Optimized atom position and coefficient coding for matching pursuit-based image compression.
Shoa, Alireza; Shirani, Shahram
2009-12-01
In this paper, we propose a new encoding algorithm for matching pursuit image coding. We show that coding performance is improved when correlations between atom positions and atom coefficients are both used in encoding. We find the optimum tradeoff between efficient atom position coding and efficient atom coefficient coding and optimize the encoder parameters. Our proposed algorithm outperforms the existing coding algorithms designed for matching pursuit image coding. Additionally, we show that our algorithm results in better rate distortion performance than JPEG 2000 at low bit rates.
High dynamic range coding imaging system
NASA Astrophysics Data System (ADS)
Wu, Renfan; Huang, Yifan; Hou, Guangqi
2014-10-01
We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.
Adaptive image coding based on cubic-spline interpolation
NASA Astrophysics Data System (ADS)
Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien
2014-09-01
It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.
Data Compression Techniques for Maps
1989-01-01
Lempel - Ziv compression is applied to the classified and unclassified images as also to the output of the compression algorithms . The algorithms ...resulted in a compression of 7:1. The output of the quadtree coding algorithm was then compressed using Lempel - Ziv coding. The compression ratio achieved...using Lempel - Ziv coding. The unclassified image gave a compression ratio of only 1.4:1. The K means classified image
A Degree Distribution Optimization Algorithm for Image Transmission
NASA Astrophysics Data System (ADS)
Jiang, Wei; Yang, Junjie
2016-09-01
Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.
A Lossless hybrid wavelet-fractal compression for welding radiographic images.
Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud
2016-01-01
In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.
An Implementation Of Elias Delta Code And ElGamal Algorithm In Image Compression And Security
NASA Astrophysics Data System (ADS)
Rachmawati, Dian; Andri Budiman, Mohammad; Saffiera, Cut Amalia
2018-01-01
In data transmission such as transferring an image, confidentiality, integrity, and efficiency of data storage aspects are highly needed. To maintain the confidentiality and integrity of data, one of the techniques used is ElGamal. The strength of this algorithm is found on the difficulty of calculating discrete logs in a large prime modulus. ElGamal belongs to the class of Asymmetric Key Algorithm and resulted in enlargement of the file size, therefore data compression is required. Elias Delta Code is one of the compression algorithms that use delta code table. The image was first compressed using Elias Delta Code Algorithm, then the result of the compression was encrypted by using ElGamal algorithm. Prime test was implemented using Agrawal Biswas Algorithm. The result showed that ElGamal method could maintain the confidentiality and integrity of data with MSE and PSNR values 0 and infinity. The Elias Delta Code method generated compression ratio and space-saving each with average values of 62.49%, and 37.51%.
Multidimensional incremental parsing for universal source coding.
Bae, Soo Hyun; Juang, Biing-Hwang
2008-10-01
A multidimensional incremental parsing algorithm (MDIP) for multidimensional discrete sources, as a generalization of the Lempel-Ziv coding algorithm, is investigated. It consists of three essential component schemes, maximum decimation matching, hierarchical structure of multidimensional source coding, and dictionary augmentation. As a counterpart of the longest match search in the Lempel-Ziv algorithm, two classes of maximum decimation matching are studied. Also, an underlying behavior of the dictionary augmentation scheme for estimating the source statistics is examined. For an m-dimensional source, m augmentative patches are appended into the dictionary at each coding epoch, thus requiring the transmission of a substantial amount of information to the decoder. The property of the hierarchical structure of the source coding algorithm resolves this issue by successively incorporating lower dimensional coding procedures in the scheme. In regard to universal lossy source coders, we propose two distortion functions, the local average distortion and the local minimax distortion with a set of threshold levels for each source symbol. For performance evaluation, we implemented three image compression algorithms based upon the MDIP; one is lossless and the others are lossy. The lossless image compression algorithm does not perform better than the Lempel-Ziv-Welch coding, but experimentally shows efficiency in capturing the source structure. The two lossy image compression algorithms are implemented using the two distortion functions, respectively. The algorithm based on the local average distortion is efficient at minimizing the signal distortion, but the images by the one with the local minimax distortion have a good perceptual fidelity among other compression algorithms. Our insights inspire future research on feature extraction of multidimensional discrete sources.
Self-recovery fragile watermarking algorithm based on SPHIT
NASA Astrophysics Data System (ADS)
Xin, Li Ping
2015-12-01
A fragile watermark algorithm is proposed, based on SPIHT coding, which can recover the primary image itself. The novelty of the algorithm is that it can tamper location and Self-restoration. The recovery has been very good effect. The first, utilizing the zero-tree structure, the algorithm compresses and encodes the image itself, and then gained self correlative watermark data, so as to greatly reduce the quantity of embedding watermark. Then the watermark data is encoded by error correcting code, and the check bits and watermark bits are scrambled and embedded to enhance the recovery ability. At the same time, by embedding watermark into the latter two bit place of gray level image's bit-plane code, the image after embedded watermark can gain nicer visual effect. The experiment results show that the proposed algorithm may not only detect various processing such as noise adding, cropping, and filtering, but also recover tampered image and realize blind-detection. Peak signal-to-noise ratios of the watermark image were higher than other similar algorithm. The attack capability of the algorithm was enhanced.
Image authentication using distributed source coding.
Lin, Yao-Chung; Varodayan, David; Girod, Bernd
2012-01-01
We present a novel approach using distributed source coding for image authentication. The key idea is to provide a Slepian-Wolf encoded quantized image projection as authentication data. This version can be correctly decoded with the help of an authentic image as side information. Distributed source coding provides the desired robustness against legitimate variations while detecting illegitimate modification. The decoder incorporating expectation maximization algorithms can authenticate images which have undergone contrast, brightness, and affine warping adjustments. Our authentication system also offers tampering localization by using the sum-product algorithm.
Use of zerotree coding in a high-speed pyramid image multiresolution decomposition
NASA Astrophysics Data System (ADS)
Vega-Pineda, Javier; Cabrera, Sergio D.; Lucero, Aldo
1995-03-01
A Zerotree (ZT) coding scheme is applied as a post-processing stage to avoid transmitting zero data in the High-Speed Pyramid (HSP) image compression algorithm. This algorithm has features that increase the capability of the ZT coding to give very high compression rates. In this paper the impact of the ZT coding scheme is analyzed and quantified. The HSP algorithm creates a discrete-time multiresolution analysis based on a hierarchical decomposition technique that is a subsampling pyramid. The filters used to create the image residues and expansions can be related to wavelet representations. According to the pixel coordinates and the level in the pyramid, N2 different wavelet basis functions of various sizes and rotations are linearly combined. The HSP algorithm is computationally efficient because of the simplicity of the required operations, and as a consequence, it can be very easily implemented with VLSI hardware. This is the HSP's principal advantage over other compression schemes. The ZT coding technique transforms the different quantized image residual levels created by the HSP algorithm into a bit stream. The use of ZT's compresses even further the already compressed image taking advantage of parent-child relationships (trees) between the pixels of the residue images at different levels of the pyramid. Zerotree coding uses the links between zeros along the hierarchical structure of the pyramid, to avoid transmission of those that form branches of all zeros. Compression performance and algorithm complexity of the combined HSP-ZT method are compared with those of the JPEG standard technique.
Research on compressive sensing reconstruction algorithm based on total variation model
NASA Astrophysics Data System (ADS)
Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin
2017-12-01
Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.
Displaying radiologic images on personal computers: image storage and compression--Part 2.
Gillespy, T; Rowberg, A H
1994-02-01
This is part 2 of our article on image storage and compression, the third article of our series for radiologists and imaging scientists on displaying, manipulating, and analyzing radiologic images on personal computers. Image compression is classified as lossless (nondestructive) or lossy (destructive). Common lossless compression algorithms include variable-length bit codes (Huffman codes and variants), dictionary-based compression (Lempel-Ziv variants), and arithmetic coding. Huffman codes and the Lempel-Ziv-Welch (LZW) algorithm are commonly used for image compression. All of these compression methods are enhanced if the image has been transformed into a differential image based on a differential pulse-code modulation (DPCM) algorithm. The LZW compression after the DPCM image transformation performed the best on our example images, and performed almost as well as the best of the three commercial compression programs tested. Lossy compression techniques are capable of much higher data compression, but reduced image quality and compression artifacts may be noticeable. Lossy compression is comprised of three steps: transformation, quantization, and coding. Two commonly used transformation methods are the discrete cosine transformation and discrete wavelet transformation. In both methods, most of the image information is contained in a relatively few of the transformation coefficients. The quantization step reduces many of the lower order coefficients to 0, which greatly improves the efficiency of the coding (compression) step. In fractal-based image compression, image patterns are stored as equations that can be reconstructed at different levels of resolution.
Quality Scalability Aware Watermarking for Visual Content.
Bhowmik, Deepayan; Abhayaratne, Charith
2016-11-01
Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.
A blind dual color images watermarking based on IWT and state coding
NASA Astrophysics Data System (ADS)
Su, Qingtang; Niu, Yugang; Liu, Xianxi; Zhu, Yu
2012-04-01
In this paper, a state-coding based blind watermarking algorithm is proposed to embed color image watermark to color host image. The technique of state coding, which makes the state code of data set be equal to the hiding watermark information, is introduced in this paper. When embedding watermark, using Integer Wavelet Transform (IWT) and the rules of state coding, these components, R, G and B, of color image watermark are embedded to these components, Y, Cr and Cb, of color host image. Moreover, the rules of state coding are also used to extract watermark from the watermarked image without resorting to the original watermark or original host image. Experimental results show that the proposed watermarking algorithm cannot only meet the demand on invisibility and robustness of the watermark, but also have well performance compared with other proposed methods considered in this work.
Compression of multispectral Landsat imagery using the Embedded Zerotree Wavelet (EZW) algorithm
NASA Technical Reports Server (NTRS)
Shapiro, Jerome M.; Martucci, Stephen A.; Czigler, Martin
1994-01-01
The Embedded Zerotree Wavelet (EZW) algorithm has proven to be an extremely efficient and flexible compression algorithm for low bit rate image coding. The embedding algorithm attempts to order the bits in the bit stream in numerical importance and thus a given code contains all lower rate encodings of the same algorithm. Therefore, precise bit rate control is achievable and a target rate or distortion metric can be met exactly. Furthermore, the technique is fully image adaptive. An algorithm for multispectral image compression which combines the spectral redundancy removal properties of the image-dependent Karhunen-Loeve Transform (KLT) with the efficiency, controllability, and adaptivity of the embedded zerotree wavelet algorithm is presented. Results are shown which illustrate the advantage of jointly encoding spectral components using the KLT and EZW.
Binary video codec for data reduction in wireless visual sensor networks
NASA Astrophysics Data System (ADS)
Khursheed, Khursheed; Ahmad, Naeem; Imran, Muhammad; O'Nils, Mattias
2013-02-01
Wireless Visual Sensor Networks (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. Typical applications of WVSN include environmental monitoring, health care, industrial process monitoring, stadium/airports monitoring for security reasons and many more. The energy budget in the outdoor applications of WVSN is limited to the batteries and the frequent replacement of batteries is usually not desirable. So the processing as well as the communication energy consumption of the VSN needs to be optimized in such a way that the network remains functional for longer duration. The images captured by VSN contain huge amount of data and require efficient computational resources for processing the images and wide communication bandwidth for the transmission of the results. Image processing algorithms must be designed and developed in such a way that they are computationally less complex and must provide high compression rate. For some applications of WVSN, the captured images can be segmented into bi-level images and hence bi-level image coding methods will efficiently reduce the information amount in these segmented images. But the compression rate of the bi-level image coding methods is limited by the underlined compression algorithm. Hence there is a need for designing other intelligent and efficient algorithms which are computationally less complex and provide better compression rate than that of bi-level image coding methods. Change coding is one such algorithm which is computationally less complex (require only exclusive OR operations) and provide better compression efficiency compared to image coding but it is effective for applications having slight changes between adjacent frames of the video. The detection and coding of the Region of Interest (ROIs) in the change frame efficiently reduce the information amount in the change frame. But, if the number of objects in the change frames is higher than a certain level then the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Binary Video Codec (BVC) for the data reduction in WVSN. We proposed to implement all the three compression techniques i.e. image coding, change coding and ROI coding at the VSN and then select the smallest bit stream among the results of the three compression techniques. In this way the compression performance of the BVC will never become worse than that of image coding. We concluded that the compression efficiency of BVC is always better than that of change coding and is always better than or equal that of ROI coding and image coding.
Lossless compression of VLSI layout image data.
Dai, Vito; Zakhor, Avideh
2006-09-01
We present a novel lossless compression algorithm called Context Copy Combinatorial Code (C4), which integrates the advantages of two very disparate compression techniques: context-based modeling and Lempel-Ziv (LZ) style copying. While the algorithm can be applied to many lossless compression applications, such as document image compression, our primary target application has been lossless compression of integrated circuit layout image data. These images contain a heterogeneous mix of data: dense repetitive data better suited to LZ-style coding, and less dense structured data, better suited to context-based encoding. As part of C4, we have developed a novel binary entropy coding technique called combinatorial coding which is simultaneously as efficient as arithmetic coding, and as fast as Huffman coding. Compression results show C4 outperforms JBIG, ZIP, BZIP2, and two-dimensional LZ, and achieves lossless compression ratios greater than 22 for binary layout image data, and greater than 14 for gray-pixel image data.
Neural network for image compression
NASA Astrophysics Data System (ADS)
Panchanathan, Sethuraman; Yeap, Tet H.; Pilache, B.
1992-09-01
In this paper, we propose a new scheme for image compression using neural networks. Image data compression deals with minimization of the amount of data required to represent an image while maintaining an acceptable quality. Several image compression techniques have been developed in recent years. We note that the coding performance of these techniques may be improved by employing adaptivity. Over the last few years neural network has emerged as an effective tool for solving a wide range of problems involving adaptivity and learning. A multilayer feed-forward neural network trained using the backward error propagation algorithm is used in many applications. However, this model is not suitable for image compression because of its poor coding performance. Recently, a self-organizing feature map (SOFM) algorithm has been proposed which yields a good coding performance. However, this algorithm requires a long training time because the network starts with random initial weights. In this paper we have used the backward error propagation algorithm (BEP) to quickly obtain the initial weights which are then used to speedup the training time required by the SOFM algorithm. The proposed approach (BEP-SOFM) combines the advantages of the two techniques and, hence, achieves a good coding performance in a shorter training time. Our simulation results demonstrate the potential gains using the proposed technique.
Medical image classification based on multi-scale non-negative sparse coding.
Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar
2017-11-01
With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Cross-indexing of binary SIFT codes for large-scale image search.
Liu, Zhen; Li, Houqiang; Zhang, Liyan; Zhou, Wengang; Tian, Qi
2014-05-01
In recent years, there has been growing interest in mapping visual features into compact binary codes for applications on large-scale image collections. Encoding high-dimensional data as compact binary codes reduces the memory cost for storage. Besides, it benefits the computational efficiency since the computation of similarity can be efficiently measured by Hamming distance. In this paper, we propose a novel flexible scale invariant feature transform (SIFT) binarization (FSB) algorithm for large-scale image search. The FSB algorithm explores the magnitude patterns of SIFT descriptor. It is unsupervised and the generated binary codes are demonstrated to be dispreserving. Besides, we propose a new searching strategy to find target features based on the cross-indexing in the binary SIFT space and original SIFT space. We evaluate our approach on two publicly released data sets. The experiments on large-scale partial duplicate image retrieval system demonstrate the effectiveness and efficiency of the proposed algorithm.
Subband coding for image data archiving
NASA Technical Reports Server (NTRS)
Glover, Daniel; Kwatra, S. C.
1993-01-01
The use of subband coding on image data is discussed. An overview of subband coding is given. Advantages of subbanding for browsing and progressive resolution are presented. Implementations for lossless and lossy coding are discussed. Algorithm considerations and simple implementations of subband systems are given.
Subband coding for image data archiving
NASA Technical Reports Server (NTRS)
Glover, D.; Kwatra, S. C.
1992-01-01
The use of subband coding on image data is discussed. An overview of subband coding is given. Advantages of subbanding for browsing and progressive resolution are presented. Implementations for lossless and lossy coding are discussed. Algorithm considerations and simple implementations of subband are given.
Locally adaptive vector quantization: Data compression with feature preservation
NASA Technical Reports Server (NTRS)
Cheung, K. M.; Sayano, M.
1992-01-01
A study of a locally adaptive vector quantization (LAVQ) algorithm for data compression is presented. This algorithm provides high-speed one-pass compression and is fully adaptable to any data source and does not require a priori knowledge of the source statistics. Therefore, LAVQ is a universal data compression algorithm. The basic algorithm and several modifications to improve performance are discussed. These modifications are nonlinear quantization, coarse quantization of the codebook, and lossless compression of the output. Performance of LAVQ on various images using irreversible (lossy) coding is comparable to that of the Linde-Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has potential for real-time video compression. Unlike most other image compression algorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless data compression algorithm is comparable to that of Lempel-Ziv-based algorithms, but LAVQ uses far less memory during the coding process.
Information retrieval based on single-pixel optical imaging with quick-response code
NASA Astrophysics Data System (ADS)
Xiao, Yin; Chen, Wen
2018-04-01
Quick-response (QR) code technique is combined with ghost imaging (GI) to recover original information with high quality. An image is first transformed into a QR code. Then the QR code is treated as an input image in the input plane of a ghost imaging setup. After measurements, traditional correlation algorithm of ghost imaging is utilized to reconstruct an image (QR code form) with low quality. With this low-quality image as an initial guess, a Gerchberg-Saxton-like algorithm is used to improve its contrast, which is actually a post processing. Taking advantage of high error correction capability of QR code, original information can be recovered with high quality. Compared to the previous method, our method can obtain a high-quality image with comparatively fewer measurements, which means that the time-consuming postprocessing procedure can be avoided to some extent. In addition, for conventional ghost imaging, the larger the image size is, the more measurements are needed. However, for our method, images with different sizes can be converted into QR code with the same small size by using a QR generator. Hence, for the larger-size images, the time required to recover original information with high quality will be dramatically reduced. Our method makes it easy to recover a color image in a ghost imaging setup, because it is not necessary to divide the color image into three channels and respectively recover them.
NASA Astrophysics Data System (ADS)
Tornga, Shawn R.
The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as localization capability. Utilizing imaging information will show signal-to-noise gains over spectroscopic algorithms alone.
Sub-Selective Quantization for Learning Binary Codes in Large-Scale Image Search.
Li, Yeqing; Liu, Wei; Huang, Junzhou
2018-06-01
Recently with the explosive growth of visual content on the Internet, large-scale image search has attracted intensive attention. It has been shown that mapping high-dimensional image descriptors to compact binary codes can lead to considerable efficiency gains in both storage and performing similarity computation of images. However, most existing methods still suffer from expensive training devoted to large-scale binary code learning. To address this issue, we propose a sub-selection based matrix manipulation algorithm, which can significantly reduce the computational cost of code learning. As case studies, we apply the sub-selection algorithm to several popular quantization techniques including cases using linear and nonlinear mappings. Crucially, we can justify the resulting sub-selective quantization by proving its theoretic properties. Extensive experiments are carried out on three image benchmarks with up to one million samples, corroborating the efficacy of the sub-selective quantization method in terms of image retrieval.
NASA Astrophysics Data System (ADS)
Lu, Li; Sheng, Wen; Liu, Shihua; Zhang, Xianzhi
2014-10-01
The ballistic missile hyperspectral data of imaging spectrometer from the near-space platform are generated by numerical method. The characteristic of the ballistic missile hyperspectral data is extracted and matched based on two different kinds of algorithms, which called transverse counting and quantization coding, respectively. The simulation results show that two algorithms extract the characteristic of ballistic missile adequately and accurately. The algorithm based on the transverse counting has the low complexity and can be implemented easily compared to the algorithm based on the quantization coding does. The transverse counting algorithm also shows the good immunity to the disturbance signals and speed up the matching and recognition of subsequent targets.
Implementation issues in source coding
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Chen, Yun-Chung; Hadenfeldt, A. C.
1989-01-01
An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated.
NASA Astrophysics Data System (ADS)
Nofriansyah, Dicky; Defit, Sarjon; Nurcahyo, Gunadi W.; Ganefri, G.; Ridwan, R.; Saleh Ahmar, Ansari; Rahim, Robbi
2018-01-01
Cybercrime is one of the most serious threats. Efforts are made to reduce the number of cybercrime is to find new techniques in securing data such as Cryptography, Steganography and Watermarking combination. Cryptography and Steganography is a growing data security science. A combination of Cryptography and Steganography is one effort to improve data integrity. New techniques are used by combining several algorithms, one of which is the incorporation of hill cipher method and Morse code. Morse code is one of the communication codes used in the Scouting field. This code consists of dots and lines. This is a new modern and classic concept to maintain data integrity. The result of the combination of these three methods is expected to generate new algorithms to improve the security of the data, especially images.
JPEG2000 still image coding quality.
Chen, Tzong-Jer; Lin, Sheng-Chieh; Lin, You-Chen; Cheng, Ren-Gui; Lin, Li-Hui; Wu, Wei
2013-10-01
This work demonstrates the image qualities between two popular JPEG2000 programs. Two medical image compression algorithms are both coded using JPEG2000, but they are different regarding the interface, convenience, speed of computation, and their characteristic options influenced by the encoder, quantization, tiling, etc. The differences in image quality and compression ratio are also affected by the modality and compression algorithm implementation. Do they provide the same quality? The qualities of compressed medical images from two image compression programs named Apollo and JJ2000 were evaluated extensively using objective metrics. These algorithms were applied to three medical image modalities at various compression ratios ranging from 10:1 to 100:1. Following that, the quality of the reconstructed images was evaluated using five objective metrics. The Spearman rank correlation coefficients were measured under every metric in the two programs. We found that JJ2000 and Apollo exhibited indistinguishable image quality for all images evaluated using the above five metrics (r > 0.98, p < 0.001). It can be concluded that the image quality of the JJ2000 and Apollo algorithms is statistically equivalent for medical image compression.
Recent advances in lossless coding techniques
NASA Astrophysics Data System (ADS)
Yovanof, Gregory S.
Current lossless techniques are reviewed with reference to both sequential data files and still images. Two major groups of sequential algorithms, dictionary and statistical techniques, are discussed. In particular, attention is given to Lempel-Ziv coding, Huffman coding, and arithmewtic coding. The subject of lossless compression of imagery is briefly discussed. Finally, examples of practical implementations of lossless algorithms and some simulation results are given.
Jiansen Li; Jianqi Sun; Ying Song; Yanran Xu; Jun Zhao
2014-01-01
An effective way to improve the data acquisition speed of magnetic resonance imaging (MRI) is using under-sampled k-space data, and dictionary learning method can be used to maintain the reconstruction quality. Three-dimensional dictionary trains the atoms in dictionary in the form of blocks, which can utilize the spatial correlation among slices. Dual-dictionary learning method includes a low-resolution dictionary and a high-resolution dictionary, for sparse coding and image updating respectively. However, the amount of data is huge for three-dimensional reconstruction, especially when the number of slices is large. Thus, the procedure is time-consuming. In this paper, we first utilize the NVIDIA Corporation's compute unified device architecture (CUDA) programming model to design the parallel algorithms on graphics processing unit (GPU) to accelerate the reconstruction procedure. The main optimizations operate in the dictionary learning algorithm and the image updating part, such as the orthogonal matching pursuit (OMP) algorithm and the k-singular value decomposition (K-SVD) algorithm. Then we develop another version of CUDA code with algorithmic optimization. Experimental results show that more than 324 times of speedup is achieved compared with the CPU-only codes when the number of MRI slices is 24.
Research on pre-processing of QR Code
NASA Astrophysics Data System (ADS)
Sun, Haixing; Xia, Haojie; Dong, Ning
2013-10-01
QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.
Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa
2009-01-01
Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769
NASA Astrophysics Data System (ADS)
Nasution, A. B.; Efendi, S.; Suwilo, S.
2018-04-01
The amount of data inserted in the form of audio samples that use 8 bits with LSB algorithm, affect the value of PSNR which resulted in changes in image quality of the insertion (fidelity). So in this research will be inserted audio samples using 5 bits with MLSB algorithm to reduce the number of data insertion where previously the audio sample will be compressed with Arithmetic Coding algorithm to reduce file size. In this research will also be encryption using Triple DES algorithm to better secure audio samples. The result of this research is the value of PSNR more than 50dB so it can be concluded that the image quality is still good because the value of PSNR has exceeded 40dB.
Digital watermarking algorithm research of color images based on quaternion Fourier transform
NASA Astrophysics Data System (ADS)
An, Mali; Wang, Weijiang; Zhao, Zhen
2013-10-01
A watermarking algorithm of color images based on the quaternion Fourier Transform (QFFT) and improved quantization index algorithm (QIM) is proposed in this paper. The original image is transformed by QFFT, the watermark image is processed by compression and quantization coding, and then the processed watermark image is embedded into the components of the transformed original image. It achieves embedding and blind extraction of the watermark image. The experimental results show that the watermarking algorithm based on the improved QIM algorithm with distortion compensation achieves a good tradeoff between invisibility and robustness, and better robustness for the attacks of Gaussian noises, salt and pepper noises, JPEG compression, cropping, filtering and image enhancement than the traditional QIM algorithm.
Optically secured information retrieval using two authenticated phase-only masks.
Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong
2015-10-23
We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.
Optically secured information retrieval using two authenticated phase-only masks
Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong
2015-01-01
We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices. PMID:26494213
Optically secured information retrieval using two authenticated phase-only masks
NASA Astrophysics Data System (ADS)
Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong
2015-10-01
We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.
Survey Of Lossless Image Coding Techniques
NASA Astrophysics Data System (ADS)
Melnychuck, Paul W.; Rabbani, Majid
1989-04-01
Many image transmission/storage applications requiring some form of data compression additionally require that the decoded image be an exact replica of the original. Lossless image coding algorithms meet this requirement by generating a decoded image that is numerically identical to the original. Several lossless coding techniques are modifications of well-known lossy schemes, whereas others are new. Traditional Markov-based models and newer arithmetic coding techniques are applied to predictive coding, bit plane processing, and lossy plus residual coding. Generally speaking, the compression ratio offered by these techniques are in the area of 1.6:1 to 3:1 for 8-bit pictorial images. Compression ratios for 12-bit radiological images approach 3:1, as these images have less detailed structure, and hence, their higher pel correlation leads to a greater removal of image redundancy.
Embedded Palmprint Recognition System Using OMAP 3530
Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen
2012-01-01
We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the ccentral pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance. PMID:22438721
Embedded palmprint recognition system using OMAP 3530.
Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen
2012-01-01
We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the central pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance.
Designing an efficient LT-code with unequal error protection for image transmission
NASA Astrophysics Data System (ADS)
S. Marques, F.; Schwartz, C.; Pinho, M. S.; Finamore, W. A.
2015-10-01
The use of images from earth observation satellites is spread over different applications, such as a car navigation systems and a disaster monitoring. In general, those images are captured by on board imaging devices and must be transmitted to the Earth using a communication system. Even though a high resolution image can produce a better Quality of Service, it leads to transmitters with high bit rate which require a large bandwidth and expend a large amount of energy. Therefore, it is very important to design efficient communication systems. From communication theory, it is well known that a source encoder is crucial in an efficient system. In a remote sensing satellite image transmission, this efficiency is achieved by using an image compressor, to reduce the amount of data which must be transmitted. The Consultative Committee for Space Data Systems (CCSDS), a multinational forum for the development of communications and data system standards for space flight, establishes a recommended standard for a data compression algorithm for images from space systems. Unfortunately, in the satellite communication channel, the transmitted signal is corrupted by the presence of noise, interference signals, etc. Therefore, the receiver of a digital communication system may fail to recover the transmitted bit. Actually, a channel code can be used to reduce the effect of this failure. In 2002, the Luby Transform code (LT-code) was introduced and it was shown that it was very efficient when the binary erasure channel model was used. Since the effect of the bit recovery failure depends on the position of the bit in the compressed image stream, in the last decade many e orts have been made to develop LT-code with unequal error protection. In 2012, Arslan et al. showed improvements when LT-codes with unequal error protection were used in images compressed by SPIHT algorithm. The techniques presented by Arslan et al. can be adapted to work with the algorithm for image compression recommended by CCSDS. In fact, to design a LT-code with an unequal error protection, the bit stream produced by the algorithm recommended by CCSDS must be partitioned in M disjoint sets of bits. Using the weighted approach, the LT-code produces M different failure probabilities for each set of bits, p1, ..., pM leading to a total probability of failure, p which is an average of p1, ..., pM. In general, the parameters of the LT-code with unequal error protection is chosen using a heuristic procedure. In this work, we analyze the problem of choosing the LT-code parameters to optimize two figure of merits: (a) the probability of achieving a minimum acceptable PSNR, and (b) the mean of PSNR, given that the minimum acceptable PSNR has been achieved. Given the rate-distortion curve achieved by CCSDS recommended algorithm, this work establishes a closed form of the mean of PSNR (given that the minimum acceptable PSNR has been achieved) as a function of p1, ..., pM. The main contribution of this work is the study of a criteria to select the parameters p1, ..., pM to optimize the performance of image transmission.
Survey of adaptive image coding techniques
NASA Technical Reports Server (NTRS)
Habibi, A.
1977-01-01
The general problem of image data compression is discussed briefly with attention given to the use of Karhunen-Loeve transforms, suboptimal systems, and block quantization. A survey is then conducted encompassing the four categories of adaptive systems: (1) adaptive transform coding (adaptive sampling, adaptive quantization, etc.), (2) adaptive predictive coding (adaptive delta modulation, adaptive DPCM encoding, etc.), (3) adaptive cluster coding (blob algorithms and the multispectral cluster coding technique), and (4) adaptive entropy coding.
Image compression using quad-tree coding with morphological dilation
NASA Astrophysics Data System (ADS)
Wu, Jiaji; Jiang, Weiwei; Jiao, Licheng; Wang, Lei
2007-11-01
In this paper, we propose a new algorithm which integrates morphological dilation operation to quad-tree coding, the purpose of doing this is to compensate each other's drawback by using quad-tree coding and morphological dilation operation respectively. New algorithm can not only quickly find the seed significant coefficient of dilation but also break the limit of block boundary of quad-tree coding. We also make a full use of both within-subband and cross-subband correlation to avoid the expensive cost of representing insignificant coefficients. Experimental results show that our algorithm outperforms SPECK and SPIHT. Without using any arithmetic coding, our algorithm can achieve good performance with low computational cost and it's more suitable to mobile devices or scenarios with a strict real-time requirement.
Efficient image compression algorithm for computer-animated images
NASA Astrophysics Data System (ADS)
Yfantis, Evangelos A.; Au, Matthew Y.; Miel, G.
1992-10-01
An image compression algorithm is described. The algorithm is an extension of the run-length image compression algorithm and its implementation is relatively easy. This algorithm was implemented and compared with other existing popular compression algorithms and with the Lempel-Ziv (LZ) coding. The Lempel-Ziv algorithm is available as a utility in the UNIX operating system and is also referred to as the UNIX uncompress. Sometimes our algorithm is best in terms of saving memory space, and sometimes one of the competing algorithms is best. The algorithm is lossless, and the intent is for the algorithm to be used in computer graphics animated images. Comparisons made with the LZ algorithm indicate that the decompression time using our algorithm is faster than that using the LZ algorithm. Once the data are in memory, a relatively simple and fast transformation is applied to uncompress the file.
Fast ITTBC using pattern code on subband segmentation
NASA Astrophysics Data System (ADS)
Koh, Sung S.; Kim, Hanchil; Lee, Kooyoung; Kim, Hongbin; Jeong, Hun; Cho, Gangseok; Kim, Chunghwa
2000-06-01
Iterated Transformation Theory-Based Coding suffers from very high computational complexity in encoding phase. This is due to its exhaustive search. In this paper, our proposed image coding algorithm preprocess an original image to subband segmentation image by wavelet transform before image coding to reduce encoding complexity. A similar block is searched by using the 24 block pattern codes which are coded by the edge information in the image block on the domain pool of the subband segmentation. As a result, numerical data shows that the encoding time of the proposed coding method can be reduced to 98.82% of that of Joaquin's method, while the loss in quality relative to the Jacquin's is about 0.28 dB in PSNR, which is visually negligible.
Embedded real-time image processing hardware for feature extraction and clustering
NASA Astrophysics Data System (ADS)
Chiu, Lihu; Chang, Grant
2003-08-01
Printronix, Inc. uses scanner-based image systems to perform print quality measurements for line-matrix printers. The size of the image samples and image definition required make commercial scanners convenient to use. The image processing is relatively well defined, and we are able to simplify many of the calculations into hardware equations and "c" code. The process of rapidly prototyping the system using DSP based "c" code gets the algorithms well defined early in the development cycle. Once a working system is defined, the rest of the process involves splitting the task up for the FPGA and the DSP implementation. Deciding which of the two to use, the DSP or the FPGA, is a simple matter of trial benchmarking. There are two kinds of benchmarking: One for speed, and the other for memory. The more memory intensive algorithms should run in the DSP, and the simple real time tasks can use the FPGA most effectively. Once the task is split, we can decide which platform the algorithm should be executed. This involves prototyping all the code in the DSP, then timing various blocks of the algorithm. Slow routines can be optimized using the compiler tools, and if further reduction in time is needed, into tasks that the FPGA can perform.
Self-recovery reversible image watermarking algorithm
Sun, He; Gao, Shangbing; Jin, Shenghua
2018-01-01
The integrity of image content is essential, although most watermarking algorithms can achieve image authentication but not automatically repair damaged areas or restore the original image. In this paper, a self-recovery reversible image watermarking algorithm is proposed to recover the tampered areas effectively. First of all, the original image is divided into homogeneous blocks and non-homogeneous blocks through multi-scale decomposition, and the feature information of each block is calculated as the recovery watermark. Then, the original image is divided into 4×4 non-overlapping blocks classified into smooth blocks and texture blocks according to image textures. Finally, the recovery watermark generated by homogeneous blocks and error-correcting codes is embedded into the corresponding smooth block by mapping; watermark information generated by non-homogeneous blocks and error-correcting codes is embedded into the corresponding non-embedded smooth block and the texture block via mapping. The correlation attack is detected by invariant moments when the watermarked image is attacked. To determine whether a sub-block has been tampered with, its feature is calculated and the recovery watermark is extracted from the corresponding block. If the image has been tampered with, it can be recovered. The experimental results show that the proposed algorithm can effectively recover the tampered areas with high accuracy and high quality. The algorithm is characterized by sound visual quality and excellent image restoration. PMID:29920528
Al-Dmour, Hayat; Al-Ani, Ahmed
2016-04-01
The present work has the goal of developing a secure medical imaging information system based on a combined steganography and cryptography technique. It attempts to securely embed patient's confidential information into his/her medical images. The proposed information security scheme conceals coded Electronic Patient Records (EPRs) into medical images in order to protect the EPRs' confidentiality without affecting the image quality and particularly the Region of Interest (ROI), which is essential for diagnosis. The secret EPR data is converted into ciphertext using private symmetric encryption method. Since the Human Visual System (HVS) is less sensitive to alterations in sharp regions compared to uniform regions, a simple edge detection method has been introduced to identify and embed in edge pixels, which will lead to an improved stego image quality. In order to increase the embedding capacity, the algorithm embeds variable number of bits (up to 3) in edge pixels based on the strength of edges. Moreover, to increase the efficiency, two message coding mechanisms have been utilized to enhance the ±1 steganography. The first one, which is based on Hamming code, is simple and fast, while the other which is known as the Syndrome Trellis Code (STC), is more sophisticated as it attempts to find a stego image that is close to the cover image through minimizing the embedding impact. The proposed steganography algorithm embeds the secret data bits into the Region of Non Interest (RONI), where due to its importance; the ROI is preserved from modifications. The experimental results demonstrate that the proposed method can embed large amount of secret data without leaving a noticeable distortion in the output image. The effectiveness of the proposed algorithm is also proven using one of the efficient steganalysis techniques. The proposed medical imaging information system proved to be capable of concealing EPR data and producing imperceptible stego images with minimal embedding distortions compared to other existing methods. In order to refrain from introducing any modifications to the ROI, the proposed system only utilizes the Region of Non Interest (RONI) in embedding the EPR data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Alternatively Constrained Dictionary Learning For Image Superresolution.
Lu, Xiaoqiang; Yuan, Yuan; Yan, Pingkun
2014-03-01
Dictionaries are crucial in sparse coding-based algorithm for image superresolution. Sparse coding is a typical unsupervised learning method to study the relationship between the patches of high-and low-resolution images. However, most of the sparse coding methods for image superresolution fail to simultaneously consider the geometrical structure of the dictionary and the corresponding coefficients, which may result in noticeable superresolution reconstruction artifacts. In other words, when a low-resolution image and its corresponding high-resolution image are represented in their feature spaces, the two sets of dictionaries and the obtained coefficients have intrinsic links, which has not yet been well studied. Motivated by the development on nonlocal self-similarity and manifold learning, a novel sparse coding method is reported to preserve the geometrical structure of the dictionary and the sparse coefficients of the data. Moreover, the proposed method can preserve the incoherence of dictionary entries and provide the sparse coefficients and learned dictionary from a new perspective, which have both reconstruction and discrimination properties to enhance the learning performance. Furthermore, to utilize the model of the proposed method more effectively for single-image superresolution, this paper also proposes a novel dictionary-pair learning method, which is named as two-stage dictionary training. Extensive experiments are carried out on a large set of images comparing with other popular algorithms for the same purpose, and the results clearly demonstrate the effectiveness of the proposed sparse representation model and the corresponding dictionary learning algorithm.
Dictionary Pair Learning on Grassmann Manifolds for Image Denoising.
Zeng, Xianhua; Bian, Wei; Liu, Wei; Shen, Jialie; Tao, Dacheng
2015-11-01
Image denoising is a fundamental problem in computer vision and image processing that holds considerable practical importance for real-world applications. The traditional patch-based and sparse coding-driven image denoising methods convert 2D image patches into 1D vectors for further processing. Thus, these methods inevitably break down the inherent 2D geometric structure of natural images. To overcome this limitation pertaining to the previous image denoising methods, we propose a 2D image denoising model, namely, the dictionary pair learning (DPL) model, and we design a corresponding algorithm called the DPL on the Grassmann-manifold (DPLG) algorithm. The DPLG algorithm first learns an initial dictionary pair (i.e., the left and right dictionaries) by employing a subspace partition technique on the Grassmann manifold, wherein the refined dictionary pair is obtained through a sub-dictionary pair merging. The DPLG obtains a sparse representation by encoding each image patch only with the selected sub-dictionary pair. The non-zero elements of the sparse representation are further smoothed by the graph Laplacian operator to remove the noise. Consequently, the DPLG algorithm not only preserves the inherent 2D geometric structure of natural images but also performs manifold smoothing in the 2D sparse coding space. We demonstrate that the DPLG algorithm also improves the structural SIMilarity values of the perceptual visual quality for denoised images using the experimental evaluations on the benchmark images and Berkeley segmentation data sets. Moreover, the DPLG also produces the competitive peak signal-to-noise ratio values from popular image denoising algorithms.
Chaotic Image Encryption of Regions of Interest
NASA Astrophysics Data System (ADS)
Xiao, Di; Fu, Qingqing; Xiang, Tao; Zhang, Yushu
Since different regions of an image have different importance, therefore only the important information of the image regions, which the users are really interested in, needs to be encrypted and protected emphatically in some special multimedia applications. However, the regions of interest (ROI) are always some irregular parts, such as the face and the eyes. Assuming the bulk data in transmission without being damaged, we propose a chaotic image encryption algorithm for ROI. ROI with irregular shapes are chosen and detected arbitrarily. Then the chaos-based image encryption algorithm with scrambling, S-box and diffusion parts is used to encrypt the ROI. Further, the whole image is compressed with Huffman coding. At last, a message authentication code (MAC) of the compressed image is generated based on chaotic maps. The simulation results show that the encryption algorithm has a good security level and can resist various attacks. Moreover, the compression method improves the storage and transmission efficiency to some extent, and the MAC ensures the integrity of the transmission data.
Optimization of wavefront coding imaging system using heuristic algorithms
NASA Astrophysics Data System (ADS)
González-Amador, E.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Zermeño-Loreto, O.
2017-08-01
Wavefront Coding (WFC) systems make use of an aspheric Phase-Mask (PM) and digital image processing to extend the Depth of Field (EDoF) of computational imaging systems. For years, several kinds of PM have been designed to produce a point spread function (PSF) near defocus-invariant. In this paper, the optimization of the phase deviation parameter is done by means of genetic algorithms (GAs). In this, the merit function minimizes the mean square error (MSE) between the diffraction limited Modulated Transfer Function (MTF) and the MTF of the system that is wavefront coded with different misfocus. WFC systems were simulated using the cubic, trefoil, and 4 Zernike polynomials phase-masks. Numerical results show defocus invariance aberration in all cases. Nevertheless, the best results are obtained by using the trefoil phase-mask, because the decoded image is almost free of artifacts.
Selective object encryption for privacy protection
NASA Astrophysics Data System (ADS)
Zhou, Yicong; Panetta, Karen; Cherukuri, Ravindranath; Agaian, Sos
2009-05-01
This paper introduces a new recursive sequence called the truncated P-Fibonacci sequence, its corresponding binary code called the truncated Fibonacci p-code and a new bit-plane decomposition method using the truncated Fibonacci pcode. In addition, a new lossless image encryption algorithm is presented that can encrypt a selected object using this new decomposition method for privacy protection. The user has the flexibility (1) to define the object to be protected as an object in an image or in a specific part of the image, a selected region of an image, or an entire image, (2) to utilize any new or existing method for edge detection or segmentation to extract the selected object from an image or a specific part/region of the image, (3) to select any new or existing method for the shuffling process. The algorithm can be used in many different areas such as wireless networking, mobile phone services and applications in homeland security and medical imaging. Simulation results and analysis verify that the algorithm shows good performance in object/image encryption and can withstand plaintext attacks.
X-Ray Phase Imaging for Breast Cancer Detection
2012-09-01
the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging
Status report: Data management program algorithm evaluation activity at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Jayroe, R. R., Jr.
1977-01-01
An algorithm evaluation activity was initiated to study the problems associated with image processing by assessing the independent and interdependent effects of registration, compression, and classification techniques on LANDSAT data for several discipline applications. The objective of the activity was to make recommendations on selected applicable image processing algorithms in terms of accuracy, cost, and timeliness or to propose alternative ways of processing the data. As a means of accomplishing this objective, an Image Coding Panel was established. The conduct of the algorithm evaluation is described.
Parallel asynchronous systems and image processing algorithms
NASA Technical Reports Server (NTRS)
Coon, D. D.; Perera, A. G. U.
1989-01-01
A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.
Modeling IrisCode and its variants as convex polyhedral cones and its security implications.
Kong, Adams Wai-Kin
2013-03-01
IrisCode, developed by Daugman, in 1993, is the most influential iris recognition algorithm. A thorough understanding of IrisCode is essential, because over 100 million persons have been enrolled by this algorithm and many biometric personal identification and template protection methods have been developed based on IrisCode. This paper indicates that a template produced by IrisCode or its variants is a convex polyhedral cone in a hyperspace. Its central ray, being a rough representation of the original biometric signal, can be computed by a simple algorithm, which can often be implemented in one Matlab command line. The central ray is an expected ray and also an optimal ray of an objective function on a group of distributions. This algorithm is derived from geometric properties of a convex polyhedral cone but does not rely on any prior knowledge (e.g., iris images). The experimental results show that biometric templates, including iris and palmprint templates, produced by different recognition methods can be matched through the central rays in their convex polyhedral cones and that templates protected by a method extended from IrisCode can be broken into. These experimental results indicate that, without a thorough security analysis, convex polyhedral cone templates cannot be assumed secure. Additionally, the simplicity of the algorithm implies that even junior hackers without knowledge of advanced image processing and biometric databases can still break into protected templates and reveal relationships among templates produced by different recognition methods.
Nonlinear Multiscale Transformations: From Synchronization to Error Control
2001-07-01
transformation (plus the quantization step) has taken place, a lossless Lempel - Ziv compression algorithm is applied to reduce the size of the transformed... compressed data are all very close, however the visual quality of the reconstructed image is significantly better for the EC compression algorithm ...used in recent times in the first step of transform coding algorithms for image compression . Ideally, a multiscale transformation allows for an
High resolution x-ray CMT: Reconstruction methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.K.
This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited formore » high accuracy, tomographic reconstruction codes.« less
Exarchakis, Georgios; Lücke, Jörg
2017-11-01
Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.
Barbhaiya, Medha; Dong, Yan; Sparks, Jeffrey A; Losina, Elena; Costenbader, Karen H; Katz, Jeffrey N
2017-06-19
Studies of the epidemiology and outcomes of avascular necrosis (AVN) require accurate case-finding methods. The aim of this study was to evaluate performance characteristics of a claims-based algorithm designed to identify AVN cases in administrative data. Using a centralized patient registry from a US academic medical center, we identified all adults aged ≥18 years who underwent magnetic resonance imaging (MRI) of an upper/lower extremity joint during the 1.5 year study period. A radiologist report confirming AVN on MRI served as the gold standard. We examined the sensitivity, specificity, positive predictive value (PPV) and positive likelihood ratio (LR + ) of four algorithms (A-D) using International Classification of Diseases, 9th edition (ICD-9) codes for AVN. The algorithms ranged from least stringent (Algorithm A, requiring ≥1 ICD-9 code for AVN [733.4X]) to most stringent (Algorithm D, requiring ≥3 ICD-9 codes, each at least 30 days apart). Among 8200 patients who underwent MRI, 83 (1.0% [95% CI 0.78-1.22]) had AVN by gold standard. Algorithm A yielded the highest sensitivity (81.9%, 95% CI 72.0-89.5), with PPV of 66.0% (95% CI 56.0-75.1). The PPV of algorithm D increased to 82.2% (95% CI 67.9-92.0), although sensitivity decreased to 44.6% (95% CI 33.7-55.9). All four algorithms had specificities >99%. An algorithm that uses a single billing code to screen for AVN among those who had MRI has the highest sensitivity and is best suited for studies in which further medical record review confirming AVN is feasible. Algorithms using multiple billing codes are recommended for use in administrative databases when further AVN validation is not feasible.
Learning Short Binary Codes for Large-scale Image Retrieval.
Liu, Li; Yu, Mengyang; Shao, Ling
2017-03-01
Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.
Research on Image Encryption Based on DNA Sequence and Chaos Theory
NASA Astrophysics Data System (ADS)
Tian Zhang, Tian; Yan, Shan Jun; Gu, Cheng Yan; Ren, Ran; Liao, Kai Xin
2018-04-01
Nowadays encryption is a common technique to protect image data from unauthorized access. In recent years, many scientists have proposed various encryption algorithms based on DNA sequence to provide a new idea for the design of image encryption algorithm. Therefore, a new method of image encryption based on DNA computing technology is proposed in this paper, whose original image is encrypted by DNA coding and 1-D logistic chaotic mapping. First, the algorithm uses two modules as the encryption key. The first module uses the real DNA sequence, and the second module is made by one-dimensional logistic chaos mapping. Secondly, the algorithm uses DNA complementary rules to encode original image, and uses the key and DNA computing technology to compute each pixel value of the original image, so as to realize the encryption of the whole image. Simulation results show that the algorithm has good encryption effect and security.
2017-04-13
modelling code, a parallel benchmark , and a communication avoiding version of the QR algorithm. Further, several improvements to the OmpSs model were...movement; and a port of the dynamic load balancing library to OmpSs. Finally, several updates to the tools infrastructure were accomplished, including: an...OmpSs: a basic algorithm on image processing applications, a mini application representative of an ocean modelling code, a parallel benchmark , and a
Interpolation bias for the inverse compositional Gauss-Newton algorithm in digital image correlation
NASA Astrophysics Data System (ADS)
Su, Yong; Zhang, Qingchuan; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan
2018-01-01
It is believed that the classic forward additive Newton-Raphson (FA-NR) algorithm and the recently introduced inverse compositional Gauss-Newton (IC-GN) algorithm give rise to roughly equal interpolation bias. Questioning the correctness of this statement, this paper presents a thorough analysis of interpolation bias for the IC-GN algorithm. A theoretical model is built to analytically characterize the dependence of interpolation bias upon speckle image, target image interpolation, and reference image gradient estimation. The interpolation biases of the FA-NR algorithm and the IC-GN algorithm can be significantly different, whose relative difference can exceed 80%. For the IC-GN algorithm, the gradient estimator can strongly affect the interpolation bias; the relative difference can reach 178%. Since the mean bias errors are insensitive to image noise, the theoretical model proposed remains valid in the presence of noise. To provide more implementation details, source codes are uploaded as a supplement.
Abid, Abdulbasit
2013-03-01
This paper presents a thorough discussion of the proposed field-programmable gate array (FPGA) implementation for fringe pattern demodulation using the one-dimensional continuous wavelet transform (1D-CWT) algorithm. This algorithm is also known as wavelet transform profilometry. Initially, the 1D-CWT is programmed using the C programming language and compiled into VHDL using the ImpulseC tool. This VHDL code is implemented on the Altera Cyclone IV GX EP4CGX150DF31C7 FPGA. A fringe pattern image with a size of 512×512 pixels is presented to the FPGA, which processes the image using the 1D-CWT algorithm. The FPGA requires approximately 100 ms to process the image and produce a wrapped phase map. For performance comparison purposes, the 1D-CWT algorithm is programmed using the C language. The C code is then compiled using the Intel compiler version 13.0. The compiled code is run on a Dell Precision state-of-the-art workstation. The time required to process the fringe pattern image is approximately 1 s. In order to further reduce the execution time, the 1D-CWT is reprogramed using Intel Integrated Primitive Performance (IPP) Library Version 7.1. The execution time was reduced to approximately 650 ms. This confirms that at least sixfold speedup was gained using FPGA implementation over a state-of-the-art workstation that executes heavily optimized implementation of the 1D-CWT algorithm.
NASA Astrophysics Data System (ADS)
De Geyter, G.; Baes, M.; Fritz, J.; Camps, P.
2013-02-01
We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.
Discrete Cosine Transform Image Coding With Sliding Block Codes
NASA Astrophysics Data System (ADS)
Divakaran, Ajay; Pearlman, William A.
1989-11-01
A transform trellis coding scheme for images is presented. A two dimensional discrete cosine transform is applied to the image followed by a search on a trellis structured code. This code is a sliding block code that utilizes a constrained size reproduction alphabet. The image is divided into blocks by the transform coding. The non-stationarity of the image is counteracted by grouping these blocks in clusters through a clustering algorithm, and then encoding the clusters separately. Mandela ordered sequences are formed from each cluster i.e identically indexed coefficients from each block are grouped together to form one dimensional sequences. A separate search ensues on each of these Mandela ordered sequences. Padding sequences are used to improve the trellis search fidelity. The padding sequences absorb the error caused by the building up of the trellis to full size. The simulations were carried out on a 256x256 image ('LENA'). The results are comparable to any existing scheme. The visual quality of the image is enhanced considerably by the padding and clustering.
