynchrony results typically from a contraction delay between one or more individual left ventricular segments, which in turn leads to inefficient ventricular function and ultimately heart failure. Cardiac resynchronization therapy has emerged as an electrical treatment of choice for heart failure patients with dyssynchrony. Prior MRI techniques have relied on assessments of actual cardiac wall changes either using standard cine MR images or specialized pulse sequences. In this abstract, we detail a semi-automated method that evaluates dyssynchrony based on segmental volumetric analysis of the left ventricular (LV) chamber as illustrated on standard cine MR images. Twelve sectors each were chosen for the basal and mid-ventricular slices and 8 sectors were chosen for apical slices for a total of 32 sectors. For each slice (i.e. basal, mid and apical), a systolic dyssynchrony index (SDI) was measured. SDI, a parameter used for 3D echocardiographic analysis of dyssynchrony, was defined as the corrected standard deviation of the time at which minimal volume is reached in each sector. The SDI measurement of a healthy volunteer was 3.54%. In a patient with acute myocardial infarction, the SDI measurements 10.98%, 16.57% and 1.41% for basal, mid-ventricular and apical LV slices, respectively. Based on published 3D echocardiogram reference threshold values, the patient's SDI corresponds to moderate basal dysfunction, severe mid-ventricular dysfunction, and normal apical LV function, which were confirmed on echocardiography. The LV chamber segmental volume analysis model and SDI is feasible using standard cine MR data and may provide more reliable assessment of patients with dyssynchrony especially if the LV myocardium is thin or if the MR images have spatial resolution insufficient for proper resolution of wall thickness-features problematic for dyssynchrony assessment using existing MR techniques.
Wang, Lei; Beg, Faisal; Ratnanather, Tilak; Ceritoglu, Can; Younes, Laurent; Morris, John C.; Csernansky, John G.; Miller, Michael I.
2010-01-01
In large-deformation diffeomorphic metric mapping (LDDMM), the diffeomorphic matching of images are modeled as evolution in time, or a flow, of an associated smooth velocity vector field v controlling the evolution. The initial momentum parameterizes the whole geodesic and encodes the shape and form of the target image. Thus, methods such as principal component analysis (PCA) of the initial momentum leads to analysis of anatomical shape and form in target images without being restricted to small-deformation assumption in the analysis of linear displacements. We apply this approach to a study of dementia of the Alzheimer type (DAT). The left hippocampus in the DAT group shows significant shape abnormality while the right hippocampus shows similar pattern of abnormality. Further, PCA of the initial momentum leads to correct classification of 12 out of 18 DAT subjects and 22 out of 26 control subjects. PMID:17427733
NASA Technical Reports Server (NTRS)
2004-01-01
14 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a channel in the Marte Valles outflow system. An old meteor impact crater in the lower left (southwest) corner of the image blocked the erosive fluids that poured through Marte Vallis, creating a streamlined tail in its lee. The materials that flowed through the valley may have been water-rich mud, very fluid lava, or both. The nature of the fluid is still a matter of research and discussion among Mars scientists. This image is located near 12.5oN, 177.5oW. The image covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/lower left.Regional distribution of T-tubule density in left and right atria in dogs.
Arora, Rishi; Aistrup, Gary L; Supple, Stephen; Frank, Caleb; Singh, Jasleen; Tai, Shannon; Zhao, Anne; Chicos, Laura; Marszalec, William; Guo, Ang; Song, Long-Sheng; Wasserstrom, J Andrew
2017-02-01
The peculiarities of transverse tubule (T-tubule) morphology and distribution in the atrium-and how they contribute to excitation-contraction coupling-are just beginning to be understood. The objectives of this study were to determine T-tubule density in the intact, live right and left atria in a large animal and to determine intraregional differences in T-tubule organization within each atrium. Using confocal microscopy, T-tubules were imaged in both atria in intact, Langendorf-perfused normal dog hearts loaded with di-4-ANEPPS. T-tubules were imaged in large populations of myocytes from the endocardial surface of each atrium. Computerized data analysis was performed using a new MatLab (Mathworks, Natick, MA) routine, AutoTT. There was a large percentage of myocytes that had no T-tubules in both atria with a higher percentage in the right atrium (25.1%) than in the left atrium (12.5%) (P < .02). The density of transverse and longitudinal T-tubule elements was low in cells that did contain T-tubules, but there were no significant differences in density between the left atrial appendage, the pulmonary vein-posterior left atrium, the right atrial appendage, and the right atrial free wall. In contrast, there were significant differences in sarcomere spacing and cell width between different regions of the atria. There is a sparse T-tubule network in atrial myocytes throughout both dog atria, with significant numbers of myocytes in both atria-the right atrium more so than the left atrium-having no T-tubules at all. These regional differences in T-tubule distribution, along with differences in cell width and sarcomere spacing, may have implications for the emergence of substrate for atrial fibrillation. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Brain gray matter structural network in myotonic dystrophy type 1.
Sugiyama, Atsuhiko; Sone, Daichi; Sato, Noriko; Kimura, Yukio; Ota, Miho; Maikusa, Norihide; Maekawa, Tomoko; Enokizono, Mikako; Mori-Yoshimura, Madoka; Ohya, Yasushi; Kuwabara, Satoshi; Matsuda, Hiroshi
2017-01-01
This study aimed to investigate abnormalities in structural covariance network constructed from gray matter volume in myotonic dystrophy type 1 (DM1) patients by using graph theoretical analysis for further clarification of the underlying mechanisms of central nervous system involvement. Twenty-eight DM1 patients (4 childhood onset, 10 juvenile onset, 14 adult onset), excluding three cases from 31 consecutive patients who underwent magnetic resonance imaging in a certain period, and 28 age- and sex- matched healthy control subjects were included in this study. The normalized gray matter images of both groups were subjected to voxel based morphometry (VBM) and Graph Analysis Toolbox for graph theoretical analysis. VBM revealed extensive gray matter atrophy in DM1 patients, including cortical and subcortical structures. On graph theoretical analysis, there were no significant differences between DM1 and control groups in terms of the global measures of connectivity. Betweenness centrality was increased in several regions including the left fusiform gyrus, whereas it was decreased in the right striatum. The absence of significant differences between the groups in global network measurements on graph theoretical analysis is consistent with the fact that the general cognitive function is preserved in DM1 patients. In DM1 patients, increased connectivity in the left fusiform gyrus and decreased connectivity in the right striatum might be associated with impairment in face perception and theory of mind, and schizotypal-paranoid personality traits, respectively.
Yuan, Weihong; Meller, Artur; Shimony, Joshua S; Nash, Tiffany; Jones, Blaise V; Holland, Scott K; Altaye, Mekibib; Barnard, Holly; Phillips, Jannel; Powell, Stephanie; McKinstry, Robert C; Limbrick, David D; Rajagopal, Akila; Mangano, Francesco T
2016-01-01
Neuroimaging research in surgically treated pediatric hydrocephalus patients remains challenging due to the artifact caused by programmable shunt. Our previous study has demonstrated significant alterations in the whole brain white matter structural connectivity based on diffusion tensor imaging (DTI) and graph theoretical analysis in children with hydrocephalus prior to surgery or in surgically treated children without programmable shunts. This study seeks to investigate the impact of brain injury on the topological features in the left hemisphere, contratelateral to the shunt placement, which will avoid the influence of shunt artifacts and makes further group comparisons feasible for children with programmable shunt valves. Three groups of children (34 in the control group, 12 in the 3-month post-surgery group, and 24 in the 12-month post-surgery group, age between 1 and 18 years) were included in the study. The structural connectivity data processing and analysis were performed based on DTI and graph theoretical analysis. Specific procedures were revised to include only left brain imaging data in normalization, parcellation, and fiber counting from DTI tractography. Our results showed that, when compared to controls, children with hydrocephalus in both the 3-month and 12-month post-surgery groups had significantly lower normalized clustering coefficient, lower small-worldness, and higher global efficiency (all p < 0.05, corrected). At a regional level, both patient groups showed significant alteration in one or more regional connectivity measures in a series of brain regions in the left hemisphere (8 and 10 regions in the 3-month post-surgery and the 12-month post-surgery group, respectively, all p < 0.05, corrected). No significant correlation was found between any of the global or regional measures and the contemporaneous neuropsychological outcomes [the General Adaptive Composite (GAC) from the Adaptive Behavior Assessment System, Second Edition (ABAS-II)]. However, one global network measure (global efficiency) and two regional network measures in the insula (local efficiency and between centrality) tested at 3-month post-surgery were found to correlate with GAC score tested at 12-month post-surgery with statistical significance (all p < 0.05, corrected). Our data showed that the structural connectivity analysis based on DTI and graph theory was sensitive in detecting both global and regional network abnormality when the analysis was conducted in the left hemisphere only. This approach provides a new avenue enabling the application of advanced neuroimaging analysis methods in quantifying brain damage in children with hydrocephalus surgically treated with programmable shunts.
NASA Astrophysics Data System (ADS)
Amouriq, Yves; Guedon, Jeanpierre; Normand, Nicolas; Arlicot, Aurore; Benhdech, Yassine; Weiss, Pierre
2011-03-01
Bone microarchitecture is the predictor of bone quality or bone disease. It can only be measured on a bone biopsy, which is invasive and not available for all clinical situations. Texture analysis on radiographs is a common way to investigate bone microarchitecture. But relationship between three-dimension histomorphometric parameters and two-dimension texture parameters is not always well known, with poor results. The aim of this study is to performed angulated radiographs of the same region of interest and see if a better relationship between texture analysis on several radiographs and histomorphometric parameters can be developed. Computed radiography images of dog (Beagle) mandible section in molar regions were compared with high-resolution micro-CT (Computed-Tomograph) volumes. Four radiographs with 27° angle (up, down, left, right, using Rinn ring and customized arm positioning system) were performed from initial radiograph position. Bone texture parameters were calculated on all images. Texture parameters were also computed from new images obtained by difference between angulated images. Results of fractal values in different trabecular areas give some caracterisation of bone microarchitecture.
Trimble, Mark A.; Borges-Neto, Salvador; Honeycutt, Emily F.; Shaw, Linda K.; Pagnanelli, Robert; Chen, Ji; Iskandrian, Ami E.; Garcia, Ernest V.; Velazquez, Eric J.
2010-01-01
Background Using phase analysis of gated single photon emission computed tomography (SPECT) imaging, we examined the relation between myocardial perfusion, degree of electrical dyssynchrony, and degree of SPECT-derived mechanical dyssynchrony in patients with left ventricular (LV) dysfunction. Methods and Results We retrospectively examined 125 patients with LV dysfunction and ejection fraction of 35% or lower. Fourier analysis converts regional myocardial counts into a continuous thickening function, allowing resolution of phase of onset of myocardial thickening. The SD of LV phase distribution (phase SD) and histogram bandwidth describe LV phase dispersion as a measure of dyssynchrony. Heart failure (HF) patients with perfusion abnormalities ities have higher degrees of dyssynchrony measured by median phase SD (45.5° vs 27.7°, P < .0001) and bandwidth (117.0° vs 73.0°, P = .0006). HF patients with prolonged QRS durations have higher degrees of dyssynchrony measured by median phase SD (54.1° vs 34.7°, P < .0001) and bandwidth (136.5° vs 99.0°, P = .0005). Mild to moderate correlations exist between QRS duration and phase analysis indices of phase SD (r = 0.50) and bandwidth (r = 0.40). Mechanical dyssynchrony (phase SD >43°) was 43.2%. Conclusions HF patients with perfusion abnormalities or prolonged QRS durations QRS durations have higher degrees of mechanical dyssynchrony. Gated SPECT myocardial perfusion imaging can quantify myocardial function, perfusion, and dyssynchrony and may help in evaluating patients for cardiac resynchronization therapy. PMID:18761269
Left ventricular function in Friedreich's ataxia. An echocardiographic study.
Sutton, M G; Olukotun, A Y; Tajik, A J; Lovett, J L; Giuliani, E R
1980-01-01
Left ventricular function was assessed in seven patients with Friedreich's ataxia using computer-assisted analysis of the left ventricular echocardiograms and compared with those of 45 normal children matched for age and sex. The left ventricle in Friedreich's ataxia was symmetrically hypertrophied, cavity dimension was normal or small, and septal motion and peak velocity of circumferential shortening were normal in all patients. In diastole the duration of rapid filling was normal, peak rate of increase in left ventricular dimension was reduced in two patients, mitral valve opening was delayed with respect to minimum cavity dimension in seven, and there were significantly greater than normal increases in left ventricular dimension during the isovolumic period to mitral valve opening in seven, indicating abnormal and incoordinate relaxation. Peak rates of posterior wall systolic thickening and diastolic thinning were reduced in four and six patients, respectively, whereas peak rates of septal systolic thickening and diastolic thinning were reduced in one and four, respectively, suggesting a disproportionately greater impairment of the posterior wall than of septal function. The absence of asymmetric septal hypertrophy and mid-systolic closure of the aortic valve, the presence of normal septal motion, and the greater reduction in posterior wall than in septal dynamics are inconsistent with previous ideas that the heart disease of Friedreich's ataxia is identical to hypertrophic cardiomyopathy. Computer-assisted analysis of echocardiograms permits recognition of heart disease in Friedreich's ataxia before the onset of cardiac symptoms or development of clinical signs of heart disease. Images PMID:7426188
NASA Astrophysics Data System (ADS)
Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.
2014-11-01
The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.
Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data
Gonen-Yaacovi, Gil; de Souza, Leonardo Cruz; Levy, Richard; Urbanski, Marika; Josse, Goulven; Volle, Emmanuelle
2013-01-01
Creativity is of central importance for human civilization, yet its neurocognitive bases are poorly understood. The aim of the present study was to integrate existing functional imaging data by using the meta-analysis approach. We reviewed 34 functional imaging studies that reported activation foci during tasks assumed to engage creative thinking in healthy adults. A coordinate-based meta-analysis using Activation Likelihood Estimation (ALE) first showed a set of predominantly left-hemispheric regions shared by the various creativity tasks examined. These regions included the caudal lateral prefrontal cortex (PFC), the medial and lateral rostral PFC, and the inferior parietal and posterior temporal cortices. Further analyses showed that tasks involving the combination of remote information (combination tasks) activated more anterior areas of the lateral PFC than tasks involving the free generation of unusual responses (unusual generation tasks), although both types of tasks shared caudal prefrontal areas. In addition, verbal and non-verbal tasks involved the same regions in the left caudal prefrontal, temporal, and parietal areas, but also distinct domain-oriented areas. Taken together, these findings suggest that several frontal and parieto-temporal regions may support cognitive processes shared by diverse creativity tasks, and that some regions may be specialized for distinct types of processes. In particular, the lateral PFC appeared to be organized along a rostro-caudal axis, with rostral regions involved in combining ideas creatively and more posterior regions involved in freely generating novel ideas. PMID:23966927
Design and validation of Segment--freely available software for cardiovascular image analysis.
Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan
2010-01-11
Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http://segment.heiberg.se. Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.
LANDSAT 4 band 6 data evaluation
NASA Technical Reports Server (NTRS)
1984-01-01
A series of images of a portion of a TM frame of Lake Ontario are presented. The top left frame is the TM Band 6 image, the top right image is a conventional contrast stretched image. The bottom left image is a Band 5 to Band 3 ratio image. This image is used to generate a primitive land cover classificaton. Each land cover (Water, Urban, Forest, Agriculture) is assigned a Band 6 emissivity value. The ratio image is then combined with the Band 6 image and atmospheric propagation data to generate the bottom right image. This image represents a display of data whose digital count can be directly related to estimated surface temperature. The resolution appears higher because the process cell is the size of the TM shortwave pixels.
Sase, Shigeru; Yamamoto, Homaro; Kawashima, Ena; Tan, Xin; Sawa, Yutaka
2018-01-01
Quantitative cerebral blood flow (CBF) measurement is expected to help early detection of functional abnormalities caused by Alzheimer's disease (AD) and enable AD treatment to begin in its early stages. Recently, a technique of layer analysis was reported that allowed CBF to be analyzed from the outer to inner layers of the brain. The aim of this work was to develop methods for discriminating between patients with mild AD and healthy subjects based on CBF images of the lateral views created with the layer analysis technique in xenon-enhanced computed tomography. Xenon-enhanced computed tomography using a wide-volume CT was performed on 17 patients with mild AD aged 75 or older and on 15 healthy age-matched volunteers. For each subject, we created CBF images of the right and left lateral views with a depth of 10-15 mm from the surface of the brain. Ten circular regions of interest (ROI) were placed on each image, and CBF was calculated for each ROI. We determined discriminant ROI that had CBF that could be used to differentiate between the AD and volunteer groups. AD patients' CBF range (mean - SD to mean + SD) and healthy volunteers' CBF range (mean - SD to mean + SD) were obtained for each ROI. Receiver-operator curves were created to identify patients with AD for each of the discriminant ROI and for the AD patients' and healthy volunteers' CBF ranges. We selected an ROI on both the right and left temporal lobes as the discriminant ROI. Areas under the receiver-operator curve were 93.3% using the ROI on the right temporal lobe, 95.3% using the ROI on the left temporal lobe, and 92.4% using the AD patients' and healthy volunteers' CBF ranges. We could effectively discriminate between patients with mild AD and healthy subjects using ROI placed on CBF images of the lateral views in xenon-enhanced computed tomography. © 2017 Japanese Psychogeriatric Society.
Computational modeling and analysis for left ventricle motion using CT/Echo image fusion
NASA Astrophysics Data System (ADS)
Kim, Ji-Yeon; Kang, Nahyup; Lee, Hyoung-Euk; Kim, James D. K.
2014-03-01
In order to diagnose heart disease such as myocardial infarction, 2D strain through the speckle tracking echocardiography (STE) or the tagged MRI is often used. However out-of-plane strain measurement using STE or tagged MRI is inaccurate. Therefore, strain for whole organ which are analyzed by simulation of 3D cardiac model can be applied in clinical diagnosis. To simulate cardiac contraction in a cycle, cardiac physical properties should be reflected in cardiac model. The myocardial wall in left ventricle is represented as a transversely orthotropic hyperelastic material, with the fiber orientation varying sequentially from the epicardial surface, through about 0° at the midwall, to the endocardial surface. A time-varying elastance model is simulated to contract myocardial fiber, and physiological intraventricular systolic pressure curves are employed for the cardiac dynamics simulation in a cycle. And an exact description of the cardiac motion should be acquired in order that essential boundary conditions for cardiac simulation are obtained effectively. Real time cardiac motion can be acquired by using echocardiography and exact cardiac geometrical 3D model can be reconstructed using 3D CT data. In this research, image fusion technology from CT and echocardiography is employed in order to consider patient-specific left ventricle movement. Finally, longitudinal strain from speckle tracking echocardiography which is known to fit actual left ventricle deformation relatively well is used to verify these results.
Wang, Jieqiong; Gao, Peiyi; Yin, Guangheng; Zhang, Liping; Lv, Chuankai; Ji, Zhiying; Yu, Tong; Sabel, B. A.; He, Huiguang; Peng, Yun
2013-01-01
Tourette Syndrome (TS) is characterized with chronic motor and vocal tics beginning in childhood. Abnormality of both gray (GM) and white matter (WM) has been observed in cortico-striato-thalamo-cortical circuits and sensory-motor cortex of adult TS patient. It is not clear if these morphological changes are also present in TS children and if there are any microstructural changes of WM. To understand the developmental cause of such changes, we investigated volumetric changes of GM and WM using VBM and microstructural changes of WM using DTI, and correlated these changes with tic severity and duration. T1 images and Diffusion Tensor Images (DTI) from 21 TS children were compared with 20 age and gender matched health control children using a 1.5T Philips scanner. All of the 21 TS children met the DSM-IV-TR criteria. T1 images were analyzed using DARTEL-VBM in conjunction with statistical parametric mapping (SPM). Diffusion tensor imaging (DTI) analysis was performed using Tract-Based Spatial Statistics (TBSS). Brain volume changes were found in left superior temporal gyrus, left and right paracentral gyrus, right precuneous cortex, right pre- and post- central gyrus, left temporal occipital fusiform cortex, right frontal pole, and left lingual gyrus. Significant axial diffusivity (AD) and mean diffusivity (MD) increases were found in anterior thalamic radiation, right cingulum bundle projecting to the cingulate gurus and forceps minor. Decreases in white matter volume (WMV) in the right frontal pole were inversely related with tic severity (YGTSS), and increases in AD and MD were positively correlated with tic severity and duration, respectively. These changes in TS children can be interpreted as signs of neural plasticity in response to the experiential demand. Our findings may suggest that the morphological and microstructural measurements from structural MRI and DTI can potentially be used as a biomarker of the pathophysiologic pattern of early TS children. PMID:24098769
Chaim, Tiffany M.; Zhang, Tianhao; Zanetti, Marcus V.; da Silva, Maria Aparecida; Louzã, Mário R.; Doshi, Jimit; Serpa, Mauricio H.; Duran, Fabio L. S.; Caetano, Sheila C.; Davatzikos, Christos; Busatto, Geraldo F.
2014-01-01
Background Attention-Deficit/Hiperactivity Disorder (ADHD) is a prevalent disorder, but its neuroanatomical circuitry is still relatively understudied, especially in the adult population. The few morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) studies available to date have found heterogeneous results. This may be at least partly attributable to some well-known technical limitations of the conventional voxel-based methods usually employed to analyze such neuroimaging data. Moreover, there is a great paucity of imaging studies of adult ADHD to date that have excluded patients with history of use of stimulant medication. Methods A newly validated method named optimally-discriminative voxel-based analysis (ODVBA) was applied to multimodal (structural and DTI) MRI data acquired from 22 treatment-naïve ADHD adults and 19 age- and gender-matched healthy controls (HC). Results Regarding DTI data, we found higher fractional anisotropy in ADHD relative to HC encompassing the white matter (WM) of the bilateral superior frontal gyrus, right middle frontal left gyrus, left postcentral gyrus, bilateral cingulate gyrus, bilateral middle temporal gyrus and right superior temporal gyrus; reductions in trace (a measure of diffusivity) in ADHD relative to HC were also found in fronto-striatal-parieto-occipital circuits, including the right superior frontal gyrus and bilateral middle frontal gyrus, right precentral gyrus, left middle occipital gyrus and bilateral cingulate gyrus, as well as the left body and right splenium of the corpus callosum, right superior corona radiata, and right superior longitudinal and fronto-occipital fasciculi. Volumetric abnormalities in ADHD subjects were found only at a trend level of significance, including reduced gray matter (GM) in the right angular gyrus, and increased GM in the right supplementary motor area and superior frontal gyrus. Conclusions Our results suggest that adult ADHD is associated with neuroanatomical abnormalities mainly affecting the WM microstructure in fronto-parieto-temporal circuits that have been implicated in cognitive, emotional and visuomotor processes. PMID:25310815
Liu, Yue; Miao, Wen; Wang, Jieqiong; Gao, Peiyi; Yin, Guangheng; Zhang, Liping; Lv, Chuankai; Ji, Zhiying; Yu, Tong; Sabel, B A; He, Huiguang; Peng, Yun
2013-01-01
Tourette Syndrome (TS) is characterized with chronic motor and vocal tics beginning in childhood. Abnormality of both gray (GM) and white matter (WM) has been observed in cortico-striato-thalamo-cortical circuits and sensory-motor cortex of adult TS patient. It is not clear if these morphological changes are also present in TS children and if there are any microstructural changes of WM. To understand the developmental cause of such changes, we investigated volumetric changes of GM and WM using VBM and microstructural changes of WM using DTI, and correlated these changes with tic severity and duration. T1 images and Diffusion Tensor Images (DTI) from 21 TS children were compared with 20 age and gender matched health control children using a 1.5T Philips scanner. All of the 21 TS children met the DSM-IV-TR criteria. T1 images were analyzed using DARTEL-VBM in conjunction with statistical parametric mapping (SPM). Diffusion tensor imaging (DTI) analysis was performed using Tract-Based Spatial Statistics (TBSS). Brain volume changes were found in left superior temporal gyrus, left and right paracentral gyrus, right precuneous cortex, right pre- and post-central gyrus, left temporal occipital fusiform cortex, right frontal pole, and left lingual gyrus. Significant axial diffusivity (AD) and mean diffusivity (MD) increases were found in anterior thalamic radiation, right cingulum bundle projecting to the cingulate gurus and forceps minor. Decreases in white matter volume (WMV) in the right frontal pole were inversely related with tic severity (YGTSS), and increases in AD and MD were positively correlated with tic severity and duration, respectively. These changes in TS children can be interpreted as signs of neural plasticity in response to the experiential demand. Our findings may suggest that the morphological and microstructural measurements from structural MRI and DTI can potentially be used as a biomarker of the pathophysiologic pattern of early TS children.
3D visualization and stereographic techniques for medical research and education.
Rydmark, M; Kling-Petersen, T; Pascher, R; Philip, F
2001-01-01
While computers have been able to work with true 3D models for a long time, the same does not apply to the users in common. Over the years, a number of 3D visualization techniques have been developed to enable a scientist or a student, to see not only a flat representation of an object, but also an approximation of its Z-axis. In addition to the traditional flat image representation of a 3D object, at least four established methodologies exist: Stereo pairs. Using image analysis tools or 3D software, a set of images can be made, each representing the left and the right eye view of an object. Placed next to each other and viewed through a separator, the three dimensionality of an object can be perceived. While this is usually done on still images, tests at Mednet have shown this to work with interactively animated models as well. However, this technique requires some training and experience. Pseudo3D, such as VRML or QuickTime VR, where the interactive manipulation of a 3D model lets the user achieve a sense of the model's true proportions. While this technique works reasonably well, it is not a "true" stereographic visualization technique. Red/Green separation, i.e. "the traditional 3D image" where a red and a green representation of a model is superimposed at an angle corresponding to the viewing angle of the eyes and by using a similar set of eyeglasses, a person can create a mental 3D image. The end result does produce a sense of 3D but the effect is difficult to maintain. Alternating left/right eye systems. These systems (typified by the StereoGraphics CrystalEyes system) let the computer display a "left eye" image followed by a "right eye" image while simultaneously triggering the eyepiece to alternatively make one eye "blind". When run at 60 Hz or higher, the brain will fuse the left/right images together and the user will effectively see a 3D object. Depending on configurations, the alternating systems run at between 50 and 60 Hz, thereby creating a flickering effect, which is strenuous for prolonged use. However, all of the above have one or more drawbacks such as high costs, poor quality and localized use. A fifth system, recently released by Barco Systems, modifies the CrystalEyes system by projecting two superimposed images, using polarized light, with the wave plane of the left image at right angle to that of the right image. By using polarized glasses, each eye will see the appropriate image and true stereographic vision is achieved. While the system requires very expensive hardware, it solves some of the more important problems mentioned above, such as the capacity to use higher frame rates and the ability to display images to a large audience. Mednet has instigated a research project which uses reconstructed models from the central nervous system (human brain and basal ganglia, cortex, dendrites and dendritic spines) and peripheral nervous system (nodes of Ranvier and axoplasmic areas). The aim is to modify the models to fit the different visualization techniques mentioned above and compare a group of users perceived degree of 3D for each technique.
Perkins, Thomas John; Stokes, Mark Andrew; McGillivray, Jane Anne; Mussap, Alexander Julien; Cox, Ivanna Anne; Maller, Jerome Joseph; Bittar, Richard Garth
2014-11-30
There is evidence emerging from Diffusion Tensor Imaging (DTI) research that autism spectrum disorders (ASD) are associated with greater impairment in the left hemisphere. Although this has been quantified with volumetric region of interest analyses, it has yet to be tested with white matter integrity analysis. In the present study, tract based spatial statistics was used to contrast white matter integrity of 12 participants with high-functioning autism or Aspergers syndrome (HFA/AS) with 12 typically developing individuals. Fractional Anisotropy (FA) was examined, in addition to axial, radial and mean diffusivity (AD, RD and MD). In the left hemisphere, participants with HFA/AS demonstrated significantly reduced FA in predominantly thalamic and fronto-parietal pathways and increased RD. Symmetry analyses confirmed that in the HFA/AS group, WM disturbance was significantly greater in the left compared to right hemisphere. These findings contribute to a growing body of literature suggestive of reduced FA in ASD, and provide preliminary evidence for RD impairments in the left hemisphere. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Yamazaki, J; Naitou, K; Ishida, S; Uno, N; Saisho, K; Munakata, T; Morishita, T; Takano, M; Yabe, Y
1997-05-01
To evaluate left ventricular (LV) wall motion stereoscopically from all directions and to calculate the LV volume by three-dimensional (3D) imaging. 99mTc-DTPA human serum albumin-multigated cardiac pool-single photon emission computed tomography (99mTc-MUGA-SPECT) was performed. A new data processing program was developed with the Application Visualization System-Medical Viewer (AVS-MV) based on images obtained from 99mTc-MUGA-SPECT. In patients with previous myocardial infarction, LV function and LV wall motion were evaluated by 3D-99mTc-MUGA imaging. The LV end-diastolic volume (LVEDV) and end-systolic volume (LVESV) were obtained from 3D-99mTc-MUGA images by the surface rendering method, and the left ventricular ejection fraction (LVEF) was calculated at thresholds of 35% (T1), 40% (T2), 45% (T3), and 50% (T4). There was a strong correlation between the LV volume calculated by 3D-99mTc-MUGA imaging at a threshold of 40% and that determined by contrast left ventriculography (LVEDV: 194.7 +/- 36.0 ml vs. 198.7 +/- 39.1 ml, r = 0.791, p < 0.001; LVESV: 91.6 +/- 44.5 ml vs. 93.3 +/- 41.3 ml, r = 0.953, p < 0.001), respectively. When compared with the LVEF data obtained by left ventriculography, significant correlations were found for 3D images reconstructed at each threshold (T1: r = 0.966; T2: r = 0.962; T3: r = 0.958; and T4: r = 0.955). In addition, when LV wall motion obtained by 3D-99mTc-MUGA imaging (LAT and LAO views) was compared with the results obtained by left ventriculography (RAO and LAO views), there was good agreement. 3D-99mTc-MUGA imaging was superior in allowing evaluation of LV wall motion in all directions and in assessment of LV function, since data acquisition and image reconstruction could be done within a short time with the three-detector imaging system and AVS-MV. This method appears to be very useful for the observation of both LV wall motion and LV function in patients with ischemic heart disease, because it is a noninvasive examination.
A proposal for a CT driven classification of left colon acute diverticulitis.
Sartelli, Massimo; Moore, Frederick A; Ansaloni, Luca; Di Saverio, Salomone; Coccolini, Federico; Griffiths, Ewen A; Coimbra, Raul; Agresta, Ferdinando; Sakakushev, Boris; Ordoñez, Carlos A; Abu-Zidan, Fikri M; Karamarkovic, Aleksandar; Augustin, Goran; Costa Navarro, David; Ulrych, Jan; Demetrashvili, Zaza; Melo, Renato B; Marwah, Sanjay; Zachariah, Sanoop K; Wani, Imtiaz; Shelat, Vishal G; Kim, Jae Il; McFarlane, Michael; Pintar, Tadaja; Rems, Miran; Bala, Miklosh; Ben-Ishay, Offir; Gomes, Carlos Augusto; Faro, Mario Paulo; Pereira, Gerson Alves; Catani, Marco; Baiocchi, Gianluca; Bini, Roberto; Anania, Gabriele; Negoi, Ionut; Kecbaja, Zurabs; Omari, Abdelkarim H; Cui, Yunfeng; Kenig, Jakub; Sato, Norio; Vereczkei, Andras; Skrovina, Matej; Das, Koray; Bellanova, Giovanni; Di Carlo, Isidoro; Segovia Lohse, Helmut A; Kong, Victor; Kok, Kenneth Y; Massalou, Damien; Smirnov, Dmitry; Gachabayov, Mahir; Gkiokas, Georgios; Marinis, Athanasios; Spyropoulos, Charalampos; Nikolopoulos, Ioannis; Bouliaris, Konstantinos; Tepp, Jaan; Lohsiriwat, Varut; Çolak, Elif; Isik, Arda; Rios-Cruz, Daniel; Soto, Rodolfo; Abbas, Ashraf; Tranà, Cristian; Caproli, Emanuele; Soldatenkova, Darija; Corcione, Francesco; Piazza, Diego; Catena, Fausto
2015-01-01
Computed tomography (CT) imaging is the most appropriate diagnostic tool to confirm suspected left colonic diverticulitis. However, the utility of CT imaging goes beyond accurate diagnosis of diverticulitis; the grade of severity on CT imaging may drive treatment planning of patients presenting with acute diverticulitis. The appropriate management of left colon acute diverticulitis remains still debated because of the vast spectrum of clinical presentations and different approaches to treatment proposed. The authors present a new simple classification system based on both CT scan results driving decisions making management of acute diverticulitis that may be universally accepted for day to day practice.
Along Endurance Crater's Inner Wall (Left Eye)
NASA Technical Reports Server (NTRS)
2004-01-01
This view from the base of 'Burns Cliff' in the inner wall of 'Endurance Crater' combines several frames taken by Opportunity's navigation camera during the NASA rover's 280th martian day (Nov. 6, 2004). It is the left-eye member of a stereo pair, presented in a cylindrical-perspective projection with geometric seam correction. The cliff dominates the left and right portions of the image, while the central portion looks down into the crater. The 'U' shape of this mosaic results from the rover's tilt of about 30 degrees on the sloped ground below the cliff. Rover wheel tracks in the left half of the image show some of the slippage the rover experienced in making its way to this point. The site from which this image was taken has been designated as Opportunity's Site 37.Peppas, Athanasios; Furer, Ariel; Wilson, Jon; Yi, GengHua; Cheng, Yanping; Van Wygerden, Karl; Seguin, Christopher; Shibuya, Masahiko; Kaluza, Grzegorz L; Granada, Juan F
2017-06-20
The Mitra-Spacer (Cardiosolutions, Bridgewater, MA, USA) is designed to treat mitral regurgitation by introducing a dynamic spacer that constantly adapts to the changing haemodynamic conditions during the cardiac cycle. We aimed to evaluate the performance and safety of this device in the chronic ovine model. Eight sheep were enrolled in this study. Through a left thoracotomy, the Mitra-Spacer was inserted via the transapical approach and advanced into the left atrium (LA) under imaging guidance. Device performance and safety were evaluated up to 90 days using fluoroscopy, echocardiography and histopathology. The volume within the balloon spacer shifted during the cardiac cycle in all cases. Seven animals survived up to 90 days for terminal imaging and tissue harvest. Echocardiography showed no change in left ventricle (LV) ejection fraction from baseline to 90 days. There were no observations of changes in LV diastolic function, pulmonary vein inflow, or tricuspid valve function. Histological analysis demonstrated no significant injury to the mitral apparatus. In the healthy ovine model, Mitra-Spacer implantation was feasible and safe. At 90 days, no evidence of structural damage to the mitral apparatus or deterioration of cardiac performance was demonstrated.
Bai, Hong-Min; Jiang, Tao; Wang, Wei-Min; Li, Tian-Dong; Liu, Yan; Lu, Yi-Cheng
2011-10-01
Category-specific recognition and naming deficits have been observed in a variety of patient populations. However, the category-specific cortices for naming famous faces, animals and man-made objects remain controversial. The present study aimed to study the specific areas involved in naming pictures of these 3 categories using functional magnetic resonance imaging. Functional images were analyzed using statistical parametric mapping and the 3 different contrasts were evaluated using t statistics by comparing the naming tasks to their baselines. The contrast images were entered into a random-effects group level analysis. The results were reported in Montreal Neurological Institute coordinates, and anatomical regions were identified using an automated anatomical labeling method with XJview 8. Naming famous faces caused more activation in the bilateral head of the hippocampus and amygdala with significant left dominance. Bilateral activation of pars triangularis and pars opercularis in the naming of famous faces was also revealed. Naming animals evoked greater responses in the left supplementary motor area, while naming man-made objects evoked more in the left premotor area, left pars orbitalis and right supplementary motor area. The extent of bilateral fusiform gyri activation by naming man-made objects was much larger than that by naming of famous faces or animals. Even in the overlapping sites of activation, some differences among the categories were found for activation in the fusiform gyri. The cortices involved in the naming process vary with the naming of famous faces, animals and man-made objects. This finding suggests that different categories of pictures should be used during intra-operative language mapping to generate a broader map of language function, in order to minimize the incidence of false-negative stimulation and permanent post-operative deficits.
Artifact in dynamic imaging of the kidneys with $sup 131$I-o-iodohippurate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekier, A.; Bandhauer, K.
1974-02-01
An artifactural area of increased activity over the left lumbar region was observed in the radionuclide imaging of the kidneys with /sup 131/I-o- iodohippurate. The renal scan was falsely interpreted as a functionally reduced left kidney. The following renal arteriogram shows only a right renal artery. The agenesia of the left kidney was confirmed by a laparotomy. This artifact was probably due to gastric secretion of free /sup 131/I. (auth)
2004-03-19
Bands and spots in Saturn's atmosphere, including a dark band south of the equator with a scalloped border, are visible in this image from the Cassini-Huygens spacecraft. The narrow angle camera took the image in blue light on Feb. 29, 2004. The distance to Saturn was 59.9 million kilometers (37.2 million miles). The image scale is 359 kilometers (223 miles) per pixel. Three of Saturn's moons are seen in the image: Enceladus (499 kilometers, or 310 miles across) at left; Mimas (398 kilometers, or 247 miles across) left of Saturn's south pole; and Rhea (1,528 kilometers, or 949 miles across) at lower right. The imaging team enhanced the brightness of the moons to aid visibility. The BL1 broadband spectral filter (centered at 451 nanometers) allows Cassini to "see" light in a part of the spectrum visible as the color blue to human eyes. Scientist can combine images made with this filter with those taken with red and green filters to create full-color composites. Scientists can also assess cloud heights by combining images from the blue filter with images taken in other spectral regions. For example, the bright clouds that form the equatorial zone are the highest in altitude and have pressures at their tops of about one quarter of Earth's atmospheric pressure at sea level. The cloud tops at middle latitudes are lower in altitude and have higher pressures of about half that found at sea level. Analysis of Saturn images like this one will be extremely useful to researchers assessing cloud altitudes during the Cassini-Huygens mission. http://photojournal.jpl.nasa.gov/catalog/PIA05383
The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation.
Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut
2014-06-01
Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton-Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR(C)) and (4) GREIT with individual thorax geometry (GR(T)). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal-Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms.
Asymmetric bias in user guided segmentations of brain structures
NASA Astrophysics Data System (ADS)
Styner, Martin; Smith, Rachel G.; Graves, Michael M.; Mosconi, Matthew W.; Peterson, Sarah; White, Scott; Blocher, Joe; El-Sayed, Mohammed; Hazlett, Heather C.
2007-03-01
Brain morphometric studies often incorporate comparative asymmetry analyses of left and right hemispheric brain structures. In this work we show evidence that common methods of user guided structural segmentation exhibit strong left-right asymmetric biases and thus fundamentally influence any left-right asymmetry analyses. We studied several structural segmentation methods with varying degree of user interaction from pure manual outlining to nearly fully automatic procedures. The methods were applied to MR images and their corresponding left-right mirrored images from an adult and a pediatric study. Several expert raters performed the segmentations of all structures. The asymmetric segmentation bias is assessed by comparing the left-right volumetric asymmetry in the original and mirrored datasets, as well as by testing each sides volumetric differences to a zero mean standard t-tests. The structural segmentations of caudate, putamen, globus pallidus, amygdala and hippocampus showed a highly significant asymmetric bias using methods with considerable manual outlining or landmark placement. Only the lateral ventricle segmentation revealed no asymmetric bias due to the high degree of automation and a high intensity contrast on its boundary. Our segmentation methods have been adapted in that they are applied to only one of the hemispheres in an image and its left-right mirrored image. Our work suggests that existing studies of hemispheric asymmetry without similar precautions should be interpreted in a new, skeptical light. Evidence of an asymmetric segmentation bias is novel and unknown to the imaging community. This result seems less surprising to the visual perception community and its likely cause is differences in perception of oppositely curved 3D structures.
Mori, Yasuo; Miyata, Jun; Isobe, Masanori; Son, Shuraku; Yoshihara, Yujiro; Aso, Toshihiko; Kouchiyama, Takanori; Murai, Toshiya; Takahashi, Hidehiko
2018-05-17
Echo-planar imaging is a common technique used in functional magnetic resonance imaging (fMRI), however it suffers from image distortion and signal loss because of large susceptibility effects that are related to the phase-encoding direction of the scan. Despite this relationship, the majority of neuroimaging studies have not considered the influence of phase-encoding direction. Here, we aimed to clarify how phase-encoding direction can affect the outcome of an fMRI connectivity study of schizophrenia. Resting-state fMRI using anterior to posterior (A-P) and posterior to anterior (P-A) directions was used to examine 25 patients with schizophrenia (SC) and 37 matched healthy controls (HC). We conducted a functional connectivity analysis using independent component analysis and performed three group comparisons: A-P vs. P-A (all participants), SC vs. HC for the A-P and P-A datasets, and the interaction between phase-encoding direction and participant group. The estimated functional connectivity differed between the two phase-encoding directions in areas that were more extensive than those where signal loss has been reported. Although functional connectivity in the SC group was lower than that in the HC group for both directions, the A-P and P-A conditions did not exhibit the same specific pattern of differences. Further, we observed an interaction between participant group and the phase-encoding direction in the left temporo-parietal junction and left fusiform gyrus. Phase-encoding direction can influence the results of functional connectivity studies. Thus, appropriate selection and documentation of phase-encoding direction will be important in future resting-state fMRI studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Peterson, Daniel; Mahajan, Rajneesh; Crocetti, Deana; Mejia, Amanda; Mostofsky, Stewart
2014-01-01
Current theories of the neurobiological basis of Autism Spectrum Disorder (ASD) posit an altered pattern of connectivity in large-scale brain networks. Here we used Diffusion Tensor Imaging to investigate the microstructural properties of the white matter that mediates inter-regional connectivity in 36 high-functioning children with ASD (HF-ASD), as compared to 37 controls. By employing an atlas-based analysis using LDDMM registration, a widespread, but left-lateralized pattern of abnormalities was revealed. The Mean Diffusivity (MD) of water in the white matter of HF-ASD children was significantly elevated throughout the left hemisphere, particularly in the outer-zone cortical white matter. Across diagnostic groups there was a significant effect of age on left hemisphere MD, with a similar reduction in MD during childhood in both TD and HF-ASD children. The increased MD in children with HF-ASD suggests hypomyelination, and may reflect increased short-range cortico-cortical connections subsequent to early white matter overgrowth. These findings also highlight left hemispheric connectivity as relevant to the pathophysiology of ASD, and indicate that the spatial distribution of microstructural abnormalities in HF-ASD is widespread, and left-lateralized. This altered left-hemispheric connectivity may contribute to deficits in communication and praxis observed in ASD. PMID:25256103
Echocardiographic predictors of survival in dogs with myxomatous mitral valve disease.
Sargent, Julia; Muzzi, Ruthnea; Mukherjee, Rajat; Somarathne, Sharlene; Schranz, Katherine; Stephenson, Hannah; Connolly, David; Brodbelt, David; Fuentes, Virginia Luis
2015-03-01
To evaluate vena contracta and other echocardiographic measures of myxomatous mitral valve disease (MMVD) severity in a multivariable analysis of survival in dogs. 70 dogs diagnosed with MMVD from stored echocardiographic images that met study inclusion criteria. Left heart dimensions were measured as well as mitral regurgitant jet area/left atrial area (JAR), early mitral filling velocity (Evel), extent of mitral valve prolapse in right and left views (ProlR, ProlL), Prol indexed to aortic diameter (ProlR:Ao, ProlL:Ao), presence of a flail leaflet (FlailR, FlailL), and mitral regurgitation vena contracta diameter (VCR, VCL) indexed to aortic diameter (VCR:Ao, VCL:Ao). Follow-up from referring veterinarians was obtained by questionnaire or telephone to determine survival times. Inter- and intra-observer agreement was evaluated with Bland-Altman plots and weighted Kappa analysis. Survival was analyzed using Kaplan-Meier curves, logrank tests and Cox's proportional hazards. Logrank analysis showed VCL:Ao, VCR:Ao, FlailL, ProlR:Ao, ProlL:Ao, left ventricular internal dimension in diastole indexed to aortic diameter (LVIDD:Ao) >2.87, left atrium to aorta ratio (LA/Ao) >1.6, and Evel >1.4 m/s were predictors of cardiac mortality. In a multivariable analysis, the independent predictors of cardiac mortality were Evel >1.4 m/s [hazard ratio (HR) 5.0, 95% confidence interval (CI) 2.5-10.3], FlailL (HR 3.1, 95% CI 1.3-7.9), and ProlR:Ao (HR 2.8, 95% CI 1.3-6.3). Echocardiographic measures of mitral regurgitation severity and mitral valve pathology provide valuable prognostic information independent of chamber enlargement in dogs with MMVD. Copyright © 2014 Elsevier B.V. All rights reserved.
Kaniewska, Malwina; Schuetz, Georg M; Willun, Steffen; Schlattmann, Peter; Dewey, Marc
2017-04-01
To compare the diagnostic accuracy of computed tomography (CT) in the assessment of global and regional left ventricular (LV) function with magnetic resonance imaging (MRI). MEDLINE, EMBASE and ISI Web of Science were systematically reviewed. Evaluation included: ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV) and left ventricular mass (LVM). Differences between modalities were analysed using limits of agreement (LoA). Publication bias was measured by Egger's regression test. Heterogeneity was evaluated using Cochran's Q test and Higgins I 2 statistic. In the presence of heterogeneity the DerSimonian-Laird method was used for estimation of heterogeneity variance. Fifty-three studies including 1,814 patients were identified. The mean difference between CT and MRI was -0.56 % (LoA, -11.6-10.5 %) for EF, 2.62 ml (-34.1-39.3 ml) for EDV and 1.61 ml (-22.4-25.7 ml) for ESV, 3.21 ml (-21.8-28.3 ml) for SV and 0.13 g (-28.2-28.4 g) for LVM. CT detected wall motion abnormalities on a per-segment basis with 90 % sensitivity and 97 % specificity. CT is accurate for assessing global LV function parameters but the limits of agreement versus MRI are moderately wide, while wall motion deficits are detected with high accuracy. • CT helps to assess patients with coronary artery disease (CAD). • MRI is the reference standard for evaluation of left ventricular function. • CT provides accurate assessment of global left ventricular function.
Ciumas, Carolina; Lindström, Per; Aoun, Bernard; Savic, Ivanka
2008-01-15
Metabolic and neuro-receptor abnormalities within the extrafocal limbic circuits are established in mesial temporal lobe epilepsy (MTLE). However, very little is known about how these circuits process external stimuli. We tested whether odor activation can help delineate limbic functional disintegration in MTLE, and measured cerebral blood flow with PET during birhinal smelling of familiar and unfamiliar odors, using smelling of odorless air as the baseline condition. Patients with MTLE (13 left-sided, 10 right-sided) and 21 controls were investigated. In addition to odor activation, the analysis included functional connectivity, using right and left piriform cortex as seed regions. Healthy controls activated the amygdala, piriform, anterior insular, and cingulate cortices on both sides. Smelling of familiar odors engaged, in addition, the right parahippocampus, and the left Brodmann Area (BA) 44, 45, 47. Patients failed to activate the amygdala, piriform and the anterior insular cortex in the epileptogenic hemisphere. Furthermore, those with left MTLE did not activate the left BA 44, 45 and 47 with familiar odors, which they perceived as less familiar than controls. Congruent with the activation data each seed region was in patients functionally disconnected with the contralateral amygdala+piriform+insular cortex. The functional disintegration in patients exceeded the reduced activation, and included the contralateral temporal neocortex, and in subjects with right MTLE also the right orbitofrontal cortex. Imaging of odor perception may be used to delineate functional disintegration of the limbic networks in MTLE. It shows an altered response in several regions, which may underlie some interictal behavioral problems associated with this condition.
Jeong, Jeong-Won; Kumar, Ajay; Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.
2013-01-01
Background and Purpose As we had previously observed geometrical changes of frontal lobe association pathways in children with autism spectrum disorder (ASD), in the present study we analyzed the curvature of these white matter pathways using an objective tract based morphometry (TBM) analysis. Materials and Methods Diffusion tensor imaging (DTI) was performed in 32 children with ASD and 14 children with typical development. Curvature, fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) of bilateral arcuate fasciculus (AF), uncinate fasciculus (UF), and genu of corpus callosum (gCC) were investigated using the TBM group analysis assessed by False Discovery Rate p-value (PFDR) for multiple comparisons. Results Significantly higher curvatures were found in children with ASD especially at the parieto-temporal junction for AF (left: PFDR < 0.001; right: PFDR < 0.01), at the fronto-temporal junction for UF (left: PFDR < 0.005; right: PFDR < 0.03), and at the midline of the gCC (PFDR < 0.0001). RD was significantly higher in children with ASD at the same bending regions of AF (left: PFDR < 0.03, right: PFDR < 0.02), UF (left: PFDR < 0.04), and gCC (PFDR < 0.01). Conclusion Higher curvature and curvature dependent RD changes in children with ASD may be the result of higher density of thinner axons in these frontal lobe tracts. PMID:21757519
Kinesthetic alexia due to left parietal lobe lesions.
Ihori, Nami; Kawamura, Mitsuru; Araki, Shigeo; Kawachi, Juro
2002-01-01
To investigate the neuropsychological mechanisms of kinesthetic alexia, we asked 7 patients who showed kinesthetic alexia with preserved visual reading after damage to the left parietal region to perform tasks consisting of kinesthetic written reproduction (writing down the same letter as the kinesthetic stimulus), kinesthetic reading aloud, visual written reproduction (copying letters), and visual reading aloud of hiragana (Japanese phonograms). We compared the performance in these tasks and the lesion sites in each patient. The results suggested that deficits in any one of the following functions might cause kinesthetic alexia: (1) the retrieval of kinesthetic images (motor engrams) of characters from kinesthetic stimuli, (2) kinesthetic images themselves, (3) access to cross-modal association from kinesthetic images, and (4) cross-modal association itself (retrieval of auditory and visual images from kinesthetic images of characters). Each of these factors seemed to be related to different lesion sites in the left parietal lobe. Copyright 2002 S. Karger AG, Basel
Nagata, Yasufumi; Kado, Yuichiro; Onoue, Takeshi; Otani, Kyoko; Nakazono, Akemi; Otsuji, Yutaka; Takeuchi, Masaaki
2018-01-01
Background Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) play important roles in diagnosis and management of cardiac diseases. However, the issue of the accuracy and reliability of LVEF and GLS remains to be solved. Image quality is one of the most important factors affecting measurement variability. The aim of this study was to investigate whether improved image quality could reduce observer variability. Methods Two sets of three apical images were acquired using relatively old- and new-generation ultrasound imaging systems (Vivid 7 and Vivid E95) in 308 subjects. Image quality was assessed by endocardial border delineation index (EBDI) using a 3-point scoring system. Three observers measured the LVEF and GLS, and these values and inter-observer variability were investigated. Results Image quality was significantly better with Vivid E95 (EBDI: 26.8 ± 5.9) than that with Vivid 7 (22.8 ± 6.3, P < 0.0001). Regarding the inter-observer variability of LVEF, the r-value, bias, 95% limit of agreement and intra-class correlation coefficient for Vivid 7 were comparable to those for Vivid E95. The % variabilities were significantly lower for Vivid E95 (5.3–6.5%) than those for Vivid 7 (6.5–7.5%). Regarding GLS, all observer variability parameters were better for Vivid E95 than for Vivid 7. Improvements in image quality yielded benefits to both LVEF and GLS measurement reliability. Multivariate analysis showed that image quality was indeed an important factor of observer variability in the measurement of LVEF and GLS. Conclusions The new-generation ultrasound imaging system offers improved image quality and reduces inter-observer variability in the measurement of LVEF and GLS. PMID:29432198
Nagata, Yasufumi; Kado, Yuichiro; Onoue, Takeshi; Otani, Kyoko; Nakazono, Akemi; Otsuji, Yutaka; Takeuchi, Masaaki
2018-03-01
Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) play important roles in diagnosis and management of cardiac diseases. However, the issue of the accuracy and reliability of LVEF and GLS remains to be solved. Image quality is one of the most important factors affecting measurement variability. The aim of this study was to investigate whether improved image quality could reduce observer variability. Two sets of three apical images were acquired using relatively old- and new-generation ultrasound imaging systems (Vivid 7 and Vivid E95) in 308 subjects. Image quality was assessed by endocardial border delineation index (EBDI) using a 3-point scoring system. Three observers measured the LVEF and GLS, and these values and inter-observer variability were investigated. Image quality was significantly better with Vivid E95 (EBDI: 26.8 ± 5.9) than that with Vivid 7 (22.8 ± 6.3, P < 0.0001). Regarding the inter-observer variability of LVEF, the r -value, bias, 95% limit of agreement and intra-class correlation coefficient for Vivid 7 were comparable to those for Vivid E95. The % variabilities were significantly lower for Vivid E95 (5.3-6.5%) than those for Vivid 7 (6.5-7.5%). Regarding GLS, all observer variability parameters were better for Vivid E95 than for Vivid 7. Improvements in image quality yielded benefits to both LVEF and GLS measurement reliability. Multivariate analysis showed that image quality was indeed an important factor of observer variability in the measurement of LVEF and GLS. The new-generation ultrasound imaging system offers improved image quality and reduces inter-observer variability in the measurement of LVEF and GLS. © 2018 The authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenzie, E; Yang, W; Burnison, M
2014-06-15
Purpose: Patients undergoing radiotherapy (RT) for left-sided breast cancer have increased risk of coronary artery disease. Deep Inhalation Breath Hold assisted RT (DIBH-RT) is shown to increase the geometric separation of the target area and heart, reducing cardiac radiation dose. The purposes of this study are to use Cine MV portal images to determine the stability of spirometer-guided DIBH-RT and examine the dosimetric cardiopulmonary impact of this technique. Methods: Twenty consecutive patients with left-sided breast cancer were recruited to the IRB-approved study. Free-breathing (FB) and DIBH-CT's were acquired at simulation. Rigid registration of the FB-CT and DIBH-CT was performed usingmore » primarily breast tissue. Treatment plans were created for each FB-CT and DIBH-CT using identical paired tangent fields with field-in-field or electronic compensation techniques. Dosimetric evaluation included mean and maximum (Dmax) doses for the left anterior descending artery (LAD), mean heart dose, and left lung V20. Cine MV portal images were acquired for medial and lateral fields during treatment. Analysis of Cine images involved chest wall segmentation using an algorithm developed in-house. Intra- and inter-fractional chest wall motion were determined through affine registration to the first frame of each Cine. Results: Dose to each cardiac structure evaluated was significantly (p<0.001) reduced with the DIBH plans. Mean heart dose decreased from 2.9(0.9–6.6) to 1.6(0.6–5.3) Gy; mean LAD dose from 16.6(3–43.6) to 7.4(1.7–32.7) Gy; and LAD Dmax from 35.4 (6.1–53) to 18.4(2.5–51.2) Gy. No statistically significant reduction was found for the left lung V20. Average AP and SI median chest wall motion (intrafractional) was 0.1 (SD=0.9) and 0.5 (SD=1.1) mm, respectively. Average AP inter-fractional chest wall motion was 2.0 (SD=1.4) mm. Conclusion: Spirometer-based DIBH treatments of the left breast are reproducible both inter- and intra-fractionally, and provide a statistically and potentially clinically useful dosimetric advantage to cardiac structures.« less
Photoacoustic Imaging of Epilepsy
2014-04-01
with the skin and skull intact. MCA, middle cerebral artery; RH, right hemispheres; LH, left hemispheres; LOB, left olfactory bulbs; ROB, Right...moving rat brain with skin and skull intact. (D) Open-skull photograph of the rat cortex surface after the PAT experiments The PAT detecting...22D shows a typical non-invasive PAT image obtained with the miniature PAT imaging system of a freely moving rat brain with skin and skull intact. Fig
Gauthier, Christophe T; Duyme, Michel; Zanca, Michel; Capron, Christiane
2009-02-01
Neuroimaging studies investigating the neural correlates of verbal fluency (VF) focused on sex differences without taking into account behavioural variation. Nevertheless, group differences in this verbal ability might account for neurocognitive differences elicited between men and women. The aim of this study was to test sex and performance level effects and the combination of these on cerebral activation. Four samples of 11 healthy students (N=44) selected on the basis of sex and contrasted VF scores, high fluency (HF) versus low fluency (LF), performed a covert phonological VF task during scans. Within- and between-group analyses were conducted. Consistent with previous studies, for each sample, the whole-group analysis reported activation in the inferior frontal gyrus (IFG), insula, anterior cingulate cortex (ACC), medial frontal gyrus (mFG), superior (SPL) and inferior parietal lobules (IPL), inferior visual areas, cerebellum, thalamus and basal ganglia. Between-group analyses showed an interaction between sexes and performances in the right precuneus, left ACC, right IFG and left dorsolateral prefrontal cortex (dlPFC). HF men showed more activation than LF ones in the right precuneus and left dlPFC. LF men showed more activation in the right IFG than HF ones and LF women elicited more activation in the left ACC than HF ones. A sex main effect was found regardless of performance in the left inferior temporal gyrus (ITG), cerebellum, anterior and posterior cingulate cortexes and in the right superior frontal gyrus (SFG) and dlPFC, lingual gyrus and ACC, with men eliciting significantly greater activations than women. A performance main effect was found for the left ACC and the left cerebellum regardless of sex. LF subjects had stronger activations than HF ones in the ACC whereas HF subjects showed stronger activations in the cerebellum. Activity in three discrete subregions of the ACC is related to sex, performance and their interaction, respectively. Our findings emphasize the need to consider sex and performance level in functional imaging studies of VF.
Transthoracic Ultrafast Doppler Imaging of Human Left Ventricular Hemodynamic Function
Osmanski, Bruno-Félix; Maresca, David; Messas, Emmanuel; Tanter, Mickael; Pernot, Mathieu
2016-01-01
Heart diseases can affect intraventricular blood flow patterns. Real-time imaging of blood flow patterns is challenging because it requires both a high frame rate and a large field of view. To date, standard Doppler techniques can only perform blood flow estimation with high temporal resolution within small regions of interest. In this work, we used ultrafast imaging to map in 2D human left ventricular blood flow patterns during the whole cardiac cycle. Cylindrical waves were transmitted at 4800 Hz with a transthoracic phased array probe to achieve ultrafast Doppler imaging of the left ventricle. The high spatio-temporal sampling of ultrafast imaging permits to rely on a much more effective wall filtering and to increase sensitivity when mapping blood flow patterns during the pre-ejection, ejection, early diastole, diastasis and late diastole phases of the heart cycle. The superior sensitivity and temporal resolution of ultrafast Doppler imaging makes it a promising tool for the noninvasive study of intraventricular hemodynamic function. PMID:25073134
Fisher, E A; Estioko, M R; Stern, E H; Goldman, M E
1987-07-01
Aortic root abscess occurs frequently in aortic prosthetic valve infective endocarditis. The present echocardiographic report documents a ruptured abscess that led to a direct communication between the left ventricular outflow tract and the left atrium confirmed by real-time (color flow) Doppler imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, A; Stanley, D; Papanikolaou, N
Purpose: With the increasing use of DIBH techniques for left-sided breast cancer, 3D surface-image guided DIBH techniques have improved patient setup and facilitated DIBH radiation delivery. However, quantification of the daily separation between the heart and left breast still presents a challenge. One method of assuring separation is to ensure consistent left lung filling. With this in mind, the aim of this study is to retrospectively quantify left lung volume from weekly breath hold-CBCTs (bh-CBCT) of left-sided breast patients treated using a 3D surface imaging system. Methods: Ten patients (n=10) previously treated to the left breast using the C-Rad CatalystHDmore » system (C-RAD AG, Uppsala Sweden) were evaluated. Patients were positioned with CatalystHD and with bh-CBCT. bh-CBCTs were acquired at the validation date, first day of treatment and at subsequent weekly intervals. Total treatment courses spanned from 3 to 5 weeks. bh-CBCT images were exported to VelocityAI and the left lung volume was segmented. Volumes were recorded and analyzed. Results: A total of 41 bh-CBCTs were contoured in VelocityAI for the 10 patients. The mean left lung volume for all patients was 1657±295cc based on validation bh-CBCT. With the subsequent lung volumes normalized to the validation lung volume, the mean relative ratios for all patients were 1.02±0.11, 0.97±0.14, 0.98±0.11, 1.02±0.01, and 0.96±0.02 for week 1, 2, 3, 4, and 5, respectively. Overall, the mean left lung volume change was ≤4.0% over a 5-week course; however left lung volume variations of up to 28% were noted in a select patient. Conclusion: With the use of the C-RAD CatalystHD system, the mean lung volume variability over a 5-week course of DIBH treatments was ≤4.0%. By minimizing left lung volume variability, heart to left breast separation maybe more consistently maintained. AN Gutierrez has a research grant from C-RAD AG.« less
Liu, Ning; Yu, Xueli; Yao, Li; Zhao, Xiaojie
2018-06-01
The amygdala plays an important role in emotion processing. Several studies have proved that its activation can be regulated by real-time functional magnetic resonance imaging (rtfMRI)-based neurofeedback training. However, although studies have found brain regions that are functionally closely connected to the amygdala in the cortex, it is not clear whether these brain regions and the amygdala are structurally closely connected, and if they show the same training effect as the amygdala in the process of emotional regulation. In this paper, we instructed subjects to up-regulate the activation of the left amygdala (LA) through rtfMRI-based neurofeedback training. In order to fuse multimodal imaging data, we introduced a network analysis method called the -Louvain clustering algorithm. This method was used to integrate multimodal data from the training experiment and construct an LA-cortical network. Correlation analysis and main-effect analysis were conducted to determine the signal covariance associated with the activation of the target area; ultimately, we identified the left temporal pole superior as the amygdaloidal-cortical network region. As a deep nucleus in the brain, the treatment and stimulation of the amygdala remains challenging. Our results provide new insights for the regulation of activation in a deep nucleus using more neurofeedback techniques.
Xie, Hui; Bian, Yitong; Jian, Zhijie; Huo, Kang; Liu, Rui; Zhu, Dan; Zhang, Lihui; Wu, Jun; Yang, Jian; Liu, Jixin; Luo, Guogang
2018-01-01
Numerous studies have indicated an association between migraine and right-to-left shunt. However, little is known about whether right-to-left shunt has an effect on the migraine brain. This observational study aims to explore the impact of right-to-left shunt on the brain of migraine without aura on microstructural level. Thirty-five patients with migraine without aura were enrolled in this study. Contrast-enhanced Transcranial Doppler was performed to evaluate the status of right-to-left shunt. Three-dimensional T1-weighted and diffusion tensor images were acquired for data analysis. We employed voxel-based morphometry and tract-based spatial statistical analyses to assess the differences of gray and white matter between migraineurs with and without right-to-left shunt, respectively. Among the 35 patients, 19 (54.3%) patients had right-to-left shunt. There were no significant differences in headache features between migraineurs with and without right-to-left shunt. There were significant increases of mean and radial diffusivity in migraineurs with right-to-left shunt compared with migraineurs without right-to-left shunt. The alterations were primarily located in the right posterior thalamic radiation, secondly in the body of corpus callosum and the right superior corona radiata. No significant differences were observed in values of fractional anisotropy and axial diffusivity. No significant between-group differences were found in gray matter volume. Right-to-left shunt may cause alterations of white matter integrity in migraine without aura, and the alterations are more likely to be located at the posterior circulation.
2006-06-01
Hadjiiski, and N. Petrick, "Computerized nipple identification for multiple image analysis in computer-aided diagnosis," Medical Physics 31, 2871...candidates, 3 identification of suspicious objects, 4 feature extraction and analysis, and 5 FP reduc- tion by classification of normal tissue...detection of microcalcifi- cations on digitized mammograms.41 An illustration of a La- placian decomposition tree is shown on the left-hand side of Fig. 4
Fox, P R; Miller, M W; Liu, S K
1992-11-15
Mitral stenosis was diagnosed noninvasively by echocardiography and Doppler imaging in 2 Bull Terriers. Two-dimensional echocardiography revealed severe atrial and moderate left ventricular dilatation; severely reduced mitral valve opening excursion; doming of the cranial mitral valve leaflet into the left ventricle during diastole; thickened, nodular cranial mitral valve leaflets; and reduced mitral valve orifice. M-mode echocardiographic findings additionally indicated greatly diminished mitral valve E to F slope and abnormal caudal mitral valve leaflet motion. Color flow Doppler imaging revealed bright bursts of color with aliasing originating from the stenotic mitral valve orifice, extending into the left atrium during systole, and into the left atrium during diastole. Spectral Doppler recordings revealed transvalvular mitral valve gradients and prolonged pressure half-times. Necropsy performed on 1 dog revealed extremely thickened, nodular, and stiff mitral valves with short, thickened, and fused chordae tendineae. The diagnosis of mitral valve stenosis was easily facilitated with diagnostic ultrasonography.
NASA Technical Reports Server (NTRS)
Rubin, D. N.; Yazbek, N.; Garcia, M. J.; Stewart, W. J.; Thomas, J. D.
2000-01-01
Harmonic imaging is a new ultrasonographic technique that is designed to improve image quality by exploiting the spontaneous generation of higher frequencies as ultrasound propagates through tissue. We studied 51 difficult-to-image patients with blinded side-by-side cineloop evaluation of endocardial border definition by harmonic versus fundamental imaging. In addition, quantitative intensities from cavity versus wall were compared for harmonic versus fundamental imaging. Harmonic imaging improved left ventricular endocardial border delineation over fundamental imaging (superior: harmonic = 71.1%, fundamental = 18.7%; similar: 10.2%; P <.001). Quantitative analysis of 100 wall/cavity combinations demonstrated brighter wall segments and more strikingly darker cavities during harmonic imaging (cavity intensity on a 0 to 255 scale: fundamental = 15.6 +/- 8.6; harmonic = 6.0 +/- 5.3; P <.0001), which led to enhanced contrast between the wall and cavity (1.89 versus 1.19, P <.0001). Harmonic imaging reduces side-lobe artifacts, resulting in a darker cavity and brighter walls, thereby improving image contrast and endocardial delineation.
Rischpler, Christoph; Dirschinger, Ralf J; Nekolla, Stephan G; Kossmann, Hans; Nicolosi, Stefania; Hanus, Franziska; van Marwick, Sandra; Kunze, Karl P; Meinicke, Alexander; Götze, Katharina; Kastrati, Adnan; Langwieser, Nicolas; Ibrahim, Tareq; Nahrendorf, Matthias; Schwaiger, Markus; Laugwitz, Karl-Ludwig
2016-04-01
The immune system orchestrates the repair of infarcted myocardium. Imaging of the cellular inflammatory response by (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/magnetic resonance imaging in the heart has been demonstrated in preclinical and clinical studies. However, the clinical relevance of post-MI (18)F-FDG uptake in the heart has not been elucidated. The objective of this study was to explore the value of (18)F-FDG positron emission tomography/magnetic resonance imaging in patients after acute myocardial infarction as a biosignal for left ventricular functional outcome. We prospectively enrolled 49 patients with ST-segment-elevation myocardial infarction and performed (18)F-FDG positron emission tomography/magnetic resonance imaging 5 days after percutaneous coronary intervention and follow-up cardiac magnetic resonance imaging after 6 to 9 months. In a subset of patients, (99m)Tc-sestamibi single-photon emission computed tomography was performed with tracer injection before revascularization. Cellular innate immune response was analyzed at multiple time points. Segmental comparison of (18)F-FDG-uptake and late gadolinium enhancement showed substantial overlap (κ=0.66), whereas quantitative analysis demonstrated that (18)F-FDG extent exceeded late gadolinium enhancement extent (33.2±16.2% left ventricular myocardium versus 20.4±10.6% left ventricular myocardium, P<0.0001) and corresponded to the area at risk (r=0.87, P<0.0001). The peripheral blood count of CD14(high)/CD16(+) monocytes correlated with the infarction size and (18)F-FDG signal extent (r=0.53, P<0.002 and r=0.42, P<0.02, respectively). (18)F-FDG uptake in the infarcted myocardium was highest in areas with transmural scar, and the standardized uptake valuemean was associated with left ventricular functional outcome independent of infarct size (Δ ejection fraction: P<0.04, Δ end-diastolic volume: P<0.02, Δ end-systolic volume: P<0.005). In this study, the intensity of (18)F-FDG uptake in the myocardium after acute myocardial infarction correlated inversely with functional outcome at 6 months. Thus, (18)F-FDG uptake in infarcted myocardium may represent a novel biosignal of myocardial injury. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Morais, Pedro; Queirós, Sandro; Heyde, Brecht; Engvall, Jan; 'hooge, Jan D.; Vilaça, João L.
2017-09-01
Cardiovascular diseases are among the leading causes of death and frequently result in local myocardial dysfunction. Among the numerous imaging modalities available to detect these dysfunctional regions, cardiac deformation imaging through tagged magnetic resonance imaging (t-MRI) has been an attractive approach. Nevertheless, fully automatic analysis of these data sets is still challenging. In this work, we present a fully automatic framework to estimate left ventricular myocardial deformation from t-MRI. This strategy performs automatic myocardial segmentation based on B-spline explicit active surfaces, which are initialized using an annular model. A non-rigid image-registration technique is then used to assess myocardial deformation. Three experiments were set up to validate the proposed framework using a clinical database of 75 patients. First, automatic segmentation accuracy was evaluated by comparing against manual delineations at one specific cardiac phase. The proposed solution showed an average perpendicular distance error of 2.35 ± 1.21 mm and 2.27 ± 1.02 mm for the endo- and epicardium, respectively. Second, starting from either manual or automatic segmentation, myocardial tracking was performed and the resulting strain curves were compared. It is shown that the automatic segmentation adds negligible differences during the strain-estimation stage, corroborating its accuracy. Finally, segmental strain was compared with scar tissue extent determined by delay-enhanced MRI. The results proved that both strain components were able to distinguish between normal and infarct regions. Overall, the proposed framework was shown to be accurate, robust, and attractive for clinical practice, as it overcomes several limitations of a manual analysis.
Multiple Aspects of the Southern California Wildfires as Seen by NASA's AVIRIS
2017-12-15
NASA's Airborne Visible Infrared Imaging Spectrometer instrument (AVIRIS), flying aboard a NASA Armstrong Flight Research Center high-altitude ER-2 aircraft, observed wildfires burning in Southern California on Dec. 5-7, 2017. AVIRIS is an imaging spectrometer that observes light in visible and infrared wavelengths, measuring the full spectrum of radiated energy. Unlike regular cameras with three colors, AVIRIS has 224 spectral channels, measuring contiguously from the visible through the shortwave infrared. Data from these flights, compared against measurements acquired earlier in the year, show many ways this one instrument can improve both our understanding of fire risk and the response to fires in progress. The top row in this image compilation shows pre-fire data acquired from June 2017. At top left is a visible-wavelength image similar to what our own eyes would see. The top middle image is a map of surface composition based on analyzing the full electromagnetic spectrum, revealing green vegetated areas and non-photosynthetic vegetation that is potential fuel as well as non-vegetated surfaces that may slow an advancing fire. The image at top right is a remote measurement of the water in tree canopies, a proxy for how much moisture is in the vegetation. The bottom row in the compilation shows data acquired from the Thomas fire in progress in December 2017. At bottom left is a visible wavelength image. The bottom middle image is an infrared image, with red at 2,250 nanometers showing fire energy, green at 1,650 nanometers showing the surface through the smoke, and blue at 1,000 nanometers showing the smoke itself. The image at bottom right is a fire temperature map using spectroscopic analysis to measure fire thermal emission recorded in the AVIRIS spectra. https://photojournal.jpl.nasa.gov/catalog/PIA22194
Liu, Dan; Hu, Kai; Nordbeck, Peter; Ertl, Georg; Störk, Stefan; Weidemann, Frank
2016-05-10
Despite substantial advances in the imaging techniques and pathophysiological understanding over the last decades, identification of the underlying causes of left ventricular hypertrophy by means of echocardiographic examination remains a challenge in current clinical practice. The longitudinal strain bull's eye plot derived from 2D speckle tracking imaging offers an intuitive visual overview of the global and regional left ventricular myocardial function in a single diagram. The bull's eye mapping is clinically feasible and the plot patterns could provide clues to the etiology of cardiomyopathies. The present review summarizes the longitudinal strain, bull's eye plot features in patients with various cardiomyopathies and concentric left ventricular hypertrophy and the bull's eye plot features might serve as one of the cardiac workup steps on evaluating patients with left ventricular hypertrophy.
Liebenthal, Einat; Desai, Rutvik H.; Humphries, Colin; Sabri, Merav; Desai, Anjali
2014-01-01
The superior temporal sulcus (STS) in the left hemisphere is functionally diverse, with sub-areas implicated in both linguistic and non-linguistic functions. However, the number and boundaries of distinct functional regions remain to be determined. Here, we present new evidence, from meta-analysis of a large number of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies, of different functional specificity in the left STS supporting a division of its middle to terminal extent into at least three functional areas. The middle portion of the left STS stem (fmSTS) is highly specialized for speech perception and the processing of language material. The posterior portion of the left STS stem (fpSTS) is highly versatile and involved in multiple functions supporting semantic memory and associative thinking. The fpSTS responds to both language and non-language stimuli but the sensitivity to non-language material is greater. The horizontal portion of the left STS stem and terminal ascending branches (ftSTS) display intermediate functional specificity, with the anterior-dorsal ascending branch (fatSTS) supporting executive functions and motor planning and showing greater sensitivity to language material, and the horizontal stem and posterior-ventral ascending branch (fptSTS) supporting primarily semantic processing and displaying greater sensitivity to non-language material. We suggest that the high functional specificity of the left fmSTS for speech is an important means by which the human brain achieves exquisite affinity and efficiency for native speech perception. In contrast, the extreme multi-functionality of the left fpSTS reflects the role of this area as a cortical hub for semantic processing and the extraction of meaning from multiple sources of information. Finally, in the left ftSTS, further functional differentiation between the dorsal and ventral aspect is warranted. PMID:25309312
Chuang, Michael L; Salton, Carol J; Hibberd, Mark G; Manning, Warren J; Douglas, Pamela S
2007-05-01
Three-dimensional echocardiography (3DE) allows the accurate determination of left ventricular (LV) mass, but the optimal number of component or extracted 2-dimensional (2D) image planes that should be used to calculate LV mass is not known. This study was performed to determine the relation between the number of 2D image planes used for 3DE and the accuracy of LV mass, using cardiovascular magnetic resonance (CMR) imaging as the reference standard. Three-dimensional echocardiography data sets were analyzed using 4, 6, 8, 10 and 20 component 2D planes as well as biplane 2D echocardiography and CMR in 25 subjects with a variety of LV pathologies. Repeated-measures analysis of variance and the Bland-Altman method were used to compare measures of LV mass. To further assess the potential clinical impact of reducing the number of component image planes used for 3DE, the number of discrepancies between CMR and each of the 3DE estimates of LV mass at prespecified levels (i.e., > or =5%, > or =10%, and > or =20% difference from CMR LV mass) was tabulated. The mean LV mass by magnetic resonance imaging was 177 +/- 56 g (range 91 to 316). Biplane 2-dimensional echocardiography significantly underestimated CMR LV mass (p <0.05), but LV mass by 3DE was not statistically different from that by CMR regardless of the number of planes used. However, error variability and Bland-Altman 95% confidence intervals decreased with the use of additional image planes. In conclusion, transthoracic 3DE measures LV mass more accurately than biplane 2-dimensional echocardiography when > or =6 component 2D image planes are used. The use of >6 planes further increases the accuracy of 3DE, but at the cost of greater analysis time and potentially increased scanning times.
Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE
NASA Astrophysics Data System (ADS)
Gao, Hao; Allan, Andrew; McComb, Christie; Luo, Xiaoyu; Berry, Colin
2014-07-01
Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (- 0.18 ± 0.04 versus - 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p < 0.01). In the patient study, the peak strain patterns predicted by cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice.