Subjective evaluation of compressed image quality
NASA Astrophysics Data System (ADS)
Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin
1992-05-01
Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.
An efficient dictionary learning algorithm and its application to 3-D medical image denoising.
Li, Shutao; Fang, Leyuan; Yin, Haitao
2012-02-01
In this paper, we propose an efficient dictionary learning algorithm for sparse representation of given data and suggest a way to apply this algorithm to 3-D medical image denoising. Our learning approach is composed of two main parts: sparse coding and dictionary updating. On the sparse coding stage, an efficient algorithm named multiple clusters pursuit (MCP) is proposed. The MCP first applies a dictionary structuring strategy to cluster the atoms with high coherence together, and then employs a multiple-selection strategy to select several competitive atoms at each iteration. These two strategies can greatly reduce the computation complexity of the MCP and assist it to obtain better sparse solution. On the dictionary updating stage, the alternating optimization that efficiently approximates the singular value decomposition is introduced. Furthermore, in the 3-D medical image denoising application, a joint 3-D operation is proposed for taking the learning capabilities of the presented algorithm to simultaneously capture the correlations within each slice and correlations across the nearby slices, thereby obtaining better denoising results. The experiments on both synthetically generated data and real 3-D medical images demonstrate that the proposed approach has superior performance compared to some well-known methods. © 2011 IEEE
NASA Technical Reports Server (NTRS)
Sayood, K.; Chen, Y. C.; Wang, X.
1992-01-01
During this reporting period we have worked on three somewhat different problems. These are modeling of video traffic in packet networks, low rate video compression, and the development of a lossy + lossless image compression algorithm, which might have some application in browsing algorithms. The lossy + lossless scheme is an extension of work previously done under this grant. It provides a simple technique for incorporating browsing capability. The low rate coding scheme is also a simple variation on the standard discrete cosine transform (DCT) coding approach. In spite of its simplicity, the approach provides surprisingly high quality reconstructions. The modeling approach is borrowed from the speech recognition literature, and seems to be promising in that it provides a simple way of obtaining an idea about the second order behavior of a particular coding scheme. Details about these are presented.
Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong
2015-01-01
The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718
Optimized nonorthogonal transforms for image compression.
Guleryuz, O G; Orchard, M T
1997-01-01
The transform coding of images is analyzed from a common standpoint in order to generate a framework for the design of optimal transforms. It is argued that all transform coders are alike in the way they manipulate the data structure formed by transform coefficients. A general energy compaction measure is proposed to generate optimized transforms with desirable characteristics particularly suited to the simple transform coding operation of scalar quantization and entropy coding. It is shown that the optimal linear decoder (inverse transform) must be an optimal linear estimator, independent of the structure of the transform generating the coefficients. A formulation that sequentially optimizes the transforms is presented, and design equations and algorithms for its computation provided. The properties of the resulting transform systems are investigated. In particular, it is shown that the resulting basis are nonorthogonal and complete, producing energy compaction optimized, decorrelated transform coefficients. Quantization issues related to nonorthogonal expansion coefficients are addressed with a simple, efficient algorithm. Two implementations are discussed, and image coding examples are given. It is shown that the proposed design framework results in systems with superior energy compaction properties and excellent coding results.
A source-channel coding approach to digital image protection and self-recovery.
Sarreshtedari, Saeed; Akhaee, Mohammad Ali
2015-07-01
Watermarking algorithms have been widely applied to the field of image forensics recently. One of these very forensic applications is the protection of images against tampering. For this purpose, we need to design a watermarking algorithm fulfilling two purposes in case of image tampering: 1) detecting the tampered area of the received image and 2) recovering the lost information in the tampered zones. State-of-the-art techniques accomplish these tasks using watermarks consisting of check bits and reference bits. Check bits are used for tampering detection, whereas reference bits carry information about the whole image. The problem of recovering the lost reference bits still stands. This paper is aimed at showing that having the tampering location known, image tampering can be modeled and dealt with as an erasure error. Therefore, an appropriate design of channel code can protect the reference bits against tampering. In the present proposed method, the total watermark bit-budget is dedicated to three groups: 1) source encoder output bits; 2) channel code parity bits; and 3) check bits. In watermark embedding phase, the original image is source coded and the output bit stream is protected using appropriate channel encoder. For image recovery, erasure locations detected by check bits help channel erasure decoder to retrieve the original source encoded image. Experimental results show that our proposed scheme significantly outperforms recent techniques in terms of image quality for both watermarked and recovered image. The watermarked image quality gain is achieved through spending less bit-budget on watermark, while image recovery quality is considerably improved as a consequence of consistent performance of designed source and channel codes.
[Development of a video image system for wireless capsule endoscopes based on DSP].
Yang, Li; Peng, Chenglin; Wu, Huafeng; Zhao, Dechun; Zhang, Jinhua
2008-02-01
A video image recorder to record video picture for wireless capsule endoscopes was designed. TMS320C6211 DSP of Texas Instruments Inc. is the core processor of this system. Images are periodically acquired from Composite Video Broadcast Signal (CVBS) source and scaled by video decoder (SAA7114H). Video data is transported from high speed buffer First-in First-out (FIFO) to Digital Signal Processor (DSP) under the control of Complex Programmable Logic Device (CPLD). This paper adopts JPEG algorithm for image coding, and the compressed data in DSP was stored to Compact Flash (CF) card. TMS320C6211 DSP is mainly used for image compression and data transporting. Fast Discrete Cosine Transform (DCT) algorithm and fast coefficient quantization algorithm are used to accelerate operation speed of DSP and decrease the executing code. At the same time, proper address is assigned for each memory, which has different speed;the memory structure is also optimized. In addition, this system uses plenty of Extended Direct Memory Access (EDMA) to transport and process image data, which results in stable and high performance.
NASA Astrophysics Data System (ADS)
Kilian-Meneghin, Josh; Xiong, Z.; Rudin, S.; Oines, A.; Bednarek, D. R.
2017-03-01
The purpose of this work is to evaluate methods for producing a library of 2D-radiographic images to be correlated to clinical images obtained during a fluoroscopically-guided procedure for automated patient-model localization. The localization algorithm will be used to improve the accuracy of the skin-dose map superimposed on the 3D patient- model of the real-time Dose-Tracking-System (DTS). For the library, 2D images were generated from CT datasets of the SK-150 anthropomorphic phantom using two methods: Schmid's 3D-visualization tool and Plastimatch's digitally-reconstructed-radiograph (DRR) code. Those images, as well as a standard 2D-radiographic image, were correlated to a 2D-fluoroscopic image of a phantom, which represented the clinical-fluoroscopic image, using the Corr2 function in Matlab. The Corr2 function takes two images and outputs the relative correlation between them, which is fed into the localization algorithm. Higher correlation means better alignment of the 3D patient-model with the patient image. In this instance, it was determined that the localization algorithm will succeed when Corr2 returns a correlation of at least 50%. The 3D-visualization tool images returned 55-80% correlation relative to the fluoroscopic-image, which was comparable to the correlation for the radiograph. The DRR images returned 61-90% correlation, again comparable to the radiograph. Both methods prove to be sufficient for the localization algorithm and can be produced quickly; however, the DRR method produces more accurate grey-levels. Using the DRR code, a library at varying angles can be produced for the localization algorithm.
Efficient burst image compression using H.265/HEVC
NASA Astrophysics Data System (ADS)
Roodaki-Lavasani, Hoda; Lainema, Jani
2014-02-01
New imaging use cases are emerging as more powerful camera hardware is entering consumer markets. One family of such use cases is based on capturing multiple pictures instead of just one when taking a photograph. That kind of a camera operation allows e.g. selecting the most successful shot from a sequence of images, showing what happened right before or after the shot was taken or combining the shots by computational means to improve either visible characteristics of the picture (such as dynamic range or focus) or the artistic aspects of the photo (e.g. by superimposing pictures on top of each other). Considering that photographic images are typically of high resolution and quality and the fact that these kind of image bursts can consist of at least tens of individual pictures, an efficient compression algorithm is desired. However, traditional video coding approaches fail to provide the random access properties these use cases require to achieve near-instantaneous access to the pictures in the coded sequence. That feature is critical to allow users to browse the pictures in an arbitrary order or imaging algorithms to extract desired pictures from the sequence quickly. This paper proposes coding structures that provide such random access properties while achieving coding efficiency superior to existing image coders. The results indicate that using HEVC video codec with a single reference picture fixed for the whole sequence can achieve nearly as good compression as traditional IPPP coding structures. It is also shown that the selection of the reference frame can further improve the coding efficiency.
Comparison of reversible methods for data compression
NASA Astrophysics Data System (ADS)
Heer, Volker K.; Reinfelder, Hans-Erich
1990-07-01
Widely differing methods for data compression described in the ACR-NEMA draft are used in medical imaging. In our contribution we will review various methods briefly and discuss the relevant advantages and disadvantages. In detail we evaluate 1st order DPCM pyramid transformation and S transformation. We compare as coding algorithms both fixed and adaptive Huffman coding and Lempel-Ziv coding. Our comparison is performed on typical medical images from CT MR DSA and DLR (Digital Luminescence Radiography). Apart from the achieved compression factors we take into account CPU time required and main memory requirement both for compression and for decompression. For a realistic comparison we have implemented the mentioned algorithms in the C program language on a MicroVAX II and a SPARC station 1. 2.
Capacity is the Wrong Paradigm
2002-01-01
short, steganography values detection over ro- bustness, whereas watermarking values robustness over de - tection.) Hiding techniques for JPEG images ...world length of the code. D: If the algorithm is known, this method is trivially de - tectable if we are sending images (with no encryption). If we are...implications of the work of Chaitin and Kolmogorov on algorithmic complex- ity [5]. We have also concentrated on screen images in this paper and have not
Research on lossless compression of true color RGB image with low time and space complexity
NASA Astrophysics Data System (ADS)
Pan, ShuLin; Xie, ChengJun; Xu, Lin
2008-12-01
Eliminating correlated redundancy of space and energy by using a DWT lifting scheme and reducing the complexity of the image by using an algebraic transform among the RGB components. An improved Rice Coding algorithm, in which presents an enumerating DWT lifting scheme that fits any size images by image renormalization has been proposed in this paper. This algorithm has a coding and decoding process without backtracking for dealing with the pixels of an image. It support LOCO-I and it can also be applied to Coder / Decoder. Simulation analysis indicates that the proposed method can achieve a high image compression. Compare with Lossless-JPG, PNG(Microsoft), PNG(Rene), PNG(Photoshop), PNG(Anix PicViewer), PNG(ACDSee), PNG(Ulead photo Explorer), JPEG2000, PNG(KoDa Inc), SPIHT and JPEG-LS, the lossless image compression ratio improved 45%, 29%, 25%, 21%, 19%, 17%, 16%, 15%, 11%, 10.5%, 10% separately with 24 pieces of RGB image provided by KoDa Inc. Accessing the main memory in Pentium IV,CPU2.20GHZ and 256MRAM, the coding speed of the proposed coder can be increased about 21 times than the SPIHT and the efficiency of the performance can be increased 166% or so, the decoder's coding speed can be increased about 17 times than the SPIHT and the efficiency of the performance can be increased 128% or so.
Improvement of Speckle Contrast Image Processing by an Efficient Algorithm.
Steimers, A; Farnung, W; Kohl-Bareis, M
2016-01-01
We demonstrate an efficient algorithm for the temporal and spatial based calculation of speckle contrast for the imaging of blood flow by laser speckle contrast analysis (LASCA). It reduces the numerical complexity of necessary calculations, facilitates a multi-core and many-core implementation of the speckle analysis and enables an independence of temporal or spatial resolution and SNR. The new algorithm was evaluated for both spatial and temporal based analysis of speckle patterns with different image sizes and amounts of recruited pixels as sequential, multi-core and many-core code.
Low-level processing for real-time image analysis
NASA Technical Reports Server (NTRS)
Eskenazi, R.; Wilf, J. M.
1979-01-01
A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.
A denoising algorithm for CT image using low-rank sparse coding
NASA Astrophysics Data System (ADS)
Lei, Yang; Xu, Dong; Zhou, Zhengyang; Wang, Tonghe; Dong, Xue; Liu, Tian; Dhabaan, Anees; Curran, Walter J.; Yang, Xiaofeng
2018-03-01
We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.
Overlapped Fourier coding for optical aberration removal
Horstmeyer, Roarke; Ou, Xiaoze; Chung, Jaebum; Zheng, Guoan; Yang, Changhuei
2014-01-01
We present an imaging procedure that simultaneously optimizes a camera’s resolution and retrieves a sample’s phase over a sequence of snapshots. The technique, termed overlapped Fourier coding (OFC), first digitally pans a small aperture across a camera’s pupil plane with a spatial light modulator. At each aperture location, a unique image is acquired. The OFC algorithm then fuses these low-resolution images into a full-resolution estimate of the complex optical field incident upon the detector. Simultaneously, the algorithm utilizes redundancies within the acquired dataset to computationally estimate and remove unknown optical aberrations and system misalignments via simulated annealing. The result is an imaging system that can computationally overcome its optical imperfections to offer enhanced resolution, at the expense of taking multiple snapshots over time. PMID:25321982
Video transmission on ATM networks. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chen, Yun-Chung
1993-01-01
The broadband integrated services digital network (B-ISDN) is expected to provide high-speed and flexible multimedia applications. Multimedia includes data, graphics, image, voice, and video. Asynchronous transfer mode (ATM) is the adopted transport techniques for B-ISDN and has the potential for providing a more efficient and integrated environment for multimedia. It is believed that most broadband applications will make heavy use of visual information. The prospect of wide spread use of image and video communication has led to interest in coding algorithms for reducing bandwidth requirements and improving image quality. The major results of a study on the bridging of network transmission performance and video coding are: Using two representative video sequences, several video source models are developed. The fitness of these models are validated through the use of statistical tests and network queuing performance. A dual leaky bucket algorithm is proposed as an effective network policing function. The concept of the dual leaky bucket algorithm can be applied to a prioritized coding approach to achieve transmission efficiency. A mapping of the performance/control parameters at the network level into equivalent parameters at the video coding level is developed. Based on that, a complete set of principles for the design of video codecs for network transmission is proposed.
Deep linear autoencoder and patch clustering-based unified one-dimensional coding of image and video
NASA Astrophysics Data System (ADS)
Li, Honggui
2017-09-01
This paper proposes a unified one-dimensional (1-D) coding framework of image and video, which depends on deep learning neural network and image patch clustering. First, an improved K-means clustering algorithm for image patches is employed to obtain the compact inputs of deep artificial neural network. Second, for the purpose of best reconstructing original image patches, deep linear autoencoder (DLA), a linear version of the classical deep nonlinear autoencoder, is introduced to achieve the 1-D representation of image blocks. Under the circumstances of 1-D representation, DLA is capable of attaining zero reconstruction error, which is impossible for the classical nonlinear dimensionality reduction methods. Third, a unified 1-D coding infrastructure for image, intraframe, interframe, multiview video, three-dimensional (3-D) video, and multiview 3-D video is built by incorporating different categories of videos into the inputs of patch clustering algorithm. Finally, it is shown in the results of simulation experiments that the proposed methods can simultaneously gain higher compression ratio and peak signal-to-noise ratio than those of the state-of-the-art methods in the situation of low bitrate transmission.
Wood industrial application for quality control using image processing
NASA Astrophysics Data System (ADS)
Ferreira, M. J. O.; Neves, J. A. C.
1994-11-01
This paper describes an application of image processing for the furniture industry. It uses an input data, images acquired directly from wood planks where defects were previously marked by an operator. A set of image processing algorithms separates and codes each defect and detects a polygonal approach of the line representing them. For such a purpose we developed a pattern classification algorithm and a new technique of segmenting defects by carving the convex hull of the binary shape representing each isolated defect.
NASA Astrophysics Data System (ADS)
Huang, Wei; Ma, Chengfu; Chen, Yuhang
2014-12-01
A method for simple and reliable displacement measurement with nanoscale resolution is proposed. The measurement is realized by combining a common optical microscopy imaging of a specially coded nonperiodic microstructure, namely two-dimensional zero-reference mark (2-D ZRM), and subsequent correlation analysis of the obtained image sequence. The autocorrelation peak contrast of the ZRM code is maximized with well-developed artificial intelligence algorithms, which enables robust and accurate displacement determination. To improve the resolution, subpixel image correlation analysis is employed. Finally, we experimentally demonstrate the quasi-static and dynamic displacement characterization ability of a micro 2-D ZRM.
Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.
Feng, Wei; Zhang, Fumin; Wang, Weijing; Xing, Wei; Qu, Xinghua
2017-05-01
In this paper, we overcome the limited dynamic range of the conventional digital camera, and propose a method of realizing high dynamic range imaging (HDRI) from a novel programmable imaging system called a digital micromirror device (DMD) camera. The unique feature of the proposed new method is that the spatial and temporal information of incident light in our DMD camera can be flexibly modulated, and it enables the camera pixels always to have reasonable exposure intensity by DMD pixel-level modulation. More importantly, it allows different light intensity control algorithms used in our programmable imaging system to achieve HDRI. We implement the optical system prototype, analyze the theory of per-pixel coded exposure for HDRI, and put forward an adaptive light intensity control algorithm to effectively modulate the different light intensity to recover high dynamic range images. Via experiments, we demonstrate the effectiveness of our method and implement the HDRI on different objects.
Fast image interpolation for motion estimation using graphics hardware
NASA Astrophysics Data System (ADS)
Kelly, Francis; Kokaram, Anil
2004-05-01
Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.
Parallelization of a blind deconvolution algorithm
NASA Astrophysics Data System (ADS)
Matson, Charles L.; Borelli, Kathy J.
2006-09-01
Often it is of interest to deblur imagery in order to obtain higher-resolution images. Deblurring requires knowledge of the blurring function - information that is often not available separately from the blurred imagery. Blind deconvolution algorithms overcome this problem by jointly estimating both the high-resolution image and the blurring function from the blurred imagery. Because blind deconvolution algorithms are iterative in nature, they can take minutes to days to deblur an image depending how many frames of data are used for the deblurring and the platforms on which the algorithms are executed. Here we present our progress in parallelizing a blind deconvolution algorithm to increase its execution speed. This progress includes sub-frame parallelization and a code structure that is not specialized to a specific computer hardware architecture.
NASA Astrophysics Data System (ADS)
Xie, ChengJun; Xu, Lin
2008-03-01
This paper presents a new algorithm based on mixing transform to eliminate redundancy, SHIRCT and subtraction mixing transform is used to eliminate spectral redundancy, 2D-CDF(2,2)DWT to eliminate spatial redundancy, This transform has priority in hardware realization convenience, since it can be fully implemented by add and shift operation. Its redundancy elimination effect is better than (1D+2D)CDF(2,2)DWT. Here improved SPIHT+CABAC mixing compression coding algorithm is used to implement compression coding. The experiment results show that in lossless image compression applications the effect of this method is a little better than the result acquired using (1D+2D)CDF(2,2)DWT+improved SPIHT+CABAC, still it is much better than the results acquired by JPEG-LS, WinZip, ARJ, DPCM, the research achievements of a research team of Chinese Academy of Sciences, NMST and MST. Using hyper-spectral image Canal of American JPL laboratory as the data set for lossless compression test, on the average the compression ratio of this algorithm exceeds the above algorithms by 42%,37%,35%,30%,16%,13%,11% respectively.
Global Precipitation Measurement: GPM Microwave Imager (GMI) Algorithm Development Approach
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz
2009-01-01
This slide presentation reviews the approach to the development of the Global Precipitation Measurement algorithm. This presentation includes information about the responsibilities for the development of the algorithm, and the calibration. Also included is information about the orbit, and the sun angle. The test of the algorithm code will be done with synthetic data generated from the Precipitation Processing System (PPS).
NASA Astrophysics Data System (ADS)
He, Lirong; Cui, Guangmang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting
2015-03-01
Coded exposure photography makes the motion de-blurring a well-posed problem. The integration pattern of light is modulated using the method of coded exposure by opening and closing the shutter within the exposure time, changing the traditional shutter frequency spectrum into a wider frequency band in order to preserve more image information in frequency domain. The searching method of optimal code is significant for coded exposure. In this paper, an improved criterion of the optimal code searching is proposed by analyzing relationship between code length and the number of ones in the code, considering the noise effect on code selection with the affine noise model. Then the optimal code is obtained utilizing the method of genetic searching algorithm based on the proposed selection criterion. Experimental results show that the time consuming of searching optimal code decreases with the presented method. The restoration image is obtained with better subjective experience and superior objective evaluation values.
Subband Image Coding with Jointly Optimized Quantizers
NASA Technical Reports Server (NTRS)
Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.
1995-01-01
An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.
NASA Astrophysics Data System (ADS)
Qin, Yi; Wang, Hongjuan; Wang, Zhipeng; Gong, Qiong; Wang, Danchen
2016-09-01
In optical interference-based encryption (IBE) scheme, the currently available methods have to employ the iterative algorithms in order to encrypt two images and retrieve cross-talk free decrypted images. In this paper, we shall show that this goal can be achieved via an analytical process if one of the two images is QR code. For decryption, the QR code is decrypted in the conventional architecture and the decryption has a noisy appearance. Nevertheless, the robustness of QR code against noise enables the accurate acquisition of its content from the noisy retrieval, as a result of which the primary QR code can be exactly regenerated. Thereafter, a novel optical architecture is proposed to recover the grayscale image by aid of the QR code. In addition, the proposal has totally eliminated the silhouette problem existing in the previous IBE schemes, and its effectiveness and feasibility have been demonstrated by numerical simulations.
Automatic morphological classification of galaxy images
Shamir, Lior
2009-01-01
We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594
Selective encryption for H.264/AVC video coding
NASA Astrophysics Data System (ADS)
Shi, Tuo; King, Brian; Salama, Paul
2006-02-01
Due to the ease with which digital data can be manipulated and due to the ongoing advancements that have brought us closer to pervasive computing, the secure delivery of video and images has become a challenging problem. Despite the advantages and opportunities that digital video provide, illegal copying and distribution as well as plagiarism of digital audio, images, and video is still ongoing. In this paper we describe two techniques for securing H.264 coded video streams. The first technique, SEH264Algorithm1, groups the data into the following blocks of data: (1) a block that contains the sequence parameter set and the picture parameter set, (2) a block containing a compressed intra coded frame, (3) a block containing the slice header of a P slice, all the headers of the macroblock within the same P slice, and all the luma and chroma DC coefficients belonging to the all the macroblocks within the same slice, (4) a block containing all the ac coefficients, and (5) a block containing all the motion vectors. The first three are encrypted whereas the last two are not. The second method, SEH264Algorithm2, relies on the use of multiple slices per coded frame. The algorithm searches the compressed video sequence for start codes (0x000001) and then encrypts the next N bits of data.
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1988-01-01
Two types of research issues are involved in image management systems with space station applications: image processing research and image perception research. The image processing issues are the traditional ones of digitizing, coding, compressing, storing, analyzing, and displaying, but with a new emphasis on the constraints imposed by the human perceiver. Two image coding algorithms have been developed that may increase the efficiency of image management systems (IMS). Image perception research involves a study of the theoretical and practical aspects of visual perception of electronically displayed images. Issues include how rapidly a user can search through a library of images, how to make this search more efficient, and how to present images in terms of resolution and split screens. Other issues include optimal interface to an IMS and how to code images in a way that is optimal for the human perceiver. A test-bed within which such issues can be addressed has been designed.
The implementation of thermal image visualization by HDL based on pseudo-color
NASA Astrophysics Data System (ADS)
Zhu, Yong; Zhang, JiangLing
2004-11-01
The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.
Gong, Yunchao; Lazebnik, Svetlana; Gordo, Albert; Perronnin, Florent
2013-12-01
This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multiclass spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or "classemes" on the ImageNet data set.
ConvPhot: A profile-matching algorithm for precision photometry
NASA Astrophysics Data System (ADS)
De Santis, C.; Grazian, A.; Fontana, A.; Santini, P.
2007-02-01
We describe in this paper a new, public software for accurate "PSF-matched" multiband photometry for images of different resolution and depth, that we have named ConvPhot, of which we analyse performances and limitations. It is designed to work when a high resolution image is available to identify and extract the objects, and colours or variations in luminosity are to be measured in another image of lower resolution but comparable depth. To maximise the usability of this software, we explicitly use the outputs of the popular SExtractor code that is used to extract all objects from the high resolution "detection" image. The technique adopted by the code is essentially to convolve each object to the PSF of the lower resolution "measure" image, and to obtain the flux of each object by a global χ2 minimisation on such measure image. We remark that no a priori assumption is done on the shape of the objects. In this paper we provide a full description of the algorithm, a discussion of the possible systematic effects involved and the results of a set of simulations and validation tests that we have performed on real as well as simulated images. The source code of ConvPhot, written in C language under the GNU Public License, is released worldwide.
Joint reconstruction of multiview compressed images.
Thirumalai, Vijayaraghavan; Frossard, Pascal
2013-05-01
Distributed representation of correlated multiview images is an important problem that arises in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed images are decoded together in order to take benefit from the image correlation. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG) with a balanced rate distribution among different cameras. A central decoder first estimates the inter-view image correlation from the independently compressed data. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images, which comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to their compressed versions. We show through experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our algorithm compares advantageously to state-of-the-art distributed coding schemes based on motion learning and on the DISCOVER algorithm.
NASA Technical Reports Server (NTRS)
Lawton, Pat
2004-01-01
The objective of this work was to support the design of improved IUE NEWSIPS high dispersion extraction algorithms. The purpose of this work was to evaluate use of the Linearized Image (LIHI) file versus the Re-Sampled Image (SIHI) file, evaluate various extraction, and design algorithms for evaluation of IUE High Dispersion spectra. It was concluded the use of the Re-Sampled Image (SIHI) file was acceptable. Since the Gaussian profile worked well for the core and the Lorentzian profile worked well for the wings, the Voigt profile was chosen for use in the extraction algorithm. It was found that the gamma and sigma parameters varied significantly across the detector, so gamma and sigma masks for the SWP detector were developed. Extraction code was written.
Chaotic CDMA watermarking algorithm for digital image in FRFT domain
NASA Astrophysics Data System (ADS)
Liu, Weizhong; Yang, Wentao; Feng, Zhuoming; Zou, Xuecheng
2007-11-01
A digital image-watermarking algorithm based on fractional Fourier transform (FRFT) domain is presented by utilizing chaotic CDMA technique in this paper. As a popular and typical transmission technique, CDMA has many advantages such as privacy, anti-jamming and low power spectral density, which can provide robustness against image distortions and malicious attempts to remove or tamper with the watermark. A super-hybrid chaotic map, with good auto-correlation and cross-correlation characteristics, is adopted to produce many quasi-orthogonal codes (QOC) that can replace the periodic PN-code used in traditional CDAM system. The watermarking data is divided into a lot of segments that correspond to different chaotic QOC respectively and are modulated into the CDMA watermarking data embedded into low-frequency amplitude coefficients of FRFT domain of the cover image. During watermark detection, each chaotic QOC extracts its corresponding watermarking segment by calculating correlation coefficients between chaotic QOC and watermarked data of the detected image. The CDMA technique not only can enhance the robustness of watermark but also can compress the data of the modulated watermark. Experimental results show that the watermarking algorithm has good performances in three aspects: better imperceptibility, anti-attack robustness and security.
Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain
Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo
2012-01-01
An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality. PMID:23049544
Medical image compression based on vector quantization with variable block sizes in wavelet domain.
Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo
2012-01-01
An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.
NASA Astrophysics Data System (ADS)
Tian, Lei; Waller, Laura
2017-05-01
Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.
ImgLib2--generic image processing in Java.
Pietzsch, Tobias; Preibisch, Stephan; Tomancák, Pavel; Saalfeld, Stephan
2012-11-15
ImgLib2 is an open-source Java library for n-dimensional data representation and manipulation with focus on image processing. It aims at minimizing code duplication by cleanly separating pixel-algebra, data access and data representation in memory. Algorithms can be implemented for classes of pixel types and generic access patterns by which they become independent of the specific dimensionality, pixel type and data representation. ImgLib2 illustrates that an elegant high-level programming interface can be achieved without sacrificing performance. It provides efficient implementations of common data types, storage layouts and algorithms. It is the data model underlying ImageJ2, the KNIME Image Processing toolbox and an increasing number of Fiji-Plugins. ImgLib2 is licensed under BSD. Documentation and source code are available at http://imglib2.net and in a public repository at https://github.com/imagej/imglib. Supplementary data are available at Bioinformatics Online. saalfeld@mpi-cbg.de
Hierarchical Feature Extraction With Local Neural Response for Image Recognition.
Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P
2013-04-01
In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.
Audiovisual focus of attention and its application to Ultra High Definition video compression
NASA Astrophysics Data System (ADS)
Rerabek, Martin; Nemoto, Hiromi; Lee, Jong-Seok; Ebrahimi, Touradj
2014-02-01
Using Focus of Attention (FoA) as a perceptual process in image and video compression belongs to well-known approaches to increase coding efficiency. It has been shown that foveated coding, when compression quality varies across the image according to region of interest, is more efficient than the alternative coding, when all region are compressed in a similar way. However, widespread use of such foveated compression has been prevented due to two main conflicting causes, namely, the complexity and the efficiency of algorithms for FoA detection. One way around these is to use as much information as possible from the scene. Since most video sequences have an associated audio, and moreover, in many cases there is a correlation between the audio and the visual content, audiovisual FoA can improve efficiency of the detection algorithm while remaining of low complexity. This paper discusses a simple yet efficient audiovisual FoA algorithm based on correlation of dynamics between audio and video signal components. Results of audiovisual FoA detection algorithm are subsequently taken into account for foveated coding and compression. This approach is implemented into H.265/HEVC encoder producing a bitstream which is fully compliant to any H.265/HEVC decoder. The influence of audiovisual FoA in the perceived quality of high and ultra-high definition audiovisual sequences is explored and the amount of gain in compression efficiency is analyzed.
Low-complex energy-aware image communication in visual sensor networks
NASA Astrophysics Data System (ADS)
Phamila, Yesudhas Asnath Victy; Amutha, Ramachandran
2013-10-01
A low-complex, low bit rate, energy-efficient image compression algorithm explicitly designed for resource-constrained visual sensor networks applied for surveillance, battle field, habitat monitoring, etc. is presented, where voluminous amount of image data has to be communicated over a bandwidth-limited wireless medium. The proposed method overcomes the energy limitation of individual nodes and is investigated in terms of image quality, entropy, processing time, overall energy consumption, and system lifetime. This algorithm is highly energy efficient and extremely fast since it applies energy-aware zonal binary discrete cosine transform (DCT) that computes only the few required significant coefficients and codes them using enhanced complementary Golomb Rice code without using any floating point operations. Experiments are performed using the Atmel Atmega128 and MSP430 processors to measure the resultant energy savings. Simulation results show that the proposed energy-aware fast zonal transform consumes only 0.3% of energy needed by conventional DCT. This algorithm consumes only 6% of energy needed by Independent JPEG Group (fast) version, and it suits for embedded systems requiring low power consumption. The proposed scheme is unique since it significantly enhances the lifetime of the camera sensor node and the network without any need for distributed processing as was traditionally required in existing algorithms.
An effective approach for iris recognition using phase-based image matching.
Miyazawa, Kazuyuki; Ito, Koichi; Aoki, Takafumi; Kobayashi, Koji; Nakajima, Hiroshi
2008-10-01
This paper presents an efficient algorithm for iris recognition using phase-based image matching--an image matching technique using phase components in 2D Discrete Fourier Transforms (DFTs) of given images. Experimental evaluation using CASIA iris image databases (versions 1.0 and 2.0) and Iris Challenge Evaluation (ICE) 2005 database clearly demonstrates that the use of phase components of iris images makes possible to achieve highly accurate iris recognition with a simple matching algorithm. This paper also discusses major implementation issues of our algorithm. In order to reduce the size of iris data and to prevent the visibility of iris images, we introduce the idea of 2D Fourier Phase Code (FPC) for representing iris information. The 2D FPC is particularly useful for implementing compact iris recognition devices using state-of-the-art Digital Signal Processing (DSP) technology.
Image Coding Based on Address Vector Quantization.
NASA Astrophysics Data System (ADS)
Feng, Yushu
Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing Adaptive VQ Technique" is presented. In addition to chapters 2 through 6 which report on new work, this dissertation includes one chapter (chapter 1) and part of chapter 2 which review previous work on VQ and image coding, respectively. Finally, a short discussion of directions for further research is presented in conclusion.
Adaptive bit plane quadtree-based block truncation coding for image compression
NASA Astrophysics Data System (ADS)
Li, Shenda; Wang, Jin; Zhu, Qing
2018-04-01
Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.
Smoothing-Based Relative Navigation and Coded Aperture Imaging
NASA Technical Reports Server (NTRS)
Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher
2017-01-01
This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.
The New CCSDS Image Compression Recommendation
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Armbruster, Philippe; Kiely, Aaron; Masschelein, Bart; Moury, Gilles; Schaefer, Christoph
2005-01-01
The Consultative Committee for Space Data Systems (CCSDS) data compression working group has recently adopted a recommendation for image data compression, with a final release expected in 2005. The algorithm adopted in the recommendation consists of a two-dimensional discrete wavelet transform of the image, followed by progressive bit-plane coding of the transformed data. The algorithm can provide both lossless and lossy compression, and allows a user to directly control the compressed data volume or the fidelity with which the wavelet-transformed data can be reconstructed. The algorithm is suitable for both frame-based image data and scan-based sensor data, and has applications for near-Earth and deep-space missions. The standard will be accompanied by free software sources on a future web site. An Application-Specific Integrated Circuit (ASIC) implementation of the compressor is currently under development. This paper describes the compression algorithm along with the requirements that drove the selection of the algorithm. Performance results and comparisons with other compressors are given for a test set of space images.
The design of wavefront coded imaging system
NASA Astrophysics Data System (ADS)
Lan, Shun; Cen, Zhaofeng; Li, Xiaotong
2016-10-01
Wavefront Coding is a new method to extend the depth of field, which combines optical design and signal processing together. By using optical design software ZEMAX ,we designed a practical wavefront coded imaging system based on a conventional Cooke triplet system .Unlike conventional optical system, the wavefront of this new system is modulated by a specially designed phase mask, which makes the point spread function (PSF)of optical system not sensitive to defocus. Therefore, a series of same blurred images obtained at the image plane. In addition, the optical transfer function (OTF) of the wavefront coded imaging system is independent of focus, which is nearly constant with misfocus and has no regions of zeros. All object information can be completely recovered through digital filtering at different defocus positions. The focus invariance of MTF is selected as merit function in this design. And the coefficients of phase mask are set as optimization goals. Compared to conventional optical system, wavefront coded imaging system obtains better quality images under different object distances. Some deficiencies appear in the restored images due to the influence of digital filtering algorithm, which are also analyzed in this paper. The depth of field of the designed wavefront coded imaging system is about 28 times larger than initial optical system, while keeping higher optical power and resolution at the image plane.
Block-based scalable wavelet image codec
NASA Astrophysics Data System (ADS)
Bao, Yiliang; Kuo, C.-C. Jay
1999-10-01
This paper presents a high performance block-based wavelet image coder which is designed to be of very low implementational complexity yet with rich features. In this image coder, the Dual-Sliding Wavelet Transform (DSWT) is first applied to image data to generate wavelet coefficients in fixed-size blocks. Here, a block only consists of wavelet coefficients from a single subband. The coefficient blocks are directly coded with the Low Complexity Binary Description (LCBiD) coefficient coding algorithm. Each block is encoded using binary context-based bitplane coding. No parent-child correlation is exploited in the coding process. There is also no intermediate buffering needed in between DSWT and LCBiD. The compressed bit stream generated by the proposed coder is both SNR and resolution scalable, as well as highly resilient to transmission errors. Both DSWT and LCBiD process the data in blocks whose size is independent of the size of the original image. This gives more flexibility in the implementation. The codec has a very good coding performance even the block size is (16,16).
Table-driven image transformation engine algorithm
NASA Astrophysics Data System (ADS)
Shichman, Marc
1993-04-01
A high speed image transformation engine (ITE) was designed and a prototype built for use in a generic electronic light table and image perspective transformation application code. The ITE takes any linear transformation, breaks the transformation into two passes and resamples the image appropriately for each pass. The system performance is achieved by driving the engine with a set of look up tables computed at start up time for the calculation of pixel output contributions. Anti-aliasing is done automatically in the image resampling process. Operations such as multiplications and trigonometric functions are minimized. This algorithm can be used for texture mapping, image perspective transformation, electronic light table, and virtual reality.
Optimal block cosine transform image coding for noisy channels
NASA Technical Reports Server (NTRS)
Vaishampayan, V.; Farvardin, N.
1986-01-01
The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered.
A Locality-Constrained and Label Embedding Dictionary Learning Algorithm for Image Classification.
Zhengming Li; Zhihui Lai; Yong Xu; Jian Yang; Zhang, David
2017-02-01
Locality and label information of training samples play an important role in image classification. However, previous dictionary learning algorithms do not take the locality and label information of atoms into account together in the learning process, and thus their performance is limited. In this paper, a discriminative dictionary learning algorithm, called the locality-constrained and label embedding dictionary learning (LCLE-DL) algorithm, was proposed for image classification. First, the locality information was preserved using the graph Laplacian matrix of the learned dictionary instead of the conventional one derived from the training samples. Then, the label embedding term was constructed using the label information of atoms instead of the classification error term, which contained discriminating information of the learned dictionary. The optimal coding coefficients derived by the locality-based and label-based reconstruction were effective for image classification. Experimental results demonstrated that the LCLE-DL algorithm can achieve better performance than some state-of-the-art algorithms.
Interactive searching of facial image databases
NASA Astrophysics Data System (ADS)
Nicholls, Robert A.; Shepherd, John W.; Shepherd, Jean
1995-09-01
A set of psychological facial descriptors has been devised to enable computerized searching of criminal photograph albums. The descriptors have been used to encode image databased of up to twelve thousand images. Using a system called FACES, the databases are searched by translating a witness' verbal description into corresponding facial descriptors. Trials of FACES have shown that this coding scheme is more productive and efficient than searching traditional photograph albums. An alternative method of searching the encoded database using a genetic algorithm is currenly being tested. The genetic search method does not require the witness to verbalize a description of the target but merely to indicate a degree of similarity between the target and a limited selection of images from the database. The major drawback of FACES is that is requires a manual encoding of images. Research is being undertaken to automate the process, however, it will require an algorithm which can predict human descriptive values. Alternatives to human derived coding schemes exist using statistical classifications of images. Since databases encoded using statistical classifiers do not have an obvious direct mapping to human derived descriptors, a search method which does not require the entry of human descriptors is required. A genetic search algorithm is being tested for such a purpose.
Wang, Xiaogang; Chen, Wen; Chen, Xudong
2015-03-09
In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.
One improved LSB steganography algorithm
NASA Astrophysics Data System (ADS)
Song, Bing; Zhang, Zhi-hong
2013-03-01
It is easy to be detected by X2 and RS steganalysis with high accuracy that using LSB algorithm to hide information in digital image. We started by selecting information embedded location and modifying the information embedded method, combined with sub-affine transformation and matrix coding method, improved the LSB algorithm and a new LSB algorithm was proposed. Experimental results show that the improved one can resist the X2 and RS steganalysis effectively.
Human Motion Capture Data Tailored Transform Coding.
Junhui Hou; Lap-Pui Chau; Magnenat-Thalmann, Nadia; Ying He
2015-07-01
Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed.
JPEG 2000 Encoding with Perceptual Distortion Control
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Liu, Zhen; Karam, Lina J.
2008-01-01
An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the contribution of each coding block to the output compressed bit stream.
Volumetric Medical Image Coding: An Object-based, Lossy-to-lossless and Fully Scalable Approach
Danyali, Habibiollah; Mertins, Alfred
2011-01-01
In this article, an object-based, highly scalable, lossy-to-lossless 3D wavelet coding approach for volumetric medical image data (e.g., magnetic resonance (MR) and computed tomography (CT)) is proposed. The new method, called 3DOBHS-SPIHT, is based on the well-known set partitioning in the hierarchical trees (SPIHT) algorithm and supports both quality and resolution scalability. The 3D input data is grouped into groups of slices (GOS) and each GOS is encoded and decoded as a separate unit. The symmetric tree definition of the original 3DSPIHT is improved by introducing a new asymmetric tree structure. While preserving the compression efficiency, the new tree structure allows for a small size of each GOS, which not only reduces memory consumption during the encoding and decoding processes, but also facilitates more efficient random access to certain segments of slices. To achieve more compression efficiency, the algorithm only encodes the main object of interest in each 3D data set, which can have any arbitrary shape, and ignores the unnecessary background. The experimental results on some MR data sets show the good performance of the 3DOBHS-SPIHT algorithm for multi-resolution lossy-to-lossless coding. The compression efficiency, full scalability, and object-based features of the proposed approach, beside its lossy-to-lossless coding support, make it a very attractive candidate for volumetric medical image information archiving and transmission applications. PMID:22606653
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Kwok, R.; Curlander, J. C.
1987-01-01
Five coding techniques in the spatial and transform domains have been evaluated for SAR image compression: linear three-point predictor (LTPP), block truncation coding (BTC), microadaptive picture sequencing (MAPS), adaptive discrete cosine transform (ADCT), and adaptive Hadamard transform (AHT). These techniques have been tested with Seasat data. Both LTPP and BTC spatial domain coding techniques provide very good performance at rates of 1-2 bits/pixel. The two transform techniques, ADCT and AHT, demonstrate the capability to compress the SAR imagery to less than 0.5 bits/pixel without visible artifacts. Tradeoffs such as the rate distortion performance, the computational complexity, the algorithm flexibility, and the controllability of compression ratios are also discussed.
GLACiAR: GaLAxy survey Completeness AlgoRithm
NASA Astrophysics Data System (ADS)
Carrasco, Daniela; Trenti, Michele; Mutch, Simon; Oesch, Pascal
2018-05-01
GLACiAR (GaLAxy survey Completeness AlgoRithm) estimates the completeness and selection functions in galaxy surveys. Tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman Break technique, the code can nevertheless be applied broadly. GLACiAR generates artificial galaxies that follow Sérsic profiles with different indexes and with customizable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate.
Pseudo-color coding method for high-dynamic single-polarization SAR images
NASA Astrophysics Data System (ADS)
Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi
2018-04-01
A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.
Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms
Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon
2011-01-01
Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532
Vatsavai, Ranga Raju; Graesser, Jordan B.; Bhaduri, Budhendra L.
2016-07-05
A programmable media includes a graphical processing unit in communication with a memory element. The graphical processing unit is configured to detect one or more settlement regions from a high resolution remote sensed image based on the execution of programming code. The graphical processing unit identifies one or more settlements through the execution of the programming code that executes a multi-instance learning algorithm that models portions of the high resolution remote sensed image. The identification is based on spectral bands transmitted by a satellite and on selected designations of the image patches.
Agile Multi-Scale Decompositions for Automatic Image Registration
NASA Technical Reports Server (NTRS)
Murphy, James M.; Leija, Omar Navarro; Le Moigne, Jacqueline
2016-01-01
In recent works, the first and third authors developed an automatic image registration algorithm based on a multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed strong performance, improving robustness over registration with wavelets alone. However, this method imposed a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and also involved an unintegrated mixture of MATLAB and C code. In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover, the present algorithm is now fully coded in C, making it more efficient and portable than the MATLAB and C prototype. We demonstrate the versatility and computational efficiency of this approach by performing registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples of synthetically warped and real multi-modal images are analyzed.
Costa, Marcus V C; Carvalho, Joao L A; Berger, Pedro A; Zaghetto, Alexandre; da Rocha, Adson F; Nascimento, Francisco A O
2009-01-01
We present a new preprocessing technique for two-dimensional compression of surface electromyographic (S-EMG) signals, based on correlation sorting. We show that the JPEG2000 coding system (originally designed for compression of still images) and the H.264/AVC encoder (video compression algorithm operating in intraframe mode) can be used for compression of S-EMG signals. We compare the performance of these two off-the-shelf image compression algorithms for S-EMG compression, with and without the proposed preprocessing step. Compression of both isotonic and isometric contraction S-EMG signals is evaluated. The proposed methods were compared with other S-EMG compression algorithms from the literature.
Optical identity authentication technique based on compressive ghost imaging with QR code
NASA Astrophysics Data System (ADS)
Wenjie, Zhan; Leihong, Zhang; Xi, Zeng; Yi, Kang
2018-04-01
With the rapid development of computer technology, information security has attracted more and more attention. It is not only related to the information and property security of individuals and enterprises, but also to the security and social stability of a country. Identity authentication is the first line of defense in information security. In authentication systems, response time and security are the most important factors. An optical authentication technology based on compressive ghost imaging with QR codes is proposed in this paper. The scheme can be authenticated with a small number of samples. Therefore, the response time of the algorithm is short. At the same time, the algorithm can resist certain noise attacks, so it offers good security.
Mapped Landmark Algorithm for Precision Landing
NASA Technical Reports Server (NTRS)
Johnson, Andrew; Ansar, Adnan; Matthies, Larry
2007-01-01
A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemaire, H.; Barat, E.; Carrel, F.
In this work, we tested Maximum likelihood expectation-maximization (MLEM) algorithms optimized for gamma imaging applications on two recent coded mask gamma cameras. We respectively took advantage of the characteristics of the GAMPIX and Caliste HD-based gamma cameras: noise reduction thanks to mask/anti-mask procedure but limited energy resolution for GAMPIX, high energy resolution for Caliste HD. One of our short-term perspectives is the test of MAPEM algorithms integrating specific prior values for the data to reconstruct adapted to the gamma imaging topic. (authors)
Computer program for fast Karhunen Loeve transform algorithm
NASA Technical Reports Server (NTRS)
Jain, A. K.
1976-01-01
The fast KL transform algorithm was applied for data compression of a set of four ERTS multispectral images and its performance was compared with other techniques previously studied on the same image data. The performance criteria used here are mean square error and signal to noise ratio. The results obtained show a superior performance of the fast KL transform coding algorithm on the data set used with respect to the above stated perfomance criteria. A summary of the results is given in Chapter I and details of comparisons and discussion on conclusions are given in Chapter IV.
Incoherent dictionary learning for reducing crosstalk noise in least-squares reverse time migration
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-05-01
We propose to apply a novel incoherent dictionary learning (IDL) algorithm for regularizing the least-squares inversion in seismic imaging. The IDL is proposed to overcome the drawback of traditional dictionary learning algorithm in losing partial texture information. Firstly, the noisy image is divided into overlapped image patches, and some random patches are extracted for dictionary learning. Then, we apply the IDL technology to minimize the coherency between atoms during dictionary learning. Finally, the sparse representation problem is solved by a sparse coding algorithm, and image is restored by those sparse coefficients. By reducing the correlation among atoms, it is possible to preserve most of the small-scale features in the image while removing much of the long-wavelength noise. The application of the IDL method to regularization of seismic images from least-squares reverse time migration shows successful performance.
Filtered gradient reconstruction algorithm for compressive spectral imaging
NASA Astrophysics Data System (ADS)
Mejia, Yuri; Arguello, Henry
2017-04-01
Compressive sensing matrices are traditionally based on random Gaussian and Bernoulli entries. Nevertheless, they are subject to physical constraints, and their structure unusually follows a dense matrix distribution, such as the case of the matrix related to compressive spectral imaging (CSI). The CSI matrix represents the integration of coded and shifted versions of the spectral bands. A spectral image can be recovered from CSI measurements by using iterative algorithms for linear inverse problems that minimize an objective function including a quadratic error term combined with a sparsity regularization term. However, current algorithms are slow because they do not exploit the structure and sparse characteristics of the CSI matrices. A gradient-based CSI reconstruction algorithm, which introduces a filtering step in each iteration of a conventional CSI reconstruction algorithm that yields improved image quality, is proposed. Motivated by the structure of the CSI matrix, Φ, this algorithm modifies the iterative solution such that it is forced to converge to a filtered version of the residual ΦTy, where y is the compressive measurement vector. We show that the filtered-based algorithm converges to better quality performance results than the unfiltered version. Simulation results highlight the relative performance gain over the existing iterative algorithms.
Algorithm for Lossless Compression of Calibrated Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Kiely, Aaron B.; Klimesh, Matthew A.
2010-01-01
A two-stage predictive method was developed for lossless compression of calibrated hyperspectral imagery. The first prediction stage uses a conventional linear predictor intended to exploit spatial and/or spectral dependencies in the data. The compressor tabulates counts of the past values of the difference between this initial prediction and the actual sample value. To form the ultimate predicted value, in the second stage, these counts are combined with an adaptively updated weight function intended to capture information about data regularities introduced by the calibration process. Finally, prediction residuals are losslessly encoded using adaptive arithmetic coding. Algorithms of this type are commonly tested on a readily available collection of images from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imager. On the standard calibrated AVIRIS hyperspectral images that are most widely used for compression benchmarking, the new compressor provides more than 0.5 bits/sample improvement over the previous best compression results. The algorithm has been implemented in Mathematica. The compression algorithm was demonstrated as beneficial on 12-bit calibrated AVIRIS images.
DNA-based watermarks using the DNA-Crypt algorithm.
Heider, Dominik; Barnekow, Angelika
2007-05-29
The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.
DNA-based watermarks using the DNA-Crypt algorithm
Heider, Dominik; Barnekow, Angelika
2007-01-01
Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434
Joint sparse coding based spatial pyramid matching for classification of color medical image.
Shi, Jun; Li, Yi; Zhu, Jie; Sun, Haojie; Cai, Yin
2015-04-01
Although color medical images are important in clinical practice, they are usually converted to grayscale for further processing in pattern recognition, resulting in loss of rich color information. The sparse coding based linear spatial pyramid matching (ScSPM) and its variants are popular for grayscale image classification, but cannot extract color information. In this paper, we propose a joint sparse coding based SPM (JScSPM) method for the classification of color medical images. A joint dictionary can represent both the color information in each color channel and the correlation between channels. Consequently, the joint sparse codes calculated from a joint dictionary can carry color information, and therefore this method can easily transform a feature descriptor originally designed for grayscale images to a color descriptor. A color hepatocellular carcinoma histological image dataset was used to evaluate the performance of the proposed JScSPM algorithm. Experimental results show that JScSPM provides significant improvements as compared with the majority voting based ScSPM and the original ScSPM for color medical image classification. Copyright © 2014 Elsevier Ltd. All rights reserved.
A comparison of semiglobal and local dense matching algorithms for surface reconstruction
NASA Astrophysics Data System (ADS)
Dall'Asta, E.; Roncella, R.