Dacosta-Aguayo, Rosalia; Graña, Manuel; Fernández-Andújar, Marina; López-Cancio, Elena; Cáceres, Cynthia; Bargalló, Núria; Barrios, Maite; Clemente, Immaculada; Monserrat, Pere Toran; Sas, Maite Alzamora; Dávalos, Antoni; Auer, Tibor; Mataró, Maria
2014-01-01
After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror's regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and the Trail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere.
Dacosta-Aguayo, Rosalia; Graña, Manuel; Fernández-Andújar, Marina; López-Cancio, Elena; Cáceres, Cynthia; Bargalló, Núria; Barrios, Maite; Clemente, Immaculada; Monserrat, Pere Toran; Sas, Maite Alzamora; Dávalos, Antoni
2014-01-01
After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror’s regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and theTrail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere. PMID:24475078
Wiles, H B
1991-01-01
The most common variation in the thoracic systemic venous system is a persistent left superior vena cava draining to a coronary sinus. A rare anomaly is a persistent left superior vena cava connecting directly to the left atrium. In this situation it is believed that the coronary sinus must be absent. This report describes two cases of a persistent left superior vena cava draining to a left atrium with a normal coronary sinus. Images PMID:2015125
Vasconcelos, Luciano de Gois; Jackowski, Andrea Parolin; Oliveira, Maira Okada de; Flor, Yoná Mayara Ribeiro; Bueno, Orlando Francisco Amodeo; Brucki, Sonia Maria Dozzi
2011-01-01
The role of structural brain changes and their correlations with neuropsychiatric symptoms and disability in Alzheimer's disease are still poorly understood. To establish whether structural changes in grey matter volume in patients with mild Alzheimer's disease are associated with neuropsychiatric symptoms and disability Nineteen Alzheimer's disease patients (9 females; total mean age =75.2 y old +4.7; total mean education level =8.5 y +4.9) underwent a magnetic resonance imaging (MRI) examination and voxel-based morphometry analysis. T1-weighted images were spatially normalized and segmented. Grey matter images were smoothed and analyzed using a multiple regression design. The results were corrected for multiple comparisons. The Neuropsychiatric Inventory was used to evaluate the neuropsychiatric symptoms, and the Functional Activities Questionnaire and Disability Assessment for Dementia were used for functional evaluation A significant negative correlation was found between the bilateral middle frontal gyri, left inferior temporal gyrus, right orbitofrontal gyrus, and Neuropsychiatric Inventory scores. A negative correlation was found between bilateral middle temporal gyri, left hippocampus, bilateral fusiform gyri, and the Functional Activities Questionnaire. There was a positive correlation between the right amygdala, bilateral fusiform gyri, right anterior insula, left inferior and middle temporal gyri, right superior temporal gyrus, and Disability Assessment for Dementia scores The results suggest that the neuropsychiatric symptoms observed in Alzheimer's disease patients could be mainly due to frontal structural abnormalities, whereas disability could be associated with reductions in temporal structures.
Resilience to the contralateral visual field bias as a window into object representations
Garcea, Frank E.; Kristensen, Stephanie; Almeida, Jorge; Mahon, Bradford Z.
2016-01-01
Viewing images of manipulable objects elicits differential blood oxygen level-dependent (BOLD) contrast across parietal and dorsal occipital areas of the human brain that support object-directed reaching, grasping, and complex object manipulation. However, it is unknown which object-selective regions of parietal cortex receive their principal inputs from the ventral object-processing pathway and which receive their inputs from the dorsal object-processing pathway. Parietal areas that receive their inputs from the ventral visual pathway, rather than from the dorsal stream, will have inputs that are already filtered through object categorization and identification processes. This predicts that parietal regions that receive inputs from the ventral visual pathway should exhibit object-selective responses that are resilient to contralateral visual field biases. To test this hypothesis, adult participants viewed images of tools and animals that were presented to the left or right visual fields during functional magnetic resonance imaging (fMRI). We found that the left inferior parietal lobule showed robust tool preferences independently of the visual field in which tool stimuli were presented. In contrast, a region in posterior parietal/dorsal occipital cortex in the right hemisphere exhibited an interaction between visual field and category: tool-preferences were strongest contralateral to the stimulus. These findings suggest that action knowledge accessed in the left inferior parietal lobule operates over inputs that are abstracted from the visual input and contingent on analysis by the ventral visual pathway, consistent with its putative role in supporting object manipulation knowledge. PMID:27160998
NASA Technical Reports Server (NTRS)
2004-01-01
The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.
1989-03-01
Toys, is a model of the dinosaur Tyrannosaurus Rex . This particular test case is characterized by sharply discontinuous depths varying over a wide...are not shown in these figures). 7B-C-13 Figure 7: T. Rex Scene - Figure 8: T. Rex Scene - Left Image of Tinker Right Image Toy Object (j 1/’.) C...8217: Figure 9: T. Rex Scene - Figure 10: T. Rex Scene - Connected Contours Extracted Connected Contours Extracted from Left Image from Right Image 7B-C-14 400
de Melo, Ana Carolina Rodrigues; Lyra, Tácio Candeia; Ribeiro, Isabella Lima Arrais; da Paz, Alexandre Rolim; Bonan, Paulo Rogério Ferreti; de Castro, Ricardo Dias; Valença, Ana Maria Gondim
2017-01-01
This report presents a case of embryonal rhabdomyosarcoma (eRMS) located in the left maxillary sinus and invading the orbital cavity in a ten-year-old male patient who was treated at a referral hospital. The images provided from the computed tomography showed a heterogeneous mass with soft-tissue density, occupying part of the left half of the face inside the maxillary sinus, and infiltrating and destroying the bone structure of the maxillary sinus, left orbit, ethmoidal cells, nasal cavity, and sphenoid sinus. An analysis of the histological sections revealed an undifferentiated malignant neoplasm infiltrating the skeletal muscle tissue. The immunohistochemical analysis was positive for the antigens: MyoD1, myogenin, desmin, and Ki67 (100% positivity in neoplastic cells), allowing the identification of the tumour as an eRMS. The treatment protocol included initial chemotherapy followed by radiotherapy and finally surgery. The total time of the treatment was nine months, and in 18-mo of follow-up period did not show no local recurrences and a lack of visual impairment. PMID:29291204
[MRI for brain structure and function in patients with first-episode panic disorder].
Zhang, Yan; Duan, Lian; Liao, Mei; Yang, Fan; Liu, Jun; Shan, Baoci; Li, Lingjiang
2011-12-01
To determine the brain function and structure in patinets with first-episode panic disorder (PD). All subjects (24 PD patients and 24 healthy subjects) received MRI scan and emotional counting Stroop task during the functional magnetic resonance imaging. Blood oxygenation level dependent functional magnetic resonance imaging and voxel-based morphometric technology were used to detect the gray matter volume. Compared with the healthy controls, left thalamus, left medial frontal gyrus, left anterior cingulate gyrus, left inferior frontal gyrus, left insula (panic-related words vs. neutral words) lacked activation in PD patients, but the over-activation were found in right brain stem, right occipital lobe/lingual gyrus in PD patients. Compared with the healthy controls, the gray matter volume in the PD patients significantly decreased in the left superior temporal gyrus, right medial frontal gyrus, left medial occipital gyrus, dorsomedial nucleus of left thalamus and right anterior cingulate gyrus. There was no significantly increased gray matter volume in any brain area in PD patients. PD patients have selective attentional bias in processing threatening information due to the depression and weakening of the frontal cingulated gyrus.
[Proteomic analysis of myocardial hypertrophy induced by left kidney artery coarctation in rats].
Lv, Yuan-yuan; Sun, Biao; Ma, Ji-zheng
2009-05-01
To identify the expression of proteins in cardiomyocytes in rats with left kidney artery coarctation. 16 male SD rats were separated into 2 groups (n=8): 2 kidney 1 Clip group (2K1C) and sham operation group (SO). The postoperational 8th week, after examination by normal doppler and tissue doppler echocardiography, the extracted proteins from cardiomyocytes were isolated by two-dimensional gel electrophoresis with staining. The gel images were acquired by scanner and 2-DE analysis software. Different spots observed on two 2D gels were selected and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Overall, 21 protein spots showed significant difference, and 14 out of which were identified. Kidney artery coactation-induced cardiac hypertrophy displays different expression of proteins in cardiomyocytes.
ERIC Educational Resources Information Center
Van der Haegen, Lise; Cai, Qing; Seurinck, Ruth; Brysbaert, Marc
2011-01-01
The best established lateralized cerebral function is speech production, with the majority of the population having left hemisphere dominance. An important question is how to best assess the laterality of this function. Neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI) are increasingly used in clinical settings to…
Kaseno, Kenichi; Hisazaki, Kaori; Nakamura, Kohki; Ikeda, Etsuko; Hasegawa, Kanae; Aoyama, Daisetsu; Shiomi, Yuichiro; Ikeda, Hiroyuki; Morishita, Tetsuji; Ishida, Kentaro; Amaya, Naoki; Uzui, Hiroyasu; Tada, Hiroshi
2018-04-14
Intracardiac echocardiographic (ICE) imaging might be useful for integrating three-dimensional computed tomographic (CT) images for left atrial (LA) catheter navigation during atrial fibrillation (AF) ablation. However, the optimal CT image integration method using ICE has not been established. This study included 52 AF patients who underwent successful circumferential pulmonary vein isolation (CPVI). In all patients, CT image integration was performed after the CPVI with the following two methods: (1) using ICE images of the LA derived from the right atrium and right ventricular outflow tract (RA-merge) and (2) using ICE images of the LA directly derived from the LA added to the image for the RA-merge (LA-merge). The accuracy of these two methods was assessed by the distances between the integrated CT image and ICE image (ICE-to-CT distance), and between the CT image and actual ablated sites for the CPVI (CT-to-ABL distance). The mean ICE-to-CT distance was comparable between the two methods (RA-merge = 1.6 ± 0.5 mm, LA-merge = 1.7 ± 0.4 mm; p = 0.33). However, the mean CT-to-ABL distance was shorter for the LA-merge (2.1 ± 0.6 mm) than RA-merge (2.5 ± 0.8 mm; p < 0.01). The LA, especially the left-sided PVs and LA roof, was more sharply delineated by direct LA imaging, and whereas the greatest CT-to-ABL distance was observed at the roof portion of the left superior PV (3.7 ± 2.8 mm) after the RA-merge, it improved to 2.6 ± 1.9 mm after the LA-merge (p < 0.01). Additional ICE images of the LA directly acquired from the LA might lead to a greater accuracy of the CT image integration for the CVPI.
Liu, Tianming; Chu, Winnie C.W.; Young, Geoffrey; Li, Kaiming; Yeung, Benson H.Y.; Guo, Lei; Man, Gene C.W.; Lam, Wynnie W.M.; Wong, Stephen T.C.; Cheng, Jack C.Y.
2008-01-01
Purpose To investigate whether regional brain volumes in adolescent idiopathic scoliosis (AIS) patients differ from matched control subjects as AIS subjects are reported to have poor performance on combined visual and proprioceptive testing and impaired postural balance in previous studies. Materials and Methods Twenty AIS female patients with typical right-convex thoracic curve (age range,11−18 years; mean, 14.1 years) and 26 female controls (mean age, 14.8 years) underwent three-dimensional magnetization prepared rapid acquisition gradient echo (3D-MPRAGE) MR imaging. Volumes of 99 preselected neuroanatomical regions were compared by statistical parametric mapping and atlas-based hybrid warping. Results Analysis of variance statistics revealed significant mean volumetric differences in 22 brain regions between AIS and controls. Ten regions were larger in AIS including the left frontal gyri and white matter in left frontal, parietal, and temporal regions, corpus callosum and brainstem. Twelve regions were smaller in AIS, including right-sided descending white matter tracts (anterior and posterior limbs of the right internal capsule and the cerebral peduncle) and deep nucleus (caudate), bilateral perirhinal cortices, left hippocampus and amygdala, bilateral precuneus gyri, and left middle and inferior occipital gyri. Conclusion Regional brain volume difference in AIS subjects may help to explain neurological abnormalities in this group. PMID:18302230
Regional Homogeneity Changes in Nicotine Addicts by Resting-State fMRI.
Chen, Hongbo; Mo, Shaofeng
2017-01-01
To reveal the brain functional changes of nicotine addicts compared with those of non-smokers and explore the objective biomarker for nicotine dependence evaluation. A total of 14 smokers and 11 non-smoking controls were recruited for this study. Resting-state functional magnetic resonance imaging and regional homogeneity (ReHo) were applied in the neural activity analysis. Two-sample t-test was performed to examine the voxel-wise difference between the smokers and the controls. Correlation analysis between the ReHo values and the Fagerstrom Test for Nicotine Dependence (FTND) scores were performed to explore the biomarkers for the clinical characteristics of smokers. The ReHo values from the right superior frontal gyrus of the Brodmann's area (BA) 9 to the right middle frontal gyrus and the ReHo value from the left and right precuneus (BA 23) to the left and right middle cingulum gyrus were lower in the smokers than in the non-smokers. The ReHo value in the precuneus (BA 23) was significantly and positively correlated with the FTND score of smokers. The ReHo values in the right superior frontal gyrus and left precuneus can be used to separate the smokers from the non-smokers. In particular, the left precuneus is a potential neuroimaging biomarker for nicotine addicts.
Lai, Chien-Han; Wu, Yu-Te; Hou, Yuh-Ming
2017-08-01
The functional network analysis of whole brain is an emerging field for research in depression. We initiated this study to investigate which subnetwork is significantly altered within the functional connectome in major depressive disorder (MDD). The study enrolled 52 first-episode medication-naïve patients with MDD and 40 controls for functional network analysis. All participants received the resting-state functional imaging using a 3-Tesla magnetic resonance scanner. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. The network-based statistics of connectome was used to perform group comparisons between patients and controls. The correlations between functional connectivity and clinical parameters were also performed. MDD patients had significant alterations in the network involving "theory of mind" regions, such as the left precentral gyrus, left angular gyrus, bilateral rolandic operculums and left inferior frontal gyrus. The center node of significant network was the left angular gyrus. No significant correlations of functional connectivity within the subnetwork and clinical parameters were noted. Functional connectivity of "theory of mind" subnetwork may be the core issue for pathophysiology in MDD. In addition, the center role of parietal region should be emphasized in future study. Copyright © 2017. Published by Elsevier B.V.
Zhang, Linjun; Yue, Qiuhai; Zhang, Yang; Shu, Hua; Li, Ping
2015-01-01
Numerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g., active vs. passive listening) modulate the functional specificity of these sub-areas. In the present functional magnetic resonance imaging (fMRI) study, we addressed this issue by applying both independent component analysis (ICA) and general linear model (GLM) methods. Consistent with previous studies, intelligible sentences elicited greater activity in the left lateral temporal cortex relative to unintelligible sentences. Moreover, responses to intelligibility in the sub-regions were differentially modulated by task demands. While the overall activation patterns of the anterior and posterior superior temporal sulcus and middle temporal gyrus (STS/MTG) were equivalent during both passive and active tasks, a middle portion of the STS/MTG was found to be selectively activated only during the active task under a refined analysis of sub-regional contributions. Our results not only confirm the critical role of the left lateral temporal cortex in auditory sentence comprehension but further demonstrate that task demands modulate functional specialization of the anterior-middle-posterior temporal sub-areas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Fusar-Poli, Paolo; Howes, Oliver; Bechdolf, Andreas; Borgwardt, Stefan
2012-01-01
Background Although early interventions in individuals with bipolar disorder may reduce the associated personal and economic burden, the neurobiologic markers of enhanced risk are unknown. Methods Neuroimaging studies involving individuals at enhanced genetic risk for bipolar disorder (HR) were included in a systematic review. We then performed a region of interest (ROI) analysis and a whole-brain meta-analysis combined with a formal effect-sizes meta-analysis in a subset of studies. Results There were 37 studies included in our systematic review. The overall sample for the systematic review included 1258 controls and 996 HR individuals. No significant differences were detected between HR individuals and controls in the selected ROIs: striatum, amygdala, hippocampus, pituitary and frontal lobe. The HR group showed increased grey matter volume compared with patients with established bipolar disorder. The HR individuals showed increased neural response in the left superior frontal gyrus, medial frontal gyrus and left insula compared with controls, independent from the functional magnetic resonance imaging task used. There were no publication biases. Sensitivity analysis confirmed the robustness of these results. Limitations As the included studies were cross-sectional, it remains to be determined whether the observed neurofunctional and structural alterations represent risk factors that can be clinically used in preventive interventions for prodromal bipolar disorder. Conclusion Accumulating structural and functional imaging evidence supports the existence of neurobiologic trait abnormalities in individuals at genetic risk for bipolar disorder at various scales of investigation. PMID:22297067
The lighter side of advertising: investigating posing and lighting biases.
Thomas, Nicole A; Burkitt, Jennifer A; Patrick, Regan E; Elias, Lorin J
2008-11-01
People tend to display the left cheek when posing for a portrait; however, this effect does not appear to generalise to advertising. The amount of body visible in the image and the sex of the poser might also contribute to the posing bias. Portraits also exhibit lateral lighting biases, with most images being lit from the left. This effect might also be present in advertisements. A total of 2801 full-page advertisements were sampled and coded for posing direction, lighting direction, sex of model, and amount of body showing. Images of females showed an overall leftward posing bias, but the biases in males depended on the amount of body visible. Males demonstrated rightward posing biases for head-only images. Overall, images tended to be lit from the top left corner. The two factors of posing and lighting biases appear to influence one another. Leftward-lit images had more leftward poses than rightward, while the opposite occurred for rightward-lit images. Collectively, these results demonstrate that the posing biases in advertisements are dependent on the amount of body showing in the image, and that biases in lighting direction interact with these posing biases.
Terahertz Technology: A Boon to Tablet Analysis
Wagh, M. P.; Sonawane, Y. H.; Joshi, O. U.
2009-01-01
The terahertz gap has a frequency ranges from ∼0.3 THz to ∼10 THz in the electromagnetic spectrum which is in between microwave and infrared. The terahertz radiations are invisible to naked eye. In comparison with x-ray they are intrinsically safe, non-destructive and non-invasive. Terahertz spectroscopy enables 3D imaging of structures and materials, and the measurement of the unique spectral fingerprints of chemical and physical forms. Terahertz radiations are produced by a dendrimer based high power terahertz source and spectroscopy technologies. It resolves many of the questions left unanswered by complementary techniques, such as optical imaging, Raman and infrared spectra. In the pharmaceutical industries it enables nondestructive, internal, chemical analysis of tablets, capsules, and other dosage forms. Tablet coatings are a major factor in drug bioavailability. Therefore tablet coatings integrity and uniformity are of crucial importance to quality. Terahertz imaging gives an unparalleled certainty about the integrity of tablet coatings and the matrix performance of tablet cores. This article demonstrates the potential of terahertz pulse imaging for the analysis of tablet coating thickness by illustrating the technique on tablets. PMID:20490288
Nestor, Paul G; Ohtani, Toshiyuki; Bouix, Sylvain; Hosokawa, Taiga; Saito, Yukiko; Newell, Dominick T; Kubicki, Marek
2015-12-01
We examined intelligence and memory in 25 healthy participants who had both prior magnetic resonance imaging (MRI) of gray matter volumes of medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC), along with diffusion tensor imaging (DTI) of posterior and anterior mOFC-rACC white matter microstructure, as assessed by fractional anisotropy (FA). Results showed distinct relationships between these basic structural brain parameters and higher cognition, highlighted by a highly significant correlation of left rACC gray matter volume with memory, and to a lesser extent, though still statistically significant, correlation of left posterior mOFC-rACC FA with intelligence. Regression analyses showed that left posterior mOFC-rACC connections and left rACC gray matter volume each contributed to intelligence, with left posterior mOFC-rACC FA uniquely accounting for between 20.43 and 24.99% of the variance in intelligence, in comparison to 13.54 to 17.98% uniquely explained by left rACC gray matter volume. For memory, only left rACC gray matter volume explained neuropsychological performance, uniquely accounting for a remarkably high portion of individual variation, ranging from 73.61 to 79.21%. These results pointed to differential contributions of white mater microstructure connections and gray matter volumes to individual differences in intelligence and memory, respectively.
Evaluation of the Normal Tonsils in Pediatric Patients With Ultrasonography.
Hosokawa, Takahiro; Yamada, Yoshitake; Tanami, Yutaka; Hattori, Shinya; Sato, Yumiko; Hosokawa, Mayumi; Oguma, Eiji
2017-05-01
To evaluate how well the tonsils can be viewed, in addition to echogenicity, using ultrasound, and to compare these results between children younger and older than the age of 3. We evaluated the tonsils of 99 patients (72.0 ± 59.1 months) by ultrasound. Ultrasound scans of both the left and right side, in both the transverse and longitudinal planes, were obtained. Images were scored with one of four grades according to how well the tonsil border could be distinguished, 0 being the worst and 3 being the best. Grades 2 or 3 (>50% of the tonsil border was detectable) in both tonsils, in either the transverse or longitudinal image, were considered "evaluable." Echogenicity was designated as imperceptible, low echoic, or striated in appearance. Statistical analysis was performed using the Mann-Whitney U test. Bilateral tonsils were evaluable in 96.0% (96/99) of cases. The mean grades were 2.44 ± 0.65/2.03 ± 0.68 in the right transverse/longitudinal images, and 2.40 ± 0.59/2.12 ± 0.73 in the left transverse/longitudinal images. The grades in children older than the age of 3 were significantly higher than those in younger patients (all P < .05). Echogenicity classification on the right and left side revealed a striated appearance in 97.0% (96/99) and 90.0% (89/99) of cases, respectively. The tonsils of almost all pediatric patients could be evaluated by ultrasound, particularly for patients older than 3 years. Additionally, a striated pattern of the tonsils was observed in most cases. © 2017 by the American Institute of Ultrasound in Medicine.
Normative database of donor keratographic readings in an eye-bank setting.
Lewis, Jennifer R; Bogucki, Jennifer M; Mahmoud, Ashraf M; Lembach, Richard G; Roberts, Cynthia J
2010-04-01
To generate a normative donor topographic database from rasterstereography images of whole globes acquired in an eye-bank setting with minimal manipulation or handling. Eye-bank laboratory. In a retrospective study, rasterstereography topographic images that had been prospectively collected in duplicate of donor eyes received by the Central Ohio Lions Eye Bank between 1997 and 1999 were analyzed. Best-fit sphere (BFS) and simulated keratometry (K) values were extracted. These values were recalculated after application of custom software to correct any tilt of the mapped surfaces relative to the image plane. The mean value variances between right eyes and left eyes, between consecutive scans, and after untilting were analyzed by repeated-measures analysis of variance and t tests (P
Reference Values for Central Airway Dimensions on CT Images of Children and Adolescents.
Kuo, Wieying; Ciet, Pierluigi; Andrinopoulou, Eleni-Rosalina; Chen, Yong; Pullens, Bas; Garcia-Peña, Pilar; Fleck, Robert J; Paoletti, Matteo; McCartin, Michael; Vermeulen, Francois; Morana, Giovanni; Lee, Edward Y; Tiddens, Harm A W M
2018-02-01
The purpose of this study was to acquire normative data on central airway dimensions on chest CT scans in the pediatric population. Chest CT findings reported as normal by a radiologist were collected retrospectively at 10 international centers. An experienced and independent thoracic radiologist reevaluated all CT scans for image quality and for normal findings. Semiautomated image analysis was performed to measure dimensions of the trachea and right and left main bronchi at inspiration. Intrathoracic tracheal length was measured from carina to thorax inlet. Cross-sectional area and short and long axes were measured perpendicular to the longitudinal airway axis starting from the carina every centimeter upward for the trachea and every 0.5 cm downward for the main bronchi. The effects on airway diameters of age, sex, intrathoracic tracheal length, and distance from the carina were investigated by use of mixed-effects models analysis. Among 1160 CT scans collected, 388 were evaluated as normal by the independent radiologist with sufficient image quality and adequate inspiratory volume level. Central airways were successfully semiautomatically analyzed in 294 of 388 CT studies. Age, sex, intrathoracic tracheal length, and distance from carina were all significant predictors in the models for tracheal and right and left main bronchial diameters (p < 0.001). The central airway dimensions increased with age up to 20 years, and dimensions were larger in male than in female adolescents. Normative data were determined for the central airways of children and adolescents. Central airway dimensions depended on distance from the carina and on intrathoracic tracheal length.
Chetboul, Valérie; Gouni, Vassiliki; Sampedrano, Carolina Carlos; Tissier, Renaud; Serres, François; Pouchelon, Jean-Louis
2007-01-01
Tissue Doppler Imaging (TDI) or strain (St) imaging could provide sensitive indices for early detection and treatment follow-up of canine dilated cardiomyopathy (DCM). Analysis of TDI and St features in dogs with overt DCM is a prerequisite before using these new criteria in prospective screenings of predisposed families or in clinical trials. Radial and longitudinal right and left myocardial motion, assessed by TDI and St variables, is altered in dogs with DCM. Case records for 26 dogs; 14 with DCM and 12 healthy controls of comparable age and weight were reviewed. A retrospective analysis was conducted of conventional echocardiography, 2-dimensional color TDI, and St imaging data. The DCM group was characterized by decreases in radial and longitudinal systolic velocity gradients of the left ventricular free wall (LVFW), radial and longitudinal absolute values of peak systolic St of the LVFW, and longitudinal systolic right ventricular (RV) velocities (all P < .001 versus control) associated with longitudinal postsystolic contraction waves in 7/14 dogs. Early diastolic LVFW velocities also were decreased for longitudinal (P < .01) and radial (P < .05) motions. All radial LVFW, longitudinal basal LVFW, and RV systolic velocities were negatively correlated with heart rate (P < .01). LV contractility along both the short and long axes is impaired in dogs with spontaneous DCM, as is systolic RV and diastolic LVFW function. These myocardial alterations are associated with an inverse force-frequency relationship. Studies now are needed to determine the comparative sensitivity of TDI and St variables for the early detection of canine DCM.
Tempaku, Akira; Kuroiwa, Terumasa; Nishio, Akimasa
2018-06-01
Purpose Right-sided aortic arch is a rare vessel anomaly with an incidence of 0.1% worldwide. Supra-aortic branches form a mirror image of the left-sided aortic arch or an aberrant left subclavian artery associated with Kommerell diverticulum. Most patients are diagnosed by a difference in blood pressure in each upper extremity or by the presence of left subclavian steal syndrome in their younger age. The diagnosis of onset of ischemic stroke in middle age is rare. Methods We present the case of a female patient who presented with an ischemic stroke in the left posterior circulation area. She had no history of congenital heart malformation. We performed head magnetic resonance imaging, cerebral angiography, and enhanced computed tomography of the aortic arch and major branches. Results The patient had a right-sided aortic arch and an aberrant left subclavian artery. The left subclavian artery was occluded at the proximal portion with a fibrous string. Collateral flow in the anterior cervical subcutaneous area supported left limb perfusion. Conclusion An atheromatous change reduced shunt flow via collateral networks at the anterior cervical region. Congenital subclavian steal supported the ischemic stroke.
Congenital anomalies of the left brachiocephalic vein detected in adults on computed tomography.
Yamamuro, Hiroshi; Ichikawa, Tamaki; Hashimoto, Jun; Ono, Shun; Nagata, Yoshimi; Kawada, Shuichi; Kobayashi, Makiko; Koizumi, Jun; Shibata, Takeo; Imai, Yutaka
2017-10-01
Anomalous left brachiocephalic vein (BCV) is a rare and less known systemic venous anomaly. We evaluated congenital anomalies of the left BCV in adults detected during computed tomography (CT) examinations. This retrospective study included 81,425 patients without congenital heart disease who underwent chest CT. We reviewed the recorded reports and CT images for congenital anomalies of the left BCV including aberrant and supernumerary BCVs. The associated congenital aortic anomalies were assessed. Among 73,407 cases at a university hospital, 22 (16 males, 6 females; mean age, 59 years) with aberrant left BCVs were found using keyword research on recorded reports (0.03%). Among 8018 cases at the branch hospital, 5 (4 males, 1 female; mean age, 67 years) with aberrant left BCVs were found using CT image review (0.062%). There were no significant differences in incidences of aberrant left BCV between the two groups. Two cases had double left BCVs. Eleven cases showed high aortic arches. Two cases had the right aortic arch, one case had an incomplete double aortic arch, and one case was associated with coarctation. Aberrant left BCV on CT examination in adults was extremely rare. Some cases were associated with aortic arch anomalies.
Perceptual asymmetries in greyscales: object-based versus space-based influences.
Thomas, Nicole A; Elias, Lorin J
2012-05-01
Neurologically normal individuals exhibit leftward spatial biases, resulting from object- and space-based biases; however their relative contributions to the overall bias remain unknown. Relative position within the display has not often been considered, with similar spatial conditions being collapsed across. Study 1 used the greyscales task to investigate the influence of relative position and object- and space-based contributions. One image in each greyscale pair was shifted towards the left or the right. A leftward object-based bias moderated by a bias to the centre was expected. Results confirmed this as a left object-based bias occurred in the right visual field, where the left side of the greyscale pairs was located in the centre visual field. Further, only lower visual field images exhibited a significant left bias in the left visual field. The left bias was also stronger when images were partially overlapping in the right visual field, demonstrating the importance of examining proximity. The second study examined whether object-based biases were stronger when actual objects, with directional lighting biases, were used. Direction of luminosity was congruent or incongruent with spatial location. A stronger object-based bias emerged overall; however a leftward bias was seen in congruent conditions and a rightward bias was seen in incongruent conditions. In conditions with significant biases, the lower visual field image was chosen most often. Results show that object- and space-based biases both contribute; however stimulus type allows either space- or object-based biases to be stronger. A lower visual field bias also interacts with these biases, leading the left bias to be eliminated under certain conditions. The complex interaction occurring between frame of reference and visual field makes spatial location extremely important in determining the strength of the leftward bias. Copyright © 2010 Elsevier Srl. All rights reserved.
Ito, Katsuyoshi; Hayashida, Minoru; Kanki, Akihiko; Yamamoto, Akira; Tamada, Tsutomu; Yoshida, Koji; Tanabe, Masahiro
2018-05-17
To evaluate dynamic changes in apparent diffusion coefficient (ADC) values of the kidney at different time points during the cardiac cycle using electrocardiographic (ECG)-triggered diffusion-weighted MR imaging in normal subjects, and to elucidate the differences in ADC values between the right and left kidneys during a cardiac cycle. The study was approved by our institutional review board and informed consent was obtained from subjects. Twenty healthy volunteers who underwent ECG-triggered diffusion-weighted MR imaging of the kidney were included. The differences in ADC values of each kidney during different cardiac phases were compared. Additionally, the differences in maximum and minimum ADC values between the right and left kidney were also evaluated. ADC values in the right and left kidney changed significantly during the cardiac cycle (P < 0.00001). Maximum and minimum ADC values during the cardiac cycle of the left kidney were significantly higher (P = 0.026 and 0.017, respectively) than those of the right kidney. Maximum ADC value in the left kidney had a significantly strong positive correlation with the left renal vein ratio (r = 0.83, P < 0.00001). In the right kidney, maximum ADC showed a weakly positive correlation with the diameter of the right renal vein (r = 0.45, P = 0.048). ADC values of the kidney obtained using ECG-triggered diffusion-weighted MR imaging change significantly during the cardiac cycle. Maximum (systolic) ADC during the cardiac cycle of the left kidney was significantly higher than that of the right kidney, probably due to the anatomical difference in the renal vein. Copyright © 2018 Elsevier Inc. All rights reserved.
Brain activity underlying tool-related and imitative skills after major left hemisphere stroke.
Martin, Markus; Nitschke, Kai; Beume, Lena; Dressing, Andrea; Bühler, Laura E; Ludwig, Vera M; Mader, Irina; Rijntjes, Michel; Kaller, Christoph P; Weiller, Cornelius
2016-05-01
Apraxia is a debilitating cognitive motor disorder that frequently occurs after left hemisphere stroke and affects tool-associated and imitative skills. However, the severity of the apraxic deficits varies even across patients with similar lesions. This variability raises the question whether regions outside the left hemisphere network typically associated with cognitive motor tasks in healthy subjects are of additional functional relevance. To investigate this hypothesis, we explored regions where functional magnetic resonance imaging activity is associated with better cognitive motor performance in patients with left hemisphere ischaemic stroke. Thirty-six patients with chronic (>6 months) large left hemisphere infarcts (age ± standard deviation, 60 ± 12 years, 29 male) and 29 control subjects (age ± standard deviation, 72 ± 7, 15 male) were first assessed behaviourally outside the scanner with tests for actual tool use, pantomime and imitation of tool-use gestures, as well as for meaningless gesture imitation. Second, functional magnetic resonance imaging activity was registered during the passive observation of videos showing tool-associated actions. Voxel-wise linear regression analyses were used to identify areas where behavioural performance was correlated with functional magnetic resonance imaging activity. Furthermore, lesions were delineated on the magnetic resonance imaging scans for voxel-based lesion-symptom mapping. The analyses revealed two sets of regions where functional magnetic resonance imaging activity was associated with better performance in the clinical tasks. First, activity in left hemisphere areas thought to mediate cognitive motor functions in healthy individuals (i.e. activity within the putative 'healthy' network) was correlated with better scores. Within this network, tool-associated tasks were mainly related to activity in supramarginal gyrus and ventral premotor cortex, while meaningless gesture imitation depended more on the anterior intraparietal sulcus and superior parietal lobule. Second, repeating the regression analyses with total left hemisphere lesion volume as additional covariate demonstrated that tool-related skills were further supported by right premotor, right inferior frontal and left anterior temporal areas, while meaningless gesture imitation was also driven by the left dorso-lateral prefrontal cortex. In summary, tool-related and imitative skills in left hemisphere stroke patients depend on the activation of spared left hemisphere regions that support these abilities in healthy individuals. In addition, cognitive motor functions rely on the activation of ipsi- and contralesional areas that are situated outside this 'healthy' network. This activity may explain why some patients perform surprisingly well despite large left brain lesions, while others are severely impaired. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Silverman, S; Sanchez-Migallon Guzman, D; Stern, J; Gustavsen, K A; Griffiths, L G
2016-06-01
To objectively and subjectively describe the normal spectrum of two-dimensional echocardiographic findings in the central bearded dragon (Pogona vitticeps). Sixteen central bearded dragons. Central bearded dragons were prospectively evaluated under manual restraint in right and left lateral recumbency to identify imaging planes for reproducible measurements of cardiac chambers, subjective two-dimensional analysis and color Doppler assessment. Echocardiography can be performed through windows in the left and right axillae. The window in the left axilla allows for a subjective and objective assessment of cardiac structure and function. The right axillary window allows for evaluation of pulmonary artery flow. Both views provide data for the presence of pericardial effusion or valvular insufficiency. With optimized imaging planes, cardiac chambers and fractional area change along with fractional shortening in the longitudinal and transverse planes can be calculated. Body weight and cardiac chamber dimensions of males were significantly larger than females. Ventricular fractional area change was the most consistent functional assessment. The majority of animals were found to have no evidence of valvular insufficiency, while approximately half had evidence of pericardial fluid. Pulmonary artery flow was assessed in all patients. Left and right aortic velocities cannot be reliably obtained. This study is the first to generate reference values for cardiac structure and function in clinically healthy central bearded dragons. Valvular insufficiency is not a normal finding in central bearded dragons, while mild pericardial effusion may be. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Junyi; Yuan, Yongsheng; Wang, Min; Zhang, Jiejin; Zhang, Li; Jiang, Siming; Ding, Jian; Zhang, Kezhong
2017-10-01
Fatigue is a common complaint in patients with Parkinson's disease (PD). However, the neural bases of fatigue in PD remain uncertain. In this cross-sectional study, our aim was to study the change of the local brain function in PD patients with fatigue. Among 49 patients with PD, 17 of them had fatigue and the remaining 32 patients without fatigue, and 25 age- and gender-matched healthy controls were enrolled. All subjects were evaluated with Fatigue Severity Scale (FSS) and had a resting-state functional magnetic resonance imaging (rs-fMRI) scan. The fMRI images were analyzed using regional homogeneity (ReHo) to study the change of the local brain function. ReHo analysis controlling for gray matter volume, age, gender, and education showed decreased ReHo in the left anterior cingulate cortex (ACC) and the right superior frontal gyrus (dorsolateral part), and increased ReHo in the left postcentral gyrus and the right inferior frontal gyrus (orbital and triangular part), compared PD-F with PD-NF; In PD patients, the regional activity in the left ACC and the right superior frontal gyrus (dorsolateral part) was negatively correlated with the FSS scores, while that in the left postcentral gyrus, the right inferior frontal gyrus (orbital and triangular part) was positively correlated with the FSS scores. This study demonstrates that brain areas including frontal, postcentral and ACC regions indicative of sensory, motor, and cognitive systems are involved in fatigue in PD patients.
Sudarski, Sonja; Henzler, Thomas; Haubenreisser, Holger; Dösch, Christina; Zenge, Michael O; Schmidt, Michaela; Nadar, Mariappan S; Borggrefe, Martin; Schoenberg, Stefan O; Papavassiliu, Theano
2017-01-01
Purpose To prospectively evaluate the accuracy of left ventricle (LV) analysis with a two-dimensional real-time cine true fast imaging with steady-state precession (trueFISP) magnetic resonance (MR) imaging sequence featuring sparse data sampling with iterative reconstruction (SSIR) performed with and without breath-hold (BH) commands at 3.0 T. Materials and Methods Ten control subjects (mean age, 35 years; range, 25-56 years) and 60 patients scheduled to undergo a routine cardiac examination that included LV analysis (mean age, 58 years; range, 20-86 years) underwent a fully sampled segmented multiple BH cine sequence (standard of reference) and a prototype undersampled SSIR sequence performed during a single BH and during free breathing (non-BH imaging). Quantitative analysis of LV function and mass was performed. Linear regression, Bland-Altman analysis, and paired t testing were performed. Results Similar to the results in control subjects, analysis of the 60 patients showed excellent correlation with the standard of reference for single-BH SSIR (r = 0.93-0.99) and non-BH SSIR (r = 0.92-0.98) for LV ejection fraction (EF), volume, and mass (P < .0001 for all). Irrespective of breath holding, LV end-diastolic mass was overestimated with SSIR (standard of reference: 163.9 g ± 58.9, single-BH SSIR: 178.5 g ± 62.0 [P < .0001], non-BH SSIR: 175.3 g ± 63.7 [P < .0001]); the other parameters were not significantly different (EF: 49.3% ± 11.9 with standard of reference, 48.8% ± 11.8 with single-BH SSIR, 48.8% ± 11 with non-BH SSIR; P = .03 and P = .12, respectively). Bland-Altman analysis showed similar measurement errors for single-BH SSIR and non-BH SSIR when compared with standard of reference measurements for EF, volume, and mass. Conclusion Assessment of LV function with SSIR at 3.0 T is noninferior to the standard of reference irrespective of BH commands. LV mass, however, is overestimated with SSIR. © RSNA, 2016 Online supplemental material is available for this article.
Generating Stereoscopic Television Images With One Camera
NASA Technical Reports Server (NTRS)
Coan, Paul P.
1996-01-01
Straightforward technique for generating stereoscopic television images involves use of single television camera translated laterally between left- and right-eye positions. Camera acquires one of images (left- or right-eye image), and video signal from image delayed while camera translated to position where it acquires other image. Length of delay chosen so both images displayed simultaneously or as nearly simultaneously as necessary to obtain stereoscopic effect. Technique amenable to zooming in on small areas within broad scenes. Potential applications include three-dimensional viewing of geological features and meteorological events from spacecraft and aircraft, inspection of workpieces moving along conveyor belts, and aiding ground and water search-and-rescue operations. Also used to generate and display imagery for public education and general information, and possible for medical purposes.
Automatic short axis orientation of the left ventricle in 3D ultrasound recordings
NASA Astrophysics Data System (ADS)
Pedrosa, João.; Heyde, Brecht; Heeren, Laurens; Engvall, Jan; Zamorano, Jose; Papachristidis, Alexandros; Edvardsen, Thor; Claus, Piet; D'hooge, Jan
2016-04-01
The recent advent of three-dimensional echocardiography has led to an increased interest from the scientific community in left ventricle segmentation frameworks for cardiac volume and function assessment. An automatic orientation of the segmented left ventricular mesh is an important step to obtain a point-to-point correspondence between the mesh and the cardiac anatomy. Furthermore, this would allow for an automatic division of the left ventricle into the standard 17 segments and, thus, fully automatic per-segment analysis, e.g. regional strain assessment. In this work, a method for fully automatic short axis orientation of the segmented left ventricle is presented. The proposed framework aims at detecting the inferior right ventricular insertion point. 211 three-dimensional echocardiographic images were used to validate this framework by comparison to manual annotation of the inferior right ventricular insertion point. A mean unsigned error of 8, 05° +/- 18, 50° was found, whereas the mean signed error was 1, 09°. Large deviations between the manual and automatic annotations (> 30°) only occurred in 3, 79% of cases. The average computation time was 666ms in a non-optimized MATLAB environment, which potentiates real-time application. In conclusion, a successful automatic real-time method for orientation of the segmented left ventricle is proposed.
Hippocampus shape analysis and late-life depression.
Zhao, Zheen; Taylor, Warren D; Styner, Martin; Steffens, David C; Krishnan, K Ranga R; MacFall, James R
2008-03-19
Major depression in the elderly is associated with brain structural changes and vascular lesions. Changes in the subcortical regions of the limbic system have also been noted. Studies examining hippocampus volumetric differences in depression have shown variable results, possibly due to any volume differences being secondary to local shape changes rather than differences in the overall volume. Shape analysis offers the potential to detect such changes. The present study applied spherical harmonic (SPHARM) shape analysis to the left and right hippocampi of 61 elderly subjects with major depression and 43 non-depressed elderly subjects. Statistical models controlling for age, sex, and total cerebral volume showed a significant reduction in depressed compared with control subjects in the left hippocampus (F(1,103) = 5.26; p = 0.0240) but not right hippocampus volume (F(1,103) = 0.41; p = 0.5213). Shape analysis showed significant differences in the mid-body of the left (but not the right) hippocampus between depressed and controls. When the depressed group was dichotomized into those whose depression was remitted at time of imaging and those who were unremitted, the shape comparison showed remitted subjects to be indistinguishable from controls (both sides) while the unremitted subjects differed in the midbody and the lateral side near the head. Hippocampal volume showed no difference between controls and remitted subjects but nonremitted subjects had significantly smaller left hippocampal volumes with no significant group differences in the right hippocampus. These findings may provide support to other reports of neurogenic effects of antidepressants and their relation to successful treatment for depressive symptoms.
Antarctica obtained from a mosaic of 11 images taken by Galileo spacecraft
NASA Technical Reports Server (NTRS)
1990-01-01
Galileo spacecraft image of the Earth recorded after completing its first Earth Gravity Assist. This image of Antarctica was obtained from a mosaic of 11 images taken during a ten minute period near 5:45 pm Pacific Standard Time (PST) 12-08-90 by the Galileo spacecraft imaging system. Red, green, and violet filters were used. The picture spans about 1,600 miles across the south polar latitudes of our planet. The morning day/night terminator is toward the right. The South Pole is out of sight below the picture; the visible areas of Antarctica are those lying generally south of South America. The violet-blue envelope of Earth's atmosphere is prominent along the limb to the left. At lower left, the dark blue Amundsen Sea lies to the left of the Walgreen and Bakutis Coasts. Beyond it, Peter Island reacts with the winds to produce a striking pattern of atmospheric waves. Photo provided by the Jet Propulsion Laboratory (JPL) with alternate number P-37340, 12-19-90.
Enhanced iris recognition method based on multi-unit iris images
NASA Astrophysics Data System (ADS)
Shin, Kwang Yong; Kim, Yeong Gon; Park, Kang Ryoung
2013-04-01
For the purpose of biometric person identification, iris recognition uses the unique characteristics of the patterns of the iris; that is, the eye region between the pupil and the sclera. When obtaining an iris image, the iris's image is frequently rotated because of the user's head roll toward the left or right shoulder. As the rotation of the iris image leads to circular shifting of the iris features, the accuracy of iris recognition is degraded. To solve this problem, conventional iris recognition methods use shifting of the iris feature codes to perform the matching. However, this increases the computational complexity and level of false acceptance error. To solve these problems, we propose a novel iris recognition method based on multi-unit iris images. Our method is novel in the following five ways compared with previous methods. First, to detect both eyes, we use Adaboost and a rapid eye detector (RED) based on the iris shape feature and integral imaging. Both eyes are detected using RED in the approximate candidate region that consists of the binocular region, which is determined by the Adaboost detector. Second, we classify the detected eyes into the left and right eyes, because the iris patterns in the left and right eyes in the same person are different, and they are therefore considered as different classes. We can improve the accuracy of iris recognition using this pre-classification of the left and right eyes. Third, by measuring the angle of head roll using the two center positions of the left and right pupils, detected by two circular edge detectors, we obtain the information of the iris rotation angle. Fourth, in order to reduce the error and processing time of iris recognition, adaptive bit-shifting based on the measured iris rotation angle is used in feature matching. Fifth, the recognition accuracy is enhanced by the score fusion of the left and right irises. Experimental results on the iris open database of low-resolution images showed that the averaged equal error rate of iris recognition using the proposed method was 4.3006%, which is lower than that of other methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovetz, H.S.; Shaffer, F.; Schaub, R.
This paper discusses a series of experiments to visualize and measure flow fields in the Novacor left ventricular assist system (LVAS). The experiments utilize a multiple exposure, optical imaging technique called fluorescent image tracking velocimetry (FITV) to hack the motion of small, neutrally-buoyant particles in a flowing fluid.
Sojourner APXS at Moe - Left Eye
1999-07-02
The Sojourner rover's Alpha Proton X-ray Spectrometer (APXS) is shown deployed against the rock "Moe" on the afternoon of Sol 64 (September 7). The rocks to the left of Moe are "Shark" (left of Sojourner) and "Half Dome" (behind Sojourner). They were previously measured by the APXS. The image was taken by the Imager for Mars Pathfinder (IMP). Sojourner spent 83 days of a planned seven-day mission exploring the Martian terrain, acquiring images, and taking chemical, atmospheric and other measurements. The final data transmission received from Pathfinder was at 10:23 UTC on September 27, 1997. Although mission managers tried to restore full communications during the following five months, the successful mission was terminated on March 10, 1998. http://photojournal.jpl.nasa.gov/catalog/PIA01560
Renilla, Alfredo; Santamarta, Elena; Corros, Cecilia; Martín, María; Barreiro, Manuel; de la Hera, Jesús
2013-01-01
To establish the etiology of heart failure in patients with congenital heart disease can be challenging. Multiple concomitant anomalies that can be missed after an initial diagnosis could be seen in these patients. In patients with congenital heart disease, a more accurate evaluation of cardiac morphology and left ventricular systolic function could be evaluated by recent non-invasive cardiac imaging techniques. We present a rare case where multimodal cardiac imaging was useful to establish the final diagnosis of left ventricular non-compaction associated with Ebstein's anomaly. Copyright © 2012 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen
2014-01-01
Prognosis and diagnosis of cardiac diseases frequently require quantitative evaluation of the ventricle volume, mass, and ejection fraction. The delineation of the myocardial wall is involved in all of these evaluations, which is a challenging task due to large variations in myocardial shapes and image quality. In this work, we present an automatic method for extracting the myocardial wall of the left and right ventricles from cardiac CT images. In the method, the left and right ventricles are located sequentially, in which each ventricle is detected by first identifying the endocardium and then segmenting the epicardium. To this end, the endocardium is localized by utilizing its geometric features obtained on-line from a CT image. After that, a variational region-growing model is employed to extract the epicardium of the ventricles. In particular, the location of the endocardium of the left ventricle is determined via using an active contour model on the blood-pool surface. To localize the right ventricle, the active contour model is applied on a heart surface extracted based on the left ventricle segmentation result. The robustness and accuracy of the proposed approach is demonstrated by experimental results from 33 human and 12 pig CT images. PMID:23744658
Choi, Eun Mi; Jung, Nani; Shim, Ye Jee; Choi, Hee Joung; Kim, Joon Sik; Kim, Heung Sik; Song, Kwang Soon; Lee, Hee Jung; Kim, Sang Pyo
2016-12-01
A 9-year-old Tajikistani girl presented to Keimyung University Dongsan Medical Center for evaluation of a skin lesion on her left eyelid, focal alopecia, unilateral ventricular dilatation, and aortic coarctation. She was diagnosed with encephalocraniocutaneous lipomatosis (ECCL) according to Moog's diagnostic criteria. Café-au-lait spots were found on the left side of her trunk. Multiple nonossifying fibromas were found on her left proximal humerus, left distal femur, both proximal tibias, and left proximal fibula, suggesting Jaffe-Campanacci syndrome (JCS), following imaging of the extremities. Many JCS cases with multiple Café-au-lait macules, multiple nonossifying fibromas may actually have Neurofibromatosis type-1 (NF1). Thus, comprehensive molecular analysis to exclude NF1 mutation was performed using her blood sample. The NF1 mutation was not found. Her height was under the 3rd percentile and her bone age was delayed as compared with her chronological age. Baseline growth hormone (GH) level was below the normal range. Using the insulin stimulation and levo-dihydroxyphenylalanine tests, GH deficiency was confirmed. We present a case of GH deficiency with typical features of ECCL and JCS.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-03-10
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-01-01
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems. PMID:25763645
Sugiura, Yuki; Katsumata, Yoshinori; Sano, Motoaki; Honda, Kurara; Kajimura, Mayumi; Fukuda, Keiichi; Suematsu, Makoto
2016-01-01
Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered 13C6-glucose and 13C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions. PMID:27581923
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gullberg, Grant, T; Huesman, Ronald, H; Reutter, Bryan, W
Problem: In the case of hypertrophy caused by pressure overload (hypertension) there is an increase in cardiac mass and modification cardiac metabolism. Aim: This study was designed to study the changes in glucose metabolism, ejection fraction, and deformation in the left ventricle with the progression of hypertrophy in spontaneous hypertensive rats (SHR). Methods: Dynamic PET data were acquired using the microPET II at UC Davis. Two rats were imaged at 10-week intervals for 18 months. Each time a dose of approximately 1- 1.5 mCi of F-18-FDG was injected into a normotensive Wistar Kyoto (WKY) rat and the same dose wasmore » injected into a SHR rat. Each rat was imaged using a gated dynamic acquisition for 80 minutes acquiring list mode data with cardiac gating of approximately 600-900 million total counts. For the analysis of glucose of metabolism, the list mode data were histogrammed into a dynamic sequence (42 frames over 80 mins). For each time frame, projection data of 1203 140x210 sinograms of 0.582 mm bins were formed by summing the last three gates before and one after the R-wave trigger to correspond to the diastolic phase of the cardiac cycle. Dynamic sequences of 128x128x83 matrices of 0.4x0.4x0.582 mm3 voxels in x, y, and z were reconstructed using an iterative MAP reconstruction which used a prior that penalized the high frequency components of the reconstruction using appropriate weighting between 26 nearest neighboring voxels. Time activity curves were generated from the dynamic reconstructed sequence for the blood and left ventricular tissue regions of interest which were fit to a 2-compartment model to obtain a least squares fit for the kinetic parameters. For the analysis of deformation, the list mode data were histogrammed into 8 gates of the cardiac cycle, each gate was the total sum of the later 60 mins of the 80 min acquisition. Images of 128x128x83 matrices for each gate were reconstructed using the same iterative MAP reconstruction used to reconstruct the dynamic sequence. The in-plane image dimensions were doubled to 256x256x83 in order to increase the resolution for the Warping analyses. These image data sets were then cropped to 128x128x83. The end-systolic image data sets were designated as the template images and the end-diastole image data sets were designated as the target images, thus providing an analysis of the diastolic relaxation and filling phases of the cardiac cycle. The template images were manually segmented to create surface definitions representing the epi- and endocardial surfaces. Finite element models of the left ventricles were created using the segmented surfaces and defining a transversely isotropic material with fiber angles varying from the epicardial surface to the endocardial surface. A Warping analyses was performed to obtain the LV strain tensor and fiber stretch distributions. Results: In one study, the average first principal Green-Lagrange strain, fiber stretch, ejection fraction, and metabolic rate of F-18-FDG was 0.22, 1.08, 80%, 0.1 for the WKY rat and 0.16, 1.06, 50%, 0.25 for the SHR rat, respectively. These same rats studied a year later presented with a metabolic rate of F-18-FDG of 0.11 and 0.25 for the WKY and SHR, respectively. A follow-up study the average strain (n=10) and ejection fraction (n=18) was 0.21, 72.7% for WKY and 0.17, 69.8% for the SHR, respectively. Conclusion: In the case of pressure overload there is an increased reliance on carbohydrate oxidation in an attempt to maintain contractile function.« less
MISR Stereo Imaging Distinguishes Smoke from Cloud
NASA Technical Reports Server (NTRS)
2000-01-01
These views of western Alaska were acquired by MISR on June 25, 2000 during Terra orbit 2775. The images cover an area of about 150 kilometers x 225 kilometers, and have been oriented with north to the left. The left image is from the vertical-viewing (nadir) camera, whereas the right image is a stereo 'anaglyph' that combines data from the forward-viewing 45-degree and 60-degree cameras. This image appears three-dimensional when viewed through red/blue glasses with the red filter over the left eye. It may help to darken the room lights when viewing the image on a computer screen.The Yukon River is seen wending its way from upper left to lower right. A forest fire in the Kaiyuh Mountains produced the long smoke plume that originates below and to the right of image center. In the nadir view, the high cirrus clouds at the top of the image and the smoke plume are similar in appearance, and the lack of vertical information makes them hard to differentiate. Viewing the righthand image with stereo glasses, on the other hand, demonstrates that the scene consists of several vertically-stratified layers, including the surface terrain, the smoke, some scattered cumulus clouds, and streaks of high, thin cirrus. This added dimensionality is one of the ways MISR data helps scientists identify and classify various components of terrestrial scenes.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Review of Congenital Mitral Valve Stenosis: Analysis, Repair Techniques and Outcomes.
Baird, Christopher W; Marx, Gerald R; Borisuk, Michele; Emani, Sitram; del Nido, Pedro J
2015-06-01
The spectrum of congenital mitral valve stenosis (MS) consists of a complex of defects that result in obstruction to left ventricular inflow. This spectrum includes patients with underdeveloped left heart structures (Fig. 1) to those with isolated congenital MS. The specific mitral valve defects can further be divided into categories based on the relationship to the mitral valve annulus including valvar, supravalvar and subvalvar components. Clinically, these patients present based on the degree of obstruction, associated mitral regurgitation, secondary pulmonary hypertension, associated lung disease and/or associated cardiac lesions. There are a number of factors that contribute to the successful outcomes in these patients including pre-operative imaging, aggressive surgical techniques and peri-operative management.
McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Leemans, Alexander; Gallagher, Louise
2013-01-01
Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD) but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were (1) to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM) in ASD and (2) to examine the relationships between aberrant neural connectivity and behavior in ASD. Twenty-two individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution (CSD) based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19) and five paired regions: left caudate head, left caudate body, left uncus, left thalamus, and left cuneus. Measures of WM microstructural organization were extracted from these tracts. Fractional anisotropy (FA) reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant WM microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute (1) to abnormal functional connectivity and (2) to atypical visuospatial processing in ASD. PMID:24133425
Chian, Teo Chee; Nassir, Norziana Mat; Ibrahim, Mohd Izuan; Yusof, Ahmad Khairuddin Md; Sabarudin, Akmal
2017-02-01
This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols. Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software. Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp. There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient.
Space Radar Image of Great Wall of China
1999-04-15
These radar images show two segments of the Great Wall of China in a desert region of north-central China, about 700 kilometers (434 miles) west of Beijing. The wall appears as a thin orange band, running from the top to the bottom of the left image, and from the middle upper-left to the lower-right of the right image. These segments of the Great Wall were constructed in the 15th century, during the Ming Dynasty. The wall is between 5 and 8 meters high (16 to 26 feet) in these areas. The entire wall is about 3,000 kilometers (1,864 miles) long and about 150 kilometers (93 miles) of the wall appear in these two images. The wall is easily detected from space by radar because its steep, smooth sides provide a prominent surface for reflection of the radar beam. Near the center of the left image, two dry lake beds have been developed for salt extraction. Rectangular patterns in both images indicate agricultural development, primarily wheat fields. The images were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 10, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The left image is centered at 37.7 degrees North latitude and 107.5 degrees East longitude. The right image is centered at 37.5 degrees North latitude and 108.1 degrees East longitude. North is toward the upper right. Each area shown measures 25 kilometers by 75 kilometers (15.5 miles by 45.5 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01794
Liu, Jieke; Yao, Li; Zhang, Wenjing; Xiao, Yuan; Liu, Lu; Gao, Xin; Shah, Chandan; Li, Siyi; Tao, Bo; Gong, Qiyong; Lui, Su
2017-08-01
The gray matter abnormalities revealed by magnetic resonance imaging are inconsistent, especially in pediatric individuals with autism spectrum disorder (ASD) (age < 18 years old), a phenomenon possibly related to the core pathophysiology of ASD. The purpose of our meta-analysis was to identify and map the specific gray matter abnormalities in pediatric ASD individuals thereby exploring the potential effects of clinical and demographic characteristics of these gray matter changes. A systematic search was conducted to identify voxel-based morphometry studies in pediatric individuals with ASD. The effect-size signed differential mapping method was used to quantitatively estimate the regional gray matter abnormalities in pediatric ASD individuals. Meta-regression was used to examine the associations among age, gender, intelligence quotient, symptom severity and gray matter changes. Fifteen studies including 364 pediatric individuals with ASD (male = 282, age = 10.3 ± 4.4 years) and 377 healthy controls (male = 289, age = 10.5 ± 4.2 years) were included. Pediatric ASD individuals showed significant gray matter increases in the right angular gyrus, left superior and middle frontal gyrus, left precuneus, left inferior occipital gyrus and right inferior temporal gyrus, most of which involving the default mode network, and decreases in the left cerebellum and left postcentral gyrus. The meta-regression analysis showed that the repetitive behavior scores of the Autism Diagnostic Interview-Revised were positively associated with increased gray matter volumes in the right angular gyrus. Increased rather than decreased gray matter volume, especially involving the angular gyrus and prefrontal cortex may be the core pathophysiology in the early course of ASD.
Beltrami, Matteo; Palazzuoli, Alberto; Padeletti, Luigi; Cerbai, Elisabetta; Coiro, Stefano; Emdin, Michele; Marcucci, Rossella; Morrone, Doralisa; Cameli, Matteo; Savino, Ketty; Pedrinelli, Roberto; Ambrosio, Giuseppe
2018-02-01
Functional analysis and measurement of left atrium are an integral part of cardiac evaluation, and they represent a key element during non-invasive analysis of diastolic function in patients with hypertension (HT) and/or heart failure with preserved ejection fraction (HFpEF). However, diastolic dysfunction remains quite elusive regarding classification, and atrial size and function are two key factors for left ventricular (LV) filling evaluation. Chronic left atrial (LA) remodelling is the final step of chronic intra-cavitary pressure overload, and it accompanies increased neurohormonal, proarrhythmic and prothrombotic activities. In this systematic review, we aim to purpose a multi-modality approach for LA geometry and function analysis, which integrates diastolic flow with LA characteristics and remodelling through application of both traditional and new diagnostic tools. The most important studies published in the literature on LA size, function and diastolic dysfunction in patients with HFpEF, HT and/or atrial fibrillation (AF) are considered and discussed. In HFpEF and HT, pulsed and tissue Doppler assessments are useful tools to estimate LV filling pressure, atrio-ventricular coupling and LV relaxation but they need to be enriched with LA evaluation in terms of morphology and function. An integrated evaluation should be also applied to patients with a high arrhythmic risk, in whom eccentric LA remodelling and higher LA stiffness are associated with a greater AF risk. Evaluation of LA size, volume, function and structure are mandatory in the management of patients with HT, HFpEF and AF. A multi-modality approach could provide additional information, identifying subjects with more severe LA remodelling. Left atrium assessment deserves an accurate study inside the cardiac imaging approach and optimised measurement with established cut-offs need to be better recognised through multicenter studies. © 2017 John Wiley & Sons Ltd.
Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age
NASA Astrophysics Data System (ADS)
Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew
2017-03-01
We propose using multi-scale image textures to investigate links between neuroanatomical regions and clinical variables in MRI. Texture features are derived at multiple scales of resolution based on the Laplacian-of-Gaussian (LoG) filter. Three quantifier functions (Average, Standard Deviation and Entropy) are used to summarize texture statistics within standard, automatically segmented neuroanatomical regions. Significance tests are performed to identify regional texture differences between ASD vs. TDC and male vs. female groups, as well as correlations with age (corrected p < 0.05). The open-access brain imaging data exchange (ABIDE) brain MRI dataset is used to evaluate texture features derived from 31 brain regions from 1112 subjects including 573 typically developing control (TDC, 99 females, 474 males) and 539 Autism spectrum disorder (ASD, 65 female and 474 male) subjects. Statistically significant texture differences between ASD vs. TDC groups are identified asymmetrically in the right hippocampus, left choroid-plexus and corpus callosum (CC), and symmetrically in the cerebellar white matter. Sex-related texture differences in TDC subjects are found in primarily in the left amygdala, left cerebellar white matter, and brain stem. Correlations between age and texture in TDC subjects are found in the thalamus-proper, caudate and pallidum, most exhibiting bilateral symmetry.
El Saiedi, Sonia A; Mira, Marwa F; Sharaf, Sahar A; Al Musaddar, Maysoun M; El Kaffas, Rania M H; AbdelMassih, Antoine F; Barsoum, Ihab H Y
2018-01-01
Obesity increases the risk for various cardiovascular problems. Increase in body mass index is often an independent risk factor for the development of elevated blood pressure and clustering of various cardiovascular risk factors. To determine early markers of left ventricular affection in obese patients before the appearance of left ventricular hypertrophy. In this cross-sectional study, we evaluated 42 obese patients and 30 healthy controls. Their ages ranged from 6 to 19 years. Studied children were subjected to anthropometric, lipid profile, and serum Troponin I level measurements. Echocardiographic evaluation performed to assess the left ventricle included left ventricular dimension measurement using motion-mode echocardiography, based on which patients with left ventricular hypertrophy (10 patients) were eliminated, as well as conventional and tissue Doppler imaging. Tissue Doppler findings in the study groups showed that the ratio of transmitral early diastolic filling velocity to septal peak early diastolic myocardial velocity (E/e') was significantly higher in cases compared with controls [6.9±1.4 versus 9.0±1.6, p (Pearson's coefficient)=0.001, respectively]. The level of cardiac troponin I was significantly higher in cases compared with controls [0.14±0.39 ng/ml versus 0.01±0.01 ng/ml, p (Pearson's coefficient)=0.047, respectively] and there was a significant correlation between troponin I and transmitral early diastolic filling velocity to septal peak early diastolic myocardial velocity ratio (E/e') [R (correlation coefficient)=0.6]. Tissue Doppler Imaging and Troponin I evaluation proved useful tools to detect early affection of the left ventricle in obese patients even in the absence of left ventricular hypertrophy.
Wang, Yan-Jing; Liu, Lin; Zhang, Meng-Chao; Sun, Huan; Zeng, Hong; Yang, Ping
2016-08-01
Phrenic nerve injury and diaphragmatic stimulation are common complications following arrhythmia ablation and pacing therapies. Preoperative comprehension of phrenic nerve anatomy via non-invasive CT imaging may help to minimize the electrophysiological procedure-related complications. Coronary CT angiography data of 121 consecutive patients were collected. Imaging of left and right pericardiophrenic bundles was performed with volume rendering and multi-planar reformation techniques. The shortest spatial distances between phrenic nerves and key electrophysiology-related structures were determined. The frequencies of the shortest distances ≤5 mm, >5 mm and direct contact between phrenic nerves and adjacent structures were calculated. Left and right pericardiophrenic bundles were identified in 86.8% and 51.2% of the patients, respectively. The right phrenic nerve was <5 mm from right superior and inferior pulmonary veins in 92.0% and 3.2% of the patients, respectively. The percentage of right phrenic nerve, <5 mm from right atrium, superior caval vein, and superior caval vein-right atrium junction was 87.1%, 100%, and 62.9%, respectively. Left phrenic nerve was <5 mm from left atrial appendage, great cardiac vein, anterior and posterior interventricular veins, and left ventricular posterior veins in 81.9%, 1.0%, 39.1%, 28.6%, and 91.4% of the patients, respectively. Merely 0.06% left phrenic nerve had a distance <5 mm with left superior pulmonary vein, and none left phrenic nerve showed a distance <5 mm with left inferior pulmonary vein. One-stop enhanced CT scanning enabled detection of phrenic nerve anatomy, which might facilitate avoidance of the phrenic nerve-related complications in interventional electrophysiology. © 2016 Wiley Periodicals, Inc.
New Orleans after Hurricane Katrina
2005-09-08
JSC2005-E-37991 (8 September 2005) --- NASA Michoud Test Facility is located at right center of this image acquired from the International Space Station on September 8, 2005. While the facility itself is largely dry, the adjacent neighborhoods are extensively flooded (dark greenish brown regions to the left and right of I-510, left of image center); portions of the highway cloverleaf are also inundated. Image is cropped from the parent frame, ISS011-E-12527 and is oriented with north to the top.
Journal of Special Operations Medicine. Volume 10, Edition 2, Spring 2010
2010-01-01
national (LN) male carried to the firebase clinic by his family in severe pain with swelling of his left thigh following a motor- Fracture Detection...tient. (Image 1a) Once the patient’s pain was controlled, the 18D used CR for comparison and con- firmation. (Image 1b) Case 2: Distal Fibular...swollen left leg. The 18D used US to confirm a suspected fracture. (Image 4a) Once the pain was con- trolled the 18D confirmed the fractured tibia with CR
Microscopic Materials on a Magnet
NASA Technical Reports Server (NTRS)
2008-01-01
These images show a comparison of the weak magnet OM7 from the Optical Microscope on NASA's Phoenix Mars Lander before (left) and after (right) soil deposition. The microscope took the left image during Phoenix's Sol 15 (June 10, 2008) and the right image during Sol 21 (Jun 16, 2008). The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Technical Reports Server (NTRS)
2005-01-01
30 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of south polar layered terrain. Their appearance in this July 2005 springtime image is enhanced by bright patches of carbon dioxide frost. The frost is left over from the previous southern winter season; by summer, the frost would be gone. Location near: 84.6oS, 203.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringWigton, Rebekah; Radua, Jocham; Allen, Paul; Averbeck, Bruno; Meyer-Lindenberg, Andreas; McGuire, Philip; Shergill, Sukhi S.; Fusar-Poli, Paolo
2015-01-01
Background Oxytocin (OXT) plays a prominent role in social cognition and may have clinical applications for disorders such as autism, schizophrenia and social anxiety. The neural basis of its mechanism of action remains unclear. Methods We conducted a systematic literature review of placebo-controlled imaging studies using OXT as a pharmacological manipulator of brain activity. Results We identified a total of 21 studies for inclusion in our review, and after applying additional selection criteria, 11 of them were included in our fMRI voxel-based meta-analysis. The results demonstrate consistent alterations in activation of brain regions, including the temporal lobes and insula, during the processing of social stimuli, with some variation dependent on sex and task. The meta-analysis revealed significant left insular hyperactivation after OXT administration, suggesting a potential modulation of neural circuits underlying emotional processing. Limitations This quantitative review included only a limited number of studies, thus the conclusions of our analysis should be interpreted cautiously. This limited sample size precluded a more detailed exploration of potential confounding factors, such as sex or other demographic factors, that may have affected our meta-analysis. Conclusion Oxytocin has a wide range of effects over neural activity in response to social and emotional processing, which is further modulated by sex and task specificity. The magnitude of this neural activation is largest in the temporal lobes, and a meta-analysis across all tasks and both sexes showed that the left insula demonstrated the most robust activation to OXT administration. PMID:25520163
Wang, Hai-Yang; Zhang, Xiao-Xia; Si, Cui-Ping; Xu, Yang; Liu, Qian; Bian, He-Tao; Zhang, Bing-Wei; Li, Xue-Lin; Yan, Zhong-Rui
2018-01-01
Impairments in emotion regulation, and more specifically in cognitive reappraisal, are thought to play a key role in the pathogenesis of anxiety disorders. However, the available evidence on such deficits is inconsistent. To further illustrate the neurobiological underpinnings of anxiety disorder, the present meta-analysis summarizes functional magnetic resonance imaging (fMRI) findings for cognitive reappraisal tasks and investigates related brain areas. We performed a comprehensive series of meta-analyses of cognitive reappraisal fMRI studies contrasting patients with anxiety disorder with healthy control (HC) subjects, employing an anisotropic effect-size signed differential mapping approach. We also conducted a subgroup analysis of medication status, anxiety disorder subtype, data-processing software, and MRI field strengths. Meta-regression was used to explore the effects of demographics and clinical characteristics. Eight studies, with 11 datasets including 219 patients with anxiety disorder and 227 HC, were identified. Compared with HC, patients with anxiety disorder showed relatively decreased activation of the bilateral dorsomedial prefrontal cortex (dmPFC), bilateral dorsal anterior cingulate cortex (dACC), bilateral supplementary motor area (SMA), left ventromedial prefrontal cortex (vmPFC), bilateral parietal cortex, and left fusiform gyrus during cognitive reappraisal. The subgroup analysis, jackknife sensitivity analysis, heterogeneity analysis, and Egger's tests further confirmed these findings. Impaired cognitive reappraisal in anxiety disorder may be the consequence of hypo-activation of the prefrontoparietal network, consistent with insufficient top-down control. Our findings provide robust evidence that functional impairment in prefrontoparietal neuronal circuits may have a significant role in the pathogenesis of anxiety disorder.
Nicaraguan Volcanoes, 26 February 2000
2000-04-19
The true-color image at left is a downward-looking (nadir) view of the area around the San Cristobal volcano, which erupted the previous day. This image is oriented with east at the top and north at the left. The right image is a stereo anaglyph of the same area, created from red band multi-angle data taken by the 45.6-degree aftward and 70.5-degree aftward cameras on the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. View this image through red/blue 3D glasses, with the red filter over the left eye. A plume from San Cristobal (approximately at image center) is much easier to see in the anaglyph, due to 3 effects: the long viewing path through the atmosphere at the oblique angles, the reduced reflection from the underlying water, and the 3D stereoscopic height separation. In this image, the plume floats between the surface and the overlying cumulus clouds. A second plume is also visible in the upper right (southeast of San Cristobal). This very thin plume may originate from the Masaya volcano, which is continually degassing at as low rate. The spatial resolution is 275 meters (300 yards). http://photojournal.jpl.nasa.gov/catalog/PIA02600
Talusan, Paul G; Miller, Christopher P; Save, Ameya V; Reach, John S
2015-04-01
Foot and ankle pathology is common in the driving population. Local anesthetic steroid injections are frequent ambulatory treatments. Brake reaction time (BRT) has validated importance in motor vehicle safety. There are no prior studies examining the effect of foot and ankle pathology and injection treatment on the safe operation of motor vehicles. We studied BRT in patients with foot and ankle musculoskeletal disease before and after image-guided injection treatment. A total of 37 participants were enrolled. Image-guided injections of local anesthetic and steroid were placed into the pathological anatomical location of the right or left foot and ankles. A driving reaction timer was used to measure BRTs before and after injection. Patients suffering right "driving" and left "nondriving" pathology as well as a healthy control group were studied. All patients reported >90% pain relief postinjection. All injections were confirmed to be accurate by imaging. Post hoc Bonferonni analysis demonstrated significant difference between the healthy group and the right-sided injection group (P = .008). Mean BRT for healthy controls was 0.57 ± 0.11 s. Patients suffering right foot and ankle disease displayed surprisingly high BRTs (0.80 ± 0.23 s preinjection and 0.78 ± 0.16 s postinjection, P > .99). Left nondriving foot and ankle pathology presented a driving hazard as well (BRT of 0.75 ± 0.12 s preinjection and 0.77 ± 0.12 s postinjection, P > .99). Injections relieved pain but did not significantly alter BRT (P > .99 for all). Patients suffering chronic foot and ankle pathology involving either the driving or nondriving side have impaired BRTs. This preexisting driving impairment has not previously been reported and exceeds recommended cutoff safety values in the United States. Despite symptom improvement, there was no statistically significant change in BRT following image-guided injection in either foot and ankle. Therapeutic, Level II: Prospective Comparative Study. © 2014 The Author(s).
NASA Technical Reports Server (NTRS)
2001-01-01
Several mountain ranges and a portion of the Amur River are visible in this set of MISR images of Russia's far east Khabarovsk region. The images were acquired on May 13, 2001 during Terra orbit 7452. The view from MISR's 70-degree forward-looking camera is at the top left; the 26-degree forward-looking view is at the top right. The larger image at the bottom is a stereo 'anaglyph' created using the cameras at two intermediate angles. To view the stereo image in 3-D you need red/blue glasses with the red filter placed over your left eye. All of the images are oriented with north to the left to facilitate stereo viewing. Each image covers an area about 345 kilometers x 278 kilometers.The Amur River, in the upper right, and Lake Bolon, at the top center, are most prominent in the 26-degree view due to sunglint (mirror-like reflection of the Sun's rays by the water). The Amur River valley is a primary breeding ground for storks and cranes and a stopover for large numbers of migratory birds. About 20% of the Amur wetlands are protected by official conservation measures, but human development has converted large portions to agricultural uses. Other notable features in these images are several mountain chains, including the Badzhal'skiy to the left of center and the Bureiskiy in the lower left.Smoke plumes from several forest fires can be seen. They are especially apparent in the 70-degree view where the smoke's visibility is accentuated, in part, by the long slant path through the atmosphere. The largest plumes are in the lower left and upper right, with some smaller plumes above and to the right of the image centers. In the upper images the hazy region in the vicinity of these smaller plumes has the appearance of low-altitude smoke, but depth perception provided by the stereo anaglyph shows that it is actually a distinct layer of high-altitude cirrus clouds. Whether the cirrus is related to the fires is uncertain. It is possible, however, for the fires have to have heated the lower atmosphere enough to create bubbles of hot air. As such bubbles rise, they can force stable, nearly saturated air above to move even higher, triggering the formation of ice clouds. Visualization of other three-dimensional characteristics of the scene, such as the intermediate-altitude layer of cumulus clouds along the left side, is made possible by the stereo imagery.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Grunkina, Viktoria; Holtz, Katharina; Klepzig, Kai; Neubert, Jörg; Horn, Ulrike; Domin, Martin; Hamm, Alfons O; Lotze, Martin
2016-01-01
Background: The particular function of the left anterior human insula on emotional arousal has been illustrated with several case studies. Only after left hemispheric insula lesions, patients lose their pleasure in habits such as listening to joyful music. In functional magnetic resonance imaging studies (fMRI) activation in the left anterior insula has been associated with both processing of emotional valence and arousal. Tight interactions with different areas of the prefrontal cortex are involved in bodily response monitoring and cognitive appraisal of a given stimulus. Therefore, a large left hemispheric lesion including the left insula should impair the bodily response of chill experience (objective chill response) but leave the cognitive aspects of chill processing (subjective chill response) unaffected. Methods: We investigated a patient (MC) with a complete left hemispheric media cerebral artery stroke, testing fMRI representation of pleasant (music) and unpleasant (harsh sounds) chill response. Results: Although chill response to both pleasant and unpleasant rated sounds was confirmed verbally at passages also rated as chilling by healthy participants, skin conductance response was almost absent in MC. For a healthy control (HC) objective and subjective chill response was positively associated. Bilateral prefrontal fMRI-response to chill stimuli was sustained in MC whereas insula activation restricted to the right hemisphere. Diffusion imaging together with lesion maps revealed that left lateral tracts were completely damaged but medial prefrontal structures were intact. Conclusion: With this case study we demonstrate how bodily response and cognitive appraisal are differentially participating in the internal monitor of chill response.