2014-06-01
Encouraged by the growing interest in automatic 3D image-based reconstruction, the development and improvement of robust stereo matching techniques is one of the most investigated research topic of the last years in photogrammetry and computer vision. The paper is focused on the comparison of some stereo matching algorithms (local and global) which are very popular both in photogrammetry and computer vision. In particular, the Semi-Global Matching (SGM), which realizes a pixel-wise matching and relies on the application of consistency constraints during the matching cost aggregation, will be discussed. The results of some tests performed on real and simulated stereo image datasets, evaluating in particular the accuracy of the obtained digital surface models, will be presented. Several algorithms and different implementation are considered in the comparison, using freeware software codes like MICMAC and OpenCV, commercial software (e.g. Agisoft PhotoScan) and proprietary codes implementing Least Square e Semi-Global Matching algorithms. The comparisons will also consider the completeness and the level of detail within fine structures, and the reliability and repeatability of the obtainable data.
NASA Technical Reports Server (NTRS)
Duda, James L.; Barth, Suzanna C
2005-01-01
The VIIRS sensor provides measurements for 22 Environmental Data Records (EDRs) addressing the atmosphere, ocean surface temperature, ocean color, land parameters, aerosols, imaging for clouds and ice, and more. That is, the VIIRS collects visible and infrared radiometric data of the Earth's atmosphere, ocean, and land surfaces. Data types include atmospheric, clouds, Earth radiation budget, land/water and sea surface temperature, ocean color, and low light imagery. This wide scope of measurements calls for the preparation of a multiplicity of Algorithm Theoretical Basis Documents (ATBDs), and, additionally, for intermediate products such as cloud mask, et al. Furthermore, the VIIRS interacts with three or more other sensors. This paper addresses selected and crucial elements of the process being used to convert and test an immense volume of a maturing and changing science code to the initial operational source code in preparation for launch of NPP. The integrity of the original science code is maintained and enhanced via baseline comparisons when re-hosted, in addition to multiple planned code performance reviews.
The laboratory demonstration and signal processing of the inverse synthetic aperture imaging ladar
NASA Astrophysics Data System (ADS)
Gao, Si; Zhang, ZengHui; Xu, XianWen; Yu, WenXian
2017-10-01
This paper presents a coherent inverse synthetic-aperture imaging ladar(ISAL)system to obtain high resolution images. A balanced coherent optics system in laboratory is built with binary phase coded modulation transmit waveform which is different from conventional chirp. A whole digital signal processing solution is proposed including both quality phase gradient autofocus(QPGA) algorithm and cubic phase function(CPF) algorithm. Some high-resolution well-focused ISAL images of retro-reflecting targets are shown to validate the concepts. It is shown that high resolution images can be achieved and the influences from vibrations of platform involving targets and radar can be automatically compensated by the distinctive laboratory system and digital signal process.
Algorithm Building and Learning Programming Languages Using a New Educational Paradigm
NASA Astrophysics Data System (ADS)
Jain, Anshul K.; Singhal, Manik; Gupta, Manu Sheel
2011-08-01
This research paper presents a new concept of using a single tool to associate syntax of various programming languages, algorithms and basic coding techniques. A simple framework has been programmed in Python that helps students learn skills to develop algorithms, and implement them in various programming languages. The tool provides an innovative and a unified graphical user interface for development of multimedia objects, educational games and applications. It also aids collaborative learning amongst students and teachers through an integrated mechanism based on Remote Procedure Calls. The paper also elucidates an innovative method for code generation to enable students to learn the basics of programming languages using drag-n-drop methods for image objects.
Data compression using adaptive transform coding. Appendix 1: Item 1. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rost, Martin Christopher
1988-01-01
Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate.
Coding Strategies and Implementations of Compressive Sensing
NASA Astrophysics Data System (ADS)
Tsai, Tsung-Han
This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.
An evaluation of the effect of JPEG, JPEG2000, and H.264/AVC on CQR codes decoding process
NASA Astrophysics Data System (ADS)
Vizcarra Melgar, Max E.; Farias, Mylène C. Q.; Zaghetto, Alexandre
2015-02-01
This paper presents a binarymatrix code based on QR Code (Quick Response Code), denoted as CQR Code (Colored Quick Response Code), and evaluates the effect of JPEG, JPEG2000 and H.264/AVC compression on the decoding process. The proposed CQR Code has three additional colors (red, green and blue), what enables twice as much storage capacity when compared to the traditional black and white QR Code. Using the Reed-Solomon error-correcting code, the CQR Code model has a theoretical correction capability of 38.41%. The goal of this paper is to evaluate the effect that degradations inserted by common image compression algorithms have on the decoding process. Results show that a successful decoding process can be achieved for compression rates up to 0.3877 bits/pixel, 0.1093 bits/pixel and 0.3808 bits/pixel for JPEG, JPEG2000 and H.264/AVC formats, respectively. The algorithm that presents the best performance is the H.264/AVC, followed by the JPEG2000, and JPEG.
CellAnimation: an open source MATLAB framework for microscopy assays.
Georgescu, Walter; Wikswo, John P; Quaranta, Vito
2012-01-01
Advances in microscopy technology have led to the creation of high-throughput microscopes that are capable of generating several hundred gigabytes of images in a few days. Analyzing such wealth of data manually is nearly impossible and requires an automated approach. There are at present a number of open-source and commercial software packages that allow the user to apply algorithms of different degrees of sophistication to the images and extract desired metrics. However, the types of metrics that can be extracted are severely limited by the specific image processing algorithms that the application implements, and by the expertise of the user. In most commercial software, code unavailability prevents implementation by the end user of newly developed algorithms better suited for a particular type of imaging assay. While it is possible to implement new algorithms in open-source software, rewiring an image processing application requires a high degree of expertise. To obviate these limitations, we have developed an open-source high-throughput application that allows implementation of different biological assays such as cell tracking or ancestry recording, through the use of small, relatively simple image processing modules connected into sophisticated imaging pipelines. By connecting modules, non-expert users can apply the particular combination of well-established and novel algorithms developed by us and others that are best suited for each individual assay type. In addition, our data exploration and visualization modules make it easy to discover or select specific cell phenotypes from a heterogeneous population. CellAnimation is distributed under the Creative Commons Attribution-NonCommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/). CellAnimationsource code and documentation may be downloaded from www.vanderbilt.edu/viibre/software/documents/CellAnimation.zip. Sample data are available at www.vanderbilt.edu/viibre/software/documents/movies.zip. walter.georgescu@vanderbilt.edu Supplementary data available at Bioinformatics online.
Reference View Selection in DIBR-Based Multiview Coding.
Maugey, Thomas; Petrazzuoli, Giovanni; Frossard, Pascal; Cagnazzo, Marco; Pesquet-Popescu, Beatrice
2016-04-01
Augmented reality, interactive navigation in 3D scenes, multiview video, and other emerging multimedia applications require large sets of images, hence larger data volumes and increased resources compared with traditional video services. The significant increase in the number of images in multiview systems leads to new challenging problems in data representation and data transmission to provide high quality of experience on resource-constrained environments. In order to reduce the size of the data, different multiview video compression strategies have been proposed recently. Most of them use the concept of reference or key views that are used to estimate other images when there is high correlation in the data set. In such coding schemes, the two following questions become fundamental: 1) how many reference views have to be chosen for keeping a good reconstruction quality under coding cost constraints? And 2) where to place these key views in the multiview data set? As these questions are largely overlooked in the literature, we study the reference view selection problem and propose an algorithm for the optimal selection of reference views in multiview coding systems. Based on a novel metric that measures the similarity between the views, we formulate an optimization problem for the positioning of the reference views, such that both the distortion of the view reconstruction and the coding rate cost are minimized. We solve this new problem with a shortest path algorithm that determines both the optimal number of reference views and their positions in the image set. We experimentally validate our solution in a practical multiview distributed coding system and in the standardized 3D-HEVC multiview coding scheme. We show that considering the 3D scene geometry in the reference view, positioning problem brings significant rate-distortion improvements and outperforms the traditional coding strategy that simply selects key frames based on the distance between cameras.
Multispectral Image Compression Based on DSC Combined with CCSDS-IDC
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741
Multispectral image compression based on DSC combined with CCSDS-IDC.
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.
Hu, Weiming; Fan, Yabo; Xing, Junliang; Sun, Liang; Cai, Zhaoquan; Maybank, Stephen
2018-09-01
We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural network and load-balanced locality-sensitive hashing (LSH) indexing. We propose a deep constrained siamese hash coding neural network combined with deep feature learning. Our neural network is able to extract effective features for near duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image detection. Extensive experiments on three benchmark data sets demonstrate the effectiveness of our deep siamese hash encoding network and load-balanced LSH.
Local spatio-temporal analysis in vision systems
NASA Astrophysics Data System (ADS)
Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David
1994-07-01
The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.
Real-time computer treatment of THz passive device images with the high image quality
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Trofimov, Vladislav V.
2012-06-01
We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.
Multiplex Quantitative Histologic Analysis of Human Breast Cancer Cell Signaling and Cell Fate
2010-05-01
Breast cancer, cell signaling, cell proliferation, histology, image analysis 15. NUMBER OF PAGES - 51 16. PRICE CODE 17. SECURITY CLASSIFICATION...revealed by individual stains in multiplex combinations; and (3) software (FARSIGHT) for automated multispectral image analysis that (i) segments...Task 3. Develop computational algorithms for multispectral immunohistological image analysis FARSIGHT software was developed to quantify intrinsic
Wavelet compression techniques for hyperspectral data
NASA Technical Reports Server (NTRS)
Evans, Bruce; Ringer, Brian; Yeates, Mathew
1994-01-01
Hyperspectral sensors are electro-optic sensors which typically operate in visible and near infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e., tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors, measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed as a three dimensional array of samples in which two dimensions correspond to spatial position and the third to wavelength. Because they multiply the already large storage/transmission bandwidth requirements of conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine spectral resolution typically results in high redundancy in the spectral dimension, so that hyperspectral data sets are excellent candidates for compression. Although there have been a number of studies of compression algorithms for multispectral data, we are not aware of any published results for hyperspectral data. Three algorithms for hyperspectral data compression are compared. They were selected as representatives of three major approaches for extending conventional lossy image compression techniques to hyperspectral data. The simplest approach treats the data as an ensemble of images and compresses each image independently, ignoring the correlation between spectral bands. The second approach transforms the data to decorrelate the spectral bands, and then compresses the transformed data as a set of independent images. The third approach directly generalizes two-dimensional transform coding by applying a three-dimensional transform as part of the usual transform-quantize-entropy code procedure. The algorithms studied all use the discrete wavelet transform. In the first two cases, a wavelet transform coder was used for the two-dimensional compression. The third case used a three dimensional extension of this same algorithm.
Hoffman, Sarah R; Vines, Anissa I; Halladay, Jacqueline R; Pfaff, Emily; Schiff, Lauren; Westreich, Daniel; Sundaresan, Aditi; Johnson, La-Shell; Nicholson, Wanda K
2018-06-01
Women with symptomatic uterine fibroids can report a myriad of symptoms, including pain, bleeding, infertility, and psychosocial sequelae. Optimizing fibroid research requires the ability to enroll populations of women with image-confirmed symptomatic uterine fibroids. Our objective was to develop an electronic health record-based algorithm to identify women with symptomatic uterine fibroids for a comparative effectiveness study of medical or surgical treatments on quality-of-life measures. Using an iterative process and text-mining techniques, an effective computable phenotype algorithm, composed of demographics, and clinical and laboratory characteristics, was developed with reasonable performance. Such algorithms provide a feasible, efficient way to identify populations of women with symptomatic uterine fibroids for the conduct of large traditional or pragmatic trials and observational comparative effectiveness studies. Symptomatic uterine fibroids, due to menorrhagia, pelvic pain, bulk symptoms, or infertility, are a source of substantial morbidity for reproductive-age women. Comparing Treatment Options for Uterine Fibroids is a multisite registry study to compare the effectiveness of hormonal or surgical fibroid treatments on women's perceptions of their quality of life. Electronic health record-based algorithms are able to identify large numbers of women with fibroids, but additional work is needed to develop electronic health record algorithms that can identify women with symptomatic fibroids to optimize fibroid research. We sought to develop an efficient electronic health record-based algorithm that can identify women with symptomatic uterine fibroids in a large health care system for recruitment into large-scale observational and interventional research in fibroid management. We developed and assessed the accuracy of 3 algorithms to identify patients with symptomatic fibroids using an iterative approach. The data source was the Carolina Data Warehouse for Health, a repository for the health system's electronic health record data. In addition to International Classification of Diseases, Ninth Revision diagnosis and procedure codes and clinical characteristics, text data-mining software was used to derive information from imaging reports to confirm the presence of uterine fibroids. Results of each algorithm were compared with expert manual review to calculate the positive predictive values for each algorithm. Algorithm 1 was composed of the following criteria: (1) age 18-54 years; (2) either ≥1 International Classification of Diseases, Ninth Revision diagnosis codes for uterine fibroids or mention of fibroids using text-mined key words in imaging records or documents; and (3) no International Classification of Diseases, Ninth Revision or Current Procedural Terminology codes for hysterectomy and no reported history of hysterectomy. The positive predictive value was 47% (95% confidence interval 39-56%). Algorithm 2 required ≥2 International Classification of Diseases, Ninth Revision diagnosis codes for fibroids and positive text-mined key words and had a positive predictive value of 65% (95% confidence interval 50-79%). In algorithm 3, further refinements included ≥2 International Classification of Diseases, Ninth Revision diagnosis codes for fibroids on separate outpatient visit dates, the exclusion of women who had a positive pregnancy test within 3 months of their fibroid-related visit, and exclusion of incidentally detected fibroids during prenatal or emergency department visits. Algorithm 3 achieved a positive predictive value of 76% (95% confidence interval 71-81%). An electronic health record-based algorithm is capable of identifying cases of symptomatic uterine fibroids with moderate positive predictive value and may be an efficient approach for large-scale study recruitment. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Haiqing; Chen, Shuhang; Chen, Yunmei; Liu, Huafeng
2017-05-01
Dynamic positron emission tomography (PET) is capable of providing both spatial and temporal information of radio tracers in vivo. In this paper, we present a novel joint estimation framework to reconstruct temporal sequences of dynamic PET images and the coefficients characterizing the system impulse response function, from which the associated parametric images of the system macro parameters for tracer kinetics can be estimated. The proposed algorithm, which combines statistical data measurement and tracer kinetic models, integrates a dictionary sparse coding (DSC) into a total variational minimization based algorithm for simultaneous reconstruction of the activity distribution and parametric map from measured emission sinograms. DSC, based on the compartmental theory, provides biologically meaningful regularization, and total variation regularization is incorporated to provide edge-preserving guidance. We rely on techniques from minimization algorithms (the alternating direction method of multipliers) to first generate the estimated activity distributions with sub-optimal kinetic parameter estimates, and then recover the parametric maps given these activity estimates. These coupled iterative steps are repeated as necessary until convergence. Experiments with synthetic, Monte Carlo generated data, and real patient data have been conducted, and the results are very promising.
Smart photonic networks and computer security for image data
NASA Astrophysics Data System (ADS)
Campello, Jorge; Gill, John T.; Morf, Martin; Flynn, Michael J.
1998-02-01
Work reported here is part of a larger project on 'Smart Photonic Networks and Computer Security for Image Data', studying the interactions of coding and security, switching architecture simulations, and basic technologies. Coding and security: coding methods that are appropriate for data security in data fusion networks were investigated. These networks have several characteristics that distinguish them form other currently employed networks, such as Ethernet LANs or the Internet. The most significant characteristics are very high maximum data rates; predominance of image data; narrowcasting - transmission of data form one source to a designated set of receivers; data fusion - combining related data from several sources; simple sensor nodes with limited buffering. These characteristics affect both the lower level network design and the higher level coding methods.Data security encompasses privacy, integrity, reliability, and availability. Privacy, integrity, and reliability can be provided through encryption and coding for error detection and correction. Availability is primarily a network issue; network nodes must be protected against failure or routed around in the case of failure. One of the more promising techniques is the use of 'secret sharing'. We consider this method as a special case of our new space-time code diversity based algorithms for secure communication. These algorithms enable us to exploit parallelism and scalable multiplexing schemes to build photonic network architectures. A number of very high-speed switching and routing architectures and their relationships with very high performance processor architectures were studied. Indications are that routers for very high speed photonic networks can be designed using the very robust and distributed TCP/IP protocol, if suitable processor architecture support is available.
Progressive transmission of images over fading channels using rate-compatible LDPC codes.
Pan, Xiang; Banihashemi, Amir H; Cuhadar, Aysegul
2006-12-01
In this paper, we propose a combined source/channel coding scheme for transmission of images over fading channels. The proposed scheme employs rate-compatible low-density parity-check codes along with embedded image coders such as JPEG2000 and set partitioning in hierarchical trees (SPIHT). The assignment of channel coding rates to source packets is performed by a fast trellis-based algorithm. We examine the performance of the proposed scheme over correlated and uncorrelated Rayleigh flat-fading channels with and without side information. Simulation results for the expected peak signal-to-noise ratio of reconstructed images, which are within 1 dB of the capacity upper bound over a wide range of channel signal-to-noise ratios, show considerable improvement compared to existing results under similar conditions. We also study the sensitivity of the proposed scheme in the presence of channel estimation error at the transmitter and demonstrate that under most conditions our scheme is more robust compared to existing schemes.
Integrating digital topology in image-processing libraries.
Lamy, Julien
2007-01-01
This paper describes a method to integrate digital topology informations in image-processing libraries. This additional information allows a library user to write algorithms respecting topological constraints, for example, a seed fill or a skeletonization algorithm. As digital topology is absent from most image-processing libraries, such constraints cannot be fulfilled. We describe and give code samples for all the structures necessary for this integration, and show a use case in the form of a homotopic thinning filter inside ITK. The obtained filter can be up to a hundred times as fast as ITK's thinning filter and works for any image dimension. This paper mainly deals of integration within ITK, but can be adapted with only minor modifications to other image-processing libraries.
A-Track: A New Approach for Detection of Moving Objects in FITS Images
NASA Astrophysics Data System (ADS)
Kılıç, Yücel; Karapınar, Nurdan; Atay, Tolga; Kaplan, Murat
2016-07-01
Small planet and asteroid observations are important for understanding the origin and evolution of the Solar System. In this work, we have developed a fast and robust pipeline, called A-Track, for detecting asteroids and comets in sequential telescope images. The moving objects are detected using a modified line detection algorithm, called ILDA. We have coded the pipeline in Python 3, where we have made use of various scientific modules in Python to process the FITS images. We tested the code on photometrical data taken by an SI-1100 CCD with a 1-meter telescope at TUBITAK National Observatory, Antalya. The pipeline can be used to analyze large data archives or daily sequential data. The code is hosted on GitHub under the GNU GPL v3 license.
Distributed single source coding with side information
NASA Astrophysics Data System (ADS)
Vila-Forcen, Jose E.; Koval, Oleksiy; Voloshynovskiy, Sviatoslav V.
2004-01-01
In the paper we advocate image compression technique in the scope of distributed source coding framework. The novelty of the proposed approach is twofold: classical image compression is considered from the positions of source coding with side information and, contrarily to the existing scenarios, where side information is given explicitly, side information is created based on deterministic approximation of local image features. We consider an image in the transform domain as a realization of a source with a bounded codebook of symbols where each symbol represents a particular edge shape. The codebook is image independent and plays the role of auxiliary source. Due to the partial availability of side information at both encoder and decoder we treat our problem as a modification of Berger-Flynn-Gray problem and investigate a possible gain over the solutions when side information is either unavailable or available only at decoder. Finally, we present a practical compression algorithm for passport photo images based on our concept that demonstrates the superior performance in very low bit rate regime.
Quantum image pseudocolor coding based on the density-stratified method
NASA Astrophysics Data System (ADS)
Jiang, Nan; Wu, Wenya; Wang, Luo; Zhao, Na
2015-05-01
Pseudocolor processing is a branch of image enhancement. It dyes grayscale images to color images to make the images more beautiful or to highlight some parts on the images. This paper proposes a quantum image pseudocolor coding scheme based on the density-stratified method which defines a colormap and changes the density value from gray to color parallel according to the colormap. Firstly, two data structures: quantum image GQIR and quantum colormap QCR are reviewed or proposed. Then, the quantum density-stratified algorithm is presented. Based on them, the quantum realization in the form of circuits is given. The main advantages of the quantum version for pseudocolor processing over the classical approach are that it needs less memory and can speed up the computation. Two kinds of examples help us to describe the scheme further. Finally, the future work are analyzed.
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Xu, Minjie; Tian, Ailing
2017-04-01
A novel optical image encryption scheme is proposed based on quick response code and high dimension chaotic system, where only the intensity distribution of encoded information is recorded as ciphertext. Initially, the quick response code is engendered from the plain image and placed in the input plane of the double random phase encoding architecture. Then, the code is encrypted to the ciphertext with noise-like distribution by using two cascaded gyrator transforms. In the process of encryption, the parameters such as rotation angles and random phase masks are generated as interim variables and functions based on Chen system. A new phase retrieval algorithm is designed to reconstruct the initial quick response code in the process of decryption, in which a priori information such as three position detection patterns is used as the support constraint. The original image can be obtained without any energy loss by scanning the decrypted code with mobile devices. The ciphertext image is the real-valued function which is more convenient for storing and transmitting. Meanwhile, the security of the proposed scheme is enhanced greatly due to high sensitivity of initial values of Chen system. Extensive cryptanalysis and simulation have performed to demonstrate the feasibility and effectiveness of the proposed scheme.
Uranus: a rapid prototyping tool for FPGA embedded computer vision
NASA Astrophysics Data System (ADS)
Rosales-Hernández, Victor; Castillo-Jimenez, Liz; Viveros-Velez, Gilberto; Zuñiga-Grajeda, Virgilio; Treviño Torres, Abel; Arias-Estrada, M.
2007-01-01
The starting point for all successful system development is the simulation. Performing high level simulation of a system can help to identify, insolate and fix design problems. This work presents Uranus, a software tool for simulation and evaluation of image processing algorithms with support to migrate them to an FPGA environment for algorithm acceleration and embedded processes purposes. The tool includes an integrated library of previous coded operators in software and provides the necessary support to read and display image sequences as well as video files. The user can use the previous compiled soft-operators in a high level process chain, and code his own operators. Additional to the prototyping tool, Uranus offers FPGA-based hardware architecture with the same organization as the software prototyping part. The hardware architecture contains a library of FPGA IP cores for image processing that are connected with a PowerPC based system. The Uranus environment is intended for rapid prototyping of machine vision and the migration to FPGA accelerator platform, and it is distributed for academic purposes.
Wu, Junfeng; Dai, Fang; Hu, Gang; Mou, Xuanqin
2018-04-18
Excessive radiation exposure in computed tomography (CT) scans increases the chance of developing cancer and has become a major clinical concern. Recently, statistical iterative reconstruction (SIR) with l0-norm dictionary learning regularization has been developed to reconstruct CT images from the low dose and few-view dataset in order to reduce radiation dose. Nonetheless, the sparse regularization term adopted in this approach is l0-norm, which cannot guarantee the global convergence of the proposed algorithm. To address this problem, in this study we introduced the l1-norm dictionary learning penalty into SIR framework for low dose CT image reconstruction, and developed an alternating minimization algorithm to minimize the associated objective function, which transforms CT image reconstruction problem into a sparse coding subproblem and an image updating subproblem. During the image updating process, an efficient model function approach based on balancing principle is applied to choose the regularization parameters. The proposed alternating minimization algorithm was evaluated first using real projection data of a sheep lung CT perfusion and then using numerical simulation based on sheep lung CT image and chest image. Both visual assessment and quantitative comparison using terms of root mean square error (RMSE) and structural similarity (SSIM) index demonstrated that the new image reconstruction algorithm yielded similar performance with l0-norm dictionary learning penalty and outperformed the conventional filtered backprojection (FBP) and total variation (TV) minimization algorithms.
Dual-sided coded-aperture imager
Ziock, Klaus-Peter [Clinton, TN
2009-09-22
In a vehicle, a single detector plane simultaneously measures radiation coming through two coded-aperture masks, one on either side of the detector. To determine which side of the vehicle a source is, the two shadow masks are inverses of each other, i.e., one is a mask and the other is the anti-mask. All of the data that is collected is processed through two versions of an image reconstruction algorithm. One treats the data as if it were obtained through the mask, the other as though the data is obtained through the anti-mask.
NASA Astrophysics Data System (ADS)
Wang, Ke-Yan; Li, Yun-Song; Liu, Kai; Wu, Cheng-Ke
2008-08-01
A novel compression algorithm for interferential multispectral images based on adaptive classification and curve-fitting is proposed. The image is first partitioned adaptively into major-interference region and minor-interference region. Different approximating functions are then constructed for two kinds of regions respectively. For the major interference region, some typical interferential curves are selected to predict other curves. These typical curves are then processed by curve-fitting method. For the minor interference region, the data of each interferential curve are independently approximated. Finally the approximating errors of two regions are entropy coded. The experimental results show that, compared with JPEG2000, the proposed algorithm not only decreases the average output bit-rate by about 0.2 bit/pixel for lossless compression, but also improves the reconstructed images and reduces the spectral distortion greatly, especially at high bit-rate for lossy compression.
Volumetric visualization algorithm development for an FPGA-based custom computing machine
NASA Astrophysics Data System (ADS)
Sallinen, Sami J.; Alakuijala, Jyrki; Helminen, Hannu; Laitinen, Joakim
1998-05-01
Rendering volumetric medical images is a burdensome computational task for contemporary computers due to the large size of the data sets. Custom designed reconfigurable hardware could considerably speed up volume visualization if an algorithm suitable for the platform is used. We present an algorithm and speedup techniques for visualizing volumetric medical CT and MR images with a custom-computing machine based on a Field Programmable Gate Array (FPGA). We also present simulated performance results of the proposed algorithm calculated with a software implementation running on a desktop PC. Our algorithm is capable of generating perspective projection renderings of single and multiple isosurfaces with transparency, simulated X-ray images, and Maximum Intensity Projections (MIP). Although more speedup techniques exist for parallel projection than for perspective projection, we have constrained ourselves to perspective viewing, because of its importance in the field of radiotherapy. The algorithm we have developed is based on ray casting, and the rendering is sped up by three different methods: shading speedup by gradient precalculation, a new generalized version of Ray-Acceleration by Distance Coding (RADC), and background ray elimination by speculative ray selection.
Versatile and efficient pore network extraction method using marker-based watershed segmentation
NASA Astrophysics Data System (ADS)
Gostick, Jeff T.
2017-08-01
Obtaining structural information from tomographic images of porous materials is a critical component of porous media research. Extracting pore networks is particularly valuable since it enables pore network modeling simulations which can be useful for a host of tasks from predicting transport properties to simulating performance of entire devices. This work reports an efficient algorithm for extracting networks using only standard image analysis techniques. The algorithm was applied to several standard porous materials ranging from sandstone to fibrous mats, and in all cases agreed very well with established or known values for pore and throat sizes, capillary pressure curves, and permeability. In the case of sandstone, the present algorithm was compared to the network obtained using the current state-of-the-art algorithm, and very good agreement was achieved. Most importantly, the network extracted from an image of fibrous media correctly predicted the anisotropic permeability tensor, demonstrating the critical ability to detect key structural features. The highly efficient algorithm allows extraction on fairly large images of 5003 voxels in just over 200 s. The ability for one algorithm to match materials as varied as sandstone with 20% porosity and fibrous media with 75% porosity is a significant advancement. The source code for this algorithm is provided.
Lossless Compression of Classification-Map Data
NASA Technical Reports Server (NTRS)
Hua, Xie; Klimesh, Matthew
2009-01-01
A lossless image-data-compression algorithm intended specifically for application to classification-map data is based on prediction, context modeling, and entropy coding. The algorithm was formulated, in consideration of the differences between classification maps and ordinary images of natural scenes, so as to be capable of compressing classification- map data more effectively than do general-purpose image-data-compression algorithms. Classification maps are typically generated from remote-sensing images acquired by instruments aboard aircraft (see figure) and spacecraft. A classification map is a synthetic image that summarizes information derived from one or more original remote-sensing image(s) of a scene. The value assigned to each pixel in such a map is the index of a class that represents some type of content deduced from the original image data for example, a type of vegetation, a mineral, or a body of water at the corresponding location in the scene. When classification maps are generated onboard the aircraft or spacecraft, it is desirable to compress the classification-map data in order to reduce the volume of data that must be transmitted to a ground station.
Advanced Topics in Space Situational Awareness
2007-11-07
34super-resolution." Such optical superresolution is characteristic of many model-based image processing algorithms, and reflects the incorporation of...Sampling Theorem," J. Opt. Soc. Am. A, vol. 24, 311-325 (2007). [39] S. Prasad, "Digital and Optical Superresolution of Low-Resolution Image Sequences," Un...wavefront coding for the specific application of extension of image depth well beyond what is possible in a standard imaging system. The problem of optical
Evolutionary computation applied to the reconstruction of 3-D surface topography in the SEM.
Kodama, Tetsuji; Li, Xiaoyuan; Nakahira, Kenji; Ito, Dai
2005-10-01
A genetic algorithm has been applied to the line profile reconstruction from the signals of the standard secondary electron (SE) and/or backscattered electron detectors in a scanning electron microscope. This method solves the topographical surface reconstruction problem as one of combinatorial optimization. To extend this optimization approach for three-dimensional (3-D) surface topography, this paper considers the use of a string coding where a 3-D surface topography is represented by a set of coordinates of vertices. We introduce the Delaunay triangulation, which attains the minimum roughness for any set of height data to capture the fundamental features of the surface being probed by an electron beam. With this coding, the strings are processed with a class of hybrid optimization algorithms that combine genetic algorithms and simulated annealing algorithms. Experimental results on SE images are presented.
NASA Astrophysics Data System (ADS)
Dementev, A. O.; Dmitriev, E. V.; Kozoderov, V. V.; Egorov, V. D.
2017-10-01
Hyperspectral imaging is up-to-date promising technology widely applied for the accurate thematic mapping. The presence of a large number of narrow survey channels allows us to use subtle differences in spectral characteristics of objects and to make a more detailed classification than in the case of using standard multispectral data. The difficulties encountered in the processing of hyperspectral images are usually associated with the redundancy of spectral information which leads to the problem of the curse of dimensionality. Methods currently used for recognizing objects on multispectral and hyperspectral images are usually based on standard base supervised classification algorithms of various complexity. Accuracy of these algorithms can be significantly different depending on considered classification tasks. In this paper we study the performance of ensemble classification methods for the problem of classification of the forest vegetation. Error correcting output codes and boosting are tested on artificial data and real hyperspectral images. It is demonstrates, that boosting gives more significant improvement when used with simple base classifiers. The accuracy in this case in comparable the error correcting output code (ECOC) classifier with Gaussian kernel SVM base algorithm. However the necessity of boosting ECOC with Gaussian kernel SVM is questionable. It is demonstrated, that selected ensemble classifiers allow us to recognize forest species with high enough accuracy which can be compared with ground-based forest inventory data.
Onboard Image Processing System for Hyperspectral Sensor
Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun
2015-01-01
Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281
Bjorgan, Asgeir; Randeberg, Lise Lyngsnes
2015-01-01
Processing line-by-line and in real-time can be convenient for some applications of line-scanning hyperspectral imaging technology. Some types of processing, like inverse modeling and spectral analysis, can be sensitive to noise. The MNF (minimum noise fraction) transform provides suitable denoising performance, but requires full image availability for the estimation of image and noise statistics. In this work, a modified algorithm is proposed. Incrementally-updated statistics enables the algorithm to denoise the image line-by-line. The denoising performance has been compared to conventional MNF and found to be equal. With a satisfying denoising performance and real-time implementation, the developed algorithm can denoise line-scanned hyperspectral images in real-time. The elimination of waiting time before denoised data are available is an important step towards real-time visualization of processed hyperspectral data. The source code can be found at http://www.github.com/ntnu-bioopt/mnf. This includes an implementation of conventional MNF denoising. PMID:25654717
NASA Astrophysics Data System (ADS)
Cheremkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.
2016-11-01
Applications of optical methods for encryption purposes have been attracting interest of researchers for decades. The most popular are coherent techniques such as double random phase encoding. Its main advantage is high security due to transformation of spectrum of image to be encrypted into white spectrum via use of first phase random mask which allows for encrypted images with white spectra. Downsides are necessity of using holographic registration scheme and speckle noise occurring due to coherent illumination. Elimination of these disadvantages is possible via usage of incoherent illumination. In this case, phase registration no longer matters, which means that there is no need for holographic setup, and speckle noise is gone. Recently, encryption of digital information in form of binary images has become quite popular. Advantages of using quick response (QR) code in capacity of data container for optical encryption include: 1) any data represented as QR code will have close to white (excluding zero spatial frequency) Fourier spectrum which have good overlapping with encryption key spectrum; 2) built-in algorithm for image scale and orientation correction which simplifies decoding of decrypted QR codes; 3) embedded error correction code allows for successful decryption of information even in case of partial corruption of decrypted image. Optical encryption of digital data in form QR codes using spatially incoherent illumination was experimentally implemented. Two liquid crystal spatial light modulators were used in experimental setup for QR code and encrypting kinoform imaging respectively. Decryption was conducted digitally. Successful decryption of encrypted QR codes is demonstrated.
Anonymization of DICOM Electronic Medical Records for Radiation Therapy
Newhauser, Wayne; Jones, Timothy; Swerdloff, Stuart; Newhauser, Warren; Cilia, Mark; Carver, Robert; Halloran, Andy; Zhang, Rui
2014-01-01
Electronic medical records (EMR) and treatment plans are used in research on patient outcomes and radiation effects. In many situations researchers must remove protected health information (PHI) from EMRs. The literature contains several studies describing the anonymization of generic Digital Imaging and Communication in Medicine (DICOM) files and DICOM image sets but no publications were found that discuss the anonymization of DICOM radiation therapy plans, a key component of an EMR in a cancer clinic. In addition to this we were unable to find a commercial software tool that met the minimum requirements for anonymization and preservation of data integrity for radiation therapy research. The purpose of this study was to develop a prototype software code to meet the requirements for the anonymization of radiation therapy treatment plans and to develop a way to validate that code and demonstrate that it properly anonymized treatment plans and preserved data integrity. We extended an open-source code to process all relevant PHI and to allow for the automatic anonymization of multiple EMRs. The prototype code successfully anonymized multiple treatment plans in less than 1 minute per patient. We also tested commercial optical character recognition (OCR) algorithms for the detection of burned-in text on the images, but they were unable to reliably recognize text. In addition, we developed and tested an image filtering algorithm that allowed us to isolate and redact alpha-numeric text from a test radiograph. Validation tests verified that PHI was anonymized and data integrity, such as the relationship between DICOM unique identifiers (UID) was preserved. PMID:25147130
Anonymization of DICOM electronic medical records for radiation therapy.
Newhauser, Wayne; Jones, Timothy; Swerdloff, Stuart; Newhauser, Warren; Cilia, Mark; Carver, Robert; Halloran, Andy; Zhang, Rui
2014-10-01
Electronic medical records (EMR) and treatment plans are used in research on patient outcomes and radiation effects. In many situations researchers must remove protected health information (PHI) from EMRs. The literature contains several studies describing the anonymization of generic Digital Imaging and Communication in Medicine (DICOM) files and DICOM image sets but no publications were found that discuss the anonymization of DICOM radiation therapy plans, a key component of an EMR in a cancer clinic. In addition to this we were unable to find a commercial software tool that met the minimum requirements for anonymization and preservation of data integrity for radiation therapy research. The purpose of this study was to develop a prototype software code to meet the requirements for the anonymization of radiation therapy treatment plans and to develop a way to validate that code and demonstrate that it properly anonymized treatment plans and preserved data integrity. We extended an open-source code to process all relevant PHI and to allow for the automatic anonymization of multiple EMRs. The prototype code successfully anonymized multiple treatment plans in less than 1min/patient. We also tested commercial optical character recognition (OCR) algorithms for the detection of burned-in text on the images, but they were unable to reliably recognize text. In addition, we developed and tested an image filtering algorithm that allowed us to isolate and redact alpha-numeric text from a test radiograph. Validation tests verified that PHI was anonymized and data integrity, such as the relationship between DICOM unique identifiers (UID) was preserved. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cobos Arribas, Pedro; Monasterio Huelin Macia, Felix
2003-04-01
A FPGA based hardware implementation of the Santos-Victor optical flow algorithm, useful in robot guidance applications, is described in this paper. The system used to do contains an ALTERA FPGA (20K100), an interface with a digital camera, three VRAM memories to contain the data input and some output memories (a VRAM and a EDO) to contain the results. The system have been used previously to develop and test other vision algorithms, such as image compression, optical flow calculation with differential and correlation methods. The designed system let connect the digital camera, or the FPGA output (results of algorithms) to a PC, throw its Firewire or USB port. The problems take place in this occasion have motivated to adopt another hardware structure for certain vision algorithms with special requirements, that need a very hard code intensive processing.
Compression of electromyographic signals using image compression techniques.
Costa, Marcus Vinícius Chaffim; Berger, Pedro de Azevedo; da Rocha, Adson Ferreira; de Carvalho, João Luiz Azevedo; Nascimento, Francisco Assis de Oliveira
2008-01-01
Despite the growing interest in the transmission and storage of electromyographic signals for long periods of time, few studies have addressed the compression of such signals. In this article we present an algorithm for compression of electromyographic signals based on the JPEG2000 coding system. Although the JPEG2000 codec was originally designed for compression of still images, we show that it can also be used to compress EMG signals for both isotonic and isometric contractions. For EMG signals acquired during isometric contractions, the proposed algorithm provided compression factors ranging from 75 to 90%, with an average PRD ranging from 3.75% to 13.7%. For isotonic EMG signals, the algorithm provided compression factors ranging from 75 to 90%, with an average PRD ranging from 3.4% to 7%. The compression results using the JPEG2000 algorithm were compared to those using other algorithms based on the wavelet transform.
Compressive Hyperspectral Imaging and Anomaly Detection
2010-02-01
Level Set Systems 1058 Embury Street Pacific Palisades , CA 90272 8. PERFORMING ORGANIZATION REPORT NUMBER 1A-2010 9. SPONSORING/MONITORING...were obtained from a simple algorithm, namely, the atoms in the trained image were very similar to the simple cell receptive fields in early vision...Field, "Emergence of simple- cell receptive field properties by learning a sparse code for natural images,’" Nature 381(6583), pp. 607-609, 1996. M
Chaotic Image Encryption Algorithm Based on Bit Permutation and Dynamic DNA Encoding.
Zhang, Xuncai; Han, Feng; Niu, Ying
2017-01-01
With the help of the fact that chaos is sensitive to initial conditions and pseudorandomness, combined with the spatial configurations in the DNA molecule's inherent and unique information processing ability, a novel image encryption algorithm based on bit permutation and dynamic DNA encoding is proposed here. The algorithm first uses Keccak to calculate the hash value for a given DNA sequence as the initial value of a chaotic map; second, it uses a chaotic sequence to scramble the image pixel locations, and the butterfly network is used to implement the bit permutation. Then, the image is coded into a DNA matrix dynamic, and an algebraic operation is performed with the DNA sequence to realize the substitution of the pixels, which further improves the security of the encryption. Finally, the confusion and diffusion properties of the algorithm are further enhanced by the operation of the DNA sequence and the ciphertext feedback. The results of the experiment and security analysis show that the algorithm not only has a large key space and strong sensitivity to the key but can also effectively resist attack operations such as statistical analysis and exhaustive analysis.
Chaotic Image Encryption Algorithm Based on Bit Permutation and Dynamic DNA Encoding
2017-01-01
With the help of the fact that chaos is sensitive to initial conditions and pseudorandomness, combined with the spatial configurations in the DNA molecule's inherent and unique information processing ability, a novel image encryption algorithm based on bit permutation and dynamic DNA encoding is proposed here. The algorithm first uses Keccak to calculate the hash value for a given DNA sequence as the initial value of a chaotic map; second, it uses a chaotic sequence to scramble the image pixel locations, and the butterfly network is used to implement the bit permutation. Then, the image is coded into a DNA matrix dynamic, and an algebraic operation is performed with the DNA sequence to realize the substitution of the pixels, which further improves the security of the encryption. Finally, the confusion and diffusion properties of the algorithm are further enhanced by the operation of the DNA sequence and the ciphertext feedback. The results of the experiment and security analysis show that the algorithm not only has a large key space and strong sensitivity to the key but can also effectively resist attack operations such as statistical analysis and exhaustive analysis. PMID:28912802
A data compression technique for synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Minden, G. J.
1986-01-01
A data compression technique is developed for synthetic aperture radar (SAR) imagery. The technique is based on an SAR image model and is designed to preserve the local statistics in the image by an adaptive variable rate modification of block truncation coding (BTC). A data rate of approximately 1.6 bit/pixel is achieved with the technique while maintaining the image quality and cultural (pointlike) targets. The algorithm requires no large data storage and is computationally simple.
Compressed domain indexing of losslessly compressed images
NASA Astrophysics Data System (ADS)
Schaefer, Gerald
2001-12-01
Image retrieval and image compression have been pursued separately in the past. Only little research has been done on a synthesis of the two by allowing image retrieval to be performed directly in the compressed domain of images without the need to uncompress them first. In this paper methods for image retrieval in the compressed domain of losslessly compressed images are introduced. While most image compression techniques are lossy, i.e. discard visually less significant information, lossless techniques are still required in fields like medical imaging or in situations where images must not be changed due to legal reasons. The algorithms in this paper are based on predictive coding methods where a pixel is encoded based on the pixel values of its (already encoded) neighborhood. The first method is based on an understanding that predictively coded data is itself indexable and represents a textural description of the image. The second method operates directly on the entropy encoded data by comparing codebooks of images. Experiments show good image retrieval results for both approaches.
An efficient system for reliably transmitting image and video data over low bit rate noisy channels
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Huang, Y. F.; Stevenson, Robert L.
1994-01-01
This research project is intended to develop an efficient system for reliably transmitting image and video data over low bit rate noisy channels. The basic ideas behind the proposed approach are the following: employ statistical-based image modeling to facilitate pre- and post-processing and error detection, use spare redundancy that the source compression did not remove to add robustness, and implement coded modulation to improve bandwidth efficiency and noise rejection. Over the last six months, progress has been made on various aspects of the project. Through our studies of the integrated system, a list-based iterative Trellis decoder has been developed. The decoder accepts feedback from a post-processor which can detect channel errors in the reconstructed image. The error detection is based on the Huber Markov random field image model for the compressed image. The compression scheme used here is that of JPEG (Joint Photographic Experts Group). Experiments were performed and the results are quite encouraging. The principal ideas here are extendable to other compression techniques. In addition, research was also performed on unequal error protection channel coding, subband vector quantization as a means of source coding, and post processing for reducing coding artifacts. Our studies on unequal error protection (UEP) coding for image transmission focused on examining the properties of the UEP capabilities of convolutional codes. The investigation of subband vector quantization employed a wavelet transform with special emphasis on exploiting interband redundancy. The outcome of this investigation included the development of three algorithms for subband vector quantization. The reduction of transform coding artifacts was studied with the aid of a non-Gaussian Markov random field model. This results in improved image decompression. These studies are summarized and the technical papers included in the appendices.
Farris, Dominic James; Lichtwark, Glen A
2016-05-01
Dynamic measurements of human muscle fascicle length from sequences of B-mode ultrasound images have become increasingly prevalent in biomedical research. Manual digitisation of these images is time consuming and algorithms for automating the process have been developed. Here we present a freely available software implementation of a previously validated algorithm for semi-automated tracking of muscle fascicle length in dynamic ultrasound image recordings, "UltraTrack". UltraTrack implements an affine extension to an optic flow algorithm to track movement of the muscle fascicle end-points throughout dynamically recorded sequences of images. The underlying algorithm has been previously described and its reliability tested, but here we present the software implementation with features for: tracking multiple fascicles in multiple muscles simultaneously; correcting temporal drift in measurements; manually adjusting tracking results; saving and re-loading of tracking results and loading a range of file formats. Two example runs of the software are presented detailing the tracking of fascicles from several lower limb muscles during a squatting and walking activity. We have presented a software implementation of a validated fascicle-tracking algorithm and made the source code and standalone versions freely available for download. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Harwit, M.; Swift, R.; Wattson, R.; Decker, J.; Paganetti, R.
1976-01-01
A spectrometric imager and a thermal imager, which achieve multiplexing by the use of binary optical encoding masks, were developed. The masks are based on orthogonal, pseudorandom digital codes derived from Hadamard matrices. Spatial and/or spectral data is obtained in the form of a Hadamard transform of the spatial and/or spectral scene; computer algorithms are then used to decode the data and reconstruct images of the original scene. The hardware, algorithms and processing/display facility are described. A number of spatial and spatial/spectral images are presented. The achievement of a signal-to-noise improvement due to the signal multiplexing was also demonstrated. An analysis of the results indicates both the situations for which the multiplex advantage may be gained, and the limitations of the technique. A number of potential applications of the spectrometric imager are discussed.
Improved detection of soma location and morphology in fluorescence microscopy images of neurons.
Kayasandik, Cihan Bilge; Labate, Demetrio
2016-12-01
Automated detection and segmentation of somas in fluorescent images of neurons is a major goal in quantitative studies of neuronal networks, including applications of high-content-screenings where it is required to quantify multiple morphological properties of neurons. Despite recent advances in image processing targeted to neurobiological applications, existing algorithms of soma detection are often unreliable, especially when processing fluorescence image stacks of neuronal cultures. In this paper, we introduce an innovative algorithm for the detection and extraction of somas in fluorescent images of networks of cultured neurons where somas and other structures exist in the same fluorescent channel. Our method relies on a new geometrical descriptor called Directional Ratio and a collection of multiscale orientable filters to quantify the level of local isotropy in an image. To optimize the application of this approach, we introduce a new construction of multiscale anisotropic filters that is implemented by separable convolution. Extensive numerical experiments using 2D and 3D confocal images show that our automated algorithm reliably detects somas, accurately segments them, and separates contiguous ones. We include a detailed comparison with state-of-the-art existing methods to demonstrate that our algorithm is extremely competitive in terms of accuracy, reliability and computational efficiency. Our algorithm will facilitate the development of automated platforms for high content neuron image processing. A Matlab code is released open-source and freely available to the scientific community. Copyright © 2016 Elsevier B.V. All rights reserved.
A-Track: A new approach for detection of moving objects in FITS images
NASA Astrophysics Data System (ADS)
Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.
2016-10-01
We have developed a fast, open-source, cross-platform pipeline, called A-Track, for detecting the moving objects (asteroids and comets) in sequential telescope images in FITS format. The pipeline is coded in Python 3. The moving objects are detected using a modified line detection algorithm, called MILD. We tested the pipeline on astronomical data acquired by an SI-1100 CCD with a 1-meter telescope. We found that A-Track performs very well in terms of detection efficiency, stability, and processing time. The code is hosted on GitHub under the GNU GPL v3 license.
NASA Technical Reports Server (NTRS)
Rice, R. F.
1976-01-01
The root-mean-square error performance measure is used to compare the relative performance of several widely known source coding algorithms with the RM2 image data compression system. The results demonstrate that RM2 has a uniformly significant performance advantage.
Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction
Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin
2016-01-01
High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems. PMID:27814367
Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction.
Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin
2016-01-01
High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems.
Morphological decomposition of 2-D binary shapes into convex polygons: a heuristic algorithm.
Xu, J
2001-01-01
In many morphological shape decomposition algorithms, either a shape can only be decomposed into shape components of extremely simple forms or a time consuming search process is employed to determine a decomposition. In this paper, we present a morphological shape decomposition algorithm that decomposes a two-dimensional (2-D) binary shape into a collection of convex polygonal components. A single convex polygonal approximation for a given image is first identified. This first component is determined incrementally by selecting a sequence of basic shape primitives. These shape primitives are chosen based on shape information extracted from the given shape at different scale levels. Additional shape components are identified recursively from the difference image between the given image and the first component. Simple operations are used to repair certain concavities caused by the set difference operation. The resulting hierarchical structure provides descriptions for the given shape at different detail levels. The experiments show that the decomposition results produced by the algorithm seem to be in good agreement with the natural structures of the given shapes. The computational cost of the algorithm is significantly lower than that of an earlier search-based convex decomposition algorithm. Compared to nonconvex decomposition algorithms, our algorithm allows accurate approximations for the given shapes at low coding costs.
System optimization on coded aperture spectrometer
NASA Astrophysics Data System (ADS)
Liu, Hua; Ding, Quanxin; Wang, Helong; Chen, Hongliang; Guo, Chunjie; Zhou, Liwei
2017-10-01
For aim to find a simple multiple configuration solution and achieve higher refractive efficiency, and based on to reduce the situation disturbed by FOV change, especially in a two-dimensional spatial expansion. Coded aperture system is designed by these special structure, which includes an objective a coded component a prism reflex system components, a compensatory plate and an imaging lens Correlative algorithms and perfect imaging methods are available to ensure this system can be corrected and optimized adequately. Simulation results show that the system can meet the application requirements in MTF, REA, RMS and other related criteria. Compared with the conventional design, the system has reduced in volume and weight significantly. Therefore, the determining factors are the prototype selection and the system configuration.
A contourlet transform based algorithm for real-time video encoding
NASA Astrophysics Data System (ADS)
Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris
2012-06-01
In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to algorithms utilizing block-based coding, like the MPEG family, as it introduces fuzziness and blurring instead of artificial block artifacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufi, M; Asl, A Kamali; Geramifar, P
2015-06-15
Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lungmore » lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm{sup 3}. For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and diagnosis.« less
NASA Astrophysics Data System (ADS)
Atkins, M. Stella; Hwang, Robert; Tang, Simon
2001-05-01
We have implemented a prototype system consisting of a Java- based image viewer and a web server extension component for transmitting Magnetic Resonance Images (MRI) to an image viewer, to test the performance of different image retrieval techniques. We used full-resolution images, and images compressed/decompressed using the Set Partitioning in Hierarchical Trees (SPIHT) image compression algorithm. We examined the SPIHT decompression algorithm using both non- progressive and progressive transmission, focusing on the running times of the algorithm, client memory usage and garbage collection. We also compared the Java implementation with a native C++ implementation of the non- progressive SPIHT decompression variant. Our performance measurements showed that for uncompressed image retrieval using a 10Mbps Ethernet, a film of 16 MR images can be retrieved and displayed almost within interactive times. The native C++ code implementation of the client-side decoder is twice as fast as the Java decoder. If the network bandwidth is low, the high communication time for retrieving uncompressed images may be reduced by use of SPIHT-compressed images, although the image quality is then degraded. To provide diagnostic quality images, we also investigated the retrieval of up to 3 images on a MR film at full-resolution, using progressive SPIHT decompression. The Java-based implementation of progressive decompression performed badly, mainly due to the memory requirements for maintaining the image states, and the high cost of execution of the Java garbage collector. Hence, in systems where the bandwidth is high, such as found in a hospital intranet, SPIHT image compression does not provide advantages for image retrieval performance.