Galea, Samantha; Lindell, Annukka K
2016-01-01
Like language, emotion is a lateralized function. Because the right hemisphere typically dominates emotion processing, people express stronger emotion on the left side of their face. This prompts a left cheek bias: we offer the left cheek to express emotion and rate left cheek portraits more emotionally expressive than right cheek portraits. Though the majority of the population show this left cheek bias (60-70%), individual differences exist but remain largely unexplained. Given that people with higher self-rated emotional expressivity show a stronger left cheek bias, personality variables associated with increased emotional expressivity and emotional intelligence, such as extraversion and openness, may help account for individual differences. The present study thus examined whether the Big Five traits predict left cheek preferences. Participants (M = 58, F = 116) completed the NEO-Five Factor Personality Inventory (NEO-FFI) [Costa, P. T. J., & McCrae, R. R. (1992). NEO PI-R professional manual. Odessa, FL: Psychological Assessment Resources] and viewed pairs of left and right cheek images (half mirror-reversed); participants made forced-choice decisions, indicating which image in each pair looked happier. Hierarchical regression indicated that neither trait extraversion nor openness predicted left cheek selections, with NEO-FFI personality subscales accounting for negligible variance in preferences. As the Big Five traits have been discounted, exploration of other potential contributors to individual differences in the left cheek bias is clearly needed.
Veress, Alexander I.; Klein, Gregory; Gullberg, Grant T.
2013-01-01
Tmore » he objectives of the following research were to evaluate the utility of a deformable image registration technique known as hyperelastic warping for the measurement of local strains in the left ventricle through the analysis of clinical, gated PE image datasets. wo normal human male subjects were sequentially imaged with PE and tagged MRI imaging. Strain predictions were made for systolic contraction using warping analyses of the PE images and HARP based strain analyses of the MRI images. Coefficient of determination R 2 values were computed for the comparison of circumferential and radial strain predictions produced by each methodology. here was good correspondence between the methodologies, with R 2 values of 0.78 for the radial strains of both hearts and from an R 2 = 0.81 and R 2 = 0.83 for the circumferential strains. he strain predictions were not statistically different ( P ≤ 0.01 ) . A series of sensitivity results indicated that the methodology was relatively insensitive to alterations in image intensity, random image noise, and alterations in fiber structure. his study demonstrated that warping was able to provide strain predictions of systolic contraction of the LV consistent with those provided by tagged MRI Warping.« less
Detection of an epidermoid cyst in the foot of a horse by use of magnetic resonance imaging.
Sanz, Macarena G; Sampson, Sarah N; Schneider, Robert K; Gavin, Patrick R; Baszler, Timothy V
2006-06-15
CASE DESCRIPTION-A 4-year-old Quarter Horse stallion was evaluated because of a 10-month history of moderate (grade 3/5) left forelimb lameness (detectable during trotting over a smooth, hard surface). CLINICAL FINDINGS-No abnormalities were detected in either forelimb via palpation or application of hoof testers; however, lameness was eliminated after administration of a palmar digital nerve block in the left forelimb. Whereas radiography and ultrasonography did not identify any left forelimb foot abnormalities, magnetic resonance (MR) imaging revealed a circumscribed soft tissue mass in the distal aspect of the digital flexor tendon sheath (DFTS) dorsal to the lateral aspect of the deep digital flexor tendon. Subsequently, the left forelimb DFTS was injected with local anesthetic, which resulted in 90% improvement of the horse's lameness. TREATMENT AND OUTCOME-The distal aspect of the left forelimb DFTS was evaluated tenoscopically. The mass was removed under tenoscopic guidance, after which the distal digital annular ligament was transected. The horse received phenylbutazone orally for 10 days, and the left forelimb DFTS was injected with hyaluronic acid and methylprednisolone acetate 7 days after the surgery. Following a rehabilitation program, the horse was returned to full training at 6 months after surgery and competed successfully during a 2-year follow-up period. CLINICAL RELEVANCE-Use of MR imaging should be considered in all lame horses for which a definitive diagnosis cannot be made via radiography, ultrasonography, or other imaging techniques, especially when the lameness has been localized to a specific anatomic region by use of diagnostic anesthesia.
Myofibroblastoma of the male breast: a rare entity with radiologic-pathologic correlation
Comer, John D.; Cui, Xiaoyan; Eisen, Carolyn Sharyn; Abbey, Genevieve; Arleo, Elizabeth Kagan
2016-01-01
A 73-year old man with a history of multiple genitourinary malignancies was found to have a left retroareolar soft tissue mass on CT assessment of disease, and dedicated breast imaging was recommended. Diagnostic mammography and ultrasonography confirmed a solid mass, for which biopsy was recommended. Pathologic analysis demonstrated a spindle cell neoplasm with an immunoreactivity pattern consistent with myofibroblastoma. While this entity is benign, nonspecific imaging features necessitate tissue sampling for pathologic diagnosis, and, given pathologic rarity, open communication between the radiologist and pathologist is important to establish the correct diagnosis and to recommend appropriate management. PMID:27936420
Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia
Sapolsky, D.; Bakkour, A.; Negreira, A.; Nalipinski, P.; Weintraub, S.; Mesulam, M.-M.; Caplan, D.; Dickerson, B.C.
2010-01-01
Objective: To test the validity and reliability of a new measure of clinical impairment in primary progressive aphasia (PPA), the Progressive Aphasia Severity Scale (PASS), and to investigate relationships with MRI-based cortical thickness biomarkers for localizing and quantifying the severity of anatomic abnormalities. Methods: Patients with PPA were rated using the PASS and underwent performance-based language testing and MRI scans that were processed for cortical thickness measures. Results: The level of impairment in PASS fluency, syntax/grammar, and word comprehension showed strong specific correlations with performance-based measures of these domains of language, and demonstrated high interrater reliability. Left inferior frontal thinning correlated with impairment in fluency and grammar/syntax, while left temporopolar thinning correlated with impairment in word comprehension. Discriminant function analysis demonstrated that a combination of left inferior frontal, left temporopolar, and left superior temporal sulcal thickness separated the 3 PPA subtypes from each other with 100% accuracy (87% accuracy in a leave-one-out analysis). Conclusions: The PASS, a novel measure of the severity of clinical impairment within domains of language typically affected in PPA, demonstrates reliable and valid clinical-behavioral properties. Furthermore, the presence of impairment in individual PASS domains demonstrates specific relationships with focal abnormalities in particular brain regions and the severity of impairment is strongly related to the severity of anatomic abnormality within the relevant brain region. These anatomic imaging biomarkers perform well in classifying PPA subtypes. These data provide robust support for the value of this novel clinical measure and the new imaging measure as markers for potential use in clinical research and trials in PPA. GLOSSARY AD = Alzheimer disease; BDAE = Boston Diagnostic Aphasia Examination; CDR = Clinical Dementia Rating; CSB = Cambridge Semantic Battery; ICC = intraclass correlation coefficient; NACC UDS = National Alzheimer's Coordinating Center Uniform Data Set; OC = older control participants; PASS = Progressive Aphasia Severity Scale; PPA = primary progressive aphasia; PPA-G = agrammatic primary progressive aphasia; PPA-L = logopenic primary progressive aphasia; PPA-S = semantic primary progressive aphasia; ROI = region of interest; WAB = Western Aphasia Battery. PMID:20660866
Jack, C R; Twomey, C K; Zinsmeister, A R; Sharbrough, F W; Petersen, R C; Cascino, G D
1989-08-01
Volumes of the right and left anterior temporal lobes and hippocampal formations were measured from magnetic resonance images in 52 healthy volunteers, aged 20-40 years. Subjects were selected by age, sex, and handedness to evaluate possible effect of these variables. Data were normalized for variation in total intracranial volume between individuals. Right-left asymmetry in the volumes of the anterior temporal lobes and hippocampal formations was a normal finding. The anterior temporal lobe of the non-dominant (right) hemisphere was larger than the left by a small (mean right-left difference, 2.3 cm3) but statistically significant amount (P less than .005) in right-handed subjects. No significant effect of age or sex was seen in normalized right or left anterior temporal lobe volume. The right hippocampal formation was larger than the left for all subjects by a small (mean right-left difference, 0.3 cm3) but statistically significant amount (P less than .001). No effect of age, sex, or handedness was seen in normalized hippocampal formation volumes.
Moralidis, Efstratios; Spyridonidis, Tryfon; Arsos, Georgios; Skeberis, Vassilios; Anagnostopoulos, Constantinos; Gavrielidis, Stavros
2010-01-01
This study aimed to determine systolic dysfunction and estimate resting left ventricular ejection fraction (LVEF) from information collected during routine evaluation of patients with suspected or known coronary heart disease. This approach was then compared to gated single photon emission tomography (SPET). Patients having undergone stress (201)Tl myocardial perfusion imaging followed by equilibrium radionuclide angiography (ERNA) were separated into derivation (n=954) and validation (n=309) groups. Logistic regression analysis was used to develop scoring systems, containing clinical, electrocardiographic (ECG) and scintigraphic data, for the discrimination of an ERNA-LVEF<0.50. Linear regression analysis provided equations predicting ERNA-LVEF from those scores. In 373 patients LVEF was also assessed with (201)Tl gated SPET. Our results showed that an ECG-Scintigraphic scoring system was the best simple predictor of an ERNA-LVEF<0.50 in comparison to other models including ECG, clinical and scintigraphic variables in both the derivation and validation subpopulations. A simple linear equation was derived also for the assessment of resting LVEF from the ECG-Scintigraphic model. Equilibrium radionuclide angiography-LVEF had a good correlation with the ECG-Scintigraphic model LVEF (r=0.716, P=0.000), (201)Tl gated SPET LVEF (r=0.711, P=0.000) and the average LVEF from those assessments (r=0.796, P=0.000). The Bland-Altman statistic (mean+/-2SD) provided values of 0.001+/-0.176, 0.071+/-0.196 and 0.040+/-0.152, respectively. The average LVEF was a better discriminator of systolic dysfunction than gated SPET-LVEF in receiver operating characteristic (ROC) analysis and identified more patients (89%) with a =10% difference from ERNA-LVEF than gated SPET (65%, P=0.000). In conclusion, resting left ventricular systolic dysfunction can be determined effectively from simple resting ECG and stress myocardial perfusion imaging variables. This model provides reliable LVEF estimations, comparable to those from (201)Tl gated SPET, and can enhance the clinical performance of the latter.
Yücel, Yeni H; Cardinell, Kirsten; Khattak, Shireen; Zhou, Xun; Lapinski, Michael; Cheng, Fang; Gupta, Neeru
2018-06-01
To visualize and quantify lymphatic drainage of aqueous humor from the eye to cervical lymph nodes in the dynamic state. A near-infrared tracer was injected into the right eye anterior chamber of 10 mice under general anesthesia. Mice were imaged with photoacoustic tomography before and 20 minutes, 2, 4, and 6 hours after injection. Tracer signal intensity was measured in both eyes and right and left neck lymph nodes at every time point and signal intensity slopes were calculated. Slope differences between right and left eyes and right and left nodes were compared using paired t-test. Neck nodes were examined with fluorescence optical imaging and histologically for the presence of tracer. Following right eye intracameral injection of tracer, an exponential decrease in tracer signal was observed from 20 minutes to 6 hours in all mice. Slope differences of the signal intensity between right and left eyes were significant (P < 0.001). Simultaneously, increasing tracer signal was observed in the right neck node from 20 minutes to 6 hours. Slope differences of the signal intensity between right and left neck nodes were significant (P = 0.0051). Ex vivo optical fluorescence imaging and histopathologic examination of neck nodes confirmed tracer presence within submandibular nodes. Active lymphatic drainage of aqueous from the eye to cervical lymph nodes was measured noninvasively by photoacoustic imaging of near-infrared nanoparticles. This unique in vivo assay may help to uncover novel drugs that target alternative outflow routes to lower IOP in glaucoma and may provide new insights into lymphatic drainage in eye health and disease.
Tikàsz, Andràs; Potvin, Stéphane; Lungu, Ovidiu; Joyal, Christian C; Hodgins, Sheilagh; Mendrek, Adrianna; Dumais, Alexandre
2016-01-01
Evidence suggests a 2.1-4.6 times increase in the risk of violent behavior in schizophrenia compared to the general population. Current theories propose that the processing of negative emotions is defective in violent individuals and that dysfunctions within the neural circuits involved in emotion processing are implicated in violence. Although schizophrenia patients show enhanced sensitivity to negative stimuli, there are only few functional neuroimaging studies that have examined emotion processing among men with schizophrenia and a history of violence. The present study aimed to identify the brain regions with greater neurofunctional alterations, as detected by functional magnetic resonance imaging during an emotion processing task, of men with schizophrenia who had engaged in violent behavior compared with those who had not. Sixty men were studied; 20 with schizophrenia and a history of violence, 19 with schizophrenia and no violence, and 21 healthy men were scanned while viewing positive, negative, and neutral images. Negative images elicited hyperactivations in the anterior cingulate cortex (ACC), left and right lingual gyrus, and the left precentral gyrus in violent men with schizophrenia, compared to nonviolent men with schizophrenia and healthy men. Neutral images elicited hyperactivations in the right and left middle occipital gyrus, left lingual gyrus, and the left fusiform gyrus in violent men with schizophrenia, compared to the other two groups. Violent men with schizophrenia displayed specific increases in ACC in response to negative images. Given the role of the ACC in information integration, these results indicate a specific dysfunction in the processing of negative emotions that may trigger violent behavior in men with schizophrenia.
Smits, M; Wieberdink, R G; Bakker, S L M; Dippel, D W J
2011-04-01
We describe a left-handed patient with transient aphasia and bilateral carotid stenosis. Computed tomography (CT) arteriography showed a 90% stenosis of the right and 30% stenosis of the left internal carotid artery. Head CT and magnetic resonance imaging (MRI) of the brain showed no recent ischemic changes. As only the symptomatic side would require surgical intervention, and because hemispheric dominance for language in left-handed patients may be either left or right sided, a preoperative assessment of hemispheric dominance was required. We used functional MRI to determine hemispheric dominance for language and hence to establish the indication for carotid endarterectomy surgery. Functional MRI demonstrated right hemispheric dominance for language and right-sided carotid endarterectomy was performed. We propose that the clinical use of functional MRI as a noninvasive imaging technique for the assessment of hemispheric language dominance may be extended to the assessment of hemispheric language dominance prior to carotid endarterectomy. Copyright © 2010 by the American Society of Neuroimaging.
1990-02-09
Range : 220,000 mi. (left)/350,000 mi. (right) These pictures of the Moon were taken by the Galileo spacecraft. Image on the right shows the dark Oceanus Procellarum in the upper center, with Mare Imbrium above it and the smaller circular Mare Humorum below. The Orientale Basin, with a small mare in its center, is on the lower left near the limb or edge. Between stretches the cratered highland terrain, with scattered bright young craters on highlands and maria alike. The left image shows the globe of the Moon rotated, putting Mare Imbrium on the eastern limb and moving the Orientale Basin almost to the center. The extent of the cratered highlands on tghe far side is very apparent., At lower left, near the limb, is the South-Pole-Aitken basin, similar to Orientale but very much older and some 1,200 miles in diameter. This feature was previously known as a large depression in the southern far side; this image shows its Orientale-like structure and darkness relative to surrounding highlands.
Sargent, J; Connolly, D J; Watts, V; Mõtsküla, P; Volk, H A; Lamb, C R; Fuentes, V Luis
2015-11-01
Echocardiography is used routinely to assess mitral regurgitation severity, but echocardiographic measures of mitral regurgitation in dogs have not been compared with other quantitative methods. The study aim was to compare echocardiographic measures of mitral regurgitation with cardiac magnetic resonance imaging-derived mitral regurgitant fraction in small-breed dogs. Dogs with myxomatous mitral valve disease scheduled for magnetic resonance imaging assessment of neurological disease were recruited. Correlations were tested between cardiac magnetic resonance imaging-derived mitral regurgitant fraction and the following echocardiographic measures: vena contracta/aortic diameter, transmitral E-wave velocity, amplitude of mitral prolapse/aortic diameter, diastolic left ventricular diameter:aortic diameter, left atrium:aortic diameter, mitral regurgitation jet area ratio and regurgitant fraction calculated using the proximal isovelocity surface area method. Measurement of cardiac magnetic resonance imaging-derived mitral regurgitant fraction was attempted in 21 dogs. Twelve consecutive, complete studies were obtained and 10 dogs were included in the final analysis: vena contracta/aortic diameter (r = 0 · 89, p = 0 · 001) and E-wave velocity (r = 0 · 86, p = 0 · 001) had the strongest correlations with cardiac magnetic resonance imaging-derived mitral regurgitant fraction. E velocity had superior repeatability and could be measured in all dogs. The presence of multiple jets precluded vena contracta/aortic diameter measurement in one dog. Measurement of cardiac magnetic resonance imaging-derived mitral regurgitant fraction is feasible but technically demanding. The echocardiographic measures that correlated most closely with cardiac magnetic resonance imaging-derived mitral regurgitant fraction were vena contracta/aortic diameter and E-wave velocity. © 2015 British Small Animal Veterinary Association.
Meta-analysis of functional brain imaging in specific phobia.
Ipser, Jonathan C; Singh, Leesha; Stein, Dan J
2013-07-01
Although specific phobia is a prevalent anxiety disorder, evidence regarding its underlying functional neuroanatomy is inconsistent. A meta-analysis was undertaken to identify brain regions that were consistently responsive to phobic stimuli, and to characterize changes in brain activation following cognitive behavioral therapy (CBT). We searched the PubMed, SCOPUS and PsycINFO databases to identify positron emission tomography and functional magnetic resonance imaging studies comparing brain activation in specific phobia patients and healthy controls. Two raters independently extracted study data from all the eligible studies, and pooled coordinates from these studies using activation likelihood estimation, a quantitative meta-analytic technique. Resulting statistical parametric maps were compared between patients and healthy controls, in response to phobic versus fear-evoking stimuli, and before and after therapy. Thirteen studies were included, comprising 327 participants. Regions that were consistently activated in response to phobic stimuli included the left insula, amygdala, and globus pallidus. Compared to healthy controls, phobic subjects had increased activation in response to phobic stimuli in the left amygdala/globus pallidus, left insula, right thalamus (pulvinar), and cerebellum. Following exposure-based therapy widespread deactivation was observed in the right frontal cortex, limbic cortex, basal ganglia and cerebellum, with increased activation detected in the thalamus. Exposure to phobia-specific stimuli elicits brain activation that is consistent with current understandings of the neuroanatomy of fear conditioning and extinction. There is evidence that the effects of CBT in specific phobia may be mediated through the same underlying neurocircuitry. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.
Dickstein, Daniel P; Milham, Michael P; Nugent, Allison C; Drevets, Wayne C; Charney, Dennis S; Pine, Daniel S; Leibenluft, Ellen
2005-07-01
While numerous magnetic resonance imaging (MRI) studies have evaluated adults with bipolar disorder (BPD), few have examined MRI changes in children with BPD. To determine volume alterations in children with BPD using voxel-based morphometry, an automated MRI analysis method with reduced susceptibility to various biases. A priori regions of interest included amygdala, accumbens, hippocampus, dorsolateral prefrontal cortex (DLPFC), and orbitofrontal cortex. Ongoing study of the pathophysiology of pediatric BPD. Intramural National Institute of Mental Health; approved by the institutional review board. Patients Pediatric subjects with BPD (n = 20) with at least 1 manic or hypomanic episode meeting strict DSM-IV criteria for duration and elevated, expansive mood. Controls (n = 20) and their first-degree relatives lacked psychiatric disorders. Groups were matched for age and sex and did not differ in IQ. With a 1.5-T MRI machine, we collected 1.2-mm axial sections (124 per subject) with an axial 3-dimensional spoiled gradient recalled echo in the steady state sequence. Image analysis was by optimized voxel-based morphometry. Subjects with BPD had reduced gray matter volume in the left DLPFC. With a less conservative statistical threshold, additional gray matter reductions were found in the left accumbens and left amygdala. No difference was found in the hippocampus or orbitofrontal cortex. Our results are consistent with data implicating the prefrontal cortex in emotion regulation, a process that is perturbed in BPD. Reductions in amygdala and accumbens volumes are consistent with neuropsychological data on pediatric BPD. Further study is required to determine the relationship between these findings in children and adults with BPD.
Kumar, Aditaya; Alrohmain, B; Taylor, W; Bhattathiri, P
2017-07-26
The purpose of this paper is to serve as a reference to aid in the management of this poorly understood intracranial malignancy. The authors report their experience treating the eighth ostensible case of a primary intracranial alveolar soft part sarcoma (ASPS). A 21-year-old man presented to hospital after collapsing. He gave a 1-year history of headache, a 2-month history of reduced visual acuity and on examination had left facial paraesthesia with left-sided incoordination. MRI of the brain revealed a large left posterior fossa mass. The patient underwent resection of the tumour with good recovery in function. Immunohistochemical analysis of the tumour specimen confirmed an ASPS, and multimodal imaging in search of an extra-cranial disease primary was negative. A review of the literature yielded only seven other cases of primary intracranial ASPS. A variety of diagnostic imaging modalities were employed in search of a disease primary, as were various combinations of surgical resection, chemotherapy and radiotherapy as treatment. Half of the cases documented delayed disease recurrence. The authors discuss the following: the unique radiological and immunohistological characteristics of this disease including the potential for its misdiagnosis; the investigations required to diagnose a primary intracranial ASPS; the efficacy of current medical and surgical treatment options and the factors that will aid in prognostication. This is the first review of this new primary intracranial malignancy. From our analysis, we offer a joint radiological and immunohistochemical algorithm for the diagnosis of primary intracranial ASPS and specific operative considerations prior to resection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doganay, Ozkan, E-mail: ozkan.doganay@oncology.ox.ac.uk; Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1; Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ
Purpose: To assess the feasibility of hyperpolarized (HP) {sup 129}Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. Methods: The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gymore » irradiation to the right lung using a {sup 60}Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (L{sub PT}) and relative blood volume (V{sub RBC}) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Results: Statistically significant differences in L{sub PT} and V{sub RBC} were observed between the irradiated and non-irradiated cohorts. In particular, L{sub PT} of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, V{sub RBC} of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the MRI measurements for both the non-irradiated (r = 0.79, P < 0.01) and irradiated groups (r = 0.91, P < 0.01). Conclusions: Regional RILI can be detected two weeks post-irradiation using HP {sup 129}Xe MRI and analysis of gas exchange curves. This approach correlates well with histology and can potentially be used clinically to assess radiation pneumonitis associated with early RILI to improve radiation therapy outcomes.« less
Doganay, Ozkan; Stirrat, Elaine; McKenzie, Charles; Schulte, Rolf F; Santyr, Giles E
2016-05-01
To assess the feasibility of hyperpolarized (HP) (129)Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a (60)Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (LPT) and relative blood volume (VRBC) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Statistically significant differences in LPT and VRBC were observed between the irradiated and non-irradiated cohorts. In particular, LPT of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, VRBC of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the MRI measurements for both the non-irradiated (r = 0.79, P < 0.01) and irradiated groups (r = 0.91, P < 0.01). Regional RILI can be detected two weeks post-irradiation using HP (129)Xe MRI and analysis of gas exchange curves. This approach correlates well with histology and can potentially be used clinically to assess radiation pneumonitis associated with early RILI to improve radiation therapy outcomes.
Sengupta, Shantanu P; Jaju, Rahul; Nugurwar, Abhijeet; Caracciolo, Giuseppe; Sengupta, Partho P
2012-01-01
The status of left ventricle in sickle cell anemia presenting in sickle crisis and follow up has been minimally studied in past. To determine the left ventricular (LV) myocardial performance in these patients, we performed the study to assess two dimensional strains imaging which allowed a rapid and an accurate analysis of global and regional LV myocardial performance in longitudinal, radial, and circumferential directions. In this prospective study, 2-dimensional echocardiography (2DE) images of the LV were obtained in 52 subjects which included 32 patients (23 ± 8yrs, 16 male) with homozygous sickle cell anemia (SCA) in sickle cell crisis and 20 healthy controls (23 ± 5 yrs, 11 male) using apical 4-chamber and parasternal short-axis at the basal, mid, and apical levels. Of these 32 patients, 2DE was performed again in 18 patients in follow up (8 months ± 5 days). Longitudinal, circumferential and radial strains (LS, CS and RS respectively) were quantified and compared in an 18-segment model using a novel speckle tracking system (2D Cardiac Performance Analysis, TomTec Imaging System, Munich, Germany). There was no significant difference in LV ejection fraction between both the groups (59.32 ± 12.6 vs. 52.3 ± 7.9; p-value > 0.05). In comparison with normal controls and follow up of sickle cell patients, peak LS was significantly attenuated in the subendocardial and subepicardial regions during sickle cell crisis (p < 0.05). However, a significant reduction in circumferential strain was evident only in subepicardial region (p < 0.001). Also patients in sickle cell crisis showed significantly higher radial strain parameters than controls (p < 0.001). Patients with SCA presenting in sickle cell crisis have reduced longitudinal shortening. LV myocardial performance remains unaltered due to relatively preserved circumferential shortening and increased radial thickening. Copyright © 2012 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
2004-01-01
The wheel tracks seen above and to the left of the lander trace the path the Mars Exploration Rover Opportunity has traveled since landing in a small crater at Meridiani Planum, Mars. After this picture was taken, the rover excavated a trench near the soil seen at the lower left corner of the image. This image mosaic was taken by the rover's navigation camera.
Blackburn, Kelsey; Schirillo, James
2012-06-01
The biased positioning of faces exposed to viewers of Western portraiture has suggested there may be fundamental differences in the lateralized expression and perception of emotion. The present study investigates whether there are differences in the perception of the left and right sides of the face in real-life photographs of individuals. The study paired conscious aesthetic ratings of pleasantness with measurements of pupil size, which are thought to be a reliable unconscious measure of interest first tested by Hess. Images of 10 men and 10 women were taken from the left and right sides of the face. These images were also mirror-reversed. As expected, we found a strong preference for left-sided portraits (regardless of original or mirror-reversed orientation), such that left hemifaces elicited higher ratings and greater pupil dilation. Interestingly, this effect was true of both sexes. A positive linear relationship was also found between pupil size and aesthetic ratings such that pupil size increased with pleasantness ratings. These findings provide support for the notions of lateralized emotion, right-hemispheric dominance, pupillary dilation to pleasant images, and constriction to unpleasant images.
Haeck, Joost D E; Verouden, Niels J W; Kuijt, Wichert J; Koch, Karel T; Van Straalen, Jan P; Fischer, Johan; Groenink, Maarten; Bilodeau, Luc; Tijssen, Jan G P; Krucoff, Mitchell W; De Winter, Robbert J
2010-04-15
The purpose of the present study was to determine the prognostic value of N-terminal pro-brain natriuretic peptide (NT-pro-BNP), among other serum biomarkers, on cardiac magnetic resonance (CMR) imaging parameters of cardiac function and infarct size in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. We measured NT-pro-BNP, cardiac troponin T, creatinine kinase-MB fraction, high-sensitivity C-reactive protein, and creatinine on the patients' arrival at the catheterization laboratory in 206 patients with ST-segment elevation myocardial infarction. The NT-pro-BNP levels were divided into quartiles and correlated with left ventricular function and infarct size measured by CMR imaging at 4 to 6 months. Compared to the lower quartiles, patients with nonanterior wall myocardial infarction in the highest quartile of NT-pro-BNP (> or = 260 pg/ml) more often had a greater left ventricular end-systolic volume (68 vs 39 ml/m(2), p <0.001), a lower left ventricular ejection fraction (42% vs 54%, p <0.001), a larger infarct size (9 vs 4 g/m(2), p = 0.002), and a larger number of transmural segments (11% of segments vs 3% of segments, p <0.001). Multivariate analysis revealed that a NT-pro-BNP level of > or = 260 pg/ml was the strongest independent predictor of left ventricular ejection fraction in patients with nonanterior wall myocardial infarction compared to the other serum biomarkers (beta = -5.8; p = 0.019). In conclusion, in patients with nonanterior wall myocardial infarction undergoing primary percutaneous coronary intervention, an admission NT-pro-BNP level of > or = 260 pg/ml was a strong, independent predictor of left ventricular function assessed by CMR imaging at follow-up. Our findings suggest that NT-pro-BNP, a widely available biomarker, might be helpful in the early risk stratification of patients with nonanterior wall myocardial infarction. Copyright 2010 Elsevier Inc. All rights reserved.
Predicting Stroop Effect from Spontaneous Neuronal Activity: A Study of Regional Homogeneity
Liu, Congcong; Chen, Zhencai; Wang, Ting; Tang, Dandan; Hitchman, Glenn; Sun, Jiangzhou; Zhao, Xiaoyue; Wang, Lijun; Chen, Antao
2015-01-01
The Stroop effect is one of the most robust and well-studied phenomena in cognitive psychology and cognitive neuroscience. However, little is known about the relationship between intrinsic brain activity and the individual differences of this effect. In the present study, we explored this issue by examining whether resting-state functional magnetic resonance imaging (rs-fMRI) signals could predict individual differences in the Stroop effect of healthy individuals. A partial correlation analysis was calculated to examine the relationship between regional homogeneity (ReHo) and Stroop effect size, while controlling for age, sex, and framewise displacement (FD). The results showed positive correlations in the left inferior frontal gyrus (LIFG), the left insula, the ventral anterior cingulate cortex (vACC), and the medial frontal gyrus (MFG), and negative correlation in the left precentral gyrus (LPG). These results indicate the possible influences of the LIFG, the left insula, and the LPG on the efficiency of cognitive control, and demonstrate that the key nodes of default mode network (DMN) may be important in goal-directed behavior and/or mental effort during cognitive control tasks. PMID:25938442
The brain adapts to orthography with experience: Evidence from English and Chinese
Cao, Fan; Brennan, Christine; Booth, James R.
2016-01-01
Using functional magnetic resonance imaging (fMRI), we examined the process of language specialization in the brain by comparing developmental changes in two contrastive orthographies: Chinese and English. In a visual word rhyming judgment task, we found a significant interaction between age and language in left inferior parietal lobule and left superior temporal gyrus, which was due to greater developmental increases in English than in Chinese. Moreover, we found that higher skill only in English children was correlated with greater activation in left inferior parietal lobule. These findings suggest that the regions associated with phonological processing are essential in English reading development. We also found greater developmental increases in English than in Chinese in left inferior temporal gyrus, suggesting refinement of this region for fine-grained word form recognition. In contrast, greater developmental increases in Chinese than in English were found in right middle occipital gyrus, suggesting the importance of holistic visual-orthographic analysis in Chinese reading acquisition. Our results suggest that the brain adapts to the special features of the orthography by engaging relevant brain regions to a greater degree over development. PMID:25444089
Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils.
Usov, Ivan; Adamcik, Jozef; Mezzenga, Raffaele
2013-12-23
Protein-based amyloid fibrils can show a great variety of polymorphic structures within the same protein precursor, although the origins of these structural homologues remain poorly understood. In this work we investigate the fibrillation of bovine serum albumin--a model globular protein--and we follow the polymorphic evolution by a statistical analysis of high-resolution atomic force microscopy images, complemented, at larger length scales, by concepts based on polymer physics formalism. We identify six distinct classes of coexisting amyloid fibrils, including flexible left-handed twisted ribbons, rigid right-handed helical ribbons and nanotubes. We show that the rigid fibrils originate from flexible fibrils through two diverse polymorphic transitions, first, via a single-fibril transformation when the flexible left-handed twisted ribbons turn into the helical left-handed ribbons, to finally evolve into nanotube-like structures, and second, via a double-fibril transformation when two flexible left-handed twisted ribbons wind together resulting in a right-handed twisted ribbon, followed by a rigid right-handed helical ribbon polymorphic conformation. Hence, the change in handedness occurs with an increase in the level of the fibril's structural organization.
Yang, Li-Zhuang; Shi, Bin; Li, Hai; Zhang, Wei; Liu, Ying; Wang, Hongzhi; Zhou, Yanfei; Wang, Ying; Lv, Wanwan; Ji, Xuebing; Hudak, Justin; Zhou, Yifeng; Fallgatter, Andreas J; Zhang, Xiaochu
2017-08-01
Applying electrical stimulation over the prefrontal cortex can help nicotine dependents reduce cigarette craving. However, the underlying mechanism remains ambiguous. This study investigates this issue with functional magnetic resonance imaging. Thirty-two male chronic smokers received real and sham stimulation over dorsal lateral prefrontal cortex (DLPFC) separated by 1 week. The neuroimaging data of the resting state, the smoking cue-reactivity task and the emotion task after stimulation were collected. The craving across the cue-reactivity task was diminished during real stimulation as compared with sham stimulation. The whole-brain analysis on the cue-reactivity task revealed a significant interaction between the stimulation condition (real vs sham) and the cue type (smoking vs neutral) in the left superior frontal gyrus and the left middle frontal gyrus. The functional connectivity between the left DLPFC and the right parahippocampal gyrus, as revealed by both psychophysical interaction analysis and the resting state functional connectivity, is altered by electrical stimulation. Moreover, the craving change across the real and sham condition is predicted by alteration of functional connectivity revealed by psychophysical interaction analysis. The local and long-distance coupling, altered by the electrical stimulation, might be the underlying neural mechanism of craving regulation. © The Author (2017). Published by Oxford University Press.
Brain correlates of stuttering and syllable production. A PET performance-correlation analysis.
Fox, P T; Ingham, R J; Ingham, J C; Zamarripa, F; Xiong, J H; Lancaster, J L
2000-10-01
To distinguish the neural systems of normal speech from those of stuttering, PET images of brain blood flow were probed (correlated voxel-wise) with per-trial speech-behaviour scores obtained during PET imaging. Two cohorts were studied: 10 right-handed men who stuttered and 10 right-handed, age- and sex-matched non-stuttering controls. Ninety PET blood flow images were obtained in each cohort (nine per subject as three trials of each of three conditions) from which r-value statistical parametric images (SPI¿r¿) were computed. Brain correlates of stutter rate and syllable rate showed striking differences in both laterality and sign (i.e. positive or negative correlations). Stutter-rate correlates, both positive and negative, were strongly lateralized to the right cerebral and left cerebellar hemispheres. Syllable correlates in both cohorts were bilateral, with a bias towards the left cerebral and right cerebellar hemispheres, in keeping with the left-cerebral dominance for language and motor skills typical of right-handed subjects. For both stutters and syllables, the brain regions that were correlated positively were those of speech production: the mouth representation in the primary motor cortex; the supplementary motor area; the inferior lateral premotor cortex (Broca's area); the anterior insula; and the cerebellum. The principal difference between syllable-rate and stutter-rate positive correlates was hemispheric laterality. A notable exception to this rule was that cerebellar positive correlates for syllable rate were far more extensive in the stuttering cohort than in the control cohort, which suggests a specific role for the cerebellum in enabling fluent utterances in persons who stutter. Stutters were negatively correlated with right-cerebral regions (superior and middle temporal gyrus) associated with auditory perception and processing, regions which were positively correlated with syllables in both the stuttering and control cohorts. These findings support long-held theories that the brain correlates of stuttering are the speech-motor regions of the non-dominant (right) cerebral hemisphere, and extend this theory to include the non-dominant (left) cerebellar hemisphere. The present findings also indicate a specific role of the cerebellum in the fluent utterances of persons who stutter. Support is also offered for theories that implicate auditory processing problems in stuttering.
Maximal venous outflow velocity: an index for iliac vein obstruction.
Jones, T Matthew; Cassada, David C; Heidel, R Eric; Grandas, Oscar G; Stevens, Scott L; Freeman, Michael B; Edmondson, James D; Goldman, Mitchell H
2012-11-01
Leg swelling is a common cause for vascular surgical evaluation, and iliocaval obstruction due to May-Thurner syndrome (MTS) can be difficult to diagnose. Physical examination and planar radiographic imaging give anatomic information but may miss the fundamental pathophysiology of MTS. Similarly, duplex ultrasonographic examination of the legs gives little information about central impedance of venous return above the inguinal ligament. We have modified the technique of duplex ultrasonography to evaluate the flow characteristics of the leg after tourniquet-induced venous engorgement, with the objective of revealing iliocaval obstruction characteristic of MTS. Twelve patients with signs and symptoms of MTS were compared with healthy control subjects for duplex-derived maximal venous outflow velocity (MVOV) after tourniquet-induced venous engorgement of the leg. The data for healthy control subjects were obtained from a previous study of asymptomatic volunteers using the same MVOV maneuvers. The tourniquet-induced venous engorgement mimics that caused during vigorous exercise. A right-to-left ratio of MVOV was generated for patient comparisons. Patients with clinical evidence of MTS had a mean right-to-left MVOV ratio of 2.0, asymptomatic control subjects had a mean ratio of 1.3, and MTS patients who had undergone endovascular treatment had a poststent mean ratio of 1.2 (P = 0.011). Interestingly, computed tomography and magnetic resonance imaging results, when available, were interpreted as positive in only 53% of the patients with MTS according to both our MVOV criteria and confirmatory venography. After intervention, the right-to-left MVOV ratio in the MTS patients was found to be reduced similar to asymptomatic control subjects, indicating a relief of central venous obstruction by stenting the compressive MTS anatomy. Duplex-derived MVOV measurements are helpful for detection of iliocaval venous obstruction, such as MTS. Right-to-left MVOV ratios and postengorgement spectral analysis are helpful adjuncts to duplex imaging for leg swelling. The MVOV maneuvers are well tolerated by patients and yields physiological data regarding central venous obstruction that computed tomography and magnetic resonance imaging fail to detect. Copyright © 2012 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.
Panoramic Views of the Landing site from Sagan Memorial Station
NASA Technical Reports Server (NTRS)
1997-01-01
Each of these panoramic views is a controlled mosaic of approximately 300 IMP images covering 360 degrees of azimuth and elevations from approximately 4 degrees above the horizon to 45 degrees below it. Simultaneous adjustment of orientations of all images has been performed to minimize discontinuities between images. Mosaics have been highpass-filtered and contrast-enhanced to improve discrimination of details without distorting relative colors overall.
TOP IMAGE: Enhanced true-color image created from the 'Gallery Pan' sequence, acquired on sols 8-10 so that local solar time increases nearly continuously from about 10:00 at the right edge to about 12:00 at the left. Mosaics of images obtained by the right camera through 670 nm, 530 nm, and 440 nm filters were used as red, green and blue channels. Grid ticks indicate azimuth clockwise from north in 30 degree increments and elevation in 15 degree increments.BOTTOM IMAGE: Anaglyphic stereoimage created from the 'monster pan' sequence, acquired in four sections between about 8:30 and 15:00 local solar time on sol 3. Mosaics of images obtained through the 670 nm filter (left camera) and 530 and 440 nm filters (right camera) were used where available. At the top and bottom, left- and right-camera 670 nm images were used. Part of the northern horizon was not imaged because of the tilt of the lander. This image may be viewed stereoscopically through glasses with a red filter for the left eye and a cyan filter for the right eye.NOTE: original caption as published in Science MagazineMars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).Left ventricular longitudinal strain in soccer referees.