Steganography: LSB Methodology
2012-08-02
images ; LSB Embedding Angel Sierra, Dr. Alfredo Cruz (Advisor) Polytechnic University of Puerto Rico 377 Ponce De Leon Hato Rey San Juan, PR 00918...notepad document as the message input. - Reviewed the battlesteg algorithm java code. POLYTECHNIC UNIVERSITY OF PUERTO RICO Steganography : LSB ...of LSB steganography in grayscale and color images . In J. Dittmann, K. Nahrstedt, and P. Wohlmacher, editors, Proceedings of the ACM, Special
The InSAR Scientific Computing Environment
NASA Technical Reports Server (NTRS)
Rosen, Paul A.; Gurrola, Eric; Sacco, Gian Franco; Zebker, Howard
2012-01-01
We have developed a flexible and extensible Interferometric SAR (InSAR) Scientific Computing Environment (ISCE) for geodetic image processing. ISCE was designed from the ground up as a geophysics community tool for generating stacks of interferograms that lend themselves to various forms of time-series analysis, with attention paid to accuracy, extensibility, and modularity. The framework is python-based, with code elements rigorously componentized by separating input/output operations from the processing engines. This allows greater flexibility and extensibility in the data models, and creates algorithmic code that is less susceptible to unnecessary modification when new data types and sensors are available. In addition, the components support provenance and checkpointing to facilitate reprocessing and algorithm exploration. The algorithms, based on legacy processing codes, have been adapted to assume a common reference track approach for all images acquired from nearby orbits, simplifying and systematizing the geometry for time-series analysis. The framework is designed to easily allow user contributions, and is distributed for free use by researchers. ISCE can process data from the ALOS, ERS, EnviSAT, Cosmo-SkyMed, RadarSAT-1, RadarSAT-2, and TerraSAR-X platforms, starting from Level-0 or Level 1 as provided from the data source, and going as far as Level 3 geocoded deformation products. With its flexible design, it can be extended with raw/meta data parsers to enable it to work with radar data from other platforms
No-reference quality assessment based on visual perception
NASA Astrophysics Data System (ADS)
Li, Junshan; Yang, Yawei; Hu, Shuangyan; Zhang, Jiao
2014-11-01
The visual quality assessment of images/videos is an ongoing hot research topic, which has become more and more important for numerous image and video processing applications with the rapid development of digital imaging and communication technologies. The goal of image quality assessment (IQA) algorithms is to automatically assess the quality of images/videos in agreement with human quality judgments. Up to now, two kinds of models have been used for IQA, namely full-reference (FR) and no-reference (NR) models. For FR models, IQA algorithms interpret image quality as fidelity or similarity with a perfect image in some perceptual space. However, the reference image is not available in many practical applications, and a NR IQA approach is desired. Considering natural vision as optimized by the millions of years of evolutionary pressure, many methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychological features of the human visual system (HVS). To reach this goal, researchers try to simulate HVS with image sparsity coding and supervised machine learning, which are two main features of HVS. A typical HVS captures the scenes by sparsity coding, and uses experienced knowledge to apperceive objects. In this paper, we propose a novel IQA approach based on visual perception. Firstly, a standard model of HVS is studied and analyzed, and the sparse representation of image is accomplished with the model; and then, the mapping correlation between sparse codes and subjective quality scores is trained with the regression technique of least squaresupport vector machine (LS-SVM), which gains the regressor that can predict the image quality; the visual metric of image is predicted with the trained regressor at last. We validate the performance of proposed approach on Laboratory for Image and Video Engineering (LIVE) database, the specific contents of the type of distortions present in the database are: 227 images of JPEG2000, 233 images of JPEG, 174 images of White Noise, 174 images of Gaussian Blur, 174 images of Fast Fading. The database includes subjective differential mean opinion score (DMOS) for each image. The experimental results show that the proposed approach not only can assess many kinds of distorted images quality, but also exhibits a superior accuracy and monotonicity.
STARL -- a Program to Correct CCD Image Defects
NASA Astrophysics Data System (ADS)
Narbutis, D.; Vanagas, R.; Vansevičius, V.
We present a program tool, STARL, designed for automatic detection and correction of various defects in CCD images. It uses genetic algorithm for deblending and restoring of overlapping saturated stars in crowded stellar fields. Using Subaru Telescope Suprime-Cam images we demonstrate that the program can be implemented in the wide-field survey data processing pipelines for production of high quality color mosaics. The source code and examples are available at the STARL website.
Massively Multithreaded Maxflow for Image Segmentation on the Cray XMT-2
Bokhari, Shahid H.; Çatalyürek, Ümit V.; Gurcan, Metin N.
2014-01-01
SUMMARY Image segmentation is a very important step in the computerized analysis of digital images. The maxflow mincut approach has been successfully used to obtain minimum energy segmentations of images in many fields. Classical algorithms for maxflow in networks do not directly lend themselves to efficient parallel implementations on contemporary parallel processors. We present the results of an implementation of Goldberg-Tarjan preflow-push algorithm on the Cray XMT-2 massively multithreaded supercomputer. This machine has hardware support for 128 threads in each physical processor, a uniformly accessible shared memory of up to 4 TB and hardware synchronization for each 64 bit word. It is thus well-suited to the parallelization of graph theoretic algorithms, such as preflow-push. We describe the implementation of the preflow-push code on the XMT-2 and present the results of timing experiments on a series of synthetically generated as well as real images. Our results indicate very good performance on large images and pave the way for practical applications of this machine architecture for image analysis in a production setting. The largest images we have run are 320002 pixels in size, which are well beyond the largest previously reported in the literature. PMID:25598745
Surface retrievals from Hyperion EO1 using a new, fast, 1D-Var based retrieval code
NASA Astrophysics Data System (ADS)
Thelen, Jean-Claude; Havemann, Stephan; Wong, Gerald
2015-05-01
We have developed a new algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space-borne, hyperspectral imagers such as Hyperion EO-1. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes. We successfully tested this new approach using hyperspectral images taken by Hyperion EO-1, an experimental pushbroom imaging spectrometer operated by NASA.
A study on multiresolution lossless video coding using inter/intra frame adaptive prediction
NASA Astrophysics Data System (ADS)
Nakachi, Takayuki; Sawabe, Tomoko; Fujii, Tetsuro
2003-06-01
Lossless video coding is required in the fields of archiving and editing digital cinema or digital broadcasting contents. This paper combines a discrete wavelet transform and adaptive inter/intra-frame prediction in the wavelet transform domain to create multiresolution lossless video coding. The multiresolution structure offered by the wavelet transform facilitates interchange among several video source formats such as Super High Definition (SHD) images, HDTV, SDTV, and mobile applications. Adaptive inter/intra-frame prediction is an extension of JPEG-LS, a state-of-the-art lossless still image compression standard. Based on the image statistics of the wavelet transform domains in successive frames, inter/intra frame adaptive prediction is applied to the appropriate wavelet transform domain. This adaptation offers superior compression performance. This is achieved with low computational cost and no increase in additional information. Experiments on digital cinema test sequences confirm the effectiveness of the proposed algorithm.
Automatic Detection of Frontal Face Midline by Chain-coded Merlin-Farber Hough Trasform
NASA Astrophysics Data System (ADS)
Okamoto, Daichi; Ohyama, Wataru; Wakabayashi, Tetsushi; Kimura, Fumitaka
We propose a novel approach for detection of the facial midline (facial symmetry axis) from a frontal face image. The facial midline has several applications, for instance reducing computational cost required for facial feature extraction (FFE) and postoperative assessment for cosmetic or dental surgery. The proposed method detects the facial midline of a frontal face from an edge image as the symmetry axis using the Merlin-Faber Hough transformation. And a new performance improvement scheme for midline detection by MFHT is present. The main concept of the proposed scheme is suppression of redundant vote on the Hough parameter space by introducing chain code representation for the binary edge image. Experimental results on the image dataset containing 2409 images from FERET database indicate that the proposed algorithm can improve the accuracy of midline detection from 89.9% to 95.1 % for face images with different scales and rotation.
Supercomputer description of human lung morphology for imaging analysis.
Martonen, T B; Hwang, D; Guan, X; Fleming, J S
1998-04-01
A supercomputer code that describes the three-dimensional branching structure of the human lung has been developed. The algorithm was written for the Cray C94. In our simulations, the human lung was divided into a matrix containing discrete volumes (voxels) so as to be compatible with analyses of SPECT images. The matrix has 3840 voxels. The matrix can be segmented into transverse, sagittal and coronal layers analogous to human subject examinations. The compositions of individual voxels were identified by the type and respective number of airways present. The code provides a mapping of the spatial positions of the almost 17 million airways in human lungs and unambiguously assigns each airway to a voxel. Thus, the clinician and research scientist in the medical arena have a powerful new tool to be used in imaging analyses. The code was designed to be integrated into diverse applications, including the interpretation of SPECT images, the design of inhalation exposure experiments and the targeted delivery of inhaled pharmacologic drugs.
Automatic Generation of Algorithms for the Statistical Analysis of Planetary Nebulae Images
NASA Technical Reports Server (NTRS)
Fischer, Bernd
2004-01-01
Analyzing data sets collected in experiments or by observations is a Core scientific activity. Typically, experimentd and observational data are &aught with uncertainty, and the analysis is based on a statistical model of the conjectured underlying processes, The large data volumes collected by modern instruments make computer support indispensible for this. Consequently, scientists spend significant amounts of their time with the development and refinement of the data analysis programs. AutoBayes [GF+02, FS03] is a fully automatic synthesis system for generating statistical data analysis programs. Externally, it looks like a compiler: it takes an abstract problem specification and translates it into executable code. Its input is a concise description of a data analysis problem in the form of a statistical model as shown in Figure 1; its output is optimized and fully documented C/C++ code which can be linked dynamically into the Matlab and Octave environments. Internally, however, it is quite different: AutoBayes derives a customized algorithm implementing the given model using a schema-based process, and then further refines and optimizes the algorithm into code. A schema is a parameterized code template with associated semantic constraints which define and restrict the template s applicability. The schema parameters are instantiated in a problem-specific way during synthesis as AutoBayes checks the constraints against the original model or, recursively, against emerging sub-problems. AutoBayes schema library contains problem decomposition operators (which are justified by theorems in a formal logic in the domain of Bayesian networks) as well as machine learning algorithms (e.g., EM, k-Means) and nu- meric optimization methods (e.g., Nelder-Mead simplex, conjugate gradient). AutoBayes augments this schema-based approach by symbolic computation to derive closed-form solutions whenever possible. This is a major advantage over other statistical data analysis systems which use numerical approximations even in cases where closed-form solutions exist. AutoBayes is implemented in Prolog and comprises approximately 75.000 lines of code. In this paper, we take one typical scientific data analysis problem-analyzing planetary nebulae images taken by the Hubble Space Telescope-and show how AutoBayes can be used to automate the implementation of the necessary anal- ysis programs. We initially follow the analysis described by Knuth and Hajian [KHO2] and use AutoBayes to derive code for the published models. We show the details of the code derivation process, including the symbolic computations and automatic integration of library procedures, and compare the results of the automatically generated and manually implemented code. We then go beyond the original analysis and use AutoBayes to derive code for a simple image segmentation procedure based on a mixture model which can be used to automate a manual preproceesing step. Finally, we combine the original approach with the simple segmentation which yields a more detailed analysis. This also demonstrates that AutoBayes makes it easy to combine different aspects of data analysis.
Binary encoding of multiplexed images in mixed noise.
Lalush, David S
2008-09-01
Binary coding of multiplexed signals and images has been studied in the context of spectroscopy with models of either purely constant or purely proportional noise, and has been shown to result in improved noise performance under certain conditions. We consider the case of mixed noise in an imaging system consisting of multiple individually-controllable sources (X-ray or near-infrared, for example) shining on a single detector. We develop a mathematical model for the noise in such a system and show that the noise is dependent on the properties of the binary coding matrix and on the average number of sources used for each code. Each binary matrix has a characteristic linear relationship between the ratio of proportional-to-constant noise and the noise level in the decoded image. We introduce a criterion for noise level, which is minimized via a genetic algorithm search. The search procedure results in the discovery of matrices that outperform the Hadamard S-matrices at certain levels of mixed noise. Simulation of a seven-source radiography system demonstrates that the noise model predicts trends and rank order of performance in regions of nonuniform images and in a simple tomosynthesis reconstruction. We conclude that the model developed provides a simple framework for analysis, discovery, and optimization of binary coding patterns used in multiplexed imaging systems.
CoGI: Towards Compressing Genomes as an Image.
Xie, Xiaojing; Zhou, Shuigeng; Guan, Jihong
2015-01-01
Genomic science is now facing an explosive increase of data thanks to the fast development of sequencing technology. This situation poses serious challenges to genomic data storage and transferring. It is desirable to compress data to reduce storage and transferring cost, and thus to boost data distribution and utilization efficiency. Up to now, a number of algorithms / tools have been developed for compressing genomic sequences. Unlike the existing algorithms, most of which treat genomes as one-dimensional text strings and compress them based on dictionaries or probability models, this paper proposes a novel approach called CoGI (the abbreviation of Compressing Genomes as an Image) for genome compression, which transforms the genomic sequences to a two-dimensional binary image (or bitmap), then applies a rectangular partition coding algorithm to compress the binary image. CoGI can be used as either a reference-based compressor or a reference-free compressor. For the former, we develop two entropy-based algorithms to select a proper reference genome. Performance evaluation is conducted on various genomes. Experimental results show that the reference-based CoGI significantly outperforms two state-of-the-art reference-based genome compressors GReEn and RLZ-opt in both compression ratio and compression efficiency. It also achieves comparable compression ratio but two orders of magnitude higher compression efficiency in comparison with XM--one state-of-the-art reference-free genome compressor. Furthermore, our approach performs much better than Gzip--a general-purpose and widely-used compressor, in both compression speed and compression ratio. So, CoGI can serve as an effective and practical genome compressor. The source code and other related documents of CoGI are available at: http://admis.fudan.edu.cn/projects/cogi.htm.
2D-pattern matching image and video compression: theory, algorithms, and experiments.
Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth
2002-01-01
In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.
NASA Astrophysics Data System (ADS)
Siddeq, M. M.; Rodrigues, M. A.
2015-09-01
Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.
CUTEX: CUrvature Thresholding EXtractor
NASA Astrophysics Data System (ADS)
Molinari, S.; Schisano, E.; Faustini, F.; Pestalozzi, M.; di Giorgio, A. M.; Liu, S.
2017-08-01
CuTEx analyzes images in the infrared bands and extracts sources from complex backgrounds, particularly star-forming regions that offer the challenges of crowding, having a highly spatially variable background, and having no-psf profiles such as protostars in their accreting phase. The code is composed of two main algorithms, the first an algorithm for source detection, and the second for flux extraction. The code is originally written in IDL language and it was exported in the license free GDL language. CuTEx could be used in other bands or in scientific cases different from the native case. This software is also available as an on-line tool from the Multi-Mission Interactive Archive web pages dedicated to the Herschel Observatory.
Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image
NASA Astrophysics Data System (ADS)
Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti
2016-06-01
An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.
An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT
NASA Astrophysics Data System (ADS)
Poludniowski, G.; Evans, P. M.; Hansen, V. N.; Webb, S.
2009-06-01
A new method is proposed for scatter-correction of cone-beam CT images. A coarse reconstruction is used in initial iteration steps. Modelling of the x-ray tube spectra and detector response are included in the algorithm. Photon diffusion inside the imaging subject is calculated using the Monte Carlo method. Photon scoring at the detector is calculated using forced detection to a fixed set of node points. The scatter profiles are then obtained by linear interpolation. The algorithm is referred to as the coarse reconstruction and fixed detection (CRFD) technique. Scatter predictions are quantitatively validated against a widely used general-purpose Monte Carlo code: BEAMnrc/EGSnrc (NRCC, Canada). Agreement is excellent. The CRFD algorithm was applied to projection data acquired with a Synergy XVI CBCT unit (Elekta Limited, Crawley, UK), using RANDO and Catphan phantoms (The Phantom Laboratory, Salem NY, USA). The algorithm was shown to be effective in removing scatter-induced artefacts from CBCT images, and took as little as 2 min on a desktop PC. Image uniformity was greatly improved as was CT-number accuracy in reconstructions. This latter improvement was less marked where the expected CT-number of a material was very different to the background material in which it was embedded.
A software package for evaluating the performance of a star sensor operation
NASA Astrophysics Data System (ADS)
Sarpotdar, Mayuresh; Mathew, Joice; Sreejith, A. G.; Nirmal, K.; Ambily, S.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant
2017-02-01
We have developed a low-cost off-the-shelf component star sensor ( StarSense) for use in minisatellites and CubeSats to determine the attitude of a satellite in orbit. StarSense is an imaging camera with a limiting magnitude of 6.5, which extracts information from star patterns it records in the images. The star sensor implements a centroiding algorithm to find centroids of the stars in the image, a Geometric Voting algorithm for star pattern identification, and a QUEST algorithm for attitude quaternion calculation. Here, we describe the software package to evaluate the performance of these algorithms as a star sensor single operating system. We simulate the ideal case where sky background and instrument errors are omitted, and a more realistic case where noise and camera parameters are added to the simulated images. We evaluate such performance parameters of the algorithms as attitude accuracy, calculation time, required memory, star catalog size, sky coverage, etc., and estimate the errors introduced by each algorithm. This software package is written for use in MATLAB. The testing is parametrized for different hardware parameters, such as the focal length of the imaging setup, the field of view (FOV) of the camera, angle measurement accuracy, distortion effects, etc., and therefore, can be applied to evaluate the performance of such algorithms in any star sensor. For its hardware implementation on our StarSense, we are currently porting the codes in form of functions written in C. This is done keeping in view its easy implementation on any star sensor electronics hardware.
Karim, Rashed; Bhagirath, Pranav; Claus, Piet; James Housden, R; Chen, Zhong; Karimaghaloo, Zahra; Sohn, Hyon-Mok; Lara Rodríguez, Laura; Vera, Sergio; Albà, Xènia; Hennemuth, Anja; Peitgen, Heinz-Otto; Arbel, Tal; Gonzàlez Ballester, Miguel A; Frangi, Alejandro F; Götte, Marco; Razavi, Reza; Schaeffter, Tobias; Rhode, Kawal
2016-05-01
Studies have demonstrated the feasibility of late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging for guiding the management of patients with sequelae to myocardial infarction, such as ventricular tachycardia and heart failure. Clinical implementation of these developments necessitates a reproducible and reliable segmentation of the infarcted regions. It is challenging to compare new algorithms for infarct segmentation in the left ventricle (LV) with existing algorithms. Benchmarking datasets with evaluation strategies are much needed to facilitate comparison. This manuscript presents a benchmarking evaluation framework for future algorithms that segment infarct from LGE CMR of the LV. The image database consists of 30 LGE CMR images of both humans and pigs that were acquired from two separate imaging centres. A consensus ground truth was obtained for all data using maximum likelihood estimation. Six widely-used fixed-thresholding methods and five recently developed algorithms are tested on the benchmarking framework. Results demonstrate that the algorithms have better overlap with the consensus ground truth than most of the n-SD fixed-thresholding methods, with the exception of the Full-Width-at-Half-Maximum (FWHM) fixed-thresholding method. Some of the pitfalls of fixed thresholding methods are demonstrated in this work. The benchmarking evaluation framework, which is a contribution of this work, can be used to test and benchmark future algorithms that detect and quantify infarct in LGE CMR images of the LV. The datasets, ground truth and evaluation code have been made publicly available through the website: https://www.cardiacatlas.org/web/guest/challenges. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John
2016-01-01
Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.
Techniques in processing multi-frequency multi-polarization spaceborne SAR data
NASA Technical Reports Server (NTRS)
Curlander, John C.; Chang, C. Y.
1991-01-01
This paper presents the algorithm design of the SIR-C ground data processor, with emphasis on the unique elements involved in the production of registered multifrequency polarimetric data products. A quick-look processing algorithm used for generation of low-resolution browse image products and estimation of echo signal parameters is also presented. Specifically the discussion covers: (1) azimuth reference function generation to produce registered polarimetric imagery; (2) geometric rectification to accommondate cross-track and along-track Doppler drifts; (3) multilook filtering designed to generate output imagery with a uniform resolution; and (4) efficient coding to compress the polarimetric image data for distribution.
Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images.
Shukla, Rahul; Dragotti, Pier Luigi; Do, Minh N; Vetterli, Martin
2005-03-01
This paper presents novel coding algorithms based on tree-structured segmentation, which achieve the correct asymptotic rate-distortion (R-D) behavior for a simple class of signals, known as piecewise polynomials, by using an R-D based prune and join scheme. For the one-dimensional case, our scheme is based on binary-tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly to achieve the correct exponentially decaying R-D behavior (D(R) - c(o)2(-c1R)), thus improving over classic wavelet schemes. We also prove that the computational complexity of the scheme is of O(N log N). We then show the extension of this scheme to the two-dimensional case using a quadtree. This quadtree-coding scheme also achieves an exponentially decaying R-D behavior, for the polygonal image model composed of a white polygon-shaped object against a uniform black background, with low computational cost of O(N log N). Again, the key is an R-D optimized prune and join strategy. Finally, we conclude with numerical results, which show that the proposed quadtree-coding scheme outperforms JPEG2000 by about 1 dB for real images, like cameraman, at low rates of around 0.15 bpp.
[Object Separation from Medical X-Ray Images Based on ICA].
Li, Yan; Yu, Chun-yu; Miao, Ya-jian; Fei, Bin; Zhuang, Feng-yun
2015-03-01
X-ray medical image can examine diseased tissue of patients and has important reference value for medical diagnosis. With the problems that traditional X-ray images have noise, poor level sense and blocked aliasing organs, this paper proposes a method for the introduction of multi-spectrum X-ray imaging and independent component analysis (ICA) algorithm to separate the target object. Firstly image de-noising preprocessing ensures the accuracy of target extraction based on independent component analysis and sparse code shrinkage. Then according to the main proportion of organ in the images, aliasing thickness matrix of each pixel was isolated. Finally independent component analysis obtains convergence matrix to reconstruct the target object with blind separation theory. In the ICA algorithm, it found that when the number is more than 40, the target objects separate successfully with the aid of subjective evaluation standard. And when the amplitudes of the scale are in the [25, 45] interval, the target images have high contrast and less distortion. The three-dimensional figure of Peak signal to noise ratio (PSNR) shows that the different convergence times and amplitudes have a greater influence on image quality. The contrast and edge information of experimental images achieve better effects with the convergence times 85 and amplitudes 35 in the ICA algorithm.
Interband coding extension of the new lossless JPEG standard
NASA Astrophysics Data System (ADS)
Memon, Nasir D.; Wu, Xiaolin; Sippy, V.; Miller, G.
1997-01-01
Due to the perceived inadequacy of current standards for lossless image compression, the JPEG committee of the International Standards Organization (ISO) has been developing a new standard. A baseline algorithm, called JPEG-LS, has already been completed and is awaiting approval by national bodies. The JPEG-LS baseline algorithm despite being simple is surprisingly efficient, and provides compression performance that is within a few percent of the best and more sophisticated techniques reported in the literature. Extensive experimentations performed by the authors seem to indicate that an overall improvement by more than 10 percent in compression performance will be difficult to obtain even at the cost of great complexity; at least not with traditional approaches to lossless image compression. However, if we allow inter-band decorrelation and modeling in the baseline algorithm, nearly 30 percent improvement in compression gains for specific images in the test set become possible with a modest computational cost. In this paper we propose and investigate a few techniques for exploiting inter-band correlations in multi-band images. These techniques have been designed within the framework of the baseline algorithm, and require minimal changes to the basic architecture of the baseline, retaining its essential simplicity.
A Statistical Analysis of IrisCode and Its Security Implications.
Kong, Adams Wai-Kin
2015-03-01
IrisCode has been used to gather iris data for 430 million people. Because of the huge impact of IrisCode, it is vital that it is completely understood. This paper first studies the relationship between bit probabilities and a mean of iris images (The mean of iris images is defined as the average of independent iris images.) and then uses the Chi-square statistic, the correlation coefficient and a resampling algorithm to detect statistical dependence between bits. The results show that the statistical dependence forms a graph with a sparse and structural adjacency matrix. A comparison of this graph with a graph whose edges are defined by the inner product of the Gabor filters that produce IrisCodes shows that partial statistical dependence is induced by the filters and propagates through the graph. Using this statistical information, the security risk associated with two patented template protection schemes that have been deployed in commercial systems for producing application-specific IrisCodes is analyzed. To retain high identification speed, they use the same key to lock all IrisCodes in a database. The belief has been that if the key is not compromised, the IrisCodes are secure. This study shows that even without the key, application-specific IrisCodes can be unlocked and that the key can be obtained through the statistical dependence detected.
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-07-01
This paper proposes a joint image encryption and compression scheme based on a new hyperchaotic system and curvelet transform. A new five-dimensional hyperchaotic system based on the Rabinovich system is presented. By means of the proposed hyperchaotic system, a new pseudorandom key stream generator is constructed. The algorithm adopts diffusion and confusion structure to perform encryption, which is based on the key stream generator and the proposed hyperchaotic system. The key sequence used for image encryption is relation to plain text. By means of the second generation curvelet transform, run-length coding, and Huffman coding, the image data are compressed. The joint operation of compression and encryption in a single process is performed. The security test results indicate the proposed methods have high security and good compression effect.
Local structure preserving sparse coding for infrared target recognition
Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa
2017-01-01
Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824
NASA Astrophysics Data System (ADS)
Tsang, Sik-Ho; Chan, Yui-Lam; Siu, Wan-Chi
2017-01-01
Weighted prediction (WP) is an efficient video coding tool that was introduced since the establishment of the H.264/AVC video coding standard, for compensating the temporal illumination change in motion estimation and compensation. WP parameters, including a multiplicative weight and an additive offset for each reference frame, are required to be estimated and transmitted to the decoder by slice header. These parameters cause extra bits in the coded video bitstream. High efficiency video coding (HEVC) provides WP parameter prediction to reduce the overhead. Therefore, WP parameter prediction is crucial to research works or applications, which are related to WP. Prior art has been suggested to further improve the WP parameter prediction by implicit prediction of image characteristics and derivation of parameters. By exploiting both temporal and interlayer redundancies, we propose three WP parameter prediction algorithms, enhanced implicit WP parameter, enhanced direct WP parameter derivation, and interlayer WP parameter, to further improve the coding efficiency of HEVC. Results show that our proposed algorithms can achieve up to 5.83% and 5.23% bitrate reduction compared to the conventional scalable HEVC in the base layer for SNR scalability and 2× spatial scalability, respectively.
NASA Technical Reports Server (NTRS)
Jaggi, S.
1993-01-01
A study is conducted to investigate the effects and advantages of data compression techniques on multispectral imagery data acquired by NASA's airborne scanners at the Stennis Space Center. The first technique used was vector quantization. The vector is defined in the multispectral imagery context as an array of pixels from the same location from each channel. The error obtained in substituting the reconstructed images for the original set is compared for different compression ratios. Also, the eigenvalues of the covariance matrix obtained from the reconstructed data set are compared with the eigenvalues of the original set. The effects of varying the size of the vector codebook on the quality of the compression and on subsequent classification are also presented. The output data from the Vector Quantization algorithm was further compressed by a lossless technique called Difference-mapped Shift-extended Huffman coding. The overall compression for 7 channels of data acquired by the Calibrated Airborne Multispectral Scanner (CAMS), with an RMS error of 15.8 pixels was 195:1 (0.41 bpp) and with an RMS error of 3.6 pixels was 18:1 (.447 bpp). The algorithms were implemented in software and interfaced with the help of dedicated image processing boards to an 80386 PC compatible computer. Modules were developed for the task of image compression and image analysis. Also, supporting software to perform image processing for visual display and interpretation of the compressed/classified images was developed.
Beyond filtered backprojection: A reconstruction software package for ion beam microtomography data
NASA Astrophysics Data System (ADS)
Habchi, C.; Gordillo, N.; Bourret, S.; Barberet, Ph.; Jovet, C.; Moretto, Ph.; Seznec, H.
2013-01-01
A new version of the TomoRebuild data reduction software package is presented, for the reconstruction of scanning transmission ion microscopy tomography (STIMT) and particle induced X-ray emission tomography (PIXET) images. First, we present a state of the art of the reconstruction codes available for ion beam microtomography. The algorithm proposed here brings several advantages. It is a portable, multi-platform code, designed in C++ with well-separated classes for easier use and evolution. Data reduction is separated in different steps and the intermediate results may be checked if necessary. Although no additional graphic library or numerical tool is required to run the program as a command line, a user friendly interface was designed in Java, as an ImageJ plugin. All experimental and reconstruction parameters may be entered either through this plugin or directly in text format files. A simple standard format is proposed for the input of experimental data. Optional graphic applications using the ROOT interface may be used separately to display and fit energy spectra. Regarding the reconstruction process, the filtered backprojection (FBP) algorithm, already present in the previous version of the code, was optimized so that it is about 10 times as fast. In addition, Maximum Likelihood Expectation Maximization (MLEM) and its accelerated version Ordered Subsets Expectation Maximization (OSEM) algorithms were implemented. A detailed user guide in English is available. A reconstruction example of experimental data from a biological sample is given. It shows the capability of the code to reduce noise in the sinograms and to deal with incomplete data, which puts a new perspective on tomography using low number of projections or limited angle.
Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G.; Liu, Chihray; Lu, Bo
2015-12-01
Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR). In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm, the code was implemented with a graphic processing unit for parallel processing purposes. Root mean square error (RMSE) between the ground truth and reconstructed volumes of the numerical phantom were in the descending order of FDK, CTV, PICCS, MCIR, and c-MGIR for all phases. Specifically, the means and the standard deviations of the RMSE of FDK, CTV, PICCS, MCIR and c-MGIR for all phases were 42.64 ± 6.5%, 3.63 ± 0.83%, 1.31% ± 0.09%, 0.86% ± 0.11% and 0.52 % ± 0.02%, respectively. The image quality of the patient case also indicated the superiority of c-MGIR compared to other algorithms. The results indicated that clinically viable 4D CBCT images can be reconstructed while requiring no more projection data than a typical clinical 3D CBCT scan. This makes c-MGIR a potential online reconstruction algorithm for 4D CBCT, which can provide much better image quality than other available algorithms, while requiring less dose and potentially less scanning time.
Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
Park, Justin C; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G; Liu, Chihray; Lu, Bo
2015-12-07
Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm 'the common mask guided image reconstruction' (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and 'well' solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm, the code was implemented with a graphic processing unit for parallel processing purposes.Root mean square error (RMSE) between the ground truth and reconstructed volumes of the numerical phantom were in the descending order of FDK, CTV, PICCS, MCIR, and c-MGIR for all phases. Specifically, the means and the standard deviations of the RMSE of FDK, CTV, PICCS, MCIR and c-MGIR for all phases were 42.64 ± 6.5%, 3.63 ± 0.83%, 1.31% ± 0.09%, 0.86% ± 0.11% and 0.52 % ± 0.02%, respectively. The image quality of the patient case also indicated the superiority of c-MGIR compared to other algorithms.The results indicated that clinically viable 4D CBCT images can be reconstructed while requiring no more projection data than a typical clinical 3D CBCT scan. This makes c-MGIR a potential online reconstruction algorithm for 4D CBCT, which can provide much better image quality than other available algorithms, while requiring less dose and potentially less scanning time.
Advanced imaging techniques in brain tumors
2009-01-01
Abstract Perfusion, permeability and magnetic resonance spectroscopy (MRS) are now widely used in the research and clinical settings. In the clinical setting, qualitative, semi-quantitative and quantitative approaches such as review of color-coded maps to region of interest analysis and analysis of signal intensity curves are being applied in practice. There are several pitfalls with all of these approaches. Some of these shortcomings are reviewed, such as the relative low sensitivity of metabolite ratios from MRS and the effect of leakage on the appearance of color-coded maps from dynamic susceptibility contrast (DSC) magnetic resonance (MR) perfusion imaging and what correction and normalization methods can be applied. Combining and applying these different imaging techniques in a multi-parametric algorithmic fashion in the clinical setting can be shown to increase diagnostic specificity and confidence. PMID:19965287
Image demosaicing: a systematic survey
NASA Astrophysics Data System (ADS)
Li, Xin; Gunturk, Bahadir; Zhang, Lei
2008-01-01
Image demosaicing is a problem of interpolating full-resolution color images from so-called color-filter-array (CFA) samples. Among various CFA patterns, Bayer pattern has been the most popular choice and demosaicing of Bayer pattern has attracted renewed interest in recent years partially due to the increased availability of source codes/executables in response to the principle of "reproducible research". In this article, we provide a systematic survey of over seventy published works in this field since 1999 (complementary to previous reviews 22, 67). Our review attempts to address important issues to demosaicing and identify fundamental differences among competing approaches. Our findings suggest most existing works belong to the class of sequential demosaicing - i.e., luminance channel is interpolated first and then chrominance channels are reconstructed based on recovered luminance information. We report our comparative study results with a collection of eleven competing algorithms whose source codes or executables are provided by the authors. Our comparison is performed on two data sets: Kodak PhotoCD (popular choice) and IMAX high-quality images (more challenging). While most existing demosaicing algorithms achieve good performance on the Kodak data set, their performance on the IMAX one (images with varying-hue and high-saturation edges) degrades significantly. Such observation suggests the importance of properly addressing the issue of mismatch between assumed model and observation data in demosaicing, which calls for further investigation on issues such as model validation, test data selection and performance evaluation.
Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1998-01-01
A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.
Sub-band/transform compression of video sequences
NASA Technical Reports Server (NTRS)
Sauer, Ken; Bauer, Peter
1992-01-01
The progress on compression of video sequences is discussed. The overall goal of the research was the development of data compression algorithms for high-definition television (HDTV) sequences, but most of our research is general enough to be applicable to much more general problems. We have concentrated on coding algorithms based on both sub-band and transform approaches. Two very fundamental issues arise in designing a sub-band coder. First, the form of the signal decomposition must be chosen to yield band-pass images with characteristics favorable to efficient coding. A second basic consideration, whether coding is to be done in two or three dimensions, is the form of the coders to be applied to each sub-band. Computational simplicity is of essence. We review the first portion of the year, during which we improved and extended some of the previous grant period's results. The pyramid nonrectangular sub-band coder limited to intra-frame application is discussed. Perhaps the most critical component of the sub-band structure is the design of bandsplitting filters. We apply very simple recursive filters, which operate at alternating levels on rectangularly sampled, and quincunx sampled images. We will also cover the techniques we have studied for the coding of the resulting bandpass signals. We discuss adaptive three-dimensional coding which takes advantage of the detection algorithm developed last year. To this point, all the work on this project has been done without the benefit of motion compensation (MC). Motion compensation is included in many proposed codecs, but adds significant computational burden and hardware expense. We have sought to find a lower-cost alternative featuring a simple adaptation to motion in the form of the codec. In sequences of high spatial detail and zooming or panning, it appears that MC will likely be necessary for the proposed quality and bit rates.
Fast Exact Search in Hamming Space With Multi-Index Hashing.
Norouzi, Mohammad; Punjani, Ali; Fleet, David J
2014-06-01
There is growing interest in representing image data and feature descriptors using compact binary codes for fast near neighbor search. Although binary codes are motivated by their use as direct indices (addresses) into a hash table, codes longer than 32 bits are not being used as such, as it was thought to be ineffective. We introduce a rigorous way to build multiple hash tables on binary code substrings that enables exact k-nearest neighbor search in Hamming space. The approach is storage efficient and straight-forward to implement. Theoretical analysis shows that the algorithm exhibits sub-linear run-time behavior for uniformly distributed codes. Empirical results show dramatic speedups over a linear scan baseline for datasets of up to one billion codes of 64, 128, or 256 bits.
Multiple description distributed image coding with side information for mobile wireless transmission
NASA Astrophysics Data System (ADS)
Wu, Min; Song, Daewon; Chen, Chang Wen
2005-03-01
Multiple description coding (MDC) is a source coding technique that involves coding the source information into multiple descriptions, and then transmitting them over different channels in packet network or error-prone wireless environment to achieve graceful degradation if parts of descriptions are lost at the receiver. In this paper, we proposed a multiple description distributed wavelet zero tree image coding system for mobile wireless transmission. We provide two innovations to achieve an excellent error resilient capability. First, when MDC is applied to wavelet subband based image coding, it is possible to introduce correlation between the descriptions in each subband. We consider using such a correlation as well as potentially error corrupted description as side information in the decoding to formulate the MDC decoding as a Wyner Ziv decoding problem. If only part of descriptions is lost, however, their correlation information is still available, the proposed Wyner Ziv decoder can recover the description by using the correlation information and the error corrupted description as side information. Secondly, in each description, single bitstream wavelet zero tree coding is very vulnerable to the channel errors. The first bit error may cause the decoder to discard all subsequent bits whether or not the subsequent bits are correctly received. Therefore, we integrate the multiple description scalar quantization (MDSQ) with the multiple wavelet tree image coding method to reduce error propagation. We first group wavelet coefficients into multiple trees according to parent-child relationship and then code them separately by SPIHT algorithm to form multiple bitstreams. Such decomposition is able to reduce error propagation and therefore improve the error correcting capability of Wyner Ziv decoder. Experimental results show that the proposed scheme not only exhibits an excellent error resilient performance but also demonstrates graceful degradation over the packet loss rate.
Methods of evaluating the effects of coding on SAR data
NASA Technical Reports Server (NTRS)
Dutkiewicz, Melanie; Cumming, Ian
1993-01-01
It is recognized that mean square error (MSE) is not a sufficient criterion for determining the acceptability of an image reconstructed from data that has been compressed and decompressed using an encoding algorithm. In the case of Synthetic Aperture Radar (SAR) data, it is also deemed to be insufficient to display the reconstructed image (and perhaps error image) alongside the original and make a (subjective) judgment as to the quality of the reconstructed data. In this paper we suggest a number of additional evaluation criteria which we feel should be included as evaluation metrics in SAR data encoding experiments. These criteria have been specifically chosen to provide a means of ensuring that the important information in the SAR data is preserved. The paper also presents the results of an investigation into the effects of coding on SAR data fidelity when the coding is applied in (1) the signal data domain, and (2) the image domain. An analysis of the results highlights the shortcomings of the MSE criterion, and shows which of the suggested additional criterion have been found to be most important.
A method of non-contact reading code based on computer vision
NASA Astrophysics Data System (ADS)
Zhang, Chunsen; Zong, Xiaoyu; Guo, Bingxuan
2018-03-01
With the purpose of guarantee the computer information exchange security between internal and external network (trusted network and un-trusted network), A non-contact Reading code method based on machine vision has been proposed. Which is different from the existing network physical isolation method. By using the computer monitors, camera and other equipment. Deal with the information which will be on exchanged, Include image coding ,Generate the standard image , Display and get the actual image , Calculate homography matrix, Image distort correction and decoding in calibration, To achieve the computer information security, Non-contact, One-way transmission between the internal and external network , The effectiveness of the proposed method is verified by experiments on real computer text data, The speed of data transfer can be achieved 24kb/s. The experiment shows that this algorithm has the characteristics of high security, fast velocity and less loss of information. Which can meet the daily needs of the confidentiality department to update the data effectively and reliably, Solved the difficulty of computer information exchange between Secret network and non-secret network, With distinctive originality, practicability, and practical research value.
Cloud detection algorithm comparison and validation for operational Landsat data products
Foga, Steven Curtis; Scaramuzza, Pat; Guo, Song; Zhu, Zhe; Dilley, Ronald; Beckmann, Tim; Schmidt, Gail L.; Dwyer, John L.; Hughes, MJ; Laue, Brady
2017-01-01
Clouds are a pervasive and unavoidable issue in satellite-borne optical imagery. Accurate, well-documented, and automated cloud detection algorithms are necessary to effectively leverage large collections of remotely sensed data. The Landsat project is uniquely suited for comparative validation of cloud assessment algorithms because the modular architecture of the Landsat ground system allows for quick evaluation of new code, and because Landsat has the most comprehensive manual truth masks of any current satellite data archive. Currently, the Landsat Level-1 Product Generation System (LPGS) uses separate algorithms for determining clouds, cirrus clouds, and snow and/or ice probability on a per-pixel basis. With more bands onboard the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) satellite, and a greater number of cloud masking algorithms, the U.S. Geological Survey (USGS) is replacing the current cloud masking workflow with a more robust algorithm that is capable of working across multiple Landsat sensors with minimal modification. Because of the inherent error from stray light and intermittent data availability of TIRS, these algorithms need to operate both with and without thermal data. In this study, we created a workflow to evaluate cloud and cloud shadow masking algorithms using cloud validation masks manually derived from both Landsat 7 Enhanced Thematic Mapper Plus (ETM +) and Landsat 8 OLI/TIRS data. We created a new validation dataset consisting of 96 Landsat 8 scenes, representing different biomes and proportions of cloud cover. We evaluated algorithm performance by overall accuracy, omission error, and commission error for both cloud and cloud shadow. We found that CFMask, C code based on the Function of Mask (Fmask) algorithm, and its confidence bands have the best overall accuracy among the many algorithms tested using our validation data. The Artificial Thermal-Automated Cloud Cover Algorithm (AT-ACCA) is the most accurate nonthermal-based algorithm. We give preference to CFMask for operational cloud and cloud shadow detection, as it is derived from a priori knowledge of physical phenomena and is operable without geographic restriction, making it useful for current and future land imaging missions without having to be retrained in a machine-learning environment.
Cygnus A super-resolved via convex optimization from VLA data
NASA Astrophysics Data System (ADS)
Dabbech, A.; Onose, A.; Abdulaziz, A.; Perley, R. A.; Smirnov, O. M.; Wiaux, Y.
2018-05-01
We leverage the Sparsity Averaging Re-weighted Analysis approach for interferometric imaging, that is based on convex optimization, for the super-resolution of Cyg A from observations at the frequencies 8.422 and 6.678 GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned primal-dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high-resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324 and 14.252 GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our MATLAB code is available online on GitHub.
NASA Astrophysics Data System (ADS)
Reato, Thomas; Demir, Begüm; Bruzzone, Lorenzo
2017-10-01
This paper presents a novel class sensitive hashing technique in the framework of large-scale content-based remote sensing (RS) image retrieval. The proposed technique aims at representing each image with multi-hash codes, each of which corresponds to a primitive (i.e., land cover class) present in the image. To this end, the proposed method consists of a three-steps algorithm. The first step is devoted to characterize each image by primitive class descriptors. These descriptors are obtained through a supervised approach, which initially extracts the image regions and their descriptors that are then associated with primitives present in the images. This step requires a set of annotated training regions to define primitive classes. A correspondence between the regions of an image and the primitive classes is built based on the probability of each primitive class to be present at each region. All the regions belonging to the specific primitive class with a probability higher than a given threshold are highly representative of that class. Thus, the average value of the descriptors of these regions is used to characterize that primitive. In the second step, the descriptors of primitive classes are transformed into multi-hash codes to represent each image. This is achieved by adapting the kernel-based supervised locality sensitive hashing method to multi-code hashing problems. The first two steps of the proposed technique, unlike the standard hashing methods, allow one to represent each image by a set of primitive class sensitive descriptors and their hash codes. Then, in the last step, the images in the archive that are very similar to a query image are retrieved based on a multi-hash-code-matching scheme. Experimental results obtained on an archive of aerial images confirm the effectiveness of the proposed technique in terms of retrieval accuracy when compared to the standard hashing methods.
An interactive toolbox for atlas-based segmentation and coding of volumetric images
NASA Astrophysics Data System (ADS)
Menegaz, G.; Luti, S.; Duay, V.; Thiran, J.-Ph.
2007-03-01
Medical imaging poses the great challenge of having compression algorithms that are lossless for diagnostic and legal reasons and yet provide high compression rates for reduced storage and transmission time. The images usually consist of a region of interest representing the part of the body under investigation surrounded by a "background", which is often noisy and not of diagnostic interest. In this paper, we propose a ROI-based 3D coding system integrating both the segmentation and the compression tools. The ROI is extracted by an atlas based 3D segmentation method combining active contours with information theoretic principles, and the resulting segmentation map is exploited for ROI based coding. The system is equipped with a GUI allowing the medical doctors to supervise the segmentation process and eventually reshape the detected contours at any point. The process is initiated by the user through the selection of either one pre-de.ned reference image or one image of the volume to be used as the 2D "atlas". The object contour is successively propagated from one frame to the next where it is used as the initial border estimation. In this way, the entire volume is segmented based on a unique 2D atlas. The resulting 3D segmentation map is exploited for adaptive coding of the different image regions. Two coding systems were considered: the JPEG3D standard and the 3D-SPITH. The evaluation of the performance with respect to both segmentation and coding proved the high potential of the proposed system in providing an integrated, low-cost and computationally effective solution for CAD and PAC systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekoogar, F; Martz, Jr., H E
2009-09-23
The purpose of this statement of work is for third party collaborators to train, validate and have Lawrence Livermore National Security, LLC (LLNS) evaluate algorithms to detect liquid threats in digital radiography (DR)/TIP Ready X-ray (TRX) images that will be provided by LLNS through the Transportation and Security Administration (TSA). LLNS will provide a set of images with threat(s) to determine detection rates and non-threat images from airports to determine false alarm rates. A key including a bounding box showing the locations of the threats and non-threats will be provided for the images. It is expected that the Subcontractor shallmore » use half of the images with their keys for training the algorithms and the other half shall be used for validation (third party evaluation) purposes. The Subcontractor shall not use the key to the second half of the data other than for the validation and reporting of the performance of its algorithm (not for training). The Subcontractor has 45 business days from the receipt of datasets and the Subcontract to: (1) Run their detection/classification algorithms on the data; (2) Deliver a final report describing their performance by generating Receiver Operator Characteristic (ROC) curves using their algorithm; and (3) Deliver a copy of the third party's executable software (already trained and validated by the datasets) to LLNL accompanied by a user manual. LLNS will evaluate the performance of the same algorithm on another separate set of data. LLNS evaluation of the Subcontractor's algorithm will be documented in a final report within 30 days of receiving the executable code. This report will be sent to TSA and the report may be disseminated to the Subcontract at TSA's discretion.« less
Mille, Matthew M; Jung, Jae Won; Lee, Choonik; Kuzmin, Gleb A; Lee, Choonsik
2018-06-01
Radiation dosimetry is an essential input for epidemiological studies of radiotherapy patients aimed at quantifying the dose-response relationship of late-term morbidity and mortality. Individualised organ dose must be estimated for all tissues of interest located in-field, near-field, or out-of-field. Whereas conventional measurement approaches are limited to points in water or anthropomorphic phantoms, computational approaches using patient images or human phantoms offer greater flexibility and can provide more detailed three-dimensional dose information. In the current study, we systematically compared four different dose calculation algorithms so that dosimetrists and epidemiologists can better understand the advantages and limitations of the various approaches at their disposal. The four dose calculations algorithms considered were as follows: the (1) Analytical Anisotropic Algorithm (AAA) and (2) Acuros XB algorithm (Acuros XB), as implemented in the Eclipse treatment planning system (TPS); (3) a Monte Carlo radiation transport code, EGSnrc; and (4) an accelerated Monte Carlo code, the x-ray Voxel Monte Carlo (XVMC). The four algorithms were compared in terms of their accuracy and appropriateness in the context of dose reconstruction for epidemiological investigations. Accuracy in peripheral dose was evaluated first by benchmarking the calculated dose profiles against measurements in a homogeneous water phantom. Additional simulations in a heterogeneous cylinder phantom evaluated the performance of the algorithms in the presence of tissue heterogeneity. In general, we found that the algorithms contained within the commercial TPS (AAA and Acuros XB) were fast and accurate in-field or near-field, but not acceptable out-of-field. Therefore, the TPS is best suited for epidemiological studies involving large cohorts and where the organs of interest are located in-field or partially in-field. The EGSnrc and XVMC codes showed excellent agreement with measurements both in-field and out-of-field. The EGSnrc code was the most accurate dosimetry approach, but was too slow to be used for large-scale epidemiological cohorts. The XVMC code showed similar accuracy to EGSnrc, but was significantly faster, and thus epidemiological applications seem feasible, especially when the organs of interest reside far away from the field edge.
Behar, Vera; Adam, Dan
2005-12-01
An effective aperture approach is used for optimization of a sparse synthetic transmit aperture (STA) imaging system with coded excitation and frequency division. A new two-stage algorithm is proposed for optimization of both the positions of the transmit elements and the weights of the receive elements. In order to increase the signal-to-noise ratio in a synthetic aperture system, temporal encoding of the excitation signals is employed. When comparing the excitation by linear frequency modulation (LFM) signals and phase shift key modulation (PSKM) signals, the analysis shows that chirps are better for excitation, since at the output of a compression filter the sidelobes generated are much smaller than those produced by the binary PSKM signals. Here, an implementation of a fast STA imaging is studied by spatial encoding with frequency division of the LFM signals. The proposed system employs a 64-element array with only four active elements used during transmit. The two-dimensional point spread function (PSF) produced by such a sparse STA system is compared to the PSF produced by an equivalent phased array system, using the Field II simulation program. The analysis demonstrates the superiority of the new sparse STA imaging system while using coded excitation and frequency division. Compared to a conventional phased array imaging system, this system acquires images of equivalent quality 60 times faster, when the transmit elements are fired in pairs consecutively and the power level used during transmit is very low. The fastest acquisition time is achieved when all transmit elements are fired simultaneously, which improves detectability, but at the cost of a slight degradation of the axial resolution. In real-time implementation, however, it must be borne in mind that the frame rate of a STA imaging system depends not only on the acquisition time of the data but also on the processing time needed for image reconstruction. Comparing to phased array imaging, a significant increase in the frame rate of a STA imaging system is possible if and only if an equivalent time efficient algorithm is used for image reconstruction.
NASA Astrophysics Data System (ADS)
Khan, F.; Enzmann, F.; Kersten, M.
2015-12-01
In X-ray computed microtomography (μXCT) image processing is the most important operation prior to image analysis. Such processing mainly involves artefact reduction and image segmentation. We propose a new two-stage post-reconstruction procedure of an image of a geological rock core obtained by polychromatic cone-beam μXCT technology. In the first stage, the beam-hardening (BH) is removed applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. The final BH-corrected image is extracted from the residual data, or the difference between the surface elevation values and the original grey-scale values. For the second stage, we propose using a least square support vector machine (a non-linear classifier algorithm) to segment the BH-corrected data as a pixel-based multi-classification task. A combination of the two approaches was used to classify a complex multi-mineral rock sample. The Matlab code for this approach is provided in the Appendix. A minor drawback is that the proposed segmentation algorithm may become computationally demanding in the case of a high dimensional training data set.