Gianturco, Luigi; Bodini, Bruno; Gianturco, Vincenzo; Lippo, Giuseppina; Solbiati, Agnese; Turiel, Maurizio
2017-06-13
Along the years, the analysis of soccer referees perfomance has interested the experts and we can find several types of studies in literature using in particular cardiac imaging. The aim of this retrospective study was to observe relationship between VO2max uptake and some conventional and not-conventional echocardiographic parameters. In order to perform this evaluation, we have enrolled 20 referees, belonging to Italian Soccer Referees' Association and we have investigated cardiovascular profile of them. We found a strong direct relationship between VO2max and global longitudinal strain of left ventricle assessed by means of speckle tracking echocardiographic analysis (R2=0.8464). The most common classic echocardiographic indexes have showed mild relations (respectively, VO2max vs EF: R2=0.4444; VO2max vs LV indexed mass: R2=0.2268). Therefore, our study suggests that longitudinal strain could be proposed as a specific echocardiographic parameter to evaluate the soccer referees performance.
Computerized tomography-based anatomic description of the porcine liver.
Bekheit, Mohamed; Bucur, Petru O; Wartenberg, Mylene; Vibert, Eric
2017-04-01
The knowledge of the anatomic features is imperative for successful modeling of the different surgical situations. This study aims to describe the anatomic features of the porcine using computerized tomography (CT) scan. Thirty large, white, female pigs were included in this study. The CT image acquisition was performed in four-phase contrast study. Subsequently, analysis of the images was performed using syngo.via software (Siemens) to subtract mainly the hepatic artery and its branches. Analysis of the portal and hepatic veins division pattern was performed using the Myrian XP-Liver 1.14.1 software (Intrasense). The mean total liver volume was 915 ± 159 mL. The largest sector in the liver was the right medial one representing around 28 ± 5.7% of the total liver volume. Next in order is the right lateral sector constituting around 24 ± 5%. Its volume is very close to the volume of the left medial sector, which represents around 22 ± 4.7% of the total liver volume. The caudate lobe represents around 8 ± 2% of the total liver volume.The portal vein did not show distinct right and left divisions rather than consecutive branches that come off the main trunk. The hepatic artery frequently trifurcates into left trunk that gives off the right gastric artery and the artery to the left lateral sector, the middle hepatic artery that supplies both the right and the left medial sectors and the right hepatic artery trunk that divides to give anterior branch to the right lateral lobe, branch to the right medial lobe, and at least a branch to the caudate lobe. Frequently, there is a posterior branch that crosses behind the portal vein to the right lateral lobe. The suprahepatic veins join the inferior vena cava in three distinct openings. There are communications between the suprahepatic veins that drain the adjacent sectors. The vein from the right lateral and the right medial sectors drains into a common trunk. The vein from the left lateral and from the left medial sectors drains into a common trunk. A separate opening is usually encountered draining the right medial sector. The caudate lobe drains separately into inferior vena cava caudal to the other veins. Knowledge of the anatomic features of the porcine liver is crucial to the performance of a successful surgical procedure. We herein describe the CT-depicted anatomic features of the porcine liver. Copyright © 2016 Elsevier Inc. All rights reserved.
Barquero, Laura A.; Davis, Nicole; Cutting, Laurie E.
2014-01-01
A growing number of studies examine instructional training and brain activity. The purpose of this paper is to review the literature regarding neuroimaging of reading intervention, with a particular focus on reading difficulties (RD). To locate relevant studies, searches of peer-reviewed literature were conducted using electronic databases to search for studies from the imaging modalities of fMRI and MEG (including MSI) that explored reading intervention. Of the 96 identified studies, 22 met the inclusion criteria for descriptive analysis. A subset of these (8 fMRI experiments with post-intervention data) was subjected to activation likelihood estimate (ALE) meta-analysis to investigate differences in functional activation following reading intervention. Findings from the literature review suggest differences in functional activation of numerous brain regions associated with reading intervention, including bilateral inferior frontal, superior temporal, middle temporal, middle frontal, superior frontal, and postcentral gyri, as well as bilateral occipital cortex, inferior parietal lobules, thalami, and insulae. Findings from the meta-analysis indicate change in functional activation following reading intervention in the left thalamus, right insula/inferior frontal, left inferior frontal, right posterior cingulate, and left middle occipital gyri. Though these findings should be interpreted with caution due to the small number of studies and the disparate methodologies used, this paper is an effort to synthesize across studies and to guide future exploration of neuroimaging and reading intervention. PMID:24427278
NASA Astrophysics Data System (ADS)
Li, Chengqi; Ren, Zhigang; Yang, Bo; An, Qinghao; Yu, Xiangru; Li, Jinping
2017-12-01
In the process of dismounting and assembling the drop switch for the high-voltage electric power live line working (EPL2W) robot, one of the key problems is the precision of positioning for manipulators, gripper and the bolts used to fix drop switch. To solve it, we study the binocular vision system theory of the robot and the characteristic of dismounting and assembling drop switch. We propose a coarse-to-fine image registration algorithm based on image correlation, which can improve the positioning precision of manipulators and bolt significantly. The algorithm performs the following three steps: firstly, the target points are marked respectively in the right and left visions, and then the system judges whether the target point in right vision can satisfy the lowest registration accuracy by using the similarity of target points' backgrounds in right and left visions, this is a typical coarse-to-fine strategy; secondly, the system calculates the epipolar line, and then the regional sequence existing matching points is generated according to neighborhood of epipolar line, the optimal matching image is confirmed by calculating the similarity between template image in left vision and the region in regional sequence according to correlation matching; finally, the precise coordinates of target points in right and left visions are calculated according to the optimal matching image. The experiment results indicate that the positioning accuracy of image coordinate is within 2 pixels, the positioning accuracy in the world coordinate system is within 3 mm, the positioning accuracy of binocular vision satisfies the requirement dismounting and assembling the drop switch.
2010-03-29
This image shows NASA Cassini spacecraft imaging science subsystem visible-light mosaic of Mimas from previous flybys on the left. The right-hand image shows new infrared temperature data mapped on top of the visible-light image.
Hong, Zhen-Yu; Lee, Hae-June; Choi, Won Hoon; Lee, Yoon-Jin; Eun, Sung Ho; Lee, Jung Il; Park, Kwangwoo; Lee, Ji Min; Cho, Jaeho
2014-07-01
In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.
111In platelet imaging of left ventricular thrombi. Predictive value for systemic emboli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratton, J.R.; Ritchie, J.L.
To determine whether a positive indium 111 platelet image for a left ventricular thrombus, which indicates ongoing thrombogenic activity, predicts an increased risk of systemic embolization, we compared the embolic rate in 34 patients with positive {sup 111}In platelet images with that in 69 patients with negative images during a mean follow-up of 38 +/- 31 (+/- SD) months after platelet imaging. The positive and negative image groups were similar with respect to age (59 +/- 11 vs. 62 +/- 10 years), prevalence of previous infarction (94% vs. 78%, p less than 0.05), time from last infarction (28 +/- 51more » vs. 33 +/- 47 months), ejection fraction (29 +/- 14 vs. 33 +/- 14), long-term or paroxysmal atrial fibrillation (15% vs. 26%), warfarin therapy during follow-up (26% vs. 20%), platelet-inhibitory therapy during follow-up (50% vs. 33%), injected {sup 111}In dose (330 +/- 92 vs. 344 +/- 118 microCi), and latest imaging time (greater than or equal to 48 hours in all patients). During follow-up, embolic events occurred in 21% (seven of 34) of patients with positive platelet images for left ventricular thrombi as compared with 3% (two of 69) of patients with negative images (p = 0.002). By actuarial methods, at 42 months after platelet imaging, only 86% of patients with positive images were embolus free as compared with 98% of patients with negative images (p less than 0.01).« less
Behavioral and Neural Representations of Spatial Directions across Words, Schemas, and Images.
Weisberg, Steven M; Marchette, Steven A; Chatterjee, Anjan
2018-05-23
Modern spatial navigation requires fluency with multiple representational formats, including visual scenes, signs, and words. These formats convey different information. Visual scenes are rich and specific but contain extraneous details. Arrows, as an example of signs, are schematic representations in which the extraneous details are eliminated, but analog spatial properties are preserved. Words eliminate all spatial information and convey spatial directions in a purely abstract form. How does the human brain compute spatial directions within and across these formats? To investigate this question, we conducted two experiments on men and women: a behavioral study that was preregistered and a neuroimaging study using multivoxel pattern analysis of fMRI data to uncover similarities and differences among representational formats. Participants in the behavioral study viewed spatial directions presented as images, schemas, or words (e.g., "left"), and responded to each trial, indicating whether the spatial direction was the same or different as the one viewed previously. They responded more quickly to schemas and words than images, despite the visual complexity of stimuli being matched. Participants in the fMRI study performed the same task but responded only to occasional catch trials. Spatial directions in images were decodable in the intraparietal sulcus bilaterally but were not in schemas and words. Spatial directions were also decodable between all three formats. These results suggest that intraparietal sulcus plays a role in calculating spatial directions in visual scenes, but this neural circuitry may be bypassed when the spatial directions are presented as schemas or words. SIGNIFICANCE STATEMENT Human navigators encounter spatial directions in various formats: words ("turn left"), schematic signs (an arrow showing a left turn), and visual scenes (a road turning left). The brain must transform these spatial directions into a plan for action. Here, we investigate similarities and differences between neural representations of these formats. We found that bilateral intraparietal sulci represent spatial directions in visual scenes and across the three formats. We also found that participants respond quickest to schemas, then words, then images, suggesting that spatial directions in abstract formats are easier to interpret than concrete formats. These results support a model of spatial direction interpretation in which spatial directions are either computed for real world action or computed for efficient visual comparison. Copyright © 2018 the authors 0270-6474/18/384996-12$15.00/0.
2015-04-16
During NASA MESSENGER four-year orbital mission, the spacecraft X-Ray Spectrometer XRS instrument mapped out the chemical composition of Mercury and discovered striking regions of chemical diversity. These maps of magnesium/silicon (left) and aluminium/silicon (right) use red colors to indicate high values and blue colors for low values. In the maps shown here, the Caloris basin can be identified as a region with low Mg/Si and high Ca/Si on the upper left of each map. An extensive region with high Mg/Si is also clearly visible in the maps but is not correlated with any visible impact basin. Instrument: X-Ray Spectrometer (XRS) and Mercury Dual Imaging System (MDIS) Left Image: Map of Mg/Si Right Image: Map of Al/Si http://photojournal.jpl.nasa.gov/catalog/PIA19417
NASA Astrophysics Data System (ADS)
Linte, Cristian A.; Rettmann, Maryam E.; Dilger, Ben; Gunawan, Mia S.; Arunachalam, Shivaram P.; Holmes, David R., III; Packer, Douglas L.; Robb, Richard A.
2012-02-01
The novel prototype system for advanced visualization for image-guided left atrial ablation therapy developed in our laboratory permits ready integration of multiple imaging modalities, surgical instrument tracking, interventional devices and electro-physiologic data. This technology allows subject-specific procedure planning and guidance using 3D dynamic, patient-specific models of the patient's heart, augmented with real-time intracardiac echocardiography (ICE). In order for the 2D ICE images to provide intuitive visualization for accurate catheter to surgical target navigation, the transducer must be tracked, so that the acquired images can be appropriately presented with respect to the patient-specific anatomy. Here we present the implementation of a previously developed ultrasound calibration technique for a magnetically tracked ICE transducer, along with a series of evaluation methods to ensure accurate imaging and faithful representation of the imaged structures. Using an engineering-designed phantom, target localization accuracy is assessed by comparing known target locations with their transformed locations inferred from the tracked US images. In addition, the 3D volume reconstruction accuracy is also estimated by comparing a truth volume to that reconstructed from sequential 2D US images. Clinically emulating validation studies are conducted using a patient-specific left atrial phantom. Target localization error of clinically-relevant surgical targets represented by nylon fiducials implanted within the endocardial wall of the phantom was assessed. Our studies have demonstrated 2.4 +/- 0.8 mm target localization error in the engineering-designed evaluation phantoms, 94.8 +/- 4.6 % volume reconstruction accuracy, and 3.1 +/- 1.2 mm target localization error in the left atrial-mimicking phantom. These results are consistent with those disseminated in the literature and also with the accuracy constraints imposed by the employed technology and the clinical application.
Galanti, Giorgio; Toncelli, Loira; Del Furia, Francesca; Stefani, Laura; Cappelli, Brunello; De Luca, Alessio; Vono, Maria Concetta Roberta
2009-01-01
Background Transthoracic echocardiography left ventricular wall thickness is often increased in master athletes and it results by intense physical training. Left Ventricular Hypertrophy can also be due to a constant pressure overload. Conventional Pulsed Wave (PW) Doppler analysis of diastolic function sometimes fails to distinguish physiological from pathological LVH. The aim of this study is to evaluate the role of Pulsed Wave Tissue Doppler Imaging in differentiating pathological from physiological LVH in the middle-aged population. Methods we selected a group of 80 master athletes, a group of 80 sedentary subjects with essential hypertension and an apparent normal diastolic function at standard PW Doppler analysis. The two groups were comparable for increased left ventricular wall thickness and mass index (134.4 ± 19.7 vs 134.5 ± 22.1 gr/m2; p > .05). Diastolic function indexes using the PW technique were in the normal range for both. Results Pulsed Wave TDI study of diastolic function immediately distinguished the two groups. While in master athletes the diastolic TDI-derived parameters remained within normal range (E' 9.4 ± 3.1 cm/sec; E/E' 7.8 ± 2.1), in the hypertensive group these parameters were found to be constantly altered, with mean values and variation ranges always outside normal validated limits (E' 7.2 ± 2.4 cm/sec; E/E' 10.6 ± 3.2), and with E' and E/E' statistically different in the two groups (p < .001). Conclusion Our study showed that the TDI technique can be an easy and validated method to assess diastolic function in differentiating normal from pseudonormal diastolic patterns and it can distinguish physiological from pathological LVH emphasizing the eligibility certification required by legal medical legislation as in Italy. PMID:19845938
Spider phobia is associated with decreased left amygdala volume: a cross-sectional study
2013-01-01
Background Evidence from animal and human studies imply the amygdala as the most critical structure involved in processing of fear-relevant stimuli. In phobias, the amygdala seems to play a crucial role in the pathogenesis and maintenance of the disorder. However, the neuropathology of specific phobias remains poorly understood. In the present study, we investigated whether patients with spider phobia show altered amygdala volumes as compared to healthy control subjects. Methods Twenty female patients with spider phobia and twenty age-matched healthy female controls underwent magnetic resonance imaging to investigate amygdala volumes. The amygdalae were segmented using an automatic, model-based segmentation tool (FSL FIRST). Differences in amygdala volume were investigated by multivariate analysis of covariance with group as between-subject factor and left and right amygdala as dependent factors. The relation between amygdala volume and clinical features such as symptom severity, disgust sensitivity, trait anxiety and duration of illness was investigated by Spearman correlation analysis. Results Spider phobic patients showed significantly smaller left amygdala volume than healthy controls. No significant difference in right amygdala volume was detected. Furthermore, the diminished amygdala size in patients was related to higher symptom severity, but not to higher disgust sensitivity or trait anxiety and was independent of age. Conclusions In summary, the results reveal a relation between higher symptom severity and smaller left amygdala volume in patients with spider phobia. This relation was independent of other potential confounders such as the disgust sensitivity or trait anxiety. The findings suggest that greater spider phobic fear is associated with smaller left amygdala. However, the smaller left amygdala volume may either stand for a higher vulnerability to develop a phobic disorder or emerge as a consequence of the disorder. PMID:23442196
Imbriaco, Massimo; Iodice, Delfina; Erra, Paola; Terlizzi, Angela; Di Carlo, Rosanna; Di Vito, Concetta; Imbimbo, Ciro
2011-07-01
We describe a 69-year-old man who came to our observation with a history of persistent left flank abdominal pain, fever for several weeks, and a previous history of passing renal stones. Radiological examinations with computed tomography and magnetic resonance imaging revealed a solid mass within the left side of a horseshoe kidney, with associated large renal stones. The patient subsequently underwent partial left nephrectomy. The final diagnosis was consistent with squamous cell carcinoma arising in a horseshoe kidney, with associated renal stones. Copyright © 2011 Elsevier Inc. All rights reserved.
Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian
2015-04-01
Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. Copyright © 2015 Elsevier Inc. All rights reserved.
Pool, Eva-Maria; Rehme, Anne K.; Eickhoff, Simon B.; Fink, Gereon R.; Grefkes, Christian
2016-01-01
Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. PMID:25613438
Huang, P J; Chieng, P U; Lee, Y T; Chiang, F T; Tseng, Y Z; Liau, C S; Tseng, C D; Su, C T; Lien, W P
1992-11-01
Exercise thallium-201 imaging using single-photon emission computed tomography (SPECT) was evaluated in 154 patients with angiographically documented coronary artery disease (CAD) and in 25 normal subjects. Of the 154 patients with CAD, 134 (87%) had abnormal thallium images. By contrast, only 77 (50%) patients had ischemic ST-segment depression (p < 0.001). Among 25 normal subjects, 20 had normal exercise SPECT images. The specificity of exercise SPECT imaging (80% or 20/25) in excluding patients with CAD was not significantly higher than that of exercise electrocardiography (76% or 19/25). For the detection of individual vessel involvement by analysis of territories of perfusion abnormalities, the sensitivity and specificity of exercise SPECT were 72% and 96% for the left anterior descending, 78% and 85% for the right coronary, and 47% and 98% for the left circumflex artery. Ninety (group 1) of the 154 patients with CAD achieved adequate exercise end points (ischemic ST-segment depression or > 85% of maximal predicted heart rate) and 64 (group 2) did not. Exercise SPECT showed significantly more perfusion abnormalities in group 1 than in group 2 (96% vs 75%, p < 0.001). We conclude that: (1) exercise SPECT thallium imaging is more sensitive than exercise electrocardiography for detecting patients with CAD; (2) the sensitivity of the test is affected by the level of exercise; and (3) it is valuable in the identification of individual vessel involvement.
Structural and functional correlates for language efficiency in auditory word processing.
Jung, JeYoung; Kim, Sunmi; Cho, Hyesuk; Nam, Kichun
2017-01-01
This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally.
Structural and functional correlates for language efficiency in auditory word processing
Kim, Sunmi; Cho, Hyesuk; Nam, Kichun
2017-01-01
This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally. PMID:28892503
Disgust proneness and associated neural substrates in obesity.
Watkins, Tristan J; Di Iorio, Christina R; Olatunji, Bunmi O; Benningfield, Margaret M; Blackford, Jennifer U; Dietrich, Mary S; Bhatia, Monisha; Theiss, Justin D; Salomon, Ronald M; Niswender, Kevin; Cowan, Ronald L
2016-03-01
Defects in experiencing disgust may contribute to obesity by allowing for the overconsumption of food. However, the relationship of disgust proneness and its associated neural locus has yet to be explored in the context of obesity. Thirty-three participants (17 obese, 16 lean) completed the Disgust Propensity and Sensitivity Scale-Revised and a functional magnetic resonance imaging paradigm where images from 4 categories (food, contaminates, contaminated food or fixation) were randomly presented. Independent two-sample t-tests revealed significantly lower levels of Disgust Sensitivity for the obese group (mean score = 14.7) compared with the lean group (mean score = 17.6, P = 0.026). The obese group had less activation in the right insula than the lean group when viewing contaminated food images. Multiple regression with interaction analysis revealed one left insula region where the association of Disgust Sensitivity scores with activation differed by group when viewing contaminated food images. These interaction effects were driven by the negative correlation of Disgust Sensitivity scores with beta values extracted from the left insula in the obese group (r = -0.59) compared with a positive correlation in the lean group (r = 0.65). Given these body mass index-dependent differences in Disgust Sensitivity and neural responsiveness to disgusting food images, it is likely that altered Disgust Sensitivity may contribute to obesity. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Lu, Shaojia; Gao, Weijia; Wei, Zhaoguo; Wang, Dandan; Hu, Shaohua; Huang, Manli; Xu, Yi; Li, Lingjiang
2017-06-01
Childhood trauma confers great risk for the development of multiple psychiatric disorders; however, the neural basis for this association is still unknown. The present resting-state functional magnetic resonance imaging study aimed to detect the effects of childhood trauma on brain function in a group of young healthy adults. In total, 24 healthy individuals with childhood trauma and 24 age- and sex-matched adults without childhood trauma were recruited. Each participant underwent resting-state functional magnetic resonance imaging scanning. Intra-regional brain activity was evaluated by regional homogeneity method and compared between groups. Areas with altered regional homogeneity were further selected as seeds in subsequent functional connectivity analysis. Statistical analyses were performed by setting current depression and anxiety as covariates. Adults with childhood trauma showed decreased regional homogeneity in bilateral superior temporal gyrus and insula, and the right inferior parietal lobule, as well as increased regional homogeneity in the right cerebellum and left middle temporal gyrus. Regional homogeneity values in the left middle temporal gyrus, right insula and right cerebellum were correlated with childhood trauma severity. In addition, individuals with childhood trauma also exhibited altered default mode network, cerebellum-default mode network and insula-default mode network connectivity when the left middle temporal gyrus, right cerebellum and right insula were selected as seed area, respectively. The present outcomes suggest that childhood trauma is associated with disturbed intrinsic brain function, especially the default mode network, in adults even without psychiatric diagnoses, which may mediate the relationship between childhood trauma and psychiatric disorders in later life.
Hiremath, Chaitra; Dey, Avyarthana
2017-01-01
Abstract Background: Self-reflection is the process of conscious evaluation of one’s traits, abilities, and attitudes. Deficient self-reflective processes might underlie lack of insight into schizophrenia. The limited research literature on the neural correlates of self-reflection in schizophrenia is inconclusive. In this study, we investigated the neural correlates of self-reflection in schizophrenia patients attending a tertiary care hospital in India. Methods: Nineteen male schizophrenia patients (mean age = 32.68 ± 7.11, mean years of education =15.21 ± 1.93) and 19 male healthy controls (mean age = 26.96 ± 4.67, mean years of education = 18.11 ± 3.13) participated in the study. Participants performed a previously validated self-reflection task while undergoing functional magnetic resonance imaging (fMRI; 3-Tesla). The task comprised of 144 words subdivided into 4 domains: Self-reflection, Other-reflection, Affect labeling, and Perceptual. The task was presented as 3 runs of 8 blocks each. The images were preprocessed and analyzed using SPM-12. After preprocessing, contrasts comparing Self-reflection with the other domains were modeled at the individual subject level. In second-level analysis, the first-level contrasts were entered into a 2-sample t test to compare patient and healthy control groups. The results were thresholded at P < .001 (uncorrected) and a cluster size of 6 voxels. Results: For the Self-reflection > Other-reflection contrast, schizophrenia patients demonstrated greater activation of right and left superior parietal lobules (BA 5 and 7), right inferior parietal lobule (BA 39), left parahippocampal gyrus (BA 36), and left premotor cortex (BA 6). For the Self-reflection > Affect labeling contrast, patients showed greater activation of precuneus (BA 7) and right inferior occipital gyrus (BA 19), and lesser activation of left inferior frontal gyrus (BA 45 and 47). And for the Self-reflection > Perceptual contrast, patients showed greater activation of left middle frontal gyrus (BA 10), left posterior cingulate gyrus (BA 31), right superior parietal lobule (BA 7), right and left inferior parietal lobules (BA 39 and 40), and left premotor cortex (BA 6). Conclusion: The results indicate that patients with schizophrenia have aberrant activity in brain regions that subserve self-reflection. The greater activation of posterior brain areas might suggest that schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as seen from earlier studies. Further studies with a larger sample are needed to examine neural processes underlying self-reflection abnormalities in schizophrenia. Research grant: Department of Science and Technology, Govt. of India - INSPIRE Faculty Award (IFA12-LSBM)
Shin, Yong Beom; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Kim, Dong-Soo; Park, Jae Heung; Yeom, Seok-Ran
2006-06-01
Statistical parametric mapping (SPM) was applied to brain perfusion single photon emission computed tomography (SPECT) images in patients with traumatic brain injury (TBI) to investigate regional cerebral abnormalities compared to age-matched normal controls. Thirteen patients with TBI underwent brain perfusion SPECT were included in this study (10 males, three females, mean age 39.8 +/- 18.2, range 21 - 74). SPM2 software implemented in MATLAB 5.3 was used for spatial pre-processing and analysis and to determine the quantitative differences between TBI patients and age-matched normal controls. Three large voxel clusters of significantly decreased cerebral blood perfusion were found in patients with TBI. The largest clusters were area including medial frontal gyrus (voxel number 3642, peak Z-value = 4.31, 4.27, p = 0.000) in both hemispheres. The second largest clusters were areas including cingulated gyrus and anterior cingulate gyrus of left hemisphere (voxel number 381, peak Z-value = 3.67, 3.62, p = 0.000). Other clusters were parahippocampal gyrus (voxel number 173, peak Z-value = 3.40, p = 0.000) and hippocampus (voxel number 173, peak Z-value = 3.23, p = 0.001) in the left hemisphere. The false discovery rate (FDR) was less than 0.04. From this study, group and individual analyses of SPM2 could clearly identify the perfusion abnormalities of brain SPECT in patients with TBI. Group analysis of SPM2 showed hypoperfusion pattern in the areas including medial frontal gyrus of both hemispheres, cingulate gyrus, anterior cingulate gyrus, parahippocampal gyrus and hippocampus in the left hemisphere compared to age-matched normal controls. Also, left parahippocampal gyrus and left hippocampus were additional hypoperfusion areas. However, these findings deserve further investigation on a larger number of patients to be performed to allow a better validation of objective SPM analysis in patients with TBI.
Oliver, A; Mendizabal, J A; Ripoll, G; Albertí, P; Purroy, A
2010-04-01
The SEUROP system is currently in use for carcass classification in Europe. Image analysis and other new technologies are being developed to enhance and supplement this classification system. After slaughtering, 91 carcasses of local Spanish beef breeds were weighed and classified according to the SEUROP system. Two digital photographs (a side and a dorsal view) were taken of the left carcass sides, and a total of 33 morphometric measurements (lengths, perimeters, areas) were made. Commercial butchering of these carcasses took place 24 h postmortem, and the different cuts were grouped according to four commercial meat cut quality categories: extra, first, second, and third. Multiple regression analysis of carcass weight and the SEUROP conformation score (x variables) on meat yield and the four commercial cut quality category yields (y variables) was performed as a measure of the accuracy of the SEUROP system. Stepwise regression analysis of carcass weight and the 33 morphometric image analysis measurements (x variables) and meat yield and yields of the four commercial cut quality categories (y variables) was carried out. Higher accuracy was achieved using image analysis than using only the current SEUROP conformation score. The regression coefficient values were between R(2)=0.66 and R(2)=0.93 (P<0.001) for the SEUROP system and between R(2)=0.81 and R(2)=0.94 (P<0.001) for the image analysis method. These results suggest that the image analysis method should be helpful as a means of supplementing and enhancing the SEUROP system for grading beef carcasses. 2009 Elsevier Ltd. All rights reserved.
Bonelli, Silvia B.; Thompson, Pamela J.; Yogarajah, Mahinda; Powell, Robert H. W.; Samson, Rebecca S.; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.
2013-01-01
Anterior temporal lobe resection controls seizures in 50–60% of patients with intractable temporal lobe epilepsy but may impair memory function, typically verbal memory following left, and visual memory following right anterior temporal lobe resection. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated the reorganization of memory function in patients with temporal lobe epilepsy before and after left or right anterior temporal lobe resection and the efficiency of postoperative memory networks. We studied 46 patients with unilateral medial temporal lobe epilepsy (25/26 left hippocampal sclerosis, 16/20 right hippocampal sclerosis) before and after anterior temporal lobe resection on a 3 T General Electric magnetic resonance imaging scanner. All subjects had neuropsychological testing and performed a functional magnetic resonance imaging memory encoding paradigm for words, pictures and faces, testing verbal and visual memory in a single scanning session, preoperatively and again 4 months after surgery. Event-related analysis revealed that patients with left temporal lobe epilepsy had greater activation in the left posterior medial temporal lobe when successfully encoding words postoperatively than preoperatively. Greater pre- than postoperative activation in the ipsilateral posterior medial temporal lobe for encoding words correlated with better verbal memory outcome after left anterior temporal lobe resection. In contrast, greater postoperative than preoperative activation in the ipsilateral posterior medial temporal lobe correlated with worse postoperative verbal memory performance. These postoperative effects were not observed for visual memory function after right anterior temporal lobe resection. Our findings provide evidence for effective preoperative reorganization of verbal memory function to the ipsilateral posterior medial temporal lobe due to the underlying disease, suggesting that it is the capacity of the posterior remnant of the ipsilateral hippocampus rather than the functional reserve of the contralateral hippocampus that is important for maintaining verbal memory function after anterior temporal lobe resection. Early postoperative reorganization to ipsilateral posterior or contralateral medial temporal lobe structures does not underpin better performance. Additionally our results suggest that visual memory function in right temporal lobe epilepsy is affected differently by right anterior temporal lobe resection than verbal memory in left temporal lobe epilepsy. PMID:23715092
Sensakovic, William F; O'Dell, M Cody; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura
2016-10-01
Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA(2) by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image processing can significantly impact image quality when settings are left near default values.
Ning, Kaida; Chen, Bo; Sun, Fengzhu; Hobel, Zachary; Zhao, Lu; Matloff, Will; Toga, Arthur W
2018-08-01
A long-standing question is how to best use brain morphometric and genetic data to distinguish Alzheimer's disease (AD) patients from cognitively normal (CN) subjects and to predict those who will progress from mild cognitive impairment (MCI) to AD. Here, we use a neural network (NN) framework on both magnetic resonance imaging-derived quantitative structural brain measures and genetic data to address this question. We tested the effectiveness of NN models in classifying and predicting AD. We further performed a novel analysis of the NN model to gain insight into the most predictive imaging and genetics features and to identify possible interactions between features that affect AD risk. Data were obtained from the AD Neuroimaging Initiative cohort and included baseline structural MRI data and single nucleotide polymorphism (SNP) data for 138 AD patients, 225 CN subjects, and 358 MCI patients. We found that NN models with both brain and SNP features as predictors perform significantly better than models with either alone in classifying AD and CN subjects, with an area under the receiver operating characteristic curve (AUC) of 0.992, and in predicting the progression from MCI to AD (AUC=0.835). The most important predictors in the NN model were the left middle temporal gyrus volume, the left hippocampus volume, the right entorhinal cortex volume, and the APOE (a gene that encodes apolipoprotein E) ɛ4 risk allele. Furthermore, we identified interactions between the right parahippocampal gyrus and the right lateral occipital gyrus, the right banks of the superior temporal sulcus and the left posterior cingulate, and SNP rs10838725 and the left lateral occipital gyrus. Our work shows the ability of NN models to not only classify and predict AD occurrence but also to identify important AD risk factors and interactions among them. Copyright © 2018 Elsevier Inc. All rights reserved.
Blanc-Garin, J; Faure, S; Sabio, P
1993-05-01
The objective of this study was to analyze dynamic aspects of right hemisphere implementation in processing visual images. Two tachistoscopic, divided visual field experiments were carried out on a partial split-brain patient with no damage to the right hemisphere. In the first experiment, image generation performance for letters presented in the right visual field (/left hemisphere) was undeniably optimal. In the left visual field (/right hemisphere), performance was no better than chance level at first, but then improved dramatically across stimulation blocks, in each of five successive sessions. This was interpreted as revealing the progressive spontaneous activation of the right hemisphere's competence not shown initially. The aim of the second experiment was to determine some conditions under which this pattern was obtained. The experimental design contrasted stimuli (words and pictures) and representational activity (phonologic and visuo-imaged processing). The right visual field (/left hemisphere: LH) elicited higher performance than the left visual field (/right hemisphere, RH) in the three situations where verbal activity was required. No superiority could be found when visual images were to be generated from pictures: parallel and weak improvement of both hemispheres was observed across sessions. Two other patterns were obtained: improvement in RH performance (although LH performance remained superior) and an unexpectedly large decrease in RH performance. These data are discussed in terms of RH cognitive competence and hemisphere implementation.
Space Radar Image of Central African Gorilla Habitat
1999-01-27
This is a false-color radar image of Central Africa, showing the Virunga Volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. This C-band L-band image was acquired on April 12, 1994, on orbit 58 of space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). The area is centered at about 1.75 degrees south latitude and 29.5 degrees east longitude. The image covers an area 58 kilometers by 178 kilometers (48 miles by 178 miles). The false-color composite is created by displaying the L-band HH return in red, the L-band HV return in green and the C-band HH return in blue. The dark area in the bottom of the image is Lake Kivu, which forms the border between Zaire (to the left) and Rwanda (to the right). The airport at Goma, Zaire is shown as a dark line just above the lake in the bottom left corner of the image. Volcanic flows from the 1977 eruption of Mt. Nyiragongo are shown just north of the airport. Mt. Nyiragongo is not visible in this image because it is located just to the left of the image swath. Very fluid lava flows from the 1977 eruption killed 70 people. http://photojournal.jpl.nasa.gov/catalog/PIA01724
Chian, Teo Chee; Nassir, Norziana Mat; Ibrahim, Mohd Izuan; Yusof, Ahmad Khairuddin Md
2017-01-01
Background This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols. Methods Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software. Results Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp. Conclusions There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient. PMID:28275559
NASA Astrophysics Data System (ADS)
Eclancher, Bernard; Chambron, Jacques; Dumitresco, Barbu; Karman, Miklos; Pszota, Agnes; Simon, Atilla; Didon-Poncelet, Anna; Demangeat, Jean
2002-04-01
The quantification of rapid hemodynamic reactions to wide and slow breathing movements has been performed, by two modalities (gamma) -left ventriculography of 99mTc-labeled blood volume, in anterior oblique incidence on standing and even exercising healthy volunteers and cardiac patients. A highly sensitive stethoscope delivered whole (gamma) -counts acquired at 30 msec intervals in a square field of view including the left ventricle, in a one dimensional low resolution imaging mode for beat to beat analysis. A planar 2D (gamma) -camera imaging of the same cardiac area was then performed without cardiac gating for alternate acquisitions during deep inspiration and deep expiration, completed by a 3D MRI assessment of the stethoscope detection field. Young healthy volunteers displayed wide variations of diastolic times and stroke volumes, as a result of enhanced baroreflex control, together with +/- 16% variations of the stethoscope's background blood volume counts. Any of the components of these responses were shifted, abolished or even inverted as a result of either obesity, hypertension, aging or cardiac pathologies. The assessment of breathing control of the cardiovascular system by the beat to beat (gamma) -ventriculography combined with nuclear 2D and 3D MRI imaging is a kinetic method allowing the detection of functional anomalies in still ambulatory patients.
Zou, Ke; Huang, Xiaoqi; Li, Tao; Gong, Qiyong; Li, Zhe; Ou-yang, Luo; Deng, Wei; Chen, Qin; Li, Chunxiao; Ding, Yi; Sun, Xueli
2008-01-01
Objective The purpose of our study was to investigate alterations of white matter integrity in adults with major depressive disorder (MDD) using magnetic resonance imaging (MRI). Methods We performed diffusion tensor imaging with a 3T MRI scanner on 45 patients with major depression and 45 healthy controls matched for age, sex and education. Using a voxel-based analysis, we measured the fractional anisotropy (FA), and we investigated the differences between the patient and control groups. We examined the correlations between the microstructure abnormalities of white matter and symptom severity, age of illness onset and cumulative illness duration, respectively. Results We found a significant decrease in FA in the left hemisphere, including the anterior limb of the internal capsule and the inferior parietal portion of the superior longitudinal fasciculus, in patients with MDD compared with healthy controls. Diffusion tensor imaging measures in the left anterior limb of the internal capsule were negatively related to the severity of depressive symptoms, even after we controlled for age and sex. Conclusion Our findings provide new evidence of microstructural changes of white matter in non–late-onset adult depression. Our results complement those observed in late-life depression and support the hypothesis that the disruption of cortical– subcortical circuit integrity may be involved in the etiology of major depressive disorder. PMID:18982175
NASA Technical Reports Server (NTRS)
2005-01-01
22 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark teardrop-shaped sand dunes in eastern Copernicus Crater. The winds responsible for these dunes generally blow from the south-southwest (lower left). Location near: 48.7oS, 167.4oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SummerSojourner APXS at Moe - Right Eye
1997-10-13
The Sojourner rover's Alpha Proton X-ray Spectrometer (APXS) is shown deployed against the rock "Moe" on the afternoon of Sol 64 (September 7). The rocks to the left of Moe are "Shark" (left of Sojourner) and "Half Dome" (behind Sojourner). They were previously measured by the APXS. The image was taken by the Imager for Mars Pathfinder (IMP). http://photojournal.jpl.nasa.gov/catalog/PIA00966
Role of imaging in evaluation of sudden cardiac death risk in hypertrophic cardiomyopathy.
Geske, Jeffrey B; Ommen, Steve R
2015-09-01
Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy and is associated with sudden cardiac death (SCD) - an uncommon but devastating clinical outcome. This review is designed to assess the role of imaging in established risk factor assessment and its role in emerging SCD risk stratification. Recent publications have highlighted the crucial role of imaging in HCM SCD risk stratification. Left ventricular hypertrophy assessment remains the key imaging determinant of risk. Data continue to emerge on the role of systolic dysfunction, apical aneurysms, left atrial enlargement and left ventricular outflow tract obstruction as markers of risk. Quantitative assessment of delayed myocardial enhancement and T1 mapping on cardiac MRI continue to evolve. Recent multicenter trials have allowed multivariate SCD risk assessment in large HCM cohorts. Given aggregate risk with presence of multiple risk factors, a single parameter should not be used in isolation to determine implantable cardiac defibrillator candidacy. Use of all available imaging data, including cardiac magnetic resonance tissue characterization, allows a comprehensive approach to SCD stratification and implantable cardiac defibrillator decision-making.
Jacquesson, Timothée; Frindel, Carole; Cotton, Francois
2017-04-01
A 24-year-old woman was hit by a bus and suffered an isolated complete oculomotor nerve palsy. Computed tomography scan did not show a skull base fracture. T2*-weighted magnetic resonance imaging revealed petechial cerebral hemorrhages sparing the brainstem. T2 constructive interference in steady state suggested a partial sectioning of the left oculomotor nerve just before entering the superior orbital fissure. Diffusion tensor imaging fiber tractography confirmed a sharp arrest of the left oculomotor nerve. This recent imaging technique could be of interest to assess white fiber damage and help make a diagnosis or prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Computerised anthropomorphometric analysis of images: case report.
Ventura, F; Zacheo, A; Ventura, A; Pala, A
2004-12-02
The personal identification of living subjects through video filmed images can occasionally be necessary, particularly in the following circumstances: (1) the need to identify unknown subjects by comparing two-dimensional images of someone of known identity with the subject. (2) The need to identify subjects taken in photographs or recorded on video camera by using a comparison with individuals of known identity. The final aim of our research was that of analysing a video clip of a bank robbery and to determine whether one of the subjects was identifiable with one of the suspects. Following the correct methodology for personal identification, the original videotape was first analysed, relating to the robbery carried out in the bank so as to study the characteristics of the criminal action and to pinpoint the best scenes for an antropomorphometrical analysis. The scene of the crime was therefore reconstructed by bringing the suspect back to the bank where the robbery took place, who was then filmed with the same closed circuit video cameras and made to assume positions as close as possible to those of the bank robber to be identified. Taking frame no. 17, points of comparable similarity were identified on the face and right ear of the perpetrator of the crime and the same points of similarity identified on the face of the suspect: right and left eyebrows, right and left eyes, "glabella", nose, mouth, chin, fold between nose and upper lip, right ear, elix, tragus,"fossetta", "conca" and lobule. After careful comparative morphometric computer analysis, it was concluded that none of the 17 points of similarity showed the same anthropomorphology (points of negative similarity). It is reasonable to sustain that 17 points of negative similarity (or non coincidental points) is sufficient to exclude the identity of the person compared with the other.
2013-01-01
Background T2-weighted cardiovascular magnetic resonance (CMR) is clinically-useful for imaging the ischemic area-at-risk and amount of salvageable myocardium in patients with acute myocardial infarction (MI). However, to date, quantification of oedema is user-defined and potentially subjective. Methods We describe a highly automatic framework for quantifying myocardial oedema from bright blood T2-weighted CMR in patients with acute MI. Our approach retains user input (i.e. clinical judgment) to confirm the presence of oedema on an image which is then subjected to an automatic analysis. The new method was tested on 25 consecutive acute MI patients who had a CMR within 48 hours of hospital admission. Left ventricular wall boundaries were delineated automatically by variational level set methods followed by automatic detection of myocardial oedema by fitting a Rayleigh-Gaussian mixture statistical model. These data were compared with results from manual segmentation of the left ventricular wall and oedema, the current standard approach. Results The mean perpendicular distances between automatically detected left ventricular boundaries and corresponding manual delineated boundaries were in the range of 1-2 mm. Dice similarity coefficients for agreement (0=no agreement, 1=perfect agreement) between manual delineation and automatic segmentation of the left ventricular wall boundaries and oedema regions were 0.86 and 0.74, respectively. Conclusion Compared to standard manual approaches, the new highly automatic method for estimating myocardial oedema is accurate and straightforward. It has potential as a generic software tool for physicians to use in clinical practice. PMID:23548176
Guo, Wenbin; Song, Yan; Liu, Feng; Zhang, Zhikun; Zhang, Jian; Yu, Miaoyu; Liu, Jianrong; Xiao, Changqing; Liu, Guiying; Zhao, Jingping
2015-05-01
Schizophrenia patients and their unaffected siblings share similar brain functional and structural abnormalities. However, no study is engaged to investigate whether and how functional abnormalities are related to structural abnormalities in unaffected siblings. This study was undertaken to examine the association between functional and anatomical abnormalities in unaffected siblings. Forty-six unaffected siblings of schizophrenia patients and 46 age-, sex-, and education-matched healthy controls underwent structural and resting-state functional magnetic resonance imaging scanning. Voxel-based morphometry (VBM), amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were utilized to analyze imaging data. The VBM analysis showed gray matter volume decreases in the fronto-temporal regions (the left middle temporal gyrus and right inferior frontal gyrus, orbital part) and increases in basal ganglia system (the left putamen). Functional abnormalities measured by ALFF and fALFF mainly involved in the fronto-limbic-sensorimotor circuit (decreased ALFF in bilateral middle frontal gyrus and the right middle cingulate gyrus, and decreased fALFF in the right inferior frontal gyrus, orbital part; and increased ALFF in the left fusiform gyrus and left lingual gyrus, and increased fALFF in bilateral calcarine cortex). No significant correlation was found between functional and anatomical abnormalities in the sibling group. A dissociation pattern of brain regions with functional and anatomical abnormalities is observed in unaffected siblings. Our findings suggest that brain functional and anatomical abnormalities might be present independently in unaffected siblings of schizophrenia patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Huang, Pei; Tan, Yu-Yan; Liu, Dong-Qiang; Herzallah, Mohammad M; Lapidow, Elizabeth; Wang, Ying; Zang, Yu-Feng; Gluck, Mark A; Chen, Sheng-Di
2017-07-01
Asymmetric onset of motor symptoms in PD can affect cognitive function. We examined whether motor-symptom laterality could affect feedback-based associative learning and explored its underlying neural mechanism by functional magnetic resonance imaging in PD patients. We recruited 63 early-stage medication-naïve PD patients (29 left-onset medication-naïve patients, 34 right-onset medication-naïve patients) and 38 matched normal controls. Subjects completed an acquired equivalence task (including acquisition, retention, and generalization) and resting-state functional magnetic resonance imaging scans. Learning accuracy and response time in each phase of the task were recorded for behavioral measures. Regional homogeneity was used to analyze resting-state functional magnetic resonance imaging data, with regional homogeneity lateralization to evaluate hemispheric functional asymmetry in the striatum. Left-onset patients made significantly more errors in acquisition (feedback-based associative learning) than right-onset patients and normal controls, whereas right-onset patients performed as well as normal controls. There was no significant difference among these three groups in the accuracy of either retention or generalization phase. The three groups did not show significant differences in response time. In the left-onset group, there was an inverse relationship between acquisition errors and regional homogeneity in the right dorsal rostral putamen. There were no significant regional homogeneity changes in either the left or the right dorsal rostral putamen in right-onset patients when compared to controls. Motor-symptom laterality could affect feedback-based associative learning in PD, with left-onset medication-naïve patients being selectively impaired. Dysfunction in the right dorsal rostral putamen may underlie the observed deficit in associative learning in patients with left-sided onset.© 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Neuropsychological Correlates of Diffusion Tensor Imaging in Schizophrenia
Nestor, Paul G.; Kubicki, Marek; Gurrera, Ronald J.; Niznikiewicz, Margaret; Frumin, Melissa; McCarley, Robert W.; Shenton, Martha E.
2009-01-01
Patients with schizophrenia (n = 41) and healthy comparison participants (n = 46) completed neuropsychological measures of intelligence, memory, and executive function. A subset of each group also completed magnetic resonance diffusion tensor imaging (DTI) studies (fractional anisotropy and cross-sectional area) of the uncinate fasciculus (UF) and cingulate bundle (CB). Patients with schizophrenia showed reduced levels of functioning across all neuropsychological measures. In addition, selective neuropsychological–DTI relationships emerged. Among patients but not controls, lower levels of declarative–episodic verbal memory correlated with reduced left UF, whereas executive function errors related to performance monitoring correlated with reduced left CB. The data suggested abnormal DTI patterns linking declarative–episodic verbal memory deficits to the left UF and executive function deficits to the left CB among patients with schizophrenia. PMID:15506830
Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary
2011-08-01
Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.
A Brainnetome Atlas Based Mild Cognitive Impairment Identification Using Hurst Exponent
Long, Zhuqing; Jing, Bin; Guo, Ru; Li, Bo; Cui, Feiyi; Wang, Tingting; Chen, Hongwen
2018-01-01
Mild cognitive impairment (MCI), which generally represents the transition state between normal aging and the early changes related to Alzheimer’s disease (AD), has drawn increasing attention from neuroscientists due that efficient AD treatments need early initiation ahead of irreversible brain tissue damage. Thus effective MCI identification methods are desperately needed, which may be of great importance for the clinical intervention of AD. In this article, the range scaled analysis, which could effectively detect the temporal complexity of a time series, was utilized to calculate the Hurst exponent (HE) of functional magnetic resonance imaging (fMRI) data at a voxel level from 64 MCI patients and 60 healthy controls (HCs). Then the average HE values of each region of interest (ROI) in brainnetome atlas were extracted and compared between MCI and HC. At last, the abnormal average HE values were adopted as the classification features for a proposed support vector machine (SVM) based identification algorithm, and the classification performance was estimated with leave-one-out cross-validation (LOOCV). Our results indicated 83.1% accuracy, 82.8% sensitivity and 83.3% specificity, and an area under curve of 0.88, suggesting that the HE index could serve as an effective feature for the MCI identification. Furthermore, the abnormal HE brain regions in MCI were predominately involved in left middle frontal gyrus, right hippocampus, bilateral parahippocampal gyrus, bilateral amygdala, left cingulate gyrus, left insular gyrus, left fusiform gyrus, left superior parietal gyrus, left orbital gyrus and left basal ganglia. PMID:29692721
Zhang, Jiang; Yuan, Zhen; Huang, Jin; Yang, Qin; Chen, Huafu
2014-12-01
Motor imagery is an experimental paradigm implemented in cognitive neuroscience and cognitive psychology. To investigate the asymmetry of the strength of cortical functional activity due to different single-hand motor imageries, functional magnetic resonance imaging (fMRI) data from right handed normal subjects were recorded and analyzed during both left-hand and right-hand motor imagery processes. Then the average power of blood oxygenation level-dependent (BOLD) signals in temporal domain was calculated using the developed tool that combines Welch power spectrum and the integral of power spectrum approach of BOLD signal changes during motor imagery. Power change analysis results indicated that cortical activity exhibited a stronger power in the precentral gyrus and medial frontal gyrus with left-hand motor imagery tasks compared with that from right-hand motor imagery tasks. These observations suggest that right handed normal subjects mobilize more cortical nerve cells for left-hand motor imagery. Our findings also suggest that the approach based on power differences of BOLD signals is a suitable quantitative analysis tool for quantification of asymmetry of brain activity intensity during motor imagery tasks. Copyright © 2014 Elsevier Inc. All rights reserved.
Watanabe, Keiko; Masaoka, Yuri; Kawamura, Mitsuru; Yoshida, Masaki; Koiwa, Nobuyoshi; Yoshikawa, Akira; Kubota, Satomi; Ida, Masahiro; Ono, Kenjiro; Izumizaki, Masahiko
2018-01-01
Autobiographical odor memory (AM-odor) accompanied by a sense of realism of a specific memory elicits strong emotions. AM-odor differs from memory triggered by other sensory modalities, possibly because olfaction involves a unique sensory process. Here, we examined the orbitofrontal cortex (OFC), using functional magnetic resonance imaging (fMRI) to determine which OFC subregions are related to AM-odor. Both AM-odor and a control odor successively increased subjective ratings of comfortableness and pleasantness. Importantly, AM-odor also increased arousal levels and the vividness of memories, and was associated with a deep and slow breathing pattern. fMRI analysis indicated robust activation in the left posterior OFC (L-POFC). Connectivity between the POFC and whole brain regions was estimated using psychophysiological interaction analysis (PPI). We detected several trends in connectivity between L-POFC and bilateral precuneus, bilateral rostral dorsal anterior cingulate cortex (rdACC), and left parahippocampus, which will be useful for targeting our hypotheses for future investigations. The slow breathing observed in AM-odor was correlated with rdACC activation. Odor associated with emotionally significant autobiographical memories was accompanied by slow and deep breathing, possibly involving rdACC processing.
Applying a CAD-generated imaging marker to assess short-term breast cancer risk
NASA Astrophysics Data System (ADS)
Mirniaharikandehei, Seyedehnafiseh; Zarafshani, Ali; Heidari, Morteza; Wang, Yunzhi; Aghaei, Faranak; Zheng, Bin
2018-02-01
Although whether using computer-aided detection (CAD) helps improve radiologists' performance in reading and interpreting mammograms is controversy due to higher false-positive detection rates, objective of this study is to investigate and test a new hypothesis that CAD-generated false-positives, in particular, the bilateral summation of false-positives, is a potential imaging marker associated with short-term breast cancer risk. An image dataset involving negative screening mammograms acquired from 1,044 women was retrospectively assembled. Each case involves 4 images of craniocaudal (CC) and mediolateral oblique (MLO) view of the left and right breasts. In the next subsequent mammography screening, 402 cases were positive for cancer detected and 642 remained negative. A CAD scheme was applied to process all "prior" negative mammograms. Some features from CAD scheme were extracted, which include detection seeds, the total number of false-positive regions, an average of detection scores and the sum of detection scores in CC and MLO view images. Then the features computed from two bilateral images of left and right breasts from either CC or MLO view were combined. In order to predict the likelihood of each testing case being positive in the next subsequent screening, two logistic regression models were trained and tested using a leave-one-case-out based cross-validation method. Data analysis demonstrated the maximum prediction accuracy with an area under a ROC curve of AUC=0.65+/-0.017 and the maximum adjusted odds ratio of 4.49 with a 95% confidence interval of [2.95, 6.83]. The results also illustrated an increasing trend in the adjusted odds ratio and risk prediction scores (p<0.01). Thus, the study showed that CAD-generated false-positives might provide a new quantitative imaging marker to help assess short-term breast cancer risk.
An application of the MPP to the interactive manipulation of stereo images of digital terrain models
NASA Technical Reports Server (NTRS)
Pol, Sanjay; Mcallister, David; Davis, Edward
1987-01-01
Massively Parallel Processor algorithms were developed for the interactive manipulation of flat shaded digital terrain models defined over grids. The emphasis is on real time manipulation of stereo images. Standard graphics transformations are applied to a 128 x 128 grid of elevations followed by shading and a perspective projection to produce the right eye image. The surface is then rendered using a simple painter's algorithm for hidden surface removal. The left eye image is produced by rotating the surface 6 degs about the viewer's y axis followed by a perspective projection and rendering of the image as described above. The left and right eye images are then presented on a graphics device using standard stereo technology. Performance evaluations and comparisons are presented.
Interhemispheric Differences in Knowledge of Animals Among Patients With Semantic Dementia
Mendez, Mario F.; Kremen, Sarah A.; Tsai, Po-Heng; Shapira, Jill S.
2011-01-01
Objective To investigate interhemispheric differences on naming and fluency tasks for living versus nonliving things among patients with semantic dementia (SD). Background In SD, left-temporal involvement impairs language and word comprehension, and right-temporal involvement impairs facial recognition. There may be other interhemispheric differences, particularly in the animate-inanimate dichotomy. Method On the basis of magnetic resonance imaging (MRI) ratings of anterior temporal atrophy, 36 patients who met criteria for SD were divided into 21 with left-predominant and 11 with right-predominant involvement (4 others were too symmetric for analysis). The left and right-predominant groups were compared on naming, fluency, and facial recognition tests. Results Consistent with greater language impairment, the left-predominant patients had worse naming, especially inanimate and letter fluency, than the right-predominant patients. In contrast, difference in scores suggested selective impairment of animal naming, animal name fluency, and semantic knowledge for animate items among the right-predominant patients. Proportionally more right than left-predominant patients misnamed animal items and faces. Conclusions These findings support interhemispheric differences in animal knowledge. Whereas left-predominant SD equally affects animate and inanimate words from language involvement, right-predominant SD, with greater sparing of language, continues to impair other semantic aspects of animals. The right anterior temporal region seems to make a unique contribution to knowledge of living things. PMID:21042206
Imaging Neuroinflammation in Post Traumatic Stress Disorder
2012-11-01
Metabolite B = 0-30%), without evidence of lipophilic metabolites which can confound the analysis. 8 Figure 2 Left graph : Mean PSTD... graph : There is similar plasma protein binding of 18-F PBR111 in healthy and PTSD participants. Individual subject are data are indicated on the... graph . TSPO Binder status Both mixed and high afffinity TSPO binders were evident in the PTSD (4 high affinity binders, 4 mixed affinity
White matter disease correlates with lexical retrieval deficits in primary progressive aphasia.
Powers, John P; McMillan, Corey T; Brun, Caroline C; Yushkevich, Paul A; Zhang, Hui; Gee, James C; Grossman, Murray
2013-01-01
To relate fractional anisotropy (FA) changes associated with the semantic and logopenic variants of primary progressive aphasia (PPA) to measures of lexical retrieval. We collected neuropsychological testing, volumetric magnetic resonance imaging, and diffusion-weighted imaging on semantic variant PPA (svPPA) (n = 11) and logopenic variant PPA (lvPPA) (n = 13) patients diagnosed using published criteria. We also acquired neuroimaging data on a group of demographically comparable healthy seniors (n = 34). FA was calculated and analyzed using a white matter (WM) tract-specific analysis approach. This approach utilizes anatomically guided data reduction to increase sensitivity and localizes results within canonically defined tracts. We used non-parametric, cluster-based statistical analysis to relate language performance to FA and determine regions of reduced FA in patients. We found widespread FA reductions in WM for both variants of PPA. FA was related to both confrontation naming and category naming fluency performance in left uncinate fasciculus and corpus callosum in svPPA and left superior and inferior longitudinal fasciculi in lvPPA. SvPPA and lvPPA are associated with distinct disruptions of a large-scale network implicated in lexical retrieval, and the WM disease in each phenotype may contribute to language impairments including lexical retrieval.
Silvetti, Massimo; Lasaponara, Stefano; Lecce, Francesca; Dragone, Alessio; Macaluso, Emiliano; Doricchi, Fabrizio
2016-12-01
In humans, invalid visual targets that mismatch spatial expectations induced by attentional cues are considered to selectively engage a right hemispheric "reorienting" network that includes the temporal parietal junction (TPJ), the inferior frontal gyrus (IFG), and the medial frontal gyrus (MFG). However, recent findings suggest that this hemispheric dominance is not absolute and that it is rather observed because the TPJ and IFG areas in the left hemisphere are engaged both by invalid and valid cued targets. Because of this, the BOLD response of the left hemisphere to invalid targets is usually cancelled out by the standard "invalid versus valid" contrast used in functional magnetic resonance imaging investigations of spatial attention. Here, we used multivariate pattern recognition analysis (MVPA) to gain finer insight into the role played by the left TPJ and IFG in reorienting to invalid targets. We found that in left TPJ and IFG blood oxygen level-dependent (BOLD) responses to invalid and valid targets were associated to different patterns of neural activity, possibly reflecting the presence of functionally distinct neuronal populations. Pattern segregation was significant at group level, it was present in almost all of the participants to the study and was observed both for targets in the left and right side of space. A control whole-brain MVPA ("Searchlight" analysis) confirmed the results obtained in predefined regions of interest and highlighted that also other areas, that is, superior parietal and frontal-polar cortex, show different patterns of BOLD response to valid and invalid targets. These results confirm and expand previous evidence highlighting the involvement of the left hemisphere in reorienting of visual attention (Doricchi et al. 2010; Dragone et al. 2015). These findings suggest that asymmetrical reorienting deficits suffered by right brain damaged patients with left spatial neglect, who have severe impairments in contralesional reorienting and less severe impairments in ipsilesional reorienting, are due to preserved reorienting abilities in the intact left hemisphere. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Tikàsz, Andràs; Potvin, Stéphane; Lungu, Ovidiu; Joyal, Christian C; Hodgins, Sheilagh; Mendrek, Adrianna; Dumais, Alexandre
2016-01-01
Background Evidence suggests a 2.1–4.6 times increase in the risk of violent behavior in schizophrenia compared to the general population. Current theories propose that the processing of negative emotions is defective in violent individuals and that dysfunctions within the neural circuits involved in emotion processing are implicated in violence. Although schizophrenia patients show enhanced sensitivity to negative stimuli, there are only few functional neuroimaging studies that have examined emotion processing among men with schizophrenia and a history of violence. Objective The present study aimed to identify the brain regions with greater neurofunctional alterations, as detected by functional magnetic resonance imaging during an emotion processing task, of men with schizophrenia who had engaged in violent behavior compared with those who had not. Methods Sixty men were studied; 20 with schizophrenia and a history of violence, 19 with schizophrenia and no violence, and 21 healthy men were scanned while viewing positive, negative, and neutral images. Results Negative images elicited hyperactivations in the anterior cingulate cortex (ACC), left and right lingual gyrus, and the left precentral gyrus in violent men with schizophrenia, compared to nonviolent men with schizophrenia and healthy men. Neutral images elicited hyperactivations in the right and left middle occipital gyrus, left lingual gyrus, and the left fusiform gyrus in violent men with schizophrenia, compared to the other two groups. Discussion Violent men with schizophrenia displayed specific increases in ACC in response to negative images. Given the role of the ACC in information integration, these results indicate a specific dysfunction in the processing of negative emotions that may trigger violent behavior in men with schizophrenia. PMID:27366072
Vaccaro, Calogero; Busetto, Roberto; Bernardini, Daniele; Anselmi, Carlo; Zotti, Alessandro
2012-03-01
To evaluate the precision and accuracy of assessing bone mineral density (BMD) by use of mean gray value (MGV) on digitalized and digital images of conventional and digital radiographs, respectively, of ex vivo bovine and equine bone specimens in relation to the gold-standard technique of dual-energy x-ray absorptiometry (DEXA). Left and right metatarsal bones from 11 beef cattle and right femurs from 2 horses. Bovine specimens were imaged by use of conventional radiography, whereas equine specimens were imaged by use of computed radiography (digital radiography). Each specimen was subsequently scanned by use of the same DEXA equipment. The BMD values resulting from each DEXA scan were paired with the MGVs obtained by use of software on the corresponding digitalized or digital radiographic image. The MGV analysis of digitalized and digital x-ray images was a precise (coefficient of variation, 0.1 and 0.09, respectively) and highly accurate method for assessing BMD, compared with DEXA (correlation coefficient, 0.910 and 0.937 for conventional and digital radiography, respectively). The high correlation between MGV and BMD indicated that MGV analysis may be a reliable alternative to DEXA in assessing radiographic bone density. This may provide a new, inexpensive, and readily available estimate of BMD.
Hidden word learning capacity through orthography in aphasia.
Tuomiranta, Leena M; Càmara, Estela; Froudist Walsh, Seán; Ripollés, Pablo; Saunavaara, Jani P; Parkkola, Riitta; Martin, Nadine; Rodríguez-Fornells, Antoni; Laine, Matti
2014-01-01
The ability to learn to use new words is thought to depend on the integrity of the left dorsal temporo-frontal speech processing pathway. We tested this assumption in a chronic aphasic individual (AA) with an extensive left temporal lesion using a new-word learning paradigm. She exhibited severe phonological problems and Magnetic Resonance Imaging (MRI) suggested a complete disconnection of this left-sided white-matter pathway comprising the arcuate fasciculus (AF). Diffusion imaging tractography confirmed the disconnection of the direct segment and the posterior indirect segment of her left AF, essential components of the left dorsal speech processing pathway. Despite her left-hemispheric damage and moderate aphasia, AA learned to name and maintain the novel words in her active vocabulary on par with healthy controls up to 6 months after learning. This exceeds previous demonstrations of word learning ability in aphasia. Interestingly, AA's preserved word learning ability was modality-specific as it was observed exclusively for written words. Functional magnetic resonance imaging (fMRI) revealed that in contrast to normals, AA showed a significantly right-lateralized activation pattern in the temporal and parietal regions when engaged in reading. Moreover, learning of visually presented novel word-picture pairs also activated the right temporal lobe in AA. Both AA and the controls showed increased activation during learning of novel versus familiar word-picture pairs in the hippocampus, an area critical for associative learning. AA's structural and functional imaging results suggest that in a literate person, a right-hemispheric network can provide an effective alternative route for learning of novel active vocabulary. Importantly, AA's previously undetected word learning ability translated directly into therapy, as she could use written input also to successfully re-learn and maintain familiar words that she had lost due to her left hemisphere lesion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fully automatic detection of salient features in 3-d transesophageal images.
Curiale, Ariel H; Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Ren, Ben; Aja-Fernández, Santiago; Bosch, Johan G
2014-12-01
Most automated segmentation approaches to the mitral valve and left ventricle in 3-D echocardiography require a manual initialization. In this article, we propose a fully automatic scheme to initialize a multicavity segmentation approach in 3-D transesophageal echocardiography by detecting the left ventricle long axis, the mitral valve and the aortic valve location. Our approach uses a probabilistic and structural tissue classification to find structures such as the mitral and aortic valves; the Hough transform for circles to find the center of the left ventricle; and multidimensional dynamic programming to find the best position for the left ventricle long axis. For accuracy and agreement assessment, the proposed method was evaluated in 19 patients with respect to manual landmarks and as initialization of a multicavity segmentation approach for the left ventricle, the right ventricle, the left atrium, the right atrium and the aorta. The segmentation results revealed no statistically significant differences between manual and automated initialization in a paired t-test (p > 0.05). Additionally, small biases between manual and automated initialization were detected in the Bland-Altman analysis (bias, variance) for the left ventricle (-0.04, 0.10); right ventricle (-0.07, 0.18); left atrium (-0.01, 0.03); right atrium (-0.04, 0.13); and aorta (-0.05, 0.14). These results indicate that the proposed approach provides robust and accurate detection to initialize a multicavity segmentation approach without any user interaction. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Grossman, Murray; Powers, John; Ash, Sherry; McMillan, Corey; Burkholder, Lisa; Irwin, David; Trojanowski, John Q.
2012-01-01
Non-fluent/agrammatic primary progressive aphasia (naPPA) is a progressive neurodegenerative condition most prominently associated with slowed, effortful speech. A clinical imaging marker of naPPA is disease centered in the left inferior frontal lobe. We used multimodal imaging to assess large-scale neural networks underlying effortful expression in 15 patients with sporadic naPPA due to frontotemporal lobar degeneration (FTLD) spectrum pathology. Effortful speech in these patients is related in part to impaired grammatical processing, and to phonologic speech errors. Gray matter (GM) imaging shows frontal and anterior-superior temporal atrophy, most prominently in the left hemisphere. Diffusion tensor imaging reveals reduced fractional anisotropy in several white matter (WM) tracts mediating projections between left frontal and other GM regions. Regression analyses suggest disruption of three large-scale GM-WM neural networks in naPPA that support fluent, grammatical expression. These findings emphasize the role of large-scale neural networks in language, and demonstrate associated language deficits in naPPA. PMID:23218686
Zhang, Wei; Song, Lingheng; Yin, Xuntao; Zhang, Jiuquan; Liu, Chen; Wang, Jian; Zhou, Daiquan; Chen, Bing; Lii, Haitao
2014-01-01
Hyperthyroidism is frequently associated with pronounced neuropsychiatric symptoms such as impulsiveness, irritability, poor concentration, and memory impairments. Functional neuroimaging has revealed changes in cerebral metabolism in hyperthyroidism, but regional changes in cortical morphology associated with specific neurological deficits have not been studied so far. To investigate the pathophysiology underlying hyperthyroid-associated neural dysfunction, we compared grey matter volume (GMV) between adult hyperthyroid patients and matched healthy controls using voxel-based morphometry (VBM). High resolution 3D T1-weighted images were acquired by 3T MRI from 51 hyperthyroid patients and 51 controls. VBM analysis was performed using SPM8. Correlations between regional GMV and both serum free thyroid hormone (TH) concentrations and disease duration were assessed by multiple regression analysis. Compared to controls, GM volumes in the bilateral hippocampus, parahippocampal gyrus, calcarine, lingual gyrus, and left temporal pole were lower and bilateral supplementary motor area GMV higher in hyperthyroid patients. Serum free triiodothyronine (FT3) concentration was negatively correlated with the normalized regional volume (NRV) of the left parahippocampal gyrus and serum free thyroxine (FT4) concentration negatively correlated with the NRV of the left hippocampus and right parahippocampal gyrus. Disease duration was negatively correlated with the NRV of the left hippocampus, bilateral parahippocampal gyrus, and left temporal pole. Hyperthyroid patients exhibited reduced GMV in regions associated with memory, attention, emotion, vision, and motor planning. Negative correlations between GMV and both free TH and disease duration suggest that chronic TH elevation induces abnormalities in the adult cortex. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy.
Farid, Nikdokht; Girard, Holly M; Kemmotsu, Nobuko; Smith, Michael E; Magda, Sebastian W; Lim, Wei Y; Lee, Roland R; McDonald, Carrie R
2012-08-01
To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration-cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Quantitative MR imaging-derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%-89.5%) and specificity (92.2%-94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Alexandra, E-mail: Alexandra.quinn@health.nsw.gov.au; Centre for Medical Radiation Physics, University of Wollongong, NSW; Liverpool and Macarthur Cancer Therapy Centres, NSW
2014-07-01
The purpose of this study was to investigate the delivered dose from a kilovoltage cone-beam computed tomography (kV-CBCT) acquired in breast treatment position for a left and right breast setup. The dose was measured with thermoluminescent dosimeters positioned within a female anthropomorphic phantom at organ locations. Imaging was performed on an Elekta Synergy XVI system with the phantom setup on a breast board. The image protocol involved 120 kVp, 140 mAs, and a 270° arc rotation clockwise 0° to 270° for the left breast setup and 270° to 180° for the right breast setup (maximum arc rotations possible). The dosemore » delivered to the left breast, right breast, and heart was 5.1 mGy, 3.9 mGy, and 4.0 mGy for the left breast setup kV-CBCT, and 6.4 mGy, 6.0 mGy, and 4.8 mGy for the right breast setup kV-CBCT, respectively. The rotation arc of the kV-CBCT influenced the dose delivered, with the right breast setup kV-CBCT found to deliver a dose of up to 4 mGy or 105% higher to the treated breast′s surface in comparison with the left breast setup. This is attributed to the kV-CBCT source being more proximal to the anterior of the phantom for a right breast setup, whereas the source is more proximal to the posterior of the patient for a left-side scan.« less
Saafan, Tamer; Hu, James Yi; Mahfouz, Ahmed-Emad; Abdelaal, Abdelrahman
2018-01-01
True left-sided gallbladder (LSG) is a rare finding that may present with symptoms similar to those of a normally positioned gallbladder. Moreover, it may be missed by preoperative imaging studies such as ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), or endoscopic ultrasound. True left-sided gallbladder is a surgical challenge and surgical technique may need to be modified for the completion of laparoscopic cholecystectomy. In this case report, we present a case of true left-sided gallbladder that produced right-sided abdominal symptoms. Ultrasound of the abdomen failed to show the left-sided position of the gallbladder. MRI showed the gallbladder located to the left of the ligamentum teres underneath segment III of the liver. Intraoperatively, the gallbladder was grasped and retracted to the right under the falciform ligament and it was removed using classical right-sided ports with no modification to the technique. No complications were encountered intraoperatively or postoperatively. True LSG is a rare anomaly that may present with right-sided symptoms like normally positioned gallbladder. It may be missed in preoperative imaging studies and can be discovered only intraoperatively. Modification of laparoscopic ports, change in patient's position and/or surgeon's position, or conversion to open cholecystectomy may be needed for safe removal of the gallbladder. Classical technique of laparoscopic cholecystectomy is feasible for left-sided gallbladder. However, if the anatomy is not clear, modifications of the surgical technique may be necessary for the safe dissection of the gallbladder. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tsuge, Mikio; Izumizaki, Masahiko; Kigawa, Kazuyoshi; Atsumi, Takashi; Homma, Ikuo
2012-12-01
We studied the influence of false proprioceptive information generated by arm vibration and false visual information provided by a mirror in which subjects saw a reflection of another arm on perception of arm position, in a forearm position-matching task in right-handed subjects (n = 17). The mirror was placed between left and right arms, and arranged so that the reflected left arm appeared to the subjects to be their unseen right (reference) arm. The felt position of the right arm, indicated with a paddle, was influenced by vision of the mirror image of the left arm. If the left arm appeared flexed in the mirror, subjects felt their right arm to be more flexed than it was. Conversely, if the left arm was extended, they felt their right arm to be more extended than it was. When reference elbow flexors were vibrated at 70-80 Hz, an illusion of extension of the vibrated arm was elicited. The illusion of a more flexed reference arm evoked by seeing a mirror image of the flexed left arm was reduced by vibration. However, the illusion of extension of the right arm evoked by seeing a mirror image of the extended left arm was increased by vibration. That is, when the mirror and vibration illusions were in the same direction, they reinforced each other. However, when they were in opposite directions, they tended to cancel one another. The present study shows the interaction between proprioceptive and visual information in perception of arm position.
Seeing mathematics: perceptual experience and brain activity in acquired synesthesia.
Brogaard, Berit; Vanni, Simo; Silvanto, Juha
2013-01-01
We studied the patient JP who has exceptional abilities to draw complex geometrical images by hand and a form of acquired synesthesia for mathematical formulas and objects, which he perceives as geometrical figures. JP sees all smooth curvatures as discrete lines, similarly regardless of scale. We carried out two preliminary investigations to establish the perceptual nature of synesthetic experience and to investigate the neural basis of this phenomenon. In a functional magnetic resonance imaging (fMRI) study, image-inducing formulas produced larger fMRI responses than non-image inducing formulas in the left temporal, parietal and frontal lobes. Thus our main finding is that the activation associated with his experience of complex geometrical images emerging from mathematical formulas is restricted to the left hemisphere.
Space Radar Image of Los Angeles, California
NASA Technical Reports Server (NTRS)
1994-01-01
This radar image shows the massive urbanization of Los Angeles, California. The image extends from the Santa Monica Bay at the left to the San Gabriel Mountains at the right. Downtown Los Angeles is in the center of the image. The runways of the Los Angeles International Airport appear as black strips at the left center of the image. The waterways of Marina del Rey are seen just above the airport. The San Gabriel Mountains and the city of Pasadena are at the right center of the image. Black areas on the mountains on the right are fire scars from the 1993 Altadena fire. The Rose Bowl is shown as a small circle near the right center. The complex freeway system is visible as dark lines throughout the image. Some city areas, such as Santa Monica in the upper left, appear red due to the alignment of streets and buildings to the incoming radar beam. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. This image is centered at 34.04 degrees North latitude and 118.2 degrees West longitude with North pointing toward the upper right. The area shown measures 40 kilometers by 50 kilometers (25 miles by 31 miles).
Slight Blurring in Newer Image from Mars Orbiter
2018-02-09
These two frames were taken of the same place on Mars by the same orbiting camera before (left) and after some images from the camera began showing unexpected blur. The images are from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. They show a patch of ground about 500 feet or 150 meters wide in Gusev Crater. The one on the left, from HiRISE observation ESP_045173_1645, was taken March 16, 2016. The one on the right was taken Jan. 9, 2018. Gusev Crater, at 15 degrees south latitude and 176 degrees east longitude, is the landing site of NASA's Spirit Mars rover in 2004 and a candidate landing site for a rover to be launched in 2020. HiRISE images provide important information for evaluating potential landing sites. The smallest boulders with measurable diameters in the left image are about 3 feet (90 centimeters) wide. In the blurred image, the smallest measurable are about double that width. As of early 2018, most full-resolution images from HiRISE are not blurred, and the cause of the blur is still under investigation. Even before blurred images were first seen, in 2017, observations with HiRISE commonly used a technique that covers more ground area at half the resolution. This shows features smaller than can be distinguished with any other camera orbiting Mars, and little blurring has appeared in these images. https://photojournal.jpl.nasa.gov/catalog/PIA22215
Space Radar Image of Los Angeles, California
1999-04-15
This radar image shows the massive urbanization of Los Angeles, California. The image extends from the Santa Monica Bay at the left to the San Gabriel Mountains at the right. Downtown Los Angeles is in the center of the image. The runways of the Los Angeles International Airport appear as black strips at the left center of the image. The waterways of Marina del Rey are seen just above the airport. The San Gabriel Mountains and the city of Pasadena are at the right center of the image. Black areas on the mountains on the right are fire scars from the 1993 Altadena fire. The Rose Bowl is shown as a small circle near the right center. The complex freeway system is visible as dark lines throughout the image. Some city areas, such as Santa Monica in the upper left, appear red due to the alignment of streets and buildings to the incoming radar beam. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. This image is centered at 34.04 degrees North latitude and 118.2 degrees West longitude with North pointing toward the upper right. The area shown measures 40 kilometers by 50 kilometers (25 miles by 31 miles). http://photojournal.jpl.nasa.gov/catalog/PIA01789
Left main coronary artery disease: pathophysiology, diagnosis, and treatment.
Collet, Carlos; Capodanno, Davide; Onuma, Yoshinobu; Banning, Adrian; Stone, Gregg W; Taggart, David P; Sabik, Joseph; Serruys, Patrick W
2018-06-01
The advent of coronary angiography in the 1960s allowed for the risk stratification of patients with stable angina. Patients with unprotected left main coronary artery disease have an increased risk of death related to the large amount of myocardium supplied by this vessel. Although coronary angiography remains the preferred imaging modality for the evaluation of left main coronary artery stenosis, this technique has important limitations. Angiograms of the left main coronary artery segment can be difficult to interpret, and almost one-third of patients can be misclassified when fractional flow reserve is used as the reference. In patients with clinically significant unprotected left main coronary artery disease, surgical revascularization was shown to improve survival compared with medical therapy and has been regarded as the treatment of choice for unprotected left main coronary artery disease. Two large-scale clinical trials published in 2016 support the usefulness of catheter-based revascularization in selected patients with unprotected left main coronary artery disease. In this Review, we describe the pathophysiology of unprotected left main coronary artery disease, discuss diagnostic approaches in light of new noninvasive and invasive imaging techniques, and detail risk stratification models to aid the Heart Team in the decision-making process for determining the best revascularization strategy for these patients.