Temporal compressive imaging for video
NASA Astrophysics Data System (ADS)
Zhou, Qun; Zhang, Linxia; Ke, Jun
2018-01-01
In many situations, imagers are required to have higher imaging speed, such as gunpowder blasting analysis and observing high-speed biology phenomena. However, measuring high-speed video is a challenge to camera design, especially, in infrared spectrum. In this paper, we reconstruct a high-frame-rate video from compressive video measurements using temporal compressive imaging (TCI) with a temporal compression ratio T=8. This means that, 8 unique high-speed temporal frames will be obtained from a single compressive frame using a reconstruction algorithm. Equivalently, the video frame rates is increased by 8 times. Two methods, two-step iterative shrinkage/threshold (TwIST) algorithm and the Gaussian mixture model (GMM) method, are used for reconstruction. To reduce reconstruction time and memory usage, each frame of size 256×256 is divided into patches of size 8×8. The influence of different coded mask to reconstruction is discussed. The reconstruction qualities using TwIST and GMM are also compared.
Detection of text strings from mixed text/graphics images
NASA Astrophysics Data System (ADS)
Tsai, Chien-Hua; Papachristou, Christos A.
2000-12-01
A robust system for text strings separation from mixed text/graphics images is presented. Based on a union-find (region growing) strategy the algorithm is thus able to classify the text from graphics and adapts to changes in document type, language category (e.g., English, Chinese and Japanese), text font style and size, and text string orientation within digital images. In addition, it allows for a document skew that usually occurs in documents, without skew correction prior to discrimination while these proposed methods such a projection profile or run length coding are not always suitable for the condition. The method has been tested with a variety of printed documents from different origins with one common set of parameters, and the experimental results of the performance of the algorithm in terms of computational efficiency are demonstrated by using several tested images from the evaluation.
Experimental Study of Super-Resolution Using a Compressive Sensing Architecture
2015-03-01
Intelligence 24(9), 1167–1183 (2002). [3] Lin, Z. and Shum, H.-Y., “Fundamental limits of reconstruction-based superresolution algorithms under local...IEEE Transactions on 52, 1289–1306 (April 2006). [9] Marcia, R. and Willett, R., “Compressive coded aperture superresolution image reconstruction,” in
Coherent diffractive imaging using randomly coded masks
Seaberg, Matthew H.; d'Aspremont, Alexandre; Turner, Joshua J.
2015-12-07
We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. As a result, the experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-raymore » synchrotron and even free electron laser experiments.« less
Coherent diffractive imaging using randomly coded masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaberg, Matthew H., E-mail: seaberg@slac.stanford.edu; Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025; D'Aspremont, Alexandre
2015-12-07
We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even freemore » electron laser experiments.« less
Conjugate gradient method for phase retrieval based on the Wirtinger derivative.
Wei, Zhun; Chen, Wen; Qiu, Cheng-Wei; Chen, Xudong
2017-05-01
A conjugate gradient Wirtinger flow (CG-WF) algorithm for phase retrieval is proposed in this paper. It is shown that, compared with recently reported Wirtinger flow and its modified methods, the proposed CG-WF algorithm is able to dramatically accelerate the convergence rate while keeping the dominant computational cost of each iteration unchanged. We numerically illustrate the effectiveness of our method in recovering 1D Gaussian signals and 2D natural color images under both Gaussian and coded diffraction pattern models.
Scalable splitting algorithms for big-data interferometric imaging in the SKA era
NASA Astrophysics Data System (ADS)
Onose, Alexandru; Carrillo, Rafael E.; Repetti, Audrey; McEwen, Jason D.; Thiran, Jean-Philippe; Pesquet, Jean-Christophe; Wiaux, Yves
2016-11-01
In the context of next-generation radio telescopes, like the Square Kilometre Array (SKA), the efficient processing of large-scale data sets is extremely important. Convex optimization tasks under the compressive sensing framework have recently emerged and provide both enhanced image reconstruction quality and scalability to increasingly larger data sets. We focus herein mainly on scalability and propose two new convex optimization algorithmic structures able to solve the convex optimization tasks arising in radio-interferometric imaging. They rely on proximal splitting and forward-backward iterations and can be seen, by analogy, with the CLEAN major-minor cycle, as running sophisticated CLEAN-like iterations in parallel in multiple data, prior, and image spaces. Both methods support any convex regularization function, in particular, the well-studied ℓ1 priors promoting image sparsity in an adequate domain. Tailored for big-data, they employ parallel and distributed computations to achieve scalability, in terms of memory and computational requirements. One of them also exploits randomization, over data blocks at each iteration, offering further flexibility. We present simulation results showing the feasibility of the proposed methods as well as their advantages compared to state-of-the-art algorithmic solvers. Our MATLAB code is available online on GitHub.
NASA Astrophysics Data System (ADS)
Corona, Enrique; Nutter, Brian; Mitra, Sunanda; Guo, Jiangling; Karp, Tanja
2008-03-01
Efficient retrieval of high quality Regions-Of-Interest (ROI) from high resolution medical images is essential for reliable interpretation and accurate diagnosis. Random access to high quality ROI from codestreams is becoming an essential feature in many still image compression applications, particularly in viewing diseased areas from large medical images. This feature is easier to implement in block based codecs because of the inherent spatial independency of the code blocks. This independency implies that the decoding order of the blocks is unimportant as long as the position for each is properly identified. In contrast, wavelet-tree based codecs naturally use some interdependency that exploits the decaying spectrum model of the wavelet coefficients. Thus one must keep track of the decoding order from level to level with such codecs. We have developed an innovative multi-rate image subband coding scheme using "Backward Coding of Wavelet Trees (BCWT)" which is fast, memory efficient, and resolution scalable. It offers far less complexity than many other existing codecs including both, wavelet-tree, and block based algorithms. The ROI feature in BCWT is implemented through a transcoder stage that generates a new BCWT codestream containing only the information associated with the user-defined ROI. This paper presents an efficient technique that locates a particular ROI within the BCWT coded domain, and decodes it back to the spatial domain. This technique allows better access and proper identification of pathologies in high resolution images since only a small fraction of the codestream is required to be transmitted and analyzed.
NASA Astrophysics Data System (ADS)
Xie, ChengJun; Xu, Lin
2008-03-01
This paper presents an algorithm based on mixing transform of wave band grouping to eliminate spectral redundancy, the algorithm adapts to the relativity difference between different frequency spectrum images, and still it works well when the band number is not the power of 2. Using non-boundary extension CDF(2,2)DWT and subtraction mixing transform to eliminate spectral redundancy, employing CDF(2,2)DWT to eliminate spatial redundancy and SPIHT+CABAC for compression coding, the experiment shows that a satisfied lossless compression result can be achieved. Using hyper-spectral image Canal of American JPL laboratory as the data set for lossless compression test, when the band number is not the power of 2, lossless compression result of this compression algorithm is much better than the results acquired by JPEG-LS, WinZip, ARJ, DPCM, the research achievements of a research team of Chinese Academy of Sciences, Minimum Spanning Tree and Near Minimum Spanning Tree, on the average the compression ratio of this algorithm exceeds the above algorithms by 41%,37%,35%,29%,16%,10%,8% respectively; when the band number is the power of 2, for 128 frames of the image Canal, taking 8, 16 and 32 respectively as the number of one group for groupings based on different numbers, considering factors like compression storage complexity, the type of wave band and the compression effect, we suggest using 8 as the number of bands included in one group to achieve a better compression effect. The algorithm of this paper has priority in operation speed and hardware realization convenience.
Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3
NASA Technical Reports Server (NTRS)
Lin, Shu
1998-01-01
Decoding algorithms based on the trellis representation of a code (block or convolutional) drastically reduce decoding complexity. The best known and most commonly used trellis-based decoding algorithm is the Viterbi algorithm. It is a maximum likelihood decoding algorithm. Convolutional codes with the Viterbi decoding have been widely used for error control in digital communications over the last two decades. This chapter is concerned with the application of the Viterbi decoding algorithm to linear block codes. First, the Viterbi algorithm is presented. Then, optimum sectionalization of a trellis to minimize the computational complexity of a Viterbi decoder is discussed and an algorithm is presented. Some design issues for IC (integrated circuit) implementation of a Viterbi decoder are considered and discussed. Finally, a new decoding algorithm based on the principle of compare-select-add is presented. This new algorithm can be applied to both block and convolutional codes and is more efficient than the conventional Viterbi algorithm based on the add-compare-select principle. This algorithm is particularly efficient for rate 1/n antipodal convolutional codes and their high-rate punctured codes. It reduces computational complexity by one-third compared with the Viterbi algorithm.
Reconstructing photorealistic 3D models from image sequence using domain decomposition method
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei
2009-11-01
In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Structured light and photogrammetry are two main methods to acquire 3D information, and both are expensive. Even if these expensive instruments are used, photorealistic 3D models are seldom available. In this paper, a new method to reconstruction photorealistic 3D models using a single camera is proposed. A square plate glued with coded marks is used to place the objects, and a sequence of about 20 images is taken. From the coded marks, the images are calibrated, and a snake algorithm is used to segment object from the background. A rough 3d model is obtained using shape from silhouettes algorithm. The silhouettes are decomposed into a combination of convex curves, which are used to partition the rough 3d model into some convex mesh patches. For each patch, the multi-view photo consistency constraints and smooth regulations are expressed as a finite element formulation, which can be resolved locally, and the information can be exchanged along the patches boundaries. The rough model is deformed into a fine 3d model through such a domain decomposition finite element method. The textures are assigned to each element mesh, and a photorealistic 3D model is got finally. A toy pig is used to verify the algorithm, and the result is exciting.
Joint Source-Channel Coding by Means of an Oversampled Filter Bank Code
NASA Astrophysics Data System (ADS)
Marinkovic, Slavica; Guillemot, Christine
2006-12-01
Quantized frame expansions based on block transforms and oversampled filter banks (OFBs) have been considered recently as joint source-channel codes (JSCCs) for erasure and error-resilient signal transmission over noisy channels. In this paper, we consider a coding chain involving an OFB-based signal decomposition followed by scalar quantization and a variable-length code (VLC) or a fixed-length code (FLC). This paper first examines the problem of channel error localization and correction in quantized OFB signal expansions. The error localization problem is treated as an[InlineEquation not available: see fulltext.]-ary hypothesis testing problem. The likelihood values are derived from the joint pdf of the syndrome vectors under various hypotheses of impulse noise positions, and in a number of consecutive windows of the received samples. The error amplitudes are then estimated by solving the syndrome equations in the least-square sense. The message signal is reconstructed from the corrected received signal by a pseudoinverse receiver. We then improve the error localization procedure by introducing a per-symbol reliability information in the hypothesis testing procedure of the OFB syndrome decoder. The per-symbol reliability information is produced by the soft-input soft-output (SISO) VLC/FLC decoders. This leads to the design of an iterative algorithm for joint decoding of an FLC and an OFB code. The performance of the algorithms developed is evaluated in a wavelet-based image coding system.
QR images: optimized image embedding in QR codes.
Garateguy, Gonzalo J; Arce, Gonzalo R; Lau, Daniel L; Villarreal, Ofelia P
2014-07-01
This paper introduces the concept of QR images, an automatic method to embed QR codes into color images with bounded probability of detection error. These embeddings are compatible with standard decoding applications and can be applied to any color image with full area coverage. The QR information bits are encoded into the luminance values of the image, taking advantage of the immunity of QR readers against local luminance disturbances. To mitigate the visual distortion of the QR image, the algorithm utilizes halftoning masks for the selection of modified pixels and nonlinear programming techniques to locally optimize luminance levels. A tractable model for the probability of error is developed and models of the human visual system are considered in the quality metric used to optimize the luminance levels of the QR image. To minimize the processing time, the optimization techniques proposed to consider the mechanics of a common binarization method and are designed to be amenable for parallel implementations. Experimental results show the graceful degradation of the decoding rate and the perceptual quality as a function the embedding parameters. A visual comparison between the proposed and existing methods is presented.
On A Nonlinear Generalization of Sparse Coding and Dictionary Learning.
Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba
2013-01-01
Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝ d , and the dictionary is learned from the training data using the vector space structure of ℝ d and its Euclidean L 2 -metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis.
On A Nonlinear Generalization of Sparse Coding and Dictionary Learning
Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba
2013-01-01
Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝd, and the dictionary is learned from the training data using the vector space structure of ℝd and its Euclidean L2-metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis. PMID:24129583
Context Modeler for Wavelet Compression of Spectral Hyperspectral Images
NASA Technical Reports Server (NTRS)
Kiely, Aaron; Xie, Hua; Klimesh, matthew; Aranki, Nazeeh
2010-01-01
A context-modeling sub-algorithm has been developed as part of an algorithm that effects three-dimensional (3D) wavelet-based compression of hyperspectral image data. The context-modeling subalgorithm, hereafter denoted the context modeler, provides estimates of probability distributions of wavelet-transformed data being encoded. These estimates are utilized by an entropy coding subalgorithm that is another major component of the compression algorithm. The estimates make it possible to compress the image data more effectively than would otherwise be possible. The following background discussion is prerequisite to a meaningful summary of the context modeler. This discussion is presented relative to ICER-3D, which is the name attached to a particular compression algorithm and the software that implements it. The ICER-3D software is summarized briefly in the preceding article, ICER-3D Hyperspectral Image Compression Software (NPO-43238). Some aspects of this algorithm were previously described, in a slightly more general context than the ICER-3D software, in "Improving 3D Wavelet-Based Compression of Hyperspectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. In turn, ICER-3D is a product of generalization of ICER, another previously reported algorithm and computer program that can perform both lossless and lossy wavelet-based compression and decompression of gray-scale-image data. In ICER-3D, hyperspectral image data are decomposed using a 3D discrete wavelet transform (DWT). Following wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass subbands prior to encoding. The resulting data are converted to sign-magnitude form and compressed. In ICER-3D, compression is progressive, in that compressed information is ordered so that as more of the compressed data stream is received, successive reconstructions of the hyperspectral image data are of successively higher overall fidelity.
Memory-Efficient Onboard Rock Segmentation
NASA Technical Reports Server (NTRS)
Burl, Michael C.; Thompson, David R.; Bornstein, Benjamin J.; deGranville, Charles K.
2013-01-01
Rockster-MER is an autonomous perception capability that was uploaded to the Mars Exploration Rover Opportunity in December 2009. This software provides the vision front end for a larger software system known as AEGIS (Autonomous Exploration for Gathering Increased Science), which was recently named 2011 NASA Software of the Year. As the first step in AEGIS, Rockster-MER analyzes an image captured by the rover, and detects and automatically identifies the boundary contours of rocks and regions of outcrop present in the scene. This initial segmentation step reduces the data volume from millions of pixels into hundreds (or fewer) of rock contours. Subsequent stages of AEGIS then prioritize the best rocks according to scientist- defined preferences and take high-resolution, follow-up observations. Rockster-MER has performed robustly from the outset on the Mars surface under challenging conditions. Rockster-MER is a specially adapted, embedded version of the original Rockster algorithm ("Rock Segmentation Through Edge Regrouping," (NPO- 44417) Software Tech Briefs, September 2008, p. 25). Although the new version performs the same basic task as the original code, the software has been (1) significantly upgraded to overcome the severe onboard re source limitations (CPU, memory, power, time) and (2) "bulletproofed" through code reviews and extensive testing and profiling to avoid the occurrence of faults. Because of the limited computational power of the RAD6000 flight processor on Opportunity (roughly two orders of magnitude slower than a modern workstation), the algorithm was heavily tuned to improve its speed. Several functional elements of the original algorithm were removed as a result of an extensive cost/benefit analysis conducted on a large set of archived rover images. The algorithm was also required to operate below a stringent 4MB high-water memory ceiling; hence, numerous tricks and strategies were introduced to reduce the memory footprint. Local filtering operations were re-coded to operate on horizontal data stripes across the image. Data types were reduced to smaller sizes where possible. Binary- valued intermediate results were squeezed into a more compact, one-bit-per-pixel representation through bit packing and bit manipulation macros. An estimated 16-fold reduction in memory footprint relative to the original Rockster algorithm was achieved. The resulting memory footprint is less than four times the base image size. Also, memory allocation calls were modified to draw from a static pool and consolidated to reduce memory management overhead and fragmentation. Rockster-MER has now been run onboard Opportunity numerous times as part of AEGIS with exceptional performance. Sample results are available on the AEGIS website at http://aegis.jpl.nasa.gov.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A
2017-12-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A.
2017-01-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction. PMID:29376111
Madan, Christopher R
2014-01-01
When studying animal behaviour within an open environment, movement-related data are often important for behavioural analyses. Therefore, simple and efficient techniques are needed to present and analyze the data of such movements. However, it is challenging to present both spatial and temporal information of movements within a two-dimensional image representation. To address this challenge, we developed the spectral time-lapse (STL) algorithm that re-codes an animal’s position at every time point with a time-specific color, and overlays it with a reference frame of the video, to produce a summary image. We additionally incorporated automated motion tracking, such that the animal’s position can be extracted and summary statistics such as path length and duration can be calculated, as well as instantaneous velocity and acceleration. Here we describe the STL algorithm and offer a freely available MATLAB toolbox that implements the algorithm and allows for a large degree of end-user control and flexibility. PMID:25580219
A novel high-frequency encoding algorithm for image compression
NASA Astrophysics Data System (ADS)
Siddeq, Mohammed M.; Rodrigues, Marcos A.
2017-12-01
In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.
Medical Image Compression Using a New Subband Coding Method
NASA Technical Reports Server (NTRS)
Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen; Tucker, Doug
1995-01-01
A recently introduced iterative complexity- and entropy-constrained subband quantization design algorithm is generalized and applied to medical image compression. In particular, the corresponding subband coder is used to encode Computed Tomography (CT) axial slice head images, where statistical dependencies between neighboring image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression performance. The subband coder features many advantages such as relatively low complexity and operation over a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder is relatively good, both objectively and subjectively.
Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery
NASA Astrophysics Data System (ADS)
Perkins, Timothy; Adler-Golden, Steven; Matthew, Michael W.; Berk, Alexander; Bernstein, Lawrence S.; Lee, Jamine; Fox, Marsha
2012-11-01
Remotely sensed spectral imagery of the earth's surface can be used to fullest advantage when the influence of the atmosphere has been removed and the measurements are reduced to units of reflectance. Here, we provide a comprehensive summary of the latest version of the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes atmospheric correction algorithm. We also report some new code improvements for speed and accuracy. These include the re-working of the original algorithm in C-language code parallelized with message passing interface and containing a new radiative transfer look-up table option, which replaces executions of the MODTRAN model. With computation times now as low as ~10 s per image per computer processor, automated, real-time, on-board atmospheric correction of hyper- and multi-spectral imagery is within reach.
SSULI/SSUSI UV Tomographic Images of Large-Scale Plasma Structuring
NASA Astrophysics Data System (ADS)
Hei, M. A.; Budzien, S. A.; Dymond, K.; Paxton, L. J.; Schaefer, R. K.; Groves, K. M.
2015-12-01
We present a new technique that creates tomographic reconstructions of atmospheric ultraviolet emission based on data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Special Sensor Ultraviolet Spectrographic Imager (SSUSI), both flown on the Defense Meteorological Satellite Program (DMSP) Block 5D3 series satellites. Until now, the data from these two instruments have been used independently of each other. The new algorithm combines SSULI/SSUSI measurements of 135.6 nm emission using the tomographic technique; the resultant data product - whole-orbit reconstructions of atmospheric volume emission within the satellite orbital plane - is substantially improved over the original data sets. Tests using simulated atmospheric emission verify that the algorithm performs well in a variety of situations, including daytime, nighttime, and even in the challenging terminator regions. A comparison with ALTAIR radar data validates that the volume emission reconstructions can be inverted to yield maps of electron density. The algorithm incorporates several innovative new features, including the use of both SSULI and SSUSI data to create tomographic reconstructions, the use of an inversion algorithm (Richardson-Lucy; RL) that explicitly accounts for the Poisson statistics inherent in optical measurements, and a pseudo-diffusion based regularization scheme implemented between iterations of the RL code. The algorithm also explicitly accounts for extinction due to absorption by molecular oxygen.
Analytic reconstruction algorithms for triple-source CT with horizontal data truncation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ming; Yu, Hengyong, E-mail: hengyong-yu@ieee.org
2015-10-15
Purpose: This paper explores a triple-source imaging method with horizontal data truncation to enlarge the field of view (FOV) for big objects. Methods: The study is conducted by using theoretical analysis, mathematical deduction, and numerical simulations. The proposed algorithms are implemented in c + + and MATLAB. While the basic platform is constructed in MATLAB, the computationally intensive segments are coded in c + +, which are linked via a MEX interface. Results: A triple-source circular scanning configuration with horizontal data truncation is developed, where three pairs of x-ray sources and detectors are unevenly distributed on the same circle tomore » cover the whole imaging object. For this triple-source configuration, a fan-beam filtered backprojection-type algorithm is derived for truncated full-scan projections without data rebinning. The algorithm is also extended for horizontally truncated half-scan projections and cone-beam projections in a Feldkamp-type framework. Using their method, the FOV is enlarged twofold to threefold to scan bigger objects with high speed and quality. The numerical simulation results confirm the correctness and effectiveness of the developed algorithms. Conclusions: The triple-source scanning configuration with horizontal data truncation cannot only keep most of the advantages of a traditional multisource system but also cover a larger FOV for big imaging objects. In addition, because the filtering is shift-invariant, the proposed algorithms are very fast and easily parallelized on graphic processing units.« less
Analytic reconstruction algorithms for triple-source CT with horizontal data truncation.
Chen, Ming; Yu, Hengyong
2015-10-01
This paper explores a triple-source imaging method with horizontal data truncation to enlarge the field of view (FOV) for big objects. The study is conducted by using theoretical analysis, mathematical deduction, and numerical simulations. The proposed algorithms are implemented in c + + and matlab. While the basic platform is constructed in matlab, the computationally intensive segments are coded in c + +, which are linked via a mex interface. A triple-source circular scanning configuration with horizontal data truncation is developed, where three pairs of x-ray sources and detectors are unevenly distributed on the same circle to cover the whole imaging object. For this triple-source configuration, a fan-beam filtered backprojection-type algorithm is derived for truncated full-scan projections without data rebinning. The algorithm is also extended for horizontally truncated half-scan projections and cone-beam projections in a Feldkamp-type framework. Using their method, the FOV is enlarged twofold to threefold to scan bigger objects with high speed and quality. The numerical simulation results confirm the correctness and effectiveness of the developed algorithms. The triple-source scanning configuration with horizontal data truncation cannot only keep most of the advantages of a traditional multisource system but also cover a larger FOV for big imaging objects. In addition, because the filtering is shift-invariant, the proposed algorithms are very fast and easily parallelized on graphic processing units.
Wang, Anliang; Yan, Xiaolong; Wei, Zhijun
2018-04-27
This note presents the design of a scalable software package named ImagePy for analysing biological images. Our contribution is concentrated on facilitating extensibility and interoperability of the software through decoupling the data model from the user interface. Especially with assistance from the Python ecosystem, this software framework makes modern computer algorithms easier to be applied in bioimage analysis. ImagePy is free and open source software, with documentation and code available at https://github.com/Image-Py/imagepy under the BSD license. It has been tested on the Windows, Mac and Linux operating systems. wzjdlut@dlut.edu.cn or yxdragon@imagepy.org.
Quasi-real-time end-to-end simulations of ELT-scale adaptive optics systems on GPUs
NASA Astrophysics Data System (ADS)
Gratadour, Damien
2011-09-01
Our team has started the development of a code dedicated to GPUs for the simulation of AO systems at the E-ELT scale. It uses the CUDA toolkit and an original binding to Yorick (an open source interpreted language) to provide the user with a comprehensive interface. In this paper we present the first performance analysis of our simulation code, showing its ability to provide Shack-Hartmann (SH) images and measurements at the kHz scale for VLT-sized AO system and in quasi-real-time (up to 70 Hz) for ELT-sized systems on a single top-end GPU. The simulation code includes multiple layers atmospheric turbulence generation, ray tracing through these layers, image formation at the focal plane of every sub-apertures of a SH sensor using either natural or laser guide stars and centroiding on these images using various algorithms. Turbulence is generated on-the-fly giving the ability to simulate hours of observations without the need of loading extremely large phase screens in the global memory. Because of its performance this code additionally provides the unique ability to test real-time controllers for future AO systems under nominal conditions.
Improved inter-layer prediction for light field content coding with display scalability
NASA Astrophysics Data System (ADS)
Conti, Caroline; Ducla Soares, Luís.; Nunes, Paulo
2016-09-01
Light field imaging based on microlens arrays - also known as plenoptic, holoscopic and integral imaging - has recently risen up as feasible and prospective technology due to its ability to support functionalities not straightforwardly available in conventional imaging systems, such as: post-production refocusing and depth of field changing. However, to gradually reach the consumer market and to provide interoperability with current 2D and 3D representations, a display scalable coding solution is essential. In this context, this paper proposes an improved display scalable light field codec comprising a three-layer hierarchical coding architecture (previously proposed by the authors) that provides interoperability with 2D (Base Layer) and 3D stereo and multiview (First Layer) representations, while the Second Layer supports the complete light field content. For further improving the compression performance, novel exemplar-based inter-layer coding tools are proposed here for the Second Layer, namely: (i) an inter-layer reference picture construction relying on an exemplar-based optimization algorithm for texture synthesis, and (ii) a direct prediction mode based on exemplar texture samples from lower layers. Experimental results show that the proposed solution performs better than the tested benchmark solutions, including the authors' previous scalable codec.
Soft-output decoding algorithms in iterative decoding of turbo codes
NASA Technical Reports Server (NTRS)
Benedetto, S.; Montorsi, G.; Divsalar, D.; Pollara, F.
1996-01-01
In this article, we present two versions of a simplified maximum a posteriori decoding algorithm. The algorithms work in a sliding window form, like the Viterbi algorithm, and can thus be used to decode continuously transmitted sequences obtained by parallel concatenated codes, without requiring code trellis termination. A heuristic explanation is also given of how to embed the maximum a posteriori algorithms into the iterative decoding of parallel concatenated codes (turbo codes). The performances of the two algorithms are compared on the basis of a powerful rate 1/3 parallel concatenated code. Basic circuits to implement the simplified a posteriori decoding algorithm using lookup tables, and two further approximations (linear and threshold), with a very small penalty, to eliminate the need for lookup tables are proposed.
Evaluation of Image Segmentation and Object Recognition Algorithms for Image Parsing
2013-09-01
generation of the features from the key points. OpenCV uses Euclidean distance to match the key points and has the option to use Manhattan distance...feature vector includes polarity and intensity information. Final step is matching the key points. In OpenCV , Euclidean distance or Manhattan...the code below is one way and OpenCV offers the function radiusMatch (a pair must have a distance less than a given maximum distance). OpenCV’s
Feasibility of video codec algorithms for software-only playback
NASA Astrophysics Data System (ADS)
Rodriguez, Arturo A.; Morse, Ken
1994-05-01
Software-only video codecs can provide good playback performance in desktop computers with a 486 or 68040 CPU running at 33 MHz without special hardware assistance. Typically, playback of compressed video can be categorized into three tasks: the actual decoding of the video stream, color conversion, and the transfer of decoded video data from system RAM to video RAM. By current standards, good playback performance is the decoding and display of video streams of 320 by 240 (or larger) compressed frames at 15 (or greater) frames-per- second. Software-only video codecs have evolved by modifying and tailoring existing compression methodologies to suit video playback in desktop computers. In this paper we examine the characteristics used to evaluate software-only video codec algorithms, namely: image fidelity (i.e., image quality), bandwidth (i.e., compression) ease-of-decoding (i.e., playback performance), memory consumption, compression to decompression asymmetry, scalability, and delay. We discuss the tradeoffs among these variables and the compromises that can be made to achieve low numerical complexity for software-only playback. Frame- differencing approaches are described since software-only video codecs typically employ them to enhance playback performance. To complement other papers that appear in this session of the Proceedings, we review methods derived from binary pattern image coding since these methods are amenable for software-only playback. In particular, we introduce a novel approach called pixel distribution image coding.
Comparison of Compressed Sensing Algorithms for Inversion of 3-D Electrical Resistivity Tomography.
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Ranjan, S.; Kbvn, D. P.
2016-12-01
Image reconstruction algorithms derived from electrical resistivity tomography (ERT) are highly non-linear, sparse, and ill-posed. The inverse problem is much severe, when dealing with 3-D datasets that result in large sized matrices. Conventional gradient based techniques using L2 norm minimization with some sort of regularization can impose smoothness constraint on the solution. Compressed sensing (CS) is relatively new technique that takes the advantage of inherent sparsity in parameter space in one or the other form. If favorable conditions are met, CS was proven to be an efficient image reconstruction technique that uses limited observations without losing edge sharpness. This paper deals with the development of an open source 3-D resistivity inversion tool using CS framework. The forward model was adopted from RESINVM3D (Pidlisecky et al., 2007) with CS as the inverse code. Discrete cosine transformation (DCT) function was used to induce model sparsity in orthogonal form. Two CS based algorithms viz., interior point method and two-step IST were evaluated on a synthetic layered model with surface electrode observations. The algorithms were tested (in terms of quality and convergence) under varying degrees of parameter heterogeneity, model refinement, and reduced observation data space. In comparison to conventional gradient algorithms, CS was proven to effectively reconstruct the sub-surface image with less computational cost. This was observed by a general increase in NRMSE from 0.5 in 10 iterations using gradient algorithm to 0.8 in 5 iterations using CS algorithms.
Parametric color coding of digital subtraction angiography.
Strother, C M; Bender, F; Deuerling-Zheng, Y; Royalty, K; Pulfer, K A; Baumgart, J; Zellerhoff, M; Aagaard-Kienitz, B; Niemann, D B; Lindstrom, M L
2010-05-01
Color has been shown to facilitate both visual search and recognition tasks. It was our purpose to examine the impact of a color-coding algorithm on the interpretation of 2D-DSA acquisitions by experienced and inexperienced observers. Twenty-six 2D-DSA acquisitions obtained as part of routine clinical care from subjects with a variety of cerebrovascular disease processes were selected from an internal data base so as to include a variety of disease states (aneurysms, AVMs, fistulas, stenosis, occlusions, dissections, and tumors). Three experienced and 3 less experienced observers were each shown the acquisitions on a prerelease version of a commercially available double-monitor workstation (XWP, Siemens Healthcare). Acquisitions were presented first as a subtracted image series and then as a single composite color-coded image of the entire acquisition. Observers were then asked a series of questions designed to assess the value of the color-coded images for the following purposes: 1) to enhance their ability to make a diagnosis, 2) to have confidence in their diagnosis, 3) to plan a treatment, and 4) to judge the effect of a treatment. The results were analyzed by using 1-sample Wilcoxon tests. Color-coded images enhanced the ease of evaluating treatment success in >40% of cases (P < .0001). They also had a statistically significant impact on treatment planning, making planning easier in >20% of the cases (P = .0069). In >20% of the examples, color-coding made diagnosis and treatment planning easier for all readers (P < .0001). Color-coding also increased the confidence of diagnosis compared with the use of DSA alone (P = .056). The impact of this was greater for the naïve readers than for the expert readers. At no additional cost in x-ray dose or contrast medium, color-coding of DSA enhanced the conspicuity of findings on DSA images. It was particularly useful in situations in which there was a complex flow pattern and in evaluation of pre- and posttreatment acquisitions. Its full potential remains to be defined.
NASA Astrophysics Data System (ADS)
Repetti, Audrey; Birdi, Jasleen; Dabbech, Arwa; Wiaux, Yves
2017-10-01
Radio interferometric imaging aims to estimate an unknown sky intensity image from degraded observations, acquired through an antenna array. In the theoretical case of a perfectly calibrated array, it has been shown that solving the corresponding imaging problem by iterative algorithms based on convex optimization and compressive sensing theory can be competitive with classical algorithms such as clean. However, in practice, antenna-based gains are unknown and have to be calibrated. Future radio telescopes, such as the Square Kilometre Array, aim at improving imaging resolution and sensitivity by orders of magnitude. At this precision level, the direction-dependency of the gains must be accounted for, and radio interferometric imaging can be understood as a blind deconvolution problem. In this context, the underlying minimization problem is non-convex, and adapted techniques have to be designed. In this work, leveraging recent developments in non-convex optimization, we propose the first joint calibration and imaging method in radio interferometry, with proven convergence guarantees. Our approach, based on a block-coordinate forward-backward algorithm, jointly accounts for visibilities and suitable priors on both the image and the direction-dependent effects (DDEs). As demonstrated in recent works, sparsity remains the prior of choice for the image, while DDEs are modelled as smooth functions of the sky, I.e. spatially band-limited. Finally, we show through simulations the efficiency of our method, for the reconstruction of both images of point sources and complex extended sources. matlab code is available on GitHub.
Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms
NASA Technical Reports Server (NTRS)
Grinberg, V.; Kreykenboehm, I.; Fuerst, F.; Wilms, J.; Pottschmidt, K.; Bel, M. Cadolle; Rodriquez, J.; Marcu, D. M.; Suchy, S.; Markowitz, A.;
2010-01-01
INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved.
Image coding using entropy-constrained residual vector quantization
NASA Technical Reports Server (NTRS)
Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.
1993-01-01
The residual vector quantization (RVQ) structure is exploited to produce a variable length codeword RVQ. Necessary conditions for the optimality of this RVQ are presented, and a new entropy-constrained RVQ (ECRVQ) design algorithm is shown to be very effective in designing RVQ codebooks over a wide range of bit rates and vector sizes. The new EC-RVQ has several important advantages. It can outperform entropy-constrained VQ (ECVQ) in terms of peak signal-to-noise ratio (PSNR), memory, and computation requirements. It can also be used to design high rate codebooks and codebooks with relatively large vector sizes. Experimental results indicate that when the new EC-RVQ is applied to image coding, very high quality is achieved at relatively low bit rates.
Some selected quantitative methods of thermal image analysis in Matlab.
Koprowski, Robert
2016-05-01
The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Petersen, T. C.; Ringer, S. P.
2010-03-01
Upon discerning the mere shape of an imaged object, as portrayed by projected perimeters, the full three-dimensional scattering density may not be of particular interest. In this situation considerable simplifications to the reconstruction problem are possible, allowing calculations based upon geometric principles. Here we describe and provide an algorithm which reconstructs the three-dimensional morphology of specimens from tilt series of images for application to electron tomography. Our algorithm uses a differential approach to infer the intersection of projected tangent lines with surfaces which define boundaries between regions of different scattering densities within and around the perimeters of specimens. Details of the algorithm implementation are given and explained using reconstruction calculations from simulations, which are built into the code. An experimental application of the algorithm to a nano-sized Aluminium tip is also presented to demonstrate practical analysis for a real specimen. Program summaryProgram title: STOMO version 1.0 Catalogue identifier: AEFS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2988 No. of bytes in distributed program, including test data, etc.: 191 605 Distribution format: tar.gz Programming language: C/C++ Computer: PC Operating system: Windows XP RAM: Depends upon the size of experimental data as input, ranging from 200 Mb to 1.5 Gb Supplementary material: Sample output files, for the test run provided, are available. Classification: 7.4, 14 External routines: Dev-C++ ( http://www.bloodshed.net/devcpp.html) Nature of problem: Electron tomography of specimens for which conventional back projection may fail and/or data for which there is a limited angular range. The algorithm does not solve the tomographic back-projection problem but rather reconstructs the local 3D morphology of surfaces defined by varied scattering densities. Solution method: Reconstruction using differential geometry applied to image analysis computations. Restrictions: The code has only been tested with square images and has been developed for only single-axis tilting. Running time: For high quality reconstruction, 5-15 min
Arbuthnot, Mary; Mooney, David P
2017-01-01
It is crucial to identify cervical spine injuries while minimizing ionizing radiation. This study analyzes the sensitivity and negative predictive value of a pediatric cervical spine clearance algorithm. We performed a retrospective review of all children <21years old who were admitted following blunt trauma and underwent cervical spine clearance utilizing our institution's cervical spine clearance algorithm over a 10-year period. Age, gender, International Classification of Diseases 9th Edition diagnosis codes, presence or absence of cervical collar on arrival, Injury Severity Score, and type of cervical spine imaging obtained were extracted from the trauma registry and electronic medical record. Descriptive statistics were used and the sensitivity and negative predictive value of the algorithm were calculated. Approximately 125,000 children were evaluated in the Emergency Department and 11,331 were admitted. Of the admitted children, 1023 patients arrived in a cervical collar without advanced cervical spine imaging and were evaluated using the cervical spine clearance algorithm. Algorithm sensitivity was 94.4% and the negative predictive value was 99.9%. There was one missed injury, a spinous process tip fracture in a teenager maintained in a collar. Our algorithm was associated with a low missed injury rate and low CT utilization rate, even in children <3years old. IV. Published by Elsevier Inc.
Context-aware and locality-constrained coding for image categorization.
Xiao, Wenhua; Wang, Bin; Liu, Yu; Bao, Weidong; Zhang, Maojun
2014-01-01
Improving the coding strategy for BOF (Bag-of-Features) based feature design has drawn increasing attention in recent image categorization works. However, the ambiguity in coding procedure still impedes its further development. In this paper, we introduce a context-aware and locality-constrained Coding (CALC) approach with context information for describing objects in a discriminative way. It is generally achieved by learning a word-to-word cooccurrence prior to imposing context information over locality-constrained coding. Firstly, the local context of each category is evaluated by learning a word-to-word cooccurrence matrix representing the spatial distribution of local features in neighbor region. Then, the learned cooccurrence matrix is used for measuring the context distance between local features and code words. Finally, a coding strategy simultaneously considers locality in feature space and context space, while introducing the weight of feature is proposed. This novel coding strategy not only semantically preserves the information in coding, but also has the ability to alleviate the noise distortion of each class. Extensive experiments on several available datasets (Scene-15, Caltech101, and Caltech256) are conducted to validate the superiority of our algorithm by comparing it with baselines and recent published methods. Experimental results show that our method significantly improves the performance of baselines and achieves comparable and even better performance with the state of the arts.
Analog system for computing sparse codes
Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell
2010-08-24
A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.
Real-time blood flow visualization using the graphics processing unit
NASA Astrophysics Data System (ADS)
Yang, Owen; Cuccia, David; Choi, Bernard
2011-01-01
Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ~10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark.
Real-time blood flow visualization using the graphics processing unit
Yang, Owen; Cuccia, David; Choi, Bernard
2011-01-01
Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ∼10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark. PMID:21280915
Parallel Processing of Images in Mobile Devices using BOINC
NASA Astrophysics Data System (ADS)
Curiel, Mariela; Calle, David F.; Santamaría, Alfredo S.; Suarez, David F.; Flórez, Leonardo
2018-04-01
Medical image processing helps health professionals make decisions for the diagnosis and treatment of patients. Since some algorithms for processing images require substantial amounts of resources, one could take advantage of distributed or parallel computing. A mobile grid can be an adequate computing infrastructure for this problem. A mobile grid is a grid that includes mobile devices as resource providers. In a previous step of this research, we selected BOINC as the infrastructure to build our mobile grid. However, parallel processing of images in mobile devices poses at least two important challenges: the execution of standard libraries for processing images and obtaining adequate performance when compared to desktop computers grids. By the time we started our research, the use of BOINC in mobile devices also involved two issues: a) the execution of programs in mobile devices required to modify the code to insert calls to the BOINC API, and b) the division of the image among the mobile devices as well as its merging required additional code in some BOINC components. This article presents answers to these four challenges.
Digital micromirror device-based laser-illumination Fourier ptychographic microscopy
Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.
2015-01-01
We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems. PMID:26480361
Digital micromirror device-based laser-illumination Fourier ptychographic microscopy.
Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R; Yaqoob, Zahid; So, Peter T C
2015-10-19
We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems.
Measuring the complexity of design in real-time imaging software
NASA Astrophysics Data System (ADS)
Sangwan, Raghvinder S.; Vercellone-Smith, Pamela; Laplante, Phillip A.
2007-02-01
Due to the intricacies in the algorithms involved, the design of imaging software is considered to be more complex than non-image processing software (Sangwan et al, 2005). A recent investigation (Larsson and Laplante, 2006) examined the complexity of several image processing and non-image processing software packages along a wide variety of metrics, including those postulated by McCabe (1976), Chidamber and Kemerer (1994), and Martin (2003). This work found that it was not always possible to quantitatively compare the complexity between imaging applications and nonimage processing systems. Newer research and an accompanying tool (Structure 101, 2006), however, provides a greatly simplified approach to measuring software complexity. Therefore it may be possible to definitively quantify the complexity differences between imaging and non-imaging software, between imaging and real-time imaging software, and between software programs of the same application type. In this paper, we review prior results and describe the methodology for measuring complexity in imaging systems. We then apply a new complexity measurement methodology to several sets of imaging and non-imaging code in order to compare the complexity differences between the two types of applications. The benefit of such quantification is far reaching, for example, leading to more easily measured performance improvement and quality in real-time imaging code.
Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki; Himuro, Kazuhiko
2015-04-15
Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitativelymore » consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually superior to SPECT image because of the low background noise. The simulation reveals that the detected photon number in SPECT is comparable to that of PET, but the large fraction (approximately 75%) of scattered and penetration photons contaminates SPECT image. The lower limit of {sup 90}Y detection in SPECT image was approximately 200 kBq/ml, while that in PET image was approximately 100 kBq/ml. Conclusions: By comparing the background noise level and the image concentration profile of both the techniques, PET image quality was determined to be superior to that of bremsstrahlung SPECT. The developed simulation codes will be very useful in the future investigations of PET and bremsstrahlung SPECT imaging of {sup 90}Y.« less
NASA Astrophysics Data System (ADS)
García, Aday; Santos, Lucana; López, Sebastián.; Callicó, Gustavo M.; Lopez, Jose F.; Sarmiento, Roberto
2014-05-01
Efficient onboard satellite hyperspectral image compression represents a necessity and a challenge for current and future space missions. Therefore, it is mandatory to provide hardware implementations for this type of algorithms in order to achieve the constraints required for onboard compression. In this work, we implement the Lossy Compression for Exomars (LCE) algorithm on an FPGA by means of high-level synthesis (HSL) in order to shorten the design cycle. Specifically, we use CatapultC HLS tool to obtain a VHDL description of the LCE algorithm from C-language specifications. Two different approaches are followed for HLS: on one hand, introducing the whole C-language description in CatapultC and on the other hand, splitting the C-language description in functional modules to be implemented independently with CatapultC, connecting and controlling them by an RTL description code without HLS. In both cases the goal is to obtain an FPGA implementation. We explain the several changes applied to the original Clanguage source code in order to optimize the results obtained by CatapultC for both approaches. Experimental results show low area occupancy of less than 15% for a SRAM-based Virtex-5 FPGA and a maximum frequency above 80 MHz. Additionally, the LCE compressor was implemented into an RTAX2000S antifuse-based FPGA, showing an area occupancy of 75% and a frequency around 53 MHz. All these serve to demonstrate that the LCE algorithm can be efficiently executed on an FPGA onboard a satellite. A comparison between both implementation approaches is also provided. The performance of the algorithm is finally compared with implementations on other technologies, specifically a graphics processing unit (GPU) and a single-threaded CPU.
Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kimesh, Matthew A.
2012-01-01
Modern hyperspectral imaging systems are able to acquire far more data than can be downlinked from a spacecraft. Onboard data compression helps to alleviate this problem, but requires a system capable of power efficiency and high throughput. Software solutions have limited throughput performance and are power-hungry. Dedicated hardware solutions can provide both high throughput and power efficiency, while taking the load off of the main processor. Thus a hardware compression system was developed. The implementation uses a field-programmable gate array (FPGA). The implementation is based on the fast lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral-Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which achieves excellent compression performance and has low complexity. This algorithm performs predictive compression using an adaptive filtering method, and uses adaptive Golomb coding. The implementation also packetizes the coded data. The FL algorithm is well suited for implementation in hardware. In the FPGA implementation, one sample is compressed every clock cycle, which makes for a fast and practical realtime solution for space applications. Benefits of this implementation are: 1) The underlying algorithm achieves a combination of low complexity and compression effectiveness that exceeds that of techniques currently in use. 2) The algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. 3) Hardware acceleration provides a throughput improvement of 10 to 100 times vs. the software implementation. A prototype of the compressor is available in software, but it runs at a speed that does not meet spacecraft requirements. The hardware implementation targets the Xilinx Virtex IV FPGAs, and makes the use of this compressor practical for Earth satellites as well as beyond-Earth missions with hyperspectral instruments.
Accurate reconstruction of hyperspectral images from compressive sensing measurements
NASA Astrophysics Data System (ADS)
Greer, John B.; Flake, J. C.
2013-05-01
The emerging field of Compressive Sensing (CS) provides a new way to capture data by shifting the heaviest burden of data collection from the sensor to the computer on the user-end. This new means of sensing requires fewer measurements for a given amount of information than traditional sensors. We investigate the efficacy of CS for capturing HyperSpectral Imagery (HSI) remotely. We also introduce a new family of algorithms for constructing HSI from CS measurements with Split Bregman Iteration [Goldstein and Osher,2009]. These algorithms combine spatial Total Variation (TV) with smoothing in the spectral dimension. We examine models for three different CS sensors: the Coded Aperture Snapshot Spectral Imager-Single Disperser (CASSI-SD) [Wagadarikar et al.,2008] and Dual Disperser (CASSI-DD) [Gehm et al.,2007] cameras, and a hypothetical random sensing model closer to CS theory, but not necessarily implementable with existing technology. We simulate the capture of remotely sensed images by applying the sensor forward models to well-known HSI scenes - an AVIRIS image of Cuprite, Nevada and the HYMAP Urban image. To measure accuracy of the CS models, we compare the scenes constructed with our new algorithm to the original AVIRIS and HYMAP cubes. The results demonstrate the possibility of accurately sensing HSI remotely with significantly fewer measurements than standard hyperspectral cameras.
NASA Astrophysics Data System (ADS)
Sun, Yankui; Li, Shan; Sun, Zhongyang
2017-01-01
We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse coding and dictionary learning. The study aims to improve the classification performance of state-of-the-art methods. First, our method presents a general approach to automatically align and crop retina regions; then it obtains global representations of images by using sparse coding and a spatial pyramid; finally, a multiclass linear support vector machine classifier is employed for classification. We apply two datasets for validating our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from 45 subjects-15 normal subjects, 15 AMD patients, and 15 DME patients; and clinical SD-OCT dataset, consisting of 678 OCT retina scans acquired from clinics in Beijing-168, 297, and 213 OCT images for AMD, DME, and normal retinas, respectively. For the former dataset, our classifier correctly identifies 100%, 100%, and 93.33% of the volumes with DME, AMD, and normal subjects, respectively, and thus performs much better than the conventional method; for the latter dataset, our classifier leads to a correct classification rate of 99.67%, 99.67%, and 100.00% for DME, AMD, and normal images, respectively.
Sun, Yankui; Li, Shan; Sun, Zhongyang
2017-01-01
We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse coding and dictionary learning. The study aims to improve the classification performance of state-of-the-art methods. First, our method presents a general approach to automatically align and crop retina regions; then it obtains global representations of images by using sparse coding and a spatial pyramid; finally, a multiclass linear support vector machine classifier is employed for classification. We apply two datasets for validating our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from 45 subjects—15 normal subjects, 15 AMD patients, and 15 DME patients; and clinical SD-OCT dataset, consisting of 678 OCT retina scans acquired from clinics in Beijing—168, 297, and 213 OCT images for AMD, DME, and normal retinas, respectively. For the former dataset, our classifier correctly identifies 100%, 100%, and 93.33% of the volumes with DME, AMD, and normal subjects, respectively, and thus performs much better than the conventional method; for the latter dataset, our classifier leads to a correct classification rate of 99.67%, 99.67%, and 100.00% for DME, AMD, and normal images, respectively.
Coding and decoding for code division multiple user communication systems
NASA Technical Reports Server (NTRS)
Healy, T. J.
1985-01-01
A new algorithm is introduced which decodes code division multiple user communication signals. The algorithm makes use of the distinctive form or pattern of each signal to separate it from the composite signal created by the multiple users. Although the algorithm is presented in terms of frequency-hopped signals, the actual transmitter modulator can use any of the existing digital modulation techniques. The algorithm is applicable to error-free codes or to codes where controlled interference is permitted. It can be used when block synchronization is assumed, and in some cases when it is not. The paper also discusses briefly some of the codes which can be used in connection with the algorithm, and relates the algorithm to past studies which use other approaches to the same problem.
Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes
NASA Astrophysics Data System (ADS)
Grigoryan, Artyom M.
2015-03-01
In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.
Maximum-likelihood soft-decision decoding of block codes using the A* algorithm
NASA Technical Reports Server (NTRS)
Ekroot, L.; Dolinar, S.
1994-01-01
The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.
NASA Astrophysics Data System (ADS)
Chang, Ching-Chun; Liu, Yanjun; Nguyen, Son T.
2015-03-01
Data hiding is a technique that embeds information into digital cover data. This technique has been concentrated on the spatial uncompressed domain, and it is considered more challenging to perform in the compressed domain, i.e., vector quantization, JPEG, and block truncation coding (BTC). In this paper, we propose a new data hiding scheme for BTC-compressed images. In the proposed scheme, a dynamic programming strategy was used to search for the optimal solution of the bijective mapping function for LSB substitution. Then, according to the optimal solution, each mean value embeds three secret bits to obtain high hiding capacity with low distortion. The experimental results indicated that the proposed scheme obtained both higher hiding capacity and hiding efficiency than the other four existing schemes, while ensuring good visual quality of the stego-image. In addition, the proposed scheme achieved a low bit rate as original BTC algorithm.
Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L; Wang, Xueding; Liu, Xiaojun
2013-08-01
Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.
The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, J.N.; Brislawn, C.M.; Hopper, T.
1993-05-01
The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI`s Integrated Automated Fingerprint Identification System.
The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, J.N.; Brislawn, C.M.; Hopper, T.
1993-01-01
The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI's Integrated Automated Fingerprint Identification System.
1988-11-17
NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if ntcestary and identify by block number) FIELD GROUP SUB-GROUP ,-.:image...ambiguity in the recognition of partially occluded objects. V 1 , t : ., , ’ -, L: \\ : _ 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT...constraints involved in the problem. More information can be found in [ 1 ]. Motion-based segmentation. Edge detection algorithms based on visual motion
Kassardjian, Charles D; Willems, Jacqueline D; Skrabka, Krystyna; Nisenbaum, Rosane; Barnaby, Judith; Kostyrko, Pawel; Selchen, Daniel; Saposnik, Gustavo
2017-08-01
Stroke is a relatively common and challenging condition in hospitalized patients. Previous studies have shown delays in recognition and assessment of inpatient strokes leading to poor outcomes. The goal of this quality improvement initiative was to evaluate an in-hospital code stroke algorithm and educational program aimed at reducing the response times for inpatient stroke. An inpatient code stroke algorithm was developed, and an educational intervention was implemented over 5 months. Data were recorded and compared between the 36-month period before and the 15-month period after the intervention was implemented. Outcome measures included time from last seen normal to initial assessment and from last seen normal to brain imaging. During the study period, there were 218 inpatient strokes (131 before the intervention and 87 after the intervention). Inpatient strokes were more common on cardiovascular wards (45% of cases) and occurred mainly during the perioperative period (60% of cases). After implementation of an inpatient code stroke intervention and educational initiative, there were consistent reductions in all timed outcome measures (median time to initial assessment fell from 600 [109-1460] to 160 [35-630] minutes and time to computed tomographic scan fell from 925 [213-1965] to 348.5 [128-1587] minutes). Our study reveals the efficacy of an inpatient code stroke algorithm and educational intervention directed at nurses and allied health personnel to optimize the prompt management of inpatient strokes. Prompt assessment may lead to faster stroke interventions, which are associated with better outcomes. © 2017 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setiani, Tia Dwi, E-mail: tiadwisetiani@gmail.com; Suprijadi; Nuclear Physics and Biophysics Reaserch Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132
Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic imagesmore » and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 – 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 10{sup 8} and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.« less
Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.
Reboul, Cyril F; Eager, Michael; Elmlund, Dominika; Elmlund, Hans
2018-01-01
Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated. © 2017 The Protein Society.
Application of MCM image construction to IRAS comet observations
NASA Technical Reports Server (NTRS)
Schlapfer, Martin F.; Walker, Russell G.
1994-01-01
There is a wealth of IRAS comet data, obtained in both the survey and pointed observations modes. However, these measurements have remained largely untouched due to difficulties in removing instrumental effects from the data. We have developed a version of the Maximum Correlation Method for Image Construction algorithm (MCM) which operates in the moving coordinate system of the comet and properly treats both real cometary motion and apparent motion due to spacecraft parallax. This algorithm has been implemented on a 486/33 PC in FORTRAN and IDL codes. Preprocessing of the IRAS CRDD includes baseline removal, deglitching, and removal of long tails due to dielectric time constants of the detectors. The resulting images are virtually free from instrumental effects and have the highest possible spatial resolution consistent with the data sampling. We present examples of high resolution IRAS images constructed from survey observations of Comets P/Tempel 1 and P/Tempel 2, and pointed observations of IRAS-Araki-Alcock.
NASA Astrophysics Data System (ADS)
Thelen, J.-C.; Havemann, S.; Taylor, J. P.
2012-06-01
Here, we present a new prototype algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space-borne, hyperspectral imagers such as the 'Airborne Visible/Infrared Imager (AVIRIS) or Hyperion on board of the Earth Observatory 1. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes. We successfully tested this new approach using two hyperspectral images taken by AVIRIS, a whiskbroom imaging spectrometer operated by the NASA Jet Propulsion Laboratory.
Automated optical inspection and image analysis of superconducting radio-frequency cavities
NASA Astrophysics Data System (ADS)
Wenskat, M.
2017-05-01
The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97 % and the positive predictive value (PPV) 99 % within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ = -0.93 with a significance of 6 σ between an obtained surface variable and the maximal accelerating field was found.
Advancing Bag-of-Visual-Words Representations for Lesion Classification in Retinal Images
Pires, Ramon; Jelinek, Herbert F.; Wainer, Jacques; Valle, Eduardo; Rocha, Anderson
2014-01-01
Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.22.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors. PMID:24886780
A Software Platform for Post-Processing Waveform-Based NDE
NASA Technical Reports Server (NTRS)
Roth, Donald J.; Martin, Richard E.; Seebo, Jeff P.; Trinh, Long B.; Walker, James L.; Winfree, William P.
2007-01-01
Ultrasonic, microwave, and terahertz nondestructive evaluation imaging systems generally require the acquisition of waveforms at each scan point to form an image. For such systems, signal and image processing methods are commonly needed to extract information from the waves and improve resolution of, and highlight, defects in the image. Since some similarity exists for all waveform-based NDE methods, it would seem a common software platform containing multiple signal and image processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. This presentation describes NASA Glenn Research Center's approach in developing a common software platform for processing waveform-based NDE signals and images. This platform is currently in use at NASA Glenn and at Lockheed Martin Michoud Assembly Facility for processing of pulsed terahertz and ultrasonic data. Highlights of the software operation will be given. A case study will be shown for use with terahertz data. The authors also request scientists and engineers who are interested in sharing customized signal and image processing algorithms to contribute to this effort by letting the authors code up and include these algorithms in future releases.
A MPEG-4 encoder based on TMS320C6416
NASA Astrophysics Data System (ADS)
Li, Gui-ju; Liu, Wei-ning
2013-08-01
Engineering and products need to achieve real-time video encoding by DSP, but the high computational complexity and huge amount of data requires that system has high data throughput. In this paper, a real-time MPEG-4 video encoder is designed based on TMS320C6416 platform. The kernel is the DSP of TMS320C6416T and FPGA chip f as the organization and management of video data. In order to control the flow of input and output data. Encoded stream is output using the synchronous serial port. The system has the clock frequency of 1GHz and has up to 8000 MIPS speed processing capacity when running at full speed. Due to the low coding efficiency of MPEG-4 video encoder transferred directly to DSP platform, it is needed to improve the program structure, data structures and algorithms combined with TMS320C6416T characteristics. First: Design the image storage architecture by balancing the calculation spending, storage space cost and EDMA read time factors. Open up a more buffer in memory, each buffer cache 16 lines of video data to be encoded, reconstruction image and reference image including search range. By using the variable alignment mode of the DSP, modifying the definition of structure variables and change the look-up table which occupy larger space with a direct calculation array to save memory space. After the program structure optimization, the program code, all variables, buffering buffers and the interpolation image including the search range can be placed in memory. Then, as to the time-consuming process modules and some functions which are called many times, the corresponding modules are written in parallel assembly language of TMS320C6416T which can increase the running speed. Besides, the motion estimation algorithm is improved by using a cross-hexagon search algorithm, The search speed can be increased obviously. Finally, the execution time, signal-to-noise ratio and compression ratio of a real-time image acquisition sequence is given. The experimental results show that the designed encoder in this paper can accomplish real-time encoding of a 768× 576, 25 frames per second grayscale video. The code rate is 1.5M bits per second.
Correlation approach to identify coding regions in DNA sequences
NASA Technical Reports Server (NTRS)
Ossadnik, S. M.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.
1994-01-01
Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations, whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast chromosome III (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm, which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long coding regions in genomic sequences.
Santhi, B; Dheeptha, B
2016-01-01
The field of telemedicine has gained immense momentum, owing to the need for transmitting patients' information securely. This paper puts forth a unique method for embedding data in medical images. It is based on edge based embedding and XOR coding. The algorithm proposes a novel key generation technique by utilizing the design of a sudoku puzzle to enhance the security of the transmitted message. The edge blocks of the cover image alone, are utilized to embed the payloads. The least significant bit of the pixel values are changed by XOR coding depending on the data to be embedded and the key generated. Hence the distortion in the stego image is minimized and the information is retrieved accurately. Data is embedded in the RGB planes of the cover image, thus increasing its embedding capacity. Several measures including peak signal noise ratio (PSNR), mean square error (MSE), universal image quality index (UIQI) and correlation coefficient (R) are the image quality measures that have been used to analyze the quality of the stego image. It is evident from the results that the proposed technique outperforms the former methodologies.
Visual recognition and inference using dynamic overcomplete sparse learning.
Murray, Joseph F; Kreutz-Delgado, Kenneth
2007-09-01
We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.
Optimized design of embedded DSP system hardware supporting complex algorithms
NASA Astrophysics Data System (ADS)
Li, Yanhua; Wang, Xiangjun; Zhou, Xinling
2003-09-01
The paper presents an optimized design method for a flexible and economical embedded DSP system that can implement complex processing algorithms as biometric recognition, real-time image processing, etc. It consists of a floating-point DSP, 512 Kbytes data RAM, 1 Mbytes FLASH program memory, a CPLD for achieving flexible logic control of input channel and a RS-485 transceiver for local network communication. Because of employing a high performance-price ratio DSP TMS320C6712 and a large FLASH in the design, this system permits loading and performing complex algorithms with little algorithm optimization and code reduction. The CPLD provides flexible logic control for the whole DSP board, especially in input channel, and allows convenient interface between different sensors and DSP system. The transceiver circuit can transfer data between DSP and host computer. In the paper, some key technologies are also introduced which make the whole system work efficiently. Because of the characters referred above, the hardware is a perfect flat for multi-channel data collection, image processing, and other signal processing with high performance and adaptability. The application section of this paper presents how this hardware is adapted for the biometric identification system with high identification precision. The result reveals that this hardware is easy to interface with a CMOS imager and is capable of carrying out complex biometric identification algorithms, which require real-time process.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Huang, Shoudong; Dissanayake, Gamini
2018-07-01
This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Sapan; Quach, Tu -Thach; Parekh, Ojas
In this study, the exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-basedmore » architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.« less
An Ensemble Approach to Building Mercer Kernels with Prior Information
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2005-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly dimensional feature space. we describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using pre-defined kernels. These data adaptive kernels can encode prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. Specifically, we demonstrate the use of the algorithm in situations with extremely small samples of data. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS) and demonstrate the method's superior performance against standard methods. The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains templates for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic-algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code.
Agarwal, Sapan; Quach, Tu -Thach; Parekh, Ojas; ...
2016-01-06
In this study, the exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-basedmore » architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.« less
NASA Astrophysics Data System (ADS)
The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.
Evaluation of H.264 and H.265 full motion video encoding for small UAS platforms
NASA Astrophysics Data System (ADS)
McGuinness, Christopher D.; Walker, David; Taylor, Clark; Hill, Kerry; Hoffman, Marc
2016-05-01
Of all the steps in the image acquisition and formation pipeline, compression is the only process that degrades image quality. A selected compression algorithm succeeds or fails to provide sufficient quality at the requested compression rate depending on how well the algorithm is suited to the input data. Applying an algorithm designed for one type of data to a different type often results in poor compression performance. This is mostly the case when comparing the performance of H.264, designed for standard definition data, to HEVC (High Efficiency Video Coding), which the Joint Collaborative Team on Video Coding (JCT-VC) designed for high-definition data. This study focuses on evaluating how HEVC compares to H.264 when compressing data from small UAS platforms. To compare the standards directly, we assess two open-source traditional software solutions: x264 and x265. These software-only comparisons allow us to establish a baseline of how much improvement can generally be expected of HEVC over H.264. Then, specific solutions leveraging different types of hardware are selected to understand the limitations of commercial-off-the-shelf (COTS) options. Algorithmically, regardless of the implementation, HEVC is found to provide similar quality video as H.264 at 40% lower data rates for video resolutions greater than 1280x720, roughly 1 Megapixel (MPx). For resolutions less than 1MPx, H.264 is an adequate solution though a small (roughly 20%) compression boost is earned by employing HEVC. New low cost, size, weight, and power (CSWAP) HEVC implementations are being developed and will be ideal for small UAS systems.
Current Status of Japanese Global Precipitation Measurement (GPM) Research Project
NASA Astrophysics Data System (ADS)
Kachi, Misako; Oki, Riko; Kubota, Takuji; Masaki, Takeshi; Kida, Satoshi; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.
2013-04-01
The Global Precipitation Measurement (GPM) mission is a mission led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) under collaboration with many international partners, who will provide constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory, which carries the Dual-frequency Precipitation Radar (DPR) developed by JAXA and the National Institute of Information and Communications Technology (NICT), and the GPM Microwave Imager (GMI) developed by NASA. The GPM Core Observatory is scheduled to be launched in early 2014. JAXA also provides the Global Change Observation Mission (GCOM) 1st - Water (GCOM-W1) named "SHIZUKU," as one of constellation satellites. The SHIZUKU satellite was launched in 18 May, 2012 from JAXA's Tanegashima Space Center, and public data release of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the SHIZUKU satellite was planned that Level 1 products in January 2013, and Level 2 products including precipitation in May 2013. The Japanese GPM research project conducts scientific activities on algorithm development, ground validation, application research including production of research products. In addition, we promote collaboration studies in Japan and Asian countries, and public relations activities to extend potential users of satellite precipitation products. In pre-launch phase, most of our activities are focused on the algorithm development and the ground validation related to the algorithm development. As the GPM standard products, JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and the DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map product as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. All standard algorithms including Japan-US joint algorithm will be reviewed by the Japan-US Joint Precipitation Measuring Mission (PMM) Science Team (JPST) before the release. DPR Level 2 algorithm has been developing by the DPR Algorithm Team led by Japan, which is under the NASA-JAXA Joint Algorithm Team. The Level-2 algorithms will provide KuPR only products, KaPR only products, and Dual-frequency Precipitation products, with estimated precipitation rate, radar reflectivity, and precipitation information such as drop size distribution and bright band height. At-launch code was developed in December 2012. In addition, JAXA and NASA have provided synthetic DPR L1 data and tests have been performed using them. Japanese Global Rainfall Map algorithm for the GPM mission has been developed by the Global Rainfall Map Algorithm Development Team in Japan. The algorithm succeeded heritages of the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007. The GSMaP near-real-time version and reanalysis version have been in operation at JAXA, and browse images and binary data available at the GSMaP web site (http://sharaku.eorc.jaxa.jp/GSMaP/). The GSMaP algorithm for GPM is developed in collaboration with AMSR2 standard algorithm for precipitation product, and their validation studies are closely related. As JAXA GPM product, we will provide 0.1-degree grid and hourly product for standard and near-realtime processing. Outputs will include hourly rainfall, gauge-calibrated hourly rainfall, and several quality information (satellite information flag, time information flag, and gauge quality information) over global areas from 60°S to 60°N. At-launch code of GSMaP for GPM is under development, and will be delivered to JAXA GPM Mission Operation System by April 2013. At-launch code will include several updates of microwave imager and sounder algorithms and databases, and introduction of rain-gauge correction.
Parallel processing approach to transform-based image coding
NASA Astrophysics Data System (ADS)
Normile, James O.; Wright, Dan; Chu, Ken; Yeh, Chia L.
1991-06-01
This paper describes a flexible parallel processing architecture designed for use in real time video processing. The system consists of floating point DSP processors connected to each other via fast serial links, each processor has access to a globally shared memory. A multiple bus architecture in combination with a dual ported memory allows communication with a host control processor. The system has been applied to prototyping of video compression and decompression algorithms. The decomposition of transform based algorithms for decompression into a form suitable for parallel processing is described. A technique for automatic load balancing among the processors is developed and discussed, results ar presented with image statistics and data rates. Finally techniques for accelerating the system throughput are analyzed and results from the application of one such modification described.
Multi-pass encoding of hyperspectral imagery with spectral quality control
NASA Astrophysics Data System (ADS)
Wasson, Steven; Walker, William
2015-05-01
Multi-pass encoding is a technique employed in the field of video compression that maximizes the quality of an encoded video sequence within the constraints of a specified bit rate. This paper presents research where multi-pass encoding is extended to the field of hyperspectral image compression. Unlike video, which is primarily intended to be viewed by a human observer, hyperspectral imagery is processed by computational algorithms that generally attempt to classify the pixel spectra within the imagery. As such, these algorithms are more sensitive to distortion in the spectral dimension of the image than they are to perceptual distortion in the spatial dimension. The compression algorithm developed for this research, which uses the Karhunen-Loeve transform for spectral decorrelation followed by a modified H.264/Advanced Video Coding (AVC) encoder, maintains a user-specified spectral quality level while maximizing the compression ratio throughout the encoding process. The compression performance may be considered near-lossless in certain scenarios. For qualitative purposes, this paper presents the performance of the compression algorithm for several Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperion datasets using spectral angle as the spectral quality assessment function. Specifically, the compression performance is illustrated in the form of rate-distortion curves that plot spectral angle versus bits per pixel per band (bpppb).
NASA Astrophysics Data System (ADS)
Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar
2016-06-01
There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.
Chirp-coded excitation imaging with a high-frequency ultrasound annular array.
Mamou, Jonathan; Ketterling, Jeffrey A; Silverman, Ronald H
2008-02-01
High-frequency ultrasound (HFU, > 15 MHz) is an effective means of obtaining fine-resolution images of biological tissues for applications such as opthalmologic, dermatologic, and small animal imaging. HFU has two inherent drawbacks. First, HFU images have a limited depth of field (DOF) because of the short wavelength and the low fixed F-number of conventional HFU transducers. Second, HFU can be used to image only a few millimeters deep into a tissue because attenuation increases with frequency. In this study, a five-element annular array was used in conjunction with a synthetic-focusing algorithm to extend the DOF. The annular array had an aperture of 10 mm, a focal length of 31 mm, and a center frequency of 17 MHz. To increase penetration depth, 8-micros, chirp-coded signals were designed, input into an arbitrary waveform generator, and used to excite each array element. After data acquisition, the received signals were linearly filtered to restore axial resolution and increase the SNR. To compare the chirpcoded imaging method with conventional impulse imaging in terms of resolution, a 25-microm diameter wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. The results demonstrated that chirp-coded excitation did not degrade axial or lateral resolution. A tissue-mimicking phantom containing 10-microm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex vivo ophthalmic images were formed and chirpcoded images showed features that were not visible in conventional impulse images.
Evaluation of computational endomicroscopy architectures for minimally-invasive optical biopsy
NASA Astrophysics Data System (ADS)
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2017-02-01
We are investigating compressive sensing architectures for applications in endomicroscopy, where the narrow diameter probes required for tissue access can limit the achievable spatial resolution. We hypothesize that the compressive sensing framework can be used to overcome the fundamental pixel number limitation in fiber-bundle based endomicroscopy by reconstructing images with more resolvable points than fibers in the bundle. An experimental test platform was assembled to evaluate and compare two candidate architectures, based on introducing a coded amplitude mask at either a conjugate image or Fourier plane within the optical system. The benchtop platform consists of a common illumination and object path followed by separate imaging arms for each compressive architecture. The imaging arms contain a digital micromirror device (DMD) as a reprogrammable mask, with a CCD camera for image acquisition. One arm has the DMD positioned at a conjugate image plane ("IP arm"), while the other arm has the DMD positioned at a Fourier plane ("FP arm"). Lenses were selected and positioned within each arm to achieve an element-to-pixel ratio of 16 (230,400 mask elements mapped onto 14,400 camera pixels). We discuss our mathematical model for each system arm and outline the importance of accounting for system non-idealities. Reconstruction of a 1951 USAF resolution target using optimization-based compressive sensing algorithms produced images with higher spatial resolution than bicubic interpolation for both system arms when system non-idealities are included in the model. Furthermore, images generated with image plane coding appear to exhibit higher spatial resolution, but more noise, than images acquired through Fourier plane coding.
Android platform based smartphones for a logistical remote association repair framework.
Lien, Shao-Fan; Wang, Chun-Chieh; Su, Juhng-Perng; Chen, Hong-Ming; Wu, Chein-Hsing
2014-06-25
The maintenance of large-scale systems is an important issue for logistics support planning. In this paper, we developed a Logistical Remote Association Repair Framework (LRARF) to aid repairmen in keeping the system available. LRARF includes four subsystems: smart mobile phones, a Database Management System (DBMS), a Maintenance Support Center (MSC) and wireless networks. The repairman uses smart mobile phones to capture QR-codes and the images of faulty circuit boards. The captured QR-codes and images are transmitted to the DBMS so the invalid modules can be recognized via the proposed algorithm. In this paper, the Linear Projective Transform (LPT) is employed for fast QR-code calibration. Moreover, the ANFIS-based data mining system is used for module identification and searching automatically for the maintenance manual corresponding to the invalid modules. The inputs of the ANFIS-based data mining system are the QR-codes and image features; the output is the module ID. DBMS also transmits the maintenance manual back to the maintenance staff. If modules are not recognizable, the repairmen and center engineers can obtain the relevant information about the invalid modules through live video. The experimental results validate the applicability of the Android-based platform in the recognition of invalid modules. In addition, the live video can also be recorded synchronously on the MSC for later use.
EVALUATION OF REGISTRATION, COMPRESSION AND CLASSIFICATION ALGORITHMS
NASA Technical Reports Server (NTRS)
Jayroe, R. R.
1994-01-01
Several types of algorithms are generally used to process digital imagery such as Landsat data. The most commonly used algorithms perform the task of registration, compression, and classification. Because there are different techniques available for performing registration, compression, and classification, imagery data users need a rationale for selecting a particular approach to meet their particular needs. This collection of registration, compression, and classification algorithms was developed so that different approaches could be evaluated and the best approach for a particular application determined. Routines are included for six registration algorithms, six compression algorithms, and two classification algorithms. The package also includes routines for evaluating the effects of processing on the image data. This collection of routines should be useful to anyone using or developing image processing software. Registration of image data involves the geometrical alteration of the imagery. Registration routines available in the evaluation package include image magnification, mapping functions, partitioning, map overlay, and data interpolation. The compression of image data involves reducing the volume of data needed for a given image. Compression routines available in the package include adaptive differential pulse code modulation, two-dimensional transforms, clustering, vector reduction, and picture segmentation. Classification of image data involves analyzing the uncompressed or compressed image data to produce inventories and maps of areas of similar spectral properties within a scene. The classification routines available include a sequential linear technique and a maximum likelihood technique. The choice of the appropriate evaluation criteria is quite important in evaluating the image processing functions. The user is therefore given a choice of evaluation criteria with which to investigate the available image processing functions. All of the available evaluation criteria basically compare the observed results with the expected results. For the image reconstruction processes of registration and compression, the expected results are usually the original data or some selected characteristics of the original data. For classification processes the expected result is the ground truth of the scene. Thus, the comparison process consists of determining what changes occur in processing, where the changes occur, how much change occurs, and the amplitude of the change. The package includes evaluation routines for performing such comparisons as average uncertainty, average information transfer, chi-square statistics, multidimensional histograms, and computation of contingency matrices. This collection of routines is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 662K of 8 bit bytes. This collection of image processing and evaluation routines was developed in 1979.
Cooperative optimization and their application in LDPC codes
NASA Astrophysics Data System (ADS)
Chen, Ke; Rong, Jian; Zhong, Xiaochun
2008-10-01
Cooperative optimization is a new way for finding global optima of complicated functions of many variables. The proposed algorithm is a class of message passing algorithms and has solid theory foundations. It can achieve good coding gains over the sum-product algorithm for LDPC codes. For (6561, 4096) LDPC codes, the proposed algorithm can achieve 2.0 dB gains over the sum-product algorithm at BER of 4×10-7. The decoding complexity of the proposed algorithm is lower than the sum-product algorithm can do; furthermore, the former can achieve much lower error floor than the latter can do after the Eb / No is higher than 1.8 dB.
Automatic Calibration of Stereo-Cameras Using Ordinary Chess-Board Patterns
NASA Astrophysics Data System (ADS)
Prokos, A.; Kalisperakis, I.; Petsa, E.; Karras, G.
2012-07-01
Automation of camera calibration is facilitated by recording coded 2D patterns. Our toolbox for automatic camera calibration using images of simple chess-board patterns is freely available on the Internet. But it is unsuitable for stereo-cameras whose calibration implies recovering camera geometry and their true-to-scale relative orientation. In contrast to all reported methods requiring additional specific coding to establish an object space coordinate system, a toolbox for automatic stereo-camera calibration relying on ordinary chess-board patterns is presented here. First, the camera calibration algorithm is applied to all image pairs of the pattern to extract nodes of known spacing, order them in rows and columns, and estimate two independent camera parameter sets. The actual node correspondences on stereo-pairs remain unknown. Image pairs of a textured 3D scene are exploited for finding the fundamental matrix of the stereo-camera by applying RANSAC to point matches established with the SIFT algorithm. A node is then selected near the centre of the left image; its match on the right image is assumed as the node closest to the corresponding epipolar line. This yields matches for all nodes (since these have already been ordered), which should also satisfy the 2D epipolar geometry. Measures for avoiding mismatching are taken. With automatically estimated initial orientation values, a bundle adjustment is performed constraining all pairs on a common (scaled) relative orientation. Ambiguities regarding the actual exterior orientations of the stereo-camera with respect to the pattern are irrelevant. Results from this automatic method show typical precisions not above 1/4 pixels for 640×480 web cameras.
NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems
NASA Astrophysics Data System (ADS)
Pietrzak, Jakub; Kacperski, Krzysztof; Cieślar, Marek
2015-03-01
The most accurate technique to model the X- and gamma radiation path through a numerically defined object is the Monte Carlo simulation which follows single photons according to their interaction probabilities. A simplified and much faster approach, which just integrates total interaction probabilities along selected paths, is known as ray tracing. Both techniques are used in medical imaging for simulating real imaging systems and as projectors required in iterative tomographic reconstruction algorithms. These approaches are ready for massive parallel implementation e.g. on Graphics Processing Units (GPU), which can greatly accelerate the computation time at a relatively low cost. In this paper we describe the application of the NVIDIA OptiX ray-tracing engine, popular in professional graphics and rendering applications, as a new powerful tool for X- and gamma ray-tracing in medical imaging. It allows the implementation of a variety of physical interactions of rays with pixel-, mesh- or nurbs-based objects, and recording any required quantities, like path integrals, interaction sites, deposited energies, and others. Using the OptiX engine we have implemented a code for rapid Monte Carlo simulations of Single Photon Emission Computed Tomography (SPECT) imaging, as well as the ray-tracing projector, which can be used in reconstruction algorithms. The engine generates efficient, scalable and optimized GPU code, ready to run on multi GPU heterogeneous systems. We have compared the results our simulations with the GATE package. With the OptiX engine the computation time of a Monte Carlo simulation can be reduced from days to minutes.
"ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"
DOE Office of Scientific and Technical Information (OSTI.GOV)
SANTHI, NANDAKISHORE
We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relativemore » error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.« less
Hierarchical content-based image retrieval by dynamic indexing and guided search
NASA Astrophysics Data System (ADS)
You, Jane; Cheung, King H.; Liu, James; Guo, Linong
2003-12-01
This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include: a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing, an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features.
NASA Astrophysics Data System (ADS)
Chen, Wen-Yuan; Liu, Chen-Chung
2006-01-01
The problems with binary watermarking schemes are that they have only a small amount of embeddable space and are not robust enough. We develop a slice-based large-cluster algorithm (SBLCA) to construct a robust watermarking scheme for binary images. In SBLCA, a small-amount cluster selection (SACS) strategy is used to search for a feasible slice in a large-cluster flappable-pixel decision (LCFPD) method, which is used to search for the best location for concealing a secret bit from a selected slice. This method has four major advantages over the others: (a) SBLCA has a simple and effective decision function to select appropriate concealment locations, (b) SBLCA utilizes a blind watermarking scheme without the original image in the watermark extracting process, (c) SBLCA uses slice-based shuffling capability to transfer the regular image into a hash state without remembering the state before shuffling, and finally, (d) SBLCA has enough embeddable space that every 64 pixels could accommodate a secret bit of the binary image. Furthermore, empirical results on test images reveal that our approach is a robust watermarking scheme for binary images.
Image Encryption Algorithm Based on Hyperchaotic Maps and Nucleotide Sequences Database
2017-01-01
Image encryption technology is one of the main means to ensure the safety of image information. Using the characteristics of chaos, such as randomness, regularity, ergodicity, and initial value sensitiveness, combined with the unique space conformation of DNA molecules and their unique information storage and processing ability, an efficient method for image encryption based on the chaos theory and a DNA sequence database is proposed. In this paper, digital image encryption employs a process of transforming the image pixel gray value by using chaotic sequence scrambling image pixel location and establishing superchaotic mapping, which maps quaternary sequences and DNA sequences, and by combining with the logic of the transformation between DNA sequences. The bases are replaced under the displaced rules by using DNA coding in a certain number of iterations that are based on the enhanced quaternary hyperchaotic sequence; the sequence is generated by Chen chaos. The cipher feedback mode and chaos iteration are employed in the encryption process to enhance the confusion and diffusion properties of the algorithm. Theoretical analysis and experimental results show that the proposed scheme not only demonstrates excellent encryption but also effectively resists chosen-plaintext attack, statistical attack, and differential attack. PMID:28392799
Fast H.264/AVC FRExt intra coding using belief propagation.
Milani, Simone
2011-01-01
In the H.264/AVC FRExt coder, the coding performance of Intra coding significantly overcomes the previous still image coding standards, like JPEG2000, thanks to a massive use of spatial prediction. Unfortunately, the adoption of an extensive set of predictors induces a significant increase of the computational complexity required by the rate-distortion optimization routine. The paper presents a complexity reduction strategy that aims at reducing the computational load of the Intra coding with a small loss in the compression performance. The proposed algorithm relies on selecting a reduced set of prediction modes according to their probabilities, which are estimated adopting a belief-propagation procedure. Experimental results show that the proposed method permits saving up to 60 % of the coding time required by an exhaustive rate-distortion optimization method with a negligible loss in performance. Moreover, it permits an accurate control of the computational complexity unlike other methods where the computational complexity depends upon the coded sequence.
Evaluating progressive-rendering algorithms in appearance design tasks.
Jiawei Ou; Karlik, Ondrej; Křivánek, Jaroslav; Pellacini, Fabio
2013-01-01
Progressive rendering is becoming a popular alternative to precomputational approaches to appearance design. However, progressive algorithms create images exhibiting visual artifacts at early stages. A user study investigated these artifacts' effects on user performance in appearance design tasks. Novice and expert subjects performed lighting and material editing tasks with four algorithms: random path tracing, quasirandom path tracing, progressive photon mapping, and virtual-point-light rendering. Both the novices and experts strongly preferred path tracing to progressive photon mapping and virtual-point-light rendering. None of the participants preferred random path tracing to quasirandom path tracing or vice versa; the same situation held between progressive photon mapping and virtual-point-light rendering. The user workflow didn’t differ significantly with the four algorithms. The Web Extras include a video showing how four progressive-rendering algorithms converged (at http://youtu.be/ck-Gevl1e9s), the source code used, and other supplementary materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, T; UT Southwestern Medical Center, Dallas, TX; Yan, H
2014-06-15
Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm inmore » a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application. A high zresolution is preferred to stabilize statistical iterative reconstruction. This work was supported in part by NIH(1R01CA154747-01), NSFC((No. 61172163), Research Fund for the Doctoral Program of Higher Education of China (No. 20110201110011), China Scholarship Council.« less
Fast discrete cosine transform structure suitable for implementation with integer computation
NASA Astrophysics Data System (ADS)
Jeong, Yeonsik; Lee, Imgeun
2000-10-01
The discrete cosine transform (DCT) has wide applications in speech and image coding. We propose a fast DCT scheme with the property of reduced multiplication stages and fewer additions and multiplications. The proposed algorithm is structured so that most multiplications are performed at the final stage, which reduces the propagation error that could occur in the integer computation.
Scan Line Difference Compression Algorithm Simulation Study.
1985-08-01
introduced during the signal transmission process. ----------- SLDC Encoder------- I Image I IConditionedl IConditioned I LError Control I I Source I...I Error Control _____ _struction - Decoder I I Decoder I ----------- SLDC Decoder-------- Figure A-I. -- Overall Data Compression Process This...of noise or an effective channel coding subsystem providing the necessary error control . A- 2 ~~~~~~~~~ ..* : ~ -. . .- .** - .. . .** .* ... . . The
NASA Astrophysics Data System (ADS)
Jafari, Mehdi; Kasaei, Shohreh
2012-01-01
Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.
NASA Astrophysics Data System (ADS)
Jafari, Mehdi; Kasaei, Shohreh
2011-12-01
Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.
A review of predictive coding algorithms.
Spratling, M W
2017-03-01
Predictive coding is a leading theory of how the brain performs probabilistic inference. However, there are a number of distinct algorithms which are described by the term "predictive coding". This article provides a concise review of these different predictive coding algorithms, highlighting their similarities and differences. Five algorithms are covered: linear predictive coding which has a long and influential history in the signal processing literature; the first neuroscience-related application of predictive coding to explaining the function of the retina; and three versions of predictive coding that have been proposed to model cortical function. While all these algorithms aim to fit a generative model to sensory data, they differ in the type of generative model they employ, in the process used to optimise the fit between the model and sensory data, and in the way that they are related to neurobiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Online Hierarchical Sparse Representation of Multifeature for Robust Object Tracking
Qu, Shiru
2016-01-01
Object tracking based on sparse representation has given promising tracking results in recent years. However, the trackers under the framework of sparse representation always overemphasize the sparse representation and ignore the correlation of visual information. In addition, the sparse coding methods only encode the local region independently and ignore the spatial neighborhood information of the image. In this paper, we propose a robust tracking algorithm. Firstly, multiple complementary features are used to describe the object appearance; the appearance model of the tracked target is modeled by instantaneous and stable appearance features simultaneously. A two-stage sparse-coded method which takes the spatial neighborhood information of the image patch and the computation burden into consideration is used to compute the reconstructed object appearance. Then, the reliability of each tracker is measured by the tracking likelihood function of transient and reconstructed appearance models. Finally, the most reliable tracker is obtained by a well established particle filter framework; the training set and the template library are incrementally updated based on the current tracking results. Experiment results on different challenging video sequences show that the proposed algorithm performs well with superior tracking accuracy and robustness. PMID:27630710
Practical aspects of prestack depth migration with finite differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ober, C.C.; Oldfield, R.A.; Womble, D.E.
1997-07-01
Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less
Billing code algorithms to identify cases of peripheral artery disease from administrative data
Fan, Jin; Arruda-Olson, Adelaide M; Leibson, Cynthia L; Smith, Carin; Liu, Guanghui; Bailey, Kent R; Kullo, Iftikhar J
2013-01-01
Objective To construct and validate billing code algorithms for identifying patients with peripheral arterial disease (PAD). Methods We extracted all encounters and line item details including PAD-related billing codes at Mayo Clinic Rochester, Minnesota, between July 1, 1997 and June 30, 2008; 22 712 patients evaluated in the vascular laboratory were divided into training and validation sets. Multiple logistic regression analysis was used to create an integer code score from the training dataset, and this was tested in the validation set. We applied a model-based code algorithm to patients evaluated in the vascular laboratory and compared this with a simpler algorithm (presence of at least one of the ICD-9 PAD codes 440.20–440.29). We also applied both algorithms to a community-based sample (n=4420), followed by a manual review. Results The logistic regression model performed well in both training and validation datasets (c statistic=0.91). In patients evaluated in the vascular laboratory, the model-based code algorithm provided better negative predictive value. The simpler algorithm was reasonably accurate for identification of PAD status, with lesser sensitivity and greater specificity. In the community-based sample, the sensitivity (38.7% vs 68.0%) of the simpler algorithm was much lower, whereas the specificity (92.0% vs 87.6%) was higher than the model-based algorithm. Conclusions A model-based billing code algorithm had reasonable accuracy in identifying PAD cases from the community, and in patients referred to the non-invasive vascular laboratory. The simpler algorithm had reasonable accuracy for identification of PAD in patients referred to the vascular laboratory but was significantly less sensitive in a community-based sample. PMID:24166724
An Overview of the JPSS Ground Project Algorithm Integration Process
NASA Astrophysics Data System (ADS)
Vicente, G. A.; Williams, R.; Dorman, T. J.; Williamson, R. C.; Shaw, F. J.; Thomas, W. M.; Hung, L.; Griffin, A.; Meade, P.; Steadley, R. S.; Cember, R. P.
2015-12-01
The smooth transition, implementation and operationalization of scientific software's from the National Oceanic and Atmospheric Administration (NOAA) development teams to the Join Polar Satellite System (JPSS) Ground Segment requires a variety of experiences and expertise. This task has been accomplished by a dedicated group of scientist and engineers working in close collaboration with the NOAA Satellite and Information Services (NESDIS) Center for Satellite Applications and Research (STAR) science teams for the JPSS/Suomi-NPOES Preparatory Project (S-NPP) Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) instruments. The presentation purpose is to describe the JPSS project process for algorithm implementation from the very early delivering stages by the science teams to the full operationalization into the Interface Processing Segment (IDPS), the processing system that provides Environmental Data Records (EDR's) to NOAA. Special focus is given to the NASA Data Products Engineering and Services (DPES) Algorithm Integration Team (AIT) functional and regression test activities. In the functional testing phase, the AIT uses one or a few specific chunks of data (granules) selected by the NOAA STAR Calibration and Validation (cal/val) Teams to demonstrate that a small change in the code performs properly and does not disrupt the rest of the algorithm chain. In the regression testing phase, the modified code is placed into to the Government Resources for Algorithm Verification, Integration, Test and Evaluation (GRAVITE) Algorithm Development Area (ADA), a simulated and smaller version of the operational IDPS. Baseline files are swapped out, not edited and the whole code package runs in one full orbit of Science Data Records (SDR's) using Calibration Look Up Tables (Cal LUT's) for the time of the orbit. The purpose of the regression test is to identify unintended outcomes. Overall the presentation provides a general and easy to follow overview of the JPSS Algorithm Change Process (ACP) and is intended to facility the audience understanding of a very extensive and complex process.
Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.
2017-01-01
Abstract. Although transmission-based x-ray imaging is the most commonly used imaging approach for breast cancer detection, it exhibits false negative rates higher than 15%. To improve cancer detection accuracy, x-ray coherent scatter computed tomography (CSCT) has been explored to potentially detect cancer with greater consistency. However, the 10-min scan duration of CSCT limits its possible clinical applications. The coded aperture coherent scatter spectral imaging (CACSSI) technique has been shown to reduce scan time through enabling single-angle imaging while providing high detection accuracy. Here, we use Monte Carlo simulations to test analytical optimization studies of the CACSSI technique, specifically for detecting cancer in ex vivo breast samples. An anthropomorphic breast tissue phantom was modeled, a CACSSI imaging system was virtually simulated to image the phantom, a diagnostic voxel classification algorithm was applied to all reconstructed voxels in the phantom, and receiver-operator characteristics analysis of the voxel classification was used to evaluate and characterize the imaging system for a range of parameters that have been optimized in a prior analytical study. The results indicate that CACSSI is able to identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) in tissue samples with a cancerous voxel identification area-under-the-curve of 0.94 through a scan lasting less than 10 s per slice. These results show that coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue within ex vivo samples. Furthermore, the results indicate potential CACSSI imaging system configurations for implementation in subsequent imaging development studies. PMID:28331884
Greenberg, Jacob K; Ladner, Travis R; Olsen, Margaret A; Shannon, Chevis N; Liu, Jingxia; Yarbrough, Chester K; Piccirillo, Jay F; Wellons, John C; Smyth, Matthew D; Park, Tae Sung; Limbrick, David D
2015-08-01
The use of administrative billing data may enable large-scale assessments of treatment outcomes for Chiari Malformation type I (CM-1). However, to utilize such data sets, validated International Classification of Diseases, Ninth Revision (ICD-9-CM) code algorithms for identifying CM-1 surgery are needed. To validate 2 ICD-9-CM code algorithms identifying patients undergoing CM-1 decompression surgery. We retrospectively analyzed the validity of 2 ICD-9-CM code algorithms for identifying adult CM-1 decompression surgery performed at 2 academic medical centers between 2001 and 2013. Algorithm 1 included any discharge diagnosis code of 348.4 (CM-1), as well as a procedure code of 01.24 (cranial decompression) or 03.09 (spinal decompression, or laminectomy). Algorithm 2 restricted this group to patients with a primary diagnosis of 348.4. The positive predictive value (PPV) and sensitivity of each algorithm were calculated. Among 340 first-time admissions identified by Algorithm 1, the overall PPV for CM-1 decompression was 65%. Among the 214 admissions identified by Algorithm 2, the overall PPV was 99.5%. The PPV for Algorithm 1 was lower in the Vanderbilt (59%) cohort, males (40%), and patients treated between 2009 and 2013 (57%), whereas the PPV of Algorithm 2 remained high (≥99%) across subgroups. The sensitivity of Algorithms 1 (86%) and 2 (83%) were above 75% in all subgroups. ICD-9-CM code Algorithm 2 has excellent PPV and good sensitivity to identify adult CM-1 decompression surgery. These results lay the foundation for studying CM-1 treatment outcomes by using large administrative databases.
Integer cosine transform for image compression
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Pollara, F.; Shahshahani, M.
1991-01-01
This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.
Channel coding for underwater acoustic single-carrier CDMA communication system
NASA Astrophysics Data System (ADS)
Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong
2017-01-01
CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.
Optical head tracking for functional magnetic resonance imaging using structured light.
Zaremba, Andrei A; MacFarlane, Duncan L; Tseng, Wei-Che; Stark, Andrew J; Briggs, Richard W; Gopinath, Kaundinya S; Cheshkov, Sergey; White, Keith D
2008-07-01
An accurate motion-tracking technique is needed to compensate for subject motion during functional magnetic resonance imaging (fMRI) procedures. Here, a novel approach to motion metrology is discussed. A structured light pattern specifically coded for digital signal processing is positioned onto a fiduciary of the patient. As the patient undergoes spatial transformations in 6 DoF (degrees of freedom), a high-resolution CCD camera captures successive images for analysis on a computing platform. A high-speed image processing algorithm is used to calculate spatial transformations in a time frame commensurate with patient movements (10-100 ms) and with a precision of at least 0.5 microm for translations and 0.1 deg for rotations.
NASA Astrophysics Data System (ADS)
Rajon, D. A.; Shah, A. P.; Watchman, C. J.; Brindle, J. M.; Bolch, W. E.
2003-06-01
Recent advances in physical models of skeletal dosimetry utilize high-resolution NMR microscopy images of trabecular bone. These images are coupled to radiation transport codes to assess energy deposition within active bone marrow irradiated by bone- or marrow-incorporated radionuclides. Recent studies have demonstrated that the rectangular shape of image voxels is responsible for cross-region (bone-to-marrow) absorbed fraction errors of up to 50% for very low-energy electrons (<50 keV). In this study, a new hyperboloid adaptation of the marching cube (MC) image-visualization algorithm is implemented within 3D digital images of trabecular bone to better define the bone-marrow interface, and thus reduce voxel effects in the assessment of cross-region absorbed fractions. To test the method, a mathematical sample of trabecular bone was constructed, composed of a random distribution of spherical marrow cavities, and subsequently coupled to the EGSnrc radiation code to generate reference values for the energy deposition in marrow or bone. Next, digital images of the bone model were constructed over a range of simulated image resolutions, and coupled to EGSnrc using the hyperboloid MC (HMC) algorithm. For the radionuclides 33P, 117mSn, 131I and 153Sm, values of S(marrow←bone) estimated using voxel models of trabecular bone were shown to have relative errors of 10%, 9%, <1% and <1% at a voxel size of 150 µm. At a voxel size of 60 µm, these errors were 6%, 5%, <1% and <1%, respectively. When the HMC model was applied during particle transport, the relative errors on S(marrow←bone) for these same radionuclides were reduced to 7%, 6%, <1% and <1% at a voxel size of 150 µm, and to 2%, 2%, <1% and <1% at a voxel size of 60 µm. The technique was also applied to a real NMR image of human trabecular bone with a similar demonstration of reductions in dosimetry errors.
Dobson-Belaire, Wendy; Goodfield, Jason; Borrelli, Richard; Liu, Fei Fei; Khan, Zeba M
2018-01-01
Using diagnosis code-based algorithms is the primary method of identifying patient cohorts for retrospective studies; nevertheless, many databases lack reliable diagnosis code information. To develop precise algorithms based on medication claims/prescriber visits (MCs/PVs) to identify psoriasis (PsO) patients and psoriatic patients with arthritic conditions (PsO-AC), a proxy for psoriatic arthritis, in Canadian databases lacking diagnosis codes. Algorithms were developed using medications with narrow indication profiles in combination with prescriber specialty to define PsO and PsO-AC. For a 3-year study period from July 1, 2009, algorithms were validated using the PharMetrics Plus database, which contains both adjudicated medication claims and diagnosis codes. Positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of the developed algorithms were assessed using diagnosis code as the reference standard. Chosen algorithms were then applied to Canadian drug databases to profile the algorithm-identified PsO and PsO-AC cohorts. In the selected database, 183,328 patients were identified for validation. The highest PPVs for PsO (85%) and PsO-AC (65%) occurred when a predictive algorithm of two or more MCs/PVs was compared with the reference standard of one or more diagnosis codes. NPV and specificity were high (99%-100%), whereas sensitivity was low (≤30%). Reducing the number of MCs/PVs or increasing diagnosis claims decreased the algorithms' PPVs. We have developed an MC/PV-based algorithm to identify PsO patients with a high degree of accuracy, but accuracy for PsO-AC requires further investigation. Such methods allow researchers to conduct retrospective studies in databases in which diagnosis codes are absent. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Optimized principal component analysis on coronagraphic images of the fomalhaut system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshkat, Tiffany; Kenworthy, Matthew A.; Quanz, Sascha P.
We present the results of a study to optimize the principal component analysis (PCA) algorithm for planet detection, a new algorithm complementing angular differential imaging and locally optimized combination of images (LOCI) for increasing the contrast achievable next to a bright star. The stellar point spread function (PSF) is constructed by removing linear combinations of principal components, allowing the flux from an extrasolar planet to shine through. The number of principal components used determines how well the stellar PSF is globally modeled. Using more principal components may decrease the number of speckles in the final image, but also increases themore » background noise. We apply PCA to Fomalhaut Very Large Telescope NaCo images acquired at 4.05 μm with an apodized phase plate. We do not detect any companions, with a model dependent upper mass limit of 13-18 M {sub Jup} from 4-10 AU. PCA achieves greater sensitivity than the LOCI algorithm for the Fomalhaut coronagraphic data by up to 1 mag. We make several adaptations to the PCA code and determine which of these prove the most effective at maximizing the signal-to-noise from a planet very close to its parent star. We demonstrate that optimizing the number of principal components used in PCA proves most effective for pulling out a planet signal.« less
Non-US data compression and coding research. FASAC Technical Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, R.M.; Cohn, M.; Craver, L.W.
1993-11-01
This assessment of recent data compression and coding research outside the United States examines fundamental and applied work in the basic areas of signal decomposition, quantization, lossless compression, and error control, as well as application development efforts in image/video compression and speech/audio compression. Seven computer scientists and engineers who are active in development of these technologies in US academia, government, and industry carried out the assessment. Strong industrial and academic research groups in Western Europe, Israel, and the Pacific Rim are active in the worldwide search for compression algorithms that provide good tradeoffs among fidelity, bit rate, and computational complexity,more » though the theoretical roots and virtually all of the classical compression algorithms were developed in the United States. Certain areas, such as segmentation coding, model-based coding, and trellis-coded modulation, have developed earlier or in more depth outside the United States, though the United States has maintained its early lead in most areas of theory and algorithm development. Researchers abroad are active in other currently popular areas, such as quantizer design techniques based on neural networks and signal decompositions based on fractals and wavelets, but, in most cases, either similar research is or has been going on in the United States, or the work has not led to useful improvements in compression performance. Because there is a high degree of international cooperation and interaction in this field, good ideas spread rapidly across borders (both ways) through international conferences, journals, and technical exchanges. Though there have been no fundamental data compression breakthroughs in the past five years--outside or inside the United State--there have been an enormous number of significant improvements in both places in the tradeoffs among fidelity, bit rate, and computational complexity.« less
Single-pixel imaging based on compressive sensing with spectral-domain optical mixing
NASA Astrophysics Data System (ADS)
Zhu, Zhijing; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin
2017-11-01
In this letter a single-pixel imaging structure is proposed based on compressive sensing using a spatial light modulator (SLM)-based spectrum shaper. In the approach, an SLM-based spectrum shaper, the pattern of which is a predetermined pseudorandom bit sequence (PRBS), spectrally codes the optical pulse carrying image information. The energy of the spectrally mixed pulse is detected by a single-pixel photodiode and the measurement results are used to reconstruct the image via a sparse recovery algorithm. As the mixing of the image signal and the PRBS is performed in the spectral domain, optical pulse stretching, modulation, compression and synchronization in the time domain are avoided. Experiments are implemented to verify the feasibility of the approach.
Quantitative characterization of turbidity by radiative transfer based reflectance imaging
Tian, Peng; Chen, Cheng; Jin, Jiahong; Hong, Heng; Lu, Jun Q.; Hu, Xin-Hua
2018-01-01
A new and noncontact approach of multispectral reflectance imaging has been developed to inversely determine the absorption coefficient of μa, the scattering coefficient of μs and the anisotropy factor g of a turbid target from one measured reflectance image. The incident beam was profiled with a diffuse reflectance standard for deriving both measured and calculated reflectance images. A GPU implemented Monte Carlo code was developed to determine the parameters with a conjugate gradient descent algorithm and the existence of unique solutions was shown. We noninvasively determined embedded region thickness in heterogeneous targets and estimated in vivo optical parameters of nevi from 4 patients between 500 and 950nm for melanoma diagnosis to demonstrate the potentials of quantitative reflectance imaging. PMID:29760971
Joint source-channel coding for motion-compensated DCT-based SNR scalable video.
Kondi, Lisimachos P; Ishtiaq, Faisal; Katsaggelos, Aggelos K
2002-01-01
In this paper, we develop an approach toward joint source-channel coding for motion-compensated DCT-based scalable video coding and transmission. A framework for the optimal selection of the source and channel coding rates over all scalable layers is presented such that the overall distortion is minimized. The algorithm utilizes universal rate distortion characteristics which are obtained experimentally and show the sensitivity of the source encoder and decoder to channel errors. The proposed algorithm allocates the available bit rate between scalable layers and, within each layer, between source and channel coding. We present the results of this rate allocation algorithm for video transmission over a wireless channel using the H.263 Version 2 signal-to-noise ratio (SNR) scalable codec for source coding and rate-compatible punctured convolutional (RCPC) codes for channel coding. We discuss the performance of the algorithm with respect to the channel conditions, coding methodologies, layer rates, and number of layers.
The Pan-STARRS PS1 Image Processing Pipeline
NASA Astrophysics Data System (ADS)
Magnier, E.
The Pan-STARRS PS1 Image Processing Pipeline (IPP) performs the image processing and data analysis tasks needed to enable the scientific use of the images obtained by the Pan-STARRS PS1 prototype telescope. The primary goals of the IPP are to process the science images from the Pan-STARRS telescopes and make the results available to other systems within Pan-STARRS. It also is responsible for combining all of the science images in a given filter into a single representation of the non-variable component of the night sky defined as the "Static Sky". To achieve these goals, the IPP also performs other analysis functions to generate the calibrations needed in the science image processing, and to occasionally use the derived data to generate improved astrometric and photometric reference catalogs. It also provides the infrastructure needed to store the incoming data and the resulting data products. The IPP inherits lessons learned, and in some cases code and prototype code, from several other astronomy image analysis systems, including Imcat (Kaiser), the Sloan Digital Sky Survey (REF), the Elixir system (Magnier & Cuillandre), and Vista (Tonry). Imcat and Vista have a large number of robust image processing functions. SDSS has demonstrated a working analysis pipeline and large-scale databasesystem for a dedicated project. The Elixir system has demonstrated an automatic image processing system and an object database system for operational usage. This talk will present an overview of the IPP architecture, functional flow, code development structure, and selected analysis algorithms. Also discussed is the HW highly parallel HW configuration necessary to support PS1 operational requirements. Finally, results are presented of the processing of images collected during PS1 early commissioning tasks utilizing the Pan-STARRS Test Camera #3.