Distortion correction of echo-planar diffusion-weighted images of uterine cervix.
deSouza, Nandita M; Orton, Matthew; Downey, Kate; Morgan, Veronica A; Collins, David J; Giles, Sharon L; Payne, Geoffrey S
2016-05-01
To investigate the clinical utility of the reverse gradient algorithm in correcting distortions in diffusion-weighted images of the cervix and for increasing diagnostic performance. Forty-one patients ages 25-72 years (mean 40 ± 11 years) with suspected or early stage cervical cancer were imaged at 3T using an endovaginal coil. T2 -weighted (W) and diffusion-weighted images with right and left phase-encode gradient directions were obtained coronal to the cervix (b = 0, 100, 300, 500, 800 s mm(-2) ). Differences in angle of the endocervical canal to the x-axis between T2 W and right-gradient, left-gradient, and corrected images were measured. Uncorrected and corrected images were assessed for diagnostic performance when viewed together with T2 W images by two independent observers against subsequent histology. The angles of the endocervical canal relative to the x-axis were significantly different between the T2 W images and the right-gradient images (P = 0.007), approached significance for left-gradient images (P = 0.055), and were not significantly different after correction (P = 0.95). Corrected images enabled a definitive diagnosis in 34% (n = 14) of patients classified as equivocal on uncorrected images. Tumor volume in this subset was 0.18 ± 0.44 cm(3) (mean ± SD; sensitivity of detection 100% [8/8], specificity 50% [3/6] for an experienced observer). Correction did not improve diagnostic performance for the less-experienced observer. Distortion-corrected diffusion-weighted images improved correspondence with T2 W images and diagnostic performance in a third of cases. © 2015 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2017-11-27
These two images illustrate just how far Cassini traveled to get to Saturn. On the left is one of the earliest images Cassini took of the ringed planet, captured during the long voyage from the inner solar system. On the right is one of Cassini's final images of Saturn, showing the site where the spacecraft would enter the atmosphere on the following day. In the left image, taken in 2001, about six months after the spacecraft passed Jupiter for a gravity assist flyby, the best view of Saturn using the spacecraft's high-resolution (narrow-angle) camera was on the order of what could be seen using the Earth-orbiting Hubble Space Telescope. At the end of the mission (at right), from close to Saturn, even the lower resolution (wide-angle) camera could capture just a tiny part of the planet. The left image looks toward Saturn from 20 degrees below the ring plane and was taken on July 13, 2001 in wavelengths of infrared light centered at 727 nanometers using the Cassini spacecraft narrow-angle camera. The view at right is centered on a point 6 degrees north of the equator and was taken in visible light using the wide-angle camera on Sept. 14, 2017. The view on the left was acquired at a distance of approximately 317 million miles (510 million kilometers) from Saturn. Image scale is about 1,900 miles (3,100 kilometers) per pixel. The view at right was acquired at a distance of approximately 360,000 miles (579,000 kilometers) from Saturn. Image scale is 22 miles (35 kilometers) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21353
Zito, Concetta; Mohammed, Moemen; Todaro, Maria Chiara; Khandheria, Bijoy K; Cusmà-Piccione, Maurizio; Oreto, Giuseppe; Pugliatti, Pietro; Abusalima, Mohamed; Antonini-Canterin, Francesco; Vriz, Olga; Carerj, Scipione
2014-11-01
We evaluated the interplay between left ventricular diastolic function and large-artery stiffness in asymptomatic patients at increased risk of heart failure and no structural heart disease (Stage A). We divided 127 consecutive patients (mean age 49 ± 17 years) with risk factors for heart failure who were referred to our laboratory to rule out structural heart disease into two groups according to presence (Group 1, n = 35) or absence (Group 2, n = 92) of grade I left ventricular diastolic dysfunction. Doppler imaging with high-resolution echo-tracking software was used to measure intima-media thickness (IMT) and stiffness of carotid arteries. Group 1 had significantly higher mean age, blood pressure, left ventricular mass index, carotid IMT and arterial stiffness than Group 2 (P < 0.05). Overall, carotid stiffness indices (β-stiffness index, augmentation index and elastic modulus) and 'one-point' pulse wave velocity each showed inverse correlation with E-wave velocity, E' velocity and E/A ratio, and direct correlation with A-wave velocity, E-wave deceleration time and E/E' ratio (P < 0.05). Arterial compliance showed negative correlations with the echocardiographic indices of left ventricular diastolic function (P < 0.05). On logistic regression analysis, age, hypertension, SBP, pulse pressure, left ventricular mass index, carotid IMT and stiffness parameters were associated with grade I left ventricular diastolic dysfunction (P < 0.05 for each). However, on multivariate logistic analysis, only 'one-point' pulse wave velocity and age were independent predictors (P = 0.038 and P = 0.016, respectively). An independent association between grade I left ventricular diastolic dysfunction and increased arterial stiffness is demonstrated at the earliest stage of heart failure. Hence, assessment of vascular function, beyond cardiac function, should be included in a comprehensive clinical evaluation of these patients.
Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.
de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando
2016-09-01
Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Growth of left ventricular mass with military basic training in army recruits.
Batterham, Alan M; George, Keith P; Birch, Karen M; Pennell, Dudley J; Myerson, Saul G
2011-07-01
Exercise-induced left ventricular hypertrophy is well documented, but whether this occurs merely in line with concomitant increases in lean body mass is unclear. Our aim was to model the extent of left ventricular hypertrophy associated with increased lean body mass attributable to an exercise training program. Cardiac and whole-body magnetic resonance imaging was performed before and after a 10-wk intensive British Army basic training program in a sample of 116 healthy Caucasian males (aged 17-28 yr). The within-subjects repeated-measures allometric relationship between lean body mass and left ventricular mass was modeled to allow the proper normalization of changes in left ventricular mass for attendant changes in lean body mass. To linearize the general allometric model (Y=aXb), data were log-transformed before analysis; the resulting effects were therefore expressed as percent changes. We quantified the probability that the true population increase in normalized left ventricular mass was greater than a predefined minimum important difference of 0.2 SD, assigning a probabilistic descriptive anchor for magnitude-based inference. The absolute increase in left ventricular mass was 4.8% (90% confidence interval=3.5%-6%), whereas lean body mass increased by 2.6% (2.1%-3.0%). The change in left ventricular mass adjusted for the change in lean body mass was 3.5% (1.9%-5.1%), equivalent to an increase of 0.25 SD (0.14-0.37). The probability that this effect size was greater than or equal to our predefined minimum important change of 0.2 SD was 0.78-likely to be important. After correction for allometric growth rates, left ventricular hypertrophy and lean body mass changes do not occur at the same magnitude in response to chronic exercise.
Ye, Min; Tian, Na; Liu, Yanqiu; Li, Wei; Lin, Hong; Fan, Rui; Li, Cuiling; Liu, Donghong; Yao, Fengjuan
We initiated this study to explore the relationships of serum phosphorus level with left ventricular ultrasound features and diastolic function in peritoneal dialysis (PD) patients. 174 patients with end-stage renal disease (ESRD) receiving PD were enrolled in this retrospective observational study. Conventional echocardiography examination and tissue Doppler imaging (TDI) were performed in each patient. Clinical information and laboratory data were also collected. Analyses of echocardiographic features were performed according to phosphorus quartiles groups. And multivariate regression models were used to determine the association between serum phosphorus and Left ventricular diastolic dysfunction (LVDD). With the increase of serum phosphorus levels, patients on PD showed an increased tissue Doppler-derived E/e' ratio of lateral wall (P < 0.001), indicating a deterioration of left ventricular diastolic function. Steady growths of left atrium and left ventricular diameters as well as increase of left ventricular muscle mass were also observed across the increasing quartiles of phosphorus, while left ventricular ejection fraction remained normal. In a multivariate analysis, the regression coefficient for E/e' ratio in the highest phosphorus quartile was almost threefold higher relative to those in the lowest quartile group. And compared with patients in the lowest phosphorus quartile (<1.34 mmol/L) those in the highest phosphorus quartile (>1.95 mmol/L) had a more than fivefold increased odds of E/e' ratio >15. Our study showed an early impairment of left ventricular diastolic function in peritoneal dialysis patients. High serum phosphorus level was independently associated with greater risk of LVDD in these patients. Whether serum phosphorus will be a useful target for prevention or improvement of LVDD remains to be proved by further studies.
Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing
2018-05-01
Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.
Jaźwiec, Przemysław; Chwiszczuk, Luiza; Sasiadek, Marek; Całka, Karol; Kuniej, Tomasz; Plucińska, Irena
2008-01-01
We present a case of 32-year-old woman, who was admitted to the Department of Neurology in the emergency mode, due to: instantaneous pupillary dilation (mydriasis), ptosis of the left eyeball and double vision. We performed plain CT, panarteriography of cerebral vessels, CT angiography with RT3D (volume-rendered three-dimensional) reconstruction images. On the base of imaging studies the diagnosis of giant saccular aneurysm of the left posterior communicating artery was established. The patient was operated on and the giant aneurysm of left posterior communicating artery was clipped, confirming radiological diagnosis. During operation and postoperative period no complications were noted.
Yamasaki, Fumiyuki; Akiyama, Yuji; Tsumura, Ryu; Kolakshyapati, Manish; Adhikari, Rupendra Bahadur; Takayasu, Takeshi; Nosaka, Ryo; Kurisu, Kaoru
2016-07-01
Traumatic injuries of the abducens nerve as a consequence of facial and/or head trauma occur with or without associated cervical or skull base fracture. This is the first report on unilateral avulsion of the abducens nerve in a 29-year-old man with severe right facial trauma. In addition, he exhibited mild left facial palsy, and moderate left hearing disturbance. Magnetic resonance imaging (MRI) using fast imaging employing steady-state acquisition (FIESTA) revealed avulsion of left sixth cranial nerve. We recommend thin-slice MR examination in patients with abducens palsy after severe facial and/or head trauma.
Asada, Tomohiko; Takayama, Yoshihiro; Oita, Jiro; Fukuyama, Hidenao
2014-04-01
We observed a 59-year-old right-handed man with an infarction in his right-middle cerebral artery that included the parietal lobe, who abnormally manipulated mental images in the horizontal direction, resulting in calculation disturbances. Three years later, the patient suffered an infarction in the left parietal lobe and displayed abnormalities during the creation of mental images; i.e., he rotated them in the vertical direction, which again resulted in calculation disturbances. These mental imagery disturbances might indicate that a common acalculia mechanism exists between the right and left hemispheres.
Non-Traumatic Myositis Ossificans in the Lumbosacral Paravertebral Muscle
Jung, DaeYoung; Roh, Ji Hyeon
2013-01-01
Myositis ossificans (MO) is a benign condition of non-neoplastic heterotopic bone formation in the muscle or soft tissue. Trauma plays a role in the development of MO, thus, non-traumatic MO is very rare. Although MO may occur anywhere in the body, it is rarely seen in the lumbosacral paravertebral muscle (PVM). Herein, we report a case of non-traumatic MO in the lumbosacral PVM. A 42-year-old man with no history of trauma was referred to our hospital for pain in the low back, left buttock, and left thigh. On physical examination, a slightly tender, hard, and fixed mass was palpated in the left lumbosacral PVM. Computed tomography showed a calcified mass within the left lumbosacral PVM. Magnetic resonance imaging (MRI) showed heterogeneous high signal intensity in T1- and T2-weighted image, and no enhancement of the mass was found in the postcontrast T1-weighted MRI. The lack of typical imaging features required an open biopsy, and MO was confirmed. MO should be considered in the differential diagnosis when the imaging findings show a mass involving PVM. When it is difficult to distinguish MO from soft tissue or bone malignancy by radiology, it is necessary to perform a biopsy to confirm the diagnosis. PMID:23908707
Aoki, Yasuko; Endo, Hidenori; Niizuma, Kuniyasu; Inoue, Takashi; Shimizu, Hiroaki; Tominaga, Teiji
2013-12-01
We report two cases with internal carotid artery(ICA)aneurysms, in which fusion image effectively indicated the anatomical variations of the anterior choroidal artery (AchoA). Fusion image was obtained using fusion application software (Integrated Registration, Advantage Workstation VS4, GE Healthcare). When the artery passed through the choroidal fissure, it was diagnosed as AchoA. Case 1 had an aneurysm at the left ICA. Left internal carotid angiography (ICAG) showed that an artery arising from the aneurysmal neck supplied the medial occipital lobe. Fusion image showed that this artery had a branch passing through the choroidal fissure, which was diagnosed as hyperplastic AchoA. Case 2 had an aneurysm at the supraclinoid segment of the right ICA. AchoA or posterior communicating artery (PcomA) were not detected by the right ICAG. Fusion image obtained from 3D vertebral angiography (VAG) and MRI showed that the right AchoA arose from the right PcomA. Fusion image obtained from the right ICAG and the left VAG suggested that the aneurysm was located on the ICA where the PcomA regressed. Fusion image is an effective tool for assessing anatomical variations of AchoA. The present method is simple and quick for obtaining a fusion image that can be used in a real-time clinical setting.
Left ventricular hypertrophy diagnosed after a stroke: a case report.
Umeojiako, Wilfred Ifeanyi; Kanyal, Ritesh
2018-03-22
Stroke is a recognized clinical course of hypertrophic cardiomyopathy. This interesting case showed notable difference on the electrocardiogram of a patient 4 months prior to suffering a stroke and 10 days after suffering a stroke. The pre-stroke electrocardiogram showed atrial fibrillation with a narrow QRS complex, while the post-stroke electrocardiogram showed marked left ventricular hypertrophy. Left ventricular hypertrophy was diagnosed using the Sokolow-Lyon indices. The development of left ventricular hypertrophy a few days after suffering a stroke has not previously been reported. An 83-year-old white British woman with a background history of permanent atrial fibrillation, hypertension, and previous stroke attended the emergency department with a 2-day history of exertional dyspnea, and chest tightness. On examination, she had bibasal crepitations with a systolic murmur loudest at the apex. In-patient investigations include an electrocardiogram, blood tests, chest X-ray, contrast echocardiogram, coronary angiogram, and cardiovascular magnetic resonance imaging. An electrocardiogram showed atrial fibrillation, with inferolateral T wave inversion, and left ventricular hypertrophy. A chest X-ray showed features consistent with pulmonary edema. A contrast echocardiogram showed marked hypertrophy of the mid to apical left ventricle, appearance consistent with apical hypertrophic cardiomyopathy. Coronary angiography showed eccentric shelf-type plaque with non-flow-limiting stenosis in the left coronary artery main stem. Cardiovascular magnetic resonance imaging reported findings highly suggestive of apical hypertrophic cardiomyopathy. Our patient was treated and discharged on rivaroxaban, bisoprolol, and atorvastatin with a follow-up in the cardiomyopathy outpatient clinic. Electrocardiogram diagnosis of left ventricular hypertrophy led to the diagnosis of apical hypertrophic cardiomyopathy in this patient. Left ventricular hypertrophy was only evident a few days after our patient suffered a stroke. The underlying mechanisms responsible for this remain unclear. Furthermore, differential diagnosis of hypertrophic cardiomyopathy should be considered in people with electrocardiogram criteria for left ventricular hypertrophy. Cardiovascular magnetic resonance imaging is an important diagnostic tool in identifying causes of left ventricular hypertrophy. Family screening should be recommended in patients with new diagnosis of hypertrophic cardiomyopathy.
Apparent Brightness and Topography Images of Vibidia Crater
2012-03-09
The left-hand image from NASA Dawn spacecraft shows the apparent brightness of asteroid Vesta surface. The right-hand image is based on this apparent brightness image, with a color-coded height representation of the topography overlain onto it.
Yang, Xiuzhen; Ye, Jingjing; Gao, Zhan
2017-10-01
In this article, we report a rare case of double aortic arch. The case presented initially with a foreign object in the oesophagus. The patient was a 2-year-old boy, who was referred with primary symptoms of tussis (15 days) and emesis (2 days). He had a history of ingesting a coin. Routine chest X-ray indicated a rounded, metal foreign object in the upper oesophagus. A half-Yuan coin was removed by gastroduodenoscopy. Echocardiographic imaging suggested that the patient had double aortic arch, which was subsequently diagnosed by CT angiography with three-dimensional reconstruction. The right subclavian artery arose from the right loop of the double aortic arch. The left subclavian artery as well as left and right common carotid arteries had distinct origins from the left aortic arch. Imaging also indicated atresia of the distal left arch. The patient underwent corrective surgery and made a full recovery. Despite the rarity, double aortic arch should be considered when patients present with a foreign object in the oesophagus. Echocardiography and CT angiography can inform the diagnosis.
Left atrial physiology and pathophysiology: Role of deformation imaging
Kowallick, Johannes Tammo; Lotz, Joachim; Hasenfuß, Gerd; Schuster, Andreas
2015-01-01
The left atrium (LA) acts as a modulator of left ventricular (LV) filling. Although there is considerable evidence to support the use of LA maximum and minimum volumes for disease prediction, theoretical considerations and a growing body of literature suggest to focus on the quantification of the three basic LA functions: (1) Reservoir function: collection of pulmonary venous return during LV systole; (2) Conduit function: passage of blood to the left ventricle during early LV diastole; and (3) Contractile booster pump function (augmentation of ventricular filling during late LV diastole. Tremendous advances in our ability to non-invasively characterize all three elements of atrial function include speckle tracking echocardiography (STE), and more recently cardiovascular magnetic resonance myocardial feature tracking (CMR-FT). Corresponding imaging biomarkers are increasingly recognized to have incremental roles in determining prognosis and risk stratification in cardiac dysfunction of different origins. The current editorial introduces the role of STE and CMR-FT for the functional assessment of LA deformation as determined by strain and strain rate imaging and provides an outlook of how this exciting field may develop in the future. PMID:26131333
Brain activity in hunger and satiety: an exploratory visually stimulated FMRI study.
Führer, Dagmar; Zysset, Stefan; Stumvoll, Michael
2008-05-01
To explore neuroanatomical sites of eating behavior, we have developed a simple functional magnetic resonance imaging (fMRI) paradigm to image hunger vs. satiety using visual stimulation. Twelve healthy, lean, nonsmoking male subjects participated in this study. Pairs of food-neutral and food-related pictures were presented in a block design, after a 14-h fast and 1 h after ad libitum ingestion of a mixed meal. Statistically, a general linear model for serially autocorrelated observations with a P level<0.001 was used. During the hunger condition, significantly enhanced brain activity was found in the left striate and extrastriate cortex, the inferior parietal lobe, and the orbitofrontal cortices. Stimulation with food images was associated with increased activity in both insulae, the left striate and extrastriate cortex, and the anterior midprefrontal cortex. Nonfood images were associated with enhanced activity in the right parietal lobe and the left and right middle temporal gyrus. A significant interaction in activation pattern between the states of hunger and satiety and stimulation with food and nonfood images was found for the left anterior cingulate cortex, the superior occipital sulcus, and in the vicinity of the right amygdala. These preliminary data from a homogenous healthy male cohort suggest that central nervous system (CNS) activation is not only altered with hunger and satiety but that food and nonfood images have also specific effects on regional brain activity if exposure takes place in different states of satiety. Wider use of our or a similar approach would help to establish a uniform paradigm to map hunger and satiety to be used for further experiments.
Tu, Min-Chien; Lo, Chung-Ping; Huang, Ching-Feng; Hsu, Yen-Hsuan; Huang, Wen-Hui; Deng, Jie Fu; Lee, Yung-Chuan
2017-01-01
To describe and compare diffusion tensor imaging (DTI) parameters between patients with subcortical ischemic vascular disease (SIVD) and Alzheimer's disease (AD) diagnosed using structuralized neuropsychiatric assessments, and investigate potential neuronal substrates related to cognitive performance. Thirty-five patients with SIVD, 40 patients with AD, and 33 cognitively normal control (NC) subjects matched by age and education level were consecutively recruited and underwent cognitive function assessments and DTI examinations. Comparisons among these three subgroups with regards to cognitive performance and DTI parameters including fractional anisotropy (FA) and mean diffusivity (MD) values were performed. Partial correlation analysis after controlling for age and education was used to evaluate associations between cognitive performance and DTI parameters. With regards to cognitive performance, the patients with SIVD had lower total scores in frontal assessment battery (FAB) compared to those with AD (p < 0.05) in the context of comparable Mini-Mental Status Examination and Cognitive Abilities Screening Instrument scores. With regards to DTI parameters, there were more regions of significant differences in FA among these three subgroups compared with MD. Compared with NC group, the patients with SIVD had significant global reductions in FA (p < 0.001 ~ 0.05), while significant reductions in FA among the patients with AD were regionally confined within the left superior longitudinal fasciculus, genu and splenium of the corpus callosum, and bilateral forceps major, and the anterior thalamic radiation, uncinate fasciculus, and cingulum of the left side (p < 0.01 ~ 0.05). Analysis of FA values within the left forceps major, left anterior thalamic radiation, and genu of the corpus callosum revealed a 71.8% overall correct classification (p < 0.001) with sensitivity of 69.4%, specificity of 73.8%, positive predictive value of 69.4%, and negative predictive value of 73.8% in discriminating patients with SIVD from those with AD. In combined analysis of the patients with SIVD and AD (n = 75), the total FAB score was positively correlated with FA within the bilateral forceps minor, genu of the corpus callosum, left forceps major, left uncinate fasciculus, and right inferior longitudinal fasciculus (p = 0.001 ~ 0.038), and inversely correlated with MD within the right superior longitudinal fasciculus, genu and body of the corpus callosum, bilateral forceps minor, right uncinate fasciculus, and right inferior longitudinal fasciculus (p = 0.003 ~ 0.040). Our findings suggest the effectiveness of DTI measurements in distinguishing patients with early-stage AD from those with SIVD, with discernible changes in spatial distribution and magnitude of significance of the DTI parameters. Strategic FA assessments provided the most robust discriminative power to differentiate SIVD from AD, and FAB may serve as an additional cognitive marker. We also identified the neuronal substrates responsible for FAB performance.
Dai, Xi-Jian; Liu, Chun-Lei; Zhou, Ren-Lai; Gong, Hong-Han; Wu, Bin; Gao, Lei; Wang, Yi-Xiang J
2015-01-01
Objective The aim of this study is to use resting-state functional connectivity (rsFC) and amplitude of low-frequency fluctuation (ALFF) methods to explore intrinsic default-mode network (DMN) impairment after sleep deprivation (SD) and its relationships with clinical features. Methods Twelve healthy male subjects underwent resting-state functional magnetic resonance imaging twice: once following rested wakefulness (RW) and the other following 72 hours of total SD. Before the scans, all subjects underwent the attention network test (ANT). The independent component analysis (ICA), rsFC, and ALFF methods were used to examine intrinsic DMN impairment. Receiver operating characteristic (ROC) curve was used to distinguish SD status from RW status. Results Compared with RW subjects, SD subjects showed a lower accuracy rate (RW =96.83%, SD =77.67%; P<0.001), a slower reaction time (RW =695.92 ms; SD =799.18 ms; P=0.003), a higher lapse rate (RW =0.69%, SD =19.29%; P<0.001), and a higher intraindividual coefficient of variability in reaction time (RW =0.26, SD =0.33; P=0.021). The ICA method showed that, compared with RW subjects, SD subjects had decreased rsFC in the right inferior parietal lobule (IPL, BA40) and in the left precuneus (PrC)/posterior cingulate cortex (PCC) (BA30, 31). The two different areas were selected as regions of interest (ROIs) for future rsFC analysis. Compared with the same in RW subjects, in SD subjects, the right IPL showed decreased rsFC with the left PrC (BA7) and increased rsFC with the left fusiform gyrus (BA37) and the left cluster of middle temporal gyrus and inferior temporal gyrus (BA37). However, the left PrC/PCC did not show any connectivity differences. Compared with RW subjects, SD subjects showed lower ALFF area in the left IPL (BA39, 40). The left IPL, as an ROI, showed decreased rsFC with the right cluster of IPL and superior temporal gyrus (BA39, 40). ROC curve analysis showed that the area under the curve (AUC) value of the left IPL was 0.75, with a cutoff point of 0.834 (mean ALFF signal value). Further diagnostic analysis exhibited that the AUC alone discriminated SD status from RW status, with 75% sensitivity and 91.7% specificity. Conclusion Long-term SD disturbed the spontaneous activity and connectivity pattern of DMN. PMID:25834451
Antigen-loaded dendritic cell migration: MR imaging in a pancreatic carcinoma model.
Zhang, Zhuoli; Li, Weiguo; Procissi, Daniele; Li, Kangan; Sheu, Alexander Y; Gordon, Andrew C; Guo, Yang; Khazaie, Khashayarsha; Huan, Yi; Han, Guohong; Larson, Andrew C
2015-01-01
To test the following hypotheses in a murine model of pancreatic cancer: (a) Vaccination with antigen-loaded iron-labeled dendritic cells reduces T2-weighted signal intensity at magnetic resonance (MR) imaging within peripheral draining lymph nodes ( LN lymph node s) and (b) such signal intensity reductions are associated with tumor size changes after dendritic cell vaccination. The institutional animal care and use committee approved this study. Panc02 cells were implanted into the flanks of 27 C57BL/6 mice bilaterally. After tumors reached 10 mm, cell viability was evaluated, and iron-labeled dendritic cell vaccines were injected into the left hind footpad. The mice were randomly separated into the following three groups (n = 9 in each): Group 1 was injected with 1 million iron-labeled dendritic cells; group 2, with 2 million cells; and control mice, with 200 mL of phosphate-buffered saline. T1- and T2-weighted MR imaging of labeled dendritic cell migration to draining LN lymph node s was performed before cell injection and 6 and 24 hours after injection. The signal-to-noise ratio ( SNR signal-to-noise ratio ) of the draining LN lymph node s was measured. One-way analysis of variance ( ANOVA analysis of variance ) was used to compare Prussian blue-positive dendritic cell measurements in LN lymph node s. Repeated-measures ANOVA analysis of variance was used to compare in vivo T2-weighted SNR signal-to-noise ratio LN lymph node measurements between groups over the observation time points. Trypan blue assays showed no significant difference in mean viability indexes (unlabeled vs labeled dendritic cells, 4.32% ± 0.69 [standard deviation] vs 4.83% ± 0.76; P = .385). Thirty-five days after injection, the mean left and right flank tumor sizes, respectively, were 112.7 mm(2) ± 16.4 and 109 mm(2) ± 24.3 for the 1-million dendritic cell group, 92.2 mm(2) ± 9.9 and 90.4 mm(2) ± 12.8 for the 2-million dendritic cell group, and 193.7 mm(2) ± 20.9 and 189.4 mm(2) ± 17.8 for the control group (P = .0001 for control group vs 1-million cell group; P = .00007 for control group vs 2-million cell group). There was a correlation between postinjection T2-weighted SNR signal-to-noise ratio decreases in the left popliteal LN lymph node 24 hours after injection and size changes at follow-up for tumors in both flanks (R = 0.81 and R = 0.76 for left and right tumors, respectively). MR imaging approaches can be used for quantitative measurement of accumulated iron-labeled dendritic cell-based vaccines in draining LN lymph node s. The amount of dendritic cell-based vaccine in draining LN lymph node s correlates well with observed protective effects.
Wang, Shuai; Zhang, Yan; Lv, Luxian; Wu, Renrong; Fan, Xiaoduo; Zhao, Jingping; Guo, Wenbin
2018-02-01
Structural and functional abnormalities have been reported in the brain of patients with adolescent-onset schizophrenia (AOS). The brain regional functional synchronization in patients with AOS remains unclear. We analyzed resting-state functional magnetic resonance scans in 48 drug-naive patients with AOS and 31 healthy controls by using regional homogeneity (ReHo), a measurement that reflects brain local functional connectivity or synchronization and indicates regional integration of information processing. Then, receiver operating characteristic curves and support vector machines were used to evaluate the effect of abnormal regional homogeneity in differentiating patients from controls. Patients with AOS showed significantly increased ReHo values in the bilateral superior medial prefrontal cortex (MPFC) and significantly decreased ReHo values in the left superior temporal gyrus (STG), right precentral lobule, right inferior parietal lobule (IPL), and left paracentral lobule when compared with controls. A combination of the ReHo values in bilateral superior MPFC, left STG, and right IPL was able to discriminate patients from controls with the sensitivity of 88.24%, specificity of 91.89%, and accuracy of 90.14%. The brain regional functional synchronization abnormalities exist in drug-naive patients with AOS. A combination of ReHo values in these abnormal regions might serve as potential imaging biomarker to identify patients with AOS. Copyright © 2017 Elsevier B.V. All rights reserved.
Ventricular untwisting: a temporal link between left ventricular relaxation and suction.
Notomi, Yuichi; Popovic, Zoran B; Yamada, Hirotsugu; Wallick, Don W; Martin, Maureen G; Oryszak, Stephanie J; Shiota, Takahiro; Greenberg, Neil L; Thomas, James D
2008-01-01
Left ventricular (LV) untwisting starts early during the isovolumic relaxation phase and proceeds throughout the early filling phase, releasing elastic energy stored by the preceding systolic deformation. Data relating untwisting, relaxation, and intraventricular pressure gradients (IVPG), which represent another manifestation of elastic recoil, are sparse. To understand the interaction between LV mechanics and inflow during early diastole, Doppler tissue images (DTI), catheter-derived pressures (apical and basal LV, left atrial, and aortic), and LV volume data were obtained at baseline, during varying pacing modes, and during dobutamine and esmolol infusion in seven closed-chest anesthetized dogs. LV torsion and torsional rate profiles were analyzed from DTI data sets (apical and basal short-axis images) with high temporal resolution (6.5 +/- 0.7 ms). Repeated-measures regression models showed moderately strong correlation of peak LV twisting with peak LV untwisting rate (r = 0.74), as well as correlations of peak LV untwisting rate with the time constant of LV pressure decay (tau, r = -0.66) and IVPG (r = 0.76, P < 0.0001 for all). In a multivariate analysis, peak LV untwisting rate was an independent predictor of tau and IVPG (P < 0.0001, for both). The start of LV untwisting coincided with the beginning of relaxation and preceded suction-aided filling resulting from elastic recoil. Untwisting rate may be a useful marker of diastolic function or even serve as a therapeutic target for improving diastolic function.
Thattaliyath, Bijoy D; Forsha, Daniel E; Stewart, Chad; Barker, Piers C A; Campbell, Michael J
2015-01-01
The aim of the study was to determine right and left ventricle deformation parameters in patients with transposition of the great arteries who had undergone atrial or arterial switch procedures. Patients with transposition are born with a systemic right ventricle. Historically, the atrial switch operation, in which the right ventricle remains the systemic ventricle, was performed. These patients have increased rates of morbidity and mortality. We used cardiac MRI with Velocity Vector Imaging analysis to characterize and compare ventricular myocardial deformation in patients who had an atrial switch or arterial switch operation. Patients with a history of these procedures, who had a clinically ordered cardiac MRI were included in the study. Consecutive 20 patients (75% male, 28.7 ± 1.8 years) who underwent atrial switch operation and 20 patients (60% male, 17.7 ± 1.9 years) who underwent arterial switch operation were included in the study. Four chamber and short-axis cine images were used to determine longitudinal and circumferential strain and strain rate using Vector Velocity Imaging software. Compared with the arterial switch group, the atrial switch group had decreased right ventricular ejection fraction and increased end-diastolic and end-systolic volumes, and no difference in left ventricular ejection fraction and volumes. The atrial switch group had decreased longitudinal and circumferential strain and strain rate. When compared with normal controls multiple strain parameters in the atrial switch group were reduced. Myocardial deformation analysis of transposition patients reveals a reduction of right ventricular function and decreased longitudinal and circumferential strain parameters in patients with an atrial switch operation compared with those with arterial switch operation. A better understanding of the mechanisms of right ventricle failure in transposition of great arteries may lead to improved therapies and adaptation. © 2015 Wiley Periodicals, Inc.
Hedayat, Assem; Nagy, Nicole; Packota, Garnet; Monteith, Judy; Allen, Darcy; Wysokinski, Tomasz; Zhu, Ning
2016-05-01
Dental burs are used extensively in dentistry to mechanically prepare tooth structures for restorations (fillings), yet little has been reported on the bur debris left behind in the teeth, and whether it poses potential health risks to patients. Here it is aimed to image dental bur debris under dental fillings, and allude to the potential health hazards that can be caused by this debris when left in direct contact with the biological surroundings, specifically when the debris is made of a non-biocompatible material. Non-destructive micro-computed tomography using the BioMedical Imaging & Therapy facility 05ID-2 beamline at the Canadian Light Source was pursued at 50 keV and at a pixel size of 4 µm to image dental bur fragments under a composite resin dental filling. The bur's cutting edges that produced the fragment were also chemically analyzed. The technique revealed dental bur fragments of different sizes in different locations on the floor of the prepared surface of the teeth and under the filling, which places them in direct contact with the dentinal tubules and the dentinal fluid circulating within them. Dispersive X-ray spectroscopy elemental analysis of the dental bur edges revealed that the fragments are made of tungsten carbide-cobalt, which is bio-incompatible.
Mind-Reading Ability and Structural Connectivity Changes in Aging.
Cabinio, Monia; Rossetto, Federica; Blasi, Valeria; Savazzi, Federica; Castelli, Ilaria; Massaro, Davide; Valle, Annalisa; Nemni, Raffaello; Clerici, Mario; Marchetti, Antonella; Baglio, Francesca
2015-01-01
The Mind-Reading ability through the eyes is an important component of the affective Theory of Mind (ToM), which allows people to infer the other's mental state from the eye gaze. The aim of the present study was to investigate to which extent age-associated structural brain changes impact this ability and to determine if this association is related to executive functions in elderly subjects. For this purpose, Magnetic Resonance Imaging was used to determine both gray matter and white matter (WM) areas associated with aging. The resulting areas have been included in a subsequent correlation analysis to detect the brain regions whose structure was associated with the Mind-Reading ability through the eyes, assessed with the Italian version of the "Reading the Mind in the Eyes" (RME) test, in a sample of 36 healthy subjects ranging from 24 to 79 years of age. The analysis resulted in three important findings: (1) the performance to the RME test is relatively stable across the decades 20-70 (despite a slight decrease of this ability with aging) and independent from executive functions; (2) structural brain imaging demonstrated the involvement of a great number of cortical ToM areas for the execution of the RME test: the bilateral precentral gyrus, the bilateral posterior insula, the left superior temporal gyrus and the left inferior frontal gyrus, which also showed a significant volume decrease with age; (3) an age and task-related decline in WM connectivity on left fronto-temporal portion of the brain. Our results confirm the age-related structural modifications of the brain and show that these changes have an influence on the Mind-Reading ability through the eyes.
Mind-Reading Ability and Structural Connectivity Changes in Aging
Cabinio, Monia; Rossetto, Federica; Blasi, Valeria; Savazzi, Federica; Castelli, Ilaria; Massaro, Davide; Valle, Annalisa; Nemni, Raffaello; Clerici, Mario; Marchetti, Antonella; Baglio, Francesca
2015-01-01
The Mind-Reading ability through the eyes is an important component of the affective Theory of Mind (ToM), which allows people to infer the other’s mental state from the eye gaze. The aim of the present study was to investigate to which extent age-associated structural brain changes impact this ability and to determine if this association is related to executive functions in elderly subjects. For this purpose, Magnetic Resonance Imaging was used to determine both gray matter and white matter (WM) areas associated with aging. The resulting areas have been included in a subsequent correlation analysis to detect the brain regions whose structure was associated with the Mind-Reading ability through the eyes, assessed with the Italian version of the “Reading the Mind in the Eyes” (RME) test, in a sample of 36 healthy subjects ranging from 24 to 79 years of age. The analysis resulted in three important findings: (1) the performance to the RME test is relatively stable across the decades 20–70 (despite a slight decrease of this ability with aging) and independent from executive functions; (2) structural brain imaging demonstrated the involvement of a great number of cortical ToM areas for the execution of the RME test: the bilateral precentral gyrus, the bilateral posterior insula, the left superior temporal gyrus and the left inferior frontal gyrus, which also showed a significant volume decrease with age; (3) an age and task-related decline in WM connectivity on left fronto-temporal portion of the brain. Our results confirm the age-related structural modifications of the brain and show that these changes have an influence on the Mind-Reading ability through the eyes. PMID:26635702
Unique white matter microstructural patterns in ADHD presentations-a diffusion tensor imaging study.
Svatkova, Alena; Nestrasil, Igor; Rudser, Kyle; Goldenring Fine, Jodene; Bledsoe, Jesse; Semrud-Clikeman, Margaret
2016-09-01
Attention-deficit/hyperactivity disorder predominantly inattentive (ADHD-PI) and combined (ADHD-C) presentations are likely distinct disorders that differ neuroanatomically, neurochemically, and neuropsychologically. However, to date, little is known about specific white matter (WM) regions differentiating ADHD presentations. This study examined differences in WM microstructure using diffusion tensor imaging (DTI) data from 20 ADHD-PI, 18 ADHD-C, and 27 typically developed children. Voxel-wise analysis of DTI measurements in major fiber bundles was carried out using tract-based spatial statistics (TBSS). Clusters showing diffusivity abnormalities were used as regions of interest for regression analysis between fractional anisotropy (FA) and neuropsychological outcomes. Compared to neurotypicals, ADHD-PI children showed higher FA in the anterior thalamic radiations (ATR), bilateral inferior longitudinal fasciculus (ILF), and in the left corticospinal tract (CST). In contrast, the ADHD-C group exhibited higher FA in the bilateral cingulum bundle (CB). In the ADHD-PI group, differences in FA in the left ILF and ATR were accompanied by axial diffusivity (AD) abnormalities. In addition, the ADHD-PI group exhibited atypical mean diffusivity in the forceps minor (FMi) and left ATR and AD differences in right CB compared to healthy subjects. Direct comparison between ADHD presentations demonstrated radial diffusivity differences in FMi. WM clusters with FA irregularities in ADHD were associated with neurobehavioral performance across groups. In conclusion, differences in WM microstructure in ADHD presentations strengthen the theory that ADHD-PI and ADHD-C are two distinct disorders. Regions with WM irregularity seen in both ADHD presentations might serve as predictors of executive and behavioral functioning across groups. Hum Brain Mapp 37:3323-3336, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.