Limited distortion in LSB steganography
NASA Astrophysics Data System (ADS)
Kim, Younhee; Duric, Zoran; Richards, Dana
2006-02-01
It is well known that all information hiding methods that modify the least significant bits introduce distortions into the cover objects. Those distortions have been utilized by steganalysis algorithms to detect that the objects had been modified. It has been proposed that only coefficients whose modification does not introduce large distortions should be used for embedding. In this paper we propose an effcient algorithm for information hiding in the LSBs of JPEG coefficients. Our algorithm uses parity coding to choose the coefficients whose modifications introduce minimal additional distortion. We derive the expected value of the additional distortion as a function of the message length and the probability distribution of the JPEG quantization errors of cover images. Our experiments show close agreement between the theoretical prediction and the actual additional distortion.
NASA Astrophysics Data System (ADS)
Joseph, R.; Courbin, F.; Starck, J.-L.
2016-05-01
We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744. We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts. Codes can be found at http://lastro.epfl.ch/page-126973.html
Providing integrity, authenticity, and confidentiality for header and pixel data of DICOM images.
Al-Haj, Ali
2015-04-01
Exchange of medical images over public networks is subjected to different types of security threats. This has triggered persisting demands for secured telemedicine implementations that will provide confidentiality, authenticity, and integrity for the transmitted images. The medical image exchange standard (DICOM) offers mechanisms to provide confidentiality for the header data of the image but not for the pixel data. On the other hand, it offers mechanisms to achieve authenticity and integrity for the pixel data but not for the header data. In this paper, we propose a crypto-based algorithm that provides confidentially, authenticity, and integrity for the pixel data, as well as for the header data. This is achieved by applying strong cryptographic primitives utilizing internally generated security data, such as encryption keys, hashing codes, and digital signatures. The security data are generated internally from the header and the pixel data, thus a strong bond is established between the DICOM data and the corresponding security data. The proposed algorithm has been evaluated extensively using DICOM images of different modalities. Simulation experiments show that confidentiality, authenticity, and integrity have been achieved as reflected by the results we obtained for normalized correlation, entropy, PSNR, histogram analysis, and robustness.
Imaging spectrometer measurement of water vapor in the 400 to 2500 nm spectral region
NASA Technical Reports Server (NTRS)
Green, Robert O.; Roberts, Dar A.; Conel, James E.; Dozier, Jeff
1995-01-01
The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) measures the total upwelling spectral radiance from 400 to 2500 nm sampled at 10 nm intervals. The instrument acquires spectral data at an altitude of 20 km above sea level, as images of 11 by up to 100 km at 17x17 meter spatial sampling. We have developed a nonlinear spectral fitting algorithm coupled with a radiative transfer code to derive the total path water vapor from the spectrum, measured for each spatial element in an AVIRIS image. The algorithm compensates for variation in the surface spectral reflectance and atmospheric aerosols. It uses water vapor absorption bands centered at 940 nm, 1040 nm, and 1380 nm. We analyze data sets with water vapor abundances ranging from 1 to 40 perceptible millimeters. In one data set, the total path water vapor varies from 7 to 21 mm over a distance of less than 10 km. We have analyzed a time series of five images acquired at 12 minute intervals; these show spatially heterogeneous changes of advocated water vapor of 25 percent over 1 hour. The algorithm determines water vapor for images with a range of ground covers, including bare rock and soil, sparse to dense vegetation, snow and ice, open water, and clouds. The precision of the water vapor determination approaches one percent. However, the precision is sensitive to the absolute abundance and the absorption strength of the atmospheric water vapor band analyzed. We have evaluated the accuracy of the algorithm by comparing several surface-based determinations of water vapor at the time of the AVIRIS data acquisition. The agreement between the AVIRIS measured water vapor and the in situ surface radiometer and surface interferometer measured water vapor is 5 to 10 percent.
Design of wavefront coding optical system with annular aperture
NASA Astrophysics Data System (ADS)
Chen, Xinhua; Zhou, Jiankang; Shen, Weimin
2016-10-01
Wavefront coding can extend the depth of field of traditional optical system by inserting a phase mask into the pupil plane. In this paper, the point spread function (PSF) of wavefront coding system with annular aperture are analyzed. Stationary phase method and fast Fourier transform (FFT) method are used to compute the diffraction integral respectively. The OTF invariance is analyzed for the annular aperture with cubic phase mask under different obscuration ratio. With these analysis results, a wavefront coding system using Maksutov-Cassegrain configuration is designed finally. It is an F/8.21 catadioptric system with annular aperture, and its focal length is 821mm. The strength of the cubic phase mask is optimized with user-defined operand in Zemax. The Wiener filtering algorithm is used to restore the images and the numerical simulation proves the validity of the design.
ibex: An open infrastructure software platform to facilitate collaborative work in radiomics
Zhang, Lifei; Fried, David V.; Fave, Xenia J.; Hunter, Luke A.; Court, Laurence E.
2015-01-01
Purpose: Radiomics, which is the high-throughput extraction and analysis of quantitative image features, has been shown to have considerable potential to quantify the tumor phenotype. However, at present, a lack of software infrastructure has impeded the development of radiomics and its applications. Therefore, the authors developed the imaging biomarker explorer (ibex), an open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions. Methods: The ibex software package was developed using the matlab and c/c++ programming languages. The software architecture deploys the modern model-view-controller, unit testing, and function handle programming concepts to isolate each quantitative imaging analysis task, to validate if their relevant data and algorithms are fit for use, and to plug in new modules. On one hand, ibex is self-contained and ready to use: it has implemented common data importers, common image filters, and common feature extraction algorithms. On the other hand, ibex provides an integrated development environment on top of matlab and c/c++, so users are not limited to its built-in functions. In the ibex developer studio, users can plug in, debug, and test new algorithms, extending ibex’s functionality. ibex also supports quality assurance for data and feature algorithms: image data, regions of interest, and feature algorithm-related data can be reviewed, validated, and/or modified. More importantly, two key elements in collaborative workflows, the consistency of data sharing and the reproducibility of calculation result, are embedded in the ibex workflow: image data, feature algorithms, and model validation including newly developed ones from different users can be easily and consistently shared so that results can be more easily reproduced between institutions. Results: Researchers with a variety of technical skill levels, including radiation oncologists, physicists, and computer scientists, have found the ibex software to be intuitive, powerful, and easy to use. ibex can be run at any computer with the windows operating system and 1GB RAM. The authors fully validated the implementation of all importers, preprocessing algorithms, and feature extraction algorithms. Windows version 1.0 beta of stand-alone ibex and ibex’s source code can be downloaded. Conclusions: The authors successfully implemented ibex, an open infrastructure software platform that streamlines common radiomics workflow tasks. Its transparency, flexibility, and portability can greatly accelerate the pace of radiomics research and pave the way toward successful clinical translation. PMID:25735289
IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics.
Zhang, Lifei; Fried, David V; Fave, Xenia J; Hunter, Luke A; Yang, Jinzhong; Court, Laurence E
2015-03-01
Radiomics, which is the high-throughput extraction and analysis of quantitative image features, has been shown to have considerable potential to quantify the tumor phenotype. However, at present, a lack of software infrastructure has impeded the development of radiomics and its applications. Therefore, the authors developed the imaging biomarker explorer (IBEX), an open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions. The IBEX software package was developed using the MATLAB and c/c++ programming languages. The software architecture deploys the modern model-view-controller, unit testing, and function handle programming concepts to isolate each quantitative imaging analysis task, to validate if their relevant data and algorithms are fit for use, and to plug in new modules. On one hand, IBEX is self-contained and ready to use: it has implemented common data importers, common image filters, and common feature extraction algorithms. On the other hand, IBEX provides an integrated development environment on top of MATLAB and c/c++, so users are not limited to its built-in functions. In the IBEX developer studio, users can plug in, debug, and test new algorithms, extending IBEX's functionality. IBEX also supports quality assurance for data and feature algorithms: image data, regions of interest, and feature algorithm-related data can be reviewed, validated, and/or modified. More importantly, two key elements in collaborative workflows, the consistency of data sharing and the reproducibility of calculation result, are embedded in the IBEX workflow: image data, feature algorithms, and model validation including newly developed ones from different users can be easily and consistently shared so that results can be more easily reproduced between institutions. Researchers with a variety of technical skill levels, including radiation oncologists, physicists, and computer scientists, have found the IBEX software to be intuitive, powerful, and easy to use. IBEX can be run at any computer with the windows operating system and 1GB RAM. The authors fully validated the implementation of all importers, preprocessing algorithms, and feature extraction algorithms. Windows version 1.0 beta of stand-alone IBEX and IBEX's source code can be downloaded. The authors successfully implemented IBEX, an open infrastructure software platform that streamlines common radiomics workflow tasks. Its transparency, flexibility, and portability can greatly accelerate the pace of radiomics research and pave the way toward successful clinical translation.
Unsupervised, Robust Estimation-based Clustering for Multispectral Images
NASA Technical Reports Server (NTRS)
Netanyahu, Nathan S.
1997-01-01
To prepare for the challenge of handling the archiving and querying of terabyte-sized scientific spatial databases, the NASA Goddard Space Flight Center's Applied Information Sciences Branch (AISB, Code 935) developed a number of characterization algorithms that rely on supervised clustering techniques. The research reported upon here has been aimed at continuing the evolution of some of these supervised techniques, namely the neural network and decision tree-based classifiers, plus extending the approach to incorporating unsupervised clustering algorithms, such as those based on robust estimation (RE) techniques. The algorithms developed under this task should be suited for use by the Intelligent Information Fusion System (IIFS) metadata extraction modules, and as such these algorithms must be fast, robust, and anytime in nature. Finally, so that the planner/schedule module of the IlFS can oversee the use and execution of these algorithms, all information required by the planner/scheduler must be provided to the IIFS development team to ensure the timely integration of these algorithms into the overall system.
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods.
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods. PMID:22163903
Villa, Carlo E.; Caccia, Michele; Sironi, Laura; D'Alfonso, Laura; Collini, Maddalena; Rivolta, Ilaria; Miserocchi, Giuseppe; Gorletta, Tatiana; Zanoni, Ivan; Granucci, Francesca; Chirico, Giuseppe
2010-01-01
The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done. PMID:20808918
Villa, Carlo E; Caccia, Michele; Sironi, Laura; D'Alfonso, Laura; Collini, Maddalena; Rivolta, Ilaria; Miserocchi, Giuseppe; Gorletta, Tatiana; Zanoni, Ivan; Granucci, Francesca; Chirico, Giuseppe
2010-08-17
The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.
Compression of digital images over local area networks. Appendix 1: Item 3. M.S. Thesis
NASA Technical Reports Server (NTRS)
Gorjala, Bhargavi
1991-01-01
Differential Pulse Code Modulation (DPCM) has been used with speech for many years. It has not been as successful for images because of poor edge performance. The only corruption in DPC is quantizer error but this corruption becomes quite large in the region of an edge because of the abrupt changes in the statistics of the signal. We introduce two improved DPCM schemes; Edge correcting DPCM and Edge Preservation Differential Coding. These two coding schemes will detect the edges and take action to correct them. In an Edge Correcting scheme, the quantizer error for an edge is encoded using a recursive quantizer with entropy coding and sent to the receiver as side information. In an Edge Preserving scheme, when the quantizer input falls in the overload region, the quantizer error is encoded and sent to the receiver repeatedly until the quantizer input falls in the inner levels. Therefore these coding schemes increase the bit rate in the region of an edge and require variable rate channels. We implement these two variable rate coding schemes on a token wing network. Timed token protocol supports two classes of messages; asynchronous and synchronous. The synchronous class provides a pre-allocated bandwidth and guaranteed response time. The remaining bandwidth is dynamically allocated to the asynchronous class. The Edge Correcting DPCM is simulated by considering the edge information under the asynchronous class. For the simulation of the Edge Preserving scheme, the amount of information sent each time is fixed, but the length of the packet or the bit rate for that packet is chosen depending on the availability capacity. The performance of the network, and the performance of the image coding algorithms, is studied.
3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns
NASA Astrophysics Data System (ADS)
Flores, Jorge L.; Ayubi, Gaston A.; Di Martino, J. Matías; Castillo, Oscar E.; Ferrari, Jose A.
2018-05-01
In this work, we propose a novel technique to retrieve the 3D shape of dynamic objects by the simultaneous projection of a fringe pattern and a homogeneous light pattern which are both coded in two of the color channels of a RGB image. The fringe pattern, red channel, is used to retrieve the phase by phase-shift algorithms with arbitrary phase-step, while the homogeneous pattern, blue channel, is used to match pixels from the test object in consecutive images, which are acquired at different positions, and thus, to determine the speed of the object. The proposed method successfully overcomes the standard requirement of projecting fringes of two different frequencies; one frequency to extract object information and the other one to retrieve the phase. Validation experiments are presented.
Representation of deformable motion for compression of dynamic cardiac image data
NASA Astrophysics Data System (ADS)
Weinlich, Andreas; Amon, Peter; Hutter, Andreas; Kaup, André
2012-02-01
We present a new approach for efficient estimation and storage of tissue deformation in dynamic medical image data like 3-D+t computed tomography reconstructions of human heart acquisitions. Tissue deformation between two points in time can be described by means of a displacement vector field indicating for each voxel of a slice, from which position in the previous slice at a fixed position in the third dimension it has moved to this position. Our deformation model represents the motion in a compact manner using a down-sampled potential function of the displacement vector field. This function is obtained by a Gauss-Newton minimization of the estimation error image, i. e., the difference between the current and the deformed previous slice. For lossless or lossy compression of volume slices, the potential function and the error image can afterwards be coded separately. By assuming deformations instead of translational motion, a subsequent coding algorithm using this method will achieve better compression ratios for medical volume data than with conventional block-based motion compensation known from video coding. Due to the smooth prediction without block artifacts, particularly whole-image transforms like wavelet decomposition as well as intra-slice prediction methods can benefit from this approach. We show that with discrete cosine as well as with Karhunen-Lo`eve transform the method can achieve a better energy compaction of the error image than block-based motion compensation while reaching approximately the same prediction error energy.
Huang, Tao; Li, Xiao-yu; Jin, Rui; Ku, Jing; Xu, Sen-miao; Xu, Meng-ling; Wu, Zhen-zhong; Kong, De-guo
2015-04-01
The present paper put forward a non-destructive detection method which combines semi-transmission hyperspectral imaging technology with manifold learning dimension reduction algorithm and least squares support vector machine (LSSVM) to recognize internal and external defects in potatoes simultaneously. Three hundred fifteen potatoes were bought in farmers market as research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images of normal external defects (bud and green rind) and internal defect (hollow heart) potatoes. In order to conform to the actual production, defect part is randomly put right, side and back to the acquisition probe when the hyperspectral images of external defects potatoes are acquired. The average spectrums (390-1,040 nm) were extracted from the region of interests for spectral preprocessing. Then three kinds of manifold learning algorithm were respectively utilized to reduce the dimension of spectrum data, including supervised locally linear embedding (SLLE), locally linear embedding (LLE) and isometric mapping (ISOMAP), the low-dimensional data gotten by manifold learning algorithms is used as model input, Error Correcting Output Code (ECOC) and LSSVM were combined to develop the multi-target classification model. By comparing and analyzing results of the three models, we concluded that SLLE is the optimal manifold learning dimension reduction algorithm, and the SLLE-LSSVM model is determined to get the best recognition rate for recognizing internal and external defects potatoes. For test set data, the single recognition rate of normal, bud, green rind and hollow heart potato reached 96.83%, 86.96%, 86.96% and 95% respectively, and he hybrid recognition rate was 93.02%. The results indicate that combining the semi-transmission hyperspectral imaging technology with SLLE-LSSVM is a feasible qualitative analytical method which can simultaneously recognize the internal and external defects potatoes and also provide technical reference for rapid on-line non-destructive detecting of the internal and external defects potatoes.
Robust digital image inpainting algorithm in the wireless environment
NASA Astrophysics Data System (ADS)
Karapetyan, G.; Sarukhanyan, H. G.; Agaian, S. S.
2014-05-01
Image or video inpainting is the process/art of retrieving missing portions of an image without introducing undesirable artifacts that are undetectable by an ordinary observer. An image/video can be damaged due to a variety of factors, such as deterioration due to scratches, laser dazzling effects, wear and tear, dust spots, loss of data when transmitted through a channel, etc. Applications of inpainting include image restoration (removing laser dazzling effects, dust spots, date, text, time, etc.), image synthesis (texture synthesis), completing panoramas, image coding, wireless transmission (recovery of the missing blocks), digital culture protection, image de-noising, fingerprint recognition, and film special effects and production. Most inpainting methods can be classified in two key groups: global and local methods. Global methods are used for generating large image regions from samples while local methods are used for filling in small image gaps. Each method has its own advantages and limitations. For example, the global inpainting methods perform well on textured image retrieval, whereas the classical local methods perform poorly. In addition, some of the techniques are computationally intensive; exceeding the capabilities of most currently used mobile devices. In general, the inpainting algorithms are not suitable for the wireless environment. This paper presents a new and efficient scheme that combines the advantages of both local and global methods into a single algorithm. Particularly, it introduces a blind inpainting model to solve the above problems by adaptively selecting support area for the inpainting scheme. The proposed method is applied to various challenging image restoration tasks, including recovering old photos, recovering missing data on real and synthetic images, and recovering the specular reflections in endoscopic images. A number of computer simulations demonstrate the effectiveness of our scheme and also illustrate the main properties and implementation steps of the presented algorithm. Furthermore, the simulation results show that the presented method is among the state-of-the-art and compares favorably against many available methods in the wireless environment. Robustness in the wireless environment with respect to the shape of the manually selected "marked" region is also illustrated. Currently, we are working on the expansion of this work to video and 3-D data.
NASA Astrophysics Data System (ADS)
Do, Trong Hop; Yoo, Myungsik
2018-01-01
This paper proposes a vehicle positioning system using LED street lights and two rolling shutter CMOS sensor cameras. In this system, identification codes for the LED street lights are transmitted to camera-equipped vehicles through a visible light communication (VLC) channel. Given that the camera parameters are known, the positions of the vehicles are determined based on the geometric relationship between the coordinates of the LEDs in the images and their real world coordinates, which are obtained through the LED identification codes. The main contributions of the paper are twofold. First, the collinear arrangement of the LED street lights makes traditional camera-based positioning algorithms fail to determine the position of the vehicles. In this paper, an algorithm is proposed to fuse data received from the two cameras attached to the vehicles in order to solve the collinearity problem of the LEDs. Second, the rolling shutter mechanism of the CMOS sensors combined with the movement of the vehicles creates image artifacts that may severely degrade the positioning accuracy. This paper also proposes a method to compensate for the rolling shutter artifact, and a high positioning accuracy can be achieved even when the vehicle is moving at high speeds. The performance of the proposed positioning system corresponding to different system parameters is examined by conducting Matlab simulations. Small-scale experiments are also conducted to study the performance of the proposed algorithm in real applications.
A Fourier dimensionality reduction model for big data interferometric imaging
NASA Astrophysics Data System (ADS)
Vijay Kartik, S.; Carrillo, Rafael E.; Thiran, Jean-Philippe; Wiaux, Yves
2017-06-01
Data dimensionality reduction in radio interferometry can provide savings of computational resources for image reconstruction through reduced memory footprints and lighter computations per iteration, which is important for the scalability of imaging methods to the big data setting of the next-generation telescopes. This article sheds new light on dimensionality reduction from the perspective of the compressed sensing theory and studies its interplay with imaging algorithms designed in the context of convex optimization. We propose a post-gridding linear data embedding to the space spanned by the left singular vectors of the measurement operator, providing a dimensionality reduction below image size. This embedding preserves the null space of the measurement operator and hence its sampling properties are also preserved in light of the compressed sensing theory. We show that this can be approximated by first computing the dirty image and then applying a weighted subsampled discrete Fourier transform to obtain the final reduced data vector. This Fourier dimensionality reduction model ensures a fast implementation of the full measurement operator, essential for any iterative image reconstruction method. The proposed reduction also preserves the independent and identically distributed Gaussian properties of the original measurement noise. For convex optimization-based imaging algorithms, this is key to justify the use of the standard ℓ2-norm as the data fidelity term. Our simulations confirm that this dimensionality reduction approach can be leveraged by convex optimization algorithms with no loss in imaging quality relative to reconstructing the image from the complete visibility data set. Reconstruction results in simulation settings with no direction dependent effects or calibration errors show promising performance of the proposed dimensionality reduction. Further tests on real data are planned as an extension of the current work. matlab code implementing the proposed reduction method is available on GitHub.
RAPTOR. I. Time-dependent radiative transfer in arbitrary spacetimes
NASA Astrophysics Data System (ADS)
Bronzwaer, T.; Davelaar, J.; Younsi, Z.; Mościbrodzka, M.; Falcke, H.; Kramer, M.; Rezzolla, L.
2018-05-01
Context. Observational efforts to image the immediate environment of a black hole at the scale of the event horizon benefit from the development of efficient imaging codes that are capable of producing synthetic data, which may be compared with observational data. Aims: We aim to present RAPTOR, a new public code that produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime. It is hardware-agnostic and may be compiled and run both on GPUs and CPUs. Methods: We describe the algorithms used in RAPTOR and test the code's performance. We have performed a detailed comparison of RAPTOR output with that of other radiative-transfer codes and demonstrate convergence of the results. We then applied RAPTOR to study accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fast-light and slow-light paradigms. Results: Using RAPTOR to produce synthetic images and light curves of a GRMHD model of an accreting black hole, we find that the relative difference between fast-light and slow-light light curves is less than 5%. Using two distinct radiative-transfer codes to process the same data, we find integrated flux densities with a relative difference less than 0.01%. Conclusions: For two-dimensional GRMHD models, such as those examined in this paper, the fast-light approximation suffices as long as errors of a few percent are acceptable. The convergence of the results of two different codes demonstrates that they are, at a minimum, consistent. The public version of RAPTOR is available at the following URL: http://https://github.com/tbronzwaer/raptor
Adams, Bradley J; Aschheim, Kenneth W
2016-01-01
Comparison of antemortem and postmortem dental records is a leading method of victim identification, especially for incidents involving a large number of decedents. This process may be expedited with computer software that provides a ranked list of best possible matches. This study provides a comparison of the most commonly used conventional coding and sorting algorithms used in the United States (WinID3) with a simplified coding format that utilizes an optimized sorting algorithm. The simplified system consists of seven basic codes and utilizes an optimized algorithm based largely on the percentage of matches. To perform this research, a large reference database of approximately 50,000 antemortem and postmortem records was created. For most disaster scenarios, the proposed simplified codes, paired with the optimized algorithm, performed better than WinID3 which uses more complex codes. The detailed coding system does show better performance with extremely large numbers of records and/or significant body fragmentation. © 2015 American Academy of Forensic Sciences.
Spiral trajectory design: a flexible numerical algorithm and base analytical equations.
Pipe, James G; Zwart, Nicholas R
2014-01-01
Spiral-based trajectories for magnetic resonance imaging can be advantageous, but are often cumbersome to design or create. This work presents a flexible numerical algorithm for designing trajectories based on explicit definition of radial undersampling, and also gives several analytical expressions for charactering the base (critically sampled) class of these trajectories. Expressions for the gradient waveform, based on slew and amplitude limits, are developed such that a desired pitch in the spiral k-space trajectory is followed. The source code for this algorithm, written in C, is publicly available. Analytical expressions approximating the spiral trajectory (ignoring the radial component) are given to characterize measurement time, gradient heating, maximum gradient amplitude, and off-resonance phase for slew-limited and gradient amplitude-limited cases. Several numerically calculated trajectories are illustrated, and base Archimedean spirals are compared with analytically obtained results. Several different waveforms illustrate that the desired slew and amplitude limits are reached, as are the desired undersampling patterns, using the numerical method. For base Archimedean spirals, the results of the numerical and analytical approaches are in good agreement. A versatile numerical algorithm was developed, and was written in publicly available code. Approximate analytical formulas are given that help characterize spiral trajectories. Copyright © 2013 Wiley Periodicals, Inc.
Two-stage sparse coding of region covariance via Log-Euclidean kernels to detect saliency.
Zhang, Ying-Ying; Yang, Cai; Zhang, Ping
2017-05-01
In this paper, we present a novel bottom-up saliency detection algorithm from the perspective of covariance matrices on a Riemannian manifold. Each superpixel is described by a region covariance matrix on Riemannian Manifolds. We carry out a two-stage sparse coding scheme via Log-Euclidean kernels to extract salient objects efficiently. In the first stage, given background dictionary on image borders, sparse coding of each region covariance via Log-Euclidean kernels is performed. The reconstruction error on the background dictionary is regarded as the initial saliency of each superpixel. In the second stage, an improvement of the initial result is achieved by calculating reconstruction errors of the superpixels on foreground dictionary, which is extracted from the first stage saliency map. The sparse coding in the second stage is similar to the first stage, but is able to effectively highlight the salient objects uniformly from the background. Finally, three post-processing methods-highlight-inhibition function, context-based saliency weighting, and the graph cut-are adopted to further refine the saliency map. Experiments on four public benchmark datasets show that the proposed algorithm outperforms the state-of-the-art methods in terms of precision, recall and mean absolute error, and demonstrate the robustness and efficiency of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.
scarlet: Source separation in multi-band images by Constrained Matrix Factorization
NASA Astrophysics Data System (ADS)
Melchior, Peter; Moolekamp, Fred; Jerdee, Maximilian; Armstrong, Robert; Sun, Ai-Lei; Bosch, James; Lupton, Robert
2018-03-01
SCARLET performs source separation (aka "deblending") on multi-band images. It is geared towards optical astronomy, where scenes are composed of stars and galaxies, but it is straightforward to apply it to other imaging data. Separation is achieved through a constrained matrix factorization, which models each source with a Spectral Energy Distribution (SED) and a non-parametric morphology, or multiple such components per source. The code performs forced photometry (with PSF matching if needed) using an optimal weight function given by the signal-to-noise weighted morphology across bands. The approach works well if the sources in the scene have different colors and can be further strengthened by imposing various additional constraints/priors on each source. Because of its generic utility, this package provides a stand-alone implementation that contains the core components of the source separation algorithm. However, the development of this package is part of the LSST Science Pipeline; the meas_deblender package contains a wrapper to implement the algorithms here for the LSST stack.
Spagnolo, Daniel M; Al-Kofahi, Yousef; Zhu, Peihong; Lezon, Timothy R; Gough, Albert; Stern, Andrew M; Lee, Adrian V; Ginty, Fiona; Sarachan, Brion; Taylor, D Lansing; Chennubhotla, S Chakra
2017-11-01
We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environment), an open-source tool developed to assist cancer researchers in interactive hypothesis testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and the interactions between different cell phenotypes and noncellular constituents. Specifically, we foresee applications in phenotyping cells within tumor microenvironments, recognizing tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal separation, and identification of heterotypic signaling networks underlying microdomains. The THRIVE platform provides an integrated workflow for analyzing whole-slide immunofluorescence images and tissue microarrays, including algorithms for segmentation, quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a maintainable code base using open-source libraries, and an extensible framework for customizing algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence images in mind, and, by providing a platform to efficiently analyze high-dimensional immunofluorescence signals, we hope to advance these data toward mainstream adoption in cancer research. Cancer Res; 77(21); e71-74. ©2017 AACR . ©2017 American Association for Cancer Research.
Automatic single-image-based rain streaks removal via image decomposition.
Kang, Li-Wei; Lin, Chia-Wen; Fu, Yu-Hsiang
2012-04-01
Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.
Task-oriented lossy compression of magnetic resonance images
NASA Astrophysics Data System (ADS)
Anderson, Mark C.; Atkins, M. Stella; Vaisey, Jacques
1996-04-01
A new task-oriented image quality metric is used to quantify the effects of distortion introduced into magnetic resonance images by lossy compression. This metric measures the similarity between a radiologist's manual segmentation of pathological features in the original images and the automated segmentations performed on the original and compressed images. The images are compressed using a general wavelet-based lossy image compression technique, embedded zerotree coding, and segmented using a three-dimensional stochastic model-based tissue segmentation algorithm. The performance of the compression system is then enhanced by compressing different regions of the image volume at different bit rates, guided by prior knowledge about the location of important anatomical regions in the image. Application of the new system to magnetic resonance images is shown to produce compression results superior to the conventional methods, both subjectively and with respect to the segmentation similarity metric.
An improved algorithm for evaluating trellis phase codes
NASA Technical Reports Server (NTRS)
Mulligan, M. G.; Wilson, S. G.
1982-01-01
A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included.
An improved algorithm for evaluating trellis phase codes
NASA Technical Reports Server (NTRS)
Mulligan, M. G.; Wilson, S. G.
1984-01-01
A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included.
Computer algorithm for coding gain
NASA Technical Reports Server (NTRS)
Dodd, E. E.
1974-01-01
Development of a computer algorithm for coding gain for use in an automated communications link design system. Using an empirical formula which defines coding gain as used in space communications engineering, an algorithm is constructed on the basis of available performance data for nonsystematic convolutional encoding with soft-decision (eight-level) Viterbi decoding.
NASA Astrophysics Data System (ADS)
Khan, Faisal; Enzmann, Frieder; Kersten, Michael
2016-03-01
Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.
Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory.
Delgado-Friedrichs, Olaf; Robins, Vanessa; Sheppard, Adrian
2015-03-01
We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011). In the current paper we define basins (the building blocks of a partition) and segments of the skeleton using the stable and unstable sets associated with critical cells. The natural connection between Morse theory and homology allows us to prove the topological validity of these constructions; for example, that the skeleton is homotopic to the initial object. We simplify the basins and skeletons via Morse-theoretic cancellation of critical cells in the discrete gradient vector field using a strategy informed by persistent homology. Simple working Python code for our algorithms for efficient vector field traversal is included. Example data are taken from micro-CT images of porous materials, an application area where accurate topological models of pore connectivity are vital for fluid-flow modelling.
JPIC-Rad-Hard JPEG2000 Image Compression ASIC
NASA Astrophysics Data System (ADS)
Zervas, Nikos; Ginosar, Ran; Broyde, Amitai; Alon, Dov
2010-08-01
JPIC is a rad-hard high-performance image compression ASIC for the aerospace market. JPIC implements tier 1 of the ISO/IEC 15444-1 JPEG2000 (a.k.a. J2K) image compression standard [1] as well as the post compression rate-distortion algorithm, which is part of tier 2 coding. A modular architecture enables employing a single JPIC or multiple coordinated JPIC units. JPIC is designed to support wide data sources of imager in optical, panchromatic and multi-spectral space and airborne sensors. JPIC has been developed as a collaboration of Alma Technologies S.A. (Greece), MBT/IAI Ltd (Israel) and Ramon Chips Ltd (Israel). MBT IAI defined the system architecture requirements and interfaces, The JPEG2K-E IP core from Alma implements the compression algorithm [2]. Ramon Chips adds SERDES interfaces and host interfaces and integrates the ASIC. MBT has demonstrated the full chip on an FPGA board and created system boards employing multiple JPIC units. The ASIC implementation, based on Ramon Chips' 180nm CMOS RadSafe[TM] RH cell library enables superior radiation hardness.
NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.
Pnevmatikakis, Eftychios A; Giovannucci, Andrea
2017-11-01
Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of calcium imaging data sequences. The motion artifacts in two-photon microscopy recordings can be non-rigid, arising from the finite time of raster scanning and non-uniform deformations of the brain medium. We introduce an algorithm for fast Non-Rigid Motion Correction (NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view (FOV) into overlapping spatial patches along all directions. The patches are registered at a sub-pixel resolution for rigid translation against a regularly updated template. The estimated alignments are subsequently up-sampled to create a smooth motion field for each frame that can efficiently approximate non-rigid artifacts in a piecewise-rigid manner. Existing approaches either do not scale well in terms of computational performance or are targeted to non-rigid artifacts arising just from the finite speed of raster scanning, and thus cannot correct for non-rigid motion observable in datasets from a large FOV. NoRMCorre can be run in an online mode resulting in comparable to or even faster than real time motion registration of streaming data. We evaluate its performance with simple yet intuitive metrics and compare against other non-rigid registration methods on simulated data and in vivo two-photon calcium imaging datasets. Open source Matlab and Python code is also made available. The proposed method and accompanying code can be useful for solving large scale image registration problems in calcium imaging, especially in the presence of non-rigid deformations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Android Platform Based Smartphones for a Logistical Remote Association Repair Framework
Lien, Shao-Fan; Wang, Chun-Chieh; Su, Juhng-Perng; Chen, Hong-Ming; Wu, Chein-Hsing
2014-01-01
The maintenance of large-scale systems is an important issue for logistics support planning. In this paper, we developed a Logistical Remote Association Repair Framework (LRARF) to aid repairmen in keeping the system available. LRARF includes four subsystems: smart mobile phones, a Database Management System (DBMS), a Maintenance Support Center (MSC) and wireless networks. The repairman uses smart mobile phones to capture QR-codes and the images of faulty circuit boards. The captured QR-codes and images are transmitted to the DBMS so the invalid modules can be recognized via the proposed algorithm. In this paper, the Linear Projective Transform (LPT) is employed for fast QR-code calibration. Moreover, the ANFIS-based data mining system is used for module identification and searching automatically for the maintenance manual corresponding to the invalid modules. The inputs of the ANFIS-based data mining system are the QR-codes and image features; the output is the module ID. DBMS also transmits the maintenance manual back to the maintenance staff. If modules are not recognizable, the repairmen and center engineers can obtain the relevant information about the invalid modules through live video. The experimental results validate the applicability of the Android-based platform in the recognition of invalid modules. In addition, the live video can also be recorded synchronously on the MSC for later use. PMID:24967603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R; Albanese, K; Lakshmanan, M
Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality formore » breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded aperture coherent scatter imaging a clinically viable method for breast cancer detection. United States Department of Homeland Security; Duke University Medical Center - Department of Radiology; Carl E Ravin Advanced Imaging Laboratories; Duke University Medical Physics Graduate Program.« less
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.
NASA Technical Reports Server (NTRS)
Banks, David C.
1994-01-01
This talk features two simple and useful tools for digital image processing in the UNIX environment. They are xv and pbmplus. The xv image viewer which runs under the X window system reads images in a number of different file formats and writes them out in different formats. The view area supports a pop-up control panel. The 'algorithms' menu lets you blur an image. The xv control panel also activates the color editor which displays the image's color map (if one exists). The xv image viewer is available through the internet. The pbmplus package is a set of tools designed to perform image processing from within a UNIX shell. The acronym 'pbm' stands for portable bit map. Like xv, the pbm plus tool can convert images from and to many different file formats. The source code and manual pages for pbmplus are also available through the internet. This software is in the public domain.
Local electron tomography using angular variations of surface tangents: Stomo version 2
NASA Astrophysics Data System (ADS)
Petersen, T. C.; Ringer, S. P.
2012-03-01
In a recent publication, we investigated the prospect of measuring the outer three-dimensional (3D) shapes of nano-scale atom probe specimens from tilt-series of images collected in the transmission electron microscope. For this purpose alone, an algorithm and simplified reconstruction theory were developed to circumvent issues that arise in commercial "back-projection" computations in this context. In our approach, we give up the difficult task of computing the complete 3D continuum structure and instead seek only the 3D morphology of internal and external scattering interfaces. These interfaces can be described as embedded 2D surfaces projected onto each image in a tilt series. Curves and other features in the images are interpreted as inscribed sets of tangent lines, which intersect the scattering interfaces at unknown locations along the direction of the incident electron beam. Smooth angular variations of the tangent line abscissa are used to compute the surface tangent intersections and hence the 3D morphology as a "point cloud". We have published the explicit details of our alternative algorithm along with the source code entitled "stomo_version_1". For this work, we have further modified the code to efficiently handle rectangular image sets, perform much faster tangent-line "edge detection" and smoother tilt-axis image alignment using simple bi-linear interpolation. We have also adapted the algorithm to detect tangent lines as "ridges", based upon 2nd order partial derivatives of the image intensity; the magnitude and orientation of which is described by a Hessian matrix. Ridges are more appropriate descriptors for tangent-line curves in phase contrast images outlined by Fresnel fringes or absorption contrast data from fine-scale objects. Improved accuracy, efficiency and speed for "stomo_version_2" is demonstrated in this paper using both high resolution electron tomography data of a nano-sized atom probe tip and simulated absorption-contrast images. Program summaryProgram title: STOMO version 2 Catalogue identifier: AEFS_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFS_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2854 No. of bytes in distributed program, including test data, etc.: 23 559 Distribution format: tar.gz Programming language: C/C++ Computer: PC Operating system: Windows XP RAM: Scales as the product of experimental image dimensions multiplied by the number of points chosen by the user in polynomial fitting. Typical runs require between 50 Mb and 100 Mb of RAM. Supplementary material: Sample output files, for the test run provided, are available. Classification: 7.4, 14 Catalogue identifier of previous version: AEFS_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 676 Does the new version supersede the previous version?: Yes Nature of problem: A local electron tomography algorithm of specimens for which conventional back projection may fail and or data for which there is a limited angular range (which would otherwise cause significant 'missing-wedge' artefacts). The algorithm does not solve the tomography back projection problem but rather locally reconstructs the 3D morphology of surfaces defined by varied scattering densities. Solution method: Local reconstruction is effected using image-analysis edge and ridge detection computations on experimental tilt series to measure smooth angular variations of surface tangent-line intersections, which generate point clouds decorating the embedded and or external scattering surfaces of a specimen. Reasons for new version: The new version was coded to cater for rectangular images in experimental tilt-series, ensure smoother image rotations, provide ridge detection (suitable for sensing phase-contrast Fresnel fringes and other fine-scale structures), faster/larger kernel edge detection and also greatly reduce RAM usage. Specimen surface normals are also explicitly computed from tangent-line and edge intersections, providing new information for potential use in point cloud rendering. Hysteresis thresholding implemented in the version 1 edge-detection algorithm provided only sparse edge-linking. Version 2 now implements edge tracking using recursion to fully link the edges during hysteresis thresholding. Furthermore in version 1 the minimum number of fitted polynomial points (specified in the input file) was not correctly imposed, which has been fixed for version 2. Most of these changes increase the accuracy of 3d morphology surface-tomography reconstructions by facilitating the use of more/finer tilt angles and experimental images of increased spatial-resolution. The ridge detection was incorporated to specifically improve the reconstruction of internal specimen morphology. Summary of revisions: Included Hessian() function to compute 2nd order spatial derivatives of image intensities (operates in the same fashion as the previous and existing Sobel() function). Changed convolve_Gaussian() function to alternatively use successive 1D convolutions (rather than cumbersome 2D summations implemented in version 1), resulting in a large increase in computational speed without any loss in accuracy. The convolution kernel size was hence widened to three times the full width half maximum of the Gaussian filter to improve scale-space selection accuracy. A ridge detection option was included to compute edge maps sensitive to ridges, rather than edges, using elements from a Hessian matrix; the eigenvalues of which were used to define ridge direction for Canny-type hysteresis thresholding. Function edge_detect_Canny() was also altered to pass the gradient-direction maps (from either Hessian or Sobel based operators) in and out of scope for computation of surface normals; thereby enabling the output of both point-cloud and corresponding unstructured vector-field surface descriptors. Function rotate_imgs() was changed to incorporate basic bi-linear interpolation for improved tilt-axis alignment of the entire tilt series in exp_data.dat. Smoother and more accurate edge maps are thereby produced. Algorithm convert_point_cloud_to_tomogram() was created to output the tomogram 3d_imgs.dat in a more memory efficient manner. The function shell_sort(), adapted from numerical recipes in C, was also coded for this purpose. The new function compute_xyz() was coded to calculate point-clouds and tomogram surface normals using information from single tilt images, as opposed to the entire stack. This function is hence used iteratively throughout the reconstruction as each tilt image is analysed in succession. The new function reconstruct_local() is the heart of stomo_version_2.cpp. the main() source code in stomo_version_1.cpp has been rewritten here to process experimental images and edge maps one at a time, using a buffered 3d array of dimensions dictated solely by the number of tilt images required for the local SVD fit of the angular variations. These changes (along with similar iterative file writing) have been made to vastly reduce memory usage and hence allow higher spatial and angular resolution data sets to be analysed without recourse to high performance computing resources. The input file has been simplified by removing the 'slices' and 'channels' settings (used in version 1 for crude image binning), which are now equal to the respective numbers of image rows and columns. Every summation over image rows and columns has been checked to enable the analysis of rectangular images without error. For images of specimens with high aspect-ratios, such as narrow tips, these fixes allow significant reductions in computation time and memory usage. Some arrays in the source code were not appropriately zeroed in version 1, causing reconstruction artefacts in some cases. These problems have now been fixed. Fixed an if-statement to correctly impose the minimum number of fitted polynomial points, thereby reducing noise in the reconstructed data. Implemented proper edge linking in the hysteresis thresholding code for Canny edge detection. Restrictions: The input experimental tilt-series of images must be registered with respect to a common single tilt axis with known orientation and position. Running time: For high quality reconstruction, 2-5 min.
BSIFT: toward data-independent codebook for large scale image search.
Zhou, Wengang; Li, Houqiang; Hong, Richang; Lu, Yijuan; Tian, Qi
2015-03-01
Bag-of-Words (BoWs) model based on Scale Invariant Feature Transform (SIFT) has been widely used in large-scale image retrieval applications. Feature quantization by vector quantization plays a crucial role in BoW model, which generates visual words from the high- dimensional SIFT features, so as to adapt to the inverted file structure for the scalable retrieval. Traditional feature quantization approaches suffer several issues, such as necessity of visual codebook training, limited reliability, and update inefficiency. To avoid the above problems, in this paper, a novel feature quantization scheme is proposed to efficiently quantize each SIFT descriptor to a descriptive and discriminative bit-vector, which is called binary SIFT (BSIFT). Our quantizer is independent of image collections. In addition, by taking the first 32 bits out from BSIFT as code word, the generated BSIFT naturally lends itself to adapt to the classic inverted file structure for image indexing. Moreover, the quantization error is reduced by feature filtering, code word expansion, and query sensitive mask shielding. Without any explicit codebook for quantization, our approach can be readily applied in image search in some resource-limited scenarios. We evaluate the proposed algorithm for large scale image search on two public image data sets. Experimental results demonstrate the index efficiency and retrieval accuracy of our approach.
Real-time minimal-bit-error probability decoding of convolutional codes
NASA Technical Reports Server (NTRS)
Lee, L.-N.
1974-01-01
A recursive procedure is derived for decoding of rate R = 1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit, subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e., fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications, such as in the inner coding system for concatenated coding.
Real-time minimal bit error probability decoding of convolutional codes
NASA Technical Reports Server (NTRS)
Lee, L. N.
1973-01-01
A recursive procedure is derived for decoding of rate R=1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e. fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications such as in the inner coding system for concatenated coding.
NASA Astrophysics Data System (ADS)
Yu, Caixia; Zhao, Jingtao; Wang, Yanfei; Wang, Chengxiang; Geng, Weifeng
2017-03-01
The small-scale geologic inhomogeneities or discontinuities, such as tiny faults, cavities or fractures, generally have spatial scales comparable to or even smaller than the seismic wavelength. Therefore, the seismic responses of these objects are coded in diffractions and an attempt to high-resolution imaging can be made if we can appropriately image them. As the amplitudes of reflections can be several orders of magnitude larger than those of diffractions, one of the key problems of diffraction imaging is to suppress reflections and at the same time to preserve diffractions. A sparsity-promoting method for separating diffractions in the common-offset domain is proposed that uses the Kirchhoff integral formula to enforce the sparsity of diffractions and the linear Radon transform to formulate reflections. A subspace trust-region algorithm that can provide globally convergent solutions is employed for solving this large-scale computation problem. The method not only allows for separation of diffractions in the case of interfering events but also ensures a high fidelity of the separated diffractions. Numerical experiment and field application demonstrate the good performance of the proposed method in imaging the small-scale geological features related to the migration channel and storage spaces of carbonate reservoirs.
Image Navigation and Registration Performance Assessment Evaluation Tools for GOES-R ABI and GLM
NASA Technical Reports Server (NTRS)
Houchin, Scott; Porter, Brian; Graybill, Justin; Slingerland, Philip
2017-01-01
The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. This paper describes the software design and implementation of IPATS and provides preliminary test results.
Optimal color coding for compression of true color images
NASA Astrophysics Data System (ADS)
Musatenko, Yurij S.; Kurashov, Vitalij N.
1998-11-01
In the paper we present the method that improves lossy compression of the true color or other multispectral images. The essence of the method is to project initial color planes into Karhunen-Loeve (KL) basis that gives completely decorrelated representation for the image and to compress basis functions instead of the planes. To do that the new fast algorithm of true KL basis construction with low memory consumption is suggested and our recently proposed scheme for finding optimal losses of Kl functions while compression is used. Compare to standard JPEG compression of the CMYK images the method provides the PSNR gain from 0.2 to 2 dB for the convenient compression ratios. Experimental results are obtained for high resolution CMYK images. It is demonstrated that presented scheme could work on common hardware.
Hyperspectral retrieval of surface reflectances: A new scheme
NASA Astrophysics Data System (ADS)
Thelen, Jean-Claude; Havemann, Stephan
2013-05-01
Here, we present a new prototype algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space borne, hyperspectral imagers. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes.
NASA Astrophysics Data System (ADS)
Mojica, Edson; Pertuz, Said; Arguello, Henry
2017-12-01
One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.
Sparse modeling applied to patient identification for safety in medical physics applications
NASA Astrophysics Data System (ADS)
Lewkowitz, Stephanie
Every scheduled treatment at a radiation therapy clinic involves a series of safety protocol to ensure the utmost patient care. Despite safety protocol, on a rare occasion an entirely preventable medical event, an accident, may occur. Delivering a treatment plan to the wrong patient is preventable, yet still is a clinically documented error. This research describes a computational method to identify patients with a novel machine learning technique to combat misadministration. The patient identification program stores face and fingerprint data for each patient. New, unlabeled data from those patients are categorized according to the library. The categorization of data by this face-fingerprint detector is accomplished with new machine learning algorithms based on Sparse Modeling that have already begun transforming the foundation of Computer Vision. Previous patient recognition software required special subroutines for faces and different tailored subroutines for fingerprints. In this research, the same exact model is used for both fingerprints and faces, without any additional subroutines and even without adjusting the two hyperparameters. Sparse modeling is a powerful tool, already shown utility in the areas of super-resolution, denoising, inpainting, demosaicing, and sub-nyquist sampling, i.e. compressed sensing. Sparse Modeling is possible because natural images are inherently sparse in some bases, due to their inherent structure. This research chooses datasets of face and fingerprint images to test the patient identification model. The model stores the images of each dataset as a basis (library). One image at a time is removed from the library, and is classified by a sparse code in terms of the remaining library. The Locally Competitive Algorithm, a truly neural inspired Artificial Neural Network, solves the computationally difficult task of finding the sparse code for the test image. The components of the sparse representation vector are summed by ℓ1 pooling, and correct patient identification is consistently achieved 100% over 1000 trials, when either the face data or fingerprint data are implemented as a classification basis. The algorithm gets 100% classification when faces and fingerprints are concatenated into multimodal datasets. This suggests that 100% patient identification will be achievable in the clinal setting.
Adams, Derk; Schreuder, Astrid B; Salottolo, Kristin; Settell, April; Goss, J Richard
2011-07-01
There are significant changes in the abbreviated injury scale (AIS) 2005 system, which make it impractical to compare patients coded in AIS version 98 with patients coded in AIS version 2005. Harborview Medical Center created a computer algorithm "Harborview AIS Mapping Program (HAMP)" to automatically convert AIS 2005 to AIS 98 injury codes. The mapping was validated using 6 months of double-coded patient injury records from a Level I Trauma Center. HAMP was used to determine how closely individual AIS and injury severity scores (ISS) were converted from AIS 2005 to AIS 98 versions. The kappa statistic was used to measure the agreement between manually determined codes and HAMP-derived codes. Seven hundred forty-nine patient records were used for validation. For the conversion of AIS codes, the measure of agreement between HAMP and manually determined codes was [kappa] = 0.84 (95% confidence interval, 0.82-0.86). The algorithm errors were smaller in magnitude than the manually determined coding errors. For the conversion of ISS, the agreement between HAMP versus manually determined ISS was [kappa] = 0.81 (95% confidence interval, 0.78-0.84). The HAMP algorithm successfully converted injuries coded in AIS 2005 to AIS 98. This algorithm will be useful when comparing trauma patient clinical data across populations coded in different versions, especially for longitudinal studies.
Tomographic image reconstruction using the cell broadband engine (CBE) general purpose hardware
NASA Astrophysics Data System (ADS)
Knaup, Michael; Steckmann, Sven; Bockenbach, Olivier; Kachelrieß, Marc
2007-02-01
Tomographic image reconstruction, such as the reconstruction of CT projection values, of tomosynthesis data, PET or SPECT events, is computational very demanding. In filtered backprojection as well as in iterative reconstruction schemes, the most time-consuming steps are forward- and backprojection which are often limited by the memory bandwidth. Recently, a novel general purpose architecture optimized for distributed computing became available: the Cell Broadband Engine (CBE). Its eight synergistic processing elements (SPEs) currently allow for a theoretical performance of 192 GFlops (3 GHz, 8 units, 4 floats per vector, 2 instructions, multiply and add, per clock). To maximize image reconstruction speed we modified our parallel-beam and perspective backprojection algorithms which are highly optimized for standard PCs, and optimized the code for the CBE processor. 1-3 In addition, we implemented an optimized perspective forwardprojection on the CBE which allows us to perform statistical image reconstructions like the ordered subset convex (OSC) algorithm. 4 Performance was measured using simulated data with 512 projections per rotation and 5122 detector elements. The data were backprojected into an image of 512 3 voxels using our PC-based approaches and the new CBE- based algorithms. Both the PC and the CBE timings were scaled to a 3 GHz clock frequency. On the CBE, we obtain total reconstruction times of 4.04 s for the parallel backprojection, 13.6 s for the perspective backprojection and 192 s for a complete OSC reconstruction, consisting of one initial Feldkamp reconstruction, followed by 4 OSC iterations.
Denoising, deconvolving, and decomposing photon observations. Derivation of the D3PO algorithm
NASA Astrophysics Data System (ADS)
Selig, Marco; Enßlin, Torsten A.
2015-02-01
The analysis of astronomical images is a non-trivial task. The D3PO algorithm addresses the inference problem of denoising, deconvolving, and decomposing photon observations. Its primary goal is the simultaneous but individual reconstruction of the diffuse and point-like photon flux given a single photon count image, where the fluxes are superimposed. In order to discriminate between these morphologically different signal components, a probabilistic algorithm is derived in the language of information field theory based on a hierarchical Bayesian parameter model. The signal inference exploits prior information on the spatial correlation structure of the diffuse component and the brightness distribution of the spatially uncorrelated point-like sources. A maximum a posteriori solution and a solution minimizing the Gibbs free energy of the inference problem using variational Bayesian methods are discussed. Since the derivation of the solution is not dependent on the underlying position space, the implementation of the D3PO algorithm uses the nifty package to ensure applicability to various spatial grids and at any resolution. The fidelity of the algorithm is validated by the analysis of simulated data, including a realistic high energy photon count image showing a 32 × 32 arcmin2 observation with a spatial resolution of 0.1 arcmin. In all tests the D3PO algorithm successfully denoised, deconvolved, and decomposed the data into a diffuse and a point-like signal estimate for the respective photon flux components. A copy of the code is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A74
Yoo, Terry S; Ackerman, Michael J; Lorensen, William E; Schroeder, Will; Chalana, Vikram; Aylward, Stephen; Metaxas, Dimitris; Whitaker, Ross
2002-01-01
We present the detailed planning and execution of the Insight Toolkit (ITK), an application programmers interface (API) for the segmentation and registration of medical image data. This public resource has been developed through the NLM Visible Human Project, and is in beta test as an open-source software offering under cost-free licensing. The toolkit concentrates on 3D medical data segmentation and registration algorithms, multimodal and multiresolution capabilities, and portable platform independent support for Windows, Linux/Unix systems. This toolkit was built using current practices in software engineering. Specifically, we embraced the concept of generic programming during the development of these tools, working extensively with C++ templates and the freedom and flexibility they allow. Software development tools for distributed consortium-based code development have been created and are also publicly available. We discuss our assumptions, design decisions, and some lessons learned.
Implementation of MPEG-2 encoder to multiprocessor system using multiple MVPs (TMS320C80)
NASA Astrophysics Data System (ADS)
Kim, HyungSun; Boo, Kenny; Chung, SeokWoo; Choi, Geon Y.; Lee, YongJin; Jeon, JaeHo; Park, Hyun Wook
1997-05-01
This paper presents the efficient algorithm mapping for the real-time MPEG-2 encoding on the KAIST image computing system (KICS), which has a parallel architecture using five multimedia video processors (MVPs). The MVP is a general purpose digital signal processor (DSP) of Texas Instrument. It combines one floating-point processor and four fixed- point DSPs on a single chip. The KICS uses the MVP as a primary processing element (PE). Two PEs form a cluster, and there are two processing clusters in the KICS. Real-time MPEG-2 encoder is implemented through the spatial and the functional partitioning strategies. Encoding process of spatially partitioned half of the video input frame is assigned to ne processing cluster. Two PEs perform the functionally partitioned MPEG-2 encoding tasks in the pipelined operation mode. One PE of a cluster carries out the transform coding part and the other performs the predictive coding part of the MPEG-2 encoding algorithm. One MVP among five MVPs is used for system control and interface with host computer. This paper introduces an implementation of the MPEG-2 algorithm with a parallel processing architecture.
Discriminative object tracking via sparse representation and online dictionary learning.
Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua
2014-04-01
We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.
2D bifurcations and Newtonian properties of memristive Chua's circuits
NASA Astrophysics Data System (ADS)
Marszalek, W.; Podhaisky, H.
2016-01-01
Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.
High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors
NASA Technical Reports Server (NTRS)
Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.
1994-01-01
Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.
Joint image encryption and compression scheme based on IWT and SPIHT
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-03-01
A joint lossless image encryption and compression scheme based on integer wavelet transform (IWT) and set partitioning in hierarchical trees (SPIHT) is proposed to achieve lossless image encryption and compression simultaneously. Making use of the properties of IWT and SPIHT, encryption and compression are combined. Moreover, the proposed secure set partitioning in hierarchical trees (SSPIHT) via the addition of encryption in the SPIHT coding process has no effect on compression performance. A hyper-chaotic system, nonlinear inverse operation, Secure Hash Algorithm-256(SHA-256), and plaintext-based keystream are all used to enhance the security. The test results indicate that the proposed methods have high security and good lossless compression performance.
Tail Biting Trellis Representation of Codes: Decoding and Construction
NASA Technical Reports Server (NTRS)
Shao. Rose Y.; Lin, Shu; Fossorier, Marc
1999-01-01
This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.
On the optimality of a universal noiseless coder
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Rice, Robert F.; Miller, Warner H.
1993-01-01
Rice developed a universal noiseless coding structure that provides efficient performance over an extremely broad range of source entropy. This is accomplished by adaptively selecting the best of several easily implemented variable length coding algorithms. Variations of such noiseless coders have been used in many NASA applications. Custom VLSI coder and decoder modules capable of processing over 50 million samples per second have been fabricated and tested. In this study, the first of the code options used in this module development is shown to be equivalent to a class of Huffman code under the Humblet condition, for source symbol sets having a Laplacian distribution. Except for the default option, other options are shown to be equivalent to the Huffman codes of a modified Laplacian symbol set, at specified symbol entropy values. Simulation results are obtained on actual aerial imagery over a wide entropy range, and they confirm the optimality of the scheme. Comparison with other known techniques are performed on several widely used images and the results further validate the coder's optimality.
Improved Iris Recognition through Fusion of Hamming Distance and Fragile Bit Distance.
Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J
2011-12-01
The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are equally consistent. A bit is deemed fragile if its value changes across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. To our knowledge, this is the first and only work to use the coincidence of fragile bit locations to improve the accuracy of matches.
Mindboggling morphometry of human brains
Bao, Forrest S.; Giard, Joachim; Stavsky, Eliezer; Lee, Noah; Rossa, Brian; Reuter, Martin; Chaibub Neto, Elias
2017-01-01
Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle’s algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available. PMID:28231282
Iterative Code-Aided ML Phase Estimation and Phase Ambiguity Resolution
NASA Astrophysics Data System (ADS)
Wymeersch, Henk; Moeneclaey, Marc
2005-12-01
As many coded systems operate at very low signal-to-noise ratios, synchronization becomes a very difficult task. In many cases, conventional algorithms will either require long training sequences or result in large BER degradations. By exploiting code properties, these problems can be avoided. In this contribution, we present several iterative maximum-likelihood (ML) algorithms for joint carrier phase estimation and ambiguity resolution. These algorithms operate on coded signals by accepting soft information from the MAP decoder. Issues of convergence and initialization are addressed in detail. Simulation results are presented for turbo codes, and are compared to performance results of conventional algorithms. Performance comparisons are carried out in terms of BER performance and mean square estimation error (MSEE). We show that the proposed algorithm reduces the MSEE and, more importantly, the BER degradation. Additionally, phase ambiguity resolution can be performed without resorting to a pilot sequence, thus improving the spectral efficiency.
GOES-R Geostationary Lightning Mapper Performance Specifications and Algorithms
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.
Recursive Hierarchical Image Segmentation by Region Growing and Constrained Spectral Clustering
NASA Technical Reports Server (NTRS)
Tilton, James C.
2002-01-01
This paper describes an algorithm for hierarchical image segmentation (referred to as HSEG) and its recursive formulation (referred to as RHSEG). The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HS WO) approach to region growing, which seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing. In addition, HSEG optionally interjects between HSWO region growing iterations merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the segmentation results, especially for larger images, it also significantly increases HSEG's computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) has been devised and is described herein. Included in this description is special code that is required to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. Implementations for single processor and for multiple processor computer systems are described. Results with Landsat TM data are included comparing HSEG with classic region growing. Finally, an application to image information mining and knowledge discovery is discussed.
NASA Astrophysics Data System (ADS)
Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.
2017-01-01
Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system.
Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.
2017-01-01
Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system. PMID:28106129
nRC: non-coding RNA Classifier based on structural features.
Fiannaca, Antonino; La Rosa, Massimo; La Paglia, Laura; Rizzo, Riccardo; Urso, Alfonso
2017-01-01
Non-coding RNA (ncRNA) are small non-coding sequences involved in gene expression regulation of many biological processes and diseases. The recent discovery of a large set of different ncRNAs with biologically relevant roles has opened the way to develop methods able to discriminate between the different ncRNA classes. Moreover, the lack of knowledge about the complete mechanisms in regulative processes, together with the development of high-throughput technologies, has required the help of bioinformatics tools in addressing biologists and clinicians with a deeper comprehension of the functional roles of ncRNAs. In this work, we introduce a new ncRNA classification tool, nRC (non-coding RNA Classifier). Our approach is based on features extraction from the ncRNA secondary structure together with a supervised classification algorithm implementing a deep learning architecture based on convolutional neural networks. We tested our approach for the classification of 13 different ncRNA classes. We obtained classification scores, using the most common statistical measures. In particular, we reach an accuracy and sensitivity score of about 74%. The proposed method outperforms other similar classification methods based on secondary structure features and machine learning algorithms, including the RNAcon tool that, to date, is the reference classifier. nRC tool is freely available as a docker image at https://hub.docker.com/r/tblab/nrc/. The source code of nRC tool is also available at https://github.com/IcarPA-TBlab/nrc.
NASA Technical Reports Server (NTRS)
1982-01-01
A project to develop an effective mobility aid for blind pedestrians which acquires consecutive images of the scenes before a moving pedestrian, which locates and identifies the pedestrian's path and potential obstacles in the path, which presents path and obstacle information to the pedestrian, and which operates in real-time is discussed. The mobility aid has three principal components: an image acquisition system, an image interpretation system, and an information presentation system. The image acquisition system consists of a miniature, solid-state TV camera which transforms the scene before the blind pedestrian into an image which can be received by the image interpretation system. The image interpretation system is implemented on a microprocessor which has been programmed to execute real-time feature extraction and scene analysis algorithms for locating and identifying the pedestrian's path and potential obstacles. Identity and location information is presented to the pedestrian by means of tactile coding and machine-generated speech.
NASA Astrophysics Data System (ADS)
Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.
2014-12-01
Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint inversion code at the SAFOD site to compare its performance over the previous code. We will also select another fault zone such as the San Jacinto Fault Zone to better image its structure.
NASA Astrophysics Data System (ADS)
Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves
2009-03-01
This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications
Park, Keunyeol; Song, Minkyu
2018-01-01
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.
Park, Keunyeol; Song, Minkyu; Kim, Soo Youn
2018-02-24
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.
Ladner, Travis R; Greenberg, Jacob K; Guerrero, Nicole; Olsen, Margaret A; Shannon, Chevis N; Yarbrough, Chester K; Piccirillo, Jay F; Anderson, Richard C E; Feldstein, Neil A; Wellons, John C; Smyth, Matthew D; Park, Tae Sung; Limbrick, David D
2016-05-01
OBJECTIVE Administrative billing data may facilitate large-scale assessments of treatment outcomes for pediatric Chiari malformation Type I (CM-I). Validated International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code algorithms for identifying CM-I surgery are critical prerequisites for such studies but are currently only available for adults. The objective of this study was to validate two ICD-9-CM code algorithms using hospital billing data to identify pediatric patients undergoing CM-I decompression surgery. METHODS The authors retrospectively analyzed the validity of two ICD-9-CM code algorithms for identifying pediatric CM-I decompression surgery performed at 3 academic medical centers between 2001 and 2013. Algorithm 1 included any discharge diagnosis code of 348.4 (CM-I), as well as a procedure code of 01.24 (cranial decompression) or 03.09 (spinal decompression or laminectomy). Algorithm 2 restricted this group to the subset of patients with a primary discharge diagnosis of 348.4. The positive predictive value (PPV) and sensitivity of each algorithm were calculated. RESULTS Among 625 first-time admissions identified by Algorithm 1, the overall PPV for CM-I decompression was 92%. Among the 581 admissions identified by Algorithm 2, the PPV was 97%. The PPV for Algorithm 1 was lower in one center (84%) compared with the other centers (93%-94%), whereas the PPV of Algorithm 2 remained high (96%-98%) across all subgroups. The sensitivity of Algorithms 1 (91%) and 2 (89%) was very good and remained so across subgroups (82%-97%). CONCLUSIONS An ICD-9-CM algorithm requiring a primary diagnosis of CM-I has excellent PPV and very good sensitivity for identifying CM-I decompression surgery in pediatric patients. These results establish a basis for utilizing administrative billing data to assess pediatric CM-I treatment outcomes.
Adaptive distributed source coding.
Varodayan, David; Lin, Yao-Chung; Girod, Bernd
2012-05-01
We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.
NASA Astrophysics Data System (ADS)
Bai, Cheng-lin; Cheng, Zhi-hui
2016-09-01
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.
NASA Astrophysics Data System (ADS)
Kotchenova, Svetlana Y.; Vermote, Eric F.; Matarrese, Raffaella; Klemm, Frank J., Jr.
2006-09-01
A vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), which enables accounting for radiation polarization, has been developed and validated against a Monte Carlo code, Coulson's tabulated values, and MOBY (Marine Optical Buoy System) water-leaving reflectance measurements. The developed code was also tested against the scalar codes SHARM, DISORT, and MODTRAN to evaluate its performance in scalar mode and the influence of polarization. The obtained results have shown a good agreement of 0.7% in comparison with the Monte Carlo code, 0.2% for Coulson's tabulated values, and 0.001-0.002 for the 400-550 nm region for the MOBY reflectances. Ignoring the effects of polarization led to large errors in calculated top-of-atmosphere reflectances: more than 10% for a molecular atmosphere and up to 5% for an aerosol atmosphere. This new version of 6S is intended to replace the previous scalar version used for calculation of lookup tables in the MODIS (Moderate Resolution Imaging Spectroradiometer) atmospheric correction algorithm.
Kotchenova, Svetlana Y; Vermote, Eric F; Matarrese, Raffaella; Klemm, Frank J
2006-09-10
A vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), which enables accounting for radiation polarization, has been developed and validated against a Monte Carlo code, Coulson's tabulated values, and MOBY (Marine Optical Buoy System) water-leaving reflectance measurements. The developed code was also tested against the scalar codes SHARM, DISORT, and MODTRAN to evaluate its performance in scalar mode and the influence of polarization. The obtained results have shown a good agreement of 0.7% in comparison with the Monte Carlo code, 0.2% for Coulson's tabulated values, and 0.001-0.002 for the 400-550 nm region for the MOBY reflectances. Ignoring the effects of polarization led to large errors in calculated top-of-atmosphere reflectances: more than 10% for a molecular atmosphere and up to 5% for an aerosol atmosphere. This new version of 6S is intended to replace the previous scalar version used for calculation of lookup tables in the MODIS (Moderate Resolution Imaging Spectroradiometer) atmospheric correction algorithm.
A constrained joint source/channel coder design and vector quantization of nonstationary sources
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.
1993-01-01
The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.
Zhang, Ying-Ying; Yang, Cai; Zhang, Ping
2017-08-01
In this paper, we present a novel bottom-up saliency detection algorithm from the perspective of covariance matrices on a Riemannian manifold. Each superpixel is described by a region covariance matrix on Riemannian Manifolds. We carry out a two-stage sparse coding scheme via Log-Euclidean kernels to extract salient objects efficiently. In the first stage, given background dictionary on image borders, sparse coding of each region covariance via Log-Euclidean kernels is performed. The reconstruction error on the background dictionary is regarded as the initial saliency of each superpixel. In the second stage, an improvement of the initial result is achieved by calculating reconstruction errors of the superpixels on foreground dictionary, which is extracted from the first stage saliency map. The sparse coding in the second stage is similar to the first stage, but is able to effectively highlight the salient objects uniformly from the background. Finally, three post-processing methods-highlight-inhibition function, context-based saliency weighting, and the graph cut-are adopted to further refine the saliency map. Experiments on four public benchmark datasets show that the proposed algorithm outperforms the state-of-the-art methods in terms of precision, recall and mean absolute error, and demonstrate the robustness and efficiency of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Putting Priors in Mixture Density Mercer Kernels
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2004-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.
BrainIACS: a system for web-based medical image processing
NASA Astrophysics Data System (ADS)
Kishore, Bhaskar; Bazin, Pierre-Louis; Pham, Dzung L.
2009-02-01
We describe BrainIACS, a web-based medical image processing system that permits and facilitates algorithm developers to quickly create extensible user interfaces for their algorithms. Designed to address the challenges faced by algorithm developers in providing user-friendly graphical interfaces, BrainIACS is completely implemented using freely available, open-source software. The system, which is based on a client-server architecture, utilizes an AJAX front-end written using the Google Web Toolkit (GWT) and Java Servlets running on Apache Tomcat as its back-end. To enable developers to quickly and simply create user interfaces for configuring their algorithms, the interfaces are described using XML and are parsed by our system to create the corresponding user interface elements. Most of the commonly found elements such as check boxes, drop down lists, input boxes, radio buttons, tab panels and group boxes are supported. Some elements such as the input box support input validation. Changes to the user interface such as addition and deletion of elements are performed by editing the XML file or by using the system's user interface creator. In addition to user interface generation, the system also provides its own interfaces for data transfer, previewing of input and output files, and algorithm queuing. As the system is programmed using Java (and finally Java-script after compilation of the front-end code), it is platform independent with the only requirements being that a Servlet implementation be available and that the processing algorithms can execute on the server platform.
Visualization and Analysis of Microtubule Dynamics Using Dual Color-Coded Display of Plus-End Labels
Garrison, Amy K.; Xia, Caihong; Wang, Zheng; Ma, Le
2012-01-01
Investigating spatial and temporal control of microtubule dynamics in live cells is critical to understanding cell morphogenesis in development and disease. Tracking fluorescently labeled plus-end-tracking proteins over time has become a widely used method to study microtubule assembly. Here, we report a complementary approach that uses only two images of these labels to visualize and analyze microtubule dynamics at any given time. Using a simple color-coding scheme, labeled plus-ends from two sequential images are pseudocolored with different colors and then merged to display color-coded ends. Based on object recognition algorithms, these colored ends can be identified and segregated into dynamic groups corresponding to four events, including growth, rescue, catastrophe, and pause. Further analysis yields not only their spatial distribution throughout the cell but also provides measurements such as growth rate and direction for each labeled end. We have validated the method by comparing our results with ground-truth data derived from manual analysis as well as with data obtained using the tracking method. In addition, we have confirmed color-coded representation of different dynamic events by analyzing their history and fate. Finally, we have demonstrated the use of the method to investigate microtubule assembly in cells and provided guidance in selecting optimal image acquisition conditions. Thus, this simple computer vision method offers a unique and quantitative approach to study spatial regulation of microtubule dynamics in cells. PMID:23226282
Streaming Multiframe Deconvolutions on GPUs
NASA Astrophysics Data System (ADS)
Lee, M. A.; Budavári, T.
2015-09-01
Atmospheric turbulence distorts all ground-based observations, which is especially detrimental to faint detections. The point spread function (PSF) defining this blur is unknown for each exposure and varies significantly over time, making image analysis difficult. Lucky imaging and traditional co-adding throws away lots of information. We developed blind deconvolution algorithms that can simultaneously obtain robust solutions for the background image and all the PSFs. It is done in a streaming setting, which makes it practical for large number of big images. We implemented a new tool that runs of GPUs and achieves exceptional running times that can scale to the new time-domain surveys. Our code can quickly and effectively recover high-resolution images exceeding the quality of traditional co-adds. We demonstrate the power of the method on the repeated exposures in the Sloan Digital Sky Survey's Stripe 82.
Thermal analysis of combinatorial solid geometry models using SINDA
NASA Technical Reports Server (NTRS)
Gerencser, Diane; Radke, George; Introne, Rob; Klosterman, John; Miklosovic, Dave
1993-01-01
Algorithms have been developed using Monte Carlo techniques to determine the thermal network parameters necessary to perform a finite difference analysis on Combinatorial Solid Geometry (CSG) models. Orbital and laser fluxes as well as internal heat generation are modeled to facilitate satellite modeling. The results of the thermal calculations are used to model the infrared (IR) images of targets and assess target vulnerability. Sample analyses and validation are presented which demonstrate code products.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.
The analysis of convolutional codes via the extended Smith algorithm
NASA Technical Reports Server (NTRS)
Mceliece, R. J.; Onyszchuk, I.
1993-01-01
Convolutional codes have been the central part of most error-control systems in deep-space communication for many years. Almost all such applications, however, have used the restricted class of (n,1), also known as 'rate 1/n,' convolutional codes. The more general class of (n,k) convolutional codes contains many potentially useful codes, but their algebraic theory is difficult and has proved to be a stumbling block in the evolution of convolutional coding systems. In this article, the situation is improved by describing a set of practical algorithms for computing certain basic things about a convolutional code (among them the degree, the Forney indices, a minimal generator matrix, and a parity-check matrix), which are usually needed before a system using the code can be built. The approach is based on the classic Forney theory for convolutional codes, together with the extended Smith algorithm for polynomial matrices, which is introduced in this article.
Surface emissivity and temperature retrieval for a hyperspectral sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borel, C.C.
1998-12-01
With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrievesmore » emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.« less
Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi
2017-01-01
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization. PMID:28786986
Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong
2017-01-01
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.
Van Uytven, Eric; Pistorius, Stephen; Gordon, Richard
2007-01-01
X-ray film-screen mammography is currently the gold standard for detecting breast cancer. However, one disadvantage is that it projects a three-dimensional (3D) object onto a two-dimensional (2D) image, reducing contrast between small lesions and layers of normal tissue. Another limitation is its reduced sensitivity in women with mammographically dense breasts. Computed tomography (CT) produces a 3D image yet has had a limited role in mammography due to its relatively high dose, low resolution, and low contrast. As a first step towards implementing quantitative 3D mammography, which may improve the ability to detect and specify breast tumors, we have developed an analytical technique that can use Compton scatter to obtain 3D information of an object from a single projection. Imaging material with a pencil beam of polychromatic x rays produces a characteristic scattered photon spectrum at each point on the detector plane. A comparable distribution may be calculated using a known incident x-ray energy spectrum, beam shape, and an initial estimate of the object's 3D mass attenuation and electron density. Our iterative minimization algorithm changes the initially arbitrary electron density voxel matrix to reduce regular differences between the analytically predicted and experimentally measured spectra at each point on the detector plane. The simulated electron density converges to that of the object as the differences are minimized. The reconstruction algorithm has been validated using simulated data produced by the EGSnrc Monte Carlo code system. We applied the imaging algorithm to a cylindrically symmetric breast tissue phantom containing multiple inhomogeneities. A preliminary ROC analysis scores greater than 0.96, which indicate that under the described simplifying conditions, this approach shows promise in identifying and localizing inhomogeneities which simulate 0.5 mm calcifications with an image voxel resolution of 0.25 cm and at a dose comparable to mammography.
FAST: framework for heterogeneous medical image computing and visualization.
Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank
2015-11-01
Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.
NASA Astrophysics Data System (ADS)
Raouafi, Noureddine; Bernasconi, P. N.; Georgoulis, M. K.
2010-05-01
We present two pattern recognition algorithms, the "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code,” that are among the Feature Finding modules of the Solar Dynamic Observatory: 1) Coronal sigmoids visible in X-rays and the EUV are the result of highly twisted magnetic fields. They can occur anywhere on the solar disk and are closely related to solar eruptive activity (e.g., flares, CMEs). Their appearance is typically synonym of imminent solar eruptions, so they can serve as a tool to forecast solar activity. Automatic X-ray sigmoid identification offers an unbiased way of detecting short-to-mid term CME precursors. The "Sigmoid Sniffer” module is capable of automatically detecting sigmoids in full-disk X-ray images and determining their chirality, as well as other characteristics. It uses multiple thresholds to identify persistent bright structures on a full-disk X-ray image of the Sun. We plan to apply the code to X-ray images from Hinode/XRT, as well as on SDO/AIA images. When implemented in a near real-time environment, the Sigmoid Sniffer could allow 3-7 day forecasts of CMEs and their potential to cause major geomagnetic storms. 2)The "Advanced Automated Solar Filament Detection and Characterization Code” aims to identify, classify, and track solar filaments in full-disk Hα images. The code can reliably identify filaments; determine their chirality and other relevant parameters like filament area, length, and average orientation with respect to the equator. It is also capable of tracking the day-by-day evolution of filaments as they traverse the visible disk. The code was tested by analyzing daily Hα images taken at the Big Bear Solar Observatory from mid-2000 to early-2005. It identified and established the chirality of thousands of filaments without human intervention.
Using High-Dimensional Image Models to Perform Highly Undetectable Steganography
NASA Astrophysics Data System (ADS)
Pevný, Tomáš; Filler, Tomáš; Bas, Patrick
This paper presents a complete methodology for designing practical and highly-undetectable stegosystems for real digital media. The main design principle is to minimize a suitably-defined distortion by means of efficient coding algorithm. The distortion is defined as a weighted difference of extended state-of-the-art feature vectors already used in steganalysis. This allows us to "preserve" the model used by steganalyst and thus be undetectable even for large payloads. This framework can be efficiently implemented even when the dimensionality of the feature set used by the embedder is larger than 107. The high dimensional model is necessary to avoid known security weaknesses. Although high-dimensional models might be problem in steganalysis, we explain, why they are acceptable in steganography. As an example, we introduce HUGO, a new embedding algorithm for spatial-domain digital images and we contrast its performance with LSB matching. On the BOWS2 image database and in contrast with LSB matching, HUGO allows the embedder to hide 7× longer message with the same level of security level.
Label consistent K-SVD: learning a discriminative dictionary for recognition.
Jiang, Zhuolin; Lin, Zhe; Davis, Larry S
2013-11-01
A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.
Sparsity based target detection for compressive spectral imagery
NASA Astrophysics Data System (ADS)
Boada, David Alberto; Arguello Fuentes, Henry
2016-09-01
Hyperspectral imagery provides significant information about the spectral characteristics of objects and materials present in a scene. It enables object and feature detection, classification, or identification based on the acquired spectral characteristics. However, it relies on sophisticated acquisition and data processing systems able to acquire, process, store, and transmit hundreds or thousands of image bands from a given area of interest which demands enormous computational resources in terms of storage, computationm, and I/O throughputs. Specialized optical architectures have been developed for the compressed acquisition of spectral images using a reduced set of coded measurements contrary to traditional architectures that need a complete set of measurements of the data cube for image acquisition, dealing with the storage and acquisition limitations. Despite this improvement, if any processing is desired, the image has to be reconstructed by an inverse algorithm in order to be processed, which is also an expensive task. In this paper, a sparsity-based algorithm for target detection in compressed spectral images is presented. Specifically, the target detection model adapts a sparsity-based target detector to work in a compressive domain, modifying the sparse representation basis in the compressive sensing problem by means of over-complete training dictionaries and a wavelet basis representation. Simulations show that the presented method can achieve even better detection results than the state of the art methods.
Enhancing Web applications in radiology with Java: estimating MR imaging relaxation times.
Dagher, A P; Fitzpatrick, M; Flanders, A E; Eng, J
1998-01-01
Java is a relatively new programming language that has been used to develop a World Wide Web-based tool for estimating magnetic resonance (MR) imaging relaxation times, thereby demonstrating how Java may be used for Web-based radiology applications beyond improving the user interface of teaching files. A standard processing algorithm coded with Java is downloaded along with the hypertext markup language (HTML) document. The user (client) selects the desired pulse sequence and inputs data obtained from a region of interest on the MR images. The algorithm is used to modify selected MR imaging parameters in an equation that models the phenomenon being evaluated. MR imaging relaxation times are estimated, and confidence intervals and a P value expressing the accuracy of the final results are calculated. Design features such as simplicity, object-oriented programming, and security restrictions allow Java to expand the capabilities of HTML by offering a more versatile user interface that includes dynamic annotations and graphics. Java also allows the client to perform more sophisticated information processing and computation than is usually associated with Web applications. Java is likely to become a standard programming option, and the development of stand-alone Java applications may become more common as Java is integrated into future versions of computer operating systems.
Deep Learning for Lowtextured Image Matching
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Fedorenko, V. V.; Fomin, N. A.
2018-05-01
Low-textured objects pose challenges for an automatic 3D model reconstruction. Such objects are common in archeological applications of photogrammetry. Most of the common feature point descriptors fail to match local patches in featureless regions of an object. Hence, automatic documentation of the archeological process using Structure from Motion (SfM) methods is challenging. Nevertheless, such documentation is possible with the aid of a human operator. Deep learning-based descriptors have outperformed most of common feature point descriptors recently. This paper is focused on the development of a new Wide Image Zone Adaptive Robust feature Descriptor (WIZARD) based on the deep learning. We use a convolutional auto-encoder to compress discriminative features of a local path into a descriptor code. We build a codebook to perform point matching on multiple images. The matching is performed using the nearest neighbor search and a modified voting algorithm. We present a new "Multi-view Amphora" (Amphora) dataset for evaluation of point matching algorithms. The dataset includes images of an Ancient Greek vase found at Taman Peninsula in Southern Russia. The dataset provides color images, a ground truth 3D model, and a ground truth optical flow. We evaluated the WIZARD descriptor on the "Amphora" dataset to show that it outperforms the SIFT and SURF descriptors on the complex patch pairs.
Prompt gamma-ray imaging for small animals
NASA Astrophysics Data System (ADS)
Xu, Libai
Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose codes GEANT4 or MCNP5, to predict results and investigate the feasibility of this new imaging idea. Benchmark experiments have been conducted to test the capability of the code to simulate prompt gamma rays, which are produced by following the nuclear structures of each irradiated isotope, and coincidence counting techniques, which are considered the most important improvement in neutron-related gamma-ray detection applications to reduce gamma background and improve system signal-to-noise ratios. With coincidence prompt gamma rays available, two major imaging techniques, electronic collimations and mechanic collimations, are implemented in the simulation to illustrate the feasibility of imaging elemental distribution by this new technique. The expectation maximization algorithm is employed in electronic collimation to reconstruct images. The common SPECT imaging algorithms are used in mechanical collimation to get an image. Several critical topics concerning practical applications have already been discussed, such as the radiation dose to the mouse and the detection efficiency of high-energy gamma rays. The funding of this work is provided by the Center for Engineering Application of Radioisotopes (CEAR) at North Carolina State University (NCSU) and Nuclear Engineering Education Research.
Iris Matching Based on Personalized Weight Map.
Dong, Wenbo; Sun, Zhenan; Tan, Tieniu
2011-09-01
Iris recognition typically involves three steps, namely, iris image preprocessing, feature extraction, and feature matching. The first two steps of iris recognition have been well studied, but the last step is less addressed. Each human iris has its unique visual pattern and local image features also vary from region to region, which leads to significant differences in robustness and distinctiveness among the feature codes derived from different iris regions. However, most state-of-the-art iris recognition methods use a uniform matching strategy, where features extracted from different regions of the same person or the same region for different individuals are considered to be equally important. This paper proposes a personalized iris matching strategy using a class-specific weight map learned from the training images of the same iris class. The weight map can be updated online during the iris recognition procedure when the successfully recognized iris images are regarded as the new training data. The weight map reflects the robustness of an encoding algorithm on different iris regions by assigning an appropriate weight to each feature code for iris matching. Such a weight map trained by sufficient iris templates is convergent and robust against various noise. Extensive and comprehensive experiments demonstrate that the proposed personalized iris matching strategy achieves much better iris recognition performance than uniform strategies, especially for poor quality iris images.
Simple Criteria to Determine the Set of Key Parameters of the DRPE Method by a Brute-force Attack
NASA Astrophysics Data System (ADS)
Nalegaev, S. S.; Petrov, N. V.
Known techniques of breaking Double Random Phase Encoding (DRPE), which bypass the resource-intensive brute-force method, require at least two conditions: the attacker knows the encryption algorithm; there is an access to the pairs of source and encoded images. Our numerical results show that for the accurate recovery by numerical brute-force attack, someone needs only some a priori information about the source images, which can be quite general. From the results of our numerical experiments with optical data encryption DRPE with digital holography, we have proposed four simple criteria for guaranteed and accurate data recovery. These criteria can be applied, if the grayscale, binary (including QR-codes) or color images are used as a source.
Microstructural analysis of aluminum high pressure die castings
NASA Astrophysics Data System (ADS)
David, Maria Diana
Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.
Sequential Dictionary Learning From Correlated Data: Application to fMRI Data Analysis.
Seghouane, Abd-Krim; Iqbal, Asif
2017-03-22
Sequential dictionary learning via the K-SVD algorithm has been revealed as a successful alternative to conventional data driven methods such as independent component analysis (ICA) for functional magnetic resonance imaging (fMRI) data analysis. fMRI datasets are however structured data matrices with notions of spatio-temporal correlation and temporal smoothness. This prior information has not been included in the K-SVD algorithm when applied to fMRI data analysis. In this paper we propose three variants of the K-SVD algorithm dedicated to fMRI data analysis by accounting for this prior information. The proposed algorithms differ from the K-SVD in their sparse coding and dictionary update stages. The first two algorithms account for the known correlation structure in the fMRI data by using the squared Q, R-norm instead of the Frobenius norm for matrix approximation. The third and last algorithm account for both the known correlation structure in the fMRI data and the temporal smoothness. The temporal smoothness is incorporated in the dictionary update stage via regularization of the dictionary atoms obtained with penalization. The performance of the proposed dictionary learning algorithms are illustrated through simulations and applications on real fMRI data.
Kotchenova, Svetlana Y; Vermote, Eric F
2007-07-10
This is the second part of the validation effort of the recently developed vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), primarily used for the calculation of look-up tables in the Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction algorithm. The 6SV1 code was tested against a Monte Carlo code and Coulson's tabulated values for molecular and aerosol atmospheres bounded by different Lambertian and anisotropic surfaces. The code was also tested in scalar mode against the scalar code SHARM to resolve the previous 6S accuracy issues in the case of an anisotropic surface. All test cases were characterized by good agreement between the 6SV1 and the other codes: The overall relative error did not exceed 0.8%. The study also showed that ignoring the effects of radiation polarization in the atmosphere led to large errors in the simulated top-of-atmosphere reflectances: The maximum observed error was approximately 7.2% for both Lambertian and anisotropic surfaces.
NASA Astrophysics Data System (ADS)
Kotchenova, Svetlana Y.; Vermote, Eric F.
2007-07-01
This is the second part of the validation effort of the recently developed vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), primarily used for the calculation of look-up tables in the Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction algorithm. The 6SV1 code was tested against a Monte Carlo code and Coulson's tabulated values for molecular and aerosol atmospheres bounded by different Lambertian and anisotropic surfaces. The code was also tested in scalar mode against the scalar code SHARM to resolve the previous 6S accuracy issues in the case of an anisotropic surface. All test cases were characterized by good agreement between the 6SV1 and the other codes: The overall relative error did not exceed 0.8%. The study also showed that ignoring the effects of radiation polarization in the atmosphere led to large errors in the simulated top-of-atmosphere reflectances: The maximum observed error was approximately 7.2% for both Lambertian and anisotropic surfaces.
Enhancing the performance of the light field microscope using wavefront coding
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-01-01
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056
Enhancing the performance of the light field microscope using wavefront coding.
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-10-06
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.
Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding of JPEG Images.
Liu, Xianming; Cheung, Gene; Wu, Xiaolin; Zhao, Debin
2017-02-01
Given the prevalence of joint photographic experts group (JPEG) compressed images, optimizing image reconstruction from the compressed format remains an important problem. Instead of simply reconstructing a pixel block from the centers of indexed discrete cosine transform (DCT) coefficient quantization bins (hard decoding), soft decoding reconstructs a block by selecting appropriate coefficient values within the indexed bins with the help of signal priors. The challenge thus lies in how to define suitable priors and apply them effectively. In this paper, we combine three image priors-Laplacian prior for DCT coefficients, sparsity prior, and graph-signal smoothness prior for image patches-to construct an efficient JPEG soft decoding algorithm. Specifically, we first use the Laplacian prior to compute a minimum mean square error initial solution for each code block. Next, we show that while the sparsity prior can reduce block artifacts, limiting the size of the overcomplete dictionary (to lower computation) would lead to poor recovery of high DCT frequencies. To alleviate this problem, we design a new graph-signal smoothness prior (desired signal has mainly low graph frequencies) based on the left eigenvectors of the random walk graph Laplacian matrix (LERaG). Compared with the previous graph-signal smoothness priors, LERaG has desirable image filtering properties with low computation overhead. We demonstrate how LERaG can facilitate recovery of high DCT frequencies of a piecewise smooth signal via an interpretation of low graph frequency components as relaxed solutions to normalized cut in spectral clustering. Finally, we construct a soft decoding algorithm using the three signal priors with appropriate prior weights. Experimental results show that our proposal outperforms the state-of-the-art soft decoding algorithms in both objective and subjective evaluations noticeably.
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Tong, Qing-zhen; Huang, Sheng; Wang, Yong
2013-11-01
An effective hierarchical reliable belief propagation (HRBP) decoding algorithm is proposed according to the structural characteristics of systematically constructed Gallager low-density parity-check (SCG-LDPC) codes. The novel decoding algorithm combines the layered iteration with the reliability judgment, and can greatly reduce the number of the variable nodes involved in the subsequent iteration process and accelerate the convergence rate. The result of simulation for SCG-LDPC(3969,3720) code shows that the novel HRBP decoding algorithm can greatly reduce the computing amount at the condition of ensuring the performance compared with the traditional belief propagation (BP) algorithm. The bit error rate (BER) of the HRBP algorithm is considerable at the threshold value of 15, but in the subsequent iteration process, the number of the variable nodes for the HRBP algorithm can be reduced by about 70% at the high signal-to-noise ratio (SNR) compared with the BP algorithm. When the threshold value is further increased, the HRBP algorithm will gradually degenerate into the layered-BP algorithm, but at the BER of 10-7 and the maximal iteration number of 30, the net coding gain (NCG) of the HRBP algorithm is 0.2 dB more than that of the BP algorithm, and the average iteration times can be reduced by about 40% at the high SNR. Therefore, the novel HRBP decoding algorithm is more suitable for optical communication systems.
Hard decoding algorithm for optimizing thresholds under general Markovian noise
NASA Astrophysics Data System (ADS)
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network
Lin, Kai; Wang, Di; Hu, Long
2016-01-01
With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302
Visual Tracking via Sparse and Local Linear Coding.
Wang, Guofeng; Qin, Xueying; Zhong, Fan; Liu, Yue; Li, Hongbo; Peng, Qunsheng; Yang, Ming-Hsuan
2015-11-01
The state search is an important component of any object tracking algorithm. Numerous algorithms have been proposed, but stochastic sampling methods (e.g., particle filters) are arguably one of the most effective approaches. However, the discretization of the state space complicates the search for the precise object location. In this paper, we propose a novel tracking algorithm that extends the state space of particle observations from discrete to continuous. The solution is determined accurately via iterative linear coding between two convex hulls. The algorithm is modeled by an optimal function, which can be efficiently solved by either convex sparse coding or locality constrained linear coding. The algorithm is also very flexible and can be combined with many generic object representations. Thus, we first use sparse representation to achieve an efficient searching mechanism of the algorithm and demonstrate its accuracy. Next, two other object representation models, i.e., least soft-threshold squares and adaptive structural local sparse appearance, are implemented with improved accuracy to demonstrate the flexibility of our algorithm. Qualitative and quantitative experimental results demonstrate that the proposed tracking algorithm performs favorably against the state-of-the-art methods in dynamic scenes.
Embedded wavelet packet transform technique for texture compression
NASA Astrophysics Data System (ADS)
Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay
1995-09-01
A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.
Suomi NPP VIIRS active fire product status
NASA Astrophysics Data System (ADS)
Ellicott, E. A.; Csiszar, I. A.; Schroeder, W.; Giglio, L.; Wind, B.; Justice, C. O.
2012-12-01
We provide an overview of the evaluation and development of the Active Fires product derived from the Visible Infrared Imager Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (SNPP) satellite during the first year of on-orbit data. Results from the initial evaluation of the standard SNPP Active Fires product, generated by the SNPP Interface Data Processing System (IDPS), supported the stabilization of the VIIRS Sensor Data Record (SDR) product. This activity focused in particular on the processing of the dual-gain 4 micron VIIRS M13 radiometric measurements into 750m aggregated data, which are fundamental for active fire detection. Following the VIIRS SDR product's Beta maturity status in April 2012, correlative analysis between VIIRS and near-simultaneous fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System Aqua satellite confirmed the expected relative detection rates driven primarily by sensor differences. The VIIRS Active Fires Product Development and Validation Team also developed a science code that is based on the latest MODIS Collection 6 algorithm and provides a full spatially explicit fire mask to replace the sparse array output of fire locations from a MODIS Collection 4 equivalent algorithm in the current IDPS product. The Algorithm Development Library (ADL) was used to support the planning for the transition of the science code into IDPS operations in the future. Product evaluation and user outreach was facilitated by a product website that provided end user access to fire data in user-friendly format over North America as well as examples of VIIRS-MODIS comparisons. The VIIRS fire team also developed an experimental product based on 375m VIIRS Imagery band measurements and provided high quality imagery of major fire events in US. By August 2012 the IDPS product achieved Beta maturity, with some known and documented shortfalls related to the processing of incorrect SDR input data and to apparent algorithm deficiencies in select observing and environmental conditions.
Fast transform decoding of nonsystematic Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Truong, T. K.; Cheung, K.-M.; Reed, I. S.; Shiozaki, A.
1989-01-01
A Reed-Solomon (RS) code is considered to be a special case of a redundant residue polynomial (RRP) code, and a fast transform decoding algorithm to correct both errors and erasures is presented. This decoding scheme is an improvement of the decoding algorithm for the RRP code suggested by Shiozaki and Nishida, and can be realized readily on very large scale integration chips.
New development of the image matching algorithm
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqiang; Feng, Zhao
2018-04-01
To study the image matching algorithm, algorithm four elements are described, i.e., similarity measurement, feature space, search space and search strategy. Four common indexes for evaluating the image matching algorithm are described, i.e., matching accuracy, matching efficiency, robustness and universality. Meanwhile, this paper describes the principle of image matching algorithm based on the gray value, image matching algorithm based on the feature, image matching algorithm based on the frequency domain analysis, image matching algorithm based on the neural network and image matching algorithm based on the semantic recognition, and analyzes their characteristics and latest research achievements. Finally, the development trend of image matching algorithm is discussed. This study is significant for the algorithm improvement, new algorithm design and algorithm selection in practice.
Hybrid Parallel Contour Trees, Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sewell, Christopher; Fasel, Patricia; Carr, Hamish
A common operation in scientific visualization is to compute and render a contour of a data set. Given a function of the form f : R^d -> R, a level set is defined as an inverse image f^-1(h) for an isovalue h, and a contour is a single connected component of a level set. The Reeb graph can then be defined to be the result of contracting each contour to a single point, and is well defined for Euclidean spaces or for general manifolds. For simple domains, the graph is guaranteed to be a tree, and is called the contourmore » tree. Analysis can then be performed on the contour tree in order to identify isovalues of particular interest, based on various metrics, and render the corresponding contours, without having to know such isovalues a priori. This code is intended to be the first data-parallel algorithm for computing contour trees. Our implementation will use the portable data-parallel primitives provided by Nvidia’s Thrust library, allowing us to compile our same code for both GPUs and multi-core CPUs. Native OpenMP and purely serial versions of the code will likely also be included. It will also be extended to provide a hybrid data-parallel / distributed algorithm, allowing scaling beyond a single GPU or CPU.« less
Error floor behavior study of LDPC codes for concatenated codes design
NASA Astrophysics Data System (ADS)
Chen, Weigang; Yin, Liuguo; Lu, Jianhua
2007-11-01
Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.
Code Verification Results of an LLNL ASC Code on Some Tri-Lab Verification Test Suite Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, S R; Bihari, B L; Salari, K
As scientific codes become more complex and involve larger numbers of developers and algorithms, chances for algorithmic implementation mistakes increase. In this environment, code verification becomes essential to building confidence in the code implementation. This paper will present first results of a new code verification effort within LLNL's B Division. In particular, we will show results of code verification of the LLNL ASC ARES code on the test problems: Su Olson non-equilibrium radiation diffusion, Sod shock tube, Sedov point blast modeled with shock hydrodynamics, and Noh implosion.
Temperature, Pressure, and Infrared Image Survey of an Axisymmetric Heated Exhaust Plume
NASA Technical Reports Server (NTRS)
Nelson, Edward L.; Mahan, J. Robert; Birckelbaw, Larry D.; Turk, Jeffrey A.; Wardwell, Douglas A.; Hange, Craig E.
1996-01-01
The focus of this research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate computational fluid dynamic (CFD) codes through infrared imaging. The technique of reducing the three-dimensional field variable domain to a two-dimensional infrared image invokes the use of an inverse Monte Carlo ray trace algorithm and an infrared band model for exhaust gases. This report describes an experiment in which the above-mentioned field variables were carefully measured. Results from this experiment, namely tables of measured temperature and pressure data, as well as measured infrared images, are given. The inverse Monte Carlo ray trace technique is described. Finally, experimentally obtained infrared images are directly compared to infrared images predicted from the measured field variables.
Design of FPGA ICA for hyperspectral imaging processing
NASA Astrophysics Data System (ADS)
Nordin, Anis; Hsu, Charles C.; Szu, Harold H.
2001-03-01
The remote sensing problem which uses hyperspectral imaging can be transformed into a blind source separation problem. Using this model, hyperspectral imagery can be de-mixed into sub-pixel spectra which indicate the different material present in the pixel. This can be further used to deduce areas which contain forest, water or biomass, without even knowing the sources which constitute the image. This form of remote sensing allows previously blurred images to show the specific terrain involved in that region. The blind source separation problem can be implemented using an Independent Component Analysis algorithm. The ICA Algorithm has previously been successfully implemented using software packages such as MATLAB, which has a downloadable version of FastICA. The challenge now lies in implementing it in a form of hardware, or firmware in order to improve its computational speed. Hardware implementation also solves insufficient memory problem encountered by software packages like MATLAB when employing ICA for high resolution images and a large number of channels. Here, a pipelined solution of the firmware, realized using FPGAs are drawn out and simulated using C. Since C code can be translated into HDLs or be used directly on the FPGAs, it can be used to simulate its actual implementation in hardware. The simulated results of the program is presented here, where seven channels are used to model the 200 different channels involved in hyperspectral imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matenine, D; Cote, G; Mascolo-Fortin, J
2016-06-15
Purpose: Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersections between the photons’ trajectories and the object, also called ray-tracing or system matrix computation. This work evaluates different ways to store the system matrix, aiming to reconstruct dense image grids in reasonable time. Methods: We propose an optimized implementation of the Siddon’s algorithm using graphics processing units (GPUs) with a novel data storage scheme. The algorithm computes a part of the system matrix on demand, typically, for one projection angle. The proposed method was enhanced with accelerating options: storage of larger subsets of themore » system matrix, systematic reuse of data via geometric symmetries, an arithmetic-rich parallel code and code configuration via machine learning. It was tested on geometries mimicking a cone beam CT acquisition of a human head. To realistically assess the execution time, the ray-tracing routines were integrated into a regularized Poisson-based reconstruction algorithm. The proposed scheme was also compared to a different approach, where the system matrix is fully pre-computed and loaded at reconstruction time. Results: Fast ray-tracing of realistic acquisition geometries, which often lack spatial symmetry properties, was enabled via the proposed method. Ray-tracing interleaved with projection and backprojection operations required significant additional time. In most cases, ray-tracing was shown to use about 66 % of the total reconstruction time. In absolute terms, tracing times varied from 3.6 s to 7.5 min, depending on the problem size. The presence of geometrical symmetries allowed for non-negligible ray-tracing and reconstruction time reduction. Arithmetic-rich parallel code and machine learning permitted a modest reconstruction time reduction, in the order of 1 %. Conclusion: Partial system matrix storage permitted the reconstruction of higher 3D image grid sizes and larger projection datasets at the cost of additional time, when compared to the fully pre-computed approach. This work was supported in part by the Fonds de recherche du Quebec - Nature et technologies (FRQ-NT). The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council of Canada (Grant No. 432290).« less
NASA Astrophysics Data System (ADS)
Hashimoto, M.; Nakajima, T.; Takenaka, H.; Higurashi, A.
2013-12-01
We develop a new satellite remote sensing algorithm to retrieve the properties of aerosol particles in the atmosphere. In late years, high resolution and multi-wavelength, and multiple-angle observation data have been obtained by grand-based spectral radiometers and imaging sensors on board the satellite. With this development, optimized multi-parameter remote sensing methods based on the Bayesian theory have become popularly used (Turchin and Nozik, 1969; Rodgers, 2000; Dubovik et al., 2000). Additionally, a direct use of radiation transfer calculation has been employed for non-linear remote sensing problems taking place of look up table methods supported by the progress of computing technology (Dubovik et al., 2011; Yoshida et al., 2011). We are developing a flexible multi-pixel and multi-parameter remote sensing algorithm for aerosol optical properties. In this algorithm, the inversion method is a combination of the MAP method (Maximum a posteriori method, Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, we include a radiation transfer calculation code, Rstar (Nakajima and Tanaka, 1986, 1988), numerically solved each time in iteration for solution search. The Rstar-code has been directly used in the AERONET operational processing system (Dubovik and King, 2000). Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine mode, sea salt, and dust particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area. We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm for the land area. In this test, we simulated satellite-observed radiances for a sub-domain consisting of 5 by 5 pixels by the Rstar code assuming wavelengths of 380, 674, 870 and 1600 [nm], atmospheric condition of the US standard atmosphere, and the several aerosol and ground surface conditions. The result of the experiment showed that AOTs of fine mode and dust particles, soot fraction and ground surface albedo at the wavelength of 674 [nm] are retrieved within absolute value differences of 0.04, 0.01, 0.06 and 0.006 from the true value, respectively, for the case of dark surface, and also, for the case of blight surface, 0.06, 0.03, 0.04 and 0.10 from the true value, respectively. We will conduct more tests to study the information contents of parameters needed for aerosol and land surface remote sensing with different boundary conditions among sub-domains.
NASA Astrophysics Data System (ADS)
Kelley, Owen A.
2013-02-01
THOR, the Tool for High-resolution Observation Review, is a data viewer for the Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission. THOR began as a desktop application, but now it can be accessed with a web browser, making THOR one of the first online tools for visualizing TRMM satellite data (http://pps.gsfc.nasa.gov/thor). In this effort, the reuse of the existing visualization code was maximized and the complexity of new code was minimized by avoiding unnecessary functionality, frameworks, or libraries. The simplicity of this approach makes it potentially attractive to researchers wishing to adapt their visualization applications for online deployment. To enable THOR to run within a web browser, three new pieces of code are written. First, the graphical user interface (GUI) of the desktop application is translated into HTML, JavaScript, and CSS. Second, a simple communication mechanism is developed over HTTP. Third, a virtual GUI is created on the server that interfaces with the image-generating routines of the existing desktop application so that these routines do not need to be modified for online use. While the basic functionality of THOR is now available online, prototyping is ongoing for enhanced 3D imaging and other aspects of both THOR Desktop and THOR Online. Because TRMM data products are complex and periodically reprocessed with improved algorithms, having a tool such as THOR is important to analysts at the Precipitation Processing System where the algorithms are tested and the products generated, stored, and distributed. Researchers also have found THOR useful for taking a first look at individual files before writing their own software to perform specialized calculations and analyses